]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
Rollup merge of #68039 - euclio:remove-strip-hidden, r=dtolnay
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds, SizedByDefault};
18 use crate::check::intrinsic::intrinsic_operation_unsafety;
19 use crate::constrained_generic_params as cgp;
20 use crate::lint;
21 use crate::middle::resolve_lifetime as rl;
22 use crate::middle::weak_lang_items;
23 use errors::{struct_span_err, Applicability, StashKey};
24 use rustc::hir::map::Map;
25 use rustc::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
26 use rustc::mir::mono::Linkage;
27 use rustc::traits;
28 use rustc::ty::query::Providers;
29 use rustc::ty::subst::GenericArgKind;
30 use rustc::ty::subst::{InternalSubsts, Subst};
31 use rustc::ty::util::Discr;
32 use rustc::ty::util::IntTypeExt;
33 use rustc::ty::{self, AdtKind, Const, DefIdTree, ToPolyTraitRef, Ty, TyCtxt};
34 use rustc::ty::{ReprOptions, ToPredicate};
35 use rustc_data_structures::captures::Captures;
36 use rustc_data_structures::fx::FxHashMap;
37 use rustc_hir as hir;
38 use rustc_hir::def::{CtorKind, DefKind, Res};
39 use rustc_hir::def_id::{DefId, LOCAL_CRATE};
40 use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
41 use rustc_hir::{GenericParamKind, Node, Unsafety};
42 use rustc_span::symbol::{kw, sym, Symbol};
43 use rustc_span::{Span, DUMMY_SP};
44 use rustc_target::spec::abi;
45 use syntax::ast;
46 use syntax::ast::{Ident, MetaItemKind};
47 use syntax::attr::{list_contains_name, mark_used, InlineAttr, OptimizeAttr};
48 use syntax::feature_gate;
49
50 use rustc_error_codes::*;
51
52 struct OnlySelfBounds(bool);
53
54 ///////////////////////////////////////////////////////////////////////////
55 // Main entry point
56
57 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: DefId) {
58     tcx.hir().visit_item_likes_in_module(
59         module_def_id,
60         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor(),
61     );
62 }
63
64 pub fn provide(providers: &mut Providers<'_>) {
65     *providers = Providers {
66         type_of,
67         generics_of,
68         predicates_of,
69         predicates_defined_on,
70         explicit_predicates_of,
71         super_predicates_of,
72         type_param_predicates,
73         trait_def,
74         adt_def,
75         fn_sig,
76         impl_trait_ref,
77         impl_polarity,
78         is_foreign_item,
79         static_mutability,
80         codegen_fn_attrs,
81         collect_mod_item_types,
82         ..*providers
83     };
84 }
85
86 ///////////////////////////////////////////////////////////////////////////
87
88 /// Context specific to some particular item. This is what implements
89 /// `AstConv`. It has information about the predicates that are defined
90 /// on the trait. Unfortunately, this predicate information is
91 /// available in various different forms at various points in the
92 /// process. So we can't just store a pointer to e.g., the AST or the
93 /// parsed ty form, we have to be more flexible. To this end, the
94 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
95 /// `get_type_parameter_bounds` requests, drawing the information from
96 /// the AST (`hir::Generics`), recursively.
97 pub struct ItemCtxt<'tcx> {
98     tcx: TyCtxt<'tcx>,
99     item_def_id: DefId,
100 }
101
102 ///////////////////////////////////////////////////////////////////////////
103
104 #[derive(Default)]
105 crate struct PlaceholderHirTyCollector(crate Vec<Span>);
106
107 impl<'v> Visitor<'v> for PlaceholderHirTyCollector {
108     type Map = Map<'v>;
109
110     fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
111         NestedVisitorMap::None
112     }
113     fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
114         if let hir::TyKind::Infer = t.kind {
115             self.0.push(t.span);
116         }
117         intravisit::walk_ty(self, t)
118     }
119 }
120
121 struct CollectItemTypesVisitor<'tcx> {
122     tcx: TyCtxt<'tcx>,
123 }
124
125 /// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
126 /// and suggest adding type parameters in the appropriate place, taking into consideration any and
127 /// all already existing generic type parameters to avoid suggesting a name that is already in use.
128 crate fn placeholder_type_error(
129     tcx: TyCtxt<'tcx>,
130     span: Span,
131     generics: &[hir::GenericParam<'_>],
132     placeholder_types: Vec<Span>,
133     suggest: bool,
134 ) {
135     if placeholder_types.is_empty() {
136         return;
137     }
138     // This is the whitelist of possible parameter names that we might suggest.
139     let possible_names = ["T", "K", "L", "A", "B", "C"];
140     let used_names = generics
141         .iter()
142         .filter_map(|p| match p.name {
143             hir::ParamName::Plain(ident) => Some(ident.name),
144             _ => None,
145         })
146         .collect::<Vec<_>>();
147
148     let type_name = possible_names
149         .iter()
150         .find(|n| !used_names.contains(&Symbol::intern(n)))
151         .unwrap_or(&"ParamName");
152
153     let mut sugg: Vec<_> =
154         placeholder_types.iter().map(|sp| (*sp, type_name.to_string())).collect();
155     if generics.is_empty() {
156         sugg.push((span, format!("<{}>", type_name)));
157     } else if let Some(arg) = generics.iter().find(|arg| match arg.name {
158         hir::ParamName::Plain(Ident { name: kw::Underscore, .. }) => true,
159         _ => false,
160     }) {
161         // Account for `_` already present in cases like `struct S<_>(_);` and suggest
162         // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
163         sugg.push((arg.span, format!("{}", type_name)));
164     } else {
165         sugg.push((
166             generics.iter().last().unwrap().span.shrink_to_hi(),
167             format!(", {}", type_name),
168         ));
169     }
170     let mut err = bad_placeholder_type(tcx, placeholder_types);
171     if suggest {
172         err.multipart_suggestion(
173             "use type parameters instead",
174             sugg,
175             Applicability::HasPlaceholders,
176         );
177     }
178     err.emit();
179 }
180
181 fn reject_placeholder_type_signatures_in_item(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
182     let (generics, suggest) = match &item.kind {
183         hir::ItemKind::Union(_, generics)
184         | hir::ItemKind::Enum(_, generics)
185         | hir::ItemKind::TraitAlias(generics, _)
186         | hir::ItemKind::Trait(_, _, generics, ..)
187         | hir::ItemKind::Impl(_, _, _, generics, ..)
188         | hir::ItemKind::Struct(_, generics) => (generics, true),
189         hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
190         | hir::ItemKind::TyAlias(_, generics) => (generics, false),
191         // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
192         _ => return,
193     };
194
195     let mut visitor = PlaceholderHirTyCollector::default();
196     visitor.visit_item(item);
197
198     placeholder_type_error(tcx, generics.span, &generics.params[..], visitor.0, suggest);
199 }
200
201 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
202     type Map = Map<'tcx>;
203
204     fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
205         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
206     }
207
208     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
209         convert_item(self.tcx, item.hir_id);
210         reject_placeholder_type_signatures_in_item(self.tcx, item);
211         intravisit::walk_item(self, item);
212     }
213
214     fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
215         for param in generics.params {
216             match param.kind {
217                 hir::GenericParamKind::Lifetime { .. } => {}
218                 hir::GenericParamKind::Type { default: Some(_), .. } => {
219                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
220                     self.tcx.type_of(def_id);
221                 }
222                 hir::GenericParamKind::Type { .. } => {}
223                 hir::GenericParamKind::Const { .. } => {
224                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
225                     self.tcx.type_of(def_id);
226                 }
227             }
228         }
229         intravisit::walk_generics(self, generics);
230     }
231
232     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
233         if let hir::ExprKind::Closure(..) = expr.kind {
234             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
235             self.tcx.generics_of(def_id);
236             self.tcx.type_of(def_id);
237         }
238         intravisit::walk_expr(self, expr);
239     }
240
241     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
242         convert_trait_item(self.tcx, trait_item.hir_id);
243         intravisit::walk_trait_item(self, trait_item);
244     }
245
246     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
247         convert_impl_item(self.tcx, impl_item.hir_id);
248         intravisit::walk_impl_item(self, impl_item);
249     }
250 }
251
252 ///////////////////////////////////////////////////////////////////////////
253 // Utility types and common code for the above passes.
254
255 fn bad_placeholder_type(
256     tcx: TyCtxt<'tcx>,
257     mut spans: Vec<Span>,
258 ) -> errors::DiagnosticBuilder<'tcx> {
259     spans.sort();
260     let mut err = struct_span_err!(
261         tcx.sess,
262         spans.clone(),
263         E0121,
264         "the type placeholder `_` is not allowed within types on item signatures",
265     );
266     for span in spans {
267         err.span_label(span, "not allowed in type signatures");
268     }
269     err
270 }
271
272 impl ItemCtxt<'tcx> {
273     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
274         ItemCtxt { tcx, item_def_id }
275     }
276
277     pub fn to_ty(&self, ast_ty: &'tcx hir::Ty<'tcx>) -> Ty<'tcx> {
278         AstConv::ast_ty_to_ty(self, ast_ty)
279     }
280 }
281
282 impl AstConv<'tcx> for ItemCtxt<'tcx> {
283     fn tcx(&self) -> TyCtxt<'tcx> {
284         self.tcx
285     }
286
287     fn item_def_id(&self) -> Option<DefId> {
288         Some(self.item_def_id)
289     }
290
291     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId) -> ty::GenericPredicates<'tcx> {
292         self.tcx.at(span).type_param_predicates((self.item_def_id, def_id))
293     }
294
295     fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
296         None
297     }
298
299     fn allow_ty_infer(&self) -> bool {
300         false
301     }
302
303     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
304         self.tcx().sess.delay_span_bug(span, "bad placeholder type");
305         self.tcx().types.err
306     }
307
308     fn ct_infer(
309         &self,
310         _: Ty<'tcx>,
311         _: Option<&ty::GenericParamDef>,
312         span: Span,
313     ) -> &'tcx Const<'tcx> {
314         bad_placeholder_type(self.tcx(), vec![span]).emit();
315
316         self.tcx().consts.err
317     }
318
319     fn projected_ty_from_poly_trait_ref(
320         &self,
321         span: Span,
322         item_def_id: DefId,
323         item_segment: &hir::PathSegment<'_>,
324         poly_trait_ref: ty::PolyTraitRef<'tcx>,
325     ) -> Ty<'tcx> {
326         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
327             let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
328                 self,
329                 self.tcx,
330                 span,
331                 item_def_id,
332                 item_segment,
333                 trait_ref.substs,
334             );
335             self.tcx().mk_projection(item_def_id, item_substs)
336         } else {
337             // There are no late-bound regions; we can just ignore the binder.
338             struct_span_err!(
339                 self.tcx().sess,
340                 span,
341                 E0212,
342                 "cannot extract an associated type from a higher-ranked trait bound \
343                  in this context"
344             )
345             .emit();
346             self.tcx().types.err
347         }
348     }
349
350     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
351         // Types in item signatures are not normalized to avoid undue dependencies.
