]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
854bd03b2648679237144d5980f852b8bddf43c3
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds, SizedByDefault};
18 use crate::check::intrinsic::intrinsic_operation_unsafety;
19 use crate::constrained_generic_params as cgp;
20 use crate::middle::resolve_lifetime as rl;
21 use rustc_ast::ast;
22 use rustc_ast::ast::MetaItemKind;
23 use rustc_attr::{list_contains_name, mark_used, InlineAttr, OptimizeAttr};
24 use rustc_data_structures::captures::Captures;
25 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
26 use rustc_errors::{struct_span_err, Applicability};
27 use rustc_hir as hir;
28 use rustc_hir::def::{CtorKind, DefKind, Res};
29 use rustc_hir::def_id::{DefId, LocalDefId, LOCAL_CRATE};
30 use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
31 use rustc_hir::weak_lang_items;
32 use rustc_hir::{GenericParamKind, Node};
33 use rustc_middle::hir::map::blocks::FnLikeNode;
34 use rustc_middle::hir::map::Map;
35 use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
36 use rustc_middle::mir::mono::Linkage;
37 use rustc_middle::ty::query::Providers;
38 use rustc_middle::ty::subst::{InternalSubsts, Subst};
39 use rustc_middle::ty::util::Discr;
40 use rustc_middle::ty::util::IntTypeExt;
41 use rustc_middle::ty::{self, AdtKind, Const, ToPolyTraitRef, Ty, TyCtxt};
42 use rustc_middle::ty::{ReprOptions, ToPredicate, WithConstness};
43 use rustc_session::lint;
44 use rustc_session::parse::feature_err;
45 use rustc_span::symbol::{kw, sym, Ident, Symbol};
46 use rustc_span::{Span, DUMMY_SP};
47 use rustc_target::spec::abi;
48 use rustc_trait_selection::traits::error_reporting::suggestions::NextTypeParamName;
49
50 mod type_of;
51
52 struct OnlySelfBounds(bool);
53
54 ///////////////////////////////////////////////////////////////////////////
55 // Main entry point
56
57 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: DefId) {
58     tcx.hir().visit_item_likes_in_module(
59         module_def_id,
60         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor(),
61     );
62 }
63
64 pub fn provide(providers: &mut Providers<'_>) {
65     *providers = Providers {
66         type_of: type_of::type_of,
67         generics_of,
68         predicates_of,
69         predicates_defined_on,
70         explicit_predicates_of,
71         super_predicates_of,
72         type_param_predicates,
73         trait_def,
74         adt_def,
75         fn_sig,
76         impl_trait_ref,
77         impl_polarity,
78         is_foreign_item,
79         static_mutability,
80         generator_kind,
81         codegen_fn_attrs,
82         collect_mod_item_types,
83         ..*providers
84     };
85 }
86
87 ///////////////////////////////////////////////////////////////////////////
88
89 /// Context specific to some particular item. This is what implements
90 /// `AstConv`. It has information about the predicates that are defined
91 /// on the trait. Unfortunately, this predicate information is
92 /// available in various different forms at various points in the
93 /// process. So we can't just store a pointer to e.g., the AST or the
94 /// parsed ty form, we have to be more flexible. To this end, the
95 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
96 /// `get_type_parameter_bounds` requests, drawing the information from
97 /// the AST (`hir::Generics`), recursively.
98 pub struct ItemCtxt<'tcx> {
99     tcx: TyCtxt<'tcx>,
100     item_def_id: DefId,
101 }
102
103 ///////////////////////////////////////////////////////////////////////////
104
105 #[derive(Default)]
106 crate struct PlaceholderHirTyCollector(crate Vec<Span>);
107
108 impl<'v> Visitor<'v> for PlaceholderHirTyCollector {
109     type Map = intravisit::ErasedMap<'v>;
110
111     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
112         NestedVisitorMap::None
113     }
114     fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
115         if let hir::TyKind::Infer = t.kind {
116             self.0.push(t.span);
117         }
118         intravisit::walk_ty(self, t)
119     }
120 }
121
122 struct CollectItemTypesVisitor<'tcx> {
123     tcx: TyCtxt<'tcx>,
124 }
125
126 /// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
127 /// and suggest adding type parameters in the appropriate place, taking into consideration any and
128 /// all already existing generic type parameters to avoid suggesting a name that is already in use.
129 crate fn placeholder_type_error(
130     tcx: TyCtxt<'tcx>,
131     span: Span,
132     generics: &[hir::GenericParam<'_>],
133     placeholder_types: Vec<Span>,
134     suggest: bool,
135 ) {
136     if placeholder_types.is_empty() {
137         return;
138     }
139     let type_name = generics.next_type_param_name(None);
140
141     let mut sugg: Vec<_> =
142         placeholder_types.iter().map(|sp| (*sp, (*type_name).to_string())).collect();
143     if generics.is_empty() {
144         sugg.push((span, format!("<{}>", type_name)));
145     } else if let Some(arg) = generics.iter().find(|arg| match arg.name {
146         hir::ParamName::Plain(Ident { name: kw::Underscore, .. }) => true,
147         _ => false,
148     }) {
149         // Account for `_` already present in cases like `struct S<_>(_);` and suggest
150         // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
151         sugg.push((arg.span, (*type_name).to_string()));
152     } else {
153         let last = generics.iter().last().unwrap();
154         sugg.push((
155             // Account for bounds, we want `fn foo<T: E, K>(_: K)` not `fn foo<T, K: E>(_: K)`.
156             last.bounds_span().unwrap_or(last.span).shrink_to_hi(),
157             format!(", {}", type_name),
158         ));
159     }
160     let mut err = bad_placeholder_type(tcx, placeholder_types);
161     if suggest {
162         err.multipart_suggestion(
163             "use type parameters instead",
164             sugg,
165             Applicability::HasPlaceholders,
166         );
167     }
168     err.emit();
169 }
170
171 fn reject_placeholder_type_signatures_in_item(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
172     let (generics, suggest) = match &item.kind {
173         hir::ItemKind::Union(_, generics)
174         | hir::ItemKind::Enum(_, generics)
175         | hir::ItemKind::TraitAlias(generics, _)
176         | hir::ItemKind::Trait(_, _, generics, ..)
177         | hir::ItemKind::Impl { generics, .. }
178         | hir::ItemKind::Struct(_, generics) => (generics, true),
179         hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
180         | hir::ItemKind::TyAlias(_, generics) => (generics, false),
181         // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
182         _ => return,
183     };
184
185     let mut visitor = PlaceholderHirTyCollector::default();
186     visitor.visit_item(item);
187
188     placeholder_type_error(tcx, generics.span, &generics.params[..], visitor.0, suggest);
189 }
190
191 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
192     type Map = Map<'tcx>;
193
194     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
195         NestedVisitorMap::OnlyBodies(self.tcx.hir())
196     }
197
198     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
199         convert_item(self.tcx, item.hir_id);
200         reject_placeholder_type_signatures_in_item(self.tcx, item);
201         intravisit::walk_item(self, item);
202     }
203
204     fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
205         for param in generics.params {
206             match param.kind {
207                 hir::GenericParamKind::Lifetime { .. } => {}
208                 hir::GenericParamKind::Type { default: Some(_), .. } => {
209                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
210                     self.tcx.ensure().type_of(def_id);
211                 }
212                 hir::GenericParamKind::Type { .. } => {}
213                 hir::GenericParamKind::Const { .. } => {
214                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
215                     self.tcx.ensure().type_of(def_id);
216                 }
217             }
218         }
219         intravisit::walk_generics(self, generics);
220     }
221
222     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
223         if let hir::ExprKind::Closure(..) = expr.kind {
224             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
225             self.tcx.ensure().generics_of(def_id);
226             self.tcx.ensure().type_of(def_id);
227         }
228         intravisit::walk_expr(self, expr);
229     }
230
231     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
232         convert_trait_item(self.tcx, trait_item.hir_id);
233         intravisit::walk_trait_item(self, trait_item);
234     }
235
236     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
237         convert_impl_item(self.tcx, impl_item.hir_id);
238         intravisit::walk_impl_item(self, impl_item);
239     }
240 }
241
242 ///////////////////////////////////////////////////////////////////////////
243 // Utility types and common code for the above passes.
244
245 fn bad_placeholder_type(
246     tcx: TyCtxt<'tcx>,
247     mut spans: Vec<Span>,
248 ) -> rustc_errors::DiagnosticBuilder<'tcx> {
249     spans.sort();
250     let mut err = struct_span_err!(
251         tcx.sess,
252         spans.clone(),
253         E0121,
254         "the type placeholder `_` is not allowed within types on item signatures",
255     );
256     for span in spans {
257         err.span_label(span, "not allowed in type signatures");
258     }
259     err
260 }
261
262 impl ItemCtxt<'tcx> {
263     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
264         ItemCtxt { tcx, item_def_id }
265     }
266
267     pub fn to_ty(&self, ast_ty: &'tcx hir::Ty<'tcx>) -> Ty<'tcx> {
268         AstConv::ast_ty_to_ty(self, ast_ty)
269     }
270
271     pub fn hir_id(&self) -> hir::HirId {
272         self.tcx.hir().as_local_hir_id(self.item_def_id.expect_local())
273     }
274
275     pub fn node(&self) -> hir::Node<'tcx> {
276         self.tcx.hir().get(self.hir_id())
277     }
278 }
279
280 impl AstConv<'tcx> for ItemCtxt<'tcx> {
281     fn tcx(&self) -> TyCtxt<'tcx> {
282         self.tcx
283     }
284
285     fn item_def_id(&self) -> Option<DefId> {
286         Some(self.item_def_id)
287     }
288
289     fn default_constness_for_trait_bounds(&self) -> hir::Constness {
290         if let Some(fn_like) = FnLikeNode::from_node(self.node()) {
291             fn_like.constness()
292         } else {
293             hir::Constness::NotConst
294         }
295     }
296
297     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId) -> ty::GenericPredicates<'tcx> {
298         self.tcx.at(span).type_param_predicates((self.item_def_id, def_id.expect_local()))
299     }
300
301     fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
302         None
303     }
304
305     fn allow_ty_infer(&self) -> bool {
306         false
307     }
308
309     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
310         self.tcx().sess.delay_span_bug(span, "bad placeholder type");
311         self.tcx().types.err
312     }
313
314     fn ct_infer(
315         &self,
316         ty: Ty<'tcx>,
317         _: Option<&ty::GenericParamDef>,
318         span: Span,
319     ) -> &'tcx Const<'tcx> {
320         bad_placeholder_type(self.tcx(), vec![span]).emit();
321
322         self.tcx().mk_const(ty::Const { val: ty::ConstKind::Error, ty })
323     }
324
325     fn projected_ty_from_poly_trait_ref(
326         &self,
327         span: Span,
328         item_def_id: DefId,
329         item_segment: &hir::PathSegment<'_>,
330         poly_trait_ref: ty::PolyTraitRef<'tcx>,
331     ) -> Ty<'tcx> {
332         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
333             let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
334                 self,
335                 self.tcx,
336                 span,
337                 item_def_id,
338                 item_segment,
339                 trait_ref.substs,
340             );
341             self.tcx().mk_projection(item_def_id, item_substs)
342         } else {
343             // There are no late-bound regions; we can just ignore the binder.
