]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
Improve type size assertions
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *interprocedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds};
18 use crate::constrained_generic_params as cgp;
19 use crate::check::intrinsic::intrisic_operation_unsafety;
20 use crate::lint;
21 use crate::middle::lang_items::SizedTraitLangItem;
22 use crate::middle::resolve_lifetime as rl;
23 use crate::middle::weak_lang_items;
24 use rustc::mir::mono::Linkage;
25 use rustc::ty::query::Providers;
26 use rustc::ty::subst::{Subst, InternalSubsts};
27 use rustc::ty::util::Discr;
28 use rustc::ty::util::IntTypeExt;
29 use rustc::ty::subst::UnpackedKind;
30 use rustc::ty::{self, AdtKind, ToPolyTraitRef, Ty, TyCtxt};
31 use rustc::ty::{ReprOptions, ToPredicate};
32 use rustc::util::captures::Captures;
33 use rustc::util::nodemap::FxHashMap;
34 use rustc_data_structures::sync::Lrc;
35 use rustc_target::spec::abi;
36
37 use syntax::ast;
38 use syntax::ast::{Ident, MetaItemKind};
39 use syntax::attr::{InlineAttr, OptimizeAttr, list_contains_name, mark_used};
40 use syntax::source_map::Spanned;
41 use syntax::feature_gate;
42 use syntax::symbol::{keywords, Symbol, sym};
43 use syntax_pos::{Span, DUMMY_SP};
44
45 use rustc::hir::def::{CtorKind, Res, DefKind};
46 use rustc::hir::Node;
47 use rustc::hir::def_id::{DefId, LOCAL_CRATE};
48 use rustc::hir::intravisit::{self, NestedVisitorMap, Visitor};
49 use rustc::hir::GenericParamKind;
50 use rustc::hir::{self, CodegenFnAttrFlags, CodegenFnAttrs, Unsafety};
51
52 use std::iter;
53
54 struct OnlySelfBounds(bool);
55
56 ///////////////////////////////////////////////////////////////////////////
57 // Main entry point
58
59 fn collect_mod_item_types<'tcx>(tcx: TyCtxt<'_, 'tcx, 'tcx>, module_def_id: DefId) {
60     tcx.hir().visit_item_likes_in_module(
61         module_def_id,
62         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor()
63     );
64 }
65
66 pub fn provide(providers: &mut Providers<'_>) {
67     *providers = Providers {
68         type_of,
69         generics_of,
70         predicates_of,
71         predicates_defined_on,
72         explicit_predicates_of,
73         super_predicates_of,
74         type_param_predicates,
75         trait_def,
76         adt_def,
77         fn_sig,
78         impl_trait_ref,
79         impl_polarity,
80         is_foreign_item,
81         static_mutability,
82         codegen_fn_attrs,
83         collect_mod_item_types,
84         ..*providers
85     };
86 }
87
88 ///////////////////////////////////////////////////////////////////////////
89
90 /// Context specific to some particular item. This is what implements
91 /// `AstConv`. It has information about the predicates that are defined
92 /// on the trait. Unfortunately, this predicate information is
93 /// available in various different forms at various points in the
94 /// process. So we can't just store a pointer to e.g., the AST or the
95 /// parsed ty form, we have to be more flexible. To this end, the
96 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
97 /// `get_type_parameter_bounds` requests, drawing the information from
98 /// the AST (`hir::Generics`), recursively.
99 pub struct ItemCtxt<'a, 'tcx: 'a> {
100     tcx: TyCtxt<'a, 'tcx, 'tcx>,
101     item_def_id: DefId,
102 }
103
104 ///////////////////////////////////////////////////////////////////////////
105
106 struct CollectItemTypesVisitor<'a, 'tcx: 'a> {
107     tcx: TyCtxt<'a, 'tcx, 'tcx>,
108 }
109
110 impl<'a, 'tcx> Visitor<'tcx> for CollectItemTypesVisitor<'a, 'tcx> {
111     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
112         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
113     }
114
115     fn visit_item(&mut self, item: &'tcx hir::Item) {
116         convert_item(self.tcx, item.hir_id);
117         intravisit::walk_item(self, item);
118     }
119
120     fn visit_generics(&mut self, generics: &'tcx hir::Generics) {
121         for param in &generics.params {
122             match param.kind {
123                 hir::GenericParamKind::Lifetime { .. } => {}
124                 hir::GenericParamKind::Type {
125                     default: Some(_), ..
126                 } => {
127                     let def_id = self.tcx.hir().local_def_id_from_hir_id(param.hir_id);
128                     self.tcx.type_of(def_id);
129                 }
130                 hir::GenericParamKind::Type { .. } => {}
131                 hir::GenericParamKind::Const { .. } => {
132                     let def_id = self.tcx.hir().local_def_id_from_hir_id(param.hir_id);
133                     self.tcx.type_of(def_id);
134                 }
135             }
136         }
137         intravisit::walk_generics(self, generics);
138     }
139
140     fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
141         if let hir::ExprKind::Closure(..) = expr.node {
142             let def_id = self.tcx.hir().local_def_id_from_hir_id(expr.hir_id);
143             self.tcx.generics_of(def_id);
144             self.tcx.type_of(def_id);
145         }
146         intravisit::walk_expr(self, expr);
147     }
148
149     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem) {
150         convert_trait_item(self.tcx, trait_item.hir_id);
151         intravisit::walk_trait_item(self, trait_item);
152     }
153
154     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem) {
155         convert_impl_item(self.tcx, impl_item.hir_id);
156         intravisit::walk_impl_item(self, impl_item);
157     }
158 }
159
160 ///////////////////////////////////////////////////////////////////////////
161 // Utility types and common code for the above passes.
162
163 impl<'a, 'tcx> ItemCtxt<'a, 'tcx> {
164     pub fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>, item_def_id: DefId) -> ItemCtxt<'a, 'tcx> {
165         ItemCtxt { tcx, item_def_id }
166     }
167 }
168
169 impl<'a, 'tcx> ItemCtxt<'a, 'tcx> {
170     pub fn to_ty(&self, ast_ty: &hir::Ty) -> Ty<'tcx> {
171         AstConv::ast_ty_to_ty(self, ast_ty)
172     }
173 }
174
175 impl<'a, 'tcx> AstConv<'tcx, 'tcx> for ItemCtxt<'a, 'tcx> {
176     fn tcx<'b>(&'b self) -> TyCtxt<'b, 'tcx, 'tcx> {
177         self.tcx
178     }
179
180     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId)
181                                  -> Lrc<ty::GenericPredicates<'tcx>> {
182         self.tcx
183             .at(span)
184             .type_param_predicates((self.item_def_id, def_id))
185     }
186
187     fn re_infer(
188         &self,
189         _span: Span,
190         _def: Option<&ty::GenericParamDef>,
191     ) -> Option<ty::Region<'tcx>> {
192         None
193     }
194
195     fn ty_infer(&self, span: Span) -> Ty<'tcx> {
196         struct_span_err!(
197             self.tcx().sess,
198             span,
199             E0121,
200             "the type placeholder `_` is not allowed within types on item signatures"
201         ).span_label(span, "not allowed in type signatures")
202          .emit();
203
204         self.tcx().types.err
205     }
206
207     fn projected_ty_from_poly_trait_ref(
208         &self,
209         span: Span,
210         item_def_id: DefId,
211         poly_trait_ref: ty::PolyTraitRef<'tcx>,
212     ) -> Ty<'tcx> {
213         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
214             self.tcx().mk_projection(item_def_id, trait_ref.substs)
215         } else {
216             // no late-bound regions, we can just ignore the binder
217             span_err!(
218                 self.tcx().sess,
219                 span,
220                 E0212,
221                 "cannot extract an associated type from a higher-ranked trait bound \
222                  in this context"
223             );
224             self.tcx().types.err
225         }
226     }
227
228     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
229         // types in item signatures are not normalized, to avoid undue
230         // dependencies.
231         ty
232     }
233
234     fn set_tainted_by_errors(&self) {
235         // no obvious place to track this, just let it go
236     }
237
238     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
239         // no place to record types from signatures?
240     }
241 }
242
243 fn type_param_predicates<'a, 'tcx>(
244     tcx: TyCtxt<'a, 'tcx, 'tcx>,
245     (item_def_id, def_id): (DefId, DefId),
246 ) -> Lrc<ty::GenericPredicates<'tcx>> {
247     use rustc::hir::*;
248
249     // In the AST, bounds can derive from two places. Either
250     // written inline like `<T : Foo>` or in a where clause like
251     // `where T : Foo`.
252
253     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
254     let param_owner = tcx.hir().ty_param_owner(param_id);
255     let param_owner_def_id = tcx.hir().local_def_id_from_hir_id(param_owner);
256     let generics = tcx.generics_of(param_owner_def_id);
257     let index = generics.param_def_id_to_index[&def_id];
258     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id).as_interned_str());
259
260     // Don't look for bounds where the type parameter isn't in scope.
261     let parent = if item_def_id == param_owner_def_id {
262         None
263     } else {
264         tcx.generics_of(item_def_id).parent
265     };
266
267     let mut result = parent.map_or_else(
268         || Lrc::new(ty::GenericPredicates {
269             parent: None,
270             predicates: vec![],
271         }),
272         |parent| {
273             let icx = ItemCtxt::new(tcx, parent);
274             icx.get_type_parameter_bounds(DUMMY_SP, def_id)
275         },
276     );
277
278     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
279     let ast_generics = match tcx.hir().get_by_hir_id(item_hir_id) {
280         Node::TraitItem(item) => &item.generics,
281
282         Node::ImplItem(item) => &item.generics,
283
284         Node::Item(item) => {
285             match item.node {
286                 ItemKind::Fn(.., ref generics, _)
287                 | ItemKind::Impl(_, _, _, ref generics, ..)
288                 | ItemKind::Ty(_, ref generics)
289                 | ItemKind::Existential(ExistTy {
290                     ref generics,
291                     impl_trait_fn: None,
292                     ..
293                 })
294                 | ItemKind::Enum(_, ref generics)
295                 | ItemKind::Struct(_, ref generics)
296                 | ItemKind::Union(_, ref generics) => generics,
297                 ItemKind::Trait(_, _, ref generics, ..) => {
298                     // Implied `Self: Trait` and supertrait bounds.
299                     if param_id == item_hir_id {
300                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
301                         Lrc::make_mut(&mut result)
302                             .predicates
303                             .push((identity_trait_ref.to_predicate(), item.span));
304                     }
305                     generics
306                 }
307                 _ => return result,
308             }
309         }
310
311         Node::ForeignItem(item) => match item.node {
312             ForeignItemKind::Fn(_, _, ref generics) => generics,
313             _ => return result,
314         },
315
316         _ => return result,
317     };
318
319     let icx = ItemCtxt::new(tcx, item_def_id);
320     Lrc::make_mut(&mut result)
321         .predicates
322         .extend(icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty,
323             OnlySelfBounds(true)));
324     result
325 }
326
327 impl<'a, 'tcx> ItemCtxt<'a, 'tcx> {
328     /// Finds bounds from `hir::Generics`. This requires scanning through the
329     /// AST. We do this to avoid having to convert *all* the bounds, which
330     /// would create artificial cycles. Instead we can only convert the
331     /// bounds for a type parameter `X` if `X::Foo` is used.