352         ty
353     }
354
355     fn set_tainted_by_errors(&self) {
356         // There's no obvious place to track this, so just let it go.
357     }
358
359     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
360         // There's no place to record types from signatures?
361     }
362 }
363
364 /// Returns the predicates defined on `item_def_id` of the form
365 /// `X: Foo` where `X` is the type parameter `def_id`.
366 fn type_param_predicates(
367     tcx: TyCtxt<'_>,
368     (item_def_id, def_id): (DefId, DefId),
369 ) -> ty::GenericPredicates<'_> {
370     use rustc_hir::*;
371
372     // In the AST, bounds can derive from two places. Either
373     // written inline like `<T: Foo>` or in a where-clause like
374     // `where T: Foo`.
375
376     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
377     let param_owner = tcx.hir().ty_param_owner(param_id);
378     let param_owner_def_id = tcx.hir().local_def_id(param_owner);
379     let generics = tcx.generics_of(param_owner_def_id);
380     let index = generics.param_def_id_to_index[&def_id];
381     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id));
382
383     // Don't look for bounds where the type parameter isn't in scope.
384     let parent =
385         if item_def_id == param_owner_def_id { None } else { tcx.generics_of(item_def_id).parent };
386
387     let mut result = parent
388         .map(|parent| {
389             let icx = ItemCtxt::new(tcx, parent);
390             icx.get_type_parameter_bounds(DUMMY_SP, def_id)
391         })
392         .unwrap_or_default();
393     let mut extend = None;
394
395     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
396     let ast_generics = match tcx.hir().get(item_hir_id) {
397         Node::TraitItem(item) => &item.generics,
398
399         Node::ImplItem(item) => &item.generics,
400
401         Node::Item(item) => {
402             match item.kind {
403                 ItemKind::Fn(.., ref generics, _)
404                 | ItemKind::Impl(_, _, _, ref generics, ..)
405                 | ItemKind::TyAlias(_, ref generics)
406                 | ItemKind::OpaqueTy(OpaqueTy { ref generics, impl_trait_fn: None, .. })
407                 | ItemKind::Enum(_, ref generics)
408                 | ItemKind::Struct(_, ref generics)
409                 | ItemKind::Union(_, ref generics) => generics,
410                 ItemKind::Trait(_, _, ref generics, ..) => {
411                     // Implied `Self: Trait` and supertrait bounds.
412                     if param_id == item_hir_id {
413                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
414                         extend = Some((identity_trait_ref.to_predicate(), item.span));
415                     }
416                     generics
417                 }
418                 _ => return result,
419             }
420         }
421
422         Node::ForeignItem(item) => match item.kind {
423             ForeignItemKind::Fn(_, _, ref generics) => generics,
424             _ => return result,
425         },
426
427         _ => return result,
428     };
429
430     let icx = ItemCtxt::new(tcx, item_def_id);
431     let extra_predicates = extend.into_iter().chain(
432         icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty, OnlySelfBounds(true))
433             .into_iter()
434             .filter(|(predicate, _)| match predicate {
435                 ty::Predicate::Trait(ref data) => data.skip_binder().self_ty().is_param(index),
436                 _ => false,
437             }),
438     );
439     result.predicates =
440         tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
441     result
442 }
443
444 impl ItemCtxt<'tcx> {
445     /// Finds bounds from `hir::Generics`. This requires scanning through the
446     /// AST. We do this to avoid having to convert *all* the bounds, which
447     /// would create artificial cycles. Instead, we can only convert the
448     /// bounds for a type parameter `X` if `X::Foo` is used.
449     fn type_parameter_bounds_in_generics(
450         &self,
451         ast_generics: &'tcx hir::Generics<'tcx>,
452         param_id: hir::HirId,
453         ty: Ty<'tcx>,
454         only_self_bounds: OnlySelfBounds,
455     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
456         let from_ty_params = ast_generics
457             .params
458             .iter()
459             .filter_map(|param| match param.kind {
460                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
461                 _ => None,
462             })
463             .flat_map(|bounds| bounds.iter())
464             .flat_map(|b| predicates_from_bound(self, ty, b));
465
466         let from_where_clauses = ast_generics
467             .where_clause
468             .predicates
469             .iter()
470             .filter_map(|wp| match *wp {
471                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
472                 _ => None,
473             })
474             .flat_map(|bp| {
475                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
476                     Some(ty)
477                 } else if !only_self_bounds.0 {
478                     Some(self.to_ty(&bp.bounded_ty))
479                 } else {
480                     None
481                 };
482                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
483             })
484             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b));
485
486         from_ty_params.chain(from_where_clauses).collect()
487     }
488 }
489
490 /// Tests whether this is the AST for a reference to the type
491 /// parameter with ID `param_id`. We use this so as to avoid running
492 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
493 /// conversion of the type to avoid inducing unnecessary cycles.
494 fn is_param(tcx: TyCtxt<'_>, ast_ty: &hir::Ty<'_>, param_id: hir::HirId) -> bool {
495     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.kind {
496         match path.res {
497             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
498                 def_id == tcx.hir().local_def_id(param_id)
499             }
500             _ => false,
501         }
502     } else {
503         false
504     }
505 }
506
507 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::HirId) {
508     let it = tcx.hir().expect_item(item_id);
509     debug!("convert: item {} with id {}", it.ident, it.hir_id);
510     let def_id = tcx.hir().local_def_id(item_id);
511     match it.kind {
512         // These don't define types.
513         hir::ItemKind::ExternCrate(_)
514         | hir::ItemKind::Use(..)
515         | hir::ItemKind::Mod(_)
516         | hir::ItemKind::GlobalAsm(_) => {}
517         hir::ItemKind::ForeignMod(ref foreign_mod) => {
518             for item in foreign_mod.items {
519                 let def_id = tcx.hir().local_def_id(item.hir_id);
520                 tcx.generics_of(def_id);
521                 tcx.type_of(def_id);
522                 tcx.predicates_of(def_id);
523                 if let hir::ForeignItemKind::Fn(..) = item.kind {
524                     tcx.fn_sig(def_id);
525                 }
526             }
527         }
528         hir::ItemKind::Enum(ref enum_definition, _) => {
529             tcx.generics_of(def_id);
530             tcx.type_of(def_id);
531             tcx.predicates_of(def_id);
532             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
533         }
534         hir::ItemKind::Impl(..) => {
535             tcx.generics_of(def_id);
536             tcx.type_of(def_id);
537             tcx.impl_trait_ref(def_id);
538             tcx.predicates_of(def_id);
539         }
540         hir::ItemKind::Trait(..) => {
541             tcx.generics_of(def_id);
542             tcx.trait_def(def_id);
543             tcx.at(it.span).super_predicates_of(def_id);
544             tcx.predicates_of(def_id);
545         }
546         hir::ItemKind::TraitAlias(..) => {
547             tcx.generics_of(def_id);
548             tcx.at(it.span).super_predicates_of(def_id);
549             tcx.predicates_of(def_id);
550         }
551         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
552             tcx.generics_of(def_id);
553             tcx.type_of(def_id);
554             tcx.predicates_of(def_id);
555
556             for f in struct_def.fields() {
557                 let def_id = tcx.hir().local_def_id(f.hir_id);
558                 tcx.generics_of(def_id);
559                 tcx.type_of(def_id);
560                 tcx.predicates_of(def_id);
561             }
562
563             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
564                 convert_variant_ctor(tcx, ctor_hir_id);
565             }
566         }
567
568         // Desugared from `impl Trait`, so visited by the function's return type.
569         hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(_), .. }) => {}
570
571         hir::ItemKind::OpaqueTy(..)
572         | hir::ItemKind::TyAlias(..)
573         | hir::ItemKind::Static(..)
574         | hir::ItemKind::Const(..)
575         | hir::ItemKind::Fn(..) => {
576             tcx.generics_of(def_id);
577             tcx.type_of(def_id);
578             tcx.predicates_of(def_id);
579             if let hir::ItemKind::Fn(..) = it.kind {
580                 tcx.fn_sig(def_id);
581             }
582         }
583     }
584 }
585
586 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::HirId) {
587     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
588     let def_id = tcx.hir().local_def_id(trait_item.hir_id);
589     tcx.generics_of(def_id);
590
591     match trait_item.kind {
592         hir::TraitItemKind::Const(..)
593         | hir::TraitItemKind::Type(_, Some(_))
594         | hir::TraitItemKind::Method(..) => {
595             tcx.type_of(def_id);
596             if let hir::TraitItemKind::Method(..) = trait_item.kind {
597                 tcx.fn_sig(def_id);
598             }
599         }
600
601         hir::TraitItemKind::Type(_, None) => {}
602     };
603
604     tcx.predicates_of(def_id);
605 }
606
607 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::HirId) {
608     let def_id = tcx.hir().local_def_id(impl_item_id);
609     tcx.generics_of(def_id);
610     tcx.type_of(def_id);
611     tcx.predicates_of(def_id);
612     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).kind {
613         tcx.fn_sig(def_id);
614     }
615 }
616
617 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
618     let def_id = tcx.hir().local_def_id(ctor_id);
619     tcx.generics_of(def_id);
620     tcx.type_of(def_id);
621     tcx.predicates_of(def_id);
622 }
623
624 fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
625     let def = tcx.adt_def(def_id);
626     let repr_type = def.repr.discr_type();
627     let initial = repr_type.initial_discriminant(tcx);
628     let mut prev_discr = None::<Discr<'_>>;
629
630     // fill the discriminant values and field types
631     for variant in variants {
632         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
633         prev_discr = Some(
634             if let Some(ref e) = variant.disr_expr {
635                 let expr_did = tcx.hir().local_def_id(e.hir_id);
636                 def.eval_explicit_discr(tcx, expr_did)
637             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
638                 Some(discr)
639             } else {
640                 struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
641                     .span_label(
642                         variant.span,
643                         format!("overflowed on value after {}", prev_discr.unwrap()),
644                     )
645                     .note(&format!(
646                         "explicitly set `{} = {}` if that is desired outcome",
647                         variant.ident, wrapped_discr
648                     ))
649                     .emit();
650                 None
651             }
652             .unwrap_or(wrapped_discr),
653         );
654
655         for f in variant.data.fields() {
656             let def_id = tcx.hir().local_def_id(f.hir_id);
657             tcx.generics_of(def_id);
658             tcx.type_of(def_id);
659             tcx.predicates_of(def_id);
660         }
661
662         // Convert the ctor, if any. This also registers the variant as
663         // an item.