344             let mut err = struct_span_err!(
345                 self.tcx().sess,
346                 span,
347                 E0212,
348                 "cannot extract an associated type from a higher-ranked trait bound \
349                  in this context"
350             );
351
352             match self.node() {
353                 hir::Node::Field(_) | hir::Node::Ctor(_) | hir::Node::Variant(_) => {
354                     let item =
355                         self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(self.hir_id()));
356                     match &item.kind {
357                         hir::ItemKind::Enum(_, generics)
358                         | hir::ItemKind::Struct(_, generics)
359                         | hir::ItemKind::Union(_, generics) => {
360                             let lt_name = get_new_lifetime_name(self.tcx, poly_trait_ref, generics);
361                             let (lt_sp, sugg) = match &generics.params[..] {
362                                 [] => (generics.span, format!("<{}>", lt_name)),
363                                 [bound, ..] => {
364                                     (bound.span.shrink_to_lo(), format!("{}, ", lt_name))
365                                 }
366                             };
367                             let suggestions = vec![
368                                 (lt_sp, sugg),
369                                 (
370                                     span,
371                                     format!(
372                                         "{}::{}",
373                                         // Replace the existing lifetimes with a new named lifetime.
374                                         self.tcx
375                                             .replace_late_bound_regions(&poly_trait_ref, |_| {
376                                                 self.tcx.mk_region(ty::ReEarlyBound(
377                                                     ty::EarlyBoundRegion {
378                                                         def_id: item_def_id,
379                                                         index: 0,
380                                                         name: Symbol::intern(&lt_name),
381                                                     },
382                                                 ))
383                                             })
384                                             .0,
385                                         item_segment.ident
386                                     ),
387                                 ),
388                             ];
389                             err.multipart_suggestion(
390                                 "use a fully qualified path with explicit lifetimes",
391                                 suggestions,
392                                 Applicability::MaybeIncorrect,
393                             );
394                         }
395                         _ => {}
396                     }
397                 }
398                 hir::Node::Item(hir::Item {
399                     kind:
400                         hir::ItemKind::Struct(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Union(..),
401                     ..
402                 }) => {}
403                 hir::Node::Item(_)
404                 | hir::Node::ForeignItem(_)
405                 | hir::Node::TraitItem(_)
406                 | hir::Node::ImplItem(_) => {
407                     err.span_suggestion(
408                         span,
409                         "use a fully qualified path with inferred lifetimes",
410                         format!(
411                             "{}::{}",
412                             // Erase named lt, we want `<A as B<'_>::C`, not `<A as B<'a>::C`.
413                             self.tcx.anonymize_late_bound_regions(&poly_trait_ref).skip_binder(),
414                             item_segment.ident
415                         ),
416                         Applicability::MaybeIncorrect,
417                     );
418                 }
419                 _ => {}
420             }
421             err.emit();
422             self.tcx().types.err
423         }
424     }
425
426     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
427         // Types in item signatures are not normalized to avoid undue dependencies.
428         ty
429     }
430
431     fn set_tainted_by_errors(&self) {
432         // There's no obvious place to track this, so just let it go.
433     }
434
435     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
436         // There's no place to record types from signatures?
437     }
438 }
439
440 /// Synthesize a new lifetime name that doesn't clash with any of the lifetimes already present.
441 fn get_new_lifetime_name<'tcx>(
442     tcx: TyCtxt<'tcx>,
443     poly_trait_ref: ty::PolyTraitRef<'tcx>,
444     generics: &hir::Generics<'tcx>,
445 ) -> String {
446     let existing_lifetimes = tcx
447         .collect_referenced_late_bound_regions(&poly_trait_ref)
448         .into_iter()
449         .filter_map(|lt| {
450             if let ty::BoundRegion::BrNamed(_, name) = lt {
451                 Some(name.as_str().to_string())
452             } else {
453                 None
454             }
455         })
456         .chain(generics.params.iter().filter_map(|param| {
457             if let hir::GenericParamKind::Lifetime { .. } = &param.kind {
458                 Some(param.name.ident().as_str().to_string())
459             } else {
460                 None
461             }
462         }))
463         .collect::<FxHashSet<String>>();
464
465     let a_to_z_repeat_n = |n| {
466         (b'a'..=b'z').map(move |c| {
467             let mut s = '\''.to_string();
468             s.extend(std::iter::repeat(char::from(c)).take(n));
469             s
470         })
471     };
472
473     // If all single char lifetime names are present, we wrap around and double the chars.
474     (1..).flat_map(a_to_z_repeat_n).find(|lt| !existing_lifetimes.contains(lt.as_str())).unwrap()
475 }
476
477 /// Returns the predicates defined on `item_def_id` of the form
478 /// `X: Foo` where `X` is the type parameter `def_id`.
479 fn type_param_predicates(
480     tcx: TyCtxt<'_>,
481     (item_def_id, def_id): (DefId, LocalDefId),
482 ) -> ty::GenericPredicates<'_> {
483     use rustc_hir::*;
484
485     // In the AST, bounds can derive from two places. Either
486     // written inline like `<T: Foo>` or in a where-clause like
487     // `where T: Foo`.
488
489     let param_id = tcx.hir().as_local_hir_id(def_id);
490     let param_owner = tcx.hir().ty_param_owner(param_id);
491     let param_owner_def_id = tcx.hir().local_def_id(param_owner);
492     let generics = tcx.generics_of(param_owner_def_id);
493     let index = generics.param_def_id_to_index[&def_id.to_def_id()];
494     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id));
495
496     // Don't look for bounds where the type parameter isn't in scope.
497     let parent = if item_def_id == param_owner_def_id.to_def_id() {
498         None
499     } else {
500         tcx.generics_of(item_def_id).parent
501     };
502
503     let mut result = parent
504         .map(|parent| {
505             let icx = ItemCtxt::new(tcx, parent);
506             icx.get_type_parameter_bounds(DUMMY_SP, def_id.to_def_id())
507         })
508         .unwrap_or_default();
509     let mut extend = None;
510
511     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id.expect_local());
512     let ast_generics = match tcx.hir().get(item_hir_id) {
513         Node::TraitItem(item) => &item.generics,
514
515         Node::ImplItem(item) => &item.generics,
516
517         Node::Item(item) => {
518             match item.kind {
519                 ItemKind::Fn(.., ref generics, _)
520                 | ItemKind::Impl { ref generics, .. }
521                 | ItemKind::TyAlias(_, ref generics)
522                 | ItemKind::OpaqueTy(OpaqueTy { ref generics, impl_trait_fn: None, .. })
523                 | ItemKind::Enum(_, ref generics)
524                 | ItemKind::Struct(_, ref generics)
525                 | ItemKind::Union(_, ref generics) => generics,
526                 ItemKind::Trait(_, _, ref generics, ..) => {
527                     // Implied `Self: Trait` and supertrait bounds.
528                     if param_id == item_hir_id {
529                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
530                         extend =
531                             Some((identity_trait_ref.without_const().to_predicate(), item.span));
532                     }
533                     generics
534                 }
535                 _ => return result,
536             }
537         }
538
539         Node::ForeignItem(item) => match item.kind {
540             ForeignItemKind::Fn(_, _, ref generics) => generics,
541             _ => return result,
542         },
543
544         _ => return result,
545     };
546
547     let icx = ItemCtxt::new(tcx, item_def_id);
548     let extra_predicates = extend.into_iter().chain(
549         icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty, OnlySelfBounds(true))
550             .into_iter()
551             .filter(|(predicate, _)| match predicate {
552                 ty::Predicate::Trait(ref data, _) => data.skip_binder().self_ty().is_param(index),
553                 _ => false,
554             }),
555     );
556     result.predicates =
557         tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
558     result
559 }
560
561 impl ItemCtxt<'tcx> {
562     /// Finds bounds from `hir::Generics`. This requires scanning through the
563     /// AST. We do this to avoid having to convert *all* the bounds, which
564     /// would create artificial cycles. Instead, we can only convert the
565     /// bounds for a type parameter `X` if `X::Foo` is used.
566     fn type_parameter_bounds_in_generics(
567         &self,
568         ast_generics: &'tcx hir::Generics<'tcx>,
569         param_id: hir::HirId,
570         ty: Ty<'tcx>,
571         only_self_bounds: OnlySelfBounds,
572     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
573         let constness = self.default_constness_for_trait_bounds();
574         let from_ty_params = ast_generics
575             .params
576             .iter()
577             .filter_map(|param| match param.kind {
578                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
579                 _ => None,
580             })
581             .flat_map(|bounds| bounds.iter())
582             .flat_map(|b| predicates_from_bound(self, ty, b, constness));
583
584         let from_where_clauses = ast_generics
585             .where_clause
586             .predicates
587             .iter()
588             .filter_map(|wp| match *wp {
589                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
590                 _ => None,
591             })
592             .flat_map(|bp| {
593                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
594                     Some(ty)
595                 } else if !only_self_bounds.0 {
596                     Some(self.to_ty(&bp.bounded_ty))
597                 } else {
598                     None
599                 };
600                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
601             })
602             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b, constness));
603
604         from_ty_params.chain(from_where_clauses).collect()
605     }
606 }
607
608 /// Tests whether this is the AST for a reference to the type
609 /// parameter with ID `param_id`. We use this so as to avoid running
610 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
611 /// conversion of the type to avoid inducing unnecessary cycles.
612 fn is_param(tcx: TyCtxt<'_>, ast_ty: &hir::Ty<'_>, param_id: hir::HirId) -> bool {
613     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.kind {
614         match path.res {
615             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
616                 def_id == tcx.hir().local_def_id(param_id).to_def_id()
617             }
618             _ => false,
619         }
620     } else {
621         false
622     }
623 }
624
625 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::HirId) {
626     let it = tcx.hir().expect_item(item_id);
627     debug!("convert: item {} with id {}", it.ident, it.hir_id);
628     let def_id = tcx.hir().local_def_id(item_id);
629     match it.kind {
630         // These don't define types.
631         hir::ItemKind::ExternCrate(_)
632         | hir::ItemKind::Use(..)
633         | hir::ItemKind::Mod(_)
634         | hir::ItemKind::GlobalAsm(_) => {}
635         hir::ItemKind::ForeignMod(ref foreign_mod) => {
636             for item in foreign_mod.items {
637                 let def_id = tcx.hir().local_def_id(item.hir_id);
638                 tcx.ensure().generics_of(def_id);
639                 tcx.ensure().type_of(def_id);
640                 tcx.ensure().predicates_of(def_id);
641                 if let hir::ForeignItemKind::Fn(..) = item.kind {
642                     tcx.ensure().fn_sig(def_id);
643                 }
644             }
645         }
646         hir::ItemKind::Enum(ref enum_definition, _) => {
647             tcx.ensure().generics_of(def_id);
648             tcx.ensure().type_of(def_id);
649             tcx.ensure().predicates_of(def_id);
650             convert_enum_variant_types(tcx, def_id.to_def_id(), &enum_definition.variants);
651         }
652         hir::ItemKind::Impl { .. } => {
653             tcx.ensure().generics_of(def_id);
654             tcx.ensure().type_of(def_id);
655             tcx.ensure().impl_trait_ref(def_id);
656             tcx.ensure().predicates_of(def_id);
657         }
658         hir::ItemKind::Trait(..) => {
659             tcx.ensure().generics_of(def_id);
660             tcx.ensure().trait_def(def_id);
661             tcx.at(it.span).super_predicates_of(def_id);
662             tcx.ensure().predicates_of(def_id);
663         }
664         hir::ItemKind::TraitAlias(..) => {
665             tcx.ensure().generics_of(def_id);
666             tcx.at(it.span).super_predicates_of(def_id);
667             tcx.ensure().predicates_of(def_id);
668         }
669         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
670             tcx.ensure().generics_of(def_id);
671             tcx.ensure().type_of(def_id);
672             tcx.ensure().predicates_of(def_id);
673
674             for f in struct_def.fields() {
675                 let def_id = tcx.hir().local_def_id(f.hir_id);
676                 tcx.ensure().generics_of(def_id);
677                 tcx.ensure().type_of(def_id);
678                 tcx.ensure().predicates_of(def_id);
679             }
680
681             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
682                 convert_variant_ctor(tcx, ctor_hir_id);
683             }
684         }
685
686         // Desugared from `impl Trait`, so visited by the function's return type.