332     fn type_parameter_bounds_in_generics(
333         &self,
334         ast_generics: &hir::Generics,
335         param_id: hir::HirId,
336         ty: Ty<'tcx>,
337         only_self_bounds: OnlySelfBounds,
338     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
339         let from_ty_params = ast_generics
340             .params
341             .iter()
342             .filter_map(|param| match param.kind {
343                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
344                 _ => None,
345             })
346             .flat_map(|bounds| bounds.iter())
347             .flat_map(|b| predicates_from_bound(self, ty, b));
348
349         let from_where_clauses = ast_generics
350             .where_clause
351             .predicates
352             .iter()
353             .filter_map(|wp| match *wp {
354                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
355                 _ => None,
356             })
357             .flat_map(|bp| {
358                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
359                     Some(ty)
360                 } else if !only_self_bounds.0 {
361                     Some(self.to_ty(&bp.bounded_ty))
362                 } else {
363                     None
364                 };
365                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
366             })
367             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b));
368
369         from_ty_params.chain(from_where_clauses).collect()
370     }
371 }
372
373 /// Tests whether this is the AST for a reference to the type
374 /// parameter with ID `param_id`. We use this so as to avoid running
375 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
376 /// conversion of the type to avoid inducing unnecessary cycles.
377 fn is_param<'a, 'tcx>(
378     tcx: TyCtxt<'a, 'tcx, 'tcx>,
379     ast_ty: &hir::Ty,
380     param_id: hir::HirId,
381 ) -> bool {
382     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.node {
383         match path.res {
384             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
385                 def_id == tcx.hir().local_def_id_from_hir_id(param_id)
386             }
387             _ => false,
388         }
389     } else {
390         false
391     }
392 }
393
394 fn convert_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, item_id: hir::HirId) {
395     let it = tcx.hir().expect_item_by_hir_id(item_id);
396     debug!("convert: item {} with id {}", it.ident, it.hir_id);
397     let def_id = tcx.hir().local_def_id_from_hir_id(item_id);
398     match it.node {
399         // These don't define types.
400         hir::ItemKind::ExternCrate(_)
401         | hir::ItemKind::Use(..)
402         | hir::ItemKind::Mod(_)
403         | hir::ItemKind::GlobalAsm(_) => {}
404         hir::ItemKind::ForeignMod(ref foreign_mod) => {
405             for item in &foreign_mod.items {
406                 let def_id = tcx.hir().local_def_id_from_hir_id(item.hir_id);
407                 tcx.generics_of(def_id);
408                 tcx.type_of(def_id);
409                 tcx.predicates_of(def_id);
410                 if let hir::ForeignItemKind::Fn(..) = item.node {
411                     tcx.fn_sig(def_id);
412                 }
413             }
414         }
415         hir::ItemKind::Enum(ref enum_definition, _) => {
416             tcx.generics_of(def_id);
417             tcx.type_of(def_id);
418             tcx.predicates_of(def_id);
419             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
420         }
421         hir::ItemKind::Impl(..) => {
422             tcx.generics_of(def_id);
423             tcx.type_of(def_id);
424             tcx.impl_trait_ref(def_id);
425             tcx.predicates_of(def_id);
426         }
427         hir::ItemKind::Trait(..) => {
428             tcx.generics_of(def_id);
429             tcx.trait_def(def_id);
430             tcx.at(it.span).super_predicates_of(def_id);
431             tcx.predicates_of(def_id);
432         }
433         hir::ItemKind::TraitAlias(..) => {
434             tcx.generics_of(def_id);
435             tcx.at(it.span).super_predicates_of(def_id);
436             tcx.predicates_of(def_id);
437         }
438         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
439             tcx.generics_of(def_id);
440             tcx.type_of(def_id);
441             tcx.predicates_of(def_id);
442
443             for f in struct_def.fields() {
444                 let def_id = tcx.hir().local_def_id_from_hir_id(f.hir_id);
445                 tcx.generics_of(def_id);
446                 tcx.type_of(def_id);
447                 tcx.predicates_of(def_id);
448             }
449
450             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
451                 convert_variant_ctor(tcx, ctor_hir_id);
452             }
453         }
454
455         // Desugared from `impl Trait` -> visited by the function's return type
456         hir::ItemKind::Existential(hir::ExistTy {
457             impl_trait_fn: Some(_),
458             ..
459         }) => {}
460
461         hir::ItemKind::Existential(..)
462         | hir::ItemKind::Ty(..)
463         | hir::ItemKind::Static(..)
464         | hir::ItemKind::Const(..)
465         | hir::ItemKind::Fn(..) => {
466             tcx.generics_of(def_id);
467             tcx.type_of(def_id);
468             tcx.predicates_of(def_id);
469             if let hir::ItemKind::Fn(..) = it.node {
470                 tcx.fn_sig(def_id);
471             }
472         }
473     }
474 }
475
476 fn convert_trait_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, trait_item_id: hir::HirId) {
477     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
478     let def_id = tcx.hir().local_def_id_from_hir_id(trait_item.hir_id);
479     tcx.generics_of(def_id);
480
481     match trait_item.node {
482         hir::TraitItemKind::Const(..)
483         | hir::TraitItemKind::Type(_, Some(_))
484         | hir::TraitItemKind::Method(..) => {
485             tcx.type_of(def_id);
486             if let hir::TraitItemKind::Method(..) = trait_item.node {
487                 tcx.fn_sig(def_id);
488             }
489         }
490
491         hir::TraitItemKind::Type(_, None) => {}
492     };
493
494     tcx.predicates_of(def_id);
495 }
496
497 fn convert_impl_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, impl_item_id: hir::HirId) {
498     let def_id = tcx.hir().local_def_id_from_hir_id(impl_item_id);
499     tcx.generics_of(def_id);
500     tcx.type_of(def_id);
501     tcx.predicates_of(def_id);
502     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).node {
503         tcx.fn_sig(def_id);
504     }
505 }
506
507 fn convert_variant_ctor<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ctor_id: hir::HirId) {
508     let def_id = tcx.hir().local_def_id_from_hir_id(ctor_id);
509     tcx.generics_of(def_id);
510     tcx.type_of(def_id);
511     tcx.predicates_of(def_id);
512 }
513
514 fn convert_enum_variant_types<'a, 'tcx>(
515     tcx: TyCtxt<'a, 'tcx, 'tcx>,
516     def_id: DefId,
517     variants: &[hir::Variant],
518 ) {
519     let def = tcx.adt_def(def_id);
520     let repr_type = def.repr.discr_type();
521     let initial = repr_type.initial_discriminant(tcx);
522     let mut prev_discr = None::<Discr<'tcx>>;
523
524     // fill the discriminant values and field types
525     for variant in variants {
526         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
527         prev_discr = Some(
528             if let Some(ref e) = variant.node.disr_expr {
529                 let expr_did = tcx.hir().local_def_id_from_hir_id(e.hir_id);
530                 def.eval_explicit_discr(tcx, expr_did)
531             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
532                 Some(discr)
533             } else {
534                 struct_span_err!(
535                     tcx.sess,
536                     variant.span,
537                     E0370,
538                     "enum discriminant overflowed"
539                 ).span_label(
540                     variant.span,
541                     format!("overflowed on value after {}", prev_discr.unwrap()),
542                 ).note(&format!(
543                     "explicitly set `{} = {}` if that is desired outcome",
544                     variant.node.ident, wrapped_discr
545                 ))
546                 .emit();
547                 None
548             }.unwrap_or(wrapped_discr),
549         );
550
551         for f in variant.node.data.fields() {
552             let def_id = tcx.hir().local_def_id_from_hir_id(f.hir_id);
553             tcx.generics_of(def_id);
554             tcx.type_of(def_id);
555             tcx.predicates_of(def_id);
556         }
557
558         // Convert the ctor, if any. This also registers the variant as
559         // an item.
560         if let Some(ctor_hir_id) = variant.node.data.ctor_hir_id() {
561             convert_variant_ctor(tcx, ctor_hir_id);
562         }
563     }
564 }
565
566 fn convert_variant<'a, 'tcx>(
567     tcx: TyCtxt<'a, 'tcx, 'tcx>,
568     variant_did: Option<DefId>,
569     ctor_did: Option<DefId>,
570     ident: Ident,
571     discr: ty::VariantDiscr,
572     def: &hir::VariantData,
573     adt_kind: ty::AdtKind,
574     parent_did: DefId
575 ) -> ty::VariantDef {
576     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
577     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
578     let fields = def
579         .fields()
580         .iter()
581         .map(|f| {
582             let fid = tcx.hir().local_def_id_from_hir_id(f.hir_id);
583             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
584             if let Some(prev_span) = dup_span {
585                 struct_span_err!(
586                     tcx.sess,
587                     f.span,
588                     E0124,
589                     "field `{}` is already declared",
590                     f.ident
591                 ).span_label(f.span, "field already declared")
592                  .span_label(prev_span, format!("`{}` first declared here", f.ident))
593                  .emit();
594             } else {
595                 seen_fields.insert(f.ident.modern(), f.span);
596             }
597
598             ty::FieldDef {
599                 did: fid,
600                 ident: f.ident,
601                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
602             }
603         })
604         .collect();
605     let recovered = match def {
606         hir::VariantData::Struct(_, r) => *r,
607         _ => false,
608     };
609     ty::VariantDef::new(
610         tcx,
611         ident,
612         variant_did,
613         ctor_did,
614         discr,
615         fields,
616         CtorKind::from_hir(def),
617         adt_kind,
618         parent_did,
619         recovered,
620     )
621 }
622
623 fn adt_def<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::AdtDef {
624     use rustc::hir::*;
625
626     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
627     let item = match tcx.hir().get_by_hir_id(hir_id) {
628         Node::Item(item) => item,
629         _ => bug!(),
630     };
631
632     let repr = ReprOptions::new(tcx, def_id);
633     let (kind, variants) = match item.node {
634         ItemKind::Enum(ref def, _) => {
635             let mut distance_from_explicit = 0;
636             let variants = def.variants
637                 .iter()
638                 .map(|v| {
639                     let variant_did = Some(tcx.hir().local_def_id_from_hir_id(v.node.id));
640                     let ctor_did = v.node.data.ctor_hir_id()
641                         .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
642
643                     let discr = if let Some(ref e) = v.node.disr_expr {
644                         distance_from_explicit = 0;
645                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id_from_hir_id(e.hir_id))
646                     } else {
647                         ty::VariantDiscr::Relative(distance_from_explicit)
648                     };
649                     distance_from_explicit += 1;
650
651                     convert_variant(tcx, variant_did, ctor_did, v.node.ident, discr,
652                                     &v.node.data, AdtKind::Enum, def_id)
653                 })
654                 .collect();
655
656             (AdtKind::Enum, variants)
657         }
658         ItemKind::Struct(ref def, _) => {
659             let variant_did = None;
660             let ctor_did = def.ctor_hir_id()
661                 .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
662
663             let variants = std::iter::once(convert_variant(
664                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
665                 AdtKind::Struct, def_id,
666             )).collect();
667
668             (AdtKind::Struct, variants)
669         }
670         ItemKind::Union(ref def, _) => {
671             let variant_did = None;
672             let ctor_did = def.ctor_hir_id()
673                 .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
674
675             let variants = std::iter::once(convert_variant(
676                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
677                 AdtKind::Union, def_id,
678             )).collect();
679
680             (AdtKind::Union, variants)
681         },
682         _ => bug!(),
683     };
684     tcx.alloc_adt_def(def_id, kind, variants, repr)
685 }
686
687 /// Ensures that the super-predicates of the trait with `DefId`
688 /// trait_def_id are converted and stored. This also ensures that
689 /// the transitive super-predicates are converted;
690 fn super_predicates_of<'a, 'tcx>(
691     tcx: TyCtxt<'a, 'tcx, 'tcx>,
692     trait_def_id: DefId,
693 ) -> Lrc<ty::GenericPredicates<'tcx>> {
694     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
695     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
696
697     let item = match tcx.hir().get_by_hir_id(trait_hir_id) {
698         Node::Item(item) => item,
699         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
700     };
701
702     let (generics, bounds) = match item.node {
703         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
704         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
705         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
706     };
707
708     let icx = ItemCtxt::new(tcx, trait_def_id);
709
710     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo : Bar + Zed`.
