]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
Auto merge of #68298 - Mark-Simulacrum:binary-depdep-fix, r=petrochenkov
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds, SizedByDefault};
18 use crate::check::intrinsic::intrinsic_operation_unsafety;
19 use crate::constrained_generic_params as cgp;
20 use crate::lint;
21 use crate::middle::resolve_lifetime as rl;
22 use crate::middle::weak_lang_items;
23 use rustc::hir::map::blocks::FnLikeNode;
24 use rustc::hir::map::Map;
25 use rustc::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
26 use rustc::mir::mono::Linkage;
27 use rustc::session::parse::feature_err;
28 use rustc::traits;
29 use rustc::ty::query::Providers;
30 use rustc::ty::subst::GenericArgKind;
31 use rustc::ty::subst::{InternalSubsts, Subst};
32 use rustc::ty::util::Discr;
33 use rustc::ty::util::IntTypeExt;
34 use rustc::ty::{self, AdtKind, Const, DefIdTree, ToPolyTraitRef, Ty, TyCtxt, WithConstness};
35 use rustc::ty::{ReprOptions, ToPredicate};
36 use rustc_data_structures::captures::Captures;
37 use rustc_data_structures::fx::FxHashMap;
38 use rustc_errors::{struct_span_err, Applicability, StashKey};
39 use rustc_hir as hir;
40 use rustc_hir::def::{CtorKind, DefKind, Res};
41 use rustc_hir::def_id::{DefId, LOCAL_CRATE};
42 use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
43 use rustc_hir::{GenericParamKind, Node, Unsafety};
44 use rustc_span::symbol::{kw, sym, Symbol};
45 use rustc_span::{Span, DUMMY_SP};
46 use rustc_target::spec::abi;
47 use syntax::ast;
48 use syntax::ast::{Ident, MetaItemKind};
49 use syntax::attr::{list_contains_name, mark_used, InlineAttr, OptimizeAttr};
50
51 struct OnlySelfBounds(bool);
52
53 ///////////////////////////////////////////////////////////////////////////
54 // Main entry point
55
56 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: DefId) {
57     tcx.hir().visit_item_likes_in_module(
58         module_def_id,
59         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor(),
60     );
61 }
62
63 pub fn provide(providers: &mut Providers<'_>) {
64     *providers = Providers {
65         type_of,
66         generics_of,
67         predicates_of,
68         predicates_defined_on,
69         explicit_predicates_of,
70         super_predicates_of,
71         type_param_predicates,
72         trait_def,
73         adt_def,
74         fn_sig,
75         impl_trait_ref,
76         impl_polarity,
77         is_foreign_item,
78         static_mutability,
79         codegen_fn_attrs,
80         collect_mod_item_types,
81         ..*providers
82     };
83 }
84
85 ///////////////////////////////////////////////////////////////////////////
86
87 /// Context specific to some particular item. This is what implements
88 /// `AstConv`. It has information about the predicates that are defined
89 /// on the trait. Unfortunately, this predicate information is
90 /// available in various different forms at various points in the
91 /// process. So we can't just store a pointer to e.g., the AST or the
92 /// parsed ty form, we have to be more flexible. To this end, the
93 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
94 /// `get_type_parameter_bounds` requests, drawing the information from
95 /// the AST (`hir::Generics`), recursively.
96 pub struct ItemCtxt<'tcx> {
97     tcx: TyCtxt<'tcx>,
98     item_def_id: DefId,
99 }
100
101 ///////////////////////////////////////////////////////////////////////////
102
103 #[derive(Default)]
104 crate struct PlaceholderHirTyCollector(crate Vec<Span>);
105
106 impl<'v> Visitor<'v> for PlaceholderHirTyCollector {
107     type Map = Map<'v>;
108
109     fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
110         NestedVisitorMap::None
111     }
112     fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
113         if let hir::TyKind::Infer = t.kind {
114             self.0.push(t.span);
115         }
116         intravisit::walk_ty(self, t)
117     }
118 }
119
120 struct CollectItemTypesVisitor<'tcx> {
121     tcx: TyCtxt<'tcx>,
122 }
123
124 /// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
125 /// and suggest adding type parameters in the appropriate place, taking into consideration any and
126 /// all already existing generic type parameters to avoid suggesting a name that is already in use.
127 crate fn placeholder_type_error(
128     tcx: TyCtxt<'tcx>,
129     span: Span,
130     generics: &[hir::GenericParam<'_>],
131     placeholder_types: Vec<Span>,
132     suggest: bool,
133 ) {
134     if placeholder_types.is_empty() {
135         return;
136     }
137     // This is the whitelist of possible parameter names that we might suggest.
138     let possible_names = ["T", "K", "L", "A", "B", "C"];
139     let used_names = generics
140         .iter()
141         .filter_map(|p| match p.name {
142             hir::ParamName::Plain(ident) => Some(ident.name),
143             _ => None,
144         })
145         .collect::<Vec<_>>();
146
147     let type_name = possible_names
148         .iter()
149         .find(|n| !used_names.contains(&Symbol::intern(n)))
150         .unwrap_or(&"ParamName");
151
152     let mut sugg: Vec<_> =
153         placeholder_types.iter().map(|sp| (*sp, type_name.to_string())).collect();
154     if generics.is_empty() {
155         sugg.push((span, format!("<{}>", type_name)));
156     } else if let Some(arg) = generics.iter().find(|arg| match arg.name {
157         hir::ParamName::Plain(Ident { name: kw::Underscore, .. }) => true,
158         _ => false,
159     }) {
160         // Account for `_` already present in cases like `struct S<_>(_);` and suggest
161         // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
162         sugg.push((arg.span, format!("{}", type_name)));
163     } else {
164         sugg.push((
165             generics.iter().last().unwrap().span.shrink_to_hi(),
166             format!(", {}", type_name),
167         ));
168     }
169     let mut err = bad_placeholder_type(tcx, placeholder_types);
170     if suggest {
171         err.multipart_suggestion(
172             "use type parameters instead",
173             sugg,
174             Applicability::HasPlaceholders,
175         );
176     }
177     err.emit();
178 }
179
180 fn reject_placeholder_type_signatures_in_item(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
181     let (generics, suggest) = match &item.kind {
182         hir::ItemKind::Union(_, generics)
183         | hir::ItemKind::Enum(_, generics)
184         | hir::ItemKind::TraitAlias(generics, _)
185         | hir::ItemKind::Trait(_, _, generics, ..)
186         | hir::ItemKind::Impl { generics, .. }
187         | hir::ItemKind::Struct(_, generics) => (generics, true),
188         hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
189         | hir::ItemKind::TyAlias(_, generics) => (generics, false),
190         // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
191         _ => return,
192     };
193
194     let mut visitor = PlaceholderHirTyCollector::default();
195     visitor.visit_item(item);
196
197     placeholder_type_error(tcx, generics.span, &generics.params[..], visitor.0, suggest);
198 }
199
200 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
201     type Map = Map<'tcx>;
202
203     fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
204         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
205     }
206
207     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
208         convert_item(self.tcx, item.hir_id);
209         reject_placeholder_type_signatures_in_item(self.tcx, item);
210         intravisit::walk_item(self, item);
211     }
212
213     fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
214         for param in generics.params {
215             match param.kind {
216                 hir::GenericParamKind::Lifetime { .. } => {}
217                 hir::GenericParamKind::Type { default: Some(_), .. } => {
218                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
219                     self.tcx.type_of(def_id);
220                 }
221                 hir::GenericParamKind::Type { .. } => {}
222                 hir::GenericParamKind::Const { .. } => {
223                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
224                     self.tcx.type_of(def_id);
225                 }
226             }
227         }
228         intravisit::walk_generics(self, generics);
229     }
230
231     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
232         if let hir::ExprKind::Closure(..) = expr.kind {
233             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
234             self.tcx.generics_of(def_id);
235             self.tcx.type_of(def_id);
236         }
237         intravisit::walk_expr(self, expr);
238     }
239
240     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
241         convert_trait_item(self.tcx, trait_item.hir_id);
242         intravisit::walk_trait_item(self, trait_item);
243     }
244
245     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
246         convert_impl_item(self.tcx, impl_item.hir_id);
247         intravisit::walk_impl_item(self, impl_item);
248     }
249 }
250
251 ///////////////////////////////////////////////////////////////////////////
252 // Utility types and common code for the above passes.
253
254 fn bad_placeholder_type(
255     tcx: TyCtxt<'tcx>,
256     mut spans: Vec<Span>,
257 ) -> rustc_errors::DiagnosticBuilder<'tcx> {
258     spans.sort();
259     let mut err = struct_span_err!(
260         tcx.sess,
261         spans.clone(),
262         E0121,
263         "the type placeholder `_` is not allowed within types on item signatures",
264     );
265     for span in spans {
266         err.span_label(span, "not allowed in type signatures");
267     }
268     err
269 }
270
271 impl ItemCtxt<'tcx> {
272     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
273         ItemCtxt { tcx, item_def_id }
274     }
275
276     pub fn to_ty(&self, ast_ty: &'tcx hir::Ty<'tcx>) -> Ty<'tcx> {
277         AstConv::ast_ty_to_ty(self, ast_ty)
278     }
279 }
280
281 impl AstConv<'tcx> for ItemCtxt<'tcx> {
282     fn tcx(&self) -> TyCtxt<'tcx> {
283         self.tcx
284     }
285
286     fn item_def_id(&self) -> Option<DefId> {
287         Some(self.item_def_id)
288     }
289
290     fn default_constness_for_trait_bounds(&self) -> ast::Constness {
291         // FIXME: refactor this into a method
292         let hir_id = self
293             .tcx
294             .hir()
295             .as_local_hir_id(self.item_def_id)
296             .expect("Non-local call to local provider is_const_fn");
297
298         let node = self.tcx.hir().get(hir_id);
299         if let Some(fn_like) = FnLikeNode::from_node(node) {
300             fn_like.constness()
301         } else {
302             ast::Constness::NotConst
303         }
304     }
305
306     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId) -> ty::GenericPredicates<'tcx> {
307         self.tcx.at(span).type_param_predicates((self.item_def_id, def_id))
308     }
309
310     fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
311         None
312     }
313
314     fn allow_ty_infer(&self) -> bool {
315         false
316     }
317
318     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
319         self.tcx().sess.delay_span_bug(span, "bad placeholder type");
320         self.tcx().types.err
321     }
322
323     fn ct_infer(
324         &self,
325         _: Ty<'tcx>,
326         _: Option<&ty::GenericParamDef>,
327         span: Span,
328     ) -> &'tcx Const<'tcx> {
329         bad_placeholder_type(self.tcx(), vec![span]).emit();
330
331         self.tcx().consts.err
332     }
333
334     fn projected_ty_from_poly_trait_ref(
335         &self,
336         span: Span,
337         item_def_id: DefId,
338         item_segment: &hir::PathSegment<'_>,
339         poly_trait_ref: ty::PolyTraitRef<'tcx>,
340     ) -> Ty<'tcx> {
341         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
342             let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
343                 self,
344                 self.tcx,
345                 span,
346                 item_def_id,
347                 item_segment,
348                 trait_ref.substs,
349             );
350             self.tcx().mk_projection(item_def_id, item_substs)
351         } else {
352             // There are no late-bound regions; we can just ignore the binder.
353             struct_span_err!(
354                 self.tcx().sess,
355                 span,
356                 E0212,
357                 "cannot extract an associated type from a higher-ranked trait bound \
358                  in this context"
359             )
360             .emit();
361             self.tcx().types.err
362         }
363     }
364
365     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
366         // Types in item signatures are not normalized to avoid undue dependencies.
367         ty
368     }
369
370     fn set_tainted_by_errors(&self) {
371         // There's no obvious place to track this, so just let it go.
372     }
373
374     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
375         // There's no place to record types from signatures?
376     }
377 }
378
379 /// Returns the predicates defined on `item_def_id` of the form
380 /// `X: Foo` where `X` is the type parameter `def_id`.
381 fn type_param_predicates(
382     tcx: TyCtxt<'_>,
383     (item_def_id, def_id): (DefId, DefId),
384 ) -> ty::GenericPredicates<'_> {
385     use rustc_hir::*;
386
387     // In the AST, bounds can derive from two places. Either
388     // written inline like `<T: Foo>` or in a where-clause like
389     // `where T: Foo`.