687         hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(_), .. }) => {}
688
689         hir::ItemKind::OpaqueTy(..)
690         | hir::ItemKind::TyAlias(..)
691         | hir::ItemKind::Static(..)
692         | hir::ItemKind::Const(..)
693         | hir::ItemKind::Fn(..) => {
694             tcx.ensure().generics_of(def_id);
695             tcx.ensure().type_of(def_id);
696             tcx.ensure().predicates_of(def_id);
697             if let hir::ItemKind::Fn(..) = it.kind {
698                 tcx.ensure().fn_sig(def_id);
699             }
700         }
701     }
702 }
703
704 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::HirId) {
705     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
706     let def_id = tcx.hir().local_def_id(trait_item.hir_id);
707     tcx.ensure().generics_of(def_id);
708
709     match trait_item.kind {
710         hir::TraitItemKind::Fn(..) => {
711             tcx.ensure().type_of(def_id);
712             tcx.ensure().fn_sig(def_id);
713         }
714
715         hir::TraitItemKind::Const(.., Some(_)) => {
716             tcx.ensure().type_of(def_id);
717         }
718
719         hir::TraitItemKind::Const(..) | hir::TraitItemKind::Type(_, Some(_)) => {
720             tcx.ensure().type_of(def_id);
721             // Account for `const C: _;` and `type T = _;`.
722             let mut visitor = PlaceholderHirTyCollector::default();
723             visitor.visit_trait_item(trait_item);
724             placeholder_type_error(tcx, DUMMY_SP, &[], visitor.0, false);
725         }
726
727         hir::TraitItemKind::Type(_, None) => {}
728     };
729
730     tcx.ensure().predicates_of(def_id);
731 }
732
733 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::HirId) {
734     let def_id = tcx.hir().local_def_id(impl_item_id);
735     tcx.ensure().generics_of(def_id);
736     tcx.ensure().type_of(def_id);
737     tcx.ensure().predicates_of(def_id);
738     let impl_item = tcx.hir().expect_impl_item(impl_item_id);
739     match impl_item.kind {
740         hir::ImplItemKind::Fn(..) => {
741             tcx.ensure().fn_sig(def_id);
742         }
743         hir::ImplItemKind::TyAlias(_) | hir::ImplItemKind::OpaqueTy(_) => {
744             // Account for `type T = _;`
745             let mut visitor = PlaceholderHirTyCollector::default();
746             visitor.visit_impl_item(impl_item);
747             placeholder_type_error(tcx, DUMMY_SP, &[], visitor.0, false);
748         }
749         hir::ImplItemKind::Const(..) => {}
750     }
751 }
752
753 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
754     let def_id = tcx.hir().local_def_id(ctor_id);
755     tcx.ensure().generics_of(def_id);
756     tcx.ensure().type_of(def_id);
757     tcx.ensure().predicates_of(def_id);
758 }
759
760 fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
761     let def = tcx.adt_def(def_id);
762     let repr_type = def.repr.discr_type();
763     let initial = repr_type.initial_discriminant(tcx);
764     let mut prev_discr = None::<Discr<'_>>;
765
766     // fill the discriminant values and field types
767     for variant in variants {
768         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
769         prev_discr = Some(
770             if let Some(ref e) = variant.disr_expr {
771                 let expr_did = tcx.hir().local_def_id(e.hir_id);
772                 def.eval_explicit_discr(tcx, expr_did.to_def_id())
773             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
774                 Some(discr)
775             } else {
776                 struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
777                     .span_label(
778                         variant.span,
779                         format!("overflowed on value after {}", prev_discr.unwrap()),
780                     )
781                     .note(&format!(
782                         "explicitly set `{} = {}` if that is desired outcome",
783                         variant.ident, wrapped_discr
784                     ))
785                     .emit();
786                 None
787             }
788             .unwrap_or(wrapped_discr),
789         );
790
791         for f in variant.data.fields() {
792             let def_id = tcx.hir().local_def_id(f.hir_id);
793             tcx.ensure().generics_of(def_id);
794             tcx.ensure().type_of(def_id);
795             tcx.ensure().predicates_of(def_id);
796         }
797
798         // Convert the ctor, if any. This also registers the variant as
799         // an item.
800         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
801             convert_variant_ctor(tcx, ctor_hir_id);
802         }
803     }
804 }
805
806 fn convert_variant(
807     tcx: TyCtxt<'_>,
808     variant_did: Option<LocalDefId>,
809     ctor_did: Option<LocalDefId>,
810     ident: Ident,
811     discr: ty::VariantDiscr,
812     def: &hir::VariantData<'_>,
813     adt_kind: ty::AdtKind,
814     parent_did: LocalDefId,
815 ) -> ty::VariantDef {
816     let mut seen_fields: FxHashMap<Ident, Span> = Default::default();
817     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did));
818     let fields = def
819         .fields()
820         .iter()
821         .map(|f| {
822             let fid = tcx.hir().local_def_id(f.hir_id);
823             let dup_span = seen_fields.get(&f.ident.normalize_to_macros_2_0()).cloned();
824             if let Some(prev_span) = dup_span {
825                 struct_span_err!(
826                     tcx.sess,
827                     f.span,
828                     E0124,
829                     "field `{}` is already declared",
830                     f.ident
831                 )
832                 .span_label(f.span, "field already declared")
833                 .span_label(prev_span, format!("`{}` first declared here", f.ident))
834                 .emit();
835             } else {
836                 seen_fields.insert(f.ident.normalize_to_macros_2_0(), f.span);
837             }
838
839             ty::FieldDef {
840                 did: fid.to_def_id(),
841                 ident: f.ident,
842                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
843             }
844         })
845         .collect();
846     let recovered = match def {
847         hir::VariantData::Struct(_, r) => *r,
848         _ => false,
849     };
850     ty::VariantDef::new(
851         tcx,
852         ident,
853         variant_did.map(LocalDefId::to_def_id),
854         ctor_did.map(LocalDefId::to_def_id),
855         discr,
856         fields,
857         CtorKind::from_hir(def),
858         adt_kind,
859         parent_did.to_def_id(),
860         recovered,
861     )
862 }
863
864 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
865     use rustc_hir::*;
866
867     let def_id = def_id.expect_local();
868     let hir_id = tcx.hir().as_local_hir_id(def_id);
869     let item = match tcx.hir().get(hir_id) {
870         Node::Item(item) => item,
871         _ => bug!(),
872     };
873
874     let repr = ReprOptions::new(tcx, def_id.to_def_id());
875     let (kind, variants) = match item.kind {
876         ItemKind::Enum(ref def, _) => {
877             let mut distance_from_explicit = 0;
878             let variants = def
879                 .variants
880                 .iter()
881                 .map(|v| {
882                     let variant_did = Some(tcx.hir().local_def_id(v.id));
883                     let ctor_did =
884                         v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
885
886                     let discr = if let Some(ref e) = v.disr_expr {
887                         distance_from_explicit = 0;
888                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id).to_def_id())
889                     } else {
890                         ty::VariantDiscr::Relative(distance_from_explicit)
891                     };
892                     distance_from_explicit += 1;
893
894                     convert_variant(
895                         tcx,
896                         variant_did,
897                         ctor_did,
898                         v.ident,
899                         discr,
900                         &v.data,
901                         AdtKind::Enum,
902                         def_id,
903                     )
904                 })
905                 .collect();
906
907             (AdtKind::Enum, variants)
908         }
909         ItemKind::Struct(ref def, _) => {
910             let variant_did = None::<LocalDefId>;
911             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
912
913             let variants = std::iter::once(convert_variant(
914                 tcx,
915                 variant_did,
916                 ctor_did,
917                 item.ident,
918                 ty::VariantDiscr::Relative(0),
919                 def,
920                 AdtKind::Struct,
921                 def_id,
922             ))
923             .collect();
924
925             (AdtKind::Struct, variants)
926         }
927         ItemKind::Union(ref def, _) => {
928             let variant_did = None;
929             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
930
931             let variants = std::iter::once(convert_variant(
932                 tcx,
933                 variant_did,
934                 ctor_did,
935                 item.ident,
936                 ty::VariantDiscr::Relative(0),
937                 def,
938                 AdtKind::Union,
939                 def_id,
940             ))
941             .collect();
942
943             (AdtKind::Union, variants)
944         }
945         _ => bug!(),
946     };
947     tcx.alloc_adt_def(def_id.to_def_id(), kind, variants, repr)
948 }
949
950 /// Ensures that the super-predicates of the trait with a `DefId`
951 /// of `trait_def_id` are converted and stored. This also ensures that
952 /// the transitive super-predicates are converted.
953 fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
954     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
955     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id.expect_local());
956
957     let item = match tcx.hir().get(trait_hir_id) {
958         Node::Item(item) => item,
959         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
960     };
961
962     let (generics, bounds) = match item.kind {
963         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
964         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
965         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
966     };
967
968     let icx = ItemCtxt::new(tcx, trait_def_id);
969
970     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
971     let self_param_ty = tcx.types.self_param;
972     let superbounds1 =
973         AstConv::compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No, item.span);
974
975     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
976
977     // Convert any explicit superbounds in the where-clause,
978     // e.g., `trait Foo where Self: Bar`.
979     // In the case of trait aliases, however, we include all bounds in the where-clause,
980     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
981     // as one of its "superpredicates".
982     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
983     let superbounds2 = icx.type_parameter_bounds_in_generics(
984         generics,
985         item.hir_id,
986         self_param_ty,
987         OnlySelfBounds(!is_trait_alias),
988     );
989
990     // Combine the two lists to form the complete set of superbounds:
991     let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
992
993     // Now require that immediate supertraits are converted,
994     // which will, in turn, reach indirect supertraits.