711     let self_param_ty = tcx.mk_self_type();
712     let superbounds1 = compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No, item.span);
713
714     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
715
716     // Convert any explicit superbounds in the where clause,
717     // e.g., `trait Foo where Self : Bar`.
718     // In the case of trait aliases, however, we include all bounds in the where clause,
719     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
720     // as one of its "superpredicates".
721     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
722     let superbounds2 = icx.type_parameter_bounds_in_generics(
723         generics, item.hir_id, self_param_ty, OnlySelfBounds(!is_trait_alias));
724
725     // Combine the two lists to form the complete set of superbounds:
726     let superbounds: Vec<_> = superbounds1.into_iter().chain(superbounds2).collect();
727
728     // Now require that immediate supertraits are converted,
729     // which will, in turn, reach indirect supertraits.
730     for &(pred, span) in &superbounds {
731         debug!("superbound: {:?}", pred);
732         if let ty::Predicate::Trait(bound) = pred {
733             tcx.at(span).super_predicates_of(bound.def_id());
734         }
735     }
736
737     Lrc::new(ty::GenericPredicates {
738         parent: None,
739         predicates: superbounds,
740     })
741 }
742
743 fn trait_def<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::TraitDef {
744     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
745     let item = tcx.hir().expect_item_by_hir_id(hir_id);
746
747     let (is_auto, unsafety) = match item.node {
748         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
749         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
750         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
751     };
752
753     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
754     if paren_sugar && !tcx.features().unboxed_closures {
755         let mut err = tcx.sess.struct_span_err(
756             item.span,
757             "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
758              which traits can use parenthetical notation",
759         );
760         help!(
761             &mut err,
762             "add `#![feature(unboxed_closures)]` to \
763              the crate attributes to use it"
764         );
765         err.emit();
766     }
767
768     let is_marker = tcx.has_attr(def_id, sym::marker);
769     let def_path_hash = tcx.def_path_hash(def_id);
770     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
771     tcx.alloc_trait_def(def)
772 }
773
774 fn has_late_bound_regions<'a, 'tcx>(
775     tcx: TyCtxt<'a, 'tcx, 'tcx>,
776     node: Node<'tcx>,
777 ) -> Option<Span> {
778     struct LateBoundRegionsDetector<'a, 'tcx: 'a> {
779         tcx: TyCtxt<'a, 'tcx, 'tcx>,
780         outer_index: ty::DebruijnIndex,
781         has_late_bound_regions: Option<Span>,
782     }
783
784     impl<'a, 'tcx> Visitor<'tcx> for LateBoundRegionsDetector<'a, 'tcx> {
785         fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
786             NestedVisitorMap::None
787         }
788
789         fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
790             if self.has_late_bound_regions.is_some() {
791                 return;
792             }
793             match ty.node {
794                 hir::TyKind::BareFn(..) => {
795                     self.outer_index.shift_in(1);
796                     intravisit::walk_ty(self, ty);
797                     self.outer_index.shift_out(1);
798                 }
799                 _ => intravisit::walk_ty(self, ty),
800             }
801         }
802
803         fn visit_poly_trait_ref(
804             &mut self,
805             tr: &'tcx hir::PolyTraitRef,
806             m: hir::TraitBoundModifier,
807         ) {
808             if self.has_late_bound_regions.is_some() {
809                 return;
810             }
811             self.outer_index.shift_in(1);
812             intravisit::walk_poly_trait_ref(self, tr, m);
813             self.outer_index.shift_out(1);
814         }
815
816         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
817             if self.has_late_bound_regions.is_some() {
818                 return;
819             }
820
821             match self.tcx.named_region(lt.hir_id) {
822                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
823                 Some(rl::Region::LateBound(debruijn, _, _))
824                 | Some(rl::Region::LateBoundAnon(debruijn, _)) if debruijn < self.outer_index => {}
825                 Some(rl::Region::LateBound(..))
826                 | Some(rl::Region::LateBoundAnon(..))
827                 | Some(rl::Region::Free(..))
828                 | None => {
829                     self.has_late_bound_regions = Some(lt.span);
830                 }
831             }
832         }
833     }
834
835     fn has_late_bound_regions<'a, 'tcx>(
836         tcx: TyCtxt<'a, 'tcx, 'tcx>,
837         generics: &'tcx hir::Generics,
838         decl: &'tcx hir::FnDecl,
839     ) -> Option<Span> {
840         let mut visitor = LateBoundRegionsDetector {
841             tcx,
842             outer_index: ty::INNERMOST,
843             has_late_bound_regions: None,
844         };
845         for param in &generics.params {
846             if let GenericParamKind::Lifetime { .. } = param.kind {
847                 if tcx.is_late_bound(param.hir_id) {
848                     return Some(param.span);
849                 }
850             }
851         }
852         visitor.visit_fn_decl(decl);
853         visitor.has_late_bound_regions
854     }
855
856     match node {
857         Node::TraitItem(item) => match item.node {
858             hir::TraitItemKind::Method(ref sig, _) => {
859                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
860             }
861             _ => None,
862         },
863         Node::ImplItem(item) => match item.node {
864             hir::ImplItemKind::Method(ref sig, _) => {
865                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
866             }
867             _ => None,
868         },
869         Node::ForeignItem(item) => match item.node {
870             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
871                 has_late_bound_regions(tcx, generics, fn_decl)
872             }
873             _ => None,
874         },
875         Node::Item(item) => match item.node {
876             hir::ItemKind::Fn(ref fn_decl, .., ref generics, _) => {
877                 has_late_bound_regions(tcx, generics, fn_decl)
878             }
879             _ => None,
880         },
881         _ => None,
882     }
883 }
884
885 fn generics_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::Generics {
886     use rustc::hir::*;
887
888     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
889
890     let node = tcx.hir().get_by_hir_id(hir_id);
891     let parent_def_id = match node {
892         Node::ImplItem(_) | Node::TraitItem(_) | Node::Variant(_) |
893         Node::Ctor(..) | Node::Field(_) => {
894             let parent_id = tcx.hir().get_parent_item(hir_id);
895             Some(tcx.hir().local_def_id_from_hir_id(parent_id))
896         }
897         Node::Expr(&hir::Expr {
898             node: hir::ExprKind::Closure(..),
899             ..
900         }) => Some(tcx.closure_base_def_id(def_id)),
901         Node::Item(item) => match item.node {
902             ItemKind::Existential(hir::ExistTy { impl_trait_fn, .. }) => impl_trait_fn,
903             _ => None,
904         },
905         _ => None,
906     };
907
908     let mut opt_self = None;
909     let mut allow_defaults = false;
910
911     let no_generics = hir::Generics::empty();
912     let ast_generics = match node {
913         Node::TraitItem(item) => &item.generics,
914
915         Node::ImplItem(item) => &item.generics,
916
917         Node::Item(item) => {
918             match item.node {
919                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl(_, _, _, ref generics, ..) => {
920                     generics
921                 }
922
923                 ItemKind::Ty(_, ref generics)
924                 | ItemKind::Enum(_, ref generics)
925                 | ItemKind::Struct(_, ref generics)
926                 | ItemKind::Existential(hir::ExistTy { ref generics, .. })
927                 | ItemKind::Union(_, ref generics) => {
928                     allow_defaults = true;
929                     generics
930                 }
931
932                 ItemKind::Trait(_, _, ref generics, ..)
933                 | ItemKind::TraitAlias(ref generics, ..) => {
934                     // Add in the self type parameter.
935                     //
936                     // Something of a hack: use the node id for the trait, also as
937                     // the node id for the Self type parameter.
938                     let param_id = item.hir_id;
939
940                     opt_self = Some(ty::GenericParamDef {
941                         index: 0,
942                         name: keywords::SelfUpper.name().as_interned_str(),
943                         def_id: tcx.hir().local_def_id_from_hir_id(param_id),
944                         pure_wrt_drop: false,
945                         kind: ty::GenericParamDefKind::Type {
946                             has_default: false,
947                             object_lifetime_default: rl::Set1::Empty,
948                             synthetic: None,
949                         },
950                     });
951
952                     allow_defaults = true;
953                     generics
954                 }
955
956                 _ => &no_generics,
957             }
958         }
959
960         Node::ForeignItem(item) => match item.node {
961             ForeignItemKind::Static(..) => &no_generics,
962             ForeignItemKind::Fn(_, _, ref generics) => generics,
963             ForeignItemKind::Type => &no_generics,
964         },
965
966         _ => &no_generics,
967     };
968
969     let has_self = opt_self.is_some();
970     let mut parent_has_self = false;
971     let mut own_start = has_self as u32;
972     let parent_count = parent_def_id.map_or(0, |def_id| {
973         let generics = tcx.generics_of(def_id);
974         assert_eq!(has_self, false);
975         parent_has_self = generics.has_self;
976         own_start = generics.count() as u32;
977         generics.parent_count + generics.params.len()
978     });
979
980     let mut params: Vec<_> = opt_self.into_iter().collect();
981
982     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
983     params.extend(
984         early_lifetimes
985             .enumerate()
986             .map(|(i, param)| ty::GenericParamDef {
987                 name: param.name.ident().as_interned_str(),
988                 index: own_start + i as u32,
989                 def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
990                 pure_wrt_drop: param.pure_wrt_drop,
991                 kind: ty::GenericParamDefKind::Lifetime,
992             }),
993     );
994
995     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
996
997     // Now create the real type parameters.
998     let type_start = own_start - has_self as u32 + params.len() as u32;
999     let mut i = 0;
1000     params.extend(
1001         ast_generics
1002             .params
1003             .iter()
1004             .filter_map(|param| {
1005                 let kind = match param.kind {
1006                     GenericParamKind::Type {
1007                         ref default,
1008                         synthetic,
1009                         ..
1010                     } => {
1011                         if param.name.ident().name == keywords::SelfUpper.name() {
1012                             span_bug!(
1013                                 param.span,
1014                                 "`Self` should not be the name of a regular parameter"
1015                             );
1016                         }
1017
1018                         if !allow_defaults && default.is_some() {
1019                             if !tcx.features().default_type_parameter_fallback {
1020                                 tcx.lint_hir(
1021                                     lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1022                                     param.hir_id,
1023                                     param.span,
1024                                     &format!(
1025                                         "defaults for type parameters are only allowed in \
1026                                         `struct`, `enum`, `type`, or `trait` definitions."
1027                                     ),
1028                                 );
1029                             }
1030                         }
1031
1032                         ty::GenericParamDefKind::Type {
1033                             has_default: default.is_some(),
1034                             object_lifetime_default: object_lifetime_defaults
1035                                 .as_ref()
1036                                 .map_or(rl::Set1::Empty, |o| o[i]),
1037                             synthetic,
1038                         }
1039                     }
1040                     GenericParamKind::Const { .. } => {
1041                         if param.name.ident().name == keywords::SelfUpper.name() {
1042                             span_bug!(
1043                                 param.span,
1044                                 "`Self` should not be the name of a regular parameter",
1045                             );
1046                         }
1047
1048                         ty::GenericParamDefKind::Const
1049                     }
1050                     _ => return None,
1051                 };
1052
1053                 let param_def = ty::GenericParamDef {
1054                     index: type_start + i as u32,
1055                     name: param.name.ident().as_interned_str(),
1056                     def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
1057                     pure_wrt_drop: param.pure_wrt_drop,
1058                     kind,
1059                 };
1060                 i += 1;
1061                 Some(param_def)
1062             })
1063     );
1064
1065     // provide junk type parameter defs - the only place that
1066     // cares about anything but the length is instantiation,
1067     // and we don't do that for closures.
1068     if let Node::Expr(&hir::Expr {
1069         node: hir::ExprKind::Closure(.., gen),
1070         ..
1071     }) = node
1072     {
1073         let dummy_args = if gen.is_some() {
1074             &["<yield_ty>", "<return_ty>", "<witness>"][..]
1075         } else {
1076             &["<closure_kind>", "<closure_signature>"][..]
1077         };
1078
1079         params.extend(
1080             dummy_args
1081                 .iter()
1082                 .enumerate()
1083                 .map(|(i, &arg)| ty::GenericParamDef {
1084                     index: type_start + i as u32,
1085                     name: Symbol::intern(arg).as_interned_str(),
1086                     def_id,
1087                     pure_wrt_drop: false,
1088                     kind: ty::GenericParamDefKind::Type {
1089                         has_default: false,
1090                         object_lifetime_default: rl::Set1::Empty,
1091                         synthetic: None,
1092                     },
1093                 }),
1094         );
1095
1096         if let Some(upvars) = tcx.upvars(def_id) {
1097             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1098                 ty::GenericParamDef {
1099                     index: type_start + i,
1100                     name: Symbol::intern("<upvar>").as_interned_str(),
1101                     def_id,
1102                     pure_wrt_drop: false,
1103                     kind: ty::GenericParamDefKind::Type {
1104                         has_default: false,
1105                         object_lifetime_default: rl::Set1::Empty,
1106                         synthetic: None,
1107                     },
1108                 }
1109             }));
1110         }
1111     }
1112
1113     let param_def_id_to_index = params
1114         .iter()
1115         .map(|param| (param.def_id, param.index))
1116         .collect();
1117
1118     tcx.alloc_generics(ty::Generics {
1119         parent: parent_def_id,
1120         parent_count,
1121         params,
1122         param_def_id_to_index,
1123         has_self: has_self || parent_has_self,
1124         has_late_bound_regions: has_late_bound_regions(tcx, node),
1125     })
1126 }
1127
1128 fn report_assoc_ty_on_inherent_impl<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, span: Span) {
1129     span_err!(
1130         tcx.sess,
1131         span,
1132         E0202,
1133         "associated types are not yet supported in inherent impls (see #8995)"
1134     );
1135 }
1136
1137 fn type_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Ty<'tcx> {
1138     checked_type_of(tcx, def_id, true).unwrap()
1139 }
1140
1141 /// Same as [`type_of`] but returns [`Option`] instead of failing.
1142 ///
1143 /// If you want to fail anyway, you can set the `fail` parameter to true, but in this case,
1144 /// you'd better just call [`type_of`] directly.
1145 pub fn checked_type_of<'a, 'tcx>(
1146     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1147     def_id: DefId,
1148     fail: bool,
1149 ) -> Option<Ty<'tcx>> {
1150     use rustc::hir::*;
1151
1152     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1153         Some(hir_id) => hir_id,
1154         None => {
1155             if !fail {
1156                 return None;
1157             }
1158             bug!("invalid node");
1159         }
1160     };
1161
1162     let icx = ItemCtxt::new(tcx, def_id);
1163
1164     Some(match tcx.hir().get_by_hir_id(hir_id) {
1165         Node::TraitItem(item) => match item.node {
1166             TraitItemKind::Method(..) => {
1167                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1168                 tcx.mk_fn_def(def_id, substs)
1169             }
1170             TraitItemKind::Const(ref ty, _) | TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1171             TraitItemKind::Type(_, None) => {
1172                 if !fail {
1173                     return None;
1174                 }
1175                 span_bug!(item.span, "associated type missing default");
1176             }
1177         },
1178
1179         Node::ImplItem(item) => match item.node {
1180             ImplItemKind::Method(..) => {
1181                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1182                 tcx.mk_fn_def(def_id, substs)
1183             }
1184             ImplItemKind::Const(ref ty, _) => icx.to_ty(ty),
1185             ImplItemKind::Existential(_) => {
1186                 if tcx
1187                     .impl_trait_ref(tcx.hir().get_parent_did_by_hir_id(hir_id))
1188                     .is_none()
1189                 {
1190                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1191                 }
1192
1193                 find_existential_constraints(tcx, def_id)
1194             }
1195             ImplItemKind::Type(ref ty) => {
1196                 if tcx
1197                     .impl_trait_ref(tcx.hir().get_parent_did_by_hir_id(hir_id))
1198                     .is_none()
1199                 {
1200                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1201                 }
1202
1203                 icx.to_ty(ty)
1204             }
1205         },
1206
1207         Node::Item(item) => {
1208             match item.node {
1209                 ItemKind::Static(ref t, ..)
1210                 | ItemKind::Const(ref t, _)
1211                 | ItemKind::Ty(ref t, _)
1212                 | ItemKind::Impl(.., ref t, _) => icx.to_ty(t),
1213                 ItemKind::Fn(..) => {
1214                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1215                     tcx.mk_fn_def(def_id, substs)
1216                 }
1217                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1218                     let def = tcx.adt_def(def_id);
1219                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1220                     tcx.mk_adt(def, substs)
1221                 }
1222                 ItemKind::Existential(hir::ExistTy {
1223                     impl_trait_fn: None,
1224                     ..
1225                 }) => find_existential_constraints(tcx, def_id),
1226                 // existential types desugared from impl Trait
1227                 ItemKind::Existential(hir::ExistTy {
1228                     impl_trait_fn: Some(owner),
1229                     ..
1230                 }) => {
1231                     tcx.typeck_tables_of(owner)
1232                         .concrete_existential_types
1233                         .get(&def_id)
1234                         .map(|opaque| opaque.concrete_type)
1235                         .unwrap_or_else(|| {
1236                             // This can occur if some error in the
1237                             // owner fn prevented us from populating
1238                             // the `concrete_existential_types` table.
1239                             tcx.sess.delay_span_bug(
1240                                 DUMMY_SP,
1241                                 &format!(
1242                                     "owner {:?} has no existential type for {:?} in its tables",
1243                                     owner, def_id,
1244                                 ),
1245                             );
1246                             tcx.types.err
1247                         })
1248                 }
1249                 ItemKind::Trait(..)
1250                 | ItemKind::TraitAlias(..)
1251                 | ItemKind::Mod(..)
1252                 | ItemKind::ForeignMod(..)
1253                 | ItemKind::GlobalAsm(..)
1254                 | ItemKind::ExternCrate(..)
1255                 | ItemKind::Use(..) => {
1256                     if !fail {
1257                         return None;
1258                     }
1259                     span_bug!(
1260                         item.span,
1261                         "compute_type_of_item: unexpected item type: {:?}",
1262                         item.node
1263                     );
1264                 }
1265             }
1266         }
1267
1268         Node::ForeignItem(foreign_item) => match foreign_item.node {
1269             ForeignItemKind::Fn(..) => {
1270                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1271                 tcx.mk_fn_def(def_id, substs)
1272             }
1273             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1274             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1275         },
1276
1277         Node::Ctor(&ref def) | Node::Variant(&Spanned {
1278             node: hir::VariantKind { data: ref def, .. },
1279             ..
1280         }) => match *def {
1281             VariantData::Unit(..) | VariantData::Struct(..) => {
1282                 tcx.type_of(tcx.hir().get_parent_did_by_hir_id(hir_id))
1283             }
1284             VariantData::Tuple(..) => {
1285                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1286                 tcx.mk_fn_def(def_id, substs)
1287             }
1288         },
1289
1290         Node::Field(field) => icx.to_ty(&field.ty),
1291
1292         Node::Expr(&hir::Expr {
1293             node: hir::ExprKind::Closure(.., gen),
1294             ..
1295         }) => {
1296             if gen.is_some() {
1297                 return Some(tcx.typeck_tables_of(def_id).node_type(hir_id));
1298             }
1299
1300             let substs = ty::ClosureSubsts {
1301                 substs: InternalSubsts::identity_for_item(tcx, def_id),
1302             };
1303
1304             tcx.mk_closure(def_id, substs)
1305         }
1306
1307         Node::AnonConst(_) => {
1308             let parent_node = tcx.hir().get_by_hir_id(tcx.hir().get_parent_node_by_hir_id(hir_id));
1309             match parent_node {
1310                 Node::Ty(&hir::Ty {
1311                     node: hir::TyKind::Array(_, ref constant),
1312                     ..
1313                 })
1314                 | Node::Ty(&hir::Ty {
1315                     node: hir::TyKind::Typeof(ref constant),
1316                     ..
1317                 })
1318                 | Node::Expr(&hir::Expr {
1319                     node: ExprKind::Repeat(_, ref constant),
1320                     ..
1321                 }) if constant.hir_id == hir_id =>
1322                 {
1323                     tcx.types.usize
1324                 }
1325
1326                 Node::Variant(&Spanned {
1327                     node:
1328                         VariantKind {
1329                             disr_expr: Some(ref e),
1330                             ..
1331                         },
1332                     ..
1333                 }) if e.hir_id == hir_id =>
1334                 {
1335                     tcx.adt_def(tcx.hir().get_parent_did_by_hir_id(hir_id))
1336                         .repr
1337                         .discr_type()
1338                         .to_ty(tcx)
1339                 }
1340
1341                 Node::Ty(&hir::Ty { node: hir::TyKind::Path(_), .. }) |
1342                 Node::Expr(&hir::Expr { node: ExprKind::Struct(..), .. }) |
1343                 Node::Expr(&hir::Expr { node: ExprKind::Path(_), .. }) => {
1344                     let path = match parent_node {
1345                         Node::Ty(&hir::Ty { node: hir::TyKind::Path(ref path), .. }) |
1346                         Node::Expr(&hir::Expr { node: ExprKind::Path(ref path), .. }) => {
1347                             path
1348                         }
1349                         Node::Expr(&hir::Expr { node: ExprKind::Struct(ref path, ..), .. }) => {
1350                             &*path
1351                         }
1352                         _ => unreachable!(),
1353                     };
1354
1355                     match path {
1356                         QPath::Resolved(_, ref path) => {
1357                             let mut arg_index = 0;
1358                             let mut found_const = false;
1359                             for seg in &path.segments {
1360                                 if let Some(generic_args) = &seg.args {
1361                                     let args = &generic_args.args;
1362                                     for arg in args {
1363                                         if let GenericArg::Const(ct) = arg {
1364                                             if ct.value.hir_id == hir_id {
1365                                                 found_const = true;
1366                                                 break;
1367                                             }
1368                                             arg_index += 1;
1369                                         }
1370                                     }
1371                                 }
1372                             }
1373                             // Sanity check to make sure everything is as expected.
1374                             if !found_const {
1375                                 if !fail {
1376                                     return None;
1377                                 }
1378                                 bug!("no arg matching AnonConst in path")
1379                             }
1380                             match path.res {
1381                                 // We've encountered an `AnonConst` in some path, so we need to
1382                                 // figure out which generic parameter it corresponds to and return
1383                                 // the relevant type.
1384                                 Res::Def(DefKind::Struct, def_id)
1385                                 | Res::Def(DefKind::Union, def_id)
1386                                 | Res::Def(DefKind::Enum, def_id)
1387                                 | Res::Def(DefKind::Fn, def_id) => {
1388                                     let generics = tcx.generics_of(def_id);
1389                                     let mut param_index = 0;
1390                                     for param in &generics.params {
1391                                         if let ty::GenericParamDefKind::Const = param.kind {
1392                                             if param_index == arg_index {
1393                                                 return Some(tcx.type_of(param.def_id));
1394                                             }
1395                                             param_index += 1;
1396                                         }
1397                                     }
1398                                     // This is no generic parameter associated with the arg. This is
1399                                     // probably from an extra arg where one is not needed.
1400                                     return Some(tcx.types.err);
1401                                 }
1402                                 Res::Err => tcx.types.err,
1403                                 x => {
1404                                     if !fail {
1405                                         return None;
1406                                     }
1407                                     tcx.sess.delay_span_bug(
1408                                         DUMMY_SP,
1409                                         &format!(
1410                                             "unexpected const parent path def {:?}", x
1411                                         ),
1412                                     );
1413                                     tcx.types.err
1414                                 }
1415                             }
1416                         }
1417                         x => {
1418                             if !fail {
1419                                 return None;
1420                             }
1421                             tcx.sess.delay_span_bug(
1422                                 DUMMY_SP,
1423                                 &format!(
1424                                     "unexpected const parent path {:?}", x
1425                                 ),
1426                             );
1427                             tcx.types.err
1428                         }
1429                     }
1430                 }
1431
1432                 x => {
1433                     if !fail {
1434                         return None;
1435                     }
1436                     tcx.sess.delay_span_bug(
1437                         DUMMY_SP,
1438                         &format!(
1439                             "unexpected const parent in type_of_def_id(): {:?}", x
1440                         ),
1441                     );
1442                     tcx.types.err
1443                 }
1444             }
1445         }
1446
1447         Node::GenericParam(param) => match &param.kind {
1448             hir::GenericParamKind::Type { default: Some(ref ty), .. } |
1449             hir::GenericParamKind::Const { ref ty, .. } => {
1450                 icx.to_ty(ty)
1451             }
1452             x => {
1453                 if !fail {
1454                     return None;
1455                 }
1456                 bug!("unexpected non-type Node::GenericParam: {:?}", x)
1457             },
1458         },
1459
1460         x => {
1461             if !fail {
1462                 return None;
1463             }
1464             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1465         }
1466     })
1467 }
1468
1469 fn find_existential_constraints<'a, 'tcx>(
1470     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1471     def_id: DefId,
1472 ) -> Ty<'tcx> {
1473     use rustc::hir::{ImplItem, Item, TraitItem};
1474
1475     struct ConstraintLocator<'a, 'tcx: 'a> {
1476         tcx: TyCtxt<'a, 'tcx, 'tcx>,
1477         def_id: DefId,
1478         // First found type span, actual type, mapping from the existential type's generic
1479         // parameters to the concrete type's generic parameters
1480         //
1481         // The mapping is an index for each use site of a generic parameter in the concrete type
1482         //
1483         // The indices index into the generic parameters on the existential type.
1484         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1485     }
1486
1487     impl<'a, 'tcx> ConstraintLocator<'a, 'tcx> {
1488         fn check(&mut self, def_id: DefId) {
1489             trace!("checking {:?}", def_id);
1490             // don't try to check items that cannot possibly constrain the type
1491             if !self.tcx.has_typeck_tables(def_id) {
1492                 trace!("no typeck tables for {:?}", def_id);
1493                 return;
1494             }
1495             let ty = self
1496                 .tcx
1497                 .typeck_tables_of(def_id)
1498                 .concrete_existential_types
1499                 .get(&self.def_id);
1500             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1501                 // FIXME(oli-obk): trace the actual span from inference to improve errors
1502                 let span = self.tcx.def_span(def_id);
1503                 // used to quickly look up the position of a generic parameter
1504                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1505                 // skip binder is ok, since we only use this to find generic parameters and their
1506                 // positions.
1507                 for (idx, subst) in substs.iter().enumerate() {
1508                     if let UnpackedKind::Type(ty) = subst.unpack() {
1509                         if let ty::Param(p) = ty.sty {
1510                             if index_map.insert(p, idx).is_some() {
1511                                 // there was already an entry for `p`, meaning a generic parameter
1512                                 // was used twice
1513                                 self.tcx.sess.span_err(
1514                                     span,
1515                                     &format!("defining existential type use restricts existential \
1516                                     type by using the generic parameter `{}` twice", p.name),
1517                                 );
1518                                 return;
1519                             }
1520                         } else {
1521                             self.tcx.sess.delay_span_bug(
1522                                 span,
1523                                 &format!(
1524                                     "non-defining exist ty use in defining scope: {:?}, {:?}",
1525                                     concrete_type, substs,
1526                                 ),
1527                             );
1528                         }
1529                     }
1530                 }
1531                 // compute the index within the existential type for each generic parameter used in
1532                 // the concrete type
1533                 let indices = concrete_type
1534                     .subst(self.tcx, substs)
1535                     .walk()
1536                     .filter_map(|t| match &t.sty {
1537                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1538                         _ => None,
1539                     }).collect();
1540                 let is_param = |ty: Ty<'_>| match ty.sty {
1541                     ty::Param(_) => true,
1542                     _ => false,
1543                 };
1544                 if !substs.types().all(is_param) {
1545                     self.tcx.sess.span_err(
1546                         span,
1547                         "defining existential type use does not fully define existential type",
1548                     );
1549                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1550                     let mut ty = concrete_type.walk().fuse();
1551                     let mut p_ty = prev_ty.walk().fuse();
1552                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.sty, &p.sty) {
1553                         // type parameters are equal to any other type parameter for the purpose of
1554                         // concrete type equality, as it is possible to obtain the same type just
1555                         // by passing matching parameters to a function.
1556                         (ty::Param(_), ty::Param(_)) => true,
1557                         _ => t == p,
1558                     });
1559                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1560                         // found different concrete types for the existential type
1561                         let mut err = self.tcx.sess.struct_span_err(
1562                             span,
1563                             "concrete type differs from previous defining existential type use",
1564                         );
1565                         err.span_label(
1566                             span,
1567                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1568                         );
1569                         err.span_note(prev_span, "previous use here");
1570                         err.emit();
1571                     } else if indices != *prev_indices {
1572                         // found "same" concrete types, but the generic parameter order differs
1573                         let mut err = self.tcx.sess.struct_span_err(
1574                             span,
1575                             "concrete type's generic parameters differ from previous defining use",
1576                         );
1577                         use std::fmt::Write;
1578                         let mut s = String::new();
1579                         write!(s, "expected [").unwrap();
1580                         let list = |s: &mut String, indices: &Vec<usize>| {
1581                             let mut indices = indices.iter().cloned();
1582                             if let Some(first) = indices.next() {
1583                                 write!(s, "`{}`", substs[first]).unwrap();
1584                                 for i in indices {
1585                                     write!(s, ", `{}`", substs[i]).unwrap();
1586                                 }
1587                             }
1588                         };
1589                         list(&mut s, prev_indices);
1590                         write!(s, "], got [").unwrap();
1591                         list(&mut s, &indices);
1592                         write!(s, "]").unwrap();
1593                         err.span_label(span, s);
1594                         err.span_note(prev_span, "previous use here");
1595                         err.emit();
1596                     }
1597                 } else {
1598                     self.found = Some((span, concrete_type, indices));
1599                 }
1600             }
1601         }
1602     }
1603
1604     impl<'a, 'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'a, 'tcx> {
1605         fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'tcx> {
1606             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1607         }
1608         fn visit_item(&mut self, it: &'tcx Item) {
1609             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1610             // the existential type itself or its children are not within its reveal scope
1611             if def_id != self.def_id {
1612                 self.check(def_id);
1613                 intravisit::walk_item(self, it);
1614             }
1615         }
1616         fn visit_impl_item(&mut self, it: &'tcx ImplItem) {
1617             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1618             // the existential type itself or its children are not within its reveal scope
1619             if def_id != self.def_id {
1620                 self.check(def_id);
1621                 intravisit::walk_impl_item(self, it);
1622             }
1623         }
1624         fn visit_trait_item(&mut self, it: &'tcx TraitItem) {
1625             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1626             self.check(def_id);
1627             intravisit::walk_trait_item(self, it);
1628         }
1629     }
1630
1631     let mut locator = ConstraintLocator {
1632         def_id,
1633         tcx,
1634         found: None,
1635     };
1636     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1637     let parent = tcx.hir().get_parent_item(hir_id);
1638
1639     trace!("parent_id: {:?}", parent);
1640
1641     if parent == hir::CRATE_HIR_ID {
1642         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1643     } else {
1644         trace!("parent: {:?}", tcx.hir().get_by_hir_id(parent));
1645         match tcx.hir().get_by_hir_id(parent) {
1646             Node::Item(ref it) => intravisit::walk_item(&mut locator, it),
1647             Node::ImplItem(ref it) => intravisit::walk_impl_item(&mut locator, it),
1648             Node::TraitItem(ref it) => intravisit::walk_trait_item(&mut locator, it),
1649             other => bug!(
1650                 "{:?} is not a valid parent of an existential type item",
1651                 other
1652             ),
1653         }
1654     }
1655
1656     match locator.found {
1657         Some((_, ty, _)) => ty,
1658         None => {
1659             let span = tcx.def_span(def_id);
1660             tcx.sess.span_err(span, "could not find defining uses");
1661             tcx.types.err
1662         }
1663     }
1664 }
1665
1666 fn fn_sig<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> ty::PolyFnSig<'tcx> {
1667     use rustc::hir::*;
1668     use rustc::hir::Node::*;
1669
1670     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1671
1672     let icx = ItemCtxt::new(tcx, def_id);
1673
1674     match tcx.hir().get_by_hir_id(hir_id) {
1675         TraitItem(hir::TraitItem {
1676             node: TraitItemKind::Method(sig, _),
1677             ..
1678         })
1679         | ImplItem(hir::ImplItem {
1680             node: ImplItemKind::Method(sig, _),
1681             ..
1682         }) => AstConv::ty_of_fn(&icx, sig.header.unsafety, sig.header.abi, &sig.decl),
1683
1684         Item(hir::Item {
1685             node: ItemKind::Fn(decl, header, _, _),
1686             ..
1687         }) => AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl),
1688
1689         ForeignItem(&hir::ForeignItem {
1690             node: ForeignItemKind::Fn(ref fn_decl, _, _),
1691             ..
1692         }) => {
1693             let abi = tcx.hir().get_foreign_abi_by_hir_id(hir_id);
1694             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
1695         }
1696
1697         Ctor(data) | Variant(Spanned {
1698             node: hir::VariantKind { data, ..  },
1699             ..
1700         }) if data.ctor_hir_id().is_some() => {
1701             let ty = tcx.type_of(tcx.hir().get_parent_did_by_hir_id(hir_id));
1702             let inputs = data.fields()
1703                 .iter()
1704                 .map(|f| tcx.type_of(tcx.hir().local_def_id_from_hir_id(f.hir_id)));
1705             ty::Binder::bind(tcx.mk_fn_sig(
1706                 inputs,
1707                 ty,
1708                 false,
1709                 hir::Unsafety::Normal,
1710                 abi::Abi::Rust,
1711             ))
1712         }
1713
1714         Expr(&hir::Expr {
1715             node: hir::ExprKind::Closure(..),
1716             ..
1717         }) => {
1718             // Closure signatures are not like other function
1719             // signatures and cannot be accessed through `fn_sig`. For
1720             // example, a closure signature excludes the `self`
1721             // argument. In any case they are embedded within the
1722             // closure type as part of the `ClosureSubsts`.
1723             //
1724             // To get
1725             // the signature of a closure, you should use the
1726             // `closure_sig` method on the `ClosureSubsts`:
1727             //
1728             //    closure_substs.closure_sig(def_id, tcx)
1729             //
1730             // or, inside of an inference context, you can use
1731             //
1732             //    infcx.closure_sig(def_id, closure_substs)
1733             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
1734         }
1735
1736         x => {
1737             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1738         }
1739     }
1740 }
1741
1742 fn impl_trait_ref<'a, 'tcx>(
1743     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1744     def_id: DefId,
1745 ) -> Option<ty::TraitRef<'tcx>> {
1746     let icx = ItemCtxt::new(tcx, def_id);
1747
1748     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1749     match tcx.hir().expect_item_by_hir_id(hir_id).node {
1750         hir::ItemKind::Impl(.., ref opt_trait_ref, _, _) => {
1751             opt_trait_ref.as_ref().map(|ast_trait_ref| {
1752                 let selfty = tcx.type_of(def_id);
1753                 AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1754             })
1755         }
1756         _ => bug!(),
1757     }
1758 }
1759
1760 fn impl_polarity<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> hir::ImplPolarity {
1761     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1762     match tcx.hir().expect_item_by_hir_id(hir_id).node {
1763         hir::ItemKind::Impl(_, polarity, ..) => polarity,
1764         ref item => bug!("impl_polarity: {:?} not an impl", item),
1765     }
1766 }
1767
1768 // Is it marked with ?Sized
1769 fn is_unsized<'gcx: 'tcx, 'tcx>(
1770     astconv: &dyn AstConv<'gcx, 'tcx>,
1771     ast_bounds: &[hir::GenericBound],
1772     span: Span,
1773 ) -> bool {
1774     let tcx = astconv.tcx();
1775
1776     // Try to find an unbound in bounds.
1777     let mut unbound = None;
1778     for ab in ast_bounds {
1779         if let &hir::GenericBound::Trait(ref ptr, hir::TraitBoundModifier::Maybe) = ab {
1780             if unbound.is_none() {
1781                 unbound = Some(ptr.trait_ref.clone());
1782             } else {
1783                 span_err!(
1784                     tcx.sess,
1785                     span,
1786                     E0203,
1787                     "type parameter has more than one relaxed default \
1788                      bound, only one is supported"
1789                 );
1790             }
1791         }
1792     }
1793
1794     let kind_id = tcx.lang_items().require(SizedTraitLangItem);
1795     match unbound {
1796         Some(ref tpb) => {
1797             // FIXME(#8559) currently requires the unbound to be built-in.
1798             if let Ok(kind_id) = kind_id {
1799                 if tpb.path.res != Res::Def(DefKind::Trait, kind_id) {
1800                     tcx.sess.span_warn(
1801                         span,
1802                         "default bound relaxed for a type parameter, but \
1803                          this does nothing because the given bound is not \
1804                          a default. Only `?Sized` is supported",
1805                     );
1806                 }
1807             }
1808         }
1809         _ if kind_id.is_ok() => {
1810             return false;
1811         }
1812         // No lang item for Sized, so we can't add it as a bound.
1813         None => {}
1814     }
1815
1816     true
1817 }
1818
1819 /// Returns the early-bound lifetimes declared in this generics
1820 /// listing. For anything other than fns/methods, this is just all
1821 /// the lifetimes that are declared. For fns or methods, we have to
1822 /// screen out those that do not appear in any where-clauses etc using
1823 /// `resolve_lifetime::early_bound_lifetimes`.
1824 fn early_bound_lifetimes_from_generics<'a, 'tcx>(
1825     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1826     generics: &'a hir::Generics,
1827 ) -> impl Iterator<Item = &'a hir::GenericParam> + Captures<'tcx> {
1828     generics
1829         .params
1830         .iter()
1831         .filter(move |param| match param.kind {
1832             GenericParamKind::Lifetime { .. } => {
1833                 !tcx.is_late_bound(param.hir_id)
1834             }
1835             _ => false,
1836         })
1837 }
1838
1839 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1840 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1841 /// inferred constraints concerning which regions outlive other regions.
1842 fn predicates_defined_on<'a, 'tcx>(
1843     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1844     def_id: DefId,
1845 ) -> Lrc<ty::GenericPredicates<'tcx>> {
1846     debug!("predicates_defined_on({:?})", def_id);
1847     let mut result = tcx.explicit_predicates_of(def_id);
1848     debug!(
1849         "predicates_defined_on: explicit_predicates_of({:?}) = {:?}",
1850         def_id,
1851         result,
1852     );
1853     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1854     if !inferred_outlives.is_empty() {
1855         let span = tcx.def_span(def_id);
1856         debug!(
1857             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1858             def_id,
1859             inferred_outlives,
1860         );
1861         Lrc::make_mut(&mut result)
1862             .predicates
1863             .extend(inferred_outlives.iter().map(|&p| (p, span)));
1864     }
1865     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1866     result
1867 }
1868
1869 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1870 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1871 /// `Self: Trait` predicates for traits.
1872 fn predicates_of<'a, 'tcx>(
1873     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1874     def_id: DefId,
1875 ) -> Lrc<ty::GenericPredicates<'tcx>> {
1876     let mut result = tcx.predicates_defined_on(def_id);
1877
1878     if tcx.is_trait(def_id) {
1879         // For traits, add `Self: Trait` predicate. This is
1880         // not part of the predicates that a user writes, but it
1881         // is something that one must prove in order to invoke a
1882         // method or project an associated type.
1883         //
1884         // In the chalk setup, this predicate is not part of the
1885         // "predicates" for a trait item. But it is useful in
1886         // rustc because if you directly (e.g.) invoke a trait
1887         // method like `Trait::method(...)`, you must naturally
1888         // prove that the trait applies to the types that were
1889         // used, and adding the predicate into this list ensures
1890         // that this is done.
1891         let span = tcx.def_span(def_id);
1892         Lrc::make_mut(&mut result)
1893             .predicates
1894             .push((ty::TraitRef::identity(tcx, def_id).to_predicate(), span));
1895     }
1896     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
1897     result
1898 }
1899
1900 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
1901 /// N.B., this does not include any implied/inferred constraints.
1902 fn explicit_predicates_of<'a, 'tcx>(
1903     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1904     def_id: DefId,
1905 ) -> Lrc<ty::GenericPredicates<'tcx>> {
1906     use rustc::hir::*;
1907     use rustc_data_structures::fx::FxHashSet;
1908
1909     debug!("explicit_predicates_of(def_id={:?})", def_id);
1910
1911     /// A data structure with unique elements, which preserves order of insertion.
1912     /// Preserving the order of insertion is important here so as not to break
1913     /// compile-fail UI tests.
1914     struct UniquePredicates<'tcx> {
1915         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
1916         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
1917     }
1918
1919     impl<'tcx> UniquePredicates<'tcx> {
1920         fn new() -> Self {
1921             UniquePredicates {
1922                 predicates: vec![],
1923                 uniques: FxHashSet::default(),
1924             }
1925         }
1926
1927         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
1928             if self.uniques.insert(value) {
1929                 self.predicates.push(value);
1930             }
1931         }
1932
1933         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
1934             for value in iter {
1935                 self.push(value);
1936             }
1937         }
1938     }
1939
1940     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1941         Some(hir_id) => hir_id,
1942         None => return tcx.predicates_of(def_id),
1943     };
1944     let node = tcx.hir().get_by_hir_id(hir_id);
1945
1946     let mut is_trait = None;
1947     let mut is_default_impl_trait = None;
1948
1949     let icx = ItemCtxt::new(tcx, def_id);
1950     let no_generics = hir::Generics::empty();
1951     let empty_trait_items = HirVec::new();
1952
1953     let mut predicates = UniquePredicates::new();
1954
1955     let ast_generics = match node {
1956         Node::TraitItem(item) => &item.generics,
1957
1958         Node::ImplItem(item) => match item.node {
1959             ImplItemKind::Existential(ref bounds) => {
1960                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1961                 let opaque_ty = tcx.mk_opaque(def_id, substs);
1962
1963                 // Collect the bounds, i.e., the `A+B+'c` in `impl A+B+'c`.
1964                 let bounds = compute_bounds(
1965                     &icx,
1966                     opaque_ty,
1967                     bounds,
1968                     SizedByDefault::Yes,
1969                     tcx.def_span(def_id),
1970                 );
1971
1972                 predicates.extend(bounds.predicates(tcx, opaque_ty));
1973                 &item.generics
1974             }
1975             _ => &item.generics,
1976         },
1977
1978         Node::Item(item) => {
1979             match item.node {
1980                 ItemKind::Impl(_, _, defaultness, ref generics, ..) => {
1981                     if defaultness.is_default() {
1982                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
1983                     }
1984                     generics
1985                 }
1986                 ItemKind::Fn(.., ref generics, _)
1987                 | ItemKind::Ty(_, ref generics)
1988                 | ItemKind::Enum(_, ref generics)
1989                 | ItemKind::Struct(_, ref generics)
1990                 | ItemKind::Union(_, ref generics) => generics,
1991
1992                 ItemKind::Trait(_, _, ref generics, .., ref items) => {
1993                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
1994                     generics
1995                 }
1996                 ItemKind::TraitAlias(ref generics, _) => {
1997                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &empty_trait_items));
1998                     generics
1999                 }
2000                 ItemKind::Existential(ExistTy {
2001                     ref bounds,
2002                     impl_trait_fn,
2003                     ref generics,
2004                     origin: _,
2005                 }) => {
2006                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
2007                     let opaque_ty = tcx.mk_opaque(def_id, substs);
2008
2009                     // Collect the bounds, i.e., the `A+B+'c` in `impl A+B+'c`.
2010                     let bounds = compute_bounds(
2011                         &icx,
2012                         opaque_ty,
2013                         bounds,
2014                         SizedByDefault::Yes,
2015                         tcx.def_span(def_id),
2016                     );
2017
2018                     if impl_trait_fn.is_some() {
2019                         // impl Trait
2020                         return Lrc::new(ty::GenericPredicates {
2021                             parent: None,
2022                             predicates: bounds.predicates(tcx, opaque_ty),
2023                         });
2024                     } else {
2025                         // named existential types
2026                         predicates.extend(bounds.predicates(tcx, opaque_ty));
2027                         generics
2028                     }
2029                 }
2030
2031                 _ => &no_generics,
2032             }
2033         }
2034
2035         Node::ForeignItem(item) => match item.node {
2036             ForeignItemKind::Static(..) => &no_generics,
2037             ForeignItemKind::Fn(_, _, ref generics) => generics,
2038             ForeignItemKind::Type => &no_generics,
2039         },
2040
2041         _ => &no_generics,
2042     };
2043
2044     let generics = tcx.generics_of(def_id);
2045     let parent_count = generics.parent_count as u32;
2046     let has_own_self = generics.has_self && parent_count == 0;
2047
2048     // Below we'll consider the bounds on the type parameters (including `Self`)
2049     // and the explicit where-clauses, but to get the full set of predicates
2050     // on a trait we need to add in the supertrait bounds and bounds found on
2051     // associated types.
2052     if let Some((_trait_ref, _)) = is_trait {
2053         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2054     }
2055
2056     // In default impls, we can assume that the self type implements
2057     // the trait. So in:
2058     //
2059     //     default impl Foo for Bar { .. }
2060     //
2061     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2062     // (see below). Recall that a default impl is not itself an impl, but rather a
2063     // set of defaults that can be incorporated into another impl.
2064     if let Some(trait_ref) = is_default_impl_trait {
2065         predicates.push((trait_ref.to_poly_trait_ref().to_predicate(), tcx.def_span(def_id)));
2066     }
2067
2068     // Collect the region predicates that were declared inline as
2069     // well. In the case of parameters declared on a fn or method, we
2070     // have to be careful to only iterate over early-bound regions.
2071     let mut index = parent_count + has_own_self as u32;
2072     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2073         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2074             def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
2075             index,
2076             name: param.name.ident().as_interned_str(),
2077         }));
2078         index += 1;
2079
2080         match param.kind {
2081             GenericParamKind::Lifetime { .. } => {
2082                 param.bounds.iter().for_each(|bound| match bound {
2083                     hir::GenericBound::Outlives(lt) => {
2084                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2085                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2086                         predicates.push((outlives.to_predicate(), lt.span));
2087                     }
2088                     _ => bug!(),
2089                 });
2090             }
2091             _ => bug!(),
2092         }
2093     }
2094
2095     // Collect the predicates that were written inline by the user on each
2096     // type parameter (e.g., `<T:Foo>`).
2097     for param in &ast_generics.params {
2098         if let GenericParamKind::Type { .. } = param.kind {
2099             let name = param.name.ident().as_interned_str();
2100             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2101             index += 1;
2102
2103             let sized = SizedByDefault::Yes;
2104             let bounds = compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2105             predicates.extend(bounds.predicates(tcx, param_ty));
2106         }
2107     }
2108
2109     // Add in the bounds that appear in the where-clause
2110     let where_clause = &ast_generics.where_clause;
2111     for predicate in &where_clause.predicates {
2112         match predicate {
2113             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2114                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2115
2116                 // Keep the type around in a dummy predicate, in case of no bounds.
2117                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2118                 // is still checked for WF.
2119                 if bound_pred.bounds.is_empty() {
2120                     if let ty::Param(_) = ty.sty {
2121                         // This is a `where T:`, which can be in the HIR from the
2122                         // transformation that moves `?Sized` to `T`'s declaration.
2123                         // We can skip the predicate because type parameters are
2124                         // trivially WF, but also we *should*, to avoid exposing
2125                         // users who never wrote `where Type:,` themselves, to
2126                         // compiler/tooling bugs from not handling WF predicates.
2127                     } else {
2128                         let span = bound_pred.bounded_ty.span;
2129                         let predicate = ty::OutlivesPredicate(ty, tcx.mk_region(ty::ReEmpty));
2130                         predicates.push(
2131                             (ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)), span)
2132                         );
2133                     }
2134                 }
2135
2136                 for bound in bound_pred.bounds.iter() {
2137                     match bound {
2138                         &hir::GenericBound::Trait(ref poly_trait_ref, _) => {
2139                             let mut projections = Vec::new();
2140
2141                             let (trait_ref, _) = AstConv::instantiate_poly_trait_ref(
2142                                 &icx,
2143                                 poly_trait_ref,
2144                                 ty,
2145                                 &mut projections,
2146                             );
2147
2148                             predicates.extend(
2149                                 iter::once((trait_ref.to_predicate(), poly_trait_ref.span)).chain(
2150                                     projections.iter().map(|&(p, span)| (p.to_predicate(), span)
2151                             )));
2152                         }
2153
2154                         &hir::GenericBound::Outlives(ref lifetime) => {
2155                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2156                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2157                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2158                         }
2159                     }
2160                 }
2161             }
2162
2163             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2164                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2165                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2166                     let (r2, span) = match bound {
2167                         hir::GenericBound::Outlives(lt) => {
2168                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2169                         }
2170                         _ => bug!(),
2171                     };
2172                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2173
2174                     (ty::Predicate::RegionOutlives(pred), span)
2175                 }))
2176             }
2177
2178             &hir::WherePredicate::EqPredicate(..) => {
2179                 // FIXME(#20041)
2180             }
2181         }
2182     }
2183
2184     // Add predicates from associated type bounds.
2185     if let Some((self_trait_ref, trait_items)) = is_trait {
2186         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2187             let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2188             let bounds = match trait_item.node {
2189                 hir::TraitItemKind::Type(ref bounds, _) => bounds,
2190                 _ => return vec![].into_iter()
2191             };
2192
2193             let assoc_ty =
2194                 tcx.mk_projection(tcx.hir().local_def_id_from_hir_id(trait_item.hir_id),
2195                     self_trait_ref.substs);
2196
2197             let bounds = compute_bounds(
2198                 &ItemCtxt::new(tcx, def_id),
2199                 assoc_ty,
2200                 bounds,
2201                 SizedByDefault::Yes,
2202                 trait_item.span,
2203             );
2204
2205             bounds.predicates(tcx, assoc_ty).into_iter()
2206         }))
2207     }
2208
2209     let mut predicates = predicates.predicates;
2210
2211     // Subtle: before we store the predicates into the tcx, we
2212     // sort them so that predicates like `T: Foo<Item=U>` come
2213     // before uses of `U`.  This avoids false ambiguity errors
2214     // in trait checking. See `setup_constraining_predicates`
2215     // for details.
2216     if let Node::Item(&Item {
2217         node: ItemKind::Impl(..),
2218         ..
2219     }) = node
2220     {
2221         let self_ty = tcx.type_of(def_id);
2222         let trait_ref = tcx.impl_trait_ref(def_id);
2223         cgp::setup_constraining_predicates(
2224             tcx,
2225             &mut predicates,
2226             trait_ref,
2227             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2228         );
2229     }
2230
2231     let result = Lrc::new(ty::GenericPredicates {
2232         parent: generics.parent,
2233         predicates,
2234     });
2235     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2236     result
2237 }
2238
2239 pub enum SizedByDefault {
2240     Yes,
2241     No,
2242 }
2243
2244 /// Translate the AST's notion of ty param bounds (which are an enum consisting of a newtyped `Ty`
2245 /// or a region) to ty's notion of ty param bounds, which can either be user-defined traits, or the
2246 /// built-in trait `Send`.
2247 pub fn compute_bounds<'gcx: 'tcx, 'tcx>(
2248     astconv: &dyn AstConv<'gcx, 'tcx>,
2249     param_ty: Ty<'tcx>,
2250     ast_bounds: &[hir::GenericBound],
2251     sized_by_default: SizedByDefault,
2252     span: Span,
2253 ) -> Bounds<'tcx> {
2254     let mut region_bounds = Vec::new();
2255     let mut trait_bounds = Vec::new();
2256
2257     for ast_bound in ast_bounds {
2258         match *ast_bound {
2259             hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::None) => trait_bounds.push(b),
2260             hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => {}
2261             hir::GenericBound::Outlives(ref l) => region_bounds.push(l),
2262         }
2263     }
2264
2265     let mut projection_bounds = Vec::new();
2266
2267     let mut trait_bounds: Vec<_> = trait_bounds.iter().map(|&bound| {
2268         let (poly_trait_ref, _) = astconv.instantiate_poly_trait_ref(
2269             bound,
2270             param_ty,
2271             &mut projection_bounds,
2272         );
2273         (poly_trait_ref, bound.span)
2274     }).collect();
2275
2276     let region_bounds = region_bounds
2277         .into_iter()
2278         .map(|r| (astconv.ast_region_to_region(r, None), r.span))
2279         .collect();
2280
2281     trait_bounds.sort_by_key(|(t, _)| t.def_id());
2282
2283     let implicitly_sized = if let SizedByDefault::Yes = sized_by_default {
2284         if !is_unsized(astconv, ast_bounds, span) {
2285             Some(span)
2286         } else {
2287             None
2288         }
2289     } else {
2290         None
2291     };
2292
2293     Bounds {
2294         region_bounds,
2295         implicitly_sized,
2296         trait_bounds,
2297         projection_bounds,
2298     }
2299 }
2300
2301 /// Converts a specific `GenericBound` from the AST into a set of
2302 /// predicates that apply to the self type. A vector is returned
2303 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2304 /// predicates) to one (`T: Foo`) to many (`T: Bar<X=i32>` adds `T: Bar`
2305 /// and `<T as Bar>::X == i32`).
2306 fn predicates_from_bound<'tcx>(
2307     astconv: &dyn AstConv<'tcx, 'tcx>,
2308     param_ty: Ty<'tcx>,
2309     bound: &hir::GenericBound,
2310 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2311     match *bound {
2312         hir::GenericBound::Trait(ref tr, hir::TraitBoundModifier::None) => {
2313             let mut projections = Vec::new();
2314             let (pred, _) = astconv.instantiate_poly_trait_ref(tr, param_ty, &mut projections);
2315             iter::once((pred.to_predicate(), tr.span)).chain(
2316                 projections
2317                     .into_iter()
2318                     .map(|(p, span)| (p.to_predicate(), span))
2319             ).collect()
2320         }
2321         hir::GenericBound::Outlives(ref lifetime) => {
2322             let region = astconv.ast_region_to_region(lifetime, None);
2323             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2324             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2325         }
2326         hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => vec![],
2327     }
2328 }
2329
2330 fn compute_sig_of_foreign_fn_decl<'a, 'tcx>(
2331     tcx: TyCtxt<'a, 'tcx, 'tcx>,
2332     def_id: DefId,
2333     decl: &hir::FnDecl,
2334     abi: abi::Abi,
2335 ) -> ty::PolyFnSig<'tcx> {
2336     let unsafety = if abi == abi::Abi::RustIntrinsic {
2337         intrisic_operation_unsafety(&*tcx.item_name(def_id).as_str())
2338     } else {
2339         hir::Unsafety::Unsafe
2340     };
2341     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl);
2342
2343     // feature gate SIMD types in FFI, since I (huonw) am not sure the
2344     // ABIs are handled at all correctly.
2345     if abi != abi::Abi::RustIntrinsic
2346         && abi != abi::Abi::PlatformIntrinsic
2347         && !tcx.features().simd_ffi
2348     {
2349         let check = |ast_ty: &hir::Ty, ty: Ty<'_>| {
2350             if ty.is_simd() {
2351                 tcx.sess
2352                    .struct_span_err(
2353                        ast_ty.span,
2354                        &format!(
2355                            "use of SIMD type `{}` in FFI is highly experimental and \
2356                             may result in invalid code",
2357                            tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2358                        ),
2359                    )
2360                    .help("add #![feature(simd_ffi)] to the crate attributes to enable")
2361                    .emit();
2362             }
2363         };
2364         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2365             check(&input, ty)
2366         }
2367         if let hir::Return(ref ty) = decl.output {
2368             check(&ty, *fty.output().skip_binder())
2369         }
2370     }
2371
2372     fty
2373 }
2374
2375 fn is_foreign_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> bool {
2376     match tcx.hir().get_if_local(def_id) {
2377         Some(Node::ForeignItem(..)) => true,
2378         Some(_) => false,
2379         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2380     }
2381 }
2382
2383 fn static_mutability<'a, 'tcx>(
2384     tcx: TyCtxt<'a, 'tcx, 'tcx>,
2385     def_id: DefId,
2386 ) -> Option<hir::Mutability> {
2387     match tcx.hir().get_if_local(def_id) {
2388         Some(Node::Item(&hir::Item {
2389             node: hir::ItemKind::Static(_, mutbl, _), ..
2390         })) |
2391         Some(Node::ForeignItem( &hir::ForeignItem {
2392             node: hir::ForeignItemKind::Static(_, mutbl), ..
2393         })) => Some(mutbl),
2394         Some(_) => None,
2395         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2396     }
2397 }
2398
2399 fn from_target_feature(
2400     tcx: TyCtxt<'_, '_, '_>,
2401     id: DefId,
2402     attr: &ast::Attribute,
2403     whitelist: &FxHashMap<String, Option<Symbol>>,
2404     target_features: &mut Vec<Symbol>,
2405 ) {
2406     let list = match attr.meta_item_list() {
2407         Some(list) => list,
2408         None => return,
2409     };
2410     let rust_features = tcx.features();
2411     for item in list {
2412         // Only `enable = ...` is accepted in the meta item list
2413         if !item.check_name(sym::enable) {
2414             let msg = "#[target_feature(..)] only accepts sub-keys of `enable` \
2415                        currently";
2416             tcx.sess.span_err(item.span(), &msg);
2417             continue;
2418         }
2419
2420         // Must be of the form `enable = "..."` ( a string)
2421         let value = match item.value_str() {
2422             Some(value) => value,
2423             None => {
2424                 let msg = "#[target_feature] attribute must be of the form \
2425                            #[target_feature(enable = \"..\")]";
2426                 tcx.sess.span_err(item.span(), &msg);
2427                 continue;
2428             }
2429         };
2430
2431         // We allow comma separation to enable multiple features
2432         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2433             // Only allow whitelisted features per platform
2434             let feature_gate = match whitelist.get(feature) {
2435                 Some(g) => g,
2436                 None => {
2437                     let msg = format!(
2438                         "the feature named `{}` is not valid for \
2439                          this target",
2440                         feature
2441                     );
2442                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2443
2444                     if feature.starts_with("+") {
2445                         let valid = whitelist.contains_key(&feature[1..]);
2446                         if valid {
2447                             err.help("consider removing the leading `+` in the feature name");
2448                         }
2449                     }
2450                     err.emit();
2451                     return None;
2452                 }
2453             };
2454
2455             // Only allow features whose feature gates have been enabled
2456             let allowed = match feature_gate.as_ref().map(|s| *s) {
2457                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2458                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2459                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2460                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2461                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2462                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2463                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2464                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2465                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2466                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2467                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2468                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2469                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2470                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2471                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2472                 Some(name) => bug!("unknown target feature gate {}", name),
2473                 None => true,
2474             };
2475             if !allowed && id.is_local() {
2476                 feature_gate::emit_feature_err(
2477                     &tcx.sess.parse_sess,
2478                     feature_gate.unwrap(),
2479                     item.span(),
2480                     feature_gate::GateIssue::Language,
2481                     &format!("the target feature `{}` is currently unstable", feature),
2482                 );
2483             }
2484             Some(Symbol::intern(feature))
2485         }));
2486     }
2487 }
2488
2489 fn linkage_by_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, name: &str) -> Linkage {
2490     use rustc::mir::mono::Linkage::*;
2491
2492     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2493     // applicable to variable declarations and may not really make sense for
2494     // Rust code in the first place but whitelist them anyway and trust that
2495     // the user knows what s/he's doing. Who knows, unanticipated use cases
2496     // may pop up in the future.
2497     //
2498     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2499     // and don't have to be, LLVM treats them as no-ops.
2500     match name {
2501         "appending" => Appending,
2502         "available_externally" => AvailableExternally,
2503         "common" => Common,
2504         "extern_weak" => ExternalWeak,
2505         "external" => External,
2506         "internal" => Internal,
2507         "linkonce" => LinkOnceAny,
2508         "linkonce_odr" => LinkOnceODR,
2509         "private" => Private,
2510         "weak" => WeakAny,
2511         "weak_odr" => WeakODR,
2512         _ => {
2513             let span = tcx.hir().span_if_local(def_id);
2514             if let Some(span) = span {
2515                 tcx.sess.span_fatal(span, "invalid linkage specified")
2516             } else {
2517                 tcx.sess
2518                    .fatal(&format!("invalid linkage specified: {}", name))
2519             }
2520         }
2521     }
2522 }
2523
2524 fn codegen_fn_attrs<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, id: DefId) -> CodegenFnAttrs {
2525     let attrs = tcx.get_attrs(id);
2526
2527     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2528
2529     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2530
2531     let mut inline_span = None;
2532     for attr in attrs.iter() {
2533         if attr.check_name(sym::cold) {
2534             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2535         } else if attr.check_name(sym::allocator) {
2536             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2537         } else if attr.check_name(sym::unwind) {
2538             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2539         } else if attr.check_name(sym::ffi_returns_twice) {
2540             if tcx.is_foreign_item(id) {
2541                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2542             } else {
2543                 // `#[ffi_returns_twice]` is only allowed `extern fn`s
2544                 struct_span_err!(
2545                     tcx.sess,
2546                     attr.span,
2547                     E0724,
2548                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2549                 ).emit();
2550             }
2551         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2552             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2553         } else if attr.check_name(sym::naked) {
2554             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2555         } else if attr.check_name(sym::no_mangle) {
2556             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2557         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2558             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2559         } else if attr.check_name(sym::no_debug) {
2560             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2561         } else if attr.check_name(sym::used) {
2562             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2563         } else if attr.check_name(sym::thread_local) {
2564             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2565         } else if attr.check_name(sym::export_name) {
2566             if let Some(s) = attr.value_str() {
2567                 if s.as_str().contains("\0") {
2568                     // `#[export_name = ...]` will be converted to a null-terminated string,
2569                     // so it may not contain any null characters.
2570                     struct_span_err!(
2571                         tcx.sess,
2572                         attr.span,
2573                         E0648,
2574                         "`export_name` may not contain null characters"
2575                     ).emit();
2576                 }
2577                 codegen_fn_attrs.export_name = Some(s);
2578             }
2579         } else if attr.check_name(sym::target_feature) {
2580             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2581                 let msg = "#[target_feature(..)] can only be applied to \
2582                            `unsafe` function";
2583                 tcx.sess.span_err(attr.span, msg);
2584             }
2585             from_target_feature(
2586                 tcx,
2587                 id,
2588                 attr,
2589                 &whitelist,
2590                 &mut codegen_fn_attrs.target_features,
2591             );
2592         } else if attr.check_name(sym::linkage) {
2593             if let Some(val) = attr.value_str() {
2594                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2595             }
2596         } else if attr.check_name(sym::link_section) {
2597             if let Some(val) = attr.value_str() {
2598                 if val.as_str().bytes().any(|b| b == 0) {
2599                     let msg = format!(
2600                         "illegal null byte in link_section \
2601                          value: `{}`",
2602                         &val
2603                     );
2604                     tcx.sess.span_err(attr.span, &msg);
2605                 } else {
2606                     codegen_fn_attrs.link_section = Some(val);
2607                 }
2608             }
2609         } else if attr.check_name(sym::link_name) {
2610             codegen_fn_attrs.link_name = attr.value_str();
2611         }
2612     }
2613
2614     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2615         if attr.path != sym::inline {
2616             return ia;
2617         }
2618         match attr.meta().map(|i| i.node) {
2619             Some(MetaItemKind::Word) => {
2620                 mark_used(attr);
2621                 InlineAttr::Hint
2622             }
2623             Some(MetaItemKind::List(ref items)) => {
2624                 mark_used(attr);
2625                 inline_span = Some(attr.span);
2626                 if items.len() != 1 {
2627                     span_err!(
2628                         tcx.sess.diagnostic(),
2629                         attr.span,
2630                         E0534,
2631                         "expected one argument"
2632                     );
2633                     InlineAttr::None
2634                 } else if list_contains_name(&items[..], sym::always) {
2635                     InlineAttr::Always
2636                 } else if list_contains_name(&items[..], sym::never) {
2637                     InlineAttr::Never
2638                 } else {
2639                     span_err!(
2640                         tcx.sess.diagnostic(),
2641                         items[0].span(),
2642                         E0535,
2643                         "invalid argument"
2644                     );
2645
2646                     InlineAttr::None
2647                 }
2648             }
2649             Some(MetaItemKind::NameValue(_)) => ia,
2650             None => ia,
2651         }
2652     });
2653
2654     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2655         if attr.path != sym::optimize {
2656             return ia;
2657         }
2658         let err = |sp, s| span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s);
2659         match attr.meta().map(|i| i.node) {
2660             Some(MetaItemKind::Word) => {
2661                 err(attr.span, "expected one argument");
2662                 ia
2663             }
2664             Some(MetaItemKind::List(ref items)) => {
2665                 mark_used(attr);
2666                 inline_span = Some(attr.span);
2667                 if items.len() != 1 {
2668                     err(attr.span, "expected one argument");
2669                     OptimizeAttr::None
2670                 } else if list_contains_name(&items[..], sym::size) {
2671                     OptimizeAttr::Size
2672                 } else if list_contains_name(&items[..], sym::speed) {
2673                     OptimizeAttr::Speed
2674                 } else {
2675                     err(items[0].span(), "invalid argument");
2676                     OptimizeAttr::None
2677                 }
2678             }
2679             Some(MetaItemKind::NameValue(_)) => ia,
2680             None => ia,
2681         }
2682     });
2683
2684     // If a function uses #[target_feature] it can't be inlined into general
2685     // purpose functions as they wouldn't have the right target features
2686     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2687     // respected.
2688     if codegen_fn_attrs.target_features.len() > 0 {
2689         if codegen_fn_attrs.inline == InlineAttr::Always {
2690             if let Some(span) = inline_span {
2691                 tcx.sess.span_err(
2692                     span,
2693                     "cannot use #[inline(always)] with \
2694                      #[target_feature]",
2695                 );
2696             }
2697         }
2698     }
2699
2700     // Weak lang items have the same semantics as "std internal" symbols in the
2701     // sense that they're preserved through all our LTO passes and only
2702     // strippable by the linker.
2703     //
2704     // Additionally weak lang items have predetermined symbol names.
2705     if tcx.is_weak_lang_item(id) {
2706         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2707     }
2708     if let Some(name) = weak_lang_items::link_name(&attrs) {
2709         codegen_fn_attrs.export_name = Some(name);
2710         codegen_fn_attrs.link_name = Some(name);
2711     }
2712
2713     // Internal symbols to the standard library all have no_mangle semantics in
2714     // that they have defined symbol names present in the function name. This
2715     // also applies to weak symbols where they all have known symbol names.
2716     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2717         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2718     }
2719
2720     codegen_fn_attrs
2721 }