664         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
665             convert_variant_ctor(tcx, ctor_hir_id);
666         }
667     }
668 }
669
670 fn convert_variant(
671     tcx: TyCtxt<'_>,
672     variant_did: Option<DefId>,
673     ctor_did: Option<DefId>,
674     ident: Ident,
675     discr: ty::VariantDiscr,
676     def: &hir::VariantData<'_>,
677     adt_kind: ty::AdtKind,
678     parent_did: DefId,
679 ) -> ty::VariantDef {
680     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
681     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
682     let fields = def
683         .fields()
684         .iter()
685         .map(|f| {
686             let fid = tcx.hir().local_def_id(f.hir_id);
687             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
688             if let Some(prev_span) = dup_span {
689                 struct_span_err!(
690                     tcx.sess,
691                     f.span,
692                     E0124,
693                     "field `{}` is already declared",
694                     f.ident
695                 )
696                 .span_label(f.span, "field already declared")
697                 .span_label(prev_span, format!("`{}` first declared here", f.ident))
698                 .emit();
699             } else {
700                 seen_fields.insert(f.ident.modern(), f.span);
701             }
702
703             ty::FieldDef {
704                 did: fid,
705                 ident: f.ident,
706                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
707             }
708         })
709         .collect();
710     let recovered = match def {
711         hir::VariantData::Struct(_, r) => *r,
712         _ => false,
713     };
714     ty::VariantDef::new(
715         tcx,
716         ident,
717         variant_did,
718         ctor_did,
719         discr,
720         fields,
721         CtorKind::from_hir(def),
722         adt_kind,
723         parent_did,
724         recovered,
725     )
726 }
727
728 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
729     use rustc_hir::*;
730
731     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
732     let item = match tcx.hir().get(hir_id) {
733         Node::Item(item) => item,
734         _ => bug!(),
735     };
736
737     let repr = ReprOptions::new(tcx, def_id);
738     let (kind, variants) = match item.kind {
739         ItemKind::Enum(ref def, _) => {
740             let mut distance_from_explicit = 0;
741             let variants = def
742                 .variants
743                 .iter()
744                 .map(|v| {
745                     let variant_did = Some(tcx.hir().local_def_id(v.id));
746                     let ctor_did =
747                         v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
748
749                     let discr = if let Some(ref e) = v.disr_expr {
750                         distance_from_explicit = 0;
751                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id))
752                     } else {
753                         ty::VariantDiscr::Relative(distance_from_explicit)
754                     };
755                     distance_from_explicit += 1;
756
757                     convert_variant(
758                         tcx,
759                         variant_did,
760                         ctor_did,
761                         v.ident,
762                         discr,
763                         &v.data,
764                         AdtKind::Enum,
765                         def_id,
766                     )
767                 })
768                 .collect();
769
770             (AdtKind::Enum, variants)
771         }
772         ItemKind::Struct(ref def, _) => {
773             let variant_did = None;
774             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
775
776             let variants = std::iter::once(convert_variant(
777                 tcx,
778                 variant_did,
779                 ctor_did,
780                 item.ident,
781                 ty::VariantDiscr::Relative(0),
782                 def,
783                 AdtKind::Struct,
784                 def_id,
785             ))
786             .collect();
787
788             (AdtKind::Struct, variants)
789         }
790         ItemKind::Union(ref def, _) => {
791             let variant_did = None;
792             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
793
794             let variants = std::iter::once(convert_variant(
795                 tcx,
796                 variant_did,
797                 ctor_did,
798                 item.ident,
799                 ty::VariantDiscr::Relative(0),
800                 def,
801                 AdtKind::Union,
802                 def_id,
803             ))
804             .collect();
805
806             (AdtKind::Union, variants)
807         }
808         _ => bug!(),
809     };
810     tcx.alloc_adt_def(def_id, kind, variants, repr)
811 }
812
813 /// Ensures that the super-predicates of the trait with a `DefId`
814 /// of `trait_def_id` are converted and stored. This also ensures that
815 /// the transitive super-predicates are converted.
816 fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
817     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
818     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
819
820     let item = match tcx.hir().get(trait_hir_id) {
821         Node::Item(item) => item,
822         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
823     };
824
825     let (generics, bounds) = match item.kind {
826         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
827         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
828         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
829     };
830
831     let icx = ItemCtxt::new(tcx, trait_def_id);
832
833     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
834     let self_param_ty = tcx.types.self_param;
835     let superbounds1 =
836         AstConv::compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No, item.span);
837
838     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
839
840     // Convert any explicit superbounds in the where-clause,
841     // e.g., `trait Foo where Self: Bar`.
842     // In the case of trait aliases, however, we include all bounds in the where-clause,
843     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
844     // as one of its "superpredicates".
845     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
846     let superbounds2 = icx.type_parameter_bounds_in_generics(
847         generics,
848         item.hir_id,
849         self_param_ty,
850         OnlySelfBounds(!is_trait_alias),
851     );
852
853     // Combine the two lists to form the complete set of superbounds:
854     let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
855
856     // Now require that immediate supertraits are converted,
857     // which will, in turn, reach indirect supertraits.
858     for &(pred, span) in superbounds {
859         debug!("superbound: {:?}", pred);
860         if let ty::Predicate::Trait(bound) = pred {
861             tcx.at(span).super_predicates_of(bound.def_id());
862         }
863     }
864
865     ty::GenericPredicates { parent: None, predicates: superbounds }
866 }
867
868 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::TraitDef {
869     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
870     let item = tcx.hir().expect_item(hir_id);
871
872     let (is_auto, unsafety) = match item.kind {
873         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
874         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
875         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
876     };
877
878     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
879     if paren_sugar && !tcx.features().unboxed_closures {
880         tcx.sess
881             .struct_span_err(
882                 item.span,
883                 "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
884              which traits can use parenthetical notation",
885             )
886             .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
887             .emit();
888     }
889
890     let is_marker = tcx.has_attr(def_id, sym::marker);
891     let def_path_hash = tcx.def_path_hash(def_id);
892     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
893     tcx.arena.alloc(def)
894 }
895
896 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
897     struct LateBoundRegionsDetector<'tcx> {
898         tcx: TyCtxt<'tcx>,
899         outer_index: ty::DebruijnIndex,
900         has_late_bound_regions: Option<Span>,
901     }
902
903     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
904         type Map = Map<'tcx>;
905
906         fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
907             NestedVisitorMap::None
908         }
909
910         fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
911             if self.has_late_bound_regions.is_some() {
912                 return;
913             }
914             match ty.kind {
915                 hir::TyKind::BareFn(..) => {
916                     self.outer_index.shift_in(1);
917                     intravisit::walk_ty(self, ty);
918                     self.outer_index.shift_out(1);
919                 }
920                 _ => intravisit::walk_ty(self, ty),
921             }
922         }
923
924         fn visit_poly_trait_ref(
925             &mut self,
926             tr: &'tcx hir::PolyTraitRef<'tcx>,
927             m: hir::TraitBoundModifier,
928         ) {
929             if self.has_late_bound_regions.is_some() {
930                 return;
931             }
932             self.outer_index.shift_in(1);
933             intravisit::walk_poly_trait_ref(self, tr, m);
934             self.outer_index.shift_out(1);
935         }
936
937         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
938             if self.has_late_bound_regions.is_some() {
939                 return;
940             }
941
942             match self.tcx.named_region(lt.hir_id) {
943                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
944                 Some(rl::Region::LateBound(debruijn, _, _))
945                 | Some(rl::Region::LateBoundAnon(debruijn, _))
946                     if debruijn < self.outer_index => {}
947                 Some(rl::Region::LateBound(..))
948                 | Some(rl::Region::LateBoundAnon(..))
949                 | Some(rl::Region::Free(..))
950                 | None => {
951                     self.has_late_bound_regions = Some(lt.span);
952                 }
953             }
954         }
955     }
956
957     fn has_late_bound_regions<'tcx>(
958         tcx: TyCtxt<'tcx>,
959         generics: &'tcx hir::Generics<'tcx>,
960         decl: &'tcx hir::FnDecl<'tcx>,
961     ) -> Option<Span> {
962         let mut visitor = LateBoundRegionsDetector {
963             tcx,
964             outer_index: ty::INNERMOST,
965             has_late_bound_regions: None,
966         };
967         for param in generics.params {
968             if let GenericParamKind::Lifetime { .. } = param.kind {
969                 if tcx.is_late_bound(param.hir_id) {
970                     return Some(param.span);
971                 }
972             }
973         }
974         visitor.visit_fn_decl(decl);
975         visitor.has_late_bound_regions
976     }
977
978     match node {
979         Node::TraitItem(item) => match item.kind {
980             hir::TraitItemKind::Method(ref sig, _) => {
981                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
982             }
983             _ => None,
984         },
985         Node::ImplItem(item) => match item.kind {
986             hir::ImplItemKind::Method(ref sig, _) => {
987                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
988             }
989             _ => None,
990         },
991         Node::ForeignItem(item) => match item.kind {
992             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
993                 has_late_bound_regions(tcx, generics, fn_decl)
994             }
995             _ => None,
996         },
997         Node::Item(item) => match item.kind {
998             hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
999                 has_late_bound_regions(tcx, generics, &sig.decl)
1000             }
1001             _ => None,
1002         },
1003         _ => None,
1004     }
1005 }
1006
1007 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::Generics {
1008     use rustc_hir::*;
1009
1010     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1011
1012     let node = tcx.hir().get(hir_id);
1013     let parent_def_id = match node {
1014         Node::ImplItem(_)
1015         | Node::TraitItem(_)
1016         | Node::Variant(_)
1017         | Node::Ctor(..)
1018         | Node::Field(_) => {
1019             let parent_id = tcx.hir().get_parent_item(hir_id);
1020             Some(tcx.hir().local_def_id(parent_id))
1021         }
1022         // FIXME(#43408) enable this always when we get lazy normalization.
1023         Node::AnonConst(_) => {
1024             // HACK(eddyb) this provides the correct generics when
1025             // `feature(const_generics)` is enabled, so that const expressions
1026             // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
1027             if tcx.features().const_generics {
1028                 let parent_id = tcx.hir().get_parent_item(hir_id);
1029                 Some(tcx.hir().local_def_id(parent_id))
1030             } else {
1031                 None
1032             }
1033         }
1034         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1035             Some(tcx.closure_base_def_id(def_id))
1036         }
1037         Node::Item(item) => match item.kind {
1038             ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => impl_trait_fn,
1039             _ => None,
1040         },
1041         _ => None,
1042     };
1043
1044     let mut opt_self = None;
1045     let mut allow_defaults = false;
1046
1047     let no_generics = hir::Generics::empty();
1048     let ast_generics = match node {
1049         Node::TraitItem(item) => &item.generics,
1050
1051         Node::ImplItem(item) => &item.generics,
1052
1053         Node::Item(item) => {
1054             match item.kind {
1055                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl(_, _, _, ref generics, ..) => {
1056                     generics
1057                 }
1058
1059                 ItemKind::TyAlias(_, ref generics)
1060                 | ItemKind::Enum(_, ref generics)
1061                 | ItemKind::Struct(_, ref generics)
1062                 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
1063                 | ItemKind::Union(_, ref generics) => {
1064                     allow_defaults = true;
1065                     generics
1066                 }
1067
1068                 ItemKind::Trait(_, _, ref generics, ..)
1069                 | ItemKind::TraitAlias(ref generics, ..) => {
1070                     // Add in the self type parameter.