995     for &(pred, span) in superbounds {
996         debug!("superbound: {:?}", pred);
997         if let ty::Predicate::Trait(bound, _) = pred {
998             tcx.at(span).super_predicates_of(bound.def_id());
999         }
1000     }
1001
1002     ty::GenericPredicates { parent: None, predicates: superbounds }
1003 }
1004
1005 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> ty::TraitDef {
1006     let hir_id = tcx.hir().as_local_hir_id(def_id.expect_local());
1007     let item = tcx.hir().expect_item(hir_id);
1008
1009     let (is_auto, unsafety) = match item.kind {
1010         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
1011         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
1012         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
1013     };
1014
1015     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
1016     if paren_sugar && !tcx.features().unboxed_closures {
1017         tcx.sess
1018             .struct_span_err(
1019                 item.span,
1020                 "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
1021                  which traits can use parenthetical notation",
1022             )
1023             .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
1024             .emit();
1025     }
1026
1027     let is_marker = tcx.has_attr(def_id, sym::marker);
1028     let spec_kind = if tcx.has_attr(def_id, sym::rustc_unsafe_specialization_marker) {
1029         ty::trait_def::TraitSpecializationKind::Marker
1030     } else if tcx.has_attr(def_id, sym::rustc_specialization_trait) {
1031         ty::trait_def::TraitSpecializationKind::AlwaysApplicable
1032     } else {
1033         ty::trait_def::TraitSpecializationKind::None
1034     };
1035     let def_path_hash = tcx.def_path_hash(def_id);
1036     ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, spec_kind, def_path_hash)
1037 }
1038
1039 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
1040     struct LateBoundRegionsDetector<'tcx> {
1041         tcx: TyCtxt<'tcx>,
1042         outer_index: ty::DebruijnIndex,
1043         has_late_bound_regions: Option<Span>,
1044     }
1045
1046     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
1047         type Map = intravisit::ErasedMap<'tcx>;
1048
1049         fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1050             NestedVisitorMap::None
1051         }
1052
1053         fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
1054             if self.has_late_bound_regions.is_some() {
1055                 return;
1056             }
1057             match ty.kind {
1058                 hir::TyKind::BareFn(..) => {
1059                     self.outer_index.shift_in(1);
1060                     intravisit::walk_ty(self, ty);
1061                     self.outer_index.shift_out(1);
1062                 }
1063                 _ => intravisit::walk_ty(self, ty),
1064             }
1065         }
1066
1067         fn visit_poly_trait_ref(
1068             &mut self,
1069             tr: &'tcx hir::PolyTraitRef<'tcx>,
1070             m: hir::TraitBoundModifier,
1071         ) {
1072             if self.has_late_bound_regions.is_some() {
1073                 return;
1074             }
1075             self.outer_index.shift_in(1);
1076             intravisit::walk_poly_trait_ref(self, tr, m);
1077             self.outer_index.shift_out(1);
1078         }
1079
1080         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
1081             if self.has_late_bound_regions.is_some() {
1082                 return;
1083             }
1084
1085             match self.tcx.named_region(lt.hir_id) {
1086                 Some(rl::Region::Static | rl::Region::EarlyBound(..)) => {}
1087                 Some(
1088                     rl::Region::LateBound(debruijn, _, _) | rl::Region::LateBoundAnon(debruijn, _),
1089                 ) if debruijn < self.outer_index => {}
1090                 Some(
1091                     rl::Region::LateBound(..)
1092                     | rl::Region::LateBoundAnon(..)
1093                     | rl::Region::Free(..),
1094                 )
1095                 | None => {
1096                     self.has_late_bound_regions = Some(lt.span);
1097                 }
1098             }
1099         }
1100     }
1101
1102     fn has_late_bound_regions<'tcx>(
1103         tcx: TyCtxt<'tcx>,
1104         generics: &'tcx hir::Generics<'tcx>,
1105         decl: &'tcx hir::FnDecl<'tcx>,
1106     ) -> Option<Span> {
1107         let mut visitor = LateBoundRegionsDetector {
1108             tcx,
1109             outer_index: ty::INNERMOST,
1110             has_late_bound_regions: None,
1111         };
1112         for param in generics.params {
1113             if let GenericParamKind::Lifetime { .. } = param.kind {
1114                 if tcx.is_late_bound(param.hir_id) {
1115                     return Some(param.span);
1116                 }
1117             }
1118         }
1119         visitor.visit_fn_decl(decl);
1120         visitor.has_late_bound_regions
1121     }
1122
1123     match node {
1124         Node::TraitItem(item) => match item.kind {
1125             hir::TraitItemKind::Fn(ref sig, _) => {
1126                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1127             }
1128             _ => None,
1129         },
1130         Node::ImplItem(item) => match item.kind {
1131             hir::ImplItemKind::Fn(ref sig, _) => {
1132                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1133             }
1134             _ => None,
1135         },
1136         Node::ForeignItem(item) => match item.kind {
1137             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
1138                 has_late_bound_regions(tcx, generics, fn_decl)
1139             }
1140             _ => None,
1141         },
1142         Node::Item(item) => match item.kind {
1143             hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
1144                 has_late_bound_regions(tcx, generics, &sig.decl)
1145             }
1146             _ => None,
1147         },
1148         _ => None,
1149     }
1150 }
1151
1152 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Generics {
1153     use rustc_hir::*;
1154
1155     let hir_id = tcx.hir().as_local_hir_id(def_id.expect_local());
1156
1157     let node = tcx.hir().get(hir_id);
1158     let parent_def_id = match node {
1159         Node::ImplItem(_)
1160         | Node::TraitItem(_)
1161         | Node::Variant(_)
1162         | Node::Ctor(..)
1163         | Node::Field(_) => {
1164             let parent_id = tcx.hir().get_parent_item(hir_id);
1165             Some(tcx.hir().local_def_id(parent_id).to_def_id())
1166         }
1167         // FIXME(#43408) enable this always when we get lazy normalization.
1168         Node::AnonConst(_) => {
1169             let parent_id = tcx.hir().get_parent_item(hir_id);
1170             let parent_def_id = tcx.hir().local_def_id(parent_id);
1171
1172             // HACK(eddyb) this provides the correct generics when
1173             // `feature(const_generics)` is enabled, so that const expressions
1174             // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
1175             if tcx.features().const_generics {
1176                 Some(parent_def_id.to_def_id())
1177             } else {
1178                 let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1179                 match parent_node {
1180                     // HACK(eddyb) this provides the correct generics for repeat
1181                     // expressions' count (i.e. `N` in `[x; N]`), and explicit
1182                     // `enum` discriminants (i.e. `D` in `enum Foo { Bar = D }`),
1183                     // as they shouldn't be able to cause query cycle errors.
1184                     Node::Expr(&Expr { kind: ExprKind::Repeat(_, ref constant), .. })
1185                     | Node::Variant(Variant { disr_expr: Some(ref constant), .. })
1186                         if constant.hir_id == hir_id =>
1187                     {
1188                         Some(parent_def_id.to_def_id())
1189                     }
1190
1191                     _ => None,
1192                 }
1193             }
1194         }
1195         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1196             Some(tcx.closure_base_def_id(def_id))
1197         }
1198         Node::Item(item) => match item.kind {
1199             ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => {
1200                 impl_trait_fn.or_else(|| {
1201                     let parent_id = tcx.hir().get_parent_item(hir_id);
1202                     if parent_id != hir_id && parent_id != CRATE_HIR_ID {
1203                         debug!("generics_of: parent of opaque ty {:?} is {:?}", def_id, parent_id);
1204                         // If this 'impl Trait' is nested inside another 'impl Trait'
1205                         // (e.g. `impl Foo<MyType = impl Bar<A>>`), we need to use the 'parent'
1206                         // 'impl Trait' for its generic parameters, since we can reference them
1207                         // from the 'child' 'impl Trait'
1208                         if let Node::Item(hir::Item { kind: ItemKind::OpaqueTy(..), .. }) =
1209                             tcx.hir().get(parent_id)
1210                         {
1211                             Some(tcx.hir().local_def_id(parent_id).to_def_id())
1212                         } else {
1213                             None
1214                         }
1215                     } else {
1216                         None
1217                     }
1218                 })
1219             }
1220             _ => None,
1221         },
1222         _ => None,
1223     };
1224
1225     let mut opt_self = None;
1226     let mut allow_defaults = false;
1227
1228     let no_generics = hir::Generics::empty();
1229     let ast_generics = match node {
1230         Node::TraitItem(item) => &item.generics,
1231
1232         Node::ImplItem(item) => &item.generics,
1233
1234         Node::Item(item) => {
1235             match item.kind {
1236                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl { ref generics, .. } => generics,
1237
1238                 ItemKind::TyAlias(_, ref generics)
1239                 | ItemKind::Enum(_, ref generics)
1240                 | ItemKind::Struct(_, ref generics)
1241                 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
1242                 | ItemKind::Union(_, ref generics) => {
1243                     allow_defaults = true;
1244                     generics
1245                 }
1246
1247                 ItemKind::Trait(_, _, ref generics, ..)
1248                 | ItemKind::TraitAlias(ref generics, ..) => {
1249                     // Add in the self type parameter.
1250                     //
1251                     // Something of a hack: use the node id for the trait, also as
1252                     // the node id for the Self type parameter.
1253                     let param_id = item.hir_id;
1254
1255                     opt_self = Some(ty::GenericParamDef {
1256                         index: 0,
1257                         name: kw::SelfUpper,
1258                         def_id: tcx.hir().local_def_id(param_id).to_def_id(),
1259                         pure_wrt_drop: false,
1260                         kind: ty::GenericParamDefKind::Type {
1261                             has_default: false,
1262                             object_lifetime_default: rl::Set1::Empty,
1263                             synthetic: None,
1264                         },
1265                     });
1266
1267                     allow_defaults = true;
1268                     generics
1269                 }
1270
1271                 _ => &no_generics,
1272             }
1273         }
1274
1275         Node::ForeignItem(item) => match item.kind {
1276             ForeignItemKind::Static(..) => &no_generics,
1277             ForeignItemKind::Fn(_, _, ref generics) => generics,
1278             ForeignItemKind::Type => &no_generics,
1279         },
1280
1281         _ => &no_generics,
1282     };
1283
1284     let has_self = opt_self.is_some();
1285     let mut parent_has_self = false;
1286     let mut own_start = has_self as u32;
1287     let parent_count = parent_def_id.map_or(0, |def_id| {
1288         let generics = tcx.generics_of(def_id);
1289         assert_eq!(has_self, false);
1290         parent_has_self = generics.has_self;
1291         own_start = generics.count() as u32;
1292         generics.parent_count + generics.params.len()
1293     });
1294
1295     let mut params: Vec<_> = opt_self.into_iter().collect();
1296
1297     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1298     params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
1299         name: param.name.ident().name,
1300         index: own_start + i as u32,
1301         def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1302         pure_wrt_drop: param.pure_wrt_drop,
1303         kind: ty::GenericParamDefKind::Lifetime,
1304     }));
1305
1306     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
1307
1308     // Now create the real type and const parameters.
1309     let type_start = own_start - has_self as u32 + params.len() as u32;
1310     let mut i = 0;
1311
1312     // FIXME(const_generics): a few places in the compiler expect generic params
1313     // to be in the order lifetimes, then type params, then const params.
1314     //
1315     // To prevent internal errors in case const parameters are supplied before
1316     // type parameters we first add all type params, then all const params.
1317     params.extend(ast_generics.params.iter().filter_map(|param| {
1318         if let GenericParamKind::Type { ref default, synthetic, .. } = param.kind {
1319             if !allow_defaults && default.is_some() {
1320                 if !tcx.features().default_type_parameter_fallback {
1321                     tcx.struct_span_lint_hir(
1322                         lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1323                         param.hir_id,
1324                         param.span,
1325                         |lint| {
1326                             lint.build(
1327                                 "defaults for type parameters are only allowed in \
1328                                         `struct`, `enum`, `type`, or `trait` definitions.",
1329                             )
1330                             .emit();
1331                         },
1332                     );
1333                 }
1334             }
1335
1336             let kind = ty::GenericParamDefKind::Type {
1337                 has_default: default.is_some(),
1338                 object_lifetime_default: object_lifetime_defaults
1339                     .as_ref()
1340                     .map_or(rl::Set1::Empty, |o| o[i]),
1341                 synthetic,
1342             };
1343
1344             let param_def = ty::GenericParamDef {
1345                 index: type_start + i as u32,
1346                 name: param.name.ident().name,
1347                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1348                 pure_wrt_drop: param.pure_wrt_drop,
1349                 kind,
1350             };
1351             i += 1;
1352             Some(param_def)
1353         } else {
1354             None
1355         }
1356     }));
1357
1358     params.extend(ast_generics.params.iter().filter_map(|param| {
1359         if let GenericParamKind::Const { .. } = param.kind {
1360             let param_def = ty::GenericParamDef {
1361                 index: type_start + i as u32,
1362                 name: param.name.ident().name,
1363                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1364                 pure_wrt_drop: param.pure_wrt_drop,
1365                 kind: ty::GenericParamDefKind::Const,
1366             };
1367             i += 1;
1368             Some(param_def)
1369         } else {
1370             None
1371         }
1372     }));
1373
1374     // provide junk type parameter defs - the only place that
1375     // cares about anything but the length is instantiation,
1376     // and we don't do that for closures.
1377     if let Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) = node {
1378         let dummy_args = if gen.is_some() {
1379             &["<resume_ty>", "<yield_ty>", "<return_ty>", "<witness>", "<upvars>"][..]
1380         } else {
1381             &["<closure_kind>", "<closure_signature>", "<upvars>"][..]
1382         };
1383
1384         params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
1385             index: type_start + i as u32,
1386             name: Symbol::intern(arg),
1387             def_id,
1388             pure_wrt_drop: false,
1389             kind: ty::GenericParamDefKind::Type {
1390                 has_default: false,
1391                 object_lifetime_default: rl::Set1::Empty,
1392                 synthetic: None,
1393             },
1394         }));
1395     }
1396
1397     let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
1398
1399     ty::Generics {
1400         parent: parent_def_id,
1401         parent_count,
1402         params,
1403         param_def_id_to_index,
1404         has_self: has_self || parent_has_self,
1405         has_late_bound_regions: has_late_bound_regions(tcx, node),
1406     }
1407 }
1408
1409 fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
1410     generic_args
1411         .iter()
1412         .filter_map(|arg| match arg {
1413             hir::GenericArg::Type(ty) => Some(ty),
1414             _ => None,
1415         })
1416         .any(is_suggestable_infer_ty)
1417 }
1418
1419 /// Whether `ty` is a type with `_` placeholders that can be inferred. Used in diagnostics only to
1420 /// use inference to provide suggestions for the appropriate type if possible.
1421 fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
1422     use hir::TyKind::*;
1423     match &ty.kind {
1424         Infer => true,
1425         Slice(ty) | Array(ty, _) => is_suggestable_infer_ty(ty),
1426         Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
1427         Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
1428         Def(_, generic_args) => are_suggestable_generic_args(generic_args),
1429         Path(hir::QPath::TypeRelative(ty, segment)) => {
1430             is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.generic_args().args)
1431         }
1432         Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
1433             ty_opt.map_or(false, is_suggestable_infer_ty)
1434                 || segments
1435                     .iter()
1436                     .any(|segment| are_suggestable_generic_args(segment.generic_args().args))
1437         }
1438         _ => false,
1439     }
1440 }
1441
1442 pub fn get_infer_ret_ty(output: &'hir hir::FnRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
1443     if let hir::FnRetTy::Return(ref ty) = output {
1444         if is_suggestable_infer_ty(ty) {
1445             return Some(&**ty);
1446         }
1447     }
1448     None
1449 }
1450
1451 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1452     use rustc_hir::Node::*;
1453     use rustc_hir::*;
1454
1455     let def_id = def_id.expect_local();
1456     let hir_id = tcx.hir().as_local_hir_id(def_id);
1457
1458     let icx = ItemCtxt::new(tcx, def_id.to_def_id());
1459
1460     match tcx.hir().get(hir_id) {
1461         TraitItem(hir::TraitItem {
1462             kind: TraitItemKind::Fn(sig, TraitFn::Provided(_)),
1463             ident,
1464             generics,
1465             ..
1466         })
1467         | ImplItem(hir::ImplItem { kind: ImplItemKind::Fn(sig, _), ident, generics, .. })
1468         | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), ident, .. }) => {
1469             match get_infer_ret_ty(&sig.decl.output) {
1470                 Some(ty) => {
1471                     let fn_sig = tcx.typeck_tables_of(def_id).liberated_fn_sigs()[hir_id];
1472                     let mut visitor = PlaceholderHirTyCollector::default();
1473                     visitor.visit_ty(ty);
1474                     let mut diag = bad_placeholder_type(tcx, visitor.0);
1475                     let ret_ty = fn_sig.output();
1476                     if ret_ty != tcx.types.err {
1477                         diag.span_suggestion(
1478                             ty.span,
1479                             "replace with the correct return type",
1480                             ret_ty.to_string(),
1481                             Applicability::MaybeIncorrect,
1482                         );
1483                     }
1484                     diag.emit();
1485                     ty::Binder::bind(fn_sig)
1486                 }
1487                 None => AstConv::ty_of_fn(
1488                     &icx,
1489                     sig.header.unsafety,
1490                     sig.header.abi,
1491                     &sig.decl,
1492                     &generics,
1493                     Some(ident.span),
1494                 ),
1495             }
1496         }
1497
1498         TraitItem(hir::TraitItem {
1499             kind: TraitItemKind::Fn(FnSig { header, decl }, _),
1500             ident,
1501             generics,
1502             ..
1503         }) => {
1504             AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl, &generics, Some(ident.span))
1505         }
1506
1507         ForeignItem(&hir::ForeignItem {
1508             kind: ForeignItemKind::Fn(ref fn_decl, _, _),
1509             ident,
1510             ..
1511         }) => {
1512             let abi = tcx.hir().get_foreign_abi(hir_id);
1513             compute_sig_of_foreign_fn_decl(tcx, def_id.to_def_id(), fn_decl, abi, ident)
1514         }
1515
1516         Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
1517             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id).to_def_id());
1518             let inputs =
1519                 data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1520             ty::Binder::bind(tcx.mk_fn_sig(
1521                 inputs,
1522                 ty,
1523                 false,
1524                 hir::Unsafety::Normal,
1525                 abi::Abi::Rust,
1526             ))
1527         }
1528
1529         Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1530             // Closure signatures are not like other function
1531             // signatures and cannot be accessed through `fn_sig`. For
1532             // example, a closure signature excludes the `self`
1533             // argument. In any case they are embedded within the
1534             // closure type as part of the `ClosureSubsts`.
1535             //
1536             // To get the signature of a closure, you should use the
1537             // `sig` method on the `ClosureSubsts`:
1538             //
1539             //    substs.as_closure().sig(def_id, tcx)
1540             bug!(
1541                 "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
1542             );
1543         }
1544
1545         x => {
1546             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1547         }
1548     }
1549 }
1550
1551 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1552     let icx = ItemCtxt::new(tcx, def_id);
1553
1554     let hir_id = tcx.hir().as_local_hir_id(def_id.expect_local());
1555     match tcx.hir().expect_item(hir_id).kind {
1556         hir::ItemKind::Impl { ref of_trait, .. } => of_trait.as_ref().map(|ast_trait_ref| {
1557             let selfty = tcx.type_of(def_id);
1558             AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1559         }),
1560         _ => bug!(),
1561     }
1562 }
1563
1564 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
1565     let hir_id = tcx.hir().as_local_hir_id(def_id.expect_local());
1566     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
1567     let item = tcx.hir().expect_item(hir_id);
1568     match &item.kind {
1569         hir::ItemKind::Impl { polarity: hir::ImplPolarity::Negative(span), of_trait, .. } => {
1570             if is_rustc_reservation {
1571                 let span = span.to(of_trait.as_ref().map(|t| t.path.span).unwrap_or(*span));
1572                 tcx.sess.span_err(span, "reservation impls can't be negative");
1573             }
1574             ty::ImplPolarity::Negative
1575         }
1576         hir::ItemKind::Impl { polarity: hir::ImplPolarity::Positive, of_trait: None, .. } => {
1577             if is_rustc_reservation {
1578                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
1579             }
1580             ty::ImplPolarity::Positive
1581         }
1582         hir::ItemKind::Impl {
1583             polarity: hir::ImplPolarity::Positive, of_trait: Some(_), ..
1584         } => {
1585             if is_rustc_reservation {
1586                 ty::ImplPolarity::Reservation
1587             } else {
1588                 ty::ImplPolarity::Positive
1589             }
1590         }
1591         ref item => bug!("impl_polarity: {:?} not an impl", item),
1592     }
1593 }
1594
1595 /// Returns the early-bound lifetimes declared in this generics
1596 /// listing. For anything other than fns/methods, this is just all
1597 /// the lifetimes that are declared. For fns or methods, we have to
1598 /// screen out those that do not appear in any where-clauses etc using
1599 /// `resolve_lifetime::early_bound_lifetimes`.
1600 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
1601     tcx: TyCtxt<'tcx>,
1602     generics: &'a hir::Generics<'a>,
1603 ) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
1604     generics.params.iter().filter(move |param| match param.kind {
1605         GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
1606         _ => false,
1607     })
1608 }
1609
1610 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1611 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1612 /// inferred constraints concerning which regions outlive other regions.
1613 fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1614     debug!("predicates_defined_on({:?})", def_id);
1615     let mut result = tcx.explicit_predicates_of(def_id);
1616     debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
1617     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1618     if !inferred_outlives.is_empty() {
1619         debug!(
1620             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1621             def_id, inferred_outlives,
1622         );
1623         if result.predicates.is_empty() {
1624             result.predicates = inferred_outlives;
1625         } else {
1626             result.predicates = tcx
1627                 .arena
1628                 .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
1629         }
1630     }
1631     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1632     result
1633 }
1634
1635 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1636 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1637 /// `Self: Trait` predicates for traits.
1638 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1639     let mut result = tcx.predicates_defined_on(def_id);
1640
1641     if tcx.is_trait(def_id) {
1642         // For traits, add `Self: Trait` predicate. This is
1643         // not part of the predicates that a user writes, but it
1644         // is something that one must prove in order to invoke a
1645         // method or project an associated type.
1646         //
1647         // In the chalk setup, this predicate is not part of the
1648         // "predicates" for a trait item. But it is useful in
1649         // rustc because if you directly (e.g.) invoke a trait
1650         // method like `Trait::method(...)`, you must naturally
1651         // prove that the trait applies to the types that were
1652         // used, and adding the predicate into this list ensures
1653         // that this is done.
1654         let span = tcx.sess.source_map().guess_head_span(tcx.def_span(def_id));
1655         result.predicates =
1656             tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
1657                 ty::TraitRef::identity(tcx, def_id).without_const().to_predicate(),
1658                 span,
1659             ))));
1660     }
1661     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
1662     result
1663 }
1664
1665 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
1666 /// N.B., this does not include any implied/inferred constraints.
1667 fn explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1668     use rustc_hir::*;
1669
1670     debug!("explicit_predicates_of(def_id={:?})", def_id);
1671
1672     /// A data structure with unique elements, which preserves order of insertion.
1673     /// Preserving the order of insertion is important here so as not to break
1674     /// compile-fail UI tests.
1675     // FIXME(eddyb) just use `IndexSet` from `indexmap`.
1676     struct UniquePredicates<'tcx> {
1677         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
1678         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
1679     }
1680
1681     impl<'tcx> UniquePredicates<'tcx> {
1682         fn new() -> Self {
1683             UniquePredicates { predicates: vec![], uniques: FxHashSet::default() }
1684         }
1685
1686         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
1687             if self.uniques.insert(value) {
1688                 self.predicates.push(value);
1689             }
1690         }
1691
1692         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
1693             for value in iter {
1694                 self.push(value);
1695             }
1696         }
1697     }
1698
1699     let hir_id = tcx.hir().as_local_hir_id(def_id.expect_local());
1700     let node = tcx.hir().get(hir_id);
1701
1702     let mut is_trait = None;
1703     let mut is_default_impl_trait = None;
1704
1705     let icx = ItemCtxt::new(tcx, def_id);
1706     let constness = icx.default_constness_for_trait_bounds();
1707
1708     const NO_GENERICS: &hir::Generics<'_> = &hir::Generics::empty();
1709
1710     let mut predicates = UniquePredicates::new();
1711
1712     let ast_generics = match node {
1713         Node::TraitItem(item) => &item.generics,
1714
1715         Node::ImplItem(item) => match item.kind {
1716             ImplItemKind::OpaqueTy(ref bounds) => {
1717                 ty::print::with_no_queries(|| {
1718                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1719                     let opaque_ty = tcx.mk_opaque(def_id, substs);
1720                     debug!(
1721                         "explicit_predicates_of({:?}): created opaque type {:?}",
1722                         def_id, opaque_ty
1723                     );
1724
1725                     // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
1726                     let bounds = AstConv::compute_bounds(
1727                         &icx,
1728                         opaque_ty,
1729                         bounds,
1730                         SizedByDefault::Yes,
1731                         tcx.def_span(def_id),
1732                     );
1733
1734                     predicates.extend(bounds.predicates(tcx, opaque_ty));
1735                     &item.generics
1736                 })
1737             }
1738             _ => &item.generics,
1739         },
1740
1741         Node::Item(item) => {
1742             match item.kind {
1743                 ItemKind::Impl { defaultness, ref generics, .. } => {
1744                     if defaultness.is_default() {
1745                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
1746                     }
1747                     generics
1748                 }
1749                 ItemKind::Fn(.., ref generics, _)
1750                 | ItemKind::TyAlias(_, ref generics)
1751                 | ItemKind::Enum(_, ref generics)
1752                 | ItemKind::Struct(_, ref generics)
1753                 | ItemKind::Union(_, ref generics) => generics,
1754
1755                 ItemKind::Trait(_, _, ref generics, .., items) => {
1756                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
1757                     generics
1758                 }
1759                 ItemKind::TraitAlias(ref generics, _) => {
1760                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &[]));
1761                     generics
1762                 }
1763                 ItemKind::OpaqueTy(OpaqueTy {
1764                     ref bounds,
1765                     impl_trait_fn,
1766                     ref generics,
1767                     origin: _,
1768                 }) => {
1769                     let bounds_predicates = ty::print::with_no_queries(|| {
1770                         let substs = InternalSubsts::identity_for_item(tcx, def_id);
1771                         let opaque_ty = tcx.mk_opaque(def_id, substs);
1772
1773                         // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
1774                         let bounds = AstConv::compute_bounds(
1775                             &icx,
1776                             opaque_ty,
1777                             bounds,
1778                             SizedByDefault::Yes,
1779                             tcx.def_span(def_id),
1780                         );
1781
1782                         bounds.predicates(tcx, opaque_ty)
1783                     });
1784                     if impl_trait_fn.is_some() {
1785                         // opaque types
1786                         return ty::GenericPredicates {
1787                             parent: None,
1788                             predicates: tcx.arena.alloc_from_iter(bounds_predicates),
1789                         };
1790                     } else {
1791                         // named opaque types
1792                         predicates.extend(bounds_predicates);
1793                         generics
1794                     }
1795                 }
1796
1797                 _ => NO_GENERICS,
1798             }
1799         }
1800
1801         Node::ForeignItem(item) => match item.kind {
1802             ForeignItemKind::Static(..) => NO_GENERICS,
1803             ForeignItemKind::Fn(_, _, ref generics) => generics,
1804             ForeignItemKind::Type => NO_GENERICS,
1805         },
1806
1807         _ => NO_GENERICS,
1808     };
1809
1810     let generics = tcx.generics_of(def_id);
1811     let parent_count = generics.parent_count as u32;
1812     let has_own_self = generics.has_self && parent_count == 0;
1813
1814     // Below we'll consider the bounds on the type parameters (including `Self`)
1815     // and the explicit where-clauses, but to get the full set of predicates
1816     // on a trait we need to add in the supertrait bounds and bounds found on
1817     // associated types.
1818     if let Some((_trait_ref, _)) = is_trait {
1819         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
1820     }
1821
1822     // In default impls, we can assume that the self type implements
1823     // the trait. So in:
1824     //
1825     //     default impl Foo for Bar { .. }
1826     //
1827     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
1828     // (see below). Recall that a default impl is not itself an impl, but rather a
1829     // set of defaults that can be incorporated into another impl.
1830     if let Some(trait_ref) = is_default_impl_trait {
1831         predicates.push((
1832             trait_ref.to_poly_trait_ref().without_const().to_predicate(),
1833             tcx.def_span(def_id),
1834         ));
1835     }
1836
1837     // Collect the region predicates that were declared inline as
1838     // well. In the case of parameters declared on a fn or method, we
1839     // have to be careful to only iterate over early-bound regions.
1840     let mut index = parent_count + has_own_self as u32;
1841     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
1842         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
1843             def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1844             index,
1845             name: param.name.ident().name,
1846         }));
1847         index += 1;
1848
1849         match param.kind {
1850             GenericParamKind::Lifetime { .. } => {
1851                 param.bounds.iter().for_each(|bound| match bound {
1852                     hir::GenericBound::Outlives(lt) => {
1853                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
1854                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
1855                         predicates.push((outlives.to_predicate(), lt.span));
1856                     }
1857                     _ => bug!(),
1858                 });
1859             }
1860             _ => bug!(),
1861         }
1862     }
1863
1864     // Collect the predicates that were written inline by the user on each
1865     // type parameter (e.g., `<T: Foo>`).
1866     for param in ast_generics.params {
1867         if let GenericParamKind::Type { .. } = param.kind {
1868             let name = param.name.ident().name;
1869             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
1870             index += 1;
1871
1872             let sized = SizedByDefault::Yes;
1873             let bounds = AstConv::compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
1874             predicates.extend(bounds.predicates(tcx, param_ty));
1875         }
1876     }
1877
1878     // Add in the bounds that appear in the where-clause.
1879     let where_clause = &ast_generics.where_clause;
1880     for predicate in where_clause.predicates {
1881         match predicate {
1882             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
1883                 let ty = icx.to_ty(&bound_pred.bounded_ty);
1884
1885                 // Keep the type around in a dummy predicate, in case of no bounds.
1886                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
1887                 // is still checked for WF.
1888                 if bound_pred.bounds.is_empty() {
1889                     if let ty::Param(_) = ty.kind {
1890                         // This is a `where T:`, which can be in the HIR from the
1891                         // transformation that moves `?Sized` to `T`'s declaration.
1892                         // We can skip the predicate because type parameters are
1893                         // trivially WF, but also we *should*, to avoid exposing
1894                         // users who never wrote `where Type:,` themselves, to
1895                         // compiler/tooling bugs from not handling WF predicates.
1896                     } else {
1897                         let span = bound_pred.bounded_ty.span;
1898                         let re_root_empty = tcx.lifetimes.re_root_empty;
1899                         let predicate = ty::OutlivesPredicate(ty, re_root_empty);
1900                         predicates.push((
1901                             ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)),
1902                             span,
1903                         ));
1904                     }
1905                 }
1906
1907                 for bound in bound_pred.bounds.iter() {
1908                     match bound {
1909                         &hir::GenericBound::Trait(ref poly_trait_ref, modifier) => {
1910                             let constness = match modifier {
1911                                 hir::TraitBoundModifier::MaybeConst => hir::Constness::NotConst,
1912                                 hir::TraitBoundModifier::None => constness,
1913                                 hir::TraitBoundModifier::Maybe => bug!("this wasn't handled"),
1914                             };
1915
1916                             let mut bounds = Bounds::default();
1917                             let _ = AstConv::instantiate_poly_trait_ref(
1918                                 &icx,
1919                                 poly_trait_ref,
1920                                 constness,
1921                                 ty,
1922                                 &mut bounds,
1923                             );
1924                             predicates.extend(bounds.predicates(tcx, ty));
1925                         }
1926
1927                         &hir::GenericBound::Outlives(ref lifetime) => {
1928                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
1929                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
1930                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
1931                         }
1932                     }
1933                 }
1934             }
1935
1936             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
1937                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
1938                 predicates.extend(region_pred.bounds.iter().map(|bound| {
1939                     let (r2, span) = match bound {
1940                         hir::GenericBound::Outlives(lt) => {
1941                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
1942                         }
1943                         _ => bug!(),
1944                     };
1945                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
1946
1947                     (ty::Predicate::RegionOutlives(pred), span)
1948                 }))
1949             }
1950
1951             &hir::WherePredicate::EqPredicate(..) => {
1952                 // FIXME(#20041)
1953             }
1954         }
1955     }
1956
1957     // Add predicates from associated type bounds.
1958     if let Some((self_trait_ref, trait_items)) = is_trait {
1959         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
1960             associated_item_predicates(tcx, def_id, self_trait_ref, trait_item_ref)
1961         }))
1962     }
1963
1964     let mut predicates = predicates.predicates;
1965
1966     // Subtle: before we store the predicates into the tcx, we
1967     // sort them so that predicates like `T: Foo<Item=U>` come
1968     // before uses of `U`.  This avoids false ambiguity errors
1969     // in trait checking. See `setup_constraining_predicates`
1970     // for details.
1971     if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
1972         let self_ty = tcx.type_of(def_id);
1973         let trait_ref = tcx.impl_trait_ref(def_id);
1974         cgp::setup_constraining_predicates(
1975             tcx,
1976             &mut predicates,
1977             trait_ref,
1978             &mut cgp::parameters_for_impl(self_ty, trait_ref),
1979         );
1980     }
1981
1982     let result = ty::GenericPredicates {
1983         parent: generics.parent,
1984         predicates: tcx.arena.alloc_from_iter(predicates),
1985     };
1986     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
1987     result
1988 }
1989
1990 fn associated_item_predicates(
1991     tcx: TyCtxt<'tcx>,
1992     def_id: DefId,
1993     self_trait_ref: ty::TraitRef<'tcx>,
1994     trait_item_ref: &hir::TraitItemRef,
1995 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
1996     let trait_item = tcx.hir().trait_item(trait_item_ref.id);
1997     let item_def_id = tcx.hir().local_def_id(trait_item_ref.id.hir_id);
1998     let bounds = match trait_item.kind {
1999         hir::TraitItemKind::Type(ref bounds, _) => bounds,
2000         _ => return Vec::new(),
2001     };
2002
2003     let is_gat = !tcx.generics_of(item_def_id).params.is_empty();
2004
2005     let mut had_error = false;
2006
2007     let mut unimplemented_error = |arg_kind: &str| {
2008         if !had_error {
2009             tcx.sess
2010                 .struct_span_err(
2011                     trait_item.span,
2012                     &format!("{}-generic associated types are not yet implemented", arg_kind),
2013                 )
2014                 .note(
2015                     "for more information, see issue #44265 \
2016                      <https://github.com/rust-lang/rust/issues/44265> for more information",
2017                 )
2018                 .emit();
2019             had_error = true;
2020         }
2021     };
2022
2023     let mk_bound_param = |param: &ty::GenericParamDef, _: &_| {
2024         match param.kind {
2025             ty::GenericParamDefKind::Lifetime => tcx
2026                 .mk_region(ty::RegionKind::ReLateBound(
2027                     ty::INNERMOST,
2028                     ty::BoundRegion::BrNamed(param.def_id, param.name),
2029                 ))
2030                 .into(),
2031             // FIXME(generic_associated_types): Use bound types and constants
2032             // once they are handled by the trait system.
2033             ty::GenericParamDefKind::Type { .. } => {
2034                 unimplemented_error("type");
2035                 tcx.types.err.into()
2036             }
2037             ty::GenericParamDefKind::Const => {
2038                 unimplemented_error("const");
2039                 tcx.mk_const(ty::Const { val: ty::ConstKind::Error, ty: tcx.type_of(param.def_id) })
2040                     .into()
2041             }
2042         }
2043     };
2044
2045     let bound_substs = if is_gat {
2046         // Given:
2047         //
2048         // trait X<'a, B, const C: usize> {
2049         //     type T<'d, E, const F: usize>: Default;
2050         // }
2051         //
2052         // We need to create predicates on the trait:
2053         //
2054         // for<'d, E, const F: usize>
2055         // <Self as X<'a, B, const C: usize>>::T<'d, E, const F: usize>: Sized + Default
2056         //
2057         // We substitute escaping bound parameters for the generic
2058         // arguments to the associated type which are then bound by
2059         // the `Binder` around the the predicate.
2060         //
2061         // FIXME(generic_associated_types): Currently only lifetimes are handled.
2062         self_trait_ref.substs.extend_to(tcx, item_def_id.to_def_id(), mk_bound_param)
2063     } else {
2064         self_trait_ref.substs
2065     };
2066
2067     let assoc_ty =
2068         tcx.mk_projection(tcx.hir().local_def_id(trait_item.hir_id).to_def_id(), bound_substs);
2069
2070     let bounds = AstConv::compute_bounds(
2071         &ItemCtxt::new(tcx, def_id),
2072         assoc_ty,
2073         bounds,
2074         SizedByDefault::Yes,
2075         trait_item.span,
2076     );
2077
2078     let predicates = bounds.predicates(tcx, assoc_ty);
2079
2080     if is_gat {
2081         // We use shifts to get the regions that we're substituting to
2082         // be bound by the binders in the `Predicate`s rather that
2083         // escaping.
2084         let shifted_in = ty::fold::shift_vars(tcx, &predicates, 1);
2085         let substituted = shifted_in.subst(tcx, bound_substs);
2086         ty::fold::shift_out_vars(tcx, &substituted, 1)
2087     } else {
2088         predicates
2089     }
2090 }
2091
2092 /// Converts a specific `GenericBound` from the AST into a set of
2093 /// predicates that apply to the self type. A vector is returned
2094 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2095 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2096 /// and `<T as Bar>::X == i32`).
2097 fn predicates_from_bound<'tcx>(
2098     astconv: &dyn AstConv<'tcx>,
2099     param_ty: Ty<'tcx>,
2100     bound: &'tcx hir::GenericBound<'tcx>,
2101     constness: hir::Constness,
2102 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2103     match *bound {
2104         hir::GenericBound::Trait(ref tr, modifier) => {
2105             let constness = match modifier {
2106                 hir::TraitBoundModifier::Maybe => return vec![],
2107                 hir::TraitBoundModifier::MaybeConst => hir::Constness::NotConst,
2108                 hir::TraitBoundModifier::None => constness,
2109             };
2110
2111             let mut bounds = Bounds::default();
2112             let _ = astconv.instantiate_poly_trait_ref(tr, constness, param_ty, &mut bounds);
2113             bounds.predicates(astconv.tcx(), param_ty)
2114         }
2115         hir::GenericBound::Outlives(ref lifetime) => {
2116             let region = astconv.ast_region_to_region(lifetime, None);
2117             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2118             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2119         }
2120     }
2121 }
2122
2123 fn compute_sig_of_foreign_fn_decl<'tcx>(
2124     tcx: TyCtxt<'tcx>,
2125     def_id: DefId,
2126     decl: &'tcx hir::FnDecl<'tcx>,
2127     abi: abi::Abi,
2128     ident: Ident,
2129 ) -> ty::PolyFnSig<'tcx> {
2130     let unsafety = if abi == abi::Abi::RustIntrinsic {
2131         intrinsic_operation_unsafety(&tcx.item_name(def_id).as_str())
2132     } else {
2133         hir::Unsafety::Unsafe
2134     };
2135     let fty = AstConv::ty_of_fn(
2136         &ItemCtxt::new(tcx, def_id),
2137         unsafety,
2138         abi,
2139         decl,
2140         &hir::Generics::empty(),
2141         Some(ident.span),
2142     );
2143
2144     // Feature gate SIMD types in FFI, since I am not sure that the
2145     // ABIs are handled at all correctly. -huonw
2146     if abi != abi::Abi::RustIntrinsic
2147         && abi != abi::Abi::PlatformIntrinsic
2148         && !tcx.features().simd_ffi
2149     {
2150         let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
2151             if ty.is_simd() {
2152                 let snip = tcx
2153                     .sess
2154                     .source_map()
2155                     .span_to_snippet(ast_ty.span)
2156                     .map_or(String::new(), |s| format!(" `{}`", s));
2157                 tcx.sess
2158                     .struct_span_err(
2159                         ast_ty.span,
2160                         &format!(
2161                             "use of SIMD type{} in FFI is highly experimental and \
2162                              may result in invalid code",
2163                             snip
2164                         ),
2165                     )
2166                     .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2167                     .emit();
2168             }
2169         };
2170         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2171             check(&input, ty)
2172         }
2173         if let hir::FnRetTy::Return(ref ty) = decl.output {
2174             check(&ty, *fty.output().skip_binder())
2175         }
2176     }
2177
2178     fty
2179 }
2180
2181 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2182     match tcx.hir().get_if_local(def_id) {
2183         Some(Node::ForeignItem(..)) => true,
2184         Some(_) => false,
2185         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2186     }
2187 }
2188
2189 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2190     match tcx.hir().get_if_local(def_id) {
2191         Some(
2192             Node::Item(&hir::Item { kind: hir::ItemKind::Static(_, mutbl, _), .. })
2193             | Node::ForeignItem(&hir::ForeignItem {
2194                 kind: hir::ForeignItemKind::Static(_, mutbl),
2195                 ..
2196             }),
2197         ) => Some(mutbl),
2198         Some(_) => None,
2199         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2200     }
2201 }
2202
2203 fn generator_kind(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::GeneratorKind> {
2204     match tcx.hir().get_if_local(def_id) {
2205         Some(Node::Expr(&rustc_hir::Expr {
2206             kind: rustc_hir::ExprKind::Closure(_, _, body_id, _, _),
2207             ..
2208         })) => tcx.hir().body(body_id).generator_kind(),
2209         Some(_) => None,
2210         _ => bug!("generator_kind applied to non-local def-id {:?}", def_id),
2211     }
2212 }
2213
2214 fn from_target_feature(
2215     tcx: TyCtxt<'_>,
2216     id: DefId,
2217     attr: &ast::Attribute,
2218     whitelist: &FxHashMap<String, Option<Symbol>>,
2219     target_features: &mut Vec<Symbol>,
2220 ) {
2221     let list = match attr.meta_item_list() {
2222         Some(list) => list,
2223         None => return,
2224     };
2225     let bad_item = |span| {
2226         let msg = "malformed `target_feature` attribute input";
2227         let code = "enable = \"..\"".to_owned();
2228         tcx.sess
2229             .struct_span_err(span, &msg)
2230             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2231             .emit();
2232     };
2233     let rust_features = tcx.features();
2234     for item in list {
2235         // Only `enable = ...` is accepted in the meta-item list.
2236         if !item.check_name(sym::enable) {
2237             bad_item(item.span());
2238             continue;
2239         }
2240
2241         // Must be of the form `enable = "..."` (a string).
2242         let value = match item.value_str() {
2243             Some(value) => value,
2244             None => {
2245                 bad_item(item.span());
2246                 continue;
2247             }
2248         };
2249
2250         // We allow comma separation to enable multiple features.
2251         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2252             // Only allow whitelisted features per platform.
2253             let feature_gate = match whitelist.get(feature) {
2254                 Some(g) => g,
2255                 None => {
2256                     let msg =
2257                         format!("the feature named `{}` is not valid for this target", feature);
2258                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2259                     err.span_label(
2260                         item.span(),
2261                         format!("`{}` is not valid for this target", feature),
2262                     );
2263                     if feature.starts_with('+') {
2264                         let valid = whitelist.contains_key(&feature[1..]);
2265                         if valid {
2266                             err.help("consider removing the leading `+` in the feature name");
2267                         }
2268                     }
2269                     err.emit();
2270                     return None;
2271                 }
2272             };
2273
2274             // Only allow features whose feature gates have been enabled.
2275             let allowed = match feature_gate.as_ref().copied() {
2276                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2277                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2278                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2279                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2280                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2281                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2282                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2283                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2284                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2285                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2286                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2287                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2288                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2289                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2290                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2291                 Some(name) => bug!("unknown target feature gate {}", name),
2292                 None => true,
2293             };
2294             if !allowed && id.is_local() {
2295                 feature_err(
2296                     &tcx.sess.parse_sess,
2297                     feature_gate.unwrap(),
2298                     item.span(),
2299                     &format!("the target feature `{}` is currently unstable", feature),
2300                 )
2301                 .emit();
2302             }
2303             Some(Symbol::intern(feature))
2304         }));
2305     }
2306 }
2307
2308 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2309     use rustc_middle::mir::mono::Linkage::*;
2310
2311     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2312     // applicable to variable declarations and may not really make sense for
2313     // Rust code in the first place but whitelist them anyway and trust that
2314     // the user knows what s/he's doing. Who knows, unanticipated use cases
2315     // may pop up in the future.
2316     //
2317     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2318     // and don't have to be, LLVM treats them as no-ops.
2319     match name {
2320         "appending" => Appending,
2321         "available_externally" => AvailableExternally,
2322         "common" => Common,
2323         "extern_weak" => ExternalWeak,
2324         "external" => External,
2325         "internal" => Internal,
2326         "linkonce" => LinkOnceAny,
2327         "linkonce_odr" => LinkOnceODR,
2328         "private" => Private,
2329         "weak" => WeakAny,
2330         "weak_odr" => WeakODR,
2331         _ => {
2332             let span = tcx.hir().span_if_local(def_id);
2333             if let Some(span) = span {
2334                 tcx.sess.span_fatal(span, "invalid linkage specified")
2335             } else {
2336                 tcx.sess.fatal(&format!("invalid linkage specified: {}", name))
2337             }
2338         }
2339     }
2340 }
2341
2342 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2343     let attrs = tcx.get_attrs(id);
2344
2345     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2346     if should_inherit_track_caller(tcx, id) {
2347         codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2348     }
2349
2350     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2351
2352     let mut inline_span = None;
2353     let mut link_ordinal_span = None;
2354     let mut no_sanitize_span = None;
2355     for attr in attrs.iter() {
2356         if attr.check_name(sym::cold) {
2357             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2358         } else if attr.check_name(sym::rustc_allocator) {
2359             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2360         } else if attr.check_name(sym::unwind) {
2361             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2362         } else if attr.check_name(sym::ffi_returns_twice) {
2363             if tcx.is_foreign_item(id) {
2364                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2365             } else {
2366                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2367                 struct_span_err!(
2368                     tcx.sess,
2369                     attr.span,
2370                     E0724,
2371                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2372                 )
2373                 .emit();
2374             }
2375         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2376             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2377         } else if attr.check_name(sym::naked) {
2378             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2379         } else if attr.check_name(sym::no_mangle) {
2380             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2381         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2382             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2383         } else if attr.check_name(sym::used) {
2384             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2385         } else if attr.check_name(sym::thread_local) {
2386             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2387         } else if attr.check_name(sym::track_caller) {
2388             if tcx.is_closure(id) || tcx.fn_sig(id).abi() != abi::Abi::Rust {
2389                 struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
2390                     .emit();
2391             }
2392             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2393         } else if attr.check_name(sym::export_name) {
2394             if let Some(s) = attr.value_str() {
2395                 if s.as_str().contains('\0') {
2396                     // `#[export_name = ...]` will be converted to a null-terminated string,
2397                     // so it may not contain any null characters.