390
391     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
392     let param_owner = tcx.hir().ty_param_owner(param_id);
393     let param_owner_def_id = tcx.hir().local_def_id(param_owner);
394     let generics = tcx.generics_of(param_owner_def_id);
395     let index = generics.param_def_id_to_index[&def_id];
396     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id));
397
398     // Don't look for bounds where the type parameter isn't in scope.
399     let parent =
400         if item_def_id == param_owner_def_id { None } else { tcx.generics_of(item_def_id).parent };
401
402     let mut result = parent
403         .map(|parent| {
404             let icx = ItemCtxt::new(tcx, parent);
405             icx.get_type_parameter_bounds(DUMMY_SP, def_id)
406         })
407         .unwrap_or_default();
408     let mut extend = None;
409
410     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
411     let ast_generics = match tcx.hir().get(item_hir_id) {
412         Node::TraitItem(item) => &item.generics,
413
414         Node::ImplItem(item) => &item.generics,
415
416         Node::Item(item) => {
417             match item.kind {
418                 ItemKind::Fn(.., ref generics, _)
419                 | ItemKind::Impl { ref generics, .. }
420                 | ItemKind::TyAlias(_, ref generics)
421                 | ItemKind::OpaqueTy(OpaqueTy { ref generics, impl_trait_fn: None, .. })
422                 | ItemKind::Enum(_, ref generics)
423                 | ItemKind::Struct(_, ref generics)
424                 | ItemKind::Union(_, ref generics) => generics,
425                 ItemKind::Trait(_, _, ref generics, ..) => {
426                     // Implied `Self: Trait` and supertrait bounds.
427                     if param_id == item_hir_id {
428                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
429                         extend =
430                             Some((identity_trait_ref.without_const().to_predicate(), item.span));
431                     }
432                     generics
433                 }
434                 _ => return result,
435             }
436         }
437
438         Node::ForeignItem(item) => match item.kind {
439             ForeignItemKind::Fn(_, _, ref generics) => generics,
440             _ => return result,
441         },
442
443         _ => return result,
444     };
445
446     let icx = ItemCtxt::new(tcx, item_def_id);
447     let extra_predicates = extend.into_iter().chain(
448         icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty, OnlySelfBounds(true))
449             .into_iter()
450             .filter(|(predicate, _)| match predicate {
451                 ty::Predicate::Trait(ref data, _) => data.skip_binder().self_ty().is_param(index),
452                 _ => false,
453             }),
454     );
455     result.predicates =
456         tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
457     result
458 }
459
460 impl ItemCtxt<'tcx> {
461     /// Finds bounds from `hir::Generics`. This requires scanning through the
462     /// AST. We do this to avoid having to convert *all* the bounds, which
463     /// would create artificial cycles. Instead, we can only convert the
464     /// bounds for a type parameter `X` if `X::Foo` is used.
465     fn type_parameter_bounds_in_generics(
466         &self,
467         ast_generics: &'tcx hir::Generics<'tcx>,
468         param_id: hir::HirId,
469         ty: Ty<'tcx>,
470         only_self_bounds: OnlySelfBounds,
471     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
472         let constness = self.default_constness_for_trait_bounds();
473         let from_ty_params = ast_generics
474             .params
475             .iter()
476             .filter_map(|param| match param.kind {
477                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
478                 _ => None,
479             })
480             .flat_map(|bounds| bounds.iter())
481             .flat_map(|b| predicates_from_bound(self, ty, b, constness));
482
483         let from_where_clauses = ast_generics
484             .where_clause
485             .predicates
486             .iter()
487             .filter_map(|wp| match *wp {
488                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
489                 _ => None,
490             })
491             .flat_map(|bp| {
492                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
493                     Some(ty)
494                 } else if !only_self_bounds.0 {
495                     Some(self.to_ty(&bp.bounded_ty))
496                 } else {
497                     None
498                 };
499                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
500             })
501             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b, constness));
502
503         from_ty_params.chain(from_where_clauses).collect()
504     }
505 }
506
507 /// Tests whether this is the AST for a reference to the type
508 /// parameter with ID `param_id`. We use this so as to avoid running
509 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
510 /// conversion of the type to avoid inducing unnecessary cycles.
511 fn is_param(tcx: TyCtxt<'_>, ast_ty: &hir::Ty<'_>, param_id: hir::HirId) -> bool {
512     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.kind {
513         match path.res {
514             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
515                 def_id == tcx.hir().local_def_id(param_id)
516             }
517             _ => false,
518         }
519     } else {
520         false
521     }
522 }
523
524 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::HirId) {
525     let it = tcx.hir().expect_item(item_id);
526     debug!("convert: item {} with id {}", it.ident, it.hir_id);
527     let def_id = tcx.hir().local_def_id(item_id);
528     match it.kind {
529         // These don't define types.
530         hir::ItemKind::ExternCrate(_)
531         | hir::ItemKind::Use(..)
532         | hir::ItemKind::Mod(_)
533         | hir::ItemKind::GlobalAsm(_) => {}
534         hir::ItemKind::ForeignMod(ref foreign_mod) => {
535             for item in foreign_mod.items {
536                 let def_id = tcx.hir().local_def_id(item.hir_id);
537                 tcx.generics_of(def_id);
538                 tcx.type_of(def_id);
539                 tcx.predicates_of(def_id);
540                 if let hir::ForeignItemKind::Fn(..) = item.kind {
541                     tcx.fn_sig(def_id);
542                 }
543             }
544         }
545         hir::ItemKind::Enum(ref enum_definition, _) => {
546             tcx.generics_of(def_id);
547             tcx.type_of(def_id);
548             tcx.predicates_of(def_id);
549             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
550         }
551         hir::ItemKind::Impl { .. } => {
552             tcx.generics_of(def_id);
553             tcx.type_of(def_id);
554             tcx.impl_trait_ref(def_id);
555             tcx.predicates_of(def_id);
556         }
557         hir::ItemKind::Trait(..) => {
558             tcx.generics_of(def_id);
559             tcx.trait_def(def_id);
560             tcx.at(it.span).super_predicates_of(def_id);
561             tcx.predicates_of(def_id);
562         }
563         hir::ItemKind::TraitAlias(..) => {
564             tcx.generics_of(def_id);
565             tcx.at(it.span).super_predicates_of(def_id);
566             tcx.predicates_of(def_id);
567         }
568         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
569             tcx.generics_of(def_id);
570             tcx.type_of(def_id);
571             tcx.predicates_of(def_id);
572
573             for f in struct_def.fields() {
574                 let def_id = tcx.hir().local_def_id(f.hir_id);
575                 tcx.generics_of(def_id);
576                 tcx.type_of(def_id);
577                 tcx.predicates_of(def_id);
578             }
579
580             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
581                 convert_variant_ctor(tcx, ctor_hir_id);
582             }
583         }
584
585         // Desugared from `impl Trait`, so visited by the function's return type.
586         hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(_), .. }) => {}
587
588         hir::ItemKind::OpaqueTy(..)
589         | hir::ItemKind::TyAlias(..)
590         | hir::ItemKind::Static(..)
591         | hir::ItemKind::Const(..)
592         | hir::ItemKind::Fn(..) => {
593             tcx.generics_of(def_id);
594             tcx.type_of(def_id);
595             tcx.predicates_of(def_id);
596             if let hir::ItemKind::Fn(..) = it.kind {
597                 tcx.fn_sig(def_id);
598             }
599         }
600     }
601 }
602
603 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::HirId) {
604     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
605     let def_id = tcx.hir().local_def_id(trait_item.hir_id);
606     tcx.generics_of(def_id);
607
608     match trait_item.kind {
609         hir::TraitItemKind::Const(..)
610         | hir::TraitItemKind::Type(_, Some(_))
611         | hir::TraitItemKind::Method(..) => {
612             tcx.type_of(def_id);
613             if let hir::TraitItemKind::Method(..) = trait_item.kind {
614                 tcx.fn_sig(def_id);
615             }
616         }
617
618         hir::TraitItemKind::Type(_, None) => {}
619     };
620
621     tcx.predicates_of(def_id);
622 }
623
624 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::HirId) {
625     let def_id = tcx.hir().local_def_id(impl_item_id);
626     tcx.generics_of(def_id);
627     tcx.type_of(def_id);
628     tcx.predicates_of(def_id);
629     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).kind {
630         tcx.fn_sig(def_id);
631     }
632 }
633
634 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
635     let def_id = tcx.hir().local_def_id(ctor_id);
636     tcx.generics_of(def_id);
637     tcx.type_of(def_id);
638     tcx.predicates_of(def_id);
639 }
640
641 fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
642     let def = tcx.adt_def(def_id);
643     let repr_type = def.repr.discr_type();
644     let initial = repr_type.initial_discriminant(tcx);
645     let mut prev_discr = None::<Discr<'_>>;
646
647     // fill the discriminant values and field types
648     for variant in variants {
649         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
650         prev_discr = Some(
651             if let Some(ref e) = variant.disr_expr {
652                 let expr_did = tcx.hir().local_def_id(e.hir_id);
653                 def.eval_explicit_discr(tcx, expr_did)
654             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
655                 Some(discr)
656             } else {
657                 struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
658                     .span_label(
659                         variant.span,
660                         format!("overflowed on value after {}", prev_discr.unwrap()),
661                     )
662                     .note(&format!(
663                         "explicitly set `{} = {}` if that is desired outcome",
664                         variant.ident, wrapped_discr
665                     ))
666                     .emit();
667                 None
668             }
669             .unwrap_or(wrapped_discr),
670         );
671
672         for f in variant.data.fields() {
673             let def_id = tcx.hir().local_def_id(f.hir_id);
674             tcx.generics_of(def_id);
675             tcx.type_of(def_id);
676             tcx.predicates_of(def_id);
677         }
678
679         // Convert the ctor, if any. This also registers the variant as
680         // an item.
681         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
682             convert_variant_ctor(tcx, ctor_hir_id);
683         }
684     }
685 }
686
687 fn convert_variant(
688     tcx: TyCtxt<'_>,
689     variant_did: Option<DefId>,
690     ctor_did: Option<DefId>,
691     ident: Ident,
692     discr: ty::VariantDiscr,
693     def: &hir::VariantData<'_>,
694     adt_kind: ty::AdtKind,
695     parent_did: DefId,
696 ) -> ty::VariantDef {
697     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
698     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
699     let fields = def
700         .fields()
701         .iter()
702         .map(|f| {
703             let fid = tcx.hir().local_def_id(f.hir_id);
704             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
705             if let Some(prev_span) = dup_span {
706                 struct_span_err!(
707                     tcx.sess,
708                     f.span,
709                     E0124,
710                     "field `{}` is already declared",
711                     f.ident
712                 )
713                 .span_label(f.span, "field already declared")
714                 .span_label(prev_span, format!("`{}` first declared here", f.ident))
715                 .emit();
716             } else {
717                 seen_fields.insert(f.ident.modern(), f.span);
718             }
719
720             ty::FieldDef {
721                 did: fid,
722                 ident: f.ident,
723                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
724             }
725         })
726         .collect();
727     let recovered = match def {
728         hir::VariantData::Struct(_, r) => *r,
729         _ => false,
730     };
731     ty::VariantDef::new(
732         tcx,
733         ident,
734         variant_did,
735         ctor_did,
736         discr,
737         fields,
738         CtorKind::from_hir(def),
739         adt_kind,
740         parent_did,
741         recovered,
742     )
743 }
744
745 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
746     use rustc_hir::*;
747
748     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
749     let item = match tcx.hir().get(hir_id) {
750         Node::Item(item) => item,
751         _ => bug!(),
752     };
753
754     let repr = ReprOptions::new(tcx, def_id);
755     let (kind, variants) = match item.kind {
756         ItemKind::Enum(ref def, _) => {
757             let mut distance_from_explicit = 0;
758             let variants = def
759                 .variants
760                 .iter()
761                 .map(|v| {
762                     let variant_did = Some(tcx.hir().local_def_id(v.id));
763                     let ctor_did =
764                         v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
765
766                     let discr = if let Some(ref e) = v.disr_expr {
767                         distance_from_explicit = 0;
768                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id))
769                     } else {
770                         ty::VariantDiscr::Relative(distance_from_explicit)
771                     };
772                     distance_from_explicit += 1;
773
774                     convert_variant(
775                         tcx,
776                         variant_did,
777                         ctor_did,
778                         v.ident,
779                         discr,
780                         &v.data,
781                         AdtKind::Enum,
782                         def_id,
783                     )
784                 })
785                 .collect();
786
787             (AdtKind::Enum, variants)
788         }
789         ItemKind::Struct(ref def, _) => {
790             let variant_did = None;
791             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
792
793             let variants = std::iter::once(convert_variant(
794                 tcx,
795                 variant_did,
796                 ctor_did,
797                 item.ident,
798                 ty::VariantDiscr::Relative(0),
799                 def,
800                 AdtKind::Struct,
801                 def_id,
802             ))
803             .collect();
804
805             (AdtKind::Struct, variants)
806         }
807         ItemKind::Union(ref def, _) => {
808             let variant_did = None;
809             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
810
811             let variants = std::iter::once(convert_variant(
812                 tcx,
813                 variant_did,
814                 ctor_did,
815                 item.ident,
816                 ty::VariantDiscr::Relative(0),
817                 def,
818                 AdtKind::Union,
819                 def_id,
820             ))
821             .collect();
822
823             (AdtKind::Union, variants)
824         }
825         _ => bug!(),
826     };
827     tcx.alloc_adt_def(def_id, kind, variants, repr)
828 }
829
830 /// Ensures that the super-predicates of the trait with a `DefId`
831 /// of `trait_def_id` are converted and stored. This also ensures that
832 /// the transitive super-predicates are converted.