1071                     //
1072                     // Something of a hack: use the node id for the trait, also as
1073                     // the node id for the Self type parameter.
1074                     let param_id = item.hir_id;
1075
1076                     opt_self = Some(ty::GenericParamDef {
1077                         index: 0,
1078                         name: kw::SelfUpper,
1079                         def_id: tcx.hir().local_def_id(param_id),
1080                         pure_wrt_drop: false,
1081                         kind: ty::GenericParamDefKind::Type {
1082                             has_default: false,
1083                             object_lifetime_default: rl::Set1::Empty,
1084                             synthetic: None,
1085                         },
1086                     });
1087
1088                     allow_defaults = true;
1089                     generics
1090                 }
1091
1092                 _ => &no_generics,
1093             }
1094         }
1095
1096         Node::ForeignItem(item) => match item.kind {
1097             ForeignItemKind::Static(..) => &no_generics,
1098             ForeignItemKind::Fn(_, _, ref generics) => generics,
1099             ForeignItemKind::Type => &no_generics,
1100         },
1101
1102         _ => &no_generics,
1103     };
1104
1105     let has_self = opt_self.is_some();
1106     let mut parent_has_self = false;
1107     let mut own_start = has_self as u32;
1108     let parent_count = parent_def_id.map_or(0, |def_id| {
1109         let generics = tcx.generics_of(def_id);
1110         assert_eq!(has_self, false);
1111         parent_has_self = generics.has_self;
1112         own_start = generics.count() as u32;
1113         generics.parent_count + generics.params.len()
1114     });
1115
1116     let mut params: Vec<_> = opt_self.into_iter().collect();
1117
1118     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1119     params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
1120         name: param.name.ident().name,
1121         index: own_start + i as u32,
1122         def_id: tcx.hir().local_def_id(param.hir_id),
1123         pure_wrt_drop: param.pure_wrt_drop,
1124         kind: ty::GenericParamDefKind::Lifetime,
1125     }));
1126
1127     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
1128
1129     // Now create the real type parameters.
1130     let type_start = own_start - has_self as u32 + params.len() as u32;
1131     let mut i = 0;
1132     params.extend(ast_generics.params.iter().filter_map(|param| {
1133         let kind = match param.kind {
1134             GenericParamKind::Type { ref default, synthetic, .. } => {
1135                 if !allow_defaults && default.is_some() {
1136                     if !tcx.features().default_type_parameter_fallback {
1137                         tcx.lint_hir(
1138                             lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1139                             param.hir_id,
1140                             param.span,
1141                             &format!(
1142                                 "defaults for type parameters are only allowed in \
1143                                         `struct`, `enum`, `type`, or `trait` definitions."
1144                             ),
1145                         );
1146                     }
1147                 }
1148
1149                 ty::GenericParamDefKind::Type {
1150                     has_default: default.is_some(),
1151                     object_lifetime_default: object_lifetime_defaults
1152                         .as_ref()
1153                         .map_or(rl::Set1::Empty, |o| o[i]),
1154                     synthetic,
1155                 }
1156             }
1157             GenericParamKind::Const { .. } => ty::GenericParamDefKind::Const,
1158             _ => return None,
1159         };
1160
1161         let param_def = ty::GenericParamDef {
1162             index: type_start + i as u32,
1163             name: param.name.ident().name,
1164             def_id: tcx.hir().local_def_id(param.hir_id),
1165             pure_wrt_drop: param.pure_wrt_drop,
1166             kind,
1167         };
1168         i += 1;
1169         Some(param_def)
1170     }));
1171
1172     // provide junk type parameter defs - the only place that
1173     // cares about anything but the length is instantiation,
1174     // and we don't do that for closures.
1175     if let Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) = node {
1176         let dummy_args = if gen.is_some() {
1177             &["<yield_ty>", "<return_ty>", "<witness>"][..]
1178         } else {
1179             &["<closure_kind>", "<closure_signature>"][..]
1180         };
1181
1182         params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
1183             index: type_start + i as u32,
1184             name: Symbol::intern(arg),
1185             def_id,
1186             pure_wrt_drop: false,
1187             kind: ty::GenericParamDefKind::Type {
1188                 has_default: false,
1189                 object_lifetime_default: rl::Set1::Empty,
1190                 synthetic: None,
1191             },
1192         }));
1193
1194         if let Some(upvars) = tcx.upvars(def_id) {
1195             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1196                 ty::GenericParamDef {
1197                     index: type_start + i,
1198                     name: Symbol::intern("<upvar>"),
1199                     def_id,
1200                     pure_wrt_drop: false,
1201                     kind: ty::GenericParamDefKind::Type {
1202                         has_default: false,
1203                         object_lifetime_default: rl::Set1::Empty,
1204                         synthetic: None,
1205                     },
1206                 }
1207             }));
1208         }
1209     }
1210
1211     let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
1212
1213     tcx.arena.alloc(ty::Generics {
1214         parent: parent_def_id,
1215         parent_count,
1216         params,
1217         param_def_id_to_index,
1218         has_self: has_self || parent_has_self,
1219         has_late_bound_regions: has_late_bound_regions(tcx, node),
1220     })
1221 }
1222
1223 fn report_assoc_ty_on_inherent_impl(tcx: TyCtxt<'_>, span: Span) {
1224     struct_span_err!(
1225         tcx.sess,
1226         span,
1227         E0202,
1228         "associated types are not yet supported in inherent impls (see #8995)"
1229     )
1230     .emit();
1231 }
1232
1233 fn infer_placeholder_type(
1234     tcx: TyCtxt<'_>,
1235     def_id: DefId,
1236     body_id: hir::BodyId,
1237     span: Span,
1238     item_ident: Ident,
1239 ) -> Ty<'_> {
1240     let ty = tcx.diagnostic_only_typeck_tables_of(def_id).node_type(body_id.hir_id);
1241
1242     // If this came from a free `const` or `static mut?` item,
1243     // then the user may have written e.g. `const A = 42;`.
1244     // In this case, the parser has stashed a diagnostic for
1245     // us to improve in typeck so we do that now.
1246     match tcx.sess.diagnostic().steal_diagnostic(span, StashKey::ItemNoType) {
1247         Some(mut err) => {
1248             // The parser provided a sub-optimal `HasPlaceholders` suggestion for the type.
1249             // We are typeck and have the real type, so remove that and suggest the actual type.
1250             err.suggestions.clear();
1251             err.span_suggestion(
1252                 span,
1253                 "provide a type for the item",
1254                 format!("{}: {}", item_ident, ty),
1255                 Applicability::MachineApplicable,
1256             )
1257             .emit();
1258         }
1259         None => {
1260             let mut diag = bad_placeholder_type(tcx, vec![span]);
1261             if ty != tcx.types.err {
1262                 diag.span_suggestion(
1263                     span,
1264                     "replace `_` with the correct type",
1265                     ty.to_string(),
1266                     Applicability::MaybeIncorrect,
1267                 );
1268             }
1269             diag.emit();
1270         }
1271     }
1272
1273     ty
1274 }
1275
1276 fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1277     use rustc_hir::*;
1278
1279     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1280
1281     let icx = ItemCtxt::new(tcx, def_id);
1282
1283     match tcx.hir().get(hir_id) {
1284         Node::TraitItem(item) => match item.kind {
1285             TraitItemKind::Method(..) => {
1286                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1287                 tcx.mk_fn_def(def_id, substs)
1288             }
1289             TraitItemKind::Const(ref ty, body_id) => body_id
1290                 .and_then(|body_id| {
1291                     if is_suggestable_infer_ty(ty) {
1292                         Some(infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident))
1293                     } else {
1294                         None
1295                     }
1296                 })
1297                 .unwrap_or_else(|| icx.to_ty(ty)),
1298             TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1299             TraitItemKind::Type(_, None) => {
1300                 span_bug!(item.span, "associated type missing default");
1301             }
1302         },
1303
1304         Node::ImplItem(item) => match item.kind {
1305             ImplItemKind::Method(..) => {
1306                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1307                 tcx.mk_fn_def(def_id, substs)
1308             }
1309             ImplItemKind::Const(ref ty, body_id) => {
1310                 if is_suggestable_infer_ty(ty) {
1311                     infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1312                 } else {
1313                     icx.to_ty(ty)
1314                 }
1315             }
1316             ImplItemKind::OpaqueTy(_) => {
1317                 if tcx.impl_trait_ref(tcx.hir().get_parent_did(hir_id)).is_none() {
1318                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1319                 }
1320
1321                 find_opaque_ty_constraints(tcx, def_id)
1322             }
1323             ImplItemKind::TyAlias(ref ty) => {
1324                 if tcx.impl_trait_ref(tcx.hir().get_parent_did(hir_id)).is_none() {
1325                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1326                 }
1327
1328                 icx.to_ty(ty)
1329             }
1330         },
1331
1332         Node::Item(item) => {
1333             match item.kind {
1334                 ItemKind::Static(ref ty, .., body_id) | ItemKind::Const(ref ty, body_id) => {
1335                     if is_suggestable_infer_ty(ty) {
1336                         infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1337                     } else {
1338                         icx.to_ty(ty)
1339                     }
1340                 }
1341                 ItemKind::TyAlias(ref ty, _) | ItemKind::Impl(.., ref ty, _) => icx.to_ty(ty),
1342                 ItemKind::Fn(..) => {
1343                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1344                     tcx.mk_fn_def(def_id, substs)
1345                 }
1346                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1347                     let def = tcx.adt_def(def_id);
1348                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1349                     tcx.mk_adt(def, substs)
1350                 }
1351                 ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: None, .. }) => {
1352                     find_opaque_ty_constraints(tcx, def_id)
1353                 }
1354                 // Opaque types desugared from `impl Trait`.
1355                 ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(owner), .. }) => {
1356                     tcx.typeck_tables_of(owner)
1357                         .concrete_opaque_types
1358                         .get(&def_id)
1359                         .map(|opaque| opaque.concrete_type)
1360                         .unwrap_or_else(|| {
1361                             // This can occur if some error in the
1362                             // owner fn prevented us from populating
1363                             // the `concrete_opaque_types` table.
1364                             tcx.sess.delay_span_bug(
1365                                 DUMMY_SP,
1366                                 &format!(
1367                                     "owner {:?} has no opaque type for {:?} in its tables",
1368                                     owner, def_id,
1369                                 ),
1370                             );
1371                             tcx.types.err
1372                         })
1373                 }
1374                 ItemKind::Trait(..)
1375                 | ItemKind::TraitAlias(..)
1376                 | ItemKind::Mod(..)
1377                 | ItemKind::ForeignMod(..)
1378                 | ItemKind::GlobalAsm(..)
1379                 | ItemKind::ExternCrate(..)
