]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
899527ebb9568746a0964feb773b53099fc92742
[rust.git] / src / librustc_typeck / collect.rs
1 // ignore-tidy-filelength
2
3 //! "Collection" is the process of determining the type and other external
4 //! details of each item in Rust. Collection is specifically concerned
5 //! with *inter-procedural* things -- for example, for a function
6 //! definition, collection will figure out the type and signature of the
7 //! function, but it will not visit the *body* of the function in any way,
8 //! nor examine type annotations on local variables (that's the job of
9 //! type *checking*).
10 //!
11 //! Collecting is ultimately defined by a bundle of queries that
12 //! inquire after various facts about the items in the crate (e.g.,
13 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
14 //! for the full set.
15 //!
16 //! At present, however, we do run collection across all items in the
17 //! crate as a kind of pass. This should eventually be factored away.
18
19 use crate::astconv::{AstConv, Bounds, SizedByDefault};
20 use crate::check::intrinsic::intrinsic_operation_unsafety;
21 use crate::constrained_generic_params as cgp;
22 use crate::lint;
23 use crate::middle::lang_items;
24 use crate::middle::resolve_lifetime as rl;
25 use rustc::hir::map::blocks::FnLikeNode;
26 use rustc::hir::map::Map;
27 use rustc::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
28 use rustc::mir::mono::Linkage;
29 use rustc::session::parse::feature_err;
30 use rustc::traits;
31 use rustc::ty::query::Providers;
32 use rustc::ty::subst::GenericArgKind;
33 use rustc::ty::subst::{InternalSubsts, Subst};
34 use rustc::ty::util::Discr;
35 use rustc::ty::util::IntTypeExt;
36 use rustc::ty::{self, AdtKind, Const, DefIdTree, ToPolyTraitRef, Ty, TyCtxt, TypeFoldable};
37 use rustc::ty::{ReprOptions, ToPredicate, WithConstness};
38 use rustc_attr::{list_contains_name, mark_used, InlineAttr, OptimizeAttr};
39 use rustc_data_structures::captures::Captures;
40 use rustc_data_structures::fx::FxHashMap;
41 use rustc_errors::{struct_span_err, Applicability, StashKey};
42 use rustc_hir as hir;
43 use rustc_hir::def::{CtorKind, DefKind, Res};
44 use rustc_hir::def_id::{DefId, LOCAL_CRATE};
45 use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
46 use rustc_hir::{GenericParamKind, Node, Unsafety};
47 use rustc_span::symbol::{kw, sym, Symbol};
48 use rustc_span::{Span, DUMMY_SP};
49 use rustc_target::spec::abi;
50 use syntax::ast;
51 use syntax::ast::{Ident, MetaItemKind};
52
53 struct OnlySelfBounds(bool);
54
55 ///////////////////////////////////////////////////////////////////////////
56 // Main entry point
57
58 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: DefId) {
59     tcx.hir().visit_item_likes_in_module(
60         module_def_id,
61         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor(),
62     );
63 }
64
65 pub fn provide(providers: &mut Providers<'_>) {
66     *providers = Providers {
67         type_of,
68         generics_of,
69         predicates_of,
70         predicates_defined_on,
71         explicit_predicates_of,
72         super_predicates_of,
73         type_param_predicates,
74         trait_def,
75         adt_def,
76         fn_sig,
77         impl_trait_ref,
78         impl_polarity,
79         is_foreign_item,
80         static_mutability,
81         codegen_fn_attrs,
82         collect_mod_item_types,
83         ..*providers
84     };
85 }
86
87 ///////////////////////////////////////////////////////////////////////////
88
89 /// Context specific to some particular item. This is what implements
90 /// `AstConv`. It has information about the predicates that are defined
91 /// on the trait. Unfortunately, this predicate information is
92 /// available in various different forms at various points in the
93 /// process. So we can't just store a pointer to e.g., the AST or the
94 /// parsed ty form, we have to be more flexible. To this end, the
95 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
96 /// `get_type_parameter_bounds` requests, drawing the information from
97 /// the AST (`hir::Generics`), recursively.
98 pub struct ItemCtxt<'tcx> {
99     tcx: TyCtxt<'tcx>,
100     item_def_id: DefId,
101 }
102
103 ///////////////////////////////////////////////////////////////////////////
104
105 #[derive(Default)]
106 crate struct PlaceholderHirTyCollector(crate Vec<Span>);
107
108 impl<'v> Visitor<'v> for PlaceholderHirTyCollector {
109     type Map = Map<'v>;
110
111     fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
112         NestedVisitorMap::None
113     }
114     fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
115         if let hir::TyKind::Infer = t.kind {
116             self.0.push(t.span);
117         }
118         intravisit::walk_ty(self, t)
119     }
120 }
121
122 struct CollectItemTypesVisitor<'tcx> {
123     tcx: TyCtxt<'tcx>,
124 }
125
126 /// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
127 /// and suggest adding type parameters in the appropriate place, taking into consideration any and
128 /// all already existing generic type parameters to avoid suggesting a name that is already in use.
129 crate fn placeholder_type_error(
130     tcx: TyCtxt<'tcx>,
131     span: Span,
132     generics: &[hir::GenericParam<'_>],
133     placeholder_types: Vec<Span>,
134     suggest: bool,
135 ) {
136     if placeholder_types.is_empty() {
137         return;
138     }
139     // This is the whitelist of possible parameter names that we might suggest.
140     let possible_names = ["T", "K", "L", "A", "B", "C"];
141     let used_names = generics
142         .iter()
143         .filter_map(|p| match p.name {
144             hir::ParamName::Plain(ident) => Some(ident.name),
145             _ => None,
146         })
147         .collect::<Vec<_>>();
148
149     let type_name = possible_names
150         .iter()
151         .find(|n| !used_names.contains(&Symbol::intern(n)))
152         .unwrap_or(&"ParamName");
153
154     let mut sugg: Vec<_> =
155         placeholder_types.iter().map(|sp| (*sp, type_name.to_string())).collect();
156     if generics.is_empty() {
157         sugg.push((span, format!("<{}>", type_name)));
158     } else if let Some(arg) = generics.iter().find(|arg| match arg.name {
159         hir::ParamName::Plain(Ident { name: kw::Underscore, .. }) => true,
160         _ => false,
161     }) {
162         // Account for `_` already present in cases like `struct S<_>(_);` and suggest
163         // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
164         sugg.push((arg.span, format!("{}", type_name)));
165     } else {
166         sugg.push((
167             generics.iter().last().unwrap().span.shrink_to_hi(),
168             format!(", {}", type_name),
169         ));
170     }
171     let mut err = bad_placeholder_type(tcx, placeholder_types);
172     if suggest {
173         err.multipart_suggestion(
174             "use type parameters instead",
175             sugg,
176             Applicability::HasPlaceholders,
177         );
178     }
179     err.emit();
180 }
181
182 fn reject_placeholder_type_signatures_in_item(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
183     let (generics, suggest) = match &item.kind {
184         hir::ItemKind::Union(_, generics)
185         | hir::ItemKind::Enum(_, generics)
186         | hir::ItemKind::TraitAlias(generics, _)
187         | hir::ItemKind::Trait(_, _, generics, ..)
188         | hir::ItemKind::Impl { generics, .. }
189         | hir::ItemKind::Struct(_, generics) => (generics, true),
190         hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
191         | hir::ItemKind::TyAlias(_, generics) => (generics, false),
192         // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
193         _ => return,
194     };
195
196     let mut visitor = PlaceholderHirTyCollector::default();
197     visitor.visit_item(item);
198
199     placeholder_type_error(tcx, generics.span, &generics.params[..], visitor.0, suggest);
200 }
201
202 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
203     type Map = Map<'tcx>;
204
205     fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
206         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
207     }
208
209     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
210         convert_item(self.tcx, item.hir_id);
211         reject_placeholder_type_signatures_in_item(self.tcx, item);
212         intravisit::walk_item(self, item);
213     }
214
215     fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
216         for param in generics.params {
217             match param.kind {
218                 hir::GenericParamKind::Lifetime { .. } => {}
219                 hir::GenericParamKind::Type { default: Some(_), .. } => {
220                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
221                     self.tcx.type_of(def_id);
222                 }
223                 hir::GenericParamKind::Type { .. } => {}
224                 hir::GenericParamKind::Const { .. } => {
225                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
226                     self.tcx.type_of(def_id);
227                 }
228             }
229         }
230         intravisit::walk_generics(self, generics);
231     }
232
233     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
234         if let hir::ExprKind::Closure(..) = expr.kind {
235             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
236             self.tcx.generics_of(def_id);
237             self.tcx.type_of(def_id);
238         }
239         intravisit::walk_expr(self, expr);
240     }
241
242     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
243         convert_trait_item(self.tcx, trait_item.hir_id);
244         intravisit::walk_trait_item(self, trait_item);
245     }
246
247     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
248         convert_impl_item(self.tcx, impl_item.hir_id);
249         intravisit::walk_impl_item(self, impl_item);
250     }
251 }
252
253 ///////////////////////////////////////////////////////////////////////////
254 // Utility types and common code for the above passes.
255
256 fn bad_placeholder_type(
257     tcx: TyCtxt<'tcx>,
258     mut spans: Vec<Span>,
259 ) -> rustc_errors::DiagnosticBuilder<'tcx> {
260     spans.sort();
261     let mut err = struct_span_err!(
262         tcx.sess,
263         spans.clone(),
264         E0121,
265         "the type placeholder `_` is not allowed within types on item signatures",
266     );
267     for span in spans {
268         err.span_label(span, "not allowed in type signatures");
269     }
270     err
271 }
272
273 impl ItemCtxt<'tcx> {
274     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
275         ItemCtxt { tcx, item_def_id }
276     }
277
278     pub fn to_ty(&self, ast_ty: &'tcx hir::Ty<'tcx>) -> Ty<'tcx> {
279         AstConv::ast_ty_to_ty(self, ast_ty)
280     }
281
282     pub fn hir_id(&self) -> hir::HirId {
283         self.tcx
284             .hir()
285             .as_local_hir_id(self.item_def_id)
286             .expect("Non-local call to local provider is_const_fn")
287     }
288
289     pub fn node(&self) -> hir::Node<'tcx> {
290         self.tcx.hir().get(self.hir_id())
291     }
292 }
293
294 impl AstConv<'tcx> for ItemCtxt<'tcx> {
295     fn tcx(&self) -> TyCtxt<'tcx> {
296         self.tcx
297     }
298
299     fn item_def_id(&self) -> Option<DefId> {
300         Some(self.item_def_id)
301     }
302
303     fn default_constness_for_trait_bounds(&self) -> hir::Constness {
304         if let Some(fn_like) = FnLikeNode::from_node(self.node()) {
305             fn_like.constness()
306         } else {
307             hir::Constness::NotConst
308         }
309     }
310
311     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId) -> ty::GenericPredicates<'tcx> {
312         self.tcx.at(span).type_param_predicates((self.item_def_id, def_id))
313     }
314
315     fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
316         None
317     }
318
319     fn allow_ty_infer(&self) -> bool {
320         false
321     }
322
323     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
324         self.tcx().sess.delay_span_bug(span, "bad placeholder type");
325         self.tcx().types.err
326     }
327
328     fn ct_infer(
329         &self,
330         _: Ty<'tcx>,
331         _: Option<&ty::GenericParamDef>,
332         span: Span,
333     ) -> &'tcx Const<'tcx> {
334         bad_placeholder_type(self.tcx(), vec![span]).emit();
335
336         self.tcx().consts.err
337     }
338
339     fn projected_ty_from_poly_trait_ref(
340         &self,
341         span: Span,
342         item_def_id: DefId,
343         item_segment: &hir::PathSegment<'_>,
344         poly_trait_ref: ty::PolyTraitRef<'tcx>,
345     ) -> Ty<'tcx> {
346         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
347             let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
348                 self,
349                 self.tcx,
350                 span,
351                 item_def_id,
352                 item_segment,
353                 trait_ref.substs,
354             );
355             self.tcx().mk_projection(item_def_id, item_substs)
356         } else {
357             // There are no late-bound regions; we can just ignore the binder.
358             let mut err = struct_span_err!(
359                 self.tcx().sess,
360                 span,
361                 E0212,
362                 "cannot extract an associated type from a higher-ranked trait bound \
363                  in this context"
364             );
365
366             match self.node() {
367                 hir::Node::Field(_) | hir::Node::Ctor(_) | hir::Node::Variant(_) => {
368                     let item =
369                         self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(self.hir_id()));
370                     match &item.kind {
371                         hir::ItemKind::Enum(_, generics)
372                         | hir::ItemKind::Struct(_, generics)
373                         | hir::ItemKind::Union(_, generics) => {
374                             // FIXME: look for an appropriate lt name if `'a` is already used
375                             let (lt_sp, sugg) = match &generics.params[..] {
376                                 [] => (generics.span, "<'a>".to_string()),
377                                 [bound, ..] => (bound.span.shrink_to_lo(), "'a, ".to_string()),
378                             };
379                             let suggestions = vec![
380                                 (lt_sp, sugg),
381                                 (
382                                     span,
383                                     format!(
384                                         "{}::{}",
385                                         // Replace the existing lifetimes with a new named lifetime.