833 fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
834     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
835     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
836
837     let item = match tcx.hir().get(trait_hir_id) {
838         Node::Item(item) => item,
839         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
840     };
841
842     let (generics, bounds) = match item.kind {
843         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
844         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
845         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
846     };
847
848     let icx = ItemCtxt::new(tcx, trait_def_id);
849
850     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
851     let self_param_ty = tcx.types.self_param;
852     let superbounds1 =
853         AstConv::compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No, item.span);
854
855     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
856
857     // Convert any explicit superbounds in the where-clause,
858     // e.g., `trait Foo where Self: Bar`.
859     // In the case of trait aliases, however, we include all bounds in the where-clause,
860     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
861     // as one of its "superpredicates".
862     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
863     let superbounds2 = icx.type_parameter_bounds_in_generics(
864         generics,
865         item.hir_id,
866         self_param_ty,
867         OnlySelfBounds(!is_trait_alias),
868     );
869
870     // Combine the two lists to form the complete set of superbounds:
871     let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
872
873     // Now require that immediate supertraits are converted,
874     // which will, in turn, reach indirect supertraits.
875     for &(pred, span) in superbounds {
876         debug!("superbound: {:?}", pred);
877         if let ty::Predicate::Trait(bound, _) = pred {
878             tcx.at(span).super_predicates_of(bound.def_id());
879         }
880     }
881
882     ty::GenericPredicates { parent: None, predicates: superbounds }
883 }
884
885 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::TraitDef {
886     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
887     let item = tcx.hir().expect_item(hir_id);
888
889     let (is_auto, unsafety) = match item.kind {
890         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
891         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
892         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
893     };
894
895     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
896     if paren_sugar && !tcx.features().unboxed_closures {
897         tcx.sess
898             .struct_span_err(
899                 item.span,
900                 "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
901              which traits can use parenthetical notation",
902             )
903             .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
904             .emit();
905     }
906
907     let is_marker = tcx.has_attr(def_id, sym::marker);
908     let def_path_hash = tcx.def_path_hash(def_id);
909     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
910     tcx.arena.alloc(def)
911 }
912
913 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
914     struct LateBoundRegionsDetector<'tcx> {
915         tcx: TyCtxt<'tcx>,
916         outer_index: ty::DebruijnIndex,
917         has_late_bound_regions: Option<Span>,
918     }
919
920     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
921         type Map = Map<'tcx>;
922
923         fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
924             NestedVisitorMap::None
925         }
926
927         fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
928             if self.has_late_bound_regions.is_some() {
929                 return;
930             }
931             match ty.kind {
932                 hir::TyKind::BareFn(..) => {
933                     self.outer_index.shift_in(1);
934                     intravisit::walk_ty(self, ty);
935                     self.outer_index.shift_out(1);
936                 }
937                 _ => intravisit::walk_ty(self, ty),
938             }
939         }
940
941         fn visit_poly_trait_ref(
942             &mut self,
943             tr: &'tcx hir::PolyTraitRef<'tcx>,
944             m: hir::TraitBoundModifier,
945         ) {
946             if self.has_late_bound_regions.is_some() {
947                 return;
948             }
949             self.outer_index.shift_in(1);
950             intravisit::walk_poly_trait_ref(self, tr, m);
951             self.outer_index.shift_out(1);
952         }
953
954         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
955             if self.has_late_bound_regions.is_some() {
956                 return;
957             }
958
959             match self.tcx.named_region(lt.hir_id) {
960                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
961                 Some(rl::Region::LateBound(debruijn, _, _))
962                 | Some(rl::Region::LateBoundAnon(debruijn, _))
963                     if debruijn < self.outer_index => {}
964                 Some(rl::Region::LateBound(..))
965                 | Some(rl::Region::LateBoundAnon(..))
966                 | Some(rl::Region::Free(..))
967                 | None => {
968                     self.has_late_bound_regions = Some(lt.span);
969                 }
970             }
971         }
972     }
973
974     fn has_late_bound_regions<'tcx>(
975         tcx: TyCtxt<'tcx>,
976         generics: &'tcx hir::Generics<'tcx>,
977         decl: &'tcx hir::FnDecl<'tcx>,
978     ) -> Option<Span> {
979         let mut visitor = LateBoundRegionsDetector {
980             tcx,
981             outer_index: ty::INNERMOST,
982             has_late_bound_regions: None,
983         };
984         for param in generics.params {
985             if let GenericParamKind::Lifetime { .. } = param.kind {
986                 if tcx.is_late_bound(param.hir_id) {
987                     return Some(param.span);
988                 }
989             }
990         }
991         visitor.visit_fn_decl(decl);
992         visitor.has_late_bound_regions
993     }
994
995     match node {
996         Node::TraitItem(item) => match item.kind {
997             hir::TraitItemKind::Method(ref sig, _) => {
998                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
999             }
1000             _ => None,
1001         },
1002         Node::ImplItem(item) => match item.kind {
1003             hir::ImplItemKind::Method(ref sig, _) => {
1004                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1005             }
1006             _ => None,
1007         },
1008         Node::ForeignItem(item) => match item.kind {
1009             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
1010                 has_late_bound_regions(tcx, generics, fn_decl)
1011             }
1012             _ => None,
1013         },
1014         Node::Item(item) => match item.kind {
1015             hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
1016                 has_late_bound_regions(tcx, generics, &sig.decl)
1017             }
1018             _ => None,
1019         },
1020         _ => None,
1021     }
1022 }
1023
1024 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::Generics {
1025     use rustc_hir::*;
1026
1027     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1028
1029     let node = tcx.hir().get(hir_id);
1030     let parent_def_id = match node {
1031         Node::ImplItem(_)
1032         | Node::TraitItem(_)
1033         | Node::Variant(_)
1034         | Node::Ctor(..)
1035         | Node::Field(_) => {
1036             let parent_id = tcx.hir().get_parent_item(hir_id);
1037             Some(tcx.hir().local_def_id(parent_id))
1038         }
1039         // FIXME(#43408) enable this always when we get lazy normalization.
1040         Node::AnonConst(_) => {
1041             // HACK(eddyb) this provides the correct generics when
1042             // `feature(const_generics)` is enabled, so that const expressions
1043             // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
1044             if tcx.features().const_generics {
1045                 let parent_id = tcx.hir().get_parent_item(hir_id);
1046                 Some(tcx.hir().local_def_id(parent_id))
1047             } else {
1048                 None
1049             }
1050         }
1051         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1052             Some(tcx.closure_base_def_id(def_id))
1053         }
1054         Node::Item(item) => match item.kind {
1055             ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => impl_trait_fn,
1056             _ => None,
1057         },
1058         _ => None,
1059     };
1060
1061     let mut opt_self = None;
1062     let mut allow_defaults = false;
1063
1064     let no_generics = hir::Generics::empty();
1065     let ast_generics = match node {
1066         Node::TraitItem(item) => &item.generics,
1067
1068         Node::ImplItem(item) => &item.generics,
1069
1070         Node::Item(item) => {
1071             match item.kind {
1072                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl { ref generics, .. } => generics,
1073
1074                 ItemKind::TyAlias(_, ref generics)
1075                 | ItemKind::Enum(_, ref generics)
1076                 | ItemKind::Struct(_, ref generics)
1077                 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
1078                 | ItemKind::Union(_, ref generics) => {
1079                     allow_defaults = true;
1080                     generics
1081                 }
1082
1083                 ItemKind::Trait(_, _, ref generics, ..)
1084                 | ItemKind::TraitAlias(ref generics, ..) => {
1085                     // Add in the self type parameter.
1086                     //
1087                     // Something of a hack: use the node id for the trait, also as
1088                     // the node id for the Self type parameter.
1089                     let param_id = item.hir_id;
1090
1091                     opt_self = Some(ty::GenericParamDef {
1092                         index: 0,
1093                         name: kw::SelfUpper,
1094                         def_id: tcx.hir().local_def_id(param_id),
1095                         pure_wrt_drop: false,
1096                         kind: ty::GenericParamDefKind::Type {
1097                             has_default: false,
1098                             object_lifetime_default: rl::Set1::Empty,
1099                             synthetic: None,
1100                         },
1101                     });
1102
1103                     allow_defaults = true;
1104                     generics
1105                 }
1106
1107                 _ => &no_generics,
1108             }
1109         }
1110
1111         Node::ForeignItem(item) => match item.kind {
1112             ForeignItemKind::Static(..) => &no_generics,
1113             ForeignItemKind::Fn(_, _, ref generics) => generics,
1114             ForeignItemKind::Type => &no_generics,
1115         },
1116
1117         _ => &no_generics,
1118     };
1119
1120     let has_self = opt_self.is_some();
1121     let mut parent_has_self = false;
1122     let mut own_start = has_self as u32;
1123     let parent_count = parent_def_id.map_or(0, |def_id| {
1124         let generics = tcx.generics_of(def_id);
1125         assert_eq!(has_self, false);
1126         parent_has_self = generics.has_self;
1127         own_start = generics.count() as u32;
1128         generics.parent_count + generics.params.len()
1129     });
1130
1131     let mut params: Vec<_> = opt_self.into_iter().collect();
1132
1133     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1134     params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
1135         name: param.name.ident().name,
1136         index: own_start + i as u32,
1137         def_id: tcx.hir().local_def_id(param.hir_id),
1138         pure_wrt_drop: param.pure_wrt_drop,
1139         kind: ty::GenericParamDefKind::Lifetime,
1140     }));
1141
1142     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
1143
1144     // Now create the real type parameters.
1145     let type_start = own_start - has_self as u32 + params.len() as u32;
1146     let mut i = 0;
1147     params.extend(ast_generics.params.iter().filter_map(|param| {
1148         let kind = match param.kind {
1149             GenericParamKind::Type { ref default, synthetic, .. } => {
1150                 if !allow_defaults && default.is_some() {
1151                     if !tcx.features().default_type_parameter_fallback {
1152                         tcx.lint_hir(
1153                             lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1154                             param.hir_id,
1155                             param.span,
1156                             &format!(
1157                                 "defaults for type parameters are only allowed in \
1158                                         `struct`, `enum`, `type`, or `trait` definitions."
1159                             ),
1160                         );
1161                     }
1162                 }
1163
1164                 ty::GenericParamDefKind::Type {
1165                     has_default: default.is_some(),
1166                     object_lifetime_default: object_lifetime_defaults
1167                         .as_ref()
1168                         .map_or(rl::Set1::Empty, |o| o[i]),
1169                     synthetic,
1170                 }
1171             }
1172             GenericParamKind::Const { .. } => ty::GenericParamDefKind::Const,
1173             _ => return None,
1174         };
1175
1176         let param_def = ty::GenericParamDef {
1177             index: type_start + i as u32,
1178             name: param.name.ident().name,
1179             def_id: tcx.hir().local_def_id(param.hir_id),
1180             pure_wrt_drop: param.pure_wrt_drop,
1181             kind,
1182         };
1183         i += 1;
1184         Some(param_def)
1185     }));
1186
1187     // provide junk type parameter defs - the only place that
1188     // cares about anything but the length is instantiation,
1189     // and we don't do that for closures.