1380                 | ItemKind::Use(..) => {
1381                     span_bug!(
1382                         item.span,
1383                         "compute_type_of_item: unexpected item type: {:?}",
1384                         item.kind
1385                     );
1386                 }
1387             }
1388         }
1389
1390         Node::ForeignItem(foreign_item) => match foreign_item.kind {
1391             ForeignItemKind::Fn(..) => {
1392                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1393                 tcx.mk_fn_def(def_id, substs)
1394             }
1395             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1396             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1397         },
1398
1399         Node::Ctor(&ref def) | Node::Variant(hir::Variant { data: ref def, .. }) => match *def {
1400             VariantData::Unit(..) | VariantData::Struct(..) => {
1401                 tcx.type_of(tcx.hir().get_parent_did(hir_id))
1402             }
1403             VariantData::Tuple(..) => {
1404                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1405                 tcx.mk_fn_def(def_id, substs)
1406             }
1407         },
1408
1409         Node::Field(field) => icx.to_ty(&field.ty),
1410
1411         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) => {
1412             if gen.is_some() {
1413                 return tcx.typeck_tables_of(def_id).node_type(hir_id);
1414             }
1415
1416             let substs = InternalSubsts::identity_for_item(tcx, def_id);
1417             tcx.mk_closure(def_id, substs)
1418         }
1419
1420         Node::AnonConst(_) => {
1421             let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1422             match parent_node {
1423                 Node::Ty(&hir::Ty { kind: hir::TyKind::Array(_, ref constant), .. })
1424                 | Node::Ty(&hir::Ty { kind: hir::TyKind::Typeof(ref constant), .. })
1425                 | Node::Expr(&hir::Expr { kind: ExprKind::Repeat(_, ref constant), .. })
1426                     if constant.hir_id == hir_id =>
1427                 {
1428                     tcx.types.usize
1429                 }
1430
1431                 Node::Variant(Variant { disr_expr: Some(ref e), .. }) if e.hir_id == hir_id => {
1432                     tcx.adt_def(tcx.hir().get_parent_did(hir_id)).repr.discr_type().to_ty(tcx)
1433                 }
1434
1435                 Node::Ty(&hir::Ty { kind: hir::TyKind::Path(_), .. })
1436                 | Node::Expr(&hir::Expr { kind: ExprKind::Struct(..), .. })
1437                 | Node::Expr(&hir::Expr { kind: ExprKind::Path(_), .. })
1438                 | Node::TraitRef(..) => {
1439                     let path = match parent_node {
1440                         Node::Ty(&hir::Ty {
1441                             kind: hir::TyKind::Path(QPath::Resolved(_, ref path)),
1442                             ..
1443                         })
1444                         | Node::Expr(&hir::Expr {
1445                             kind: ExprKind::Path(QPath::Resolved(_, ref path)),
1446                             ..
1447                         }) => Some(&**path),
1448                         Node::Expr(&hir::Expr { kind: ExprKind::Struct(ref path, ..), .. }) => {
1449                             if let QPath::Resolved(_, ref path) = **path {
1450                                 Some(&**path)
1451                             } else {
1452                                 None
1453                             }
1454                         }
1455                         Node::TraitRef(&hir::TraitRef { ref path, .. }) => Some(&**path),
1456                         _ => None,
1457                     };
1458
1459                     if let Some(path) = path {
1460                         let arg_index = path
1461                             .segments
1462                             .iter()
1463                             .filter_map(|seg| seg.args.as_ref())
1464                             .map(|generic_args| generic_args.args.as_ref())
1465                             .find_map(|args| {
1466                                 args.iter()
1467                                     .filter(|arg| arg.is_const())
1468                                     .enumerate()
1469                                     .filter(|(_, arg)| arg.id() == hir_id)
1470                                     .map(|(index, _)| index)
1471                                     .next()
1472                             })
1473                             .unwrap_or_else(|| {
1474                                 bug!("no arg matching AnonConst in path");
1475                             });
1476
1477                         // We've encountered an `AnonConst` in some path, so we need to
1478                         // figure out which generic parameter it corresponds to and return
1479                         // the relevant type.
1480                         let generics = match path.res {
1481                             Res::Def(DefKind::Ctor(..), def_id) => {
1482                                 tcx.generics_of(tcx.parent(def_id).unwrap())
1483                             }
1484                             Res::Def(_, def_id) => tcx.generics_of(def_id),
1485                             Res::Err => return tcx.types.err,
1486                             res => {
1487                                 tcx.sess.delay_span_bug(
1488                                     DUMMY_SP,
1489                                     &format!("unexpected const parent path def {:?}", res,),
1490                                 );
1491                                 return tcx.types.err;
1492                             }
1493                         };
1494
1495                         generics
1496                             .params
1497                             .iter()
1498                             .filter(|param| {
1499                                 if let ty::GenericParamDefKind::Const = param.kind {
1500                                     true
1501                                 } else {
1502                                     false
1503                                 }
1504                             })
1505                             .nth(arg_index)
1506                             .map(|param| tcx.type_of(param.def_id))
1507                             // This is no generic parameter associated with the arg. This is
1508                             // probably from an extra arg where one is not needed.
1509                             .unwrap_or(tcx.types.err)
1510                     } else {
1511                         tcx.sess.delay_span_bug(
1512                             DUMMY_SP,
1513                             &format!("unexpected const parent path {:?}", parent_node,),
1514                         );
1515                         return tcx.types.err;
1516                     }
1517                 }
1518
1519                 x => {
1520                     tcx.sess.delay_span_bug(
1521                         DUMMY_SP,
1522                         &format!("unexpected const parent in type_of_def_id(): {:?}", x),
1523                     );
1524                     tcx.types.err
1525                 }
1526             }
1527         }
1528
1529         Node::GenericParam(param) => match &param.kind {
1530             hir::GenericParamKind::Type { default: Some(ref ty), .. } => icx.to_ty(ty),
1531             hir::GenericParamKind::Const { ty: ref hir_ty, .. } => {
1532                 let ty = icx.to_ty(hir_ty);
1533                 if !tcx.features().const_compare_raw_pointers {
1534                     let err = match ty.peel_refs().kind {
1535                         ty::FnPtr(_) => Some("function pointers"),
1536                         ty::RawPtr(_) => Some("raw pointers"),
1537                         _ => None,
1538                     };
1539                     if let Some(unsupported_type) = err {
1540                         feature_gate::feature_err(
1541                             &tcx.sess.parse_sess,
1542                             sym::const_compare_raw_pointers,
1543                             hir_ty.span,
1544                             &format!(
1545                                 "using {} as const generic parameters is unstable",
1546                                 unsupported_type
1547                             ),
1548                         )
1549                         .emit();
1550                     };
1551                 }
1552                 if traits::search_for_structural_match_violation(param.hir_id, param.span, tcx, ty)
1553                     .is_some()
1554                 {
1555                     struct_span_err!(
1556                         tcx.sess,
1557                         hir_ty.span,
1558                         E0741,
1559                         "the types of const generic parameters must derive `PartialEq` and `Eq`",
1560                     )
1561                     .span_label(
1562                         hir_ty.span,
1563                         format!("`{}` doesn't derive both `PartialEq` and `Eq`", ty),
1564                     )
1565                     .emit();
1566                 }
1567                 ty
1568             }
1569             x => bug!("unexpected non-type Node::GenericParam: {:?}", x),
1570         },
1571
1572         x => {
1573             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1574         }
1575     }
1576 }
1577
1578 fn find_opaque_ty_constraints(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1579     use rustc_hir::{ImplItem, Item, TraitItem};
1580
1581     debug!("find_opaque_ty_constraints({:?})", def_id);
1582
1583     struct ConstraintLocator<'tcx> {
1584         tcx: TyCtxt<'tcx>,
1585         def_id: DefId,
1586         // (first found type span, actual type, mapping from the opaque type's generic
1587         // parameters to the concrete type's generic parameters)
1588         //
1589         // The mapping is an index for each use site of a generic parameter in the concrete type
1590         //
1591         // The indices index into the generic parameters on the opaque type.
1592         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1593     }
1594
1595     impl ConstraintLocator<'tcx> {
1596         fn check(&mut self, def_id: DefId) {
1597             // Don't try to check items that cannot possibly constrain the type.
1598             if !self.tcx.has_typeck_tables(def_id) {
1599                 debug!(
1600                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`: no tables",
1601                     self.def_id, def_id,
1602                 );
1603                 return;
1604             }
1605             let ty = self.tcx.typeck_tables_of(def_id).concrete_opaque_types.get(&self.def_id);
1606             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1607                 debug!(
1608                     "find_opaque_ty_constraints: found constraint for `{:?}` at `{:?}`: {:?}",
1609                     self.def_id, def_id, ty,
1610                 );
1611
1612                 // FIXME(oli-obk): trace the actual span from inference to improve errors.
1613                 let span = self.tcx.def_span(def_id);
1614                 // used to quickly look up the position of a generic parameter
1615                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1616                 // Skipping binder is ok, since we only use this to find generic parameters and
1617                 // their positions.
1618                 for (idx, subst) in substs.iter().enumerate() {
1619                     if let GenericArgKind::Type(ty) = subst.unpack() {
1620                         if let ty::Param(p) = ty.kind {
1621                             if index_map.insert(p, idx).is_some() {
1622                                 // There was already an entry for `p`, meaning a generic parameter
1623                                 // was used twice.
1624                                 self.tcx.sess.span_err(
1625                                     span,
1626                                     &format!(
1627                                         "defining opaque type use restricts opaque \
1628                                          type by using the generic parameter `{}` twice",
1629                                         p,
1630                                     ),
1631                                 );
1632                                 return;
1633                             }
1634                         } else {
1635                             self.tcx.sess.delay_span_bug(
1636                                 span,
1637                                 &format!(
1638                                     "non-defining opaque ty use in defining scope: {:?}, {:?}",
1639                                     concrete_type, substs,
1640                                 ),
1641                             );
1642                         }
1643                     }
1644                 }
1645                 // Compute the index within the opaque type for each generic parameter used in
1646                 // the concrete type.
1647                 let indices = concrete_type
1648                     .subst(self.tcx, substs)
1649                     .walk()
1650                     .filter_map(|t| match &t.kind {
1651                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1652                         _ => None,
1653                     })
1654                     .collect();
1655                 let is_param = |ty: Ty<'_>| match ty.kind {
1656                     ty::Param(_) => true,
1657                     _ => false,
1658                 };
1659                 let bad_substs: Vec<_> =
1660                     substs.types().enumerate().filter(|(_, ty)| !is_param(ty)).collect();
1661                 if !bad_substs.is_empty() {
1662                     let identity_substs = InternalSubsts::identity_for_item(self.tcx, self.def_id);
1663                     for (i, bad_subst) in bad_substs {
1664                         self.tcx.sess.span_err(
1665                             span,
1666                             &format!(
1667                                 "defining opaque type use does not fully define opaque type: \
1668                             generic parameter `{}` is specified as concrete type `{}`",
1669                                 identity_substs.type_at(i),
1670                                 bad_subst
1671                             ),
1672                         );
1673                     }
1674                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1675                     let mut ty = concrete_type.walk().fuse();
1676                     let mut p_ty = prev_ty.walk().fuse();
1677                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.kind, &p.kind) {
1678                         // Type parameters are equal to any other type parameter for the purpose of
1679                         // concrete type equality, as it is possible to obtain the same type just
1680                         // by passing matching parameters to a function.