2398                     struct_span_err!(
2399                         tcx.sess,
2400                         attr.span,
2401                         E0648,
2402                         "`export_name` may not contain null characters"
2403                     )
2404                     .emit();
2405                 }
2406                 codegen_fn_attrs.export_name = Some(s);
2407             }
2408         } else if attr.check_name(sym::target_feature) {
2409             if !tcx.features().target_feature_11 {
2410                 check_target_feature_safe_fn(tcx, id, attr.span);
2411             } else if let Some(local_id) = id.as_local() {
2412                 if tcx.fn_sig(id).unsafety() == hir::Unsafety::Normal {
2413                     check_target_feature_trait_unsafe(tcx, local_id, attr.span);
2414                 }
2415             }
2416             from_target_feature(tcx, id, attr, &whitelist, &mut codegen_fn_attrs.target_features);
2417         } else if attr.check_name(sym::linkage) {
2418             if let Some(val) = attr.value_str() {
2419                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2420             }
2421         } else if attr.check_name(sym::link_section) {
2422             if let Some(val) = attr.value_str() {
2423                 if val.as_str().bytes().any(|b| b == 0) {
2424                     let msg = format!(
2425                         "illegal null byte in link_section \
2426                          value: `{}`",
2427                         &val
2428                     );
2429                     tcx.sess.span_err(attr.span, &msg);
2430                 } else {
2431                     codegen_fn_attrs.link_section = Some(val);
2432                 }
2433             }
2434         } else if attr.check_name(sym::link_name) {
2435             codegen_fn_attrs.link_name = attr.value_str();
2436         } else if attr.check_name(sym::link_ordinal) {
2437             link_ordinal_span = Some(attr.span);
2438             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2439                 codegen_fn_attrs.link_ordinal = ordinal;
2440             }
2441         } else if attr.check_name(sym::no_sanitize) {
2442             no_sanitize_span = Some(attr.span);
2443             if let Some(list) = attr.meta_item_list() {
2444                 for item in list.iter() {
2445                     if item.check_name(sym::address) {
2446                         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_SANITIZE_ADDRESS;
2447                     } else if item.check_name(sym::memory) {
2448                         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_SANITIZE_MEMORY;
2449                     } else if item.check_name(sym::thread) {
2450                         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_SANITIZE_THREAD;
2451                     } else {
2452                         tcx.sess
2453                             .struct_span_err(item.span(), "invalid argument for `no_sanitize`")
2454                             .note("expected one of: `address`, `memory` or `thread`")
2455                             .emit();
2456                     }
2457                 }
2458             }
2459         }
2460     }
2461
2462     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2463         if !attr.has_name(sym::inline) {
2464             return ia;
2465         }
2466         match attr.meta().map(|i| i.kind) {
2467             Some(MetaItemKind::Word) => {
2468                 mark_used(attr);
2469                 InlineAttr::Hint
2470             }
2471             Some(MetaItemKind::List(ref items)) => {
2472                 mark_used(attr);
2473                 inline_span = Some(attr.span);
2474                 if items.len() != 1 {
2475                     struct_span_err!(
2476                         tcx.sess.diagnostic(),
2477                         attr.span,
2478                         E0534,
2479                         "expected one argument"
2480                     )
2481                     .emit();
2482                     InlineAttr::None
2483                 } else if list_contains_name(&items[..], sym::always) {
2484                     InlineAttr::Always
2485                 } else if list_contains_name(&items[..], sym::never) {
2486                     InlineAttr::Never
2487                 } else {
2488                     struct_span_err!(
2489                         tcx.sess.diagnostic(),
2490                         items[0].span(),
2491                         E0535,
2492                         "invalid argument"
2493                     )
2494                     .emit();
2495
2496                     InlineAttr::None
2497                 }
2498             }
2499             Some(MetaItemKind::NameValue(_)) => ia,
2500             None => ia,
2501         }
2502     });
2503
2504     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2505         if !attr.has_name(sym::optimize) {
2506             return ia;
2507         }
2508         let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
2509         match attr.meta().map(|i| i.kind) {
2510             Some(MetaItemKind::Word) => {
2511                 err(attr.span, "expected one argument");
2512                 ia
2513             }
2514             Some(MetaItemKind::List(ref items)) => {
2515                 mark_used(attr);
2516                 inline_span = Some(attr.span);
2517                 if items.len() != 1 {
2518                     err(attr.span, "expected one argument");
2519                     OptimizeAttr::None
2520                 } else if list_contains_name(&items[..], sym::size) {
2521                     OptimizeAttr::Size
2522                 } else if list_contains_name(&items[..], sym::speed) {
2523                     OptimizeAttr::Speed
2524                 } else {
2525                     err(items[0].span(), "invalid argument");
2526                     OptimizeAttr::None
2527                 }
2528             }
2529             Some(MetaItemKind::NameValue(_)) => ia,
2530             None => ia,
2531         }
2532     });
2533
2534     // If a function uses #[target_feature] it can't be inlined into general
2535     // purpose functions as they wouldn't have the right target features
2536     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2537     // respected.
2538     if !codegen_fn_attrs.target_features.is_empty() {
2539         if codegen_fn_attrs.inline == InlineAttr::Always {
2540             if let Some(span) = inline_span {
2541                 tcx.sess.span_err(
2542                     span,
2543                     "cannot use `#[inline(always)]` with \
2544                      `#[target_feature]`",
2545                 );
2546             }
2547         }
2548     }
2549
2550     if codegen_fn_attrs.flags.intersects(CodegenFnAttrFlags::NO_SANITIZE_ANY) {
2551         if codegen_fn_attrs.inline == InlineAttr::Always {
2552             if let (Some(no_sanitize_span), Some(inline_span)) = (no_sanitize_span, inline_span) {
2553                 let hir_id = tcx.hir().as_local_hir_id(id.expect_local());
2554                 tcx.struct_span_lint_hir(
2555                     lint::builtin::INLINE_NO_SANITIZE,
2556                     hir_id,
2557                     no_sanitize_span,
2558                     |lint| {
2559                         lint.build("`no_sanitize` will have no effect after inlining")
2560                             .span_note(inline_span, "inlining requested here")
2561                             .emit();
2562                     },
2563                 )
2564             }
2565         }
2566     }
2567
2568     // Weak lang items have the same semantics as "std internal" symbols in the
2569     // sense that they're preserved through all our LTO passes and only
2570     // strippable by the linker.
2571     //
2572     // Additionally weak lang items have predetermined symbol names.
2573     if tcx.is_weak_lang_item(id) {
2574         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2575     }
2576     if let Some(name) = weak_lang_items::link_name(&attrs) {
2577         codegen_fn_attrs.export_name = Some(name);
2578         codegen_fn_attrs.link_name = Some(name);
2579     }
2580     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
2581
2582     // Internal symbols to the standard library all have no_mangle semantics in
2583     // that they have defined symbol names present in the function name. This
2584     // also applies to weak symbols where they all have known symbol names.
2585     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2586         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2587     }
2588
2589     codegen_fn_attrs
2590 }
2591
2592 /// Checks if the provided DefId is a method in a trait impl for a trait which has track_caller
2593 /// applied to the method prototype.
2594 fn should_inherit_track_caller(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2595     if let Some(impl_item) = tcx.opt_associated_item(def_id) {
2596         if let ty::AssocItemContainer::ImplContainer(impl_def_id) = impl_item.container {
2597             if let Some(trait_def_id) = tcx.trait_id_of_impl(impl_def_id) {
2598                 if let Some(trait_item) = tcx
2599                     .associated_items(trait_def_id)
2600                     .filter_by_name_unhygienic(impl_item.ident.name)
2601                     .find(move |trait_item| {
2602                         trait_item.kind == ty::AssocKind::Fn
2603                             && tcx.hygienic_eq(impl_item.ident, trait_item.ident, trait_def_id)
2604                     })
2605                 {
2606                     return tcx
2607                         .codegen_fn_attrs(trait_item.def_id)
2608                         .flags
2609                         .intersects(CodegenFnAttrFlags::TRACK_CALLER);
2610                 }
2611             }
2612         }
2613     }
2614
2615     false
2616 }
2617
2618 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<usize> {
2619     use rustc_ast::ast::{Lit, LitIntType, LitKind};
2620     let meta_item_list = attr.meta_item_list();
2621     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
2622     let sole_meta_list = match meta_item_list {
2623         Some([item]) => item.literal(),
2624         _ => None,
2625     };
2626     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
2627         if *ordinal <= usize::MAX as u128 {
2628             Some(*ordinal as usize)
2629         } else {
2630             let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
2631             tcx.sess
2632                 .struct_span_err(attr.span, &msg)
2633                 .note("the value may not exceed `usize::MAX`")
2634                 .emit();
2635             None
2636         }
2637     } else {
2638         tcx.sess
2639             .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
2640             .note("an unsuffixed integer value, e.g., `1`, is expected")
2641             .emit();
2642         None
2643     }
2644 }
2645
2646 fn check_link_name_xor_ordinal(
2647     tcx: TyCtxt<'_>,
2648     codegen_fn_attrs: &CodegenFnAttrs,
2649     inline_span: Option<Span>,
2650 ) {
2651     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
2652         return;
2653     }
2654     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
2655     if let Some(span) = inline_span {
2656         tcx.sess.span_err(span, msg);
2657     } else {
2658         tcx.sess.err(msg);
2659     }
2660 }
2661
2662 /// Checks the function annotated with `#[target_feature]` is unsafe,
2663 /// reporting an error if it isn't.
2664 fn check_target_feature_safe_fn(tcx: TyCtxt<'_>, id: DefId, attr_span: Span) {
2665     if tcx.is_closure(id) || tcx.fn_sig(id).unsafety() == hir::Unsafety::Normal {
2666         let mut err = feature_err(
2667             &tcx.sess.parse_sess,
2668             sym::target_feature_11,
2669             attr_span,
2670             "`#[target_feature(..)]` can only be applied to `unsafe` functions",
2671         );
2672         err.span_label(tcx.def_span(id), "not an `unsafe` function");
2673         err.emit();
2674     }
2675 }
2676
2677 /// Checks the function annotated with `#[target_feature]` is not a safe
2678 /// trait method implementation, reporting an error if it is.
2679 fn check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span) {
2680     let hir_id = tcx.hir().as_local_hir_id(id);
2681     let node = tcx.hir().get(hir_id);
2682     if let Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) = node {
2683         let parent_id = tcx.hir().get_parent_item(hir_id);
2684         let parent_item = tcx.hir().expect_item(parent_id);
2685         if let hir::ItemKind::Impl { of_trait: Some(_), .. } = parent_item.kind {
2686             tcx.sess
2687                 .struct_span_err(
2688                     attr_span,
2689                     "`#[target_feature(..)]` cannot be applied to safe trait method",
2690                 )
2691                 .span_label(attr_span, "cannot be applied to safe trait method")
2692                 .span_label(tcx.def_span(id), "not an `unsafe` function")
2693                 .emit();
2694         }
2695     }
2696 }