1190     if let Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) = node {
1191         let dummy_args = if gen.is_some() {
1192             &["<yield_ty>", "<return_ty>", "<witness>"][..]
1193         } else {
1194             &["<closure_kind>", "<closure_signature>"][..]
1195         };
1196
1197         params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
1198             index: type_start + i as u32,
1199             name: Symbol::intern(arg),
1200             def_id,
1201             pure_wrt_drop: false,
1202             kind: ty::GenericParamDefKind::Type {
1203                 has_default: false,
1204                 object_lifetime_default: rl::Set1::Empty,
1205                 synthetic: None,
1206             },
1207         }));
1208
1209         if let Some(upvars) = tcx.upvars(def_id) {
1210             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1211                 ty::GenericParamDef {
1212                     index: type_start + i,
1213                     name: Symbol::intern("<upvar>"),
1214                     def_id,
1215                     pure_wrt_drop: false,
1216                     kind: ty::GenericParamDefKind::Type {
1217                         has_default: false,
1218                         object_lifetime_default: rl::Set1::Empty,
1219                         synthetic: None,
1220                     },
1221                 }
1222             }));
1223         }
1224     }
1225
1226     let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
1227
1228     tcx.arena.alloc(ty::Generics {
1229         parent: parent_def_id,
1230         parent_count,
1231         params,
1232         param_def_id_to_index,
1233         has_self: has_self || parent_has_self,
1234         has_late_bound_regions: has_late_bound_regions(tcx, node),
1235     })
1236 }
1237
1238 fn report_assoc_ty_on_inherent_impl(tcx: TyCtxt<'_>, span: Span) {
1239     struct_span_err!(
1240         tcx.sess,
1241         span,
1242         E0202,
1243         "associated types are not yet supported in inherent impls (see #8995)"
1244     )
1245     .emit();
1246 }
1247
1248 fn infer_placeholder_type(
1249     tcx: TyCtxt<'_>,
1250     def_id: DefId,
1251     body_id: hir::BodyId,
1252     span: Span,
1253     item_ident: Ident,
1254 ) -> Ty<'_> {
1255     let ty = tcx.diagnostic_only_typeck_tables_of(def_id).node_type(body_id.hir_id);
1256
1257     // If this came from a free `const` or `static mut?` item,
1258     // then the user may have written e.g. `const A = 42;`.
1259     // In this case, the parser has stashed a diagnostic for
1260     // us to improve in typeck so we do that now.
1261     match tcx.sess.diagnostic().steal_diagnostic(span, StashKey::ItemNoType) {
1262         Some(mut err) => {
1263             // The parser provided a sub-optimal `HasPlaceholders` suggestion for the type.
1264             // We are typeck and have the real type, so remove that and suggest the actual type.
1265             err.suggestions.clear();
1266             err.span_suggestion(
1267                 span,
1268                 "provide a type for the item",
1269                 format!("{}: {}", item_ident, ty),
1270                 Applicability::MachineApplicable,
1271             )
1272             .emit();
1273         }
1274         None => {
1275             let mut diag = bad_placeholder_type(tcx, vec![span]);
1276             if ty != tcx.types.err {
1277                 diag.span_suggestion(
1278                     span,
1279                     "replace `_` with the correct type",
1280                     ty.to_string(),
1281                     Applicability::MaybeIncorrect,
1282                 );
1283             }
1284             diag.emit();
1285         }
1286     }
1287
1288     ty
1289 }
1290
1291 fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1292     use rustc_hir::*;
1293
1294     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1295
1296     let icx = ItemCtxt::new(tcx, def_id);
1297
1298     match tcx.hir().get(hir_id) {
1299         Node::TraitItem(item) => match item.kind {
1300             TraitItemKind::Method(..) => {
1301                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1302                 tcx.mk_fn_def(def_id, substs)
1303             }
1304             TraitItemKind::Const(ref ty, body_id) => body_id
1305                 .and_then(|body_id| {
1306                     if is_suggestable_infer_ty(ty) {
1307                         Some(infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident))
1308                     } else {
1309                         None
1310                     }
1311                 })
1312                 .unwrap_or_else(|| icx.to_ty(ty)),
1313             TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1314             TraitItemKind::Type(_, None) => {
1315                 span_bug!(item.span, "associated type missing default");
1316             }
1317         },
1318
1319         Node::ImplItem(item) => match item.kind {
1320             ImplItemKind::Method(..) => {
1321                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1322                 tcx.mk_fn_def(def_id, substs)
1323             }
1324             ImplItemKind::Const(ref ty, body_id) => {
1325                 if is_suggestable_infer_ty(ty) {
1326                     infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1327                 } else {
1328                     icx.to_ty(ty)
1329                 }
1330             }
1331             ImplItemKind::OpaqueTy(_) => {
1332                 if tcx.impl_trait_ref(tcx.hir().get_parent_did(hir_id)).is_none() {
1333                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1334                 }
1335
1336                 find_opaque_ty_constraints(tcx, def_id)
1337             }
1338             ImplItemKind::TyAlias(ref ty) => {
1339                 if tcx.impl_trait_ref(tcx.hir().get_parent_did(hir_id)).is_none() {
1340                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1341                 }
1342
1343                 icx.to_ty(ty)
1344             }
1345         },
1346
1347         Node::Item(item) => {
1348             match item.kind {
1349                 ItemKind::Static(ref ty, .., body_id) | ItemKind::Const(ref ty, body_id) => {
1350                     if is_suggestable_infer_ty(ty) {
1351                         infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1352                     } else {
1353                         icx.to_ty(ty)
1354                     }
1355                 }
1356                 ItemKind::TyAlias(ref self_ty, _) | ItemKind::Impl { ref self_ty, .. } => {
1357                     icx.to_ty(self_ty)
1358                 }
1359                 ItemKind::Fn(..) => {
1360                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1361                     tcx.mk_fn_def(def_id, substs)
1362                 }
1363                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1364                     let def = tcx.adt_def(def_id);
1365                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1366                     tcx.mk_adt(def, substs)
1367                 }
1368                 ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: None, .. }) => {
1369                     find_opaque_ty_constraints(tcx, def_id)
1370                 }
1371                 // Opaque types desugared from `impl Trait`.
1372                 ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(owner), .. }) => {
1373                     tcx.typeck_tables_of(owner)
1374                         .concrete_opaque_types
1375                         .get(&def_id)
1376                         .map(|opaque| opaque.concrete_type)
1377                         .unwrap_or_else(|| {
1378                             // This can occur if some error in the
1379                             // owner fn prevented us from populating
1380                             // the `concrete_opaque_types` table.
1381                             tcx.sess.delay_span_bug(
1382                                 DUMMY_SP,
1383                                 &format!(
1384                                     "owner {:?} has no opaque type for {:?} in its tables",
1385                                     owner, def_id,
1386                                 ),
1387                             );
1388                             tcx.types.err
1389                         })
1390                 }
1391                 ItemKind::Trait(..)
1392                 | ItemKind::TraitAlias(..)
1393                 | ItemKind::Mod(..)
1394                 | ItemKind::ForeignMod(..)
1395                 | ItemKind::GlobalAsm(..)
1396                 | ItemKind::ExternCrate(..)
1397                 | ItemKind::Use(..) => {
1398                     span_bug!(
1399                         item.span,
1400                         "compute_type_of_item: unexpected item type: {:?}",
1401                         item.kind
1402                     );
1403                 }
1404             }
1405         }
1406
1407         Node::ForeignItem(foreign_item) => match foreign_item.kind {
1408             ForeignItemKind::Fn(..) => {
1409                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1410                 tcx.mk_fn_def(def_id, substs)
1411             }
1412             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1413             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1414         },
1415
1416         Node::Ctor(&ref def) | Node::Variant(hir::Variant { data: ref def, .. }) => match *def {
1417             VariantData::Unit(..) | VariantData::Struct(..) => {
1418                 tcx.type_of(tcx.hir().get_parent_did(hir_id))
1419             }
1420             VariantData::Tuple(..) => {
1421                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1422                 tcx.mk_fn_def(def_id, substs)
1423             }
1424         },
1425
1426         Node::Field(field) => icx.to_ty(&field.ty),
1427
1428         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) => {
1429             if gen.is_some() {
1430                 return tcx.typeck_tables_of(def_id).node_type(hir_id);
1431             }
1432
1433             let substs = InternalSubsts::identity_for_item(tcx, def_id);
1434             tcx.mk_closure(def_id, substs)
1435         }
1436
1437         Node::AnonConst(_) => {
1438             let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1439             match parent_node {
1440                 Node::Ty(&hir::Ty { kind: hir::TyKind::Array(_, ref constant), .. })
1441                 | Node::Ty(&hir::Ty { kind: hir::TyKind::Typeof(ref constant), .. })
1442                 | Node::Expr(&hir::Expr { kind: ExprKind::Repeat(_, ref constant), .. })
1443                     if constant.hir_id == hir_id =>
1444                 {
1445                     tcx.types.usize
1446                 }
1447
1448                 Node::Variant(Variant { disr_expr: Some(ref e), .. }) if e.hir_id == hir_id => {
1449                     tcx.adt_def(tcx.hir().get_parent_did(hir_id)).repr.discr_type().to_ty(tcx)
1450                 }
1451
1452                 Node::Ty(&hir::Ty { kind: hir::TyKind::Path(_), .. })
1453                 | Node::Expr(&hir::Expr { kind: ExprKind::Struct(..), .. })
1454                 | Node::Expr(&hir::Expr { kind: ExprKind::Path(_), .. })
1455                 | Node::TraitRef(..) => {
1456                     let path = match parent_node {
1457                         Node::Ty(&hir::Ty {
1458                             kind: hir::TyKind::Path(QPath::Resolved(_, ref path)),
1459                             ..
1460                         })
1461                         | Node::Expr(&hir::Expr {
1462                             kind: ExprKind::Path(QPath::Resolved(_, ref path)),
1463                             ..
1464                         }) => Some(&**path),
1465                         Node::Expr(&hir::Expr { kind: ExprKind::Struct(ref path, ..), .. }) => {
1466                             if let QPath::Resolved(_, ref path) = **path {
1467                                 Some(&**path)
1468                             } else {
1469                                 None
1470                             }
1471                         }
1472                         Node::TraitRef(&hir::TraitRef { ref path, .. }) => Some(&**path),
1473                         _ => None,
1474                     };
1475
1476                     if let Some(path) = path {
1477                         let arg_index = path
1478                             .segments
1479                             .iter()
1480                             .filter_map(|seg| seg.args.as_ref())
1481                             .map(|generic_args| generic_args.args.as_ref())
1482                             .find_map(|args| {
1483                                 args.iter()
1484                                     .filter(|arg| arg.is_const())
1485                                     .enumerate()
1486                                     .filter(|(_, arg)| arg.id() == hir_id)
1487                                     .map(|(index, _)| index)
1488                                     .next()
1489                             })
1490                             .unwrap_or_else(|| {
1491                                 bug!("no arg matching AnonConst in path");
1492                             });
1493
1494                         // We've encountered an `AnonConst` in some path, so we need to
1495                         // figure out which generic parameter it corresponds to and return
1496                         // the relevant type.
1497                         let generics = match path.res {
1498                             Res::Def(DefKind::Ctor(..), def_id) => {
1499                                 tcx.generics_of(tcx.parent(def_id).unwrap())
1500                             }
1501                             Res::Def(_, def_id) => tcx.generics_of(def_id),
1502                             Res::Err => return tcx.types.err,
1503                             res => {
1504                                 tcx.sess.delay_span_bug(
1505                                     DUMMY_SP,
1506                                     &format!("unexpected const parent path def {:?}", res,),
1507                                 );
1508                                 return tcx.types.err;
1509                             }
1510                         };
1511
1512                         generics
1513                             .params
1514                             .iter()
1515                             .filter(|param| {
1516                                 if let ty::GenericParamDefKind::Const = param.kind {
1517                                     true
1518                                 } else {
1519                                     false
1520                                 }
1521                             })
1522                             .nth(arg_index)
1523                             .map(|param| tcx.type_of(param.def_id))
1524                             // This is no generic parameter associated with the arg. This is
1525                             // probably from an extra arg where one is not needed.
1526                             .unwrap_or(tcx.types.err)
1527                     } else {
1528                         tcx.sess.delay_span_bug(
1529                             DUMMY_SP,
1530                             &format!("unexpected const parent path {:?}", parent_node,),
1531                         );
1532                         return tcx.types.err;
1533                     }
1534                 }
1535
1536                 x => {
1537                     tcx.sess.delay_span_bug(
1538                         DUMMY_SP,
1539                         &format!("unexpected const parent in type_of_def_id(): {:?}", x),
1540                     );
1541                     tcx.types.err
1542                 }
1543             }
1544         }
1545
1546         Node::GenericParam(param) => match &param.kind {
1547             hir::GenericParamKind::Type { default: Some(ref ty), .. } => icx.to_ty(ty),
1548             hir::GenericParamKind::Const { ty: ref hir_ty, .. } => {
1549                 let ty = icx.to_ty(hir_ty);
1550                 if !tcx.features().const_compare_raw_pointers {
1551                     let err = match ty.peel_refs().kind {
1552                         ty::FnPtr(_) => Some("function pointers"),
1553                         ty::RawPtr(_) => Some("raw pointers"),
1554                         _ => None,
1555                     };
1556                     if let Some(unsupported_type) = err {
1557                         feature_err(
1558                             &tcx.sess.parse_sess,
1559                             sym::const_compare_raw_pointers,
1560                             hir_ty.span,
1561                             &format!(
1562                                 "using {} as const generic parameters is unstable",
1563                                 unsupported_type
1564                             ),
1565                         )
1566                         .emit();
1567                     };
1568                 }
1569                 if traits::search_for_structural_match_violation(param.hir_id, param.span, tcx, ty)
1570                     .is_some()
1571                 {
1572                     struct_span_err!(
1573                         tcx.sess,
1574                         hir_ty.span,
1575                         E0741,
1576                         "the types of const generic parameters must derive `PartialEq` and `Eq`",
1577                     )
1578                     .span_label(
1579                         hir_ty.span,
1580                         format!("`{}` doesn't derive both `PartialEq` and `Eq`", ty),
1581                     )
1582                     .emit();
1583                 }
1584                 ty
1585             }
1586             x => bug!("unexpected non-type Node::GenericParam: {:?}", x),
1587         },
1588
1589         x => {
1590             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1591         }
1592     }
1593 }
1594
1595 fn find_opaque_ty_constraints(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1596     use rustc_hir::{ImplItem, Item, TraitItem};
1597
1598     debug!("find_opaque_ty_constraints({:?})", def_id);
1599
1600     struct ConstraintLocator<'tcx> {
1601         tcx: TyCtxt<'tcx>,
1602         def_id: DefId,
1603         // (first found type span, actual type, mapping from the opaque type's generic
1604         // parameters to the concrete type's generic parameters)
1605         //
1606         // The mapping is an index for each use site of a generic parameter in the concrete type
1607         //
1608         // The indices index into the generic parameters on the opaque type.
1609         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1610     }
1611
1612     impl ConstraintLocator<'tcx> {
1613         fn check(&mut self, def_id: DefId) {
1614             // Don't try to check items that cannot possibly constrain the type.
1615             if !self.tcx.has_typeck_tables(def_id) {
1616                 debug!(
1617                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`: no tables",
1618                     self.def_id, def_id,
1619                 );
1620                 return;
1621             }
1622             let ty = self.tcx.typeck_tables_of(def_id).concrete_opaque_types.get(&self.def_id);
1623             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1624                 debug!(
1625                     "find_opaque_ty_constraints: found constraint for `{:?}` at `{:?}`: {:?}",
1626                     self.def_id, def_id, ty,
1627                 );
1628
1629                 // FIXME(oli-obk): trace the actual span from inference to improve errors.
1630                 let span = self.tcx.def_span(def_id);
1631                 // used to quickly look up the position of a generic parameter
1632                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1633                 // Skipping binder is ok, since we only use this to find generic parameters and
1634                 // their positions.
1635                 for (idx, subst) in substs.iter().enumerate() {
1636                     if let GenericArgKind::Type(ty) = subst.unpack() {
1637                         if let ty::Param(p) = ty.kind {
1638                             if index_map.insert(p, idx).is_some() {
1639                                 // There was already an entry for `p`, meaning a generic parameter
1640                                 // was used twice.
1641                                 self.tcx.sess.span_err(
1642                                     span,
1643                                     &format!(
1644                                         "defining opaque type use restricts opaque \
1645                                          type by using the generic parameter `{}` twice",
1646                                         p,
1647                                     ),
1648                                 );
1649                                 return;
1650                             }
1651                         } else {
1652                             self.tcx.sess.delay_span_bug(
1653                                 span,
1654                                 &format!(
1655                                     "non-defining opaque ty use in defining scope: {:?}, {:?}",
1656                                     concrete_type, substs,
1657                                 ),
1658                             );
1659                         }
1660                     }
1661                 }
1662                 // Compute the index within the opaque type for each generic parameter used in
1663                 // the concrete type.
1664                 let indices = concrete_type
1665                     .subst(self.tcx, substs)
1666                     .walk()
1667                     .filter_map(|t| match &t.kind {
1668                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1669                         _ => None,
1670                     })
1671                     .collect();
1672                 let is_param = |ty: Ty<'_>| match ty.kind {
1673                     ty::Param(_) => true,
1674                     _ => false,
1675                 };
1676                 let bad_substs: Vec<_> =
1677                     substs.types().enumerate().filter(|(_, ty)| !is_param(ty)).collect();
1678                 if !bad_substs.is_empty() {
1679                     let identity_substs = InternalSubsts::identity_for_item(self.tcx, self.def_id);
1680                     for (i, bad_subst) in bad_substs {
1681                         self.tcx.sess.span_err(
1682                             span,
1683                             &format!(
1684                                 "defining opaque type use does not fully define opaque type: \
1685                             generic parameter `{}` is specified as concrete type `{}`",
1686                                 identity_substs.type_at(i),
1687                                 bad_subst
1688                             ),
1689                         );
1690                     }
1691                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1692                     let mut ty = concrete_type.walk().fuse();
1693                     let mut p_ty = prev_ty.walk().fuse();
1694                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.kind, &p.kind) {
1695                         // Type parameters are equal to any other type parameter for the purpose of
1696                         // concrete type equality, as it is possible to obtain the same type just
1697                         // by passing matching parameters to a function.
1698                         (ty::Param(_), ty::Param(_)) => true,
1699                         _ => t == p,
1700                     });
1701                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1702                         debug!("find_opaque_ty_constraints: span={:?}", span);
1703                         // Found different concrete types for the opaque type.
1704                         let mut err = self.tcx.sess.struct_span_err(
1705                             span,
1706                             "concrete type differs from previous defining opaque type use",
1707                         );
1708                         err.span_label(
1709                             span,
1710                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1711                         );
1712                         err.span_note(prev_span, "previous use here");
1713                         err.emit();
1714                     } else if indices != *prev_indices {
1715                         // Found "same" concrete types, but the generic parameter order differs.
1716                         let mut err = self.tcx.sess.struct_span_err(
1717                             span,
1718                             "concrete type's generic parameters differ from previous defining use",
1719                         );
1720                         use std::fmt::Write;
1721                         let mut s = String::new();
1722                         write!(s, "expected [").unwrap();
1723                         let list = |s: &mut String, indices: &Vec<usize>| {
1724                             let mut indices = indices.iter().cloned();
1725                             if let Some(first) = indices.next() {
1726                                 write!(s, "`{}`", substs[first]).unwrap();
1727                                 for i in indices {
1728                                     write!(s, ", `{}`", substs[i]).unwrap();
1729                                 }
1730                             }
1731                         };
1732                         list(&mut s, prev_indices);
1733                         write!(s, "], got [").unwrap();
1734                         list(&mut s, &indices);
1735                         write!(s, "]").unwrap();
1736                         err.span_label(span, s);
1737                         err.span_note(prev_span, "previous use here");
1738                         err.emit();
1739                     }
1740                 } else {
1741                     self.found = Some((span, concrete_type, indices));
1742                 }
1743             } else {
1744                 debug!(
1745                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`",
1746                     self.def_id, def_id,
1747                 );
1748             }
1749         }
1750     }
1751
1752     impl<'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'tcx> {
1753         type Map = Map<'tcx>;
1754
1755         fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<'_, Self::Map> {
1756             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1757         }
1758         fn visit_item(&mut self, it: &'tcx Item<'tcx>) {
1759             debug!("find_existential_constraints: visiting {:?}", it);
1760             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1761             // The opaque type itself or its children are not within its reveal scope.
1762             if def_id != self.def_id {
1763                 self.check(def_id);
1764                 intravisit::walk_item(self, it);
1765             }
1766         }
1767         fn visit_impl_item(&mut self, it: &'tcx ImplItem<'tcx>) {
1768             debug!("find_existential_constraints: visiting {:?}", it);
1769             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1770             // The opaque type itself or its children are not within its reveal scope.
1771             if def_id != self.def_id {
1772                 self.check(def_id);
1773                 intravisit::walk_impl_item(self, it);
1774             }
1775         }
1776         fn visit_trait_item(&mut self, it: &'tcx TraitItem<'tcx>) {
1777             debug!("find_existential_constraints: visiting {:?}", it);
1778             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1779             self.check(def_id);
1780             intravisit::walk_trait_item(self, it);
1781         }
1782     }
1783
1784     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1785     let scope = tcx.hir().get_defining_scope(hir_id);
1786     let mut locator = ConstraintLocator { def_id, tcx, found: None };
1787
1788     debug!("find_opaque_ty_constraints: scope={:?}", scope);
1789
1790     if scope == hir::CRATE_HIR_ID {
1791         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1792     } else {
1793         debug!("find_opaque_ty_constraints: scope={:?}", tcx.hir().get(scope));
1794         match tcx.hir().get(scope) {
1795             // We explicitly call `visit_*` methods, instead of using `intravisit::walk_*` methods
1796             // This allows our visitor to process the defining item itself, causing
1797             // it to pick up any 'sibling' defining uses.
1798             //
1799             // For example, this code:
1800             // ```
1801             // fn foo() {
1802             //     type Blah = impl Debug;
1803             //     let my_closure = || -> Blah { true };
1804             // }
1805             // ```
1806             //
1807             // requires us to explicitly process `foo()` in order
1808             // to notice the defining usage of `Blah`.
1809             Node::Item(ref it) => locator.visit_item(it),
1810             Node::ImplItem(ref it) => locator.visit_impl_item(it),
1811             Node::TraitItem(ref it) => locator.visit_trait_item(it),
1812             other => bug!("{:?} is not a valid scope for an opaque type item", other),
1813         }
1814     }
1815
1816     match locator.found {
1817         Some((_, ty, _)) => ty,
1818         None => {
1819             let span = tcx.def_span(def_id);
1820             tcx.sess.span_err(span, "could not find defining uses");
1821             tcx.types.err
1822         }
1823     }
1824 }
1825
1826 fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
1827     generic_args
1828         .iter()
1829         .filter_map(|arg| match arg {
1830             hir::GenericArg::Type(ty) => Some(ty),
1831             _ => None,
1832         })
1833         .any(is_suggestable_infer_ty)
1834 }
1835
1836 /// Whether `ty` is a type with `_` placeholders that can be infered. Used in diagnostics only to
1837 /// use inference to provide suggestions for the appropriate type if possible.
1838 fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
1839     use hir::TyKind::*;
1840     match &ty.kind {
1841         Infer => true,
1842         Slice(ty) | Array(ty, _) => is_suggestable_infer_ty(ty),
1843         Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
1844         Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
1845         Def(_, generic_args) => are_suggestable_generic_args(generic_args),
1846         Path(hir::QPath::TypeRelative(ty, segment)) => {
1847             is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.generic_args().args)
1848         }
1849         Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
1850             ty_opt.map_or(false, is_suggestable_infer_ty)
1851                 || segments
1852                     .iter()
1853                     .any(|segment| are_suggestable_generic_args(segment.generic_args().args))
1854         }
1855         _ => false,
1856     }
1857 }
1858
1859 pub fn get_infer_ret_ty(output: &'hir hir::FunctionRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
1860     if let hir::FunctionRetTy::Return(ref ty) = output {
1861         if is_suggestable_infer_ty(ty) {
1862             return Some(&**ty);
1863         }
1864     }
1865     None
1866 }
1867
1868 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1869     use rustc_hir::Node::*;
1870     use rustc_hir::*;
1871
1872     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1873
1874     let icx = ItemCtxt::new(tcx, def_id);
1875
1876     match tcx.hir().get(hir_id) {
1877         TraitItem(hir::TraitItem {
1878             kind: TraitItemKind::Method(sig, TraitMethod::Provided(_)),
1879             ident,
1880             generics,
1881             ..
1882         })
1883         | ImplItem(hir::ImplItem { kind: ImplItemKind::Method(sig, _), ident, generics, .. })
1884         | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), ident, .. }) => {
1885             match get_infer_ret_ty(&sig.decl.output) {
1886                 Some(ty) => {
1887                     let fn_sig = tcx.typeck_tables_of(def_id).liberated_fn_sigs()[hir_id];
1888                     let mut visitor = PlaceholderHirTyCollector::default();
1889                     visitor.visit_ty(ty);
1890                     let mut diag = bad_placeholder_type(tcx, visitor.0);
1891                     let ret_ty = fn_sig.output();
1892                     if ret_ty != tcx.types.err {
1893                         diag.span_suggestion(
1894                             ty.span,
1895                             "replace with the correct return type",
1896                             ret_ty.to_string(),
1897                             Applicability::MaybeIncorrect,
1898                         );
1899                     }
1900                     diag.emit();
1901                     ty::Binder::bind(fn_sig)
1902                 }
1903                 None => AstConv::ty_of_fn(
1904                     &icx,
1905                     sig.header.unsafety,
1906                     sig.header.abi,
1907                     &sig.decl,
1908                     &generics.params[..],
1909                     Some(ident.span),
1910                 ),
1911             }
1912         }
1913
1914         TraitItem(hir::TraitItem {
1915             kind: TraitItemKind::Method(FnSig { header, decl }, _),
1916             ident,
1917             generics,
1918             ..
1919         }) => AstConv::ty_of_fn(
1920             &icx,
1921             header.unsafety,
1922             header.abi,
1923             decl,
1924             &generics.params[..],
1925             Some(ident.span),
1926         ),
1927
1928         ForeignItem(&hir::ForeignItem { kind: ForeignItemKind::Fn(ref fn_decl, _, _), .. }) => {
1929             let abi = tcx.hir().get_foreign_abi(hir_id);
1930             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
1931         }
1932
1933         Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
1934             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id));
1935             let inputs =
1936                 data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1937             ty::Binder::bind(tcx.mk_fn_sig(
1938                 inputs,
1939                 ty,
1940                 false,
1941                 hir::Unsafety::Normal,
1942                 abi::Abi::Rust,
1943             ))
1944         }
1945
1946         Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1947             // Closure signatures are not like other function
1948             // signatures and cannot be accessed through `fn_sig`. For
1949             // example, a closure signature excludes the `self`
1950             // argument. In any case they are embedded within the
1951             // closure type as part of the `ClosureSubsts`.
1952             //
1953             // To get
1954             // the signature of a closure, you should use the
1955             // `closure_sig` method on the `ClosureSubsts`:
1956             //
1957             //    closure_substs.sig(def_id, tcx)
1958             //
1959             // or, inside of an inference context, you can use
1960             //
1961             //    infcx.closure_sig(def_id, closure_substs)
1962             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
1963         }
1964
1965         x => {
1966             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1967         }
1968     }
1969 }
1970
1971 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1972     let icx = ItemCtxt::new(tcx, def_id);
1973
1974     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1975     match tcx.hir().expect_item(hir_id).kind {
1976         hir::ItemKind::Impl { ref of_trait, .. } => of_trait.as_ref().map(|ast_trait_ref| {
1977             let selfty = tcx.type_of(def_id);
1978             AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1979         }),
1980         _ => bug!(),
1981     }
1982 }
1983
1984 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
1985     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1986     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
1987     let item = tcx.hir().expect_item(hir_id);
1988     match &item.kind {
1989         hir::ItemKind::Impl { polarity: hir::ImplPolarity::Negative, .. } => {
1990             if is_rustc_reservation {
1991                 tcx.sess.span_err(item.span, "reservation impls can't be negative");
1992             }
1993             ty::ImplPolarity::Negative
1994         }
1995         hir::ItemKind::Impl { polarity: hir::ImplPolarity::Positive, of_trait: None, .. } => {
1996             if is_rustc_reservation {
1997                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
1998             }
1999             ty::ImplPolarity::Positive
2000         }
2001         hir::ItemKind::Impl {
2002             polarity: hir::ImplPolarity::Positive, of_trait: Some(_), ..
2003         } => {
2004             if is_rustc_reservation {
2005                 ty::ImplPolarity::Reservation
2006             } else {
2007                 ty::ImplPolarity::Positive
2008             }
2009         }
2010         ref item => bug!("impl_polarity: {:?} not an impl", item),
2011     }
2012 }
2013
2014 /// Returns the early-bound lifetimes declared in this generics
2015 /// listing. For anything other than fns/methods, this is just all
2016 /// the lifetimes that are declared. For fns or methods, we have to
2017 /// screen out those that do not appear in any where-clauses etc using
2018 /// `resolve_lifetime::early_bound_lifetimes`.
2019 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
2020     tcx: TyCtxt<'tcx>,
2021     generics: &'a hir::Generics<'a>,
2022 ) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
2023     generics.params.iter().filter(move |param| match param.kind {
2024         GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
2025         _ => false,
2026     })
2027 }
2028
2029 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
2030 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
2031 /// inferred constraints concerning which regions outlive other regions.
2032 fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2033     debug!("predicates_defined_on({:?})", def_id);
2034     let mut result = tcx.explicit_predicates_of(def_id);
2035     debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
2036     let inferred_outlives = tcx.inferred_outlives_of(def_id);
2037     if !inferred_outlives.is_empty() {
2038         debug!(
2039             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
2040             def_id, inferred_outlives,
2041         );
2042         if result.predicates.is_empty() {
2043             result.predicates = inferred_outlives;
2044         } else {
2045             result.predicates = tcx
2046                 .arena
2047                 .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
2048         }
2049     }
2050     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
2051     result
2052 }
2053
2054 /// Returns a list of all type predicates (explicit and implicit) for the definition with
2055 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
2056 /// `Self: Trait` predicates for traits.
2057 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2058     let mut result = tcx.predicates_defined_on(def_id);
2059
2060     if tcx.is_trait(def_id) {
2061         // For traits, add `Self: Trait` predicate. This is
2062         // not part of the predicates that a user writes, but it
2063         // is something that one must prove in order to invoke a
2064         // method or project an associated type.
2065         //
2066         // In the chalk setup, this predicate is not part of the
2067         // "predicates" for a trait item. But it is useful in
2068         // rustc because if you directly (e.g.) invoke a trait
2069         // method like `Trait::method(...)`, you must naturally
2070         // prove that the trait applies to the types that were
2071         // used, and adding the predicate into this list ensures
2072         // that this is done.
2073         let span = tcx.def_span(def_id);
2074         result.predicates =
2075             tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
2076                 ty::TraitRef::identity(tcx, def_id).without_const().to_predicate(),
2077                 span,
2078             ))));
2079     }
2080     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
2081     result
2082 }
2083
2084 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
2085 /// N.B., this does not include any implied/inferred constraints.
2086 fn explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2087     use rustc_data_structures::fx::FxHashSet;
2088     use rustc_hir::*;
2089
2090     debug!("explicit_predicates_of(def_id={:?})", def_id);
2091
2092     /// A data structure with unique elements, which preserves order of insertion.
2093     /// Preserving the order of insertion is important here so as not to break
2094     /// compile-fail UI tests.
2095     // FIXME(eddyb) just use `IndexSet` from `indexmap`.
2096     struct UniquePredicates<'tcx> {
2097         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
2098         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
2099     }
2100
2101     impl<'tcx> UniquePredicates<'tcx> {
2102         fn new() -> Self {
2103             UniquePredicates { predicates: vec![], uniques: FxHashSet::default() }
2104         }
2105
2106         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
2107             if self.uniques.insert(value) {
2108                 self.predicates.push(value);
2109             }
2110         }
2111
2112         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
2113             for value in iter {
2114                 self.push(value);
2115             }
2116         }
2117     }
2118
2119     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
2120     let node = tcx.hir().get(hir_id);
2121
2122     let mut is_trait = None;
2123     let mut is_default_impl_trait = None;
2124
2125     let icx = ItemCtxt::new(tcx, def_id);
2126     let constness = icx.default_constness_for_trait_bounds();
2127
2128     const NO_GENERICS: &hir::Generics<'_> = &hir::Generics::empty();
2129
2130     let mut predicates = UniquePredicates::new();
2131
2132     let ast_generics = match node {
2133         Node::TraitItem(item) => &item.generics,
2134
2135         Node::ImplItem(item) => match item.kind {
2136             ImplItemKind::OpaqueTy(ref bounds) => {
2137                 ty::print::with_no_queries(|| {
2138                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
2139                     let opaque_ty = tcx.mk_opaque(def_id, substs);
2140                     debug!(
2141                         "explicit_predicates_of({:?}): created opaque type {:?}",
2142                         def_id, opaque_ty
2143                     );
2144
2145                     // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2146                     let bounds = AstConv::compute_bounds(
2147                         &icx,
2148                         opaque_ty,
2149                         bounds,
2150                         SizedByDefault::Yes,
2151                         tcx.def_span(def_id),
2152                     );
2153
2154                     predicates.extend(bounds.predicates(tcx, opaque_ty));
2155                     &item.generics
2156                 })
2157             }
2158             _ => &item.generics,
2159         },
2160
2161         Node::Item(item) => {
2162             match item.kind {
2163                 ItemKind::Impl { defaultness, ref generics, .. } => {
2164                     if defaultness.is_default() {
2165                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
2166                     }
2167                     generics
2168                 }
2169                 ItemKind::Fn(.., ref generics, _)
2170                 | ItemKind::TyAlias(_, ref generics)
2171                 | ItemKind::Enum(_, ref generics)
2172                 | ItemKind::Struct(_, ref generics)
2173                 | ItemKind::Union(_, ref generics) => generics,
2174
2175                 ItemKind::Trait(_, _, ref generics, .., items) => {
2176                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
2177                     generics
2178                 }
2179                 ItemKind::TraitAlias(ref generics, _) => {
2180                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &[]));
2181                     generics
2182                 }
2183                 ItemKind::OpaqueTy(OpaqueTy {
2184                     ref bounds,
2185                     impl_trait_fn,
2186                     ref generics,
2187                     origin: _,
2188                 }) => {
2189                     let bounds_predicates = ty::print::with_no_queries(|| {
2190                         let substs = InternalSubsts::identity_for_item(tcx, def_id);
2191                         let opaque_ty = tcx.mk_opaque(def_id, substs);
2192
2193                         // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2194                         let bounds = AstConv::compute_bounds(
2195                             &icx,
2196                             opaque_ty,
2197                             bounds,
2198                             SizedByDefault::Yes,
2199                             tcx.def_span(def_id),
2200                         );
2201
2202                         bounds.predicates(tcx, opaque_ty)
2203                     });
2204                     if impl_trait_fn.is_some() {
2205                         // opaque types
2206                         return ty::GenericPredicates {
2207                             parent: None,
2208                             predicates: tcx.arena.alloc_from_iter(bounds_predicates),
2209                         };
2210                     } else {
2211                         // named opaque types
2212                         predicates.extend(bounds_predicates);
2213                         generics
2214                     }
2215                 }
2216
2217                 _ => NO_GENERICS,
2218             }
2219         }
2220
2221         Node::ForeignItem(item) => match item.kind {
2222             ForeignItemKind::Static(..) => NO_GENERICS,
2223             ForeignItemKind::Fn(_, _, ref generics) => generics,
2224             ForeignItemKind::Type => NO_GENERICS,
2225         },
2226
2227         _ => NO_GENERICS,
2228     };
2229
2230     let generics = tcx.generics_of(def_id);
2231     let parent_count = generics.parent_count as u32;
2232     let has_own_self = generics.has_self && parent_count == 0;
2233
2234     // Below we'll consider the bounds on the type parameters (including `Self`)
2235     // and the explicit where-clauses, but to get the full set of predicates
2236     // on a trait we need to add in the supertrait bounds and bounds found on
2237     // associated types.
2238     if let Some((_trait_ref, _)) = is_trait {
2239         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2240     }
2241
2242     // In default impls, we can assume that the self type implements
2243     // the trait. So in:
2244     //
2245     //     default impl Foo for Bar { .. }
2246     //
2247     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2248     // (see below). Recall that a default impl is not itself an impl, but rather a
2249     // set of defaults that can be incorporated into another impl.
2250     if let Some(trait_ref) = is_default_impl_trait {
2251         predicates.push((
2252             trait_ref.to_poly_trait_ref().without_const().to_predicate(),
2253             tcx.def_span(def_id),
2254         ));
2255     }
2256
2257     // Collect the region predicates that were declared inline as
2258     // well. In the case of parameters declared on a fn or method, we
2259     // have to be careful to only iterate over early-bound regions.
2260     let mut index = parent_count + has_own_self as u32;
2261     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2262         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2263             def_id: tcx.hir().local_def_id(param.hir_id),
2264             index,
2265             name: param.name.ident().name,
2266         }));
2267         index += 1;
2268
2269         match param.kind {
2270             GenericParamKind::Lifetime { .. } => {
2271                 param.bounds.iter().for_each(|bound| match bound {
2272                     hir::GenericBound::Outlives(lt) => {
2273                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2274                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2275                         predicates.push((outlives.to_predicate(), lt.span));
2276                     }
2277                     _ => bug!(),
2278                 });
2279             }
2280             _ => bug!(),
2281         }
2282     }
2283
2284     // Collect the predicates that were written inline by the user on each
2285     // type parameter (e.g., `<T: Foo>`).
2286     for param in ast_generics.params {
2287         if let GenericParamKind::Type { .. } = param.kind {
2288             let name = param.name.ident().name;
2289             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2290             index += 1;
2291
2292             let sized = SizedByDefault::Yes;
2293             let bounds = AstConv::compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2294             predicates.extend(bounds.predicates(tcx, param_ty));
2295         }
2296     }
2297
2298     // Add in the bounds that appear in the where-clause.
2299     let where_clause = &ast_generics.where_clause;
2300     for predicate in where_clause.predicates {
2301         match predicate {
2302             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2303                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2304
2305                 // Keep the type around in a dummy predicate, in case of no bounds.
2306                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2307                 // is still checked for WF.
2308                 if bound_pred.bounds.is_empty() {
2309                     if let ty::Param(_) = ty.kind {
2310                         // This is a `where T:`, which can be in the HIR from the
2311                         // transformation that moves `?Sized` to `T`'s declaration.
2312                         // We can skip the predicate because type parameters are
2313                         // trivially WF, but also we *should*, to avoid exposing
2314                         // users who never wrote `where Type:,` themselves, to
2315                         // compiler/tooling bugs from not handling WF predicates.
2316                     } else {
2317                         let span = bound_pred.bounded_ty.span;
2318                         let predicate = ty::OutlivesPredicate(ty, tcx.mk_region(ty::ReEmpty));
2319                         predicates.push((
2320                             ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)),
2321                             span,
2322                         ));
2323                     }
2324                 }
2325
2326                 for bound in bound_pred.bounds.iter() {
2327                     match bound {
2328                         &hir::GenericBound::Trait(ref poly_trait_ref, modifier) => {
2329                             let constness = match modifier {
2330                                 hir::TraitBoundModifier::MaybeConst => ast::Constness::NotConst,
2331                                 hir::TraitBoundModifier::None => constness,
2332                                 hir::TraitBoundModifier::Maybe => bug!("this wasn't handled"),
2333                             };
2334
2335                             let mut bounds = Bounds::default();
2336                             let _ = AstConv::instantiate_poly_trait_ref(
2337                                 &icx,
2338                                 poly_trait_ref,
2339                                 constness,
2340                                 ty,
2341                                 &mut bounds,
2342                             );
2343                             predicates.extend(bounds.predicates(tcx, ty));
2344                         }
2345
2346                         &hir::GenericBound::Outlives(ref lifetime) => {
2347                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2348                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2349                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2350                         }
2351                     }
2352                 }
2353             }
2354
2355             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2356                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2357                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2358                     let (r2, span) = match bound {
2359                         hir::GenericBound::Outlives(lt) => {
2360                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2361                         }
2362                         _ => bug!(),
2363                     };
2364                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2365
2366                     (ty::Predicate::RegionOutlives(pred), span)
2367                 }))
2368             }
2369
2370             &hir::WherePredicate::EqPredicate(..) => {
2371                 // FIXME(#20041)
2372             }
2373         }
2374     }
2375
2376     // Add predicates from associated type bounds.
2377     if let Some((self_trait_ref, trait_items)) = is_trait {
2378         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2379             associated_item_predicates(tcx, def_id, self_trait_ref, trait_item_ref)
2380         }))
2381     }
2382
2383     let mut predicates = predicates.predicates;
2384
2385     // Subtle: before we store the predicates into the tcx, we
2386     // sort them so that predicates like `T: Foo<Item=U>` come
2387     // before uses of `U`.  This avoids false ambiguity errors
2388     // in trait checking. See `setup_constraining_predicates`
2389     // for details.
2390     if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
2391         let self_ty = tcx.type_of(def_id);
2392         let trait_ref = tcx.impl_trait_ref(def_id);
2393         cgp::setup_constraining_predicates(
2394             tcx,
2395             &mut predicates,
2396             trait_ref,
2397             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2398         );
2399     }
2400
2401     let result = ty::GenericPredicates {
2402         parent: generics.parent,
2403         predicates: tcx.arena.alloc_from_iter(predicates),
2404     };
2405     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2406     result
2407 }
2408
2409 fn associated_item_predicates(
2410     tcx: TyCtxt<'tcx>,
2411     def_id: DefId,
2412     self_trait_ref: ty::TraitRef<'tcx>,
2413     trait_item_ref: &hir::TraitItemRef,
2414 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2415     let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2416     let item_def_id = tcx.hir().local_def_id(trait_item_ref.id.hir_id);
2417     let bounds = match trait_item.kind {
2418         hir::TraitItemKind::Type(ref bounds, _) => bounds,
2419         _ => return Vec::new(),
2420     };
2421
2422     let is_gat = !tcx.generics_of(item_def_id).params.is_empty();
2423
2424     let mut had_error = false;
2425
2426     let mut unimplemented_error = |arg_kind: &str| {
2427         if !had_error {
2428             tcx.sess
2429                 .struct_span_err(
2430                     trait_item.span,
2431                     &format!("{}-generic associated types are not yet implemented", arg_kind),
2432                 )
2433                 .note("for more information, see https://github.com/rust-lang/rust/issues/44265")
2434                 .emit();
2435             had_error = true;
2436         }
2437     };
2438
2439     let mk_bound_param = |param: &ty::GenericParamDef, _: &_| {
2440         match param.kind {
2441             ty::GenericParamDefKind::Lifetime => tcx
2442                 .mk_region(ty::RegionKind::ReLateBound(
2443                     ty::INNERMOST,
2444                     ty::BoundRegion::BrNamed(param.def_id, param.name),
2445                 ))
2446                 .into(),
2447             // FIXME(generic_associated_types): Use bound types and constants
2448             // once they are handled by the trait system.
2449             ty::GenericParamDefKind::Type { .. } => {
2450                 unimplemented_error("type");
2451                 tcx.types.err.into()
2452             }
2453             ty::GenericParamDefKind::Const => {
2454                 unimplemented_error("const");
2455                 tcx.consts.err.into()
2456             }
2457         }
2458     };
2459
2460     let bound_substs = if is_gat {
2461         // Given:
2462         //
2463         // trait X<'a, B, const C: usize> {
2464         //     type T<'d, E, const F: usize>: Default;
2465         // }
2466         //
2467         // We need to create predicates on the trait:
2468         //
2469         // for<'d, E, const F: usize>
2470         // <Self as X<'a, B, const C: usize>>::T<'d, E, const F: usize>: Sized + Default
2471         //
2472         // We substitute escaping bound parameters for the generic
2473         // arguments to the associated type which are then bound by
2474         // the `Binder` around the the predicate.
2475         //
2476         // FIXME(generic_associated_types): Currently only lifetimes are handled.
2477         self_trait_ref.substs.extend_to(tcx, item_def_id, mk_bound_param)
2478     } else {
2479         self_trait_ref.substs
2480     };
2481
2482     let assoc_ty = tcx.mk_projection(tcx.hir().local_def_id(trait_item.hir_id), bound_substs);
2483
2484     let bounds = AstConv::compute_bounds(
2485         &ItemCtxt::new(tcx, def_id),
2486         assoc_ty,
2487         bounds,
2488         SizedByDefault::Yes,
2489         trait_item.span,
2490     );
2491
2492     let predicates = bounds.predicates(tcx, assoc_ty);
2493
2494     if is_gat {
2495         // We use shifts to get the regions that we're substituting to
2496         // be bound by the binders in the `Predicate`s rather that
2497         // escaping.
2498         let shifted_in = ty::fold::shift_vars(tcx, &predicates, 1);
2499         let substituted = shifted_in.subst(tcx, bound_substs);
2500         ty::fold::shift_out_vars(tcx, &substituted, 1)
2501     } else {
2502         predicates
2503     }
2504 }
2505
2506 /// Converts a specific `GenericBound` from the AST into a set of
2507 /// predicates that apply to the self type. A vector is returned
2508 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2509 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2510 /// and `<T as Bar>::X == i32`).
2511 fn predicates_from_bound<'tcx>(
2512     astconv: &dyn AstConv<'tcx>,
2513     param_ty: Ty<'tcx>,
2514     bound: &'tcx hir::GenericBound<'tcx>,
2515     constness: ast::Constness,
2516 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2517     match *bound {
2518         hir::GenericBound::Trait(ref tr, modifier) => {
2519             let constness = match modifier {
2520                 hir::TraitBoundModifier::Maybe => return vec![],
2521                 hir::TraitBoundModifier::MaybeConst => ast::Constness::NotConst,
2522                 hir::TraitBoundModifier::None => constness,
2523             };
2524
2525             let mut bounds = Bounds::default();
2526             let _ = astconv.instantiate_poly_trait_ref(tr, constness, param_ty, &mut bounds);
2527             bounds.predicates(astconv.tcx(), param_ty)
2528         }
2529         hir::GenericBound::Outlives(ref lifetime) => {
2530             let region = astconv.ast_region_to_region(lifetime, None);
2531             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2532             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2533         }
2534     }
2535 }
2536
2537 fn compute_sig_of_foreign_fn_decl<'tcx>(
2538     tcx: TyCtxt<'tcx>,
2539     def_id: DefId,
2540     decl: &'tcx hir::FnDecl<'tcx>,
2541     abi: abi::Abi,
2542 ) -> ty::PolyFnSig<'tcx> {
2543     let unsafety = if abi == abi::Abi::RustIntrinsic {
2544         intrinsic_operation_unsafety(&tcx.item_name(def_id).as_str())
2545     } else {
2546         hir::Unsafety::Unsafe
2547     };
2548     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl, &[], None);
2549
2550     // Feature gate SIMD types in FFI, since I am not sure that the
2551     // ABIs are handled at all correctly. -huonw
2552     if abi != abi::Abi::RustIntrinsic
2553         && abi != abi::Abi::PlatformIntrinsic
2554         && !tcx.features().simd_ffi
2555     {
2556         let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
2557             if ty.is_simd() {
2558                 tcx.sess
2559                     .struct_span_err(
2560                         ast_ty.span,
2561                         &format!(
2562                             "use of SIMD type `{}` in FFI is highly experimental and \
2563                             may result in invalid code",
2564                             tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2565                         ),
2566                     )
2567                     .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2568                     .emit();
2569             }
2570         };
2571         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2572             check(&input, ty)
2573         }
2574         if let hir::FunctionRetTy::Return(ref ty) = decl.output {
2575             check(&ty, *fty.output().skip_binder())
2576         }
2577     }
2578
2579     fty
2580 }
2581
2582 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2583     match tcx.hir().get_if_local(def_id) {
2584         Some(Node::ForeignItem(..)) => true,
2585         Some(_) => false,
2586         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2587     }
2588 }
2589
2590 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2591     match tcx.hir().get_if_local(def_id) {
2592         Some(Node::Item(&hir::Item { kind: hir::ItemKind::Static(_, mutbl, _), .. }))
2593         | Some(Node::ForeignItem(&hir::ForeignItem {
2594             kind: hir::ForeignItemKind::Static(_, mutbl),
2595             ..
2596         })) => Some(mutbl),
2597         Some(_) => None,
2598         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2599     }
2600 }
2601
2602 fn from_target_feature(
2603     tcx: TyCtxt<'_>,
2604     id: DefId,
2605     attr: &ast::Attribute,
2606     whitelist: &FxHashMap<String, Option<Symbol>>,
2607     target_features: &mut Vec<Symbol>,
2608 ) {
2609     let list = match attr.meta_item_list() {
2610         Some(list) => list,
2611         None => return,
2612     };
2613     let bad_item = |span| {
2614         let msg = "malformed `target_feature` attribute input";
2615         let code = "enable = \"..\"".to_owned();
2616         tcx.sess
2617             .struct_span_err(span, &msg)
2618             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2619             .emit();
2620     };
2621     let rust_features = tcx.features();
2622     for item in list {
2623         // Only `enable = ...` is accepted in the meta-item list.
2624         if !item.check_name(sym::enable) {
2625             bad_item(item.span());
2626             continue;
2627         }
2628
2629         // Must be of the form `enable = "..."` (a string).
2630         let value = match item.value_str() {
2631             Some(value) => value,
2632             None => {
2633                 bad_item(item.span());
2634                 continue;
2635             }
2636         };
2637
2638         // We allow comma separation to enable multiple features.
2639         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2640             // Only allow whitelisted features per platform.
2641             let feature_gate = match whitelist.get(feature) {
2642                 Some(g) => g,
2643                 None => {
2644                     let msg =
2645                         format!("the feature named `{}` is not valid for this target", feature);
2646                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2647                     err.span_label(
2648                         item.span(),
2649                         format!("`{}` is not valid for this target", feature),
2650                     );
2651                     if feature.starts_with("+") {
2652                         let valid = whitelist.contains_key(&feature[1..]);
2653                         if valid {
2654                             err.help("consider removing the leading `+` in the feature name");
2655                         }
2656                     }
2657                     err.emit();
2658                     return None;
2659                 }
2660             };
2661
2662             // Only allow features whose feature gates have been enabled.
2663             let allowed = match feature_gate.as_ref().map(|s| *s) {
2664                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2665                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2666                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2667                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2668                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2669                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2670                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2671                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2672                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2673                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2674                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2675                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2676                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2677                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2678                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2679                 Some(name) => bug!("unknown target feature gate {}", name),
2680                 None => true,
2681             };
2682             if !allowed && id.is_local() {
2683                 feature_err(
2684                     &tcx.sess.parse_sess,
2685                     feature_gate.unwrap(),
2686                     item.span(),
2687                     &format!("the target feature `{}` is currently unstable", feature),
2688                 )
2689                 .emit();
2690             }
2691             Some(Symbol::intern(feature))
2692         }));
2693     }
2694 }
2695
2696 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2697     use rustc::mir::mono::Linkage::*;
2698
2699     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2700     // applicable to variable declarations and may not really make sense for
2701     // Rust code in the first place but whitelist them anyway and trust that
2702     // the user knows what s/he's doing. Who knows, unanticipated use cases
2703     // may pop up in the future.
2704     //
2705     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2706     // and don't have to be, LLVM treats them as no-ops.
2707     match name {
2708         "appending" => Appending,
2709         "available_externally" => AvailableExternally,
2710         "common" => Common,
2711         "extern_weak" => ExternalWeak,
2712         "external" => External,
2713         "internal" => Internal,
2714         "linkonce" => LinkOnceAny,
2715         "linkonce_odr" => LinkOnceODR,
2716         "private" => Private,
2717         "weak" => WeakAny,
2718         "weak_odr" => WeakODR,
2719         _ => {
2720             let span = tcx.hir().span_if_local(def_id);
2721             if let Some(span) = span {
2722                 tcx.sess.span_fatal(span, "invalid linkage specified")
2723             } else {
2724                 tcx.sess.fatal(&format!("invalid linkage specified: {}", name))
2725             }
2726         }
2727     }
2728 }
2729
2730 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2731     let attrs = tcx.get_attrs(id);
2732
2733     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2734
2735     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2736
2737     let mut inline_span = None;
2738     let mut link_ordinal_span = None;
2739     for attr in attrs.iter() {
2740         if attr.check_name(sym::cold) {
2741             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2742         } else if attr.check_name(sym::rustc_allocator) {
2743             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2744         } else if attr.check_name(sym::unwind) {
2745             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2746         } else if attr.check_name(sym::ffi_returns_twice) {
2747             if tcx.is_foreign_item(id) {
2748                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2749             } else {
2750                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2751                 struct_span_err!(
2752                     tcx.sess,
2753                     attr.span,
2754                     E0724,
2755                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2756                 )
2757                 .emit();
2758             }
2759         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2760             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2761         } else if attr.check_name(sym::naked) {
2762             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2763         } else if attr.check_name(sym::no_mangle) {
2764             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2765         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2766             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2767         } else if attr.check_name(sym::no_debug) {
2768             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2769         } else if attr.check_name(sym::used) {
2770             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2771         } else if attr.check_name(sym::thread_local) {
2772             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2773         } else if attr.check_name(sym::track_caller) {
2774             if tcx.fn_sig(id).abi() != abi::Abi::Rust {
2775                 struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
2776                     .emit();
2777             }
2778             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2779         } else if attr.check_name(sym::export_name) {
2780             if let Some(s) = attr.value_str() {
2781                 if s.as_str().contains("\0") {
2782                     // `#[export_name = ...]` will be converted to a null-terminated string,
2783                     // so it may not contain any null characters.
2784                     struct_span_err!(
2785                         tcx.sess,
2786                         attr.span,
2787                         E0648,
2788                         "`export_name` may not contain null characters"
2789                     )
2790                     .emit();
2791                 }
2792                 codegen_fn_attrs.export_name = Some(s);
2793             }
2794         } else if attr.check_name(sym::target_feature) {
2795             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2796                 let msg = "`#[target_feature(..)]` can only be applied to `unsafe` functions";
2797                 tcx.sess
2798                     .struct_span_err(attr.span, msg)
2799                     .span_label(attr.span, "can only be applied to `unsafe` functions")
2800                     .span_label(tcx.def_span(id), "not an `unsafe` function")
2801                     .emit();
2802             }
2803             from_target_feature(tcx, id, attr, &whitelist, &mut codegen_fn_attrs.target_features);
2804         } else if attr.check_name(sym::linkage) {
2805             if let Some(val) = attr.value_str() {
2806                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2807             }
2808         } else if attr.check_name(sym::link_section) {
2809             if let Some(val) = attr.value_str() {
2810                 if val.as_str().bytes().any(|b| b == 0) {
2811                     let msg = format!(
2812                         "illegal null byte in link_section \
2813                          value: `{}`",
2814                         &val
2815                     );
2816                     tcx.sess.span_err(attr.span, &msg);
2817                 } else {
2818                     codegen_fn_attrs.link_section = Some(val);
2819                 }
2820             }
2821         } else if attr.check_name(sym::link_name) {
2822             codegen_fn_attrs.link_name = attr.value_str();
2823         } else if attr.check_name(sym::link_ordinal) {
2824             link_ordinal_span = Some(attr.span);
2825             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2826                 codegen_fn_attrs.link_ordinal = ordinal;
2827             }
2828         }
2829     }
2830
2831     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2832         if !attr.has_name(sym::inline) {
2833             return ia;
2834         }
2835         match attr.meta().map(|i| i.kind) {
2836             Some(MetaItemKind::Word) => {
2837                 mark_used(attr);
2838                 InlineAttr::Hint
2839             }
2840             Some(MetaItemKind::List(ref items)) => {
2841                 mark_used(attr);
2842                 inline_span = Some(attr.span);
2843                 if items.len() != 1 {
2844                     struct_span_err!(
2845                         tcx.sess.diagnostic(),
2846                         attr.span,
2847                         E0534,
2848                         "expected one argument"
2849                     )
2850                     .emit();
2851                     InlineAttr::None
2852                 } else if list_contains_name(&items[..], sym::always) {
2853                     InlineAttr::Always
2854                 } else if list_contains_name(&items[..], sym::never) {
2855                     InlineAttr::Never
2856                 } else {
2857                     struct_span_err!(
2858                         tcx.sess.diagnostic(),
2859                         items[0].span(),
2860                         E0535,
2861                         "invalid argument"
2862                     )
2863                     .emit();
2864
2865                     InlineAttr::None
2866                 }
2867             }
2868             Some(MetaItemKind::NameValue(_)) => ia,
2869             None => ia,
2870         }
2871     });
2872
2873     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2874         if !attr.has_name(sym::optimize) {
2875             return ia;
2876         }
2877         let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
2878         match attr.meta().map(|i| i.kind) {
2879             Some(MetaItemKind::Word) => {
2880                 err(attr.span, "expected one argument");
2881                 ia
2882             }
2883             Some(MetaItemKind::List(ref items)) => {
2884                 mark_used(attr);
2885                 inline_span = Some(attr.span);
2886                 if items.len() != 1 {
2887                     err(attr.span, "expected one argument");
2888                     OptimizeAttr::None
2889                 } else if list_contains_name(&items[..], sym::size) {
2890                     OptimizeAttr::Size
2891                 } else if list_contains_name(&items[..], sym::speed) {
2892                     OptimizeAttr::Speed
2893                 } else {
2894                     err(items[0].span(), "invalid argument");
2895                     OptimizeAttr::None
2896                 }
2897             }
2898             Some(MetaItemKind::NameValue(_)) => ia,
2899             None => ia,
2900         }
2901     });
2902
2903     // If a function uses #[target_feature] it can't be inlined into general
2904     // purpose functions as they wouldn't have the right target features
2905     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2906     // respected.
2907
2908     if codegen_fn_attrs.target_features.len() > 0 {
2909         if codegen_fn_attrs.inline == InlineAttr::Always {
2910             if let Some(span) = inline_span {
2911                 tcx.sess.span_err(
2912                     span,
2913                     "cannot use `#[inline(always)]` with \
2914                      `#[target_feature]`",
2915                 );
2916             }
2917         }
2918     }
2919
2920     // Weak lang items have the same semantics as "std internal" symbols in the
2921     // sense that they're preserved through all our LTO passes and only
2922     // strippable by the linker.
2923     //
2924     // Additionally weak lang items have predetermined symbol names.
2925     if tcx.is_weak_lang_item(id) {
2926         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2927     }
2928     if let Some(name) = weak_lang_items::link_name(&attrs) {
2929         codegen_fn_attrs.export_name = Some(name);
2930         codegen_fn_attrs.link_name = Some(name);
2931     }
2932     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
2933
2934     // Internal symbols to the standard library all have no_mangle semantics in
2935     // that they have defined symbol names present in the function name. This
2936     // also applies to weak symbols where they all have known symbol names.
2937     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2938         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2939     }
2940
2941     codegen_fn_attrs
2942 }
2943
2944 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<usize> {
2945     use syntax::ast::{Lit, LitIntType, LitKind};
2946     let meta_item_list = attr.meta_item_list();
2947     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
2948     let sole_meta_list = match meta_item_list {
2949         Some([item]) => item.literal(),
2950         _ => None,
2951     };
2952     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
2953         if *ordinal <= std::usize::MAX as u128 {
2954             Some(*ordinal as usize)
2955         } else {
2956             let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
2957             tcx.sess
2958                 .struct_span_err(attr.span, &msg)
2959                 .note("the value may not exceed `std::usize::MAX`")
2960                 .emit();
2961             None
2962         }
2963     } else {
2964         tcx.sess
2965             .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
2966             .note("an unsuffixed integer value, e.g., `1`, is expected")
2967             .emit();
2968         None
2969     }
2970 }
2971
2972 fn check_link_name_xor_ordinal(
2973     tcx: TyCtxt<'_>,
2974     codegen_fn_attrs: &CodegenFnAttrs,
2975     inline_span: Option<Span>,
2976 ) {
2977     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
2978         return;
2979     }
2980     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
2981     if let Some(span) = inline_span {
2982         tcx.sess.span_err(span, msg);
2983     } else {
2984         tcx.sess.err(msg);
2985     }
2986 }