1681                         (ty::Param(_), ty::Param(_)) => true,
1682                         _ => t == p,
1683                     });
1684                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1685                         debug!("find_opaque_ty_constraints: span={:?}", span);
1686                         // Found different concrete types for the opaque type.
1687                         let mut err = self.tcx.sess.struct_span_err(
1688                             span,
1689                             "concrete type differs from previous defining opaque type use",
1690                         );
1691                         err.span_label(
1692                             span,
1693                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1694                         );
1695                         err.span_note(prev_span, "previous use here");
1696                         err.emit();
1697                     } else if indices != *prev_indices {
1698                         // Found "same" concrete types, but the generic parameter order differs.
1699                         let mut err = self.tcx.sess.struct_span_err(
1700                             span,
1701                             "concrete type's generic parameters differ from previous defining use",
1702                         );
1703                         use std::fmt::Write;
1704                         let mut s = String::new();
1705                         write!(s, "expected [").unwrap();
1706                         let list = |s: &mut String, indices: &Vec<usize>| {
1707                             let mut indices = indices.iter().cloned();
1708                             if let Some(first) = indices.next() {
1709                                 write!(s, "`{}`", substs[first]).unwrap();
1710                                 for i in indices {
1711                                     write!(s, ", `{}`", substs[i]).unwrap();
1712                                 }
1713                             }
1714                         };
1715                         list(&mut s, prev_indices);
1716                         write!(s, "], got [").unwrap();
1717                         list(&mut s, &indices);
1718                         write!(s, "]").unwrap();
1719                         err.span_label(span, s);
1720                         err.span_note(prev_span, "previous use here");
1721                         err.emit();
1722                     }
1723                 } else {
1724                     self.found = Some((span, concrete_type, indices));
1725                 }
1726             } else {
1727                 debug!(
1728                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`",
1729                     self.def_id, def_id,
1730                 );
1731             }
1732         }
1733     }
1734
1735     impl<'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'tcx> {
1736         type Map = Map<'tcx>;
1737
1738         fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<'_, Self::Map> {
1739             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1740         }
1741         fn visit_item(&mut self, it: &'tcx Item<'tcx>) {
1742             debug!("find_existential_constraints: visiting {:?}", it);
1743             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1744             // The opaque type itself or its children are not within its reveal scope.
1745             if def_id != self.def_id {
1746                 self.check(def_id);
1747                 intravisit::walk_item(self, it);
1748             }
1749         }
1750         fn visit_impl_item(&mut self, it: &'tcx ImplItem<'tcx>) {
1751             debug!("find_existential_constraints: visiting {:?}", it);
1752             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1753             // The opaque type itself or its children are not within its reveal scope.
1754             if def_id != self.def_id {
1755                 self.check(def_id);
1756                 intravisit::walk_impl_item(self, it);
1757             }
1758         }
1759         fn visit_trait_item(&mut self, it: &'tcx TraitItem<'tcx>) {
1760             debug!("find_existential_constraints: visiting {:?}", it);
1761             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1762             self.check(def_id);
1763             intravisit::walk_trait_item(self, it);
1764         }
1765     }
1766
1767     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1768     let scope = tcx.hir().get_defining_scope(hir_id);
1769     let mut locator = ConstraintLocator { def_id, tcx, found: None };
1770
1771     debug!("find_opaque_ty_constraints: scope={:?}", scope);
1772
1773     if scope == hir::CRATE_HIR_ID {
1774         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1775     } else {
1776         debug!("find_opaque_ty_constraints: scope={:?}", tcx.hir().get(scope));
1777         match tcx.hir().get(scope) {
1778             // We explicitly call `visit_*` methods, instead of using `intravisit::walk_*` methods
1779             // This allows our visitor to process the defining item itself, causing
1780             // it to pick up any 'sibling' defining uses.
1781             //
1782             // For example, this code:
1783             // ```
1784             // fn foo() {
1785             //     type Blah = impl Debug;
1786             //     let my_closure = || -> Blah { true };
1787             // }
1788             // ```
1789             //
1790             // requires us to explicitly process `foo()` in order
1791             // to notice the defining usage of `Blah`.
1792             Node::Item(ref it) => locator.visit_item(it),
1793             Node::ImplItem(ref it) => locator.visit_impl_item(it),
1794             Node::TraitItem(ref it) => locator.visit_trait_item(it),
1795             other => bug!("{:?} is not a valid scope for an opaque type item", other),
1796         }
1797     }
1798
1799     match locator.found {
1800         Some((_, ty, _)) => ty,
1801         None => {
1802             let span = tcx.def_span(def_id);
1803             tcx.sess.span_err(span, "could not find defining uses");
1804             tcx.types.err
1805         }
1806     }
1807 }
1808
1809 /// Whether `ty` is a type with `_` placeholders that can be infered. Used in diagnostics only to
1810 /// use inference to provide suggestions for the appropriate type if possible.
1811 fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
1812     use hir::TyKind::*;
1813     match &ty.kind {
1814         Infer => true,
1815         Slice(ty) | Array(ty, _) => is_suggestable_infer_ty(ty),
1816         Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
1817         Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
1818         Def(_, generic_args) => generic_args
1819             .iter()
1820             .filter_map(|arg| match arg {
1821                 hir::GenericArg::Type(ty) => Some(ty),
1822                 _ => None,
1823             })
1824             .any(is_suggestable_infer_ty),
1825         _ => false,
1826     }
1827 }
1828
1829 pub fn get_infer_ret_ty(output: &'hir hir::FunctionRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
1830     if let hir::FunctionRetTy::Return(ref ty) = output {
1831         if is_suggestable_infer_ty(ty) {
1832             return Some(&**ty);
1833         }
1834     }
1835     None
1836 }
1837
1838 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1839     use rustc_hir::Node::*;
1840     use rustc_hir::*;
1841
1842     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1843
1844     let icx = ItemCtxt::new(tcx, def_id);
1845
1846     match tcx.hir().get(hir_id) {
1847         TraitItem(hir::TraitItem {
1848             kind: TraitItemKind::Method(sig, TraitMethod::Provided(_)),
1849             ident,
1850             generics,
1851             ..
1852         })
1853         | ImplItem(hir::ImplItem { kind: ImplItemKind::Method(sig, _), ident, generics, .. })
1854         | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), ident, .. }) => {
1855             match get_infer_ret_ty(&sig.decl.output) {
1856                 Some(ty) => {
1857                     let fn_sig = tcx.typeck_tables_of(def_id).liberated_fn_sigs()[hir_id];
1858                     let mut visitor = PlaceholderHirTyCollector::default();
1859                     visitor.visit_ty(ty);
1860                     let mut diag = bad_placeholder_type(tcx, visitor.0);
1861                     let ret_ty = fn_sig.output();
1862                     if ret_ty != tcx.types.err {
1863                         diag.span_suggestion(
1864                             ty.span,
1865                             "replace with the correct return type",
1866                             ret_ty.to_string(),
1867                             Applicability::MaybeIncorrect,
1868                         );
1869                     }
1870                     diag.emit();
1871                     ty::Binder::bind(fn_sig)
1872                 }
1873                 None => AstConv::ty_of_fn(
1874                     &icx,
1875                     sig.header.unsafety,
1876                     sig.header.abi,
1877                     &sig.decl,
1878                     &generics.params[..],
1879                     Some(ident.span),
1880                 ),
1881             }
1882         }
1883
1884         TraitItem(hir::TraitItem {
1885             kind: TraitItemKind::Method(FnSig { header, decl }, _),
1886             ident,
1887             generics,
1888             ..
1889         }) => AstConv::ty_of_fn(
1890             &icx,
1891             header.unsafety,
1892             header.abi,
1893             decl,
1894             &generics.params[..],
1895             Some(ident.span),
1896         ),
1897
1898         ForeignItem(&hir::ForeignItem { kind: ForeignItemKind::Fn(ref fn_decl, _, _), .. }) => {
1899             let abi = tcx.hir().get_foreign_abi(hir_id);
1900             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
1901         }
1902
1903         Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
1904             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id));
1905             let inputs =
1906                 data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1907             ty::Binder::bind(tcx.mk_fn_sig(
1908                 inputs,
1909                 ty,
1910                 false,
1911                 hir::Unsafety::Normal,
1912                 abi::Abi::Rust,
1913             ))
1914         }
1915
1916         Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1917             // Closure signatures are not like other function
1918             // signatures and cannot be accessed through `fn_sig`. For
1919             // example, a closure signature excludes the `self`
1920             // argument. In any case they are embedded within the
1921             // closure type as part of the `ClosureSubsts`.
1922             //
1923             // To get
1924             // the signature of a closure, you should use the
1925             // `closure_sig` method on the `ClosureSubsts`:
1926             //
1927             //    closure_substs.sig(def_id, tcx)
1928             //
1929             // or, inside of an inference context, you can use
1930             //
1931             //    infcx.closure_sig(def_id, closure_substs)
1932             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
1933         }
1934
1935         x => {
1936             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1937         }
1938     }
1939 }
1940
1941 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1942     let icx = ItemCtxt::new(tcx, def_id);
1943
1944     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1945     match tcx.hir().expect_item(hir_id).kind {
1946         hir::ItemKind::Impl(.., ref opt_trait_ref, _, _) => {
1947             opt_trait_ref.as_ref().map(|ast_trait_ref| {
1948                 let selfty = tcx.type_of(def_id);
1949                 AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1950             })
1951         }
1952         _ => bug!(),
1953     }
1954 }
1955
1956 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
1957     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1958     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
1959     let item = tcx.hir().expect_item(hir_id);
1960     match &item.kind {
1961         hir::ItemKind::Impl(_, hir::ImplPolarity::Negative, ..) => {
1962             if is_rustc_reservation {
1963                 tcx.sess.span_err(item.span, "reservation impls can't be negative");
1964             }
1965             ty::ImplPolarity::Negative
1966         }
1967         hir::ItemKind::Impl(_, hir::ImplPolarity::Positive, _, _, None, _, _) => {
1968             if is_rustc_reservation {
1969                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
1970             }
1971             ty::ImplPolarity::Positive
1972         }
1973         hir::ItemKind::Impl(_, hir::ImplPolarity::Positive, _, _, Some(_tr), _, _) => {
1974             if is_rustc_reservation {
1975                 ty::ImplPolarity::Reservation
1976             } else {
1977                 ty::ImplPolarity::Positive
1978             }
1979         }
1980         ref item => bug!("impl_polarity: {:?} not an impl", item),
1981     }
1982 }
1983
1984 /// Returns the early-bound lifetimes declared in this generics
1985 /// listing. For anything other than fns/methods, this is just all
1986 /// the lifetimes that are declared. For fns or methods, we have to
1987 /// screen out those that do not appear in any where-clauses etc using
1988 /// `resolve_lifetime::early_bound_lifetimes`.
1989 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
1990     tcx: TyCtxt<'tcx>,
1991     generics: &'a hir::Generics<'a>,
1992 ) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
1993     generics.params.iter().filter(move |param| match param.kind {
1994         GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
1995         _ => false,
1996     })
1997 }
1998
1999 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
2000 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
2001 /// inferred constraints concerning which regions outlive other regions.
2002 fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2003     debug!("predicates_defined_on({:?})", def_id);
2004     let mut result = tcx.explicit_predicates_of(def_id);
2005     debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
2006     let inferred_outlives = tcx.inferred_outlives_of(def_id);
2007     if !inferred_outlives.is_empty() {
2008         debug!(
2009             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
2010             def_id, inferred_outlives,
2011         );
2012         if result.predicates.is_empty() {
2013             result.predicates = inferred_outlives;
2014         } else {
2015             result.predicates = tcx
2016                 .arena
2017                 .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
2018         }
2019     }
2020     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
2021     result
2022 }
2023
2024 /// Returns a list of all type predicates (explicit and implicit) for the definition with
2025 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
2026 /// `Self: Trait` predicates for traits.
2027 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2028     let mut result = tcx.predicates_defined_on(def_id);
2029
2030     if tcx.is_trait(def_id) {
2031         // For traits, add `Self: Trait` predicate. This is
2032         // not part of the predicates that a user writes, but it
2033         // is something that one must prove in order to invoke a
2034         // method or project an associated type.
2035         //
2036         // In the chalk setup, this predicate is not part of the
2037         // "predicates" for a trait item. But it is useful in
2038         // rustc because if you directly (e.g.) invoke a trait
2039         // method like `Trait::method(...)`, you must naturally
2040         // prove that the trait applies to the types that were
2041         // used, and adding the predicate into this list ensures
2042         // that this is done.
2043         let span = tcx.def_span(def_id);
2044         result.predicates =
2045             tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
2046                 ty::TraitRef::identity(tcx, def_id).to_predicate(),
2047                 span,
2048             ))));
2049     }
2050     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
2051     result
2052 }
2053
2054 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
2055 /// N.B., this does not include any implied/inferred constraints.
2056 fn explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2057     use rustc_data_structures::fx::FxHashSet;
2058     use rustc_hir::*;
2059
2060     debug!("explicit_predicates_of(def_id={:?})", def_id);
2061
2062     /// A data structure with unique elements, which preserves order of insertion.
2063     /// Preserving the order of insertion is important here so as not to break
2064     /// compile-fail UI tests.
2065     // FIXME(eddyb) just use `IndexSet` from `indexmap`.
2066     struct UniquePredicates<'tcx> {
2067         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
2068         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
2069     }
2070
2071     impl<'tcx> UniquePredicates<'tcx> {
2072         fn new() -> Self {
2073             UniquePredicates { predicates: vec![], uniques: FxHashSet::default() }
2074         }
2075
2076         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
2077             if self.uniques.insert(value) {
2078                 self.predicates.push(value);
2079             }
2080         }
2081
2082         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
2083             for value in iter {
2084                 self.push(value);
2085             }
2086         }
2087     }
2088
2089     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
2090     let node = tcx.hir().get(hir_id);
2091
2092     let mut is_trait = None;
2093     let mut is_default_impl_trait = None;
2094
2095     let icx = ItemCtxt::new(tcx, def_id);
2096
2097     const NO_GENERICS: &hir::Generics<'_> = &hir::Generics::empty();
2098
2099     let mut predicates = UniquePredicates::new();
2100
2101     let ast_generics = match node {
2102         Node::TraitItem(item) => &item.generics,
2103
2104         Node::ImplItem(item) => match item.kind {
2105             ImplItemKind::OpaqueTy(ref bounds) => {
2106                 ty::print::with_no_queries(|| {
2107                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
2108                     let opaque_ty = tcx.mk_opaque(def_id, substs);
2109                     debug!(
2110                         "explicit_predicates_of({:?}): created opaque type {:?}",
2111                         def_id, opaque_ty
2112                     );
2113
2114                     // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2115                     let bounds = AstConv::compute_bounds(
2116                         &icx,
2117                         opaque_ty,
2118                         bounds,
2119                         SizedByDefault::Yes,
2120                         tcx.def_span(def_id),
2121                     );
2122
2123                     predicates.extend(bounds.predicates(tcx, opaque_ty));
2124                     &item.generics
2125                 })
2126             }
2127             _ => &item.generics,
2128         },
2129
2130         Node::Item(item) => {
2131             match item.kind {
2132                 ItemKind::Impl(_, _, defaultness, ref generics, ..) => {
2133                     if defaultness.is_default() {
2134                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
2135                     }
2136                     generics
2137                 }
2138                 ItemKind::Fn(.., ref generics, _)
2139                 | ItemKind::TyAlias(_, ref generics)
2140                 | ItemKind::Enum(_, ref generics)
2141                 | ItemKind::Struct(_, ref generics)
2142                 | ItemKind::Union(_, ref generics) => generics,
2143
2144                 ItemKind::Trait(_, _, ref generics, .., items) => {
2145                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
2146                     generics
2147                 }
2148                 ItemKind::TraitAlias(ref generics, _) => {
2149                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &[]));
2150                     generics
2151                 }
2152                 ItemKind::OpaqueTy(OpaqueTy {
2153                     ref bounds,
2154                     impl_trait_fn,
2155                     ref generics,
2156                     origin: _,
2157                 }) => {
2158                     let bounds_predicates = ty::print::with_no_queries(|| {
2159                         let substs = InternalSubsts::identity_for_item(tcx, def_id);
2160                         let opaque_ty = tcx.mk_opaque(def_id, substs);
2161
2162                         // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2163                         let bounds = AstConv::compute_bounds(
2164                             &icx,
2165                             opaque_ty,
2166                             bounds,
2167                             SizedByDefault::Yes,
2168                             tcx.def_span(def_id),
2169                         );
2170
2171                         bounds.predicates(tcx, opaque_ty)
2172                     });
2173                     if impl_trait_fn.is_some() {
2174                         // opaque types
2175                         return ty::GenericPredicates {
2176                             parent: None,
2177                             predicates: tcx.arena.alloc_from_iter(bounds_predicates),
2178                         };
2179                     } else {
2180                         // named opaque types
2181                         predicates.extend(bounds_predicates);
2182                         generics
2183                     }
2184                 }
2185
2186                 _ => NO_GENERICS,
2187             }
2188         }
2189
2190         Node::ForeignItem(item) => match item.kind {
2191             ForeignItemKind::Static(..) => NO_GENERICS,
2192             ForeignItemKind::Fn(_, _, ref generics) => generics,
2193             ForeignItemKind::Type => NO_GENERICS,
2194         },
2195
2196         _ => NO_GENERICS,
2197     };
2198
2199     let generics = tcx.generics_of(def_id);
2200     let parent_count = generics.parent_count as u32;
2201     let has_own_self = generics.has_self && parent_count == 0;
2202
2203     // Below we'll consider the bounds on the type parameters (including `Self`)
2204     // and the explicit where-clauses, but to get the full set of predicates
2205     // on a trait we need to add in the supertrait bounds and bounds found on
2206     // associated types.
2207     if let Some((_trait_ref, _)) = is_trait {
2208         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2209     }
2210
2211     // In default impls, we can assume that the self type implements
2212     // the trait. So in:
2213     //
2214     //     default impl Foo for Bar { .. }
2215     //
2216     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2217     // (see below). Recall that a default impl is not itself an impl, but rather a
2218     // set of defaults that can be incorporated into another impl.
2219     if let Some(trait_ref) = is_default_impl_trait {
2220         predicates.push((trait_ref.to_poly_trait_ref().to_predicate(), tcx.def_span(def_id)));
2221     }
2222
2223     // Collect the region predicates that were declared inline as
2224     // well. In the case of parameters declared on a fn or method, we
2225     // have to be careful to only iterate over early-bound regions.
2226     let mut index = parent_count + has_own_self as u32;
2227     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2228         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2229             def_id: tcx.hir().local_def_id(param.hir_id),
2230             index,
2231             name: param.name.ident().name,
2232         }));
2233         index += 1;
2234
2235         match param.kind {
2236             GenericParamKind::Lifetime { .. } => {
2237                 param.bounds.iter().for_each(|bound| match bound {
2238                     hir::GenericBound::Outlives(lt) => {
2239                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2240                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2241                         predicates.push((outlives.to_predicate(), lt.span));
2242                     }
2243                     _ => bug!(),
2244                 });
2245             }
2246             _ => bug!(),
2247         }
2248     }
2249
2250     // Collect the predicates that were written inline by the user on each
2251     // type parameter (e.g., `<T: Foo>`).
2252     for param in ast_generics.params {
2253         if let GenericParamKind::Type { .. } = param.kind {
2254             let name = param.name.ident().name;
2255             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2256             index += 1;
2257
2258             let sized = SizedByDefault::Yes;
2259             let bounds = AstConv::compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2260             predicates.extend(bounds.predicates(tcx, param_ty));
2261         }
2262     }
2263
2264     // Add in the bounds that appear in the where-clause.
2265     let where_clause = &ast_generics.where_clause;
2266     for predicate in where_clause.predicates {
2267         match predicate {
2268             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2269                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2270
2271                 // Keep the type around in a dummy predicate, in case of no bounds.
2272                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2273                 // is still checked for WF.
2274                 if bound_pred.bounds.is_empty() {
2275                     if let ty::Param(_) = ty.kind {
2276                         // This is a `where T:`, which can be in the HIR from the
2277                         // transformation that moves `?Sized` to `T`'s declaration.
2278                         // We can skip the predicate because type parameters are
2279                         // trivially WF, but also we *should*, to avoid exposing
2280                         // users who never wrote `where Type:,` themselves, to
2281                         // compiler/tooling bugs from not handling WF predicates.
2282                     } else {
2283                         let span = bound_pred.bounded_ty.span;
2284                         let predicate = ty::OutlivesPredicate(ty, tcx.mk_region(ty::ReEmpty));
2285                         predicates.push((
2286                             ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)),
2287                             span,
2288                         ));
2289                     }
2290                 }
2291
2292                 for bound in bound_pred.bounds.iter() {
2293                     match bound {
2294                         &hir::GenericBound::Trait(ref poly_trait_ref, _) => {
2295                             let mut bounds = Bounds::default();
2296                             let _ = AstConv::instantiate_poly_trait_ref(
2297                                 &icx,
2298                                 poly_trait_ref,
2299                                 ty,
2300                                 &mut bounds,
2301                             );
2302                             predicates.extend(bounds.predicates(tcx, ty));
2303                         }
2304
2305                         &hir::GenericBound::Outlives(ref lifetime) => {
2306                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2307                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2308                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2309                         }
2310                     }
2311                 }
2312             }
2313
2314             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2315                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2316                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2317                     let (r2, span) = match bound {
2318                         hir::GenericBound::Outlives(lt) => {
2319                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2320                         }
2321                         _ => bug!(),
2322                     };
2323                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2324
2325                     (ty::Predicate::RegionOutlives(pred), span)
2326                 }))
2327             }
2328
2329             &hir::WherePredicate::EqPredicate(..) => {
2330                 // FIXME(#20041)
2331             }
2332         }
2333     }
2334
2335     // Add predicates from associated type bounds.