386                                         self.tcx
387                                             .replace_late_bound_regions(&poly_trait_ref, |_| {
388                                                 self.tcx.mk_region(ty::ReEarlyBound(
389                                                     ty::EarlyBoundRegion {
390                                                         def_id: item_def_id,
391                                                         index: 0,
392                                                         name: Symbol::intern("'a"),
393                                                     },
394                                                 ))
395                                             })
396                                             .0,
397                                         item_segment.ident
398                                     ),
399                                 ),
400                             ];
401                             err.multipart_suggestion(
402                                 "use a fully qualified path with explicit lifetimes",
403                                 suggestions,
404                                 Applicability::MaybeIncorrect,
405                             );
406                         }
407                         _ => {}
408                     }
409                 }
410                 hir::Node::Item(hir::Item { kind: hir::ItemKind::Struct(..), .. })
411                 | hir::Node::Item(hir::Item { kind: hir::ItemKind::Enum(..), .. })
412                 | hir::Node::Item(hir::Item { kind: hir::ItemKind::Union(..), .. }) => {}
413                 hir::Node::Item(_)
414                 | hir::Node::ForeignItem(_)
415                 | hir::Node::TraitItem(_)
416                 | hir::Node::ImplItem(_) => {
417                     err.span_suggestion(
418                         span,
419                         "use a fully qualified path with inferred lifetimes",
420                         format!(
421                             "{}::{}",
422                             // Erase named lt, we want `<A as B<'_>::C`, not `<A as B<'a>::C`.
423                             self.tcx.anonymize_late_bound_regions(&poly_trait_ref).skip_binder(),
424                             item_segment.ident
425                         ),
426                         Applicability::MaybeIncorrect,
427                     );
428                 }
429                 _ => {}
430             }
431             err.emit();
432             self.tcx().types.err
433         }
434     }
435
436     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
437         // Types in item signatures are not normalized to avoid undue dependencies.
438         ty
439     }
440
441     fn set_tainted_by_errors(&self) {
442         // There's no obvious place to track this, so just let it go.
443     }
444
445     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
446         // There's no place to record types from signatures?
447     }
448 }
449
450 /// Returns the predicates defined on `item_def_id` of the form
451 /// `X: Foo` where `X` is the type parameter `def_id`.
452 fn type_param_predicates(
453     tcx: TyCtxt<'_>,
454     (item_def_id, def_id): (DefId, DefId),
455 ) -> ty::GenericPredicates<'_> {
456     use rustc_hir::*;
457
458     // In the AST, bounds can derive from two places. Either
459     // written inline like `<T: Foo>` or in a where-clause like
460     // `where T: Foo`.
461
462     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
463     let param_owner = tcx.hir().ty_param_owner(param_id);
464     let param_owner_def_id = tcx.hir().local_def_id(param_owner);
465     let generics = tcx.generics_of(param_owner_def_id);
466     let index = generics.param_def_id_to_index[&def_id];
467     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id));
468
469     // Don't look for bounds where the type parameter isn't in scope.
470     let parent =
471         if item_def_id == param_owner_def_id { None } else { tcx.generics_of(item_def_id).parent };
472
473     let mut result = parent
474         .map(|parent| {
475             let icx = ItemCtxt::new(tcx, parent);
476             icx.get_type_parameter_bounds(DUMMY_SP, def_id)
477         })
478         .unwrap_or_default();
479     let mut extend = None;
480
481     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
482     let ast_generics = match tcx.hir().get(item_hir_id) {
483         Node::TraitItem(item) => &item.generics,
484
485         Node::ImplItem(item) => &item.generics,
486
487         Node::Item(item) => {
488             match item.kind {
489                 ItemKind::Fn(.., ref generics, _)
490                 | ItemKind::Impl { ref generics, .. }
491                 | ItemKind::TyAlias(_, ref generics)
492                 | ItemKind::OpaqueTy(OpaqueTy { ref generics, impl_trait_fn: None, .. })
493                 | ItemKind::Enum(_, ref generics)
494                 | ItemKind::Struct(_, ref generics)
495                 | ItemKind::Union(_, ref generics) => generics,
496                 ItemKind::Trait(_, _, ref generics, ..) => {
497                     // Implied `Self: Trait` and supertrait bounds.
498                     if param_id == item_hir_id {
499                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
500                         extend =
501                             Some((identity_trait_ref.without_const().to_predicate(), item.span));
502                     }
503                     generics
504                 }
505                 _ => return result,
506             }
507         }
508
509         Node::ForeignItem(item) => match item.kind {
510             ForeignItemKind::Fn(_, _, ref generics) => generics,
511             _ => return result,
512         },
513
514         _ => return result,
515     };
516
517     let icx = ItemCtxt::new(tcx, item_def_id);
518     let extra_predicates = extend.into_iter().chain(
519         icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty, OnlySelfBounds(true))
520             .into_iter()
521             .filter(|(predicate, _)| match predicate {
522                 ty::Predicate::Trait(ref data, _) => data.skip_binder().self_ty().is_param(index),
523                 _ => false,
524             }),
525     );
526     result.predicates =
527         tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
528     result
529 }
530
531 impl ItemCtxt<'tcx> {
532     /// Finds bounds from `hir::Generics`. This requires scanning through the
533     /// AST. We do this to avoid having to convert *all* the bounds, which
534     /// would create artificial cycles. Instead, we can only convert the
535     /// bounds for a type parameter `X` if `X::Foo` is used.
536     fn type_parameter_bounds_in_generics(
537         &self,
538         ast_generics: &'tcx hir::Generics<'tcx>,
539         param_id: hir::HirId,
540         ty: Ty<'tcx>,
541         only_self_bounds: OnlySelfBounds,
542     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
543         let constness = self.default_constness_for_trait_bounds();
544         let from_ty_params = ast_generics
545             .params
546             .iter()
547             .filter_map(|param| match param.kind {
548                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
549                 _ => None,
550             })
551             .flat_map(|bounds| bounds.iter())
552             .flat_map(|b| predicates_from_bound(self, ty, b, constness));
553
554         let from_where_clauses = ast_generics
555             .where_clause
556             .predicates
557             .iter()
558             .filter_map(|wp| match *wp {
559                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
560                 _ => None,
561             })
562             .flat_map(|bp| {
563                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
564                     Some(ty)
565                 } else if !only_self_bounds.0 {
566                     Some(self.to_ty(&bp.bounded_ty))
567                 } else {
568                     None
569                 };
570                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
571             })
572             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b, constness));
573
574         from_ty_params.chain(from_where_clauses).collect()
575     }
576 }
577
578 /// Tests whether this is the AST for a reference to the type
579 /// parameter with ID `param_id`. We use this so as to avoid running
580 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
581 /// conversion of the type to avoid inducing unnecessary cycles.
582 fn is_param(tcx: TyCtxt<'_>, ast_ty: &hir::Ty<'_>, param_id: hir::HirId) -> bool {
583     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.kind {
584         match path.res {
585             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
586                 def_id == tcx.hir().local_def_id(param_id)
587             }
588             _ => false,
589         }
590     } else {
591         false
592     }
593 }
594
595 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::HirId) {
596     let it = tcx.hir().expect_item(item_id);
597     debug!("convert: item {} with id {}", it.ident, it.hir_id);
598     let def_id = tcx.hir().local_def_id(item_id);
599     match it.kind {
600         // These don't define types.
601         hir::ItemKind::ExternCrate(_)
602         | hir::ItemKind::Use(..)
603         | hir::ItemKind::Mod(_)
604         | hir::ItemKind::GlobalAsm(_) => {}
605         hir::ItemKind::ForeignMod(ref foreign_mod) => {
606             for item in foreign_mod.items {
607                 let def_id = tcx.hir().local_def_id(item.hir_id);
608                 tcx.generics_of(def_id);
609                 tcx.type_of(def_id);
610                 tcx.predicates_of(def_id);
611                 if let hir::ForeignItemKind::Fn(..) = item.kind {
612                     tcx.fn_sig(def_id);
613                 }
614             }
615         }
616         hir::ItemKind::Enum(ref enum_definition, _) => {
617             tcx.generics_of(def_id);
618             tcx.type_of(def_id);
619             tcx.predicates_of(def_id);
620             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
621         }
622         hir::ItemKind::Impl { .. } => {
623             tcx.generics_of(def_id);
624             tcx.type_of(def_id);
625             tcx.impl_trait_ref(def_id);
626             tcx.predicates_of(def_id);
627         }
628         hir::ItemKind::Trait(..) => {
629             tcx.generics_of(def_id);
630             tcx.trait_def(def_id);
631             tcx.at(it.span).super_predicates_of(def_id);
632             tcx.predicates_of(def_id);
633         }
634         hir::ItemKind::TraitAlias(..) => {
635             tcx.generics_of(def_id);
636             tcx.at(it.span).super_predicates_of(def_id);
637             tcx.predicates_of(def_id);
638         }
639         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
640             tcx.generics_of(def_id);
641             tcx.type_of(def_id);
642             tcx.predicates_of(def_id);
643
644             for f in struct_def.fields() {
645                 let def_id = tcx.hir().local_def_id(f.hir_id);
646                 tcx.generics_of(def_id);
647                 tcx.type_of(def_id);
648                 tcx.predicates_of(def_id);
649             }
650
651             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
652                 convert_variant_ctor(tcx, ctor_hir_id);
653             }
654         }
655
656         // Desugared from `impl Trait`, so visited by the function's return type.
657         hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(_), .. }) => {}
658
659         hir::ItemKind::OpaqueTy(..)
660         | hir::ItemKind::TyAlias(..)
661         | hir::ItemKind::Static(..)
662         | hir::ItemKind::Const(..)
663         | hir::ItemKind::Fn(..) => {
664             tcx.generics_of(def_id);
665             tcx.type_of(def_id);
666             tcx.predicates_of(def_id);
667             if let hir::ItemKind::Fn(..) = it.kind {
668                 tcx.fn_sig(def_id);
669             }
670         }
671     }
672 }
673
674 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::HirId) {
675     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
676     let def_id = tcx.hir().local_def_id(trait_item.hir_id);
677     tcx.generics_of(def_id);
678
679     match trait_item.kind {
680         hir::TraitItemKind::Const(..)
681         | hir::TraitItemKind::Type(_, Some(_))
682         | hir::TraitItemKind::Method(..) => {
683             tcx.type_of(def_id);
684             if let hir::TraitItemKind::Method(..) = trait_item.kind {
685                 tcx.fn_sig(def_id);
686             }
687         }
688
689         hir::TraitItemKind::Type(_, None) => {}
690     };
691
692     tcx.predicates_of(def_id);
693 }
694
695 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::HirId) {
696     let def_id = tcx.hir().local_def_id(impl_item_id);
697     tcx.generics_of(def_id);
698     tcx.type_of(def_id);
699     tcx.predicates_of(def_id);
700     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).kind {
701         tcx.fn_sig(def_id);
702     }
703 }
704
705 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
706     let def_id = tcx.hir().local_def_id(ctor_id);
707     tcx.generics_of(def_id);
708     tcx.type_of(def_id);
709     tcx.predicates_of(def_id);
710 }
711
712 fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
713     let def = tcx.adt_def(def_id);
714     let repr_type = def.repr.discr_type();
715     let initial = repr_type.initial_discriminant(tcx);
716     let mut prev_discr = None::<Discr<'_>>;
717
718     // fill the discriminant values and field types
719     for variant in variants {
720         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
721         prev_discr = Some(
722             if let Some(ref e) = variant.disr_expr {
723                 let expr_did = tcx.hir().local_def_id(e.hir_id);
724                 def.eval_explicit_discr(tcx, expr_did)
725             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
726                 Some(discr)
727             } else {
728                 struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
729                     .span_label(
730                         variant.span,
731                         format!("overflowed on value after {}", prev_discr.unwrap()),
732                     )
733                     .note(&format!(
734                         "explicitly set `{} = {}` if that is desired outcome",
735                         variant.ident, wrapped_discr
736                     ))
737                     .emit();
738                 None
739             }
740             .unwrap_or(wrapped_discr),
741         );
742
743         for f in variant.data.fields() {
744             let def_id = tcx.hir().local_def_id(f.hir_id);
745             tcx.generics_of(def_id);
746             tcx.type_of(def_id);
747             tcx.predicates_of(def_id);
748         }
749
750         // Convert the ctor, if any. This also registers the variant as
751         // an item.
752         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
753             convert_variant_ctor(tcx, ctor_hir_id);
754         }
755     }
756 }
757
758 fn convert_variant(
759     tcx: TyCtxt<'_>,
760     variant_did: Option<DefId>,
761     ctor_did: Option<DefId>,
762     ident: Ident,
763     discr: ty::VariantDiscr,
764     def: &hir::VariantData<'_>,
765     adt_kind: ty::AdtKind,
766     parent_did: DefId,
767 ) -> ty::VariantDef {
768     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
769     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
770     let fields = def
771         .fields()
772         .iter()
773         .map(|f| {
774             let fid = tcx.hir().local_def_id(f.hir_id);
775             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
776             if let Some(prev_span) = dup_span {
777                 struct_span_err!(
778                     tcx.sess,
779                     f.span,
780                     E0124,
781                     "field `{}` is already declared",
782                     f.ident
783                 )
784                 .span_label(f.span, "field already declared")
785                 .span_label(prev_span, format!("`{}` first declared here", f.ident))
786                 .emit();
787             } else {
788                 seen_fields.insert(f.ident.modern(), f.span);
789             }
790
791             ty::FieldDef {
792                 did: fid,
793                 ident: f.ident,
794                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
795             }
796         })
797         .collect();
798     let recovered = match def {
799         hir::VariantData::Struct(_, r) => *r,
800         _ => false,
801     };
802     ty::VariantDef::new(
803         tcx,
804         ident,
805         variant_did,
806         ctor_did,
807         discr,
808         fields,
809         CtorKind::from_hir(def),
810         adt_kind,
811         parent_did,
812         recovered,
813     )
814 }
815
816 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
817     use rustc_hir::*;
818
819     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
820     let item = match tcx.hir().get(hir_id) {
821         Node::Item(item) => item,
822         _ => bug!(),
823     };
824
825     let repr = ReprOptions::new(tcx, def_id);
826     let (kind, variants) = match item.kind {
827         ItemKind::Enum(ref def, _) => {
828             let mut distance_from_explicit = 0;
829             let variants = def
830                 .variants
831                 .iter()
832                 .map(|v| {
833                     let variant_did = Some(tcx.hir().local_def_id(v.id));
834                     let ctor_did =
835                         v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
836
837                     let discr = if let Some(ref e) = v.disr_expr {
838                         distance_from_explicit = 0;
839                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id))
840                     } else {
841                         ty::VariantDiscr::Relative(distance_from_explicit)
842                     };
843                     distance_from_explicit += 1;
844
845                     convert_variant(
846                         tcx,
847                         variant_did,
848                         ctor_did,
849                         v.ident,
850                         discr,
851                         &v.data,
852                         AdtKind::Enum,
853                         def_id,
854                     )
855                 })
856                 .collect();
857
858             (AdtKind::Enum, variants)
859         }
860         ItemKind::Struct(ref def, _) => {
861             let variant_did = None;
862             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
863
864             let variants = std::iter::once(convert_variant(
865                 tcx,
866                 variant_did,
867                 ctor_did,
868                 item.ident,
869                 ty::VariantDiscr::Relative(0),
870                 def,
871                 AdtKind::Struct,
872                 def_id,
873             ))
874             .collect();
875
876             (AdtKind::Struct, variants)
877         }
878         ItemKind::Union(ref def, _) => {
879             let variant_did = None;
880             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
881
882             let variants = std::iter::once(convert_variant(
883                 tcx,
884                 variant_did,
885                 ctor_did,
886                 item.ident,
887                 ty::VariantDiscr::Relative(0),
888                 def,
889                 AdtKind::Union,
890                 def_id,
891             ))
892             .collect();
893
894             (AdtKind::Union, variants)
895         }
896         _ => bug!(),
897     };
898     tcx.alloc_adt_def(def_id, kind, variants, repr)
899 }
900
901 /// Ensures that the super-predicates of the trait with a `DefId`
902 /// of `trait_def_id` are converted and stored. This also ensures that
903 /// the transitive super-predicates are converted.
904 fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
905     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
906     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
907
908     let item = match tcx.hir().get(trait_hir_id) {
909         Node::Item(item) => item,
910         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
911     };
912
913     let (generics, bounds) = match item.kind {
914         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
915         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
916         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
917     };
918
919     let icx = ItemCtxt::new(tcx, trait_def_id);
920
921     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
922     let self_param_ty = tcx.types.self_param;
923     let superbounds1 =
924         AstConv::compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No, item.span);
925
926     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
927
928     // Convert any explicit superbounds in the where-clause,
929     // e.g., `trait Foo where Self: Bar`.
930     // In the case of trait aliases, however, we include all bounds in the where-clause,
931     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
932     // as one of its "superpredicates".
933     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
934     let superbounds2 = icx.type_parameter_bounds_in_generics(
935         generics,
936         item.hir_id,
937         self_param_ty,
938         OnlySelfBounds(!is_trait_alias),
939     );
940
941     // Combine the two lists to form the complete set of superbounds:
942     let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
943
944     // Now require that immediate supertraits are converted,
945     // which will, in turn, reach indirect supertraits.
946     for &(pred, span) in superbounds {
947         debug!("superbound: {:?}", pred);
948         if let ty::Predicate::Trait(bound, _) = pred {
949             tcx.at(span).super_predicates_of(bound.def_id());
950         }
951     }
952
953     ty::GenericPredicates { parent: None, predicates: superbounds }
954 }
955
956 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::TraitDef {
957     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
958     let item = tcx.hir().expect_item(hir_id);
959
960     let (is_auto, unsafety) = match item.kind {
961         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
962         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
963         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
964     };
965
966     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
967     if paren_sugar && !tcx.features().unboxed_closures {
968         tcx.sess
969             .struct_span_err(
970                 item.span,
971                 "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
972              which traits can use parenthetical notation",
973             )
974             .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
975             .emit();
976     }
977
978     let is_marker = tcx.has_attr(def_id, sym::marker);
979     let def_path_hash = tcx.def_path_hash(def_id);
980     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
981     tcx.arena.alloc(def)
982 }
983
984 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
985     struct LateBoundRegionsDetector<'tcx> {
986         tcx: TyCtxt<'tcx>,
987         outer_index: ty::DebruijnIndex,
988         has_late_bound_regions: Option<Span>,
989     }
990
991     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
992         type Map = Map<'tcx>;
993
994         fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
995             NestedVisitorMap::None
996         }
997
998         fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
999             if self.has_late_bound_regions.is_some() {
1000                 return;
1001             }
1002             match ty.kind {
1003                 hir::TyKind::BareFn(..) => {
1004                     self.outer_index.shift_in(1);
1005                     intravisit::walk_ty(self, ty);
1006                     self.outer_index.shift_out(1);
1007                 }
1008                 _ => intravisit::walk_ty(self, ty),
1009             }
1010         }
1011
1012         fn visit_poly_trait_ref(
1013             &mut self,
1014             tr: &'tcx hir::PolyTraitRef<'tcx>,
1015             m: hir::TraitBoundModifier,
1016         ) {
1017             if self.has_late_bound_regions.is_some() {
1018                 return;
1019             }
1020             self.outer_index.shift_in(1);
1021             intravisit::walk_poly_trait_ref(self, tr, m);
1022             self.outer_index.shift_out(1);
1023         }
1024
1025         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
1026             if self.has_late_bound_regions.is_some() {
1027                 return;
1028             }
1029
1030             match self.tcx.named_region(lt.hir_id) {
1031                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
1032                 Some(rl::Region::LateBound(debruijn, _, _))
1033                 | Some(rl::Region::LateBoundAnon(debruijn, _))
1034                     if debruijn < self.outer_index => {}
1035                 Some(rl::Region::LateBound(..))
1036                 | Some(rl::Region::LateBoundAnon(..))
1037                 | Some(rl::Region::Free(..))
1038                 | None => {
1039                     self.has_late_bound_regions = Some(lt.span);
1040                 }
1041             }
1042         }
1043     }
1044
1045     fn has_late_bound_regions<'tcx>(
1046         tcx: TyCtxt<'tcx>,
1047         generics: &'tcx hir::Generics<'tcx>,
1048         decl: &'tcx hir::FnDecl<'tcx>,
1049     ) -> Option<Span> {
1050         let mut visitor = LateBoundRegionsDetector {
1051             tcx,
1052             outer_index: ty::INNERMOST,
1053             has_late_bound_regions: None,
1054         };
1055         for param in generics.params {
1056             if let GenericParamKind::Lifetime { .. } = param.kind {
1057                 if tcx.is_late_bound(param.hir_id) {
1058                     return Some(param.span);
1059                 }
1060             }
1061         }
1062         visitor.visit_fn_decl(decl);
1063         visitor.has_late_bound_regions
1064     }
1065
1066     match node {
1067         Node::TraitItem(item) => match item.kind {
1068             hir::TraitItemKind::Method(ref sig, _) => {
1069                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1070             }
1071             _ => None,
1072         },
1073         Node::ImplItem(item) => match item.kind {
1074             hir::ImplItemKind::Method(ref sig, _) => {
1075                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1076             }
1077             _ => None,
1078         },
1079         Node::ForeignItem(item) => match item.kind {
1080             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
1081                 has_late_bound_regions(tcx, generics, fn_decl)
1082             }
1083             _ => None,
1084         },
1085         Node::Item(item) => match item.kind {
1086             hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
1087                 has_late_bound_regions(tcx, generics, &sig.decl)
1088             }
1089             _ => None,
1090         },
1091         _ => None,
1092     }
1093 }
1094
1095 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::Generics {
1096     use rustc_hir::*;
1097
1098     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1099
1100     let node = tcx.hir().get(hir_id);
1101     let parent_def_id = match node {
1102         Node::ImplItem(_)
1103         | Node::TraitItem(_)
1104         | Node::Variant(_)
1105         | Node::Ctor(..)
1106         | Node::Field(_) => {
1107             let parent_id = tcx.hir().get_parent_item(hir_id);
1108             Some(tcx.hir().local_def_id(parent_id))
1109         }
1110         // FIXME(#43408) enable this always when we get lazy normalization.
1111         Node::AnonConst(_) => {
1112             // HACK(eddyb) this provides the correct generics when
1113             // `feature(const_generics)` is enabled, so that const expressions
1114             // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
1115             if tcx.features().const_generics {
1116                 let parent_id = tcx.hir().get_parent_item(hir_id);
1117                 Some(tcx.hir().local_def_id(parent_id))
1118             } else {
1119                 None
1120             }
1121         }
1122         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1123             Some(tcx.closure_base_def_id(def_id))
1124         }
1125         Node::Item(item) => match item.kind {
1126             ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => {
1127                 impl_trait_fn.or_else(|| {
1128                     let parent_id = tcx.hir().get_parent_item(hir_id);
1129                     if parent_id != hir_id && parent_id != CRATE_HIR_ID {
1130                         debug!("generics_of: parent of opaque ty {:?} is {:?}", def_id, parent_id);
1131                         // If this 'impl Trait' is nested inside another 'impl Trait'
1132                         // (e.g. `impl Foo<MyType = impl Bar<A>>`), we need to use the 'parent'
1133                         // 'impl Trait' for its generic parameters, since we can reference them
1134                         // from the 'child' 'impl Trait'
1135                         if let Node::Item(hir::Item { kind: ItemKind::OpaqueTy(..), .. }) =
1136                             tcx.hir().get(parent_id)
1137                         {
1138                             Some(tcx.hir().local_def_id(parent_id))
1139                         } else {
1140                             None
1141                         }
1142                     } else {
1143                         None
1144                     }
1145                 })
1146             }
1147             _ => None,
1148         },
1149         _ => None,
1150     };
1151
1152     let mut opt_self = None;
1153     let mut allow_defaults = false;
1154
1155     let no_generics = hir::Generics::empty();
1156     let ast_generics = match node {
1157         Node::TraitItem(item) => &item.generics,
1158
1159         Node::ImplItem(item) => &item.generics,
1160
1161         Node::Item(item) => {
1162             match item.kind {
1163                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl { ref generics, .. } => generics,
1164
1165                 ItemKind::TyAlias(_, ref generics)
1166                 | ItemKind::Enum(_, ref generics)
1167                 | ItemKind::Struct(_, ref generics)
1168                 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
1169                 | ItemKind::Union(_, ref generics) => {
1170                     allow_defaults = true;
1171                     generics
1172                 }
1173
1174                 ItemKind::Trait(_, _, ref generics, ..)
1175                 | ItemKind::TraitAlias(ref generics, ..) => {
1176                     // Add in the self type parameter.
1177                     //
1178                     // Something of a hack: use the node id for the trait, also as
1179                     // the node id for the Self type parameter.
1180                     let param_id = item.hir_id;
1181
1182                     opt_self = Some(ty::GenericParamDef {
1183                         index: 0,
1184                         name: kw::SelfUpper,
1185                         def_id: tcx.hir().local_def_id(param_id),
1186                         pure_wrt_drop: false,
1187                         kind: ty::GenericParamDefKind::Type {
1188                             has_default: false,
1189                             object_lifetime_default: rl::Set1::Empty,
1190                             synthetic: None,
1191                         },
1192                     });
1193
1194                     allow_defaults = true;
1195                     generics
1196                 }
1197
1198                 _ => &no_generics,
1199             }
1200         }
1201
1202         Node::ForeignItem(item) => match item.kind {
1203             ForeignItemKind::Static(..) => &no_generics,
1204             ForeignItemKind::Fn(_, _, ref generics) => generics,
1205             ForeignItemKind::Type => &no_generics,
1206         },
1207
1208         _ => &no_generics,
1209     };
1210
1211     let has_self = opt_self.is_some();
1212     let mut parent_has_self = false;
1213     let mut own_start = has_self as u32;
1214     let parent_count = parent_def_id.map_or(0, |def_id| {
1215         let generics = tcx.generics_of(def_id);
1216         assert_eq!(has_self, false);
1217         parent_has_self = generics.has_self;
1218         own_start = generics.count() as u32;
1219         generics.parent_count + generics.params.len()
1220     });
1221
1222     let mut params: Vec<_> = opt_self.into_iter().collect();
1223
1224     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1225     params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
1226         name: param.name.ident().name,
1227         index: own_start + i as u32,
1228         def_id: tcx.hir().local_def_id(param.hir_id),
1229         pure_wrt_drop: param.pure_wrt_drop,
1230         kind: ty::GenericParamDefKind::Lifetime,
1231     }));
1232
1233     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
1234
1235     // Now create the real type parameters.
1236     let type_start = own_start - has_self as u32 + params.len() as u32;
1237     let mut i = 0;
1238     params.extend(ast_generics.params.iter().filter_map(|param| {
1239         let kind = match param.kind {
1240             GenericParamKind::Type { ref default, synthetic, .. } => {
1241                 if !allow_defaults && default.is_some() {
1242                     if !tcx.features().default_type_parameter_fallback {
1243                         tcx.struct_span_lint_hir(
1244                             lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1245                             param.hir_id,
1246                             param.span,
1247                             |lint| {
1248                                 lint.build(&format!(
1249                                     "defaults for type parameters are only allowed in \
1250                                         `struct`, `enum`, `type`, or `trait` definitions."
1251                                 ))
1252                                 .emit();
1253                             },
1254                         );
1255                     }
1256                 }
1257
1258                 ty::GenericParamDefKind::Type {
1259                     has_default: default.is_some(),
1260                     object_lifetime_default: object_lifetime_defaults
1261                         .as_ref()
1262                         .map_or(rl::Set1::Empty, |o| o[i]),
1263                     synthetic,
1264                 }
1265             }
1266             GenericParamKind::Const { .. } => ty::GenericParamDefKind::Const,
1267             _ => return None,
1268         };
1269
1270         let param_def = ty::GenericParamDef {
1271             index: type_start + i as u32,
1272             name: param.name.ident().name,
1273             def_id: tcx.hir().local_def_id(param.hir_id),
1274             pure_wrt_drop: param.pure_wrt_drop,
1275             kind,
1276         };
1277         i += 1;
1278         Some(param_def)
1279     }));
1280
1281     // provide junk type parameter defs - the only place that
1282     // cares about anything but the length is instantiation,
1283     // and we don't do that for closures.
1284     if let Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) = node {
1285         let dummy_args = if gen.is_some() {
1286             &["<resume_ty>", "<yield_ty>", "<return_ty>", "<witness>"][..]
1287         } else {
1288             &["<closure_kind>", "<closure_signature>"][..]
1289         };
1290
1291         params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
1292             index: type_start + i as u32,
1293             name: Symbol::intern(arg),
1294             def_id,
1295             pure_wrt_drop: false,
1296             kind: ty::GenericParamDefKind::Type {
1297                 has_default: false,
1298                 object_lifetime_default: rl::Set1::Empty,
1299                 synthetic: None,
1300             },
1301         }));
1302
1303         if let Some(upvars) = tcx.upvars(def_id) {
1304             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1305                 ty::GenericParamDef {
1306                     index: type_start + i,
1307                     name: Symbol::intern("<upvar>"),
1308                     def_id,
1309                     pure_wrt_drop: false,
1310                     kind: ty::GenericParamDefKind::Type {
1311                         has_default: false,
1312                         object_lifetime_default: rl::Set1::Empty,
1313                         synthetic: None,
1314                     },
1315                 }
1316             }));
1317         }
1318     }
1319
1320     let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
1321
1322     tcx.arena.alloc(ty::Generics {
1323         parent: parent_def_id,
1324         parent_count,
1325         params,
1326         param_def_id_to_index,
1327         has_self: has_self || parent_has_self,
1328         has_late_bound_regions: has_late_bound_regions(tcx, node),
1329     })
1330 }
1331
1332 fn report_assoc_ty_on_inherent_impl(tcx: TyCtxt<'_>, span: Span) {
1333     struct_span_err!(
1334         tcx.sess,
1335         span,
1336         E0202,
1337         "associated types are not yet supported in inherent impls (see #8995)"
1338     )
1339     .emit();
1340 }
1341
1342 fn infer_placeholder_type(
1343     tcx: TyCtxt<'_>,
1344     def_id: DefId,
1345     body_id: hir::BodyId,
1346     span: Span,
1347     item_ident: Ident,
1348 ) -> Ty<'_> {
1349     let ty = tcx.diagnostic_only_typeck_tables_of(def_id).node_type(body_id.hir_id);
1350
1351     // If this came from a free `const` or `static mut?` item,
1352     // then the user may have written e.g. `const A = 42;`.
1353     // In this case, the parser has stashed a diagnostic for
1354     // us to improve in typeck so we do that now.
1355     match tcx.sess.diagnostic().steal_diagnostic(span, StashKey::ItemNoType) {
1356         Some(mut err) => {
1357             // The parser provided a sub-optimal `HasPlaceholders` suggestion for the type.
1358             // We are typeck and have the real type, so remove that and suggest the actual type.
1359             err.suggestions.clear();
1360             err.span_suggestion(
1361                 span,
1362                 "provide a type for the item",
1363                 format!("{}: {}", item_ident, ty),
1364                 Applicability::MachineApplicable,
1365             )
1366             .emit();
1367         }
1368         None => {
1369             let mut diag = bad_placeholder_type(tcx, vec![span]);
1370             if ty != tcx.types.err {
1371                 diag.span_suggestion(
1372                     span,
1373                     "replace `_` with the correct type",
1374                     ty.to_string(),
1375                     Applicability::MaybeIncorrect,
1376                 );
1377             }
1378             diag.emit();
1379         }
1380     }
1381
1382     ty
1383 }
1384
1385 fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1386     use rustc_hir::*;
1387
1388     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1389
1390     let icx = ItemCtxt::new(tcx, def_id);
1391
1392     match tcx.hir().get(hir_id) {
1393         Node::TraitItem(item) => match item.kind {
1394             TraitItemKind::Method(..) => {
1395                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1396                 tcx.mk_fn_def(def_id, substs)
1397             }
1398             TraitItemKind::Const(ref ty, body_id) => body_id
1399                 .and_then(|body_id| {
1400                     if is_suggestable_infer_ty(ty) {
1401                         Some(infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident))
1402                     } else {
1403                         None
1404                     }
1405                 })
1406                 .unwrap_or_else(|| icx.to_ty(ty)),
1407             TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1408             TraitItemKind::Type(_, None) => {
1409                 span_bug!(item.span, "associated type missing default");
1410             }
1411         },
1412
1413         Node::ImplItem(item) => match item.kind {
1414             ImplItemKind::Method(..) => {
1415                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1416                 tcx.mk_fn_def(def_id, substs)
1417             }
1418             ImplItemKind::Const(ref ty, body_id) => {
1419                 if is_suggestable_infer_ty(ty) {
1420                     infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1421                 } else {
1422                     icx.to_ty(ty)
1423                 }
1424             }
1425             ImplItemKind::OpaqueTy(_) => {
1426                 if tcx.impl_trait_ref(tcx.hir().get_parent_did(hir_id)).is_none() {
1427                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1428                 }
1429
1430                 find_opaque_ty_constraints(tcx, def_id)
1431             }
1432             ImplItemKind::TyAlias(ref ty) => {
1433                 if tcx.impl_trait_ref(tcx.hir().get_parent_did(hir_id)).is_none() {
1434                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1435                 }
1436
1437                 icx.to_ty(ty)
1438             }
1439         },
1440
1441         Node::Item(item) => {
1442             match item.kind {
1443                 ItemKind::Static(ref ty, .., body_id) | ItemKind::Const(ref ty, body_id) => {
1444                     if is_suggestable_infer_ty(ty) {
1445                         infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1446                     } else {
1447                         icx.to_ty(ty)
1448                     }
1449                 }
1450                 ItemKind::TyAlias(ref self_ty, _) | ItemKind::Impl { ref self_ty, .. } => {
1451                     icx.to_ty(self_ty)
1452                 }
1453                 ItemKind::Fn(..) => {
1454                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1455                     tcx.mk_fn_def(def_id, substs)
1456                 }
1457                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1458                     let def = tcx.adt_def(def_id);
1459                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1460                     tcx.mk_adt(def, substs)
1461                 }
1462                 ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: None, .. }) => {
1463                     find_opaque_ty_constraints(tcx, def_id)
1464                 }
1465                 // Opaque types desugared from `impl Trait`.
1466                 ItemKind::OpaqueTy(hir::OpaqueTy {
1467                     impl_trait_fn: Some(owner), origin, ..
1468                 }) => {
1469                     let concrete_types = match origin {
1470                         hir::OpaqueTyOrigin::FnReturn | hir::OpaqueTyOrigin::AsyncFn => {
1471                             &tcx.mir_borrowck(owner).concrete_opaque_types
1472                         }
1473                         hir::OpaqueTyOrigin::Misc => {
1474                             // We shouldn't leak borrowck results through impl trait in bindings.
1475                             // For example, we shouldn't be able to tell if `x` in
1476                             // `let x: impl Sized + 'a = &()` has type `&'static ()` or `&'a ()`.
1477                             &tcx.typeck_tables_of(owner).concrete_opaque_types
1478                         }
1479                         hir::OpaqueTyOrigin::TypeAlias => {
1480                             span_bug!(item.span, "Type alias impl trait shouldn't have an owner")
1481                         }
1482                     };
1483                     let concrete_ty = concrete_types
1484                         .get(&def_id)
1485                         .map(|opaque| opaque.concrete_type)
1486                         .unwrap_or_else(|| {
1487                             tcx.sess.delay_span_bug(
1488                                 DUMMY_SP,
1489                                 &format!(
1490                                     "owner {:?} has no opaque type for {:?} in its tables",
1491                                     owner, def_id,
1492                                 ),
1493                             );
1494                             if tcx.typeck_tables_of(owner).tainted_by_errors {
1495                                 // Some error in the
1496                                 // owner fn prevented us from populating
1497                                 // the `concrete_opaque_types` table.
1498                                 tcx.types.err
1499                             } else {
1500                                 // We failed to resolve the opaque type or it
1501                                 // resolves to itself. Return the non-revealed
1502                                 // type, which should result in E0720.
1503                                 tcx.mk_opaque(
1504                                     def_id,
1505                                     InternalSubsts::identity_for_item(tcx, def_id),
1506                                 )
1507                             }
1508                         });
1509                     debug!("concrete_ty = {:?}", concrete_ty);
1510                     if concrete_ty.has_erased_regions() {
1511                         // FIXME(impl_trait_in_bindings) Handle this case.
1512                         tcx.sess.span_fatal(
1513                             item.span,
1514                             "lifetimes in impl Trait types in bindings are not currently supported",
1515                         );
1516                     }
1517                     concrete_ty
1518                 }
1519                 ItemKind::Trait(..)
1520                 | ItemKind::TraitAlias(..)
1521                 | ItemKind::Mod(..)
1522                 | ItemKind::ForeignMod(..)
1523                 | ItemKind::GlobalAsm(..)
1524                 | ItemKind::ExternCrate(..)
1525                 | ItemKind::Use(..) => {
1526                     span_bug!(
1527                         item.span,
1528                         "compute_type_of_item: unexpected item type: {:?}",
1529                         item.kind
1530                     );
1531                 }
1532             }
1533         }
1534
1535         Node::ForeignItem(foreign_item) => match foreign_item.kind {
1536             ForeignItemKind::Fn(..) => {
1537                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1538                 tcx.mk_fn_def(def_id, substs)
1539             }
1540             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1541             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1542         },
1543
1544         Node::Ctor(&ref def) | Node::Variant(hir::Variant { data: ref def, .. }) => match *def {
1545             VariantData::Unit(..) | VariantData::Struct(..) => {
1546                 tcx.type_of(tcx.hir().get_parent_did(hir_id))
1547             }
1548             VariantData::Tuple(..) => {
1549                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1550                 tcx.mk_fn_def(def_id, substs)
1551             }
1552         },
1553
1554         Node::Field(field) => icx.to_ty(&field.ty),
1555
1556         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) => {
1557             if gen.is_some() {
1558                 return tcx.typeck_tables_of(def_id).node_type(hir_id);
1559             }
1560
1561             let substs = InternalSubsts::identity_for_item(tcx, def_id);
1562             tcx.mk_closure(def_id, substs)
1563         }
1564
1565         Node::AnonConst(_) => {
1566             let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1567             match parent_node {
1568                 Node::Ty(&hir::Ty { kind: hir::TyKind::Array(_, ref constant), .. })
1569                 | Node::Ty(&hir::Ty { kind: hir::TyKind::Typeof(ref constant), .. })
1570                 | Node::Expr(&hir::Expr { kind: ExprKind::Repeat(_, ref constant), .. })
1571                     if constant.hir_id == hir_id =>
1572                 {
1573                     tcx.types.usize
1574                 }
1575
1576                 Node::Variant(Variant { disr_expr: Some(ref e), .. }) if e.hir_id == hir_id => {
1577                     tcx.adt_def(tcx.hir().get_parent_did(hir_id)).repr.discr_type().to_ty(tcx)
1578                 }
1579
1580                 Node::Ty(&hir::Ty { kind: hir::TyKind::Path(_), .. })
1581                 | Node::Expr(&hir::Expr { kind: ExprKind::Struct(..), .. })
1582                 | Node::Expr(&hir::Expr { kind: ExprKind::Path(_), .. })
1583                 | Node::TraitRef(..) => {
1584                     let path = match parent_node {
1585                         Node::Ty(&hir::Ty {
1586                             kind: hir::TyKind::Path(QPath::Resolved(_, ref path)),
1587                             ..
1588                         })
1589                         | Node::Expr(&hir::Expr {
1590                             kind: ExprKind::Path(QPath::Resolved(_, ref path)),
1591                             ..
1592                         }) => Some(&**path),
1593                         Node::Expr(&hir::Expr { kind: ExprKind::Struct(ref path, ..), .. }) => {
1594                             if let QPath::Resolved(_, ref path) = **path {
1595                                 Some(&**path)
1596                             } else {
1597                                 None
1598                             }
1599                         }
1600                         Node::TraitRef(&hir::TraitRef { ref path, .. }) => Some(&**path),
1601                         _ => None,
1602                     };
1603
1604                     if let Some(path) = path {
1605                         let arg_index = path
1606                             .segments
1607                             .iter()
1608                             .filter_map(|seg| seg.args.as_ref())
1609                             .map(|generic_args| generic_args.args.as_ref())
1610                             .find_map(|args| {
1611                                 args.iter()
1612                                     .filter(|arg| arg.is_const())
1613                                     .enumerate()
1614                                     .filter(|(_, arg)| arg.id() == hir_id)
1615                                     .map(|(index, _)| index)
1616                                     .next()
1617                             })
1618                             .unwrap_or_else(|| {
1619                                 bug!("no arg matching AnonConst in path");
1620                             });
1621
1622                         // We've encountered an `AnonConst` in some path, so we need to
1623                         // figure out which generic parameter it corresponds to and return
1624                         // the relevant type.
1625                         let generics = match path.res {
1626                             Res::Def(DefKind::Ctor(..), def_id) => {
1627                                 tcx.generics_of(tcx.parent(def_id).unwrap())
1628                             }
1629                             Res::Def(_, def_id) => tcx.generics_of(def_id),
1630                             Res::Err => return tcx.types.err,
1631                             res => {
1632                                 tcx.sess.delay_span_bug(
1633                                     DUMMY_SP,
1634                                     &format!("unexpected const parent path def {:?}", res,),
1635                                 );
1636                                 return tcx.types.err;
1637                             }
1638                         };
1639
1640                         generics
1641                             .params
1642                             .iter()
1643                             .filter(|param| {
1644                                 if let ty::GenericParamDefKind::Const = param.kind {
1645                                     true
1646                                 } else {
1647                                     false
1648                                 }
1649                             })
1650                             .nth(arg_index)
1651                             .map(|param| tcx.type_of(param.def_id))
1652                             // This is no generic parameter associated with the arg. This is
1653                             // probably from an extra arg where one is not needed.
1654                             .unwrap_or(tcx.types.err)
1655                     } else {
1656                         tcx.sess.delay_span_bug(
1657                             DUMMY_SP,
1658                             &format!("unexpected const parent path {:?}", parent_node,),
1659                         );
1660                         return tcx.types.err;
1661                     }
1662                 }
1663
1664                 x => {
1665                     tcx.sess.delay_span_bug(
1666                         DUMMY_SP,
1667                         &format!("unexpected const parent in type_of_def_id(): {:?}", x),
1668                     );
1669                     tcx.types.err
1670                 }
1671             }
1672         }
1673
1674         Node::GenericParam(param) => match &param.kind {
1675             hir::GenericParamKind::Type { default: Some(ref ty), .. } => icx.to_ty(ty),
1676             hir::GenericParamKind::Const { ty: ref hir_ty, .. } => {
1677                 let ty = icx.to_ty(hir_ty);
1678                 if !tcx.features().const_compare_raw_pointers {
1679                     let err = match ty.peel_refs().kind {
1680                         ty::FnPtr(_) => Some("function pointers"),
1681                         ty::RawPtr(_) => Some("raw pointers"),
1682                         _ => None,
1683                     };
1684                     if let Some(unsupported_type) = err {
1685                         feature_err(
1686                             &tcx.sess.parse_sess,
1687                             sym::const_compare_raw_pointers,
1688                             hir_ty.span,
1689                             &format!(
1690                                 "using {} as const generic parameters is unstable",
1691                                 unsupported_type
1692                             ),
1693                         )
1694                         .emit();
1695                     };
1696                 }
1697                 if traits::search_for_structural_match_violation(param.hir_id, param.span, tcx, ty)
1698                     .is_some()
1699                 {
1700                     struct_span_err!(
1701                         tcx.sess,
1702                         hir_ty.span,
1703                         E0741,
1704                         "the types of const generic parameters must derive `PartialEq` and `Eq`",
1705                     )
1706                     .span_label(
1707                         hir_ty.span,
1708                         format!("`{}` doesn't derive both `PartialEq` and `Eq`", ty),
1709                     )
1710                     .emit();
1711                 }
1712                 ty
1713             }
1714             x => bug!("unexpected non-type Node::GenericParam: {:?}", x),
1715         },
1716
1717         x => {
1718             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1719         }
1720     }
1721 }
1722
1723 fn find_opaque_ty_constraints(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1724     use rustc_hir::{Expr, ImplItem, Item, TraitItem};
1725
1726     debug!("find_opaque_ty_constraints({:?})", def_id);
1727
1728     struct ConstraintLocator<'tcx> {
1729         tcx: TyCtxt<'tcx>,
1730         def_id: DefId,
1731         // (first found type span, actual type, mapping from the opaque type's generic
1732         // parameters to the concrete type's generic parameters)
1733         //
1734         // The mapping is an index for each use site of a generic parameter in the concrete type
1735         //
1736         // The indices index into the generic parameters on the opaque type.
1737         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1738     }
1739
1740     impl ConstraintLocator<'tcx> {
1741         fn check(&mut self, def_id: DefId) {
1742             // Don't try to check items that cannot possibly constrain the type.
1743             if !self.tcx.has_typeck_tables(def_id) {
1744                 debug!(
1745                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`: no tables",
1746                     self.def_id, def_id,
1747                 );
1748                 return;
1749             }
1750             // Calling `mir_borrowck` can lead to cycle errors through
1751             // const-checking, avoid calling it if we don't have to.
1752             if !self.tcx.typeck_tables_of(def_id).concrete_opaque_types.contains_key(&self.def_id) {
1753                 debug!(
1754                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`",
1755                     self.def_id, def_id,
1756                 );
1757                 return;
1758             }
1759             // Use borrowck to get the type with unerased regions.
1760             let ty = self.tcx.mir_borrowck(def_id).concrete_opaque_types.get(&self.def_id);
1761             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1762                 debug!(
1763                     "find_opaque_ty_constraints: found constraint for `{:?}` at `{:?}`: {:?}",
1764                     self.def_id, def_id, ty,
1765                 );
1766
1767                 // FIXME(oli-obk): trace the actual span from inference to improve errors.
1768                 let span = self.tcx.def_span(def_id);
1769                 // used to quickly look up the position of a generic parameter
1770                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1771                 // Skipping binder is ok, since we only use this to find generic parameters and
1772                 // their positions.
1773                 for (idx, subst) in substs.iter().enumerate() {
1774                     if let GenericArgKind::Type(ty) = subst.unpack() {
1775                         if let ty::Param(p) = ty.kind {
1776                             if index_map.insert(p, idx).is_some() {
1777                                 // There was already an entry for `p`, meaning a generic parameter
1778                                 // was used twice.
1779                                 self.tcx.sess.span_err(
1780                                     span,
1781                                     &format!(
1782                                         "defining opaque type use restricts opaque \
1783                                          type by using the generic parameter `{}` twice",
1784                                         p,
1785                                     ),
1786                                 );
1787                                 return;
1788                             }
1789                         } else {
1790                             self.tcx.sess.delay_span_bug(
1791                                 span,
1792                                 &format!(
1793                                     "non-defining opaque ty use in defining scope: {:?}, {:?}",
1794                                     concrete_type, substs,
1795                                 ),
1796                             );
1797                         }
1798                     }
1799                 }
1800                 // Compute the index within the opaque type for each generic parameter used in
1801                 // the concrete type.
1802                 let indices = concrete_type
1803                     .subst(self.tcx, substs)
1804                     .walk()
1805                     .filter_map(|t| match &t.kind {
1806                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1807                         _ => None,
1808                     })
1809                     .collect();
1810                 let is_param = |ty: Ty<'_>| match ty.kind {
1811                     ty::Param(_) => true,
1812                     _ => false,
1813                 };
1814                 let bad_substs: Vec<_> = substs
1815                     .iter()
1816                     .enumerate()
1817                     .filter_map(|(i, k)| {
1818                         if let GenericArgKind::Type(ty) = k.unpack() { Some((i, ty)) } else { None }
1819                     })
1820                     .filter(|(_, ty)| !is_param(ty))
1821                     .collect();
1822
1823                 if !bad_substs.is_empty() {
1824                     let identity_substs = InternalSubsts::identity_for_item(self.tcx, self.def_id);
1825                     for (i, bad_subst) in bad_substs {
1826                         self.tcx.sess.span_err(
1827                             span,
1828                             &format!(
1829                                 "defining opaque type use does not fully define opaque type: \
1830                             generic parameter `{}` is specified as concrete type `{}`",
1831                                 identity_substs.type_at(i),
1832                                 bad_subst
1833                             ),
1834                         );
1835                     }
1836                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1837                     let mut ty = concrete_type.walk().fuse();
1838                     let mut p_ty = prev_ty.walk().fuse();
1839                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.kind, &p.kind) {
1840                         // Type parameters are equal to any other type parameter for the purpose of
1841                         // concrete type equality, as it is possible to obtain the same type just
1842                         // by passing matching parameters to a function.
1843                         (ty::Param(_), ty::Param(_)) => true,
1844                         _ => t == p,
1845                     });
1846                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1847                         debug!("find_opaque_ty_constraints: span={:?}", span);
1848                         // Found different concrete types for the opaque type.
1849                         let mut err = self.tcx.sess.struct_span_err(
1850                             span,
1851                             "concrete type differs from previous defining opaque type use",
1852                         );
1853                         err.span_label(
1854                             span,
1855                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1856                         );
1857                         err.span_note(prev_span, "previous use here");
1858                         err.emit();
1859                     } else if indices != *prev_indices {
1860                         // Found "same" concrete types, but the generic parameter order differs.
1861                         let mut err = self.tcx.sess.struct_span_err(
1862                             span,
1863                             "concrete type's generic parameters differ from previous defining use",
1864                         );
1865                         use std::fmt::Write;
1866                         let mut s = String::new();
1867                         write!(s, "expected [").unwrap();
1868                         let list = |s: &mut String, indices: &Vec<usize>| {
1869                             let mut indices = indices.iter().cloned();
1870                             if let Some(first) = indices.next() {
1871                                 write!(s, "`{}`", substs[first]).unwrap();
1872                                 for i in indices {
1873                                     write!(s, ", `{}`", substs[i]).unwrap();
1874                                 }
1875                             }
1876                         };
1877                         list(&mut s, prev_indices);
1878                         write!(s, "], got [").unwrap();
1879                         list(&mut s, &indices);
1880                         write!(s, "]").unwrap();
1881                         err.span_label(span, s);
1882                         err.span_note(prev_span, "previous use here");
1883                         err.emit();
1884                     }
1885                 } else {
1886                     self.found = Some((span, concrete_type, indices));
1887                 }
1888             } else {
1889                 debug!(
1890                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`",
1891                     self.def_id, def_id,
1892                 );
1893             }
1894         }
1895     }
1896
1897     impl<'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'tcx> {
1898         type Map = Map<'tcx>;
1899
1900         fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<'_, Self::Map> {
1901             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1902         }
1903         fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
1904             if let hir::ExprKind::Closure(..) = ex.kind {
1905                 let def_id = self.tcx.hir().local_def_id(ex.hir_id);
1906                 self.check(def_id);
1907             }
1908             intravisit::walk_expr(self, ex);
1909         }
1910         fn visit_item(&mut self, it: &'tcx Item<'tcx>) {
1911             debug!("find_existential_constraints: visiting {:?}", it);
1912             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1913             // The opaque type itself or its children are not within its reveal scope.
1914             if def_id != self.def_id {
1915                 self.check(def_id);
1916                 intravisit::walk_item(self, it);
1917             }
1918         }
1919         fn visit_impl_item(&mut self, it: &'tcx ImplItem<'tcx>) {
1920             debug!("find_existential_constraints: visiting {:?}", it);
1921             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1922             // The opaque type itself or its children are not within its reveal scope.
1923             if def_id != self.def_id {
1924                 self.check(def_id);
1925                 intravisit::walk_impl_item(self, it);
1926             }
1927         }
1928         fn visit_trait_item(&mut self, it: &'tcx TraitItem<'tcx>) {
1929             debug!("find_existential_constraints: visiting {:?}", it);
1930             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1931             self.check(def_id);
1932             intravisit::walk_trait_item(self, it);
1933         }
1934     }
1935
1936     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1937     let scope = tcx.hir().get_defining_scope(hir_id);
1938     let mut locator = ConstraintLocator { def_id, tcx, found: None };
1939
1940     debug!("find_opaque_ty_constraints: scope={:?}", scope);
1941
1942     if scope == hir::CRATE_HIR_ID {
1943         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1944     } else {
1945         debug!("find_opaque_ty_constraints: scope={:?}", tcx.hir().get(scope));
1946         match tcx.hir().get(scope) {
1947             // We explicitly call `visit_*` methods, instead of using `intravisit::walk_*` methods
1948             // This allows our visitor to process the defining item itself, causing
1949             // it to pick up any 'sibling' defining uses.
1950             //
1951             // For example, this code:
1952             // ```
1953             // fn foo() {
1954             //     type Blah = impl Debug;
1955             //     let my_closure = || -> Blah { true };
1956             // }
1957             // ```
1958             //
1959             // requires us to explicitly process `foo()` in order
1960             // to notice the defining usage of `Blah`.
1961             Node::Item(ref it) => locator.visit_item(it),
1962             Node::ImplItem(ref it) => locator.visit_impl_item(it),
1963             Node::TraitItem(ref it) => locator.visit_trait_item(it),
1964             other => bug!("{:?} is not a valid scope for an opaque type item", other),
1965         }
1966     }
1967
1968     match locator.found {
1969         Some((_, ty, _)) => ty,
1970         None => {
1971             let span = tcx.def_span(def_id);
1972             tcx.sess.span_err(span, "could not find defining uses");
1973             tcx.types.err
1974         }
1975     }
1976 }
1977
1978 fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
1979     generic_args
1980         .iter()
1981         .filter_map(|arg| match arg {
1982             hir::GenericArg::Type(ty) => Some(ty),
1983             _ => None,
1984         })
1985         .any(is_suggestable_infer_ty)
1986 }
1987
1988 /// Whether `ty` is a type with `_` placeholders that can be infered. Used in diagnostics only to
1989 /// use inference to provide suggestions for the appropriate type if possible.
1990 fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
1991     use hir::TyKind::*;
1992     match &ty.kind {
1993         Infer => true,
1994         Slice(ty) | Array(ty, _) => is_suggestable_infer_ty(ty),
1995         Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
1996         Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
1997         Def(_, generic_args) => are_suggestable_generic_args(generic_args),
1998         Path(hir::QPath::TypeRelative(ty, segment)) => {
1999             is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.generic_args().args)
2000         }
2001         Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
2002             ty_opt.map_or(false, is_suggestable_infer_ty)
2003                 || segments
2004                     .iter()
2005                     .any(|segment| are_suggestable_generic_args(segment.generic_args().args))
2006         }
2007         _ => false,
2008     }
2009 }
2010
2011 pub fn get_infer_ret_ty(output: &'hir hir::FunctionRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
2012     if let hir::FunctionRetTy::Return(ref ty) = output {
2013         if is_suggestable_infer_ty(ty) {
2014             return Some(&**ty);
2015         }
2016     }
2017     None
2018 }
2019
2020 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
2021     use rustc_hir::Node::*;
2022     use rustc_hir::*;
2023
2024     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
2025
2026     let icx = ItemCtxt::new(tcx, def_id);
2027
2028     match tcx.hir().get(hir_id) {
2029         TraitItem(hir::TraitItem {
2030             kind: TraitItemKind::Method(sig, TraitMethod::Provided(_)),
2031             ident,
2032             generics,
2033             ..
2034         })
2035         | ImplItem(hir::ImplItem { kind: ImplItemKind::Method(sig, _), ident, generics, .. })
2036         | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), ident, .. }) => {
2037             match get_infer_ret_ty(&sig.decl.output) {
2038                 Some(ty) => {
2039                     let fn_sig = tcx.typeck_tables_of(def_id).liberated_fn_sigs()[hir_id];
2040                     let mut visitor = PlaceholderHirTyCollector::default();
2041                     visitor.visit_ty(ty);
2042                     let mut diag = bad_placeholder_type(tcx, visitor.0);
2043                     let ret_ty = fn_sig.output();
2044                     if ret_ty != tcx.types.err {
2045                         diag.span_suggestion(
2046                             ty.span,
2047                             "replace with the correct return type",
2048                             ret_ty.to_string(),
2049                             Applicability::MaybeIncorrect,
2050                         );
2051                     }
2052                     diag.emit();
2053                     ty::Binder::bind(fn_sig)
2054                 }
2055                 None => AstConv::ty_of_fn(
2056                     &icx,
2057                     sig.header.unsafety,
2058                     sig.header.abi,
2059                     &sig.decl,
2060                     &generics.params[..],
2061                     Some(ident.span),
2062                 ),
2063             }
2064         }
2065
2066         TraitItem(hir::TraitItem {
2067             kind: TraitItemKind::Method(FnSig { header, decl }, _),
2068             ident,
2069             generics,
2070             ..
2071         }) => AstConv::ty_of_fn(
2072             &icx,
2073             header.unsafety,
2074             header.abi,
2075             decl,
2076             &generics.params[..],
2077             Some(ident.span),
2078         ),
2079
2080         ForeignItem(&hir::ForeignItem { kind: ForeignItemKind::Fn(ref fn_decl, _, _), .. }) => {
2081             let abi = tcx.hir().get_foreign_abi(hir_id);
2082             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
2083         }
2084
2085         Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
2086             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id));
2087             let inputs =
2088                 data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
2089             ty::Binder::bind(tcx.mk_fn_sig(
2090                 inputs,
2091                 ty,
2092                 false,
2093                 hir::Unsafety::Normal,
2094                 abi::Abi::Rust,
2095             ))
2096         }
2097
2098         Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
2099             // Closure signatures are not like other function
2100             // signatures and cannot be accessed through `fn_sig`. For
2101             // example, a closure signature excludes the `self`
2102             // argument. In any case they are embedded within the
2103             // closure type as part of the `ClosureSubsts`.
2104             //
2105             // To get
2106             // the signature of a closure, you should use the
2107             // `closure_sig` method on the `ClosureSubsts`:
2108             //
2109             //    closure_substs.sig(def_id, tcx)
2110             //
2111             // or, inside of an inference context, you can use
2112             //
2113             //    infcx.closure_sig(def_id, closure_substs)
2114             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
2115         }
2116
2117         x => {
2118             bug!("unexpected sort of node in fn_sig(): {:?}", x);
2119         }
2120     }
2121 }
2122
2123 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
2124     let icx = ItemCtxt::new(tcx, def_id);
2125
2126     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
2127     match tcx.hir().expect_item(hir_id).kind {
2128         hir::ItemKind::Impl { ref of_trait, .. } => of_trait.as_ref().map(|ast_trait_ref| {
2129             let selfty = tcx.type_of(def_id);
2130             AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
2131         }),
2132         _ => bug!(),
2133     }
2134 }
2135
2136 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
2137     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
2138     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
2139     let item = tcx.hir().expect_item(hir_id);
2140     match &item.kind {
2141         hir::ItemKind::Impl { polarity: hir::ImplPolarity::Negative, .. } => {
2142             if is_rustc_reservation {
2143                 tcx.sess.span_err(item.span, "reservation impls can't be negative");
2144             }
2145             ty::ImplPolarity::Negative
2146         }
2147         hir::ItemKind::Impl { polarity: hir::ImplPolarity::Positive, of_trait: None, .. } => {
2148             if is_rustc_reservation {
2149                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
2150             }
2151             ty::ImplPolarity::Positive
2152         }
2153         hir::ItemKind::Impl {
2154             polarity: hir::ImplPolarity::Positive, of_trait: Some(_), ..
2155         } => {
2156             if is_rustc_reservation {
2157                 ty::ImplPolarity::Reservation
2158             } else {
2159                 ty::ImplPolarity::Positive
2160             }
2161         }
2162         ref item => bug!("impl_polarity: {:?} not an impl", item),
2163     }
2164 }
2165
2166 /// Returns the early-bound lifetimes declared in this generics
2167 /// listing. For anything other than fns/methods, this is just all
2168 /// the lifetimes that are declared. For fns or methods, we have to
2169 /// screen out those that do not appear in any where-clauses etc using
2170 /// `resolve_lifetime::early_bound_lifetimes`.
2171 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
2172     tcx: TyCtxt<'tcx>,
2173     generics: &'a hir::Generics<'a>,
2174 ) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
2175     generics.params.iter().filter(move |param| match param.kind {
2176         GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
2177         _ => false,
2178     })
2179 }
2180
2181 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
2182 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
2183 /// inferred constraints concerning which regions outlive other regions.
2184 fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2185     debug!("predicates_defined_on({:?})", def_id);
2186     let mut result = tcx.explicit_predicates_of(def_id);
2187     debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
2188     let inferred_outlives = tcx.inferred_outlives_of(def_id);
2189     if !inferred_outlives.is_empty() {
2190         debug!(
2191             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
2192             def_id, inferred_outlives,
2193         );
2194         if result.predicates.is_empty() {
2195             result.predicates = inferred_outlives;
2196         } else {
2197             result.predicates = tcx
2198                 .arena
2199                 .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
2200         }
2201     }
2202     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
2203     result
2204 }
2205
2206 /// Returns a list of all type predicates (explicit and implicit) for the definition with
2207 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
2208 /// `Self: Trait` predicates for traits.
2209 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2210     let mut result = tcx.predicates_defined_on(def_id);
2211
2212     if tcx.is_trait(def_id) {
2213         // For traits, add `Self: Trait` predicate. This is
2214         // not part of the predicates that a user writes, but it
2215         // is something that one must prove in order to invoke a
2216         // method or project an associated type.
2217         //
2218         // In the chalk setup, this predicate is not part of the
2219         // "predicates" for a trait item. But it is useful in
2220         // rustc because if you directly (e.g.) invoke a trait
2221         // method like `Trait::method(...)`, you must naturally
2222         // prove that the trait applies to the types that were
2223         // used, and adding the predicate into this list ensures
2224         // that this is done.
2225         let span = tcx.def_span(def_id);
2226         result.predicates =
2227             tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
2228                 ty::TraitRef::identity(tcx, def_id).without_const().to_predicate(),
2229                 span,
2230             ))));
2231     }
2232     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
2233     result
2234 }
2235
2236 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
2237 /// N.B., this does not include any implied/inferred constraints.
2238 fn explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2239     use rustc_data_structures::fx::FxHashSet;
2240     use rustc_hir::*;
2241
2242     debug!("explicit_predicates_of(def_id={:?})", def_id);
2243
2244     /// A data structure with unique elements, which preserves order of insertion.
2245     /// Preserving the order of insertion is important here so as not to break
2246     /// compile-fail UI tests.
2247     // FIXME(eddyb) just use `IndexSet` from `indexmap`.
2248     struct UniquePredicates<'tcx> {
2249         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
2250         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
2251     }
2252
2253     impl<'tcx> UniquePredicates<'tcx> {
2254         fn new() -> Self {
2255             UniquePredicates { predicates: vec![], uniques: FxHashSet::default() }
2256         }
2257
2258         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
2259             if self.uniques.insert(value) {
2260                 self.predicates.push(value);
2261             }
2262         }
2263
2264         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
2265             for value in iter {
2266                 self.push(value);
2267             }
2268         }
2269     }
2270
2271     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
2272     let node = tcx.hir().get(hir_id);
2273
2274     let mut is_trait = None;
2275     let mut is_default_impl_trait = None;
2276
2277     let icx = ItemCtxt::new(tcx, def_id);
2278     let constness = icx.default_constness_for_trait_bounds();
2279
2280     const NO_GENERICS: &hir::Generics<'_> = &hir::Generics::empty();
2281
2282     let mut predicates = UniquePredicates::new();
2283
2284     let ast_generics = match node {
2285         Node::TraitItem(item) => &item.generics,
2286
2287         Node::ImplItem(item) => match item.kind {
2288             ImplItemKind::OpaqueTy(ref bounds) => {
2289                 ty::print::with_no_queries(|| {
2290                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
2291                     let opaque_ty = tcx.mk_opaque(def_id, substs);
2292                     debug!(
2293                         "explicit_predicates_of({:?}): created opaque type {:?}",
2294                         def_id, opaque_ty
2295                     );
2296
2297                     // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2298                     let bounds = AstConv::compute_bounds(
2299                         &icx,
2300                         opaque_ty,
2301                         bounds,
2302                         SizedByDefault::Yes,
2303                         tcx.def_span(def_id),
2304                     );
2305
2306                     predicates.extend(bounds.predicates(tcx, opaque_ty));
2307                     &item.generics
2308                 })
2309             }
2310             _ => &item.generics,
2311         },
2312
2313         Node::Item(item) => {
2314             match item.kind {
2315                 ItemKind::Impl { defaultness, ref generics, .. } => {
2316                     if defaultness.is_default() {
2317                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
2318                     }
2319                     generics
2320                 }
2321                 ItemKind::Fn(.., ref generics, _)
2322                 | ItemKind::TyAlias(_, ref generics)
2323                 | ItemKind::Enum(_, ref generics)
2324                 | ItemKind::Struct(_, ref generics)
2325                 | ItemKind::Union(_, ref generics) => generics,
2326
2327                 ItemKind::Trait(_, _, ref generics, .., items) => {
2328                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
2329                     generics
2330                 }
2331                 ItemKind::TraitAlias(ref generics, _) => {
2332                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &[]));
2333                     generics
2334                 }
2335                 ItemKind::OpaqueTy(OpaqueTy {
2336                     ref bounds,
2337                     impl_trait_fn,
2338                     ref generics,
2339                     origin: _,
2340                 }) => {
2341                     let bounds_predicates = ty::print::with_no_queries(|| {
2342                         let substs = InternalSubsts::identity_for_item(tcx, def_id);
2343                         let opaque_ty = tcx.mk_opaque(def_id, substs);
2344
2345                         // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2346                         let bounds = AstConv::compute_bounds(
2347                             &icx,
2348                             opaque_ty,
2349                             bounds,
2350                             SizedByDefault::Yes,
2351                             tcx.def_span(def_id),
2352                         );
2353
2354                         bounds.predicates(tcx, opaque_ty)
2355                     });
2356                     if impl_trait_fn.is_some() {
2357                         // opaque types
2358                         return ty::GenericPredicates {
2359                             parent: None,
2360                             predicates: tcx.arena.alloc_from_iter(bounds_predicates),
2361                         };
2362                     } else {
2363                         // named opaque types
2364                         predicates.extend(bounds_predicates);
2365                         generics
2366                     }
2367                 }
2368
2369                 _ => NO_GENERICS,
2370             }
2371         }
2372
2373         Node::ForeignItem(item) => match item.kind {
2374             ForeignItemKind::Static(..) => NO_GENERICS,
2375             ForeignItemKind::Fn(_, _, ref generics) => generics,
2376             ForeignItemKind::Type => NO_GENERICS,
2377         },
2378
2379         _ => NO_GENERICS,
2380     };
2381
2382     let generics = tcx.generics_of(def_id);
2383     let parent_count = generics.parent_count as u32;
2384     let has_own_self = generics.has_self && parent_count == 0;
2385
2386     // Below we'll consider the bounds on the type parameters (including `Self`)
2387     // and the explicit where-clauses, but to get the full set of predicates
2388     // on a trait we need to add in the supertrait bounds and bounds found on
2389     // associated types.
2390     if let Some((_trait_ref, _)) = is_trait {
2391         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2392     }
2393
2394     // In default impls, we can assume that the self type implements
2395     // the trait. So in:
2396     //
2397     //     default impl Foo for Bar { .. }
2398     //
2399     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2400     // (see below). Recall that a default impl is not itself an impl, but rather a
2401     // set of defaults that can be incorporated into another impl.
2402     if let Some(trait_ref) = is_default_impl_trait {
2403         predicates.push((
2404             trait_ref.to_poly_trait_ref().without_const().to_predicate(),
2405             tcx.def_span(def_id),
2406         ));
2407     }
2408
2409     // Collect the region predicates that were declared inline as
2410     // well. In the case of parameters declared on a fn or method, we
2411     // have to be careful to only iterate over early-bound regions.
2412     let mut index = parent_count + has_own_self as u32;
2413     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2414         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2415             def_id: tcx.hir().local_def_id(param.hir_id),
2416             index,
2417             name: param.name.ident().name,
2418         }));
2419         index += 1;
2420
2421         match param.kind {
2422             GenericParamKind::Lifetime { .. } => {
2423                 param.bounds.iter().for_each(|bound| match bound {
2424                     hir::GenericBound::Outlives(lt) => {
2425                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2426                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2427                         predicates.push((outlives.to_predicate(), lt.span));
2428                     }
2429                     _ => bug!(),
2430                 });
2431             }
2432             _ => bug!(),
2433         }
2434     }
2435
2436     // Collect the predicates that were written inline by the user on each
2437     // type parameter (e.g., `<T: Foo>`).
2438     for param in ast_generics.params {
2439         if let GenericParamKind::Type { .. } = param.kind {
2440             let name = param.name.ident().name;
2441             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2442             index += 1;
2443
2444             let sized = SizedByDefault::Yes;
2445             let bounds = AstConv::compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2446             predicates.extend(bounds.predicates(tcx, param_ty));
2447         }
2448     }
2449
2450     // Add in the bounds that appear in the where-clause.
2451     let where_clause = &ast_generics.where_clause;
2452     for predicate in where_clause.predicates {
2453         match predicate {
2454             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2455                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2456
2457                 // Keep the type around in a dummy predicate, in case of no bounds.
2458                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2459                 // is still checked for WF.
2460                 if bound_pred.bounds.is_empty() {
2461                     if let ty::Param(_) = ty.kind {
2462                         // This is a `where T:`, which can be in the HIR from the
2463                         // transformation that moves `?Sized` to `T`'s declaration.
2464                         // We can skip the predicate because type parameters are
2465                         // trivially WF, but also we *should*, to avoid exposing
2466                         // users who never wrote `where Type:,` themselves, to
2467                         // compiler/tooling bugs from not handling WF predicates.
2468                     } else {
2469                         let span = bound_pred.bounded_ty.span;
2470                         let re_root_empty = tcx.lifetimes.re_root_empty;
2471                         let predicate = ty::OutlivesPredicate(ty, re_root_empty);
2472                         predicates.push((
2473                             ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)),
2474                             span,
2475                         ));
2476                     }
2477                 }
2478
2479                 for bound in bound_pred.bounds.iter() {
2480                     match bound {
2481                         &hir::GenericBound::Trait(ref poly_trait_ref, modifier) => {
2482                             let constness = match modifier {
2483                                 hir::TraitBoundModifier::MaybeConst => hir::Constness::NotConst,
2484                                 hir::TraitBoundModifier::None => constness,
2485                                 hir::TraitBoundModifier::Maybe => bug!("this wasn't handled"),
2486                             };
2487
2488                             let mut bounds = Bounds::default();
2489                             let _ = AstConv::instantiate_poly_trait_ref(
2490                                 &icx,
2491                                 poly_trait_ref,
2492                                 constness,
2493                                 ty,
2494                                 &mut bounds,
2495                             );
2496                             predicates.extend(bounds.predicates(tcx, ty));
2497                         }
2498
2499                         &hir::GenericBound::Outlives(ref lifetime) => {
2500                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2501                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2502                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2503                         }
2504                     }
2505                 }
2506             }
2507
2508             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2509                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2510                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2511                     let (r2, span) = match bound {
2512                         hir::GenericBound::Outlives(lt) => {
2513                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2514                         }
2515                         _ => bug!(),
2516                     };
2517                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2518
2519                     (ty::Predicate::RegionOutlives(pred), span)
2520                 }))
2521             }
2522
2523             &hir::WherePredicate::EqPredicate(..) => {
2524                 // FIXME(#20041)
2525             }
2526         }
2527     }
2528
2529     // Add predicates from associated type bounds.
2530     if let Some((self_trait_ref, trait_items)) = is_trait {
2531         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2532             associated_item_predicates(tcx, def_id, self_trait_ref, trait_item_ref)
2533         }))
2534     }
2535
2536     let mut predicates = predicates.predicates;
2537
2538     // Subtle: before we store the predicates into the tcx, we
2539     // sort them so that predicates like `T: Foo<Item=U>` come
2540     // before uses of `U`.  This avoids false ambiguity errors
2541     // in trait checking. See `setup_constraining_predicates`
2542     // for details.
2543     if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
2544         let self_ty = tcx.type_of(def_id);
2545         let trait_ref = tcx.impl_trait_ref(def_id);
2546         cgp::setup_constraining_predicates(
2547             tcx,
2548             &mut predicates,
2549             trait_ref,
2550             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2551         );
2552     }
2553
2554     let result = ty::GenericPredicates {
2555         parent: generics.parent,
2556         predicates: tcx.arena.alloc_from_iter(predicates),
2557     };
2558     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2559     result
2560 }
2561
2562 fn associated_item_predicates(
2563     tcx: TyCtxt<'tcx>,
2564     def_id: DefId,
2565     self_trait_ref: ty::TraitRef<'tcx>,
2566     trait_item_ref: &hir::TraitItemRef,
2567 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2568     let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2569     let item_def_id = tcx.hir().local_def_id(trait_item_ref.id.hir_id);
2570     let bounds = match trait_item.kind {
2571         hir::TraitItemKind::Type(ref bounds, _) => bounds,
2572         _ => return Vec::new(),
2573     };
2574
2575     let is_gat = !tcx.generics_of(item_def_id).params.is_empty();
2576
2577     let mut had_error = false;
2578
2579     let mut unimplemented_error = |arg_kind: &str| {
2580         if !had_error {
2581             tcx.sess
2582                 .struct_span_err(
2583                     trait_item.span,
2584                     &format!("{}-generic associated types are not yet implemented", arg_kind),
2585                 )
2586                 .note(
2587                     "for more information, see issue #44265 \
2588                      <https://github.com/rust-lang/rust/issues/44265> for more information",
2589                 )
2590                 .emit();
2591             had_error = true;
2592         }
2593     };
2594
2595     let mk_bound_param = |param: &ty::GenericParamDef, _: &_| {
2596         match param.kind {
2597             ty::GenericParamDefKind::Lifetime => tcx
2598                 .mk_region(ty::RegionKind::ReLateBound(
2599                     ty::INNERMOST,
2600                     ty::BoundRegion::BrNamed(param.def_id, param.name),
2601                 ))
2602                 .into(),
2603             // FIXME(generic_associated_types): Use bound types and constants
2604             // once they are handled by the trait system.
2605             ty::GenericParamDefKind::Type { .. } => {
2606                 unimplemented_error("type");
2607                 tcx.types.err.into()
2608             }
2609             ty::GenericParamDefKind::Const => {
2610                 unimplemented_error("const");
2611                 tcx.consts.err.into()
2612             }
2613         }
2614     };
2615
2616     let bound_substs = if is_gat {
2617         // Given:
2618         //
2619         // trait X<'a, B, const C: usize> {
2620         //     type T<'d, E, const F: usize>: Default;
2621         // }
2622         //
2623         // We need to create predicates on the trait:
2624         //
2625         // for<'d, E, const F: usize>
2626         // <Self as X<'a, B, const C: usize>>::T<'d, E, const F: usize>: Sized + Default
2627         //
2628         // We substitute escaping bound parameters for the generic
2629         // arguments to the associated type which are then bound by
2630         // the `Binder` around the the predicate.
2631         //
2632         // FIXME(generic_associated_types): Currently only lifetimes are handled.
2633         self_trait_ref.substs.extend_to(tcx, item_def_id, mk_bound_param)
2634     } else {
2635         self_trait_ref.substs
2636     };
2637
2638     let assoc_ty = tcx.mk_projection(tcx.hir().local_def_id(trait_item.hir_id), bound_substs);
2639
2640     let bounds = AstConv::compute_bounds(
2641         &ItemCtxt::new(tcx, def_id),
2642         assoc_ty,
2643         bounds,
2644         SizedByDefault::Yes,
2645         trait_item.span,
2646     );
2647
2648     let predicates = bounds.predicates(tcx, assoc_ty);
2649
2650     if is_gat {
2651         // We use shifts to get the regions that we're substituting to
2652         // be bound by the binders in the `Predicate`s rather that
2653         // escaping.
2654         let shifted_in = ty::fold::shift_vars(tcx, &predicates, 1);
2655         let substituted = shifted_in.subst(tcx, bound_substs);
2656         ty::fold::shift_out_vars(tcx, &substituted, 1)
2657     } else {
2658         predicates
2659     }
2660 }
2661
2662 /// Converts a specific `GenericBound` from the AST into a set of
2663 /// predicates that apply to the self type. A vector is returned
2664 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2665 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2666 /// and `<T as Bar>::X == i32`).
2667 fn predicates_from_bound<'tcx>(
2668     astconv: &dyn AstConv<'tcx>,
2669     param_ty: Ty<'tcx>,
2670     bound: &'tcx hir::GenericBound<'tcx>,
2671     constness: hir::Constness,
2672 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2673     match *bound {
2674         hir::GenericBound::Trait(ref tr, modifier) => {
2675             let constness = match modifier {
2676                 hir::TraitBoundModifier::Maybe => return vec![],
2677                 hir::TraitBoundModifier::MaybeConst => hir::Constness::NotConst,
2678                 hir::TraitBoundModifier::None => constness,
2679             };
2680
2681             let mut bounds = Bounds::default();
2682             let _ = astconv.instantiate_poly_trait_ref(tr, constness, param_ty, &mut bounds);
2683             bounds.predicates(astconv.tcx(), param_ty)
2684         }
2685         hir::GenericBound::Outlives(ref lifetime) => {
2686             let region = astconv.ast_region_to_region(lifetime, None);
2687             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2688             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2689         }
2690     }
2691 }
2692
2693 fn compute_sig_of_foreign_fn_decl<'tcx>(
2694     tcx: TyCtxt<'tcx>,
2695     def_id: DefId,
2696     decl: &'tcx hir::FnDecl<'tcx>,
2697     abi: abi::Abi,
2698 ) -> ty::PolyFnSig<'tcx> {
2699     let unsafety = if abi == abi::Abi::RustIntrinsic {
2700         intrinsic_operation_unsafety(&tcx.item_name(def_id).as_str())
2701     } else {
2702         hir::Unsafety::Unsafe
2703     };
2704     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl, &[], None);
2705
2706     // Feature gate SIMD types in FFI, since I am not sure that the
2707     // ABIs are handled at all correctly. -huonw
2708     if abi != abi::Abi::RustIntrinsic
2709         && abi != abi::Abi::PlatformIntrinsic
2710         && !tcx.features().simd_ffi
2711     {
2712         let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
2713             if ty.is_simd() {
2714                 tcx.sess
2715                     .struct_span_err(
2716                         ast_ty.span,
2717                         &format!(
2718                             "use of SIMD type `{}` in FFI is highly experimental and \
2719                             may result in invalid code",
2720                             tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2721                         ),
2722                     )
2723                     .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2724                     .emit();
2725             }
2726         };
2727         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2728             check(&input, ty)
2729         }
2730         if let hir::FunctionRetTy::Return(ref ty) = decl.output {
2731             check(&ty, *fty.output().skip_binder())
2732         }
2733     }
2734
2735     fty
2736 }
2737
2738 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2739     match tcx.hir().get_if_local(def_id) {
2740         Some(Node::ForeignItem(..)) => true,
2741         Some(_) => false,
2742         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2743     }
2744 }
2745
2746 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2747     match tcx.hir().get_if_local(def_id) {
2748         Some(Node::Item(&hir::Item { kind: hir::ItemKind::Static(_, mutbl, _), .. }))
2749         | Some(Node::ForeignItem(&hir::ForeignItem {
2750             kind: hir::ForeignItemKind::Static(_, mutbl),
2751             ..
2752         })) => Some(mutbl),
2753         Some(_) => None,
2754         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2755     }
2756 }
2757
2758 fn from_target_feature(
2759     tcx: TyCtxt<'_>,
2760     id: DefId,
2761     attr: &ast::Attribute,
2762     whitelist: &FxHashMap<String, Option<Symbol>>,
2763     target_features: &mut Vec<Symbol>,
2764 ) {
2765     let list = match attr.meta_item_list() {
2766         Some(list) => list,
2767         None => return,
2768     };
2769     let bad_item = |span| {
2770         let msg = "malformed `target_feature` attribute input";
2771         let code = "enable = \"..\"".to_owned();
2772         tcx.sess
2773             .struct_span_err(span, &msg)
2774             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2775             .emit();
2776     };
2777     let rust_features = tcx.features();
2778     for item in list {
2779         // Only `enable = ...` is accepted in the meta-item list.
2780         if !item.check_name(sym::enable) {
2781             bad_item(item.span());
2782             continue;
2783         }
2784
2785         // Must be of the form `enable = "..."` (a string).
2786         let value = match item.value_str() {
2787             Some(value) => value,
2788             None => {
2789                 bad_item(item.span());
2790                 continue;
2791             }
2792         };
2793
2794         // We allow comma separation to enable multiple features.
2795         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2796             // Only allow whitelisted features per platform.
2797             let feature_gate = match whitelist.get(feature) {
2798                 Some(g) => g,
2799                 None => {
2800                     let msg =
2801                         format!("the feature named `{}` is not valid for this target", feature);
2802                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2803                     err.span_label(
2804                         item.span(),
2805                         format!("`{}` is not valid for this target", feature),
2806                     );
2807                     if feature.starts_with("+") {
2808                         let valid = whitelist.contains_key(&feature[1..]);
2809                         if valid {
2810                             err.help("consider removing the leading `+` in the feature name");
2811                         }
2812                     }
2813                     err.emit();
2814                     return None;
2815                 }
2816             };
2817
2818             // Only allow features whose feature gates have been enabled.
2819             let allowed = match feature_gate.as_ref().map(|s| *s) {
2820                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2821                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2822                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2823                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2824                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2825                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2826                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2827                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2828                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2829                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2830                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2831                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2832                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2833                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2834                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2835                 Some(name) => bug!("unknown target feature gate {}", name),
2836                 None => true,
2837             };
2838             if !allowed && id.is_local() {
2839                 feature_err(
2840                     &tcx.sess.parse_sess,
2841                     feature_gate.unwrap(),
2842                     item.span(),
2843                     &format!("the target feature `{}` is currently unstable", feature),
2844                 )
2845                 .emit();
2846             }
2847             Some(Symbol::intern(feature))
2848         }));
2849     }
2850 }
2851
2852 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2853     use rustc::mir::mono::Linkage::*;
2854
2855     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2856     // applicable to variable declarations and may not really make sense for
2857     // Rust code in the first place but whitelist them anyway and trust that
2858     // the user knows what s/he's doing. Who knows, unanticipated use cases
2859     // may pop up in the future.
2860     //
2861     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2862     // and don't have to be, LLVM treats them as no-ops.
2863     match name {
2864         "appending" => Appending,
2865         "available_externally" => AvailableExternally,
2866         "common" => Common,
2867         "extern_weak" => ExternalWeak,
2868         "external" => External,
2869         "internal" => Internal,
2870         "linkonce" => LinkOnceAny,
2871         "linkonce_odr" => LinkOnceODR,
2872         "private" => Private,
2873         "weak" => WeakAny,
2874         "weak_odr" => WeakODR,
2875         _ => {
2876             let span = tcx.hir().span_if_local(def_id);
2877             if let Some(span) = span {
2878                 tcx.sess.span_fatal(span, "invalid linkage specified")
2879             } else {
2880                 tcx.sess.fatal(&format!("invalid linkage specified: {}", name))
2881             }
2882         }
2883     }
2884 }
2885
2886 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2887     let attrs = tcx.get_attrs(id);
2888
2889     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2890
2891     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2892
2893     let mut inline_span = None;
2894     let mut link_ordinal_span = None;
2895     let mut no_sanitize_span = None;
2896     for attr in attrs.iter() {
2897         if attr.check_name(sym::cold) {
2898             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2899         } else if attr.check_name(sym::rustc_allocator) {
2900             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2901         } else if attr.check_name(sym::unwind) {
2902             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2903         } else if attr.check_name(sym::ffi_returns_twice) {
2904             if tcx.is_foreign_item(id) {
2905                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2906             } else {
2907                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2908                 struct_span_err!(
2909                     tcx.sess,
2910                     attr.span,
2911                     E0724,
2912                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2913                 )
2914                 .emit();
2915             }
2916         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2917             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2918         } else if attr.check_name(sym::naked) {
2919             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2920         } else if attr.check_name(sym::no_mangle) {
2921             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2922         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2923             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2924         } else if attr.check_name(sym::no_debug) {
2925             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2926         } else if attr.check_name(sym::used) {
2927             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2928         } else if attr.check_name(sym::thread_local) {
2929             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2930         } else if attr.check_name(sym::track_caller) {
2931             if tcx.fn_sig(id).abi() != abi::Abi::Rust {
2932                 struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
2933                     .emit();
2934             }
2935             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2936         } else if attr.check_name(sym::export_name) {
2937             if let Some(s) = attr.value_str() {
2938                 if s.as_str().contains("\0") {
2939                     // `#[export_name = ...]` will be converted to a null-terminated string,
2940                     // so it may not contain any null characters.
2941                     struct_span_err!(
2942                         tcx.sess,
2943                         attr.span,
2944                         E0648,
2945                         "`export_name` may not contain null characters"
2946                     )
2947                     .emit();
2948                 }
2949                 codegen_fn_attrs.export_name = Some(s);
2950             }
2951         } else if attr.check_name(sym::target_feature) {
2952             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2953                 let msg = "`#[target_feature(..)]` can only be applied to `unsafe` functions";
2954                 tcx.sess
2955                     .struct_span_err(attr.span, msg)
2956                     .span_label(attr.span, "can only be applied to `unsafe` functions")
2957                     .span_label(tcx.def_span(id), "not an `unsafe` function")
2958                     .emit();
2959             }
2960             from_target_feature(tcx, id, attr, &whitelist, &mut codegen_fn_attrs.target_features);
2961         } else if attr.check_name(sym::linkage) {
2962             if let Some(val) = attr.value_str() {
2963                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2964             }
2965         } else if attr.check_name(sym::link_section) {
2966             if let Some(val) = attr.value_str() {
2967                 if val.as_str().bytes().any(|b| b == 0) {
2968                     let msg = format!(
2969                         "illegal null byte in link_section \
2970                          value: `{}`",
2971                         &val
2972                     );
2973                     tcx.sess.span_err(attr.span, &msg);
2974                 } else {
2975                     codegen_fn_attrs.link_section = Some(val);
2976                 }
2977             }
2978         } else if attr.check_name(sym::link_name) {
2979             codegen_fn_attrs.link_name = attr.value_str();
2980         } else if attr.check_name(sym::link_ordinal) {
2981             link_ordinal_span = Some(attr.span);
2982             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2983                 codegen_fn_attrs.link_ordinal = ordinal;
2984             }
2985         } else if attr.check_name(sym::no_sanitize) {
2986             no_sanitize_span = Some(attr.span);
2987             if let Some(list) = attr.meta_item_list() {
2988                 for item in list.iter() {
2989                     if item.check_name(sym::address) {
2990                         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_SANITIZE_ADDRESS;
2991                     } else if item.check_name(sym::memory) {
2992                         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_SANITIZE_MEMORY;
2993                     } else if item.check_name(sym::thread) {
2994                         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_SANITIZE_THREAD;
2995                     } else {
2996                         tcx.sess
2997                             .struct_span_err(item.span(), "invalid argument for `no_sanitize`")
2998                             .note("expected one of: `address`, `memory` or `thread`")
2999                             .emit();
3000                     }
3001                 }
3002             }
3003         }
3004     }
3005
3006     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
3007         if !attr.has_name(sym::inline) {
3008             return ia;
3009         }
3010         match attr.meta().map(|i| i.kind) {
3011             Some(MetaItemKind::Word) => {
3012                 mark_used(attr);
3013                 InlineAttr::Hint
3014             }
3015             Some(MetaItemKind::List(ref items)) => {
3016                 mark_used(attr);
3017                 inline_span = Some(attr.span);
3018                 if items.len() != 1 {
3019                     struct_span_err!(
3020                         tcx.sess.diagnostic(),
3021                         attr.span,
3022                         E0534,
3023                         "expected one argument"
3024                     )
3025                     .emit();
3026                     InlineAttr::None
3027                 } else if list_contains_name(&items[..], sym::always) {
3028                     InlineAttr::Always
3029                 } else if list_contains_name(&items[..], sym::never) {
3030                     InlineAttr::Never
3031                 } else {
3032                     struct_span_err!(
3033                         tcx.sess.diagnostic(),
3034                         items[0].span(),
3035                         E0535,
3036                         "invalid argument"
3037                     )
3038                     .emit();
3039
3040                     InlineAttr::None
3041                 }
3042             }
3043             Some(MetaItemKind::NameValue(_)) => ia,
3044             None => ia,
3045         }
3046     });
3047
3048     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
3049         if !attr.has_name(sym::optimize) {
3050             return ia;
3051         }
3052         let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
3053         match attr.meta().map(|i| i.kind) {
3054             Some(MetaItemKind::Word) => {
3055                 err(attr.span, "expected one argument");
3056                 ia
3057             }
3058             Some(MetaItemKind::List(ref items)) => {
3059                 mark_used(attr);
3060                 inline_span = Some(attr.span);
3061                 if items.len() != 1 {
3062                     err(attr.span, "expected one argument");
3063                     OptimizeAttr::None
3064                 } else if list_contains_name(&items[..], sym::size) {
3065                     OptimizeAttr::Size
3066                 } else if list_contains_name(&items[..], sym::speed) {
3067                     OptimizeAttr::Speed
3068                 } else {
3069                     err(items[0].span(), "invalid argument");
3070                     OptimizeAttr::None
3071                 }
3072             }
3073             Some(MetaItemKind::NameValue(_)) => ia,
3074             None => ia,
3075         }
3076     });
3077
3078     // If a function uses #[target_feature] it can't be inlined into general
3079     // purpose functions as they wouldn't have the right target features
3080     // enabled. For that reason we also forbid #[inline(always)] as it can't be
3081     // respected.
3082     if codegen_fn_attrs.target_features.len() > 0 {
3083         if codegen_fn_attrs.inline == InlineAttr::Always {
3084             if let Some(span) = inline_span {
3085                 tcx.sess.span_err(
3086                     span,
3087                     "cannot use `#[inline(always)]` with \
3088                      `#[target_feature]`",
3089                 );
3090             }
3091         }
3092     }
3093
3094     if codegen_fn_attrs.flags.intersects(CodegenFnAttrFlags::NO_SANITIZE_ANY) {
3095         if codegen_fn_attrs.inline == InlineAttr::Always {
3096             if let (Some(no_sanitize_span), Some(inline_span)) = (no_sanitize_span, inline_span) {
3097                 let hir_id = tcx.hir().as_local_hir_id(id).unwrap();
3098                 tcx.struct_span_lint_hir(
3099                     lint::builtin::INLINE_NO_SANITIZE,
3100                     hir_id,
3101                     no_sanitize_span,
3102                     |lint| {
3103                         lint.build("`no_sanitize` will have no effect after inlining")
3104                             .span_note(inline_span, "inlining requested here")
3105                             .emit();
3106                     },
3107                 )
3108             }
3109         }
3110     }
3111
3112     // Weak lang items have the same semantics as "std internal" symbols in the
3113     // sense that they're preserved through all our LTO passes and only
3114     // strippable by the linker.
3115     //
3116     // Additionally weak lang items have predetermined symbol names.
3117     if tcx.is_weak_lang_item(id) {
3118         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
3119     }
3120     if let Some(name) = lang_items::link_name(&attrs) {
3121         codegen_fn_attrs.export_name = Some(name);
3122         codegen_fn_attrs.link_name = Some(name);
3123     }
3124     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
3125
3126     // Internal symbols to the standard library all have no_mangle semantics in
3127     // that they have defined symbol names present in the function name. This
3128     // also applies to weak symbols where they all have known symbol names.
3129     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
3130         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
3131     }
3132
3133     codegen_fn_attrs
3134 }
3135
3136 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<usize> {
3137     use syntax::ast::{Lit, LitIntType, LitKind};
3138     let meta_item_list = attr.meta_item_list();
3139     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
3140     let sole_meta_list = match meta_item_list {
3141         Some([item]) => item.literal(),
3142         _ => None,
3143     };
3144     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
3145         if *ordinal <= std::usize::MAX as u128 {
3146             Some(*ordinal as usize)
3147         } else {
3148             let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
3149             tcx.sess
3150                 .struct_span_err(attr.span, &msg)
3151                 .note("the value may not exceed `std::usize::MAX`")
3152                 .emit();
3153             None
3154         }
3155     } else {
3156         tcx.sess
3157             .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
3158             .note("an unsuffixed integer value, e.g., `1`, is expected")
3159             .emit();
3160         None
3161     }
3162 }
3163
3164 fn check_link_name_xor_ordinal(
3165     tcx: TyCtxt<'_>,
3166     codegen_fn_attrs: &CodegenFnAttrs,
3167     inline_span: Option<Span>,
3168 ) {
3169     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
3170         return;
3171     }
3172     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
3173     if let Some(span) = inline_span {
3174         tcx.sess.span_err(span, msg);
3175     } else {
3176         tcx.sess.err(msg);
3177     }
3178 }