]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
Don't gensym `Self` parameters
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds, SizedByDefault};
18 use crate::constrained_generic_params as cgp;
19 use crate::check::intrinsic::intrisic_operation_unsafety;
20 use crate::lint;
21 use crate::middle::resolve_lifetime as rl;
22 use crate::middle::weak_lang_items;
23 use rustc::mir::mono::Linkage;
24 use rustc::ty::query::Providers;
25 use rustc::ty::subst::{Subst, InternalSubsts};
26 use rustc::ty::util::Discr;
27 use rustc::ty::util::IntTypeExt;
28 use rustc::ty::subst::UnpackedKind;
29 use rustc::ty::{self, AdtKind, DefIdTree, ToPolyTraitRef, Ty, TyCtxt, Const};
30 use rustc::ty::{ReprOptions, ToPredicate};
31 use rustc::util::captures::Captures;
32 use rustc::util::nodemap::FxHashMap;
33 use rustc_target::spec::abi;
34
35 use syntax::ast;
36 use syntax::ast::{Ident, MetaItemKind};
37 use syntax::attr::{InlineAttr, OptimizeAttr, list_contains_name, mark_used};
38 use syntax::source_map::Spanned;
39 use syntax::feature_gate;
40 use syntax::symbol::{InternedString, kw, Symbol, sym};
41 use syntax_pos::{Span, DUMMY_SP};
42
43 use rustc::hir::def::{CtorKind, Res, DefKind};
44 use rustc::hir::Node;
45 use rustc::hir::def_id::{DefId, LOCAL_CRATE};
46 use rustc::hir::intravisit::{self, NestedVisitorMap, Visitor};
47 use rustc::hir::GenericParamKind;
48 use rustc::hir::{self, CodegenFnAttrFlags, CodegenFnAttrs, Unsafety};
49
50 use errors::{Applicability, DiagnosticId};
51
52 struct OnlySelfBounds(bool);
53
54 ///////////////////////////////////////////////////////////////////////////
55 // Main entry point
56
57 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: DefId) {
58     tcx.hir().visit_item_likes_in_module(
59         module_def_id,
60         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor()
61     );
62 }
63
64 pub fn provide(providers: &mut Providers<'_>) {
65     *providers = Providers {
66         type_of,
67         generics_of,
68         predicates_of,
69         predicates_defined_on,
70         explicit_predicates_of,
71         super_predicates_of,
72         type_param_predicates,
73         trait_def,
74         adt_def,
75         fn_sig,
76         impl_trait_ref,
77         impl_polarity,
78         is_foreign_item,
79         static_mutability,
80         codegen_fn_attrs,
81         collect_mod_item_types,
82         ..*providers
83     };
84 }
85
86 ///////////////////////////////////////////////////////////////////////////
87
88 /// Context specific to some particular item. This is what implements
89 /// `AstConv`. It has information about the predicates that are defined
90 /// on the trait. Unfortunately, this predicate information is
91 /// available in various different forms at various points in the
92 /// process. So we can't just store a pointer to e.g., the AST or the
93 /// parsed ty form, we have to be more flexible. To this end, the
94 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
95 /// `get_type_parameter_bounds` requests, drawing the information from
96 /// the AST (`hir::Generics`), recursively.
97 pub struct ItemCtxt<'tcx> {
98     tcx: TyCtxt<'tcx>,
99     item_def_id: DefId,
100 }
101
102 ///////////////////////////////////////////////////////////////////////////
103
104 struct CollectItemTypesVisitor<'tcx> {
105     tcx: TyCtxt<'tcx>,
106 }
107
108 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
109     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
110         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
111     }
112
113     fn visit_item(&mut self, item: &'tcx hir::Item) {
114         convert_item(self.tcx, item.hir_id);
115         intravisit::walk_item(self, item);
116     }
117
118     fn visit_generics(&mut self, generics: &'tcx hir::Generics) {
119         for param in &generics.params {
120             match param.kind {
121                 hir::GenericParamKind::Lifetime { .. } => {}
122                 hir::GenericParamKind::Type {
123                     default: Some(_), ..
124                 } => {
125                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
126                     self.tcx.type_of(def_id);
127                 }
128                 hir::GenericParamKind::Type { .. } => {}
129                 hir::GenericParamKind::Const { .. } => {
130                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
131                     self.tcx.type_of(def_id);
132                 }
133             }
134         }
135         intravisit::walk_generics(self, generics);
136     }
137
138     fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
139         if let hir::ExprKind::Closure(..) = expr.node {
140             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
141             self.tcx.generics_of(def_id);
142             self.tcx.type_of(def_id);
143         }
144         intravisit::walk_expr(self, expr);
145     }
146
147     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem) {
148         convert_trait_item(self.tcx, trait_item.hir_id);
149         intravisit::walk_trait_item(self, trait_item);
150     }
151
152     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem) {
153         convert_impl_item(self.tcx, impl_item.hir_id);
154         intravisit::walk_impl_item(self, impl_item);
155     }
156 }
157
158 ///////////////////////////////////////////////////////////////////////////
159 // Utility types and common code for the above passes.
160
161 fn bad_placeholder_type(tcx: TyCtxt<'tcx>, span: Span) -> errors::DiagnosticBuilder<'tcx> {
162     let mut diag = tcx.sess.struct_span_err_with_code(
163         span,
164         "the type placeholder `_` is not allowed within types on item signatures",
165         DiagnosticId::Error("E0121".into()),
166     );
167     diag.span_label(span, "not allowed in type signatures");
168     diag
169 }
170
171 impl ItemCtxt<'tcx> {
172     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
173         ItemCtxt { tcx, item_def_id }
174     }
175
176     pub fn to_ty(&self, ast_ty: &'tcx hir::Ty) -> Ty<'tcx> {
177         AstConv::ast_ty_to_ty(self, ast_ty)
178     }
179 }
180
181 impl AstConv<'tcx> for ItemCtxt<'tcx> {
182     fn tcx(&self) -> TyCtxt<'tcx> {
183         self.tcx
184     }
185
186     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId)
187                                  -> &'tcx ty::GenericPredicates<'tcx> {
188         self.tcx
189             .at(span)
190             .type_param_predicates((self.item_def_id, def_id))
191     }
192
193     fn re_infer(
194         &self,
195         _: Option<&ty::GenericParamDef>,
196         _: Span,
197     ) -> Option<ty::Region<'tcx>> {
198         None
199     }
200
201     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
202         bad_placeholder_type(self.tcx(), span).emit();
203
204         self.tcx().types.err
205     }
206
207     fn ct_infer(
208         &self,
209         _: Ty<'tcx>,
210         _: Option<&ty::GenericParamDef>,
211         span: Span,
212     ) -> &'tcx Const<'tcx> {
213         bad_placeholder_type(self.tcx(), span).emit();
214
215         self.tcx().consts.err
216     }
217
218     fn projected_ty_from_poly_trait_ref(
219         &self,
220         span: Span,
221         item_def_id: DefId,
222         poly_trait_ref: ty::PolyTraitRef<'tcx>,
223     ) -> Ty<'tcx> {
224         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
225             self.tcx().mk_projection(item_def_id, trait_ref.substs)
226         } else {
227             // There are no late-bound regions; we can just ignore the binder.
228             span_err!(
229                 self.tcx().sess,
230                 span,
231                 E0212,
232                 "cannot extract an associated type from a higher-ranked trait bound \
233                  in this context"
234             );
235             self.tcx().types.err
236         }
237     }
238
239     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
240         // Types in item signatures are not normalized to avoid undue dependencies.
241         ty
242     }
243
244     fn set_tainted_by_errors(&self) {
245         // There's no obvious place to track this, so just let it go.
246     }
247
248     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
249         // There's no place to record types from signatures?
250     }
251 }
252
253 /// Returns the predicates defined on `item_def_id` of the form
254 /// `X: Foo` where `X` is the type parameter `def_id`.
255 fn type_param_predicates(
256     tcx: TyCtxt<'_>,
257     (item_def_id, def_id): (DefId, DefId),
258 ) -> &ty::GenericPredicates<'_> {
259     use rustc::hir::*;
260
261     // In the AST, bounds can derive from two places. Either
262     // written inline like `<T: Foo>` or in a where-clause like
263     // `where T: Foo`.
264
265     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
266     let param_owner = tcx.hir().ty_param_owner(param_id);
267     let param_owner_def_id = tcx.hir().local_def_id(param_owner);
268     let generics = tcx.generics_of(param_owner_def_id);
269     let index = generics.param_def_id_to_index[&def_id];
270     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id).as_interned_str());
271
272     // Don't look for bounds where the type parameter isn't in scope.
273     let parent = if item_def_id == param_owner_def_id {
274         None
275     } else {
276         tcx.generics_of(item_def_id).parent
277     };
278
279     let result = parent.map_or(&tcx.common.empty_predicates, |parent| {
280         let icx = ItemCtxt::new(tcx, parent);
281         icx.get_type_parameter_bounds(DUMMY_SP, def_id)
282     });
283     let mut extend = None;
284
285     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
286     let ast_generics = match tcx.hir().get(item_hir_id) {
287         Node::TraitItem(item) => &item.generics,
288
289         Node::ImplItem(item) => &item.generics,
290
291         Node::Item(item) => {
292             match item.node {
293                 ItemKind::Fn(.., ref generics, _)
294                 | ItemKind::Impl(_, _, _, ref generics, ..)
295                 | ItemKind::TyAlias(_, ref generics)
296                 | ItemKind::OpaqueTy(OpaqueTy {
297                     ref generics,
298                     impl_trait_fn: None,
299                     ..
300                 })
301                 | ItemKind::Enum(_, ref generics)
302                 | ItemKind::Struct(_, ref generics)
303                 | ItemKind::Union(_, ref generics) => generics,
304                 ItemKind::Trait(_, _, ref generics, ..) => {
305                     // Implied `Self: Trait` and supertrait bounds.
306                     if param_id == item_hir_id {
307                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
308                         extend = Some((identity_trait_ref.to_predicate(), item.span));
309                     }
310                     generics
311                 }
312                 _ => return result,
313             }
314         }
315
316         Node::ForeignItem(item) => match item.node {
317             ForeignItemKind::Fn(_, _, ref generics) => generics,
318             _ => return result,
319         },
320
321         _ => return result,
322     };
323
324     let icx = ItemCtxt::new(tcx, item_def_id);
325     let mut result = (*result).clone();
326     result.predicates.extend(extend.into_iter());
327     result.predicates.extend(
328         icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty, OnlySelfBounds(true))
329             .into_iter()
330             .filter(|(predicate, _)| {
331                 match predicate {
332                     ty::Predicate::Trait(ref data) => data.skip_binder().self_ty().is_param(index),
333                     _ => false,
334                 }
335             })
336     );
337     tcx.arena.alloc(result)
338 }
339
340 impl ItemCtxt<'tcx> {
341     /// Finds bounds from `hir::Generics`. This requires scanning through the
342     /// AST. We do this to avoid having to convert *all* the bounds, which
343     /// would create artificial cycles. Instead, we can only convert the
344     /// bounds for a type parameter `X` if `X::Foo` is used.
345     fn type_parameter_bounds_in_generics(
346         &self,
347         ast_generics: &'tcx hir::Generics,
348         param_id: hir::HirId,
349         ty: Ty<'tcx>,
350         only_self_bounds: OnlySelfBounds,
351     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
352         let from_ty_params = ast_generics
353             .params
354             .iter()
355             .filter_map(|param| match param.kind {
356                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
357                 _ => None,
358             })
359             .flat_map(|bounds| bounds.iter())
360             .flat_map(|b| predicates_from_bound(self, ty, b));
361
362         let from_where_clauses = ast_generics
363             .where_clause
364             .predicates
365             .iter()
366             .filter_map(|wp| match *wp {
367                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
368                 _ => None,
369             })
370             .flat_map(|bp| {
371                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
372                     Some(ty)
373                 } else if !only_self_bounds.0 {
374                     Some(self.to_ty(&bp.bounded_ty))
375                 } else {
376                     None
377                 };
378                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
379             })
380             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b));
381
382         from_ty_params.chain(from_where_clauses).collect()
383     }
384 }
385
386 /// Tests whether this is the AST for a reference to the type
387 /// parameter with ID `param_id`. We use this so as to avoid running
388 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
389 /// conversion of the type to avoid inducing unnecessary cycles.
390 fn is_param(tcx: TyCtxt<'_>, ast_ty: &hir::Ty, param_id: hir::HirId) -> bool {
391     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.node {
392         match path.res {
393             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
394                 def_id == tcx.hir().local_def_id(param_id)
395             }
396             _ => false,
397         }
398     } else {
399         false
400     }
401 }
402
403 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::HirId) {
404     let it = tcx.hir().expect_item(item_id);
405     debug!("convert: item {} with id {}", it.ident, it.hir_id);
406     let def_id = tcx.hir().local_def_id(item_id);
407     match it.node {
408         // These don't define types.
409         hir::ItemKind::ExternCrate(_)
410         | hir::ItemKind::Use(..)
411         | hir::ItemKind::Mod(_)
412         | hir::ItemKind::GlobalAsm(_) => {}
413         hir::ItemKind::ForeignMod(ref foreign_mod) => {
414             for item in &foreign_mod.items {
415                 let def_id = tcx.hir().local_def_id(item.hir_id);
416                 tcx.generics_of(def_id);
417                 tcx.type_of(def_id);
418                 tcx.predicates_of(def_id);
419                 if let hir::ForeignItemKind::Fn(..) = item.node {
420                     tcx.fn_sig(def_id);
421                 }
422             }
423         }
424         hir::ItemKind::Enum(ref enum_definition, _) => {
425             tcx.generics_of(def_id);
426             tcx.type_of(def_id);
427             tcx.predicates_of(def_id);
428             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
429         }
430         hir::ItemKind::Impl(..) => {
431             tcx.generics_of(def_id);
432             tcx.type_of(def_id);
433             tcx.impl_trait_ref(def_id);
434             tcx.predicates_of(def_id);
435         }
436         hir::ItemKind::Trait(..) => {
437             tcx.generics_of(def_id);
438             tcx.trait_def(def_id);
439             tcx.at(it.span).super_predicates_of(def_id);
440             tcx.predicates_of(def_id);
441         }
442         hir::ItemKind::TraitAlias(..) => {
443             tcx.generics_of(def_id);
444             tcx.at(it.span).super_predicates_of(def_id);
445             tcx.predicates_of(def_id);
446         }
447         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
448             tcx.generics_of(def_id);
449             tcx.type_of(def_id);
450             tcx.predicates_of(def_id);
451
452             for f in struct_def.fields() {
453                 let def_id = tcx.hir().local_def_id(f.hir_id);
454                 tcx.generics_of(def_id);
455                 tcx.type_of(def_id);
456                 tcx.predicates_of(def_id);
457             }
458
459             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
460                 convert_variant_ctor(tcx, ctor_hir_id);
461             }
462         }
463
464         // Desugared from `impl Trait`, so visited by the function's return type.
465         hir::ItemKind::OpaqueTy(hir::OpaqueTy {
466             impl_trait_fn: Some(_),
467             ..
468         }) => {}
469
470         hir::ItemKind::OpaqueTy(..)
471         | hir::ItemKind::TyAlias(..)
472         | hir::ItemKind::Static(..)
473         | hir::ItemKind::Const(..)
474         | hir::ItemKind::Fn(..) => {
475             tcx.generics_of(def_id);
476             tcx.type_of(def_id);
477             tcx.predicates_of(def_id);
478             if let hir::ItemKind::Fn(..) = it.node {
479                 tcx.fn_sig(def_id);
480             }
481         }
482     }
483 }
484
485 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::HirId) {
486     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
487     let def_id = tcx.hir().local_def_id(trait_item.hir_id);
488     tcx.generics_of(def_id);
489
490     match trait_item.node {
491         hir::TraitItemKind::Const(..)
492         | hir::TraitItemKind::Type(_, Some(_))
493         | hir::TraitItemKind::Method(..) => {
494             tcx.type_of(def_id);
495             if let hir::TraitItemKind::Method(..) = trait_item.node {
496                 tcx.fn_sig(def_id);
497             }
498         }
499
500         hir::TraitItemKind::Type(_, None) => {}
501     };
502
503     tcx.predicates_of(def_id);
504 }
505
506 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::HirId) {
507     let def_id = tcx.hir().local_def_id(impl_item_id);
508     tcx.generics_of(def_id);
509     tcx.type_of(def_id);
510     tcx.predicates_of(def_id);
511     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).node {
512         tcx.fn_sig(def_id);
513     }
514 }
515
516 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
517     let def_id = tcx.hir().local_def_id(ctor_id);
518     tcx.generics_of(def_id);
519     tcx.type_of(def_id);
520     tcx.predicates_of(def_id);
521 }
522
523 fn convert_enum_variant_types<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, variants: &[hir::Variant]) {
524     let def = tcx.adt_def(def_id);
525     let repr_type = def.repr.discr_type();
526     let initial = repr_type.initial_discriminant(tcx);
527     let mut prev_discr = None::<Discr<'tcx>>;
528
529     // fill the discriminant values and field types
530     for variant in variants {
531         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
532         prev_discr = Some(
533             if let Some(ref e) = variant.node.disr_expr {
534                 let expr_did = tcx.hir().local_def_id(e.hir_id);
535                 def.eval_explicit_discr(tcx, expr_did)
536             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
537                 Some(discr)
538             } else {
539                 struct_span_err!(
540                     tcx.sess,
541                     variant.span,
542                     E0370,
543                     "enum discriminant overflowed"
544                 ).span_label(
545                     variant.span,
546                     format!("overflowed on value after {}", prev_discr.unwrap()),
547                 ).note(&format!(
548                     "explicitly set `{} = {}` if that is desired outcome",
549                     variant.node.ident, wrapped_discr
550                 ))
551                 .emit();
552                 None
553             }.unwrap_or(wrapped_discr),
554         );
555
556         for f in variant.node.data.fields() {
557             let def_id = tcx.hir().local_def_id(f.hir_id);
558             tcx.generics_of(def_id);
559             tcx.type_of(def_id);
560             tcx.predicates_of(def_id);
561         }
562
563         // Convert the ctor, if any. This also registers the variant as
564         // an item.
565         if let Some(ctor_hir_id) = variant.node.data.ctor_hir_id() {
566             convert_variant_ctor(tcx, ctor_hir_id);
567         }
568     }
569 }
570
571 fn convert_variant(
572     tcx: TyCtxt<'_>,
573     variant_did: Option<DefId>,
574     ctor_did: Option<DefId>,
575     ident: Ident,
576     discr: ty::VariantDiscr,
577     def: &hir::VariantData,
578     adt_kind: ty::AdtKind,
579     parent_did: DefId,
580 ) -> ty::VariantDef {
581     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
582     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
583     let fields = def
584         .fields()
585         .iter()
586         .map(|f| {
587             let fid = tcx.hir().local_def_id(f.hir_id);
588             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
589             if let Some(prev_span) = dup_span {
590                 struct_span_err!(
591                     tcx.sess,
592                     f.span,
593                     E0124,
594                     "field `{}` is already declared",
595                     f.ident
596                 ).span_label(f.span, "field already declared")
597                  .span_label(prev_span, format!("`{}` first declared here", f.ident))
598                  .emit();
599             } else {
600                 seen_fields.insert(f.ident.modern(), f.span);
601             }
602
603             ty::FieldDef {
604                 did: fid,
605                 ident: f.ident,
606                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
607             }
608         })
609         .collect();
610     let recovered = match def {
611         hir::VariantData::Struct(_, r) => *r,
612         _ => false,
613     };
614     ty::VariantDef::new(
615         tcx,
616         ident,
617         variant_did,
618         ctor_did,
619         discr,
620         fields,
621         CtorKind::from_hir(def),
622         adt_kind,
623         parent_did,
624         recovered,
625     )
626 }
627
628 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
629     use rustc::hir::*;
630
631     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
632     let item = match tcx.hir().get(hir_id) {
633         Node::Item(item) => item,
634         _ => bug!(),
635     };
636
637     let repr = ReprOptions::new(tcx, def_id);
638     let (kind, variants) = match item.node {
639         ItemKind::Enum(ref def, _) => {
640             let mut distance_from_explicit = 0;
641             let variants = def.variants
642                 .iter()
643                 .map(|v| {
644                     let variant_did = Some(tcx.hir().local_def_id(v.node.id));
645                     let ctor_did = v.node.data.ctor_hir_id()
646                         .map(|hir_id| tcx.hir().local_def_id(hir_id));
647
648                     let discr = if let Some(ref e) = v.node.disr_expr {
649                         distance_from_explicit = 0;
650                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id))
651                     } else {
652                         ty::VariantDiscr::Relative(distance_from_explicit)
653                     };
654                     distance_from_explicit += 1;
655
656                     convert_variant(tcx, variant_did, ctor_did, v.node.ident, discr,
657                                     &v.node.data, AdtKind::Enum, def_id)
658                 })
659                 .collect();
660
661             (AdtKind::Enum, variants)
662         }
663         ItemKind::Struct(ref def, _) => {
664             let variant_did = None;
665             let ctor_did = def.ctor_hir_id()
666                 .map(|hir_id| tcx.hir().local_def_id(hir_id));
667
668             let variants = std::iter::once(convert_variant(
669                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
670                 AdtKind::Struct, def_id,
671             )).collect();
672
673             (AdtKind::Struct, variants)
674         }
675         ItemKind::Union(ref def, _) => {
676             let variant_did = None;
677             let ctor_did = def.ctor_hir_id()
678                 .map(|hir_id| tcx.hir().local_def_id(hir_id));
679
680             let variants = std::iter::once(convert_variant(
681                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
682                 AdtKind::Union, def_id,
683             )).collect();
684
685             (AdtKind::Union, variants)
686         },
687         _ => bug!(),
688     };
689     tcx.alloc_adt_def(def_id, kind, variants, repr)
690 }
691
692 /// Ensures that the super-predicates of the trait with a `DefId`
693 /// of `trait_def_id` are converted and stored. This also ensures that
694 /// the transitive super-predicates are converted.
695 fn super_predicates_of(
696     tcx: TyCtxt<'_>,
697     trait_def_id: DefId,
698 ) -> &ty::GenericPredicates<'_> {
699     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
700     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
701
702     let item = match tcx.hir().get(trait_hir_id) {
703         Node::Item(item) => item,
704         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
705     };
706
707     let (generics, bounds) = match item.node {
708         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
709         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
710         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
711     };
712
713     let icx = ItemCtxt::new(tcx, trait_def_id);
714
715     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
716     let self_param_ty = tcx.mk_self_type();
717     let superbounds1 = AstConv::compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No,
718         item.span);
719
720     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
721
722     // Convert any explicit superbounds in the where-clause,
723     // e.g., `trait Foo where Self: Bar`.
724     // In the case of trait aliases, however, we include all bounds in the where-clause,
725     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
726     // as one of its "superpredicates".
727     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
728     let superbounds2 = icx.type_parameter_bounds_in_generics(
729         generics, item.hir_id, self_param_ty, OnlySelfBounds(!is_trait_alias));
730
731     // Combine the two lists to form the complete set of superbounds:
732     let superbounds: Vec<_> = superbounds1.into_iter().chain(superbounds2).collect();
733
734     // Now require that immediate supertraits are converted,
735     // which will, in turn, reach indirect supertraits.
736     for &(pred, span) in &superbounds {
737         debug!("superbound: {:?}", pred);
738         if let ty::Predicate::Trait(bound) = pred {
739             tcx.at(span).super_predicates_of(bound.def_id());
740         }
741     }
742
743     tcx.arena.alloc(ty::GenericPredicates {
744         parent: None,
745         predicates: superbounds,
746     })
747 }
748
749 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::TraitDef {
750     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
751     let item = tcx.hir().expect_item(hir_id);
752
753     let (is_auto, unsafety) = match item.node {
754         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
755         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
756         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
757     };
758
759     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
760     if paren_sugar && !tcx.features().unboxed_closures {
761         let mut err = tcx.sess.struct_span_err(
762             item.span,
763             "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
764              which traits can use parenthetical notation",
765         );
766         help!(
767             &mut err,
768             "add `#![feature(unboxed_closures)]` to \
769              the crate attributes to use it"
770         );
771         err.emit();
772     }
773
774     let is_marker = tcx.has_attr(def_id, sym::marker);
775     let def_path_hash = tcx.def_path_hash(def_id);
776     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
777     tcx.arena.alloc(def)
778 }
779
780 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
781     struct LateBoundRegionsDetector<'tcx> {
782         tcx: TyCtxt<'tcx>,
783         outer_index: ty::DebruijnIndex,
784         has_late_bound_regions: Option<Span>,
785     }
786
787     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
788         fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
789             NestedVisitorMap::None
790         }
791
792         fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
793             if self.has_late_bound_regions.is_some() {
794                 return;
795             }
796             match ty.node {
797                 hir::TyKind::BareFn(..) => {
798                     self.outer_index.shift_in(1);
799                     intravisit::walk_ty(self, ty);
800                     self.outer_index.shift_out(1);
801                 }
802                 _ => intravisit::walk_ty(self, ty),
803             }
804         }
805
806         fn visit_poly_trait_ref(
807             &mut self,
808             tr: &'tcx hir::PolyTraitRef,
809             m: hir::TraitBoundModifier,
810         ) {
811             if self.has_late_bound_regions.is_some() {
812                 return;
813             }
814             self.outer_index.shift_in(1);
815             intravisit::walk_poly_trait_ref(self, tr, m);
816             self.outer_index.shift_out(1);
817         }
818
819         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
820             if self.has_late_bound_regions.is_some() {
821                 return;
822             }
823
824             match self.tcx.named_region(lt.hir_id) {
825                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
826                 Some(rl::Region::LateBound(debruijn, _, _))
827                 | Some(rl::Region::LateBoundAnon(debruijn, _)) if debruijn < self.outer_index => {}
828                 Some(rl::Region::LateBound(..))
829                 | Some(rl::Region::LateBoundAnon(..))
830                 | Some(rl::Region::Free(..))
831                 | None => {
832                     self.has_late_bound_regions = Some(lt.span);
833                 }
834             }
835         }
836     }
837
838     fn has_late_bound_regions<'tcx>(
839         tcx: TyCtxt<'tcx>,
840         generics: &'tcx hir::Generics,
841         decl: &'tcx hir::FnDecl,
842     ) -> Option<Span> {
843         let mut visitor = LateBoundRegionsDetector {
844             tcx,
845             outer_index: ty::INNERMOST,
846             has_late_bound_regions: None,
847         };
848         for param in &generics.params {
849             if let GenericParamKind::Lifetime { .. } = param.kind {
850                 if tcx.is_late_bound(param.hir_id) {
851                     return Some(param.span);
852                 }
853             }
854         }
855         visitor.visit_fn_decl(decl);
856         visitor.has_late_bound_regions
857     }
858
859     match node {
860         Node::TraitItem(item) => match item.node {
861             hir::TraitItemKind::Method(ref sig, _) => {
862                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
863             }
864             _ => None,
865         },
866         Node::ImplItem(item) => match item.node {
867             hir::ImplItemKind::Method(ref sig, _) => {
868                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
869             }
870             _ => None,
871         },
872         Node::ForeignItem(item) => match item.node {
873             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
874                 has_late_bound_regions(tcx, generics, fn_decl)
875             }
876             _ => None,
877         },
878         Node::Item(item) => match item.node {
879             hir::ItemKind::Fn(ref fn_decl, .., ref generics, _) => {
880                 has_late_bound_regions(tcx, generics, fn_decl)
881             }
882             _ => None,
883         },
884         _ => None,
885     }
886 }
887
888 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::Generics {
889     use rustc::hir::*;
890
891     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
892
893     let node = tcx.hir().get(hir_id);
894     let parent_def_id = match node {
895         Node::ImplItem(_) | Node::TraitItem(_) | Node::Variant(_) |
896         Node::Ctor(..) | Node::Field(_) => {
897             let parent_id = tcx.hir().get_parent_item(hir_id);
898             Some(tcx.hir().local_def_id(parent_id))
899         }
900         Node::Expr(&hir::Expr {
901             node: hir::ExprKind::Closure(..),
902             ..
903         }) => Some(tcx.closure_base_def_id(def_id)),
904         Node::Item(item) => match item.node {
905             ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => impl_trait_fn,
906             _ => None,
907         },
908         _ => None,
909     };
910
911     let mut opt_self = None;
912     let mut allow_defaults = false;
913
914     let no_generics = hir::Generics::empty();
915     let ast_generics = match node {
916         Node::TraitItem(item) => &item.generics,
917
918         Node::ImplItem(item) => &item.generics,
919
920         Node::Item(item) => {
921             match item.node {
922                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl(_, _, _, ref generics, ..) => {
923                     generics
924                 }
925
926                 ItemKind::TyAlias(_, ref generics)
927                 | ItemKind::Enum(_, ref generics)
928                 | ItemKind::Struct(_, ref generics)
929                 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
930                 | ItemKind::Union(_, ref generics) => {
931                     allow_defaults = true;
932                     generics
933                 }
934
935                 ItemKind::Trait(_, _, ref generics, ..)
936                 | ItemKind::TraitAlias(ref generics, ..) => {
937                     // Add in the self type parameter.
938                     //
939                     // Something of a hack: use the node id for the trait, also as
940                     // the node id for the Self type parameter.
941                     let param_id = item.hir_id;
942
943                     opt_self = Some(ty::GenericParamDef {
944                         index: 0,
945                         name: kw::SelfUpper.as_interned_str(),
946                         def_id: tcx.hir().local_def_id(param_id),
947                         pure_wrt_drop: false,
948                         kind: ty::GenericParamDefKind::Type {
949                             has_default: false,
950                             object_lifetime_default: rl::Set1::Empty,
951                             synthetic: None,
952                         },
953                     });
954
955                     allow_defaults = true;
956                     generics
957                 }
958
959                 _ => &no_generics,
960             }
961         }
962
963         Node::ForeignItem(item) => match item.node {
964             ForeignItemKind::Static(..) => &no_generics,
965             ForeignItemKind::Fn(_, _, ref generics) => generics,
966             ForeignItemKind::Type => &no_generics,
967         },
968
969         _ => &no_generics,
970     };
971
972     let has_self = opt_self.is_some();
973     let mut parent_has_self = false;
974     let mut own_start = has_self as u32;
975     let parent_count = parent_def_id.map_or(0, |def_id| {
976         let generics = tcx.generics_of(def_id);
977         assert_eq!(has_self, false);
978         parent_has_self = generics.has_self;
979         own_start = generics.count() as u32;
980         generics.parent_count + generics.params.len()
981     });
982
983     let mut params: Vec<_> = opt_self.into_iter().collect();
984
985     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
986     params.extend(
987         early_lifetimes
988             .enumerate()
989             .map(|(i, param)| ty::GenericParamDef {
990                 name: param.name.ident().as_interned_str(),
991                 index: own_start + i as u32,
992                 def_id: tcx.hir().local_def_id(param.hir_id),
993                 pure_wrt_drop: param.pure_wrt_drop,
994                 kind: ty::GenericParamDefKind::Lifetime,
995             }),
996     );
997
998     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
999
1000     // Now create the real type parameters.
1001     let type_start = own_start - has_self as u32 + params.len() as u32;
1002     let mut i = 0;
1003     params.extend(
1004         ast_generics
1005             .params
1006             .iter()
1007             .filter_map(|param| {
1008                 let kind = match param.kind {
1009                     GenericParamKind::Type {
1010                         ref default,
1011                         synthetic,
1012                         ..
1013                     } => {
1014                         if !allow_defaults && default.is_some() {
1015                             if !tcx.features().default_type_parameter_fallback {
1016                                 tcx.lint_hir(
1017                                     lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1018                                     param.hir_id,
1019                                     param.span,
1020                                     &format!(
1021                                         "defaults for type parameters are only allowed in \
1022                                         `struct`, `enum`, `type`, or `trait` definitions."
1023                                     ),
1024                                 );
1025                             }
1026                         }
1027
1028                         ty::GenericParamDefKind::Type {
1029                             has_default: default.is_some(),
1030                             object_lifetime_default: object_lifetime_defaults
1031                                 .as_ref()
1032                                 .map_or(rl::Set1::Empty, |o| o[i]),
1033                             synthetic,
1034                         }
1035                     }
1036                     GenericParamKind::Const { .. } => {
1037                         ty::GenericParamDefKind::Const
1038                     }
1039                     _ => return None,
1040                 };
1041
1042                 let param_def = ty::GenericParamDef {
1043                     index: type_start + i as u32,
1044                     name: param.name.ident().as_interned_str(),
1045                     def_id: tcx.hir().local_def_id(param.hir_id),
1046                     pure_wrt_drop: param.pure_wrt_drop,
1047                     kind,
1048                 };
1049                 i += 1;
1050                 Some(param_def)
1051             })
1052     );
1053
1054     // provide junk type parameter defs - the only place that
1055     // cares about anything but the length is instantiation,
1056     // and we don't do that for closures.
1057     if let Node::Expr(&hir::Expr {
1058         node: hir::ExprKind::Closure(.., gen),
1059         ..
1060     }) = node
1061     {
1062         let dummy_args = if gen.is_some() {
1063             &["<yield_ty>", "<return_ty>", "<witness>"][..]
1064         } else {
1065             &["<closure_kind>", "<closure_signature>"][..]
1066         };
1067
1068         params.extend(
1069             dummy_args
1070                 .iter()
1071                 .enumerate()
1072                 .map(|(i, &arg)| ty::GenericParamDef {
1073                     index: type_start + i as u32,
1074                     name: InternedString::intern(arg),
1075                     def_id,
1076                     pure_wrt_drop: false,
1077                     kind: ty::GenericParamDefKind::Type {
1078                         has_default: false,
1079                         object_lifetime_default: rl::Set1::Empty,
1080                         synthetic: None,
1081                     },
1082                 }),
1083         );
1084
1085         if let Some(upvars) = tcx.upvars(def_id) {
1086             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1087                 ty::GenericParamDef {
1088                     index: type_start + i,
1089                     name: InternedString::intern("<upvar>"),
1090                     def_id,
1091                     pure_wrt_drop: false,
1092                     kind: ty::GenericParamDefKind::Type {
1093                         has_default: false,
1094                         object_lifetime_default: rl::Set1::Empty,
1095                         synthetic: None,
1096                     },
1097                 }
1098             }));
1099         }
1100     }
1101
1102     let param_def_id_to_index = params
1103         .iter()
1104         .map(|param| (param.def_id, param.index))
1105         .collect();
1106
1107     tcx.arena.alloc(ty::Generics {
1108         parent: parent_def_id,
1109         parent_count,
1110         params,
1111         param_def_id_to_index,
1112         has_self: has_self || parent_has_self,
1113         has_late_bound_regions: has_late_bound_regions(tcx, node),
1114     })
1115 }
1116
1117 fn report_assoc_ty_on_inherent_impl(tcx: TyCtxt<'_>, span: Span) {
1118     span_err!(
1119         tcx.sess,
1120         span,
1121         E0202,
1122         "associated types are not yet supported in inherent impls (see #8995)"
1123     );
1124 }
1125
1126 fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1127     checked_type_of(tcx, def_id, true).unwrap()
1128 }
1129
1130 fn infer_placeholder_type(
1131     tcx: TyCtxt<'_>,
1132     def_id: DefId,
1133     body_id: hir::BodyId,
1134     span: Span,
1135 ) -> Ty<'_> {
1136     let ty = tcx.typeck_tables_of(def_id).node_type(body_id.hir_id);
1137     let mut diag = bad_placeholder_type(tcx, span);
1138     if ty != tcx.types.err {
1139         diag.span_suggestion(
1140             span,
1141             "replace `_` with the correct type",
1142             ty.to_string(),
1143             Applicability::MaybeIncorrect,
1144         );
1145     }
1146     diag.emit();
1147     ty
1148 }
1149
1150 /// Same as [`type_of`] but returns [`Option`] instead of failing.
1151 ///
1152 /// If you want to fail anyway, you can set the `fail` parameter to true, but in this case,
1153 /// you'd better just call [`type_of`] directly.
1154 pub fn checked_type_of(tcx: TyCtxt<'_>, def_id: DefId, fail: bool) -> Option<Ty<'_>> {
1155     use rustc::hir::*;
1156
1157     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1158         Some(hir_id) => hir_id,
1159         None => {
1160             if !fail {
1161                 return None;
1162             }
1163             bug!("invalid node");
1164         }
1165     };
1166
1167     let icx = ItemCtxt::new(tcx, def_id);
1168
1169     Some(match tcx.hir().get(hir_id) {
1170         Node::TraitItem(item) => match item.node {
1171             TraitItemKind::Method(..) => {
1172                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1173                 tcx.mk_fn_def(def_id, substs)
1174             }
1175             TraitItemKind::Const(ref ty, body_id)  => {
1176                 body_id.and_then(|body_id| {
1177                     if let hir::TyKind::Infer = ty.node {
1178                         Some(infer_placeholder_type(tcx, def_id, body_id, ty.span))
1179                     } else {
1180                         None
1181                     }
1182                 }).unwrap_or_else(|| icx.to_ty(ty))
1183             },
1184             TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1185             TraitItemKind::Type(_, None) => {
1186                 if !fail {
1187                     return None;
1188                 }
1189                 span_bug!(item.span, "associated type missing default");
1190             }
1191         },
1192
1193         Node::ImplItem(item) => match item.node {
1194             ImplItemKind::Method(..) => {
1195                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1196                 tcx.mk_fn_def(def_id, substs)
1197             }
1198             ImplItemKind::Const(ref ty, body_id) => {
1199                 if let hir::TyKind::Infer = ty.node {
1200                     infer_placeholder_type(tcx, def_id, body_id, ty.span)
1201                 } else {
1202                     icx.to_ty(ty)
1203                 }
1204             },
1205             ImplItemKind::OpaqueTy(_) => {
1206                 if tcx
1207                     .impl_trait_ref(tcx.hir().get_parent_did(hir_id))
1208                     .is_none()
1209                 {
1210                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1211                 }
1212
1213                 find_opaque_ty_constraints(tcx, def_id)
1214             }
1215             ImplItemKind::TyAlias(ref ty) => {
1216                 if tcx
1217                     .impl_trait_ref(tcx.hir().get_parent_did(hir_id))
1218                     .is_none()
1219                 {
1220                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1221                 }
1222
1223                 icx.to_ty(ty)
1224             }
1225         },
1226
1227         Node::Item(item) => {
1228             match item.node {
1229                 ItemKind::Static(ref ty, .., body_id)
1230                 | ItemKind::Const(ref ty, body_id) => {
1231                     if let hir::TyKind::Infer = ty.node {
1232                         infer_placeholder_type(tcx, def_id, body_id, ty.span)
1233                     } else {
1234                         icx.to_ty(ty)
1235                     }
1236                 },
1237                 ItemKind::TyAlias(ref ty, _)
1238                 | ItemKind::Impl(.., ref ty, _) => icx.to_ty(ty),
1239                 ItemKind::Fn(..) => {
1240                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1241                     tcx.mk_fn_def(def_id, substs)
1242                 }
1243                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1244                     let def = tcx.adt_def(def_id);
1245                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1246                     tcx.mk_adt(def, substs)
1247                 }
1248                 ItemKind::OpaqueTy(hir::OpaqueTy {
1249                     impl_trait_fn: None,
1250                     ..
1251                 }) => find_opaque_ty_constraints(tcx, def_id),
1252                 // Opaque types desugared from `impl Trait`.
1253                 ItemKind::OpaqueTy(hir::OpaqueTy {
1254                     impl_trait_fn: Some(owner),
1255                     ..
1256                 }) => {
1257                     tcx.typeck_tables_of(owner)
1258                         .concrete_opaque_types
1259                         .get(&def_id)
1260                         .map(|opaque| opaque.concrete_type)
1261                         .unwrap_or_else(|| {
1262                             // This can occur if some error in the
1263                             // owner fn prevented us from populating
1264                             // the `concrete_opaque_types` table.
1265                             tcx.sess.delay_span_bug(
1266                                 DUMMY_SP,
1267                                 &format!(
1268                                     "owner {:?} has no opaque type for {:?} in its tables",
1269                                     owner, def_id,
1270                                 ),
1271                             );
1272                             tcx.types.err
1273                         })
1274                 }
1275                 ItemKind::Trait(..)
1276                 | ItemKind::TraitAlias(..)
1277                 | ItemKind::Mod(..)
1278                 | ItemKind::ForeignMod(..)
1279                 | ItemKind::GlobalAsm(..)
1280                 | ItemKind::ExternCrate(..)
1281                 | ItemKind::Use(..) => {
1282                     if !fail {
1283                         return None;
1284                     }
1285                     span_bug!(
1286                         item.span,
1287                         "compute_type_of_item: unexpected item type: {:?}",
1288                         item.node
1289                     );
1290                 }
1291             }
1292         }
1293
1294         Node::ForeignItem(foreign_item) => match foreign_item.node {
1295             ForeignItemKind::Fn(..) => {
1296                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1297                 tcx.mk_fn_def(def_id, substs)
1298             }
1299             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1300             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1301         },
1302
1303         Node::Ctor(&ref def) | Node::Variant(&Spanned {
1304             node: hir::VariantKind { data: ref def, .. },
1305             ..
1306         }) => match *def {
1307             VariantData::Unit(..) | VariantData::Struct(..) => {
1308                 tcx.type_of(tcx.hir().get_parent_did(hir_id))
1309             }
1310             VariantData::Tuple(..) => {
1311                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1312                 tcx.mk_fn_def(def_id, substs)
1313             }
1314         },
1315
1316         Node::Field(field) => icx.to_ty(&field.ty),
1317
1318         Node::Expr(&hir::Expr {
1319             node: hir::ExprKind::Closure(.., gen),
1320             ..
1321         }) => {
1322             if gen.is_some() {
1323                 return Some(tcx.typeck_tables_of(def_id).node_type(hir_id));
1324             }
1325
1326             let substs = ty::ClosureSubsts {
1327                 substs: InternalSubsts::identity_for_item(tcx, def_id),
1328             };
1329
1330             tcx.mk_closure(def_id, substs)
1331         }
1332
1333         Node::AnonConst(_) => {
1334             let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1335             match parent_node {
1336                 Node::Ty(&hir::Ty {
1337                     node: hir::TyKind::Array(_, ref constant),
1338                     ..
1339                 })
1340                 | Node::Ty(&hir::Ty {
1341                     node: hir::TyKind::Typeof(ref constant),
1342                     ..
1343                 })
1344                 | Node::Expr(&hir::Expr {
1345                     node: ExprKind::Repeat(_, ref constant),
1346                     ..
1347                 }) if constant.hir_id == hir_id =>
1348                 {
1349                     tcx.types.usize
1350                 }
1351
1352                 Node::Variant(&Spanned {
1353                     node:
1354                         VariantKind {
1355                             disr_expr: Some(ref e),
1356                             ..
1357                         },
1358                     ..
1359                 }) if e.hir_id == hir_id =>
1360                 {
1361                     tcx.adt_def(tcx.hir().get_parent_did(hir_id))
1362                         .repr
1363                         .discr_type()
1364                         .to_ty(tcx)
1365                 }
1366
1367                 Node::Ty(&hir::Ty { node: hir::TyKind::Path(_), .. }) |
1368                 Node::Expr(&hir::Expr { node: ExprKind::Struct(..), .. }) |
1369                 Node::Expr(&hir::Expr { node: ExprKind::Path(_), .. }) |
1370                 Node::TraitRef(..) => {
1371                     let path = match parent_node {
1372                         Node::Ty(&hir::Ty {
1373                             node: hir::TyKind::Path(QPath::Resolved(_, ref path)),
1374                             ..
1375                         })
1376                         | Node::Expr(&hir::Expr {
1377                             node: ExprKind::Path(QPath::Resolved(_, ref path)),
1378                             ..
1379                         }) => {
1380                             Some(&**path)
1381                         }
1382                         Node::Expr(&hir::Expr { node: ExprKind::Struct(ref path, ..), .. }) => {
1383                             if let QPath::Resolved(_, ref path) = **path {
1384                                 Some(&**path)
1385                             } else {
1386                                 None
1387                             }
1388                         }
1389                         Node::TraitRef(&hir::TraitRef { ref path, .. }) => Some(&**path),
1390                         _ => None,
1391                     };
1392
1393                     if let Some(path) = path {
1394                         let arg_index = path.segments.iter()
1395                             .filter_map(|seg| seg.args.as_ref())
1396                             .map(|generic_args| generic_args.args.as_ref())
1397                             .find_map(|args| {
1398                                 args.iter()
1399                                     .filter(|arg| arg.is_const())
1400                                     .enumerate()
1401                                     .filter(|(_, arg)| arg.id() == hir_id)
1402                                     .map(|(index, _)| index)
1403                                     .next()
1404                             })
1405                             .or_else(|| {
1406                                 if !fail {
1407                                     None
1408                                 } else {
1409                                     bug!("no arg matching AnonConst in path")
1410                                 }
1411                             })?;
1412
1413                         // We've encountered an `AnonConst` in some path, so we need to
1414                         // figure out which generic parameter it corresponds to and return
1415                         // the relevant type.
1416                         let generics = match path.res {
1417                             Res::Def(DefKind::Ctor(..), def_id) => {
1418                                 tcx.generics_of(tcx.parent(def_id).unwrap())
1419                             }
1420                             Res::Def(_, def_id) => tcx.generics_of(def_id),
1421                             Res::Err => return Some(tcx.types.err),
1422                             _ if !fail => return None,
1423                             res => {
1424                                 tcx.sess.delay_span_bug(
1425                                     DUMMY_SP,
1426                                     &format!(
1427                                         "unexpected const parent path def {:?}",
1428                                         res,
1429                                     ),
1430                                 );
1431                                 return Some(tcx.types.err);
1432                             }
1433                         };
1434
1435                         generics.params.iter()
1436                             .filter(|param| {
1437                                 if let ty::GenericParamDefKind::Const = param.kind {
1438                                     true
1439                                 } else {
1440                                     false
1441                                 }
1442                             })
1443                             .nth(arg_index)
1444                             .map(|param| tcx.type_of(param.def_id))
1445                             // This is no generic parameter associated with the arg. This is
1446                             // probably from an extra arg where one is not needed.
1447                             .unwrap_or(tcx.types.err)
1448                     } else {
1449                         if !fail {
1450                             return None;
1451                         }
1452                         tcx.sess.delay_span_bug(
1453                             DUMMY_SP,
1454                             &format!(
1455                                 "unexpected const parent path {:?}",
1456                                 parent_node,
1457                             ),
1458                         );
1459                         return Some(tcx.types.err);
1460                     }
1461                 }
1462
1463                 x => {
1464                     if !fail {
1465                         return None;
1466                     }
1467                     tcx.sess.delay_span_bug(
1468                         DUMMY_SP,
1469                         &format!(
1470                             "unexpected const parent in type_of_def_id(): {:?}", x
1471                         ),
1472                     );
1473                     tcx.types.err
1474                 }
1475             }
1476         }
1477
1478         Node::GenericParam(param) => match &param.kind {
1479             hir::GenericParamKind::Type { default: Some(ref ty), .. } |
1480             hir::GenericParamKind::Const { ref ty, .. } => {
1481                 icx.to_ty(ty)
1482             }
1483             x => {
1484                 if !fail {
1485                     return None;
1486                 }
1487                 bug!("unexpected non-type Node::GenericParam: {:?}", x)
1488             },
1489         },
1490
1491         x => {
1492             if !fail {
1493                 return None;
1494             }
1495             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1496         }
1497     })
1498 }
1499
1500 fn find_opaque_ty_constraints(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1501     use rustc::hir::{ImplItem, Item, TraitItem};
1502
1503     debug!("find_opaque_ty_constraints({:?})", def_id);
1504
1505     struct ConstraintLocator<'tcx> {
1506         tcx: TyCtxt<'tcx>,
1507         def_id: DefId,
1508         // (first found type span, actual type, mapping from the opaque type's generic
1509         // parameters to the concrete type's generic parameters)
1510         //
1511         // The mapping is an index for each use site of a generic parameter in the concrete type
1512         //
1513         // The indices index into the generic parameters on the opaque type.
1514         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1515     }
1516
1517     impl ConstraintLocator<'tcx> {
1518         fn check(&mut self, def_id: DefId) {
1519             // Don't try to check items that cannot possibly constrain the type.
1520             if !self.tcx.has_typeck_tables(def_id) {
1521                 debug!(
1522                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`: no tables",
1523                     self.def_id,
1524                     def_id,
1525                 );
1526                 return;
1527             }
1528             let ty = self
1529                 .tcx
1530                 .typeck_tables_of(def_id)
1531                 .concrete_opaque_types
1532                 .get(&self.def_id);
1533             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1534                 debug!(
1535                     "find_opaque_ty_constraints: found constraint for `{:?}` at `{:?}`: {:?}",
1536                     self.def_id,
1537                     def_id,
1538                     ty,
1539                 );
1540
1541                 // FIXME(oli-obk): trace the actual span from inference to improve errors.
1542                 let span = self.tcx.def_span(def_id);
1543                 // used to quickly look up the position of a generic parameter
1544                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1545                 // Skipping binder is ok, since we only use this to find generic parameters and
1546                 // their positions.
1547                 for (idx, subst) in substs.iter().enumerate() {
1548                     if let UnpackedKind::Type(ty) = subst.unpack() {
1549                         if let ty::Param(p) = ty.sty {
1550                             if index_map.insert(p, idx).is_some() {
1551                                 // There was already an entry for `p`, meaning a generic parameter
1552                                 // was used twice.
1553                                 self.tcx.sess.span_err(
1554                                     span,
1555                                     &format!(
1556                                         "defining opaque type use restricts opaque \
1557                                          type by using the generic parameter `{}` twice",
1558                                         p,
1559                                     ),
1560                                 );
1561                                 return;
1562                             }
1563                         } else {
1564                             self.tcx.sess.delay_span_bug(
1565                                 span,
1566                                 &format!(
1567                                     "non-defining opaque ty use in defining scope: {:?}, {:?}",
1568                                     concrete_type, substs,
1569                                 ),
1570                             );
1571                         }
1572                     }
1573                 }
1574                 // Compute the index within the opaque type for each generic parameter used in
1575                 // the concrete type.
1576                 let indices = concrete_type
1577                     .subst(self.tcx, substs)
1578                     .walk()
1579                     .filter_map(|t| match &t.sty {
1580                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1581                         _ => None,
1582                     }).collect();
1583                 let is_param = |ty: Ty<'_>| match ty.sty {
1584                     ty::Param(_) => true,
1585                     _ => false,
1586                 };
1587                 if !substs.types().all(is_param) {
1588                     self.tcx.sess.span_err(
1589                         span,
1590                         "defining opaque type use does not fully define opaque type",
1591                     );
1592                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1593                     let mut ty = concrete_type.walk().fuse();
1594                     let mut p_ty = prev_ty.walk().fuse();
1595                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.sty, &p.sty) {
1596                         // Type parameters are equal to any other type parameter for the purpose of
1597                         // concrete type equality, as it is possible to obtain the same type just
1598                         // by passing matching parameters to a function.
1599                         (ty::Param(_), ty::Param(_)) => true,
1600                         _ => t == p,
1601                     });
1602                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1603                         debug!("find_opaque_ty_constraints: span={:?}", span);
1604                         // Found different concrete types for the opaque type.
1605                         let mut err = self.tcx.sess.struct_span_err(
1606                             span,
1607                             "concrete type differs from previous defining opaque type use",
1608                         );
1609                         err.span_label(
1610                             span,
1611                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1612                         );
1613                         err.span_note(prev_span, "previous use here");
1614                         err.emit();
1615                     } else if indices != *prev_indices {
1616                         // Found "same" concrete types, but the generic parameter order differs.
1617                         let mut err = self.tcx.sess.struct_span_err(
1618                             span,
1619                             "concrete type's generic parameters differ from previous defining use",
1620                         );
1621                         use std::fmt::Write;
1622                         let mut s = String::new();
1623                         write!(s, "expected [").unwrap();
1624                         let list = |s: &mut String, indices: &Vec<usize>| {
1625                             let mut indices = indices.iter().cloned();
1626                             if let Some(first) = indices.next() {
1627                                 write!(s, "`{}`", substs[first]).unwrap();
1628                                 for i in indices {
1629                                     write!(s, ", `{}`", substs[i]).unwrap();
1630                                 }
1631                             }
1632                         };
1633                         list(&mut s, prev_indices);
1634                         write!(s, "], got [").unwrap();
1635                         list(&mut s, &indices);
1636                         write!(s, "]").unwrap();
1637                         err.span_label(span, s);
1638                         err.span_note(prev_span, "previous use here");
1639                         err.emit();
1640                     }
1641                 } else {
1642                     self.found = Some((span, concrete_type, indices));
1643                 }
1644             } else {
1645                 debug!(
1646                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`",
1647                     self.def_id,
1648                     def_id,
1649                 );
1650             }
1651         }
1652     }
1653
1654     impl<'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'tcx> {
1655         fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'tcx> {
1656             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1657         }
1658         fn visit_item(&mut self, it: &'tcx Item) {
1659             debug!("find_existential_constraints: visiting {:?}", it);
1660             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1661             // The opaque type itself or its children are not within its reveal scope.
1662             if def_id != self.def_id {
1663                 self.check(def_id);
1664                 intravisit::walk_item(self, it);
1665             }
1666         }
1667         fn visit_impl_item(&mut self, it: &'tcx ImplItem) {
1668             debug!("find_existential_constraints: visiting {:?}", it);
1669             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1670             // The opaque type itself or its children are not within its reveal scope.
1671             if def_id != self.def_id {
1672                 self.check(def_id);
1673                 intravisit::walk_impl_item(self, it);
1674             }
1675         }
1676         fn visit_trait_item(&mut self, it: &'tcx TraitItem) {
1677             debug!("find_existential_constraints: visiting {:?}", it);
1678             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1679             self.check(def_id);
1680             intravisit::walk_trait_item(self, it);
1681         }
1682     }
1683
1684     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1685     let scope = tcx.hir()
1686         .get_defining_scope(hir_id)
1687         .expect("could not get defining scope");
1688     let mut locator = ConstraintLocator {
1689         def_id,
1690         tcx,
1691         found: None,
1692     };
1693
1694     debug!("find_opaque_ty_constraints: scope={:?}", scope);
1695
1696     if scope == hir::CRATE_HIR_ID {
1697         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1698     } else {
1699         debug!("find_opaque_ty_constraints: scope={:?}", tcx.hir().get(scope));
1700         match tcx.hir().get(scope) {
1701             // We explicitly call `visit_*` methods, instead of using `intravisit::walk_*` methods
1702             // This allows our visitor to process the defining item itself, causing
1703             // it to pick up any 'sibling' defining uses.
1704             //
1705             // For example, this code:
1706             // ```
1707             // fn foo() {
1708             //     type Blah = impl Debug;
1709             //     let my_closure = || -> Blah { true };
1710             // }
1711             // ```
1712             //
1713             // requires us to explicitly process `foo()` in order
1714             // to notice the defining usage of `Blah`.
1715             Node::Item(ref it) => locator.visit_item(it),
1716             Node::ImplItem(ref it) => locator.visit_impl_item(it),
1717             Node::TraitItem(ref it) => locator.visit_trait_item(it),
1718             other => bug!(
1719                 "{:?} is not a valid scope for an opaque type item",
1720                 other
1721             ),
1722         }
1723     }
1724
1725     match locator.found {
1726         Some((_, ty, _)) => ty,
1727         None => {
1728             let span = tcx.def_span(def_id);
1729             tcx.sess.span_err(span, "could not find defining uses");
1730             tcx.types.err
1731         }
1732     }
1733 }
1734
1735 pub fn get_infer_ret_ty(output: &'_ hir::FunctionRetTy) -> Option<&hir::Ty> {
1736     if let hir::FunctionRetTy::Return(ref ty) = output {
1737         if let hir::TyKind::Infer = ty.node {
1738             return Some(&**ty)
1739         }
1740     }
1741     None
1742 }
1743
1744 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1745     use rustc::hir::*;
1746     use rustc::hir::Node::*;
1747
1748     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1749
1750     let icx = ItemCtxt::new(tcx, def_id);
1751
1752     match tcx.hir().get(hir_id) {
1753         TraitItem(hir::TraitItem {
1754             node: TraitItemKind::Method(MethodSig { header, decl }, TraitMethod::Provided(_)),
1755             ..
1756         })
1757         | ImplItem(hir::ImplItem {
1758             node: ImplItemKind::Method(MethodSig { header, decl }, _),
1759             ..
1760         })
1761         | Item(hir::Item {
1762             node: ItemKind::Fn(decl, header, _, _),
1763             ..
1764         }) => match get_infer_ret_ty(&decl.output) {
1765             Some(ty) => {
1766                 let fn_sig = tcx.typeck_tables_of(def_id).liberated_fn_sigs()[hir_id];
1767                 let mut diag = bad_placeholder_type(tcx, ty.span);
1768                 let ret_ty = fn_sig.output();
1769                 if ret_ty != tcx.types.err  {
1770                     diag.span_suggestion(
1771                         ty.span,
1772                         "replace `_` with the correct return type",
1773                         ret_ty.to_string(),
1774                         Applicability::MaybeIncorrect,
1775                     );
1776                 }
1777                 diag.emit();
1778                 ty::Binder::bind(fn_sig)
1779             },
1780             None => AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl)
1781         },
1782
1783         TraitItem(hir::TraitItem {
1784             node: TraitItemKind::Method(MethodSig { header, decl }, _),
1785             ..
1786         }) => {
1787             AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl)
1788         },
1789
1790         ForeignItem(&hir::ForeignItem {
1791             node: ForeignItemKind::Fn(ref fn_decl, _, _),
1792             ..
1793         }) => {
1794             let abi = tcx.hir().get_foreign_abi(hir_id);
1795             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
1796         }
1797
1798         Ctor(data) | Variant(Spanned {
1799             node: hir::VariantKind { data, ..  },
1800             ..
1801         }) if data.ctor_hir_id().is_some() => {
1802             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id));
1803             let inputs = data.fields()
1804                 .iter()
1805                 .map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1806             ty::Binder::bind(tcx.mk_fn_sig(
1807                 inputs,
1808                 ty,
1809                 false,
1810                 hir::Unsafety::Normal,
1811                 abi::Abi::Rust,
1812             ))
1813         }
1814
1815         Expr(&hir::Expr {
1816             node: hir::ExprKind::Closure(..),
1817             ..
1818         }) => {
1819             // Closure signatures are not like other function
1820             // signatures and cannot be accessed through `fn_sig`. For
1821             // example, a closure signature excludes the `self`
1822             // argument. In any case they are embedded within the
1823             // closure type as part of the `ClosureSubsts`.
1824             //
1825             // To get
1826             // the signature of a closure, you should use the
1827             // `closure_sig` method on the `ClosureSubsts`:
1828             //
1829             //    closure_substs.closure_sig(def_id, tcx)
1830             //
1831             // or, inside of an inference context, you can use
1832             //
1833             //    infcx.closure_sig(def_id, closure_substs)
1834             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
1835         }
1836
1837         x => {
1838             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1839         }
1840     }
1841 }
1842
1843 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1844     let icx = ItemCtxt::new(tcx, def_id);
1845
1846     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1847     match tcx.hir().expect_item(hir_id).node {
1848         hir::ItemKind::Impl(.., ref opt_trait_ref, _, _) => {
1849             opt_trait_ref.as_ref().map(|ast_trait_ref| {
1850                 let selfty = tcx.type_of(def_id);
1851                 AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1852             })
1853         }
1854         _ => bug!(),
1855     }
1856 }
1857
1858 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> hir::ImplPolarity {
1859     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1860     match tcx.hir().expect_item(hir_id).node {
1861         hir::ItemKind::Impl(_, polarity, ..) => polarity,
1862         ref item => bug!("impl_polarity: {:?} not an impl", item),
1863     }
1864 }
1865
1866 /// Returns the early-bound lifetimes declared in this generics
1867 /// listing. For anything other than fns/methods, this is just all
1868 /// the lifetimes that are declared. For fns or methods, we have to
1869 /// screen out those that do not appear in any where-clauses etc using
1870 /// `resolve_lifetime::early_bound_lifetimes`.
1871 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
1872     tcx: TyCtxt<'tcx>,
1873     generics: &'a hir::Generics,
1874 ) -> impl Iterator<Item = &'a hir::GenericParam> + Captures<'tcx> {
1875     generics
1876         .params
1877         .iter()
1878         .filter(move |param| match param.kind {
1879             GenericParamKind::Lifetime { .. } => {
1880                 !tcx.is_late_bound(param.hir_id)
1881             }
1882             _ => false,
1883         })
1884 }
1885
1886 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1887 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1888 /// inferred constraints concerning which regions outlive other regions.
1889 fn predicates_defined_on(
1890     tcx: TyCtxt<'_>,
1891     def_id: DefId,
1892 ) -> &ty::GenericPredicates<'_> {
1893     debug!("predicates_defined_on({:?})", def_id);
1894     let mut result = tcx.explicit_predicates_of(def_id);
1895     debug!(
1896         "predicates_defined_on: explicit_predicates_of({:?}) = {:?}",
1897         def_id,
1898         result,
1899     );
1900     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1901     if !inferred_outlives.is_empty() {
1902         let span = tcx.def_span(def_id);
1903         debug!(
1904             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1905             def_id,
1906             inferred_outlives,
1907         );
1908         let mut predicates = (*result).clone();
1909         predicates.predicates.extend(inferred_outlives.iter().map(|&p| (p, span)));
1910         result = tcx.arena.alloc(predicates);
1911     }
1912     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1913     result
1914 }
1915
1916 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1917 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1918 /// `Self: Trait` predicates for traits.
1919 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::GenericPredicates<'_> {
1920     let mut result = tcx.predicates_defined_on(def_id);
1921
1922     if tcx.is_trait(def_id) {
1923         // For traits, add `Self: Trait` predicate. This is
1924         // not part of the predicates that a user writes, but it
1925         // is something that one must prove in order to invoke a
1926         // method or project an associated type.
1927         //
1928         // In the chalk setup, this predicate is not part of the
1929         // "predicates" for a trait item. But it is useful in
1930         // rustc because if you directly (e.g.) invoke a trait
1931         // method like `Trait::method(...)`, you must naturally
1932         // prove that the trait applies to the types that were
1933         // used, and adding the predicate into this list ensures
1934         // that this is done.
1935         let span = tcx.def_span(def_id);
1936         let mut predicates = (*result).clone();
1937         predicates.predicates.push((ty::TraitRef::identity(tcx, def_id).to_predicate(), span));
1938         result = tcx.arena.alloc(predicates);
1939     }
1940     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
1941     result
1942 }
1943
1944 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
1945 /// N.B., this does not include any implied/inferred constraints.
1946 fn explicit_predicates_of(
1947     tcx: TyCtxt<'_>,
1948     def_id: DefId,
1949 ) -> &ty::GenericPredicates<'_> {
1950     use rustc::hir::*;
1951     use rustc_data_structures::fx::FxHashSet;
1952
1953     debug!("explicit_predicates_of(def_id={:?})", def_id);
1954
1955     /// A data structure with unique elements, which preserves order of insertion.
1956     /// Preserving the order of insertion is important here so as not to break
1957     /// compile-fail UI tests.
1958     struct UniquePredicates<'tcx> {
1959         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
1960         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
1961     }
1962
1963     impl<'tcx> UniquePredicates<'tcx> {
1964         fn new() -> Self {
1965             UniquePredicates {
1966                 predicates: vec![],
1967                 uniques: FxHashSet::default(),
1968             }
1969         }
1970
1971         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
1972             if self.uniques.insert(value) {
1973                 self.predicates.push(value);
1974             }
1975         }
1976
1977         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
1978             for value in iter {
1979                 self.push(value);
1980             }
1981         }
1982     }
1983
1984     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1985         Some(hir_id) => hir_id,
1986         None => return tcx.predicates_of(def_id),
1987     };
1988     let node = tcx.hir().get(hir_id);
1989
1990     let mut is_trait = None;
1991     let mut is_default_impl_trait = None;
1992
1993     let icx = ItemCtxt::new(tcx, def_id);
1994
1995     const NO_GENERICS: &hir::Generics = &hir::Generics::empty();
1996
1997     let empty_trait_items = HirVec::new();
1998
1999     let mut predicates = UniquePredicates::new();
2000
2001     let ast_generics = match node {
2002         Node::TraitItem(item) => &item.generics,
2003
2004         Node::ImplItem(item) => match item.node {
2005             ImplItemKind::OpaqueTy(ref bounds) => {
2006                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
2007                 let opaque_ty = tcx.mk_opaque(def_id, substs);
2008
2009                 // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2010                 let bounds = AstConv::compute_bounds(
2011                     &icx,
2012                     opaque_ty,
2013                     bounds,
2014                     SizedByDefault::Yes,
2015                     tcx.def_span(def_id),
2016                 );
2017
2018                 predicates.extend(bounds.predicates(tcx, opaque_ty));
2019                 &item.generics
2020             }
2021             _ => &item.generics,
2022         },
2023
2024         Node::Item(item) => {
2025             match item.node {
2026                 ItemKind::Impl(_, _, defaultness, ref generics, ..) => {
2027                     if defaultness.is_default() {
2028                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
2029                     }
2030                     generics
2031                 }
2032                 ItemKind::Fn(.., ref generics, _)
2033                 | ItemKind::TyAlias(_, ref generics)
2034                 | ItemKind::Enum(_, ref generics)
2035                 | ItemKind::Struct(_, ref generics)
2036                 | ItemKind::Union(_, ref generics) => generics,
2037
2038                 ItemKind::Trait(_, _, ref generics, .., ref items) => {
2039                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
2040                     generics
2041                 }
2042                 ItemKind::TraitAlias(ref generics, _) => {
2043                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &empty_trait_items));
2044                     generics
2045                 }
2046                 ItemKind::OpaqueTy(OpaqueTy {
2047                     ref bounds,
2048                     impl_trait_fn,
2049                     ref generics,
2050                     origin: _,
2051                 }) => {
2052                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
2053                     let opaque_ty = tcx.mk_opaque(def_id, substs);
2054
2055                     // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2056                     let bounds = AstConv::compute_bounds(
2057                         &icx,
2058                         opaque_ty,
2059                         bounds,
2060                         SizedByDefault::Yes,
2061                         tcx.def_span(def_id),
2062                     );
2063
2064                     let bounds_predicates = bounds.predicates(tcx, opaque_ty);
2065                     if impl_trait_fn.is_some() {
2066                         // opaque types
2067                         return tcx.arena.alloc(ty::GenericPredicates {
2068                             parent: None,
2069                             predicates: bounds_predicates,
2070                         });
2071                     } else {
2072                         // named opaque types
2073                         predicates.extend(bounds_predicates);
2074                         generics
2075                     }
2076                 }
2077
2078                 _ => NO_GENERICS,
2079             }
2080         }
2081
2082         Node::ForeignItem(item) => match item.node {
2083             ForeignItemKind::Static(..) => NO_GENERICS,
2084             ForeignItemKind::Fn(_, _, ref generics) => generics,
2085             ForeignItemKind::Type => NO_GENERICS,
2086         },
2087
2088         _ => NO_GENERICS,
2089     };
2090
2091     let generics = tcx.generics_of(def_id);
2092     let parent_count = generics.parent_count as u32;
2093     let has_own_self = generics.has_self && parent_count == 0;
2094
2095     // Below we'll consider the bounds on the type parameters (including `Self`)
2096     // and the explicit where-clauses, but to get the full set of predicates
2097     // on a trait we need to add in the supertrait bounds and bounds found on
2098     // associated types.
2099     if let Some((_trait_ref, _)) = is_trait {
2100         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2101     }
2102
2103     // In default impls, we can assume that the self type implements
2104     // the trait. So in:
2105     //
2106     //     default impl Foo for Bar { .. }
2107     //
2108     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2109     // (see below). Recall that a default impl is not itself an impl, but rather a
2110     // set of defaults that can be incorporated into another impl.
2111     if let Some(trait_ref) = is_default_impl_trait {
2112         predicates.push((trait_ref.to_poly_trait_ref().to_predicate(), tcx.def_span(def_id)));
2113     }
2114
2115     // Collect the region predicates that were declared inline as
2116     // well. In the case of parameters declared on a fn or method, we
2117     // have to be careful to only iterate over early-bound regions.
2118     let mut index = parent_count + has_own_self as u32;
2119     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2120         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2121             def_id: tcx.hir().local_def_id(param.hir_id),
2122             index,
2123             name: param.name.ident().as_interned_str(),
2124         }));
2125         index += 1;
2126
2127         match param.kind {
2128             GenericParamKind::Lifetime { .. } => {
2129                 param.bounds.iter().for_each(|bound| match bound {
2130                     hir::GenericBound::Outlives(lt) => {
2131                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2132                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2133                         predicates.push((outlives.to_predicate(), lt.span));
2134                     }
2135                     _ => bug!(),
2136                 });
2137             }
2138             _ => bug!(),
2139         }
2140     }
2141
2142     // Collect the predicates that were written inline by the user on each
2143     // type parameter (e.g., `<T: Foo>`).
2144     for param in &ast_generics.params {
2145         if let GenericParamKind::Type { .. } = param.kind {
2146             let name = param.name.ident().as_interned_str();
2147             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2148             index += 1;
2149
2150             let sized = SizedByDefault::Yes;
2151             let bounds = AstConv::compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2152             predicates.extend(bounds.predicates(tcx, param_ty));
2153         }
2154     }
2155
2156     // Add in the bounds that appear in the where-clause.
2157     let where_clause = &ast_generics.where_clause;
2158     for predicate in &where_clause.predicates {
2159         match predicate {
2160             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2161                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2162
2163                 // Keep the type around in a dummy predicate, in case of no bounds.
2164                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2165                 // is still checked for WF.
2166                 if bound_pred.bounds.is_empty() {
2167                     if let ty::Param(_) = ty.sty {
2168                         // This is a `where T:`, which can be in the HIR from the
2169                         // transformation that moves `?Sized` to `T`'s declaration.
2170                         // We can skip the predicate because type parameters are
2171                         // trivially WF, but also we *should*, to avoid exposing
2172                         // users who never wrote `where Type:,` themselves, to
2173                         // compiler/tooling bugs from not handling WF predicates.
2174                     } else {
2175                         let span = bound_pred.bounded_ty.span;
2176                         let predicate = ty::OutlivesPredicate(ty, tcx.mk_region(ty::ReEmpty));
2177                         predicates.push(
2178                             (ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)), span)
2179                         );
2180                     }
2181                 }
2182
2183                 for bound in bound_pred.bounds.iter() {
2184                     match bound {
2185                         &hir::GenericBound::Trait(ref poly_trait_ref, _) => {
2186                             let mut bounds = Bounds::default();
2187                             let _ = AstConv::instantiate_poly_trait_ref(
2188                                 &icx,
2189                                 poly_trait_ref,
2190                                 ty,
2191                                 &mut bounds,
2192                             );
2193                             predicates.extend(bounds.predicates(tcx, ty));
2194                         }
2195
2196                         &hir::GenericBound::Outlives(ref lifetime) => {
2197                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2198                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2199                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2200                         }
2201                     }
2202                 }
2203             }
2204
2205             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2206                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2207                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2208                     let (r2, span) = match bound {
2209                         hir::GenericBound::Outlives(lt) => {
2210                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2211                         }
2212                         _ => bug!(),
2213                     };
2214                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2215
2216                     (ty::Predicate::RegionOutlives(pred), span)
2217                 }))
2218             }
2219
2220             &hir::WherePredicate::EqPredicate(..) => {
2221                 // FIXME(#20041)
2222             }
2223         }
2224     }
2225
2226     // Add predicates from associated type bounds.
2227     if let Some((self_trait_ref, trait_items)) = is_trait {
2228         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2229             let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2230             let bounds = match trait_item.node {
2231                 hir::TraitItemKind::Type(ref bounds, _) => bounds,
2232                 _ => return Vec::new().into_iter()
2233             };
2234
2235             let assoc_ty =
2236                 tcx.mk_projection(tcx.hir().local_def_id(trait_item.hir_id),
2237                     self_trait_ref.substs);
2238
2239             let bounds = AstConv::compute_bounds(
2240                 &ItemCtxt::new(tcx, def_id),
2241                 assoc_ty,
2242                 bounds,
2243                 SizedByDefault::Yes,
2244                 trait_item.span,
2245             );
2246
2247             bounds.predicates(tcx, assoc_ty).into_iter()
2248         }))
2249     }
2250
2251     let mut predicates = predicates.predicates;
2252
2253     // Subtle: before we store the predicates into the tcx, we
2254     // sort them so that predicates like `T: Foo<Item=U>` come
2255     // before uses of `U`.  This avoids false ambiguity errors
2256     // in trait checking. See `setup_constraining_predicates`
2257     // for details.
2258     if let Node::Item(&Item {
2259         node: ItemKind::Impl(..),
2260         ..
2261     }) = node
2262     {
2263         let self_ty = tcx.type_of(def_id);
2264         let trait_ref = tcx.impl_trait_ref(def_id);
2265         cgp::setup_constraining_predicates(
2266             tcx,
2267             &mut predicates,
2268             trait_ref,
2269             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2270         );
2271     }
2272
2273     let result = tcx.arena.alloc(ty::GenericPredicates {
2274         parent: generics.parent,
2275         predicates,
2276     });
2277     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2278     result
2279 }
2280
2281 /// Converts a specific `GenericBound` from the AST into a set of
2282 /// predicates that apply to the self type. A vector is returned
2283 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2284 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2285 /// and `<T as Bar>::X == i32`).
2286 fn predicates_from_bound<'tcx>(
2287     astconv: &dyn AstConv<'tcx>,
2288     param_ty: Ty<'tcx>,
2289     bound: &'tcx hir::GenericBound,
2290 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2291     match *bound {
2292         hir::GenericBound::Trait(ref tr, hir::TraitBoundModifier::None) => {
2293             let mut bounds = Bounds::default();
2294             let _ = astconv.instantiate_poly_trait_ref(
2295                 tr,
2296                 param_ty,
2297                 &mut bounds,
2298             );
2299             bounds.predicates(astconv.tcx(), param_ty)
2300         }
2301         hir::GenericBound::Outlives(ref lifetime) => {
2302             let region = astconv.ast_region_to_region(lifetime, None);
2303             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2304             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2305         }
2306         hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => vec![],
2307     }
2308 }
2309
2310 fn compute_sig_of_foreign_fn_decl<'tcx>(
2311     tcx: TyCtxt<'tcx>,
2312     def_id: DefId,
2313     decl: &'tcx hir::FnDecl,
2314     abi: abi::Abi,
2315 ) -> ty::PolyFnSig<'tcx> {
2316     let unsafety = if abi == abi::Abi::RustIntrinsic {
2317         intrisic_operation_unsafety(&*tcx.item_name(def_id).as_str())
2318     } else {
2319         hir::Unsafety::Unsafe
2320     };
2321     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl);
2322
2323     // Feature gate SIMD types in FFI, since I am not sure that the
2324     // ABIs are handled at all correctly. -huonw
2325     if abi != abi::Abi::RustIntrinsic
2326         && abi != abi::Abi::PlatformIntrinsic
2327         && !tcx.features().simd_ffi
2328     {
2329         let check = |ast_ty: &hir::Ty, ty: Ty<'_>| {
2330             if ty.is_simd() {
2331                 tcx.sess
2332                    .struct_span_err(
2333                        ast_ty.span,
2334                        &format!(
2335                            "use of SIMD type `{}` in FFI is highly experimental and \
2336                             may result in invalid code",
2337                            tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2338                        ),
2339                    )
2340                    .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2341                    .emit();
2342             }
2343         };
2344         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2345             check(&input, ty)
2346         }
2347         if let hir::Return(ref ty) = decl.output {
2348             check(&ty, *fty.output().skip_binder())
2349         }
2350     }
2351
2352     fty
2353 }
2354
2355 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2356     match tcx.hir().get_if_local(def_id) {
2357         Some(Node::ForeignItem(..)) => true,
2358         Some(_) => false,
2359         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2360     }
2361 }
2362
2363 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2364     match tcx.hir().get_if_local(def_id) {
2365         Some(Node::Item(&hir::Item {
2366             node: hir::ItemKind::Static(_, mutbl, _), ..
2367         })) |
2368         Some(Node::ForeignItem( &hir::ForeignItem {
2369             node: hir::ForeignItemKind::Static(_, mutbl), ..
2370         })) => Some(mutbl),
2371         Some(_) => None,
2372         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2373     }
2374 }
2375
2376 fn from_target_feature(
2377     tcx: TyCtxt<'_>,
2378     id: DefId,
2379     attr: &ast::Attribute,
2380     whitelist: &FxHashMap<String, Option<Symbol>>,
2381     target_features: &mut Vec<Symbol>,
2382 ) {
2383     let list = match attr.meta_item_list() {
2384         Some(list) => list,
2385         None => return,
2386     };
2387     let bad_item = |span| {
2388         let msg = "malformed `target_feature` attribute input";
2389         let code = "enable = \"..\"".to_owned();
2390         tcx.sess.struct_span_err(span, &msg)
2391             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2392             .emit();
2393     };
2394     let rust_features = tcx.features();
2395     for item in list {
2396         // Only `enable = ...` is accepted in the meta-item list.
2397         if !item.check_name(sym::enable) {
2398             bad_item(item.span());
2399             continue;
2400         }
2401
2402         // Must be of the form `enable = "..."` (a string).
2403         let value = match item.value_str() {
2404             Some(value) => value,
2405             None => {
2406                 bad_item(item.span());
2407                 continue;
2408             }
2409         };
2410
2411         // We allow comma separation to enable multiple features.
2412         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2413             // Only allow whitelisted features per platform.
2414             let feature_gate = match whitelist.get(feature) {
2415                 Some(g) => g,
2416                 None => {
2417                     let msg = format!(
2418                         "the feature named `{}` is not valid for this target",
2419                         feature
2420                     );
2421                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2422                     err.span_label(
2423                         item.span(),
2424                         format!("`{}` is not valid for this target", feature),
2425                     );
2426                     if feature.starts_with("+") {
2427                         let valid = whitelist.contains_key(&feature[1..]);
2428                         if valid {
2429                             err.help("consider removing the leading `+` in the feature name");
2430                         }
2431                     }
2432                     err.emit();
2433                     return None;
2434                 }
2435             };
2436
2437             // Only allow features whose feature gates have been enabled.
2438             let allowed = match feature_gate.as_ref().map(|s| *s) {
2439                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2440                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2441                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2442                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2443                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2444                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2445                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2446                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2447                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2448                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2449                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2450                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2451                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2452                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2453                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2454                 Some(name) => bug!("unknown target feature gate {}", name),
2455                 None => true,
2456             };
2457             if !allowed && id.is_local() {
2458                 feature_gate::emit_feature_err(
2459                     &tcx.sess.parse_sess,
2460                     feature_gate.unwrap(),
2461                     item.span(),
2462                     feature_gate::GateIssue::Language,
2463                     &format!("the target feature `{}` is currently unstable", feature),
2464                 );
2465             }
2466             Some(Symbol::intern(feature))
2467         }));
2468     }
2469 }
2470
2471 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2472     use rustc::mir::mono::Linkage::*;
2473
2474     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2475     // applicable to variable declarations and may not really make sense for
2476     // Rust code in the first place but whitelist them anyway and trust that
2477     // the user knows what s/he's doing. Who knows, unanticipated use cases
2478     // may pop up in the future.
2479     //
2480     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2481     // and don't have to be, LLVM treats them as no-ops.
2482     match name {
2483         "appending" => Appending,
2484         "available_externally" => AvailableExternally,
2485         "common" => Common,
2486         "extern_weak" => ExternalWeak,
2487         "external" => External,
2488         "internal" => Internal,
2489         "linkonce" => LinkOnceAny,
2490         "linkonce_odr" => LinkOnceODR,
2491         "private" => Private,
2492         "weak" => WeakAny,
2493         "weak_odr" => WeakODR,
2494         _ => {
2495             let span = tcx.hir().span_if_local(def_id);
2496             if let Some(span) = span {
2497                 tcx.sess.span_fatal(span, "invalid linkage specified")
2498             } else {
2499                 tcx.sess
2500                    .fatal(&format!("invalid linkage specified: {}", name))
2501             }
2502         }
2503     }
2504 }
2505
2506 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2507     let attrs = tcx.get_attrs(id);
2508
2509     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2510
2511     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2512
2513     let mut inline_span = None;
2514     for attr in attrs.iter() {
2515         if attr.check_name(sym::cold) {
2516             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2517         } else if attr.check_name(sym::rustc_allocator) {
2518             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2519         } else if attr.check_name(sym::unwind) {
2520             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2521         } else if attr.check_name(sym::ffi_returns_twice) {
2522             if tcx.is_foreign_item(id) {
2523                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2524             } else {
2525                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2526                 struct_span_err!(
2527                     tcx.sess,
2528                     attr.span,
2529                     E0724,
2530                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2531                 ).emit();
2532             }
2533         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2534             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2535         } else if attr.check_name(sym::naked) {
2536             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2537         } else if attr.check_name(sym::no_mangle) {
2538             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2539         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2540             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2541         } else if attr.check_name(sym::no_debug) {
2542             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2543         } else if attr.check_name(sym::used) {
2544             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2545         } else if attr.check_name(sym::thread_local) {
2546             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2547         } else if attr.check_name(sym::export_name) {
2548             if let Some(s) = attr.value_str() {
2549                 if s.as_str().contains("\0") {
2550                     // `#[export_name = ...]` will be converted to a null-terminated string,
2551                     // so it may not contain any null characters.
2552                     struct_span_err!(
2553                         tcx.sess,
2554                         attr.span,
2555                         E0648,
2556                         "`export_name` may not contain null characters"
2557                     ).emit();
2558                 }
2559                 codegen_fn_attrs.export_name = Some(s);
2560             }
2561         } else if attr.check_name(sym::target_feature) {
2562             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2563                 let msg = "`#[target_feature(..)]` can only be applied to `unsafe` functions";
2564                 tcx.sess.struct_span_err(attr.span, msg)
2565                     .span_label(attr.span, "can only be applied to `unsafe` functions")
2566                     .span_label(tcx.def_span(id), "not an `unsafe` function")
2567                     .emit();
2568             }
2569             from_target_feature(
2570                 tcx,
2571                 id,
2572                 attr,
2573                 &whitelist,
2574                 &mut codegen_fn_attrs.target_features,
2575             );
2576         } else if attr.check_name(sym::linkage) {
2577             if let Some(val) = attr.value_str() {
2578                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2579             }
2580         } else if attr.check_name(sym::link_section) {
2581             if let Some(val) = attr.value_str() {
2582                 if val.as_str().bytes().any(|b| b == 0) {
2583                     let msg = format!(
2584                         "illegal null byte in link_section \
2585                          value: `{}`",
2586                         &val
2587                     );
2588                     tcx.sess.span_err(attr.span, &msg);
2589                 } else {
2590                     codegen_fn_attrs.link_section = Some(val);
2591                 }
2592             }
2593         } else if attr.check_name(sym::link_name) {
2594             codegen_fn_attrs.link_name = attr.value_str();
2595         }
2596     }
2597
2598     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2599         if attr.path != sym::inline {
2600             return ia;
2601         }
2602         match attr.meta().map(|i| i.node) {
2603             Some(MetaItemKind::Word) => {
2604                 mark_used(attr);
2605                 InlineAttr::Hint
2606             }
2607             Some(MetaItemKind::List(ref items)) => {
2608                 mark_used(attr);
2609                 inline_span = Some(attr.span);
2610                 if items.len() != 1 {
2611                     span_err!(
2612                         tcx.sess.diagnostic(),
2613                         attr.span,
2614                         E0534,
2615                         "expected one argument"
2616                     );
2617                     InlineAttr::None
2618                 } else if list_contains_name(&items[..], sym::always) {
2619                     InlineAttr::Always
2620                 } else if list_contains_name(&items[..], sym::never) {
2621                     InlineAttr::Never
2622                 } else {
2623                     span_err!(
2624                         tcx.sess.diagnostic(),
2625                         items[0].span(),
2626                         E0535,
2627                         "invalid argument"
2628                     );
2629
2630                     InlineAttr::None
2631                 }
2632             }
2633             Some(MetaItemKind::NameValue(_)) => ia,
2634             None => ia,
2635         }
2636     });
2637
2638     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2639         if attr.path != sym::optimize {
2640             return ia;
2641         }
2642         let err = |sp, s| span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s);
2643         match attr.meta().map(|i| i.node) {
2644             Some(MetaItemKind::Word) => {
2645                 err(attr.span, "expected one argument");
2646                 ia
2647             }
2648             Some(MetaItemKind::List(ref items)) => {
2649                 mark_used(attr);
2650                 inline_span = Some(attr.span);
2651                 if items.len() != 1 {
2652                     err(attr.span, "expected one argument");
2653                     OptimizeAttr::None
2654                 } else if list_contains_name(&items[..], sym::size) {
2655                     OptimizeAttr::Size
2656                 } else if list_contains_name(&items[..], sym::speed) {
2657                     OptimizeAttr::Speed
2658                 } else {
2659                     err(items[0].span(), "invalid argument");
2660                     OptimizeAttr::None
2661                 }
2662             }
2663             Some(MetaItemKind::NameValue(_)) => ia,
2664             None => ia,
2665         }
2666     });
2667
2668     // If a function uses #[target_feature] it can't be inlined into general
2669     // purpose functions as they wouldn't have the right target features
2670     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2671     // respected.
2672     if codegen_fn_attrs.target_features.len() > 0 {
2673         if codegen_fn_attrs.inline == InlineAttr::Always {
2674             if let Some(span) = inline_span {
2675                 tcx.sess.span_err(
2676                     span,
2677                     "cannot use `#[inline(always)]` with \
2678                      `#[target_feature]`",
2679                 );
2680             }
2681         }
2682     }
2683
2684     // Weak lang items have the same semantics as "std internal" symbols in the
2685     // sense that they're preserved through all our LTO passes and only
2686     // strippable by the linker.
2687     //
2688     // Additionally weak lang items have predetermined symbol names.
2689     if tcx.is_weak_lang_item(id) {
2690         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2691     }
2692     if let Some(name) = weak_lang_items::link_name(&attrs) {
2693         codegen_fn_attrs.export_name = Some(name);
2694         codegen_fn_attrs.link_name = Some(name);
2695     }
2696
2697     // Internal symbols to the standard library all have no_mangle semantics in
2698     // that they have defined symbol names present in the function name. This
2699     // also applies to weak symbols where they all have known symbol names.
2700     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2701         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2702     }
2703
2704     codegen_fn_attrs
2705 }