2336     if let Some((self_trait_ref, trait_items)) = is_trait {
2337         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2338             associated_item_predicates(tcx, def_id, self_trait_ref, trait_item_ref)
2339         }))
2340     }
2341
2342     let mut predicates = predicates.predicates;
2343
2344     // Subtle: before we store the predicates into the tcx, we
2345     // sort them so that predicates like `T: Foo<Item=U>` come
2346     // before uses of `U`.  This avoids false ambiguity errors
2347     // in trait checking. See `setup_constraining_predicates`
2348     // for details.
2349     if let Node::Item(&Item { kind: ItemKind::Impl(..), .. }) = node {
2350         let self_ty = tcx.type_of(def_id);
2351         let trait_ref = tcx.impl_trait_ref(def_id);
2352         cgp::setup_constraining_predicates(
2353             tcx,
2354             &mut predicates,
2355             trait_ref,
2356             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2357         );
2358     }
2359
2360     let result = ty::GenericPredicates {
2361         parent: generics.parent,
2362         predicates: tcx.arena.alloc_from_iter(predicates),
2363     };
2364     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2365     result
2366 }
2367
2368 fn associated_item_predicates(
2369     tcx: TyCtxt<'tcx>,
2370     def_id: DefId,
2371     self_trait_ref: ty::TraitRef<'tcx>,
2372     trait_item_ref: &hir::TraitItemRef,
2373 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2374     let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2375     let item_def_id = tcx.hir().local_def_id(trait_item_ref.id.hir_id);
2376     let bounds = match trait_item.kind {
2377         hir::TraitItemKind::Type(ref bounds, _) => bounds,
2378         _ => return Vec::new(),
2379     };
2380
2381     let is_gat = !tcx.generics_of(item_def_id).params.is_empty();
2382
2383     let mut had_error = false;
2384
2385     let mut unimplemented_error = |arg_kind: &str| {
2386         if !had_error {
2387             tcx.sess
2388                 .struct_span_err(
2389                     trait_item.span,
2390                     &format!("{}-generic associated types are not yet implemented", arg_kind),
2391                 )
2392                 .note("for more information, see https://github.com/rust-lang/rust/issues/44265")
2393                 .emit();
2394             had_error = true;
2395         }
2396     };
2397
2398     let mk_bound_param = |param: &ty::GenericParamDef, _: &_| {
2399         match param.kind {
2400             ty::GenericParamDefKind::Lifetime => tcx
2401                 .mk_region(ty::RegionKind::ReLateBound(
2402                     ty::INNERMOST,
2403                     ty::BoundRegion::BrNamed(param.def_id, param.name),
2404                 ))
2405                 .into(),
2406             // FIXME(generic_associated_types): Use bound types and constants
2407             // once they are handled by the trait system.
2408             ty::GenericParamDefKind::Type { .. } => {
2409                 unimplemented_error("type");
2410                 tcx.types.err.into()
2411             }
2412             ty::GenericParamDefKind::Const => {
2413                 unimplemented_error("const");
2414                 tcx.consts.err.into()
2415             }
2416         }
2417     };
2418
2419     let bound_substs = if is_gat {
2420         // Given:
2421         //
2422         // trait X<'a, B, const C: usize> {
2423         //     type T<'d, E, const F: usize>: Default;
2424         // }
2425         //
2426         // We need to create predicates on the trait:
2427         //
2428         // for<'d, E, const F: usize>
2429         // <Self as X<'a, B, const C: usize>>::T<'d, E, const F: usize>: Sized + Default
2430         //
2431         // We substitute escaping bound parameters for the generic
2432         // arguments to the associated type which are then bound by
2433         // the `Binder` around the the predicate.
2434         //
2435         // FIXME(generic_associated_types): Currently only lifetimes are handled.
2436         self_trait_ref.substs.extend_to(tcx, item_def_id, mk_bound_param)
2437     } else {
2438         self_trait_ref.substs
2439     };
2440
2441     let assoc_ty = tcx.mk_projection(tcx.hir().local_def_id(trait_item.hir_id), bound_substs);
2442
2443     let bounds = AstConv::compute_bounds(
2444         &ItemCtxt::new(tcx, def_id),
2445         assoc_ty,
2446         bounds,
2447         SizedByDefault::Yes,
2448         trait_item.span,
2449     );
2450
2451     let predicates = bounds.predicates(tcx, assoc_ty);
2452
2453     if is_gat {
2454         // We use shifts to get the regions that we're substituting to
2455         // be bound by the binders in the `Predicate`s rather that
2456         // escaping.
2457         let shifted_in = ty::fold::shift_vars(tcx, &predicates, 1);
2458         let substituted = shifted_in.subst(tcx, bound_substs);
2459         ty::fold::shift_out_vars(tcx, &substituted, 1)
2460     } else {
2461         predicates
2462     }
2463 }
2464
2465 /// Converts a specific `GenericBound` from the AST into a set of
2466 /// predicates that apply to the self type. A vector is returned
2467 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2468 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2469 /// and `<T as Bar>::X == i32`).
2470 fn predicates_from_bound<'tcx>(
2471     astconv: &dyn AstConv<'tcx>,
2472     param_ty: Ty<'tcx>,
2473     bound: &'tcx hir::GenericBound<'tcx>,
2474 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2475     match *bound {
2476         hir::GenericBound::Trait(ref tr, hir::TraitBoundModifier::None) => {
2477             let mut bounds = Bounds::default();
2478             let _ = astconv.instantiate_poly_trait_ref(tr, param_ty, &mut bounds);
2479             bounds.predicates(astconv.tcx(), param_ty)
2480         }
2481         hir::GenericBound::Outlives(ref lifetime) => {
2482             let region = astconv.ast_region_to_region(lifetime, None);
2483             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2484             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2485         }
2486         hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => vec![],
2487     }
2488 }
2489
2490 fn compute_sig_of_foreign_fn_decl<'tcx>(
2491     tcx: TyCtxt<'tcx>,
2492     def_id: DefId,
2493     decl: &'tcx hir::FnDecl<'tcx>,
2494     abi: abi::Abi,
2495 ) -> ty::PolyFnSig<'tcx> {
2496     let unsafety = if abi == abi::Abi::RustIntrinsic {
2497         intrinsic_operation_unsafety(&tcx.item_name(def_id).as_str())
2498     } else {
2499         hir::Unsafety::Unsafe
2500     };
2501     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl, &[], None);
2502
2503     // Feature gate SIMD types in FFI, since I am not sure that the
2504     // ABIs are handled at all correctly. -huonw
2505     if abi != abi::Abi::RustIntrinsic
2506         && abi != abi::Abi::PlatformIntrinsic
2507         && !tcx.features().simd_ffi
2508     {
2509         let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
2510             if ty.is_simd() {
2511                 tcx.sess
2512                     .struct_span_err(
2513                         ast_ty.span,
2514                         &format!(
2515                             "use of SIMD type `{}` in FFI is highly experimental and \
2516                             may result in invalid code",
2517                             tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2518                         ),
2519                     )
2520                     .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2521                     .emit();
2522             }
2523         };
2524         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2525             check(&input, ty)
2526         }
2527         if let hir::FunctionRetTy::Return(ref ty) = decl.output {
2528             check(&ty, *fty.output().skip_binder())
2529         }
2530     }
2531
2532     fty
2533 }
2534
2535 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2536     match tcx.hir().get_if_local(def_id) {
2537         Some(Node::ForeignItem(..)) => true,
2538         Some(_) => false,
2539         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2540     }
2541 }
2542
2543 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2544     match tcx.hir().get_if_local(def_id) {
2545         Some(Node::Item(&hir::Item { kind: hir::ItemKind::Static(_, mutbl, _), .. }))
2546         | Some(Node::ForeignItem(&hir::ForeignItem {
2547             kind: hir::ForeignItemKind::Static(_, mutbl),
2548             ..
2549         })) => Some(mutbl),
2550         Some(_) => None,
2551         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2552     }
2553 }
2554
2555 fn from_target_feature(
2556     tcx: TyCtxt<'_>,
2557     id: DefId,
2558     attr: &ast::Attribute,
2559     whitelist: &FxHashMap<String, Option<Symbol>>,
2560     target_features: &mut Vec<Symbol>,
2561 ) {
2562     let list = match attr.meta_item_list() {
2563         Some(list) => list,
2564         None => return,
2565     };
2566     let bad_item = |span| {
2567         let msg = "malformed `target_feature` attribute input";
2568         let code = "enable = \"..\"".to_owned();
2569         tcx.sess
2570             .struct_span_err(span, &msg)
2571             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2572             .emit();
2573     };
2574     let rust_features = tcx.features();
2575     for item in list {
2576         // Only `enable = ...` is accepted in the meta-item list.
2577         if !item.check_name(sym::enable) {
2578             bad_item(item.span());
2579             continue;
2580         }
2581
2582         // Must be of the form `enable = "..."` (a string).
2583         let value = match item.value_str() {
2584             Some(value) => value,
2585             None => {
2586                 bad_item(item.span());
2587                 continue;
2588             }
2589         };
2590
2591         // We allow comma separation to enable multiple features.
2592         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2593             // Only allow whitelisted features per platform.
2594             let feature_gate = match whitelist.get(feature) {
2595                 Some(g) => g,
2596                 None => {
2597                     let msg =
2598                         format!("the feature named `{}` is not valid for this target", feature);
2599                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2600                     err.span_label(
2601                         item.span(),
2602                         format!("`{}` is not valid for this target", feature),
2603                     );
2604                     if feature.starts_with("+") {
2605                         let valid = whitelist.contains_key(&feature[1..]);
2606                         if valid {
2607                             err.help("consider removing the leading `+` in the feature name");
2608                         }
2609                     }
2610                     err.emit();
2611                     return None;
2612                 }
2613             };
2614
2615             // Only allow features whose feature gates have been enabled.
2616             let allowed = match feature_gate.as_ref().map(|s| *s) {
2617                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2618                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2619                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2620                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2621                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2622                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2623                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2624                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2625                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2626                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2627                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2628                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2629                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2630                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2631                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2632                 Some(name) => bug!("unknown target feature gate {}", name),
2633                 None => true,
2634             };
2635             if !allowed && id.is_local() {
2636                 feature_gate::feature_err(
2637                     &tcx.sess.parse_sess,
2638                     feature_gate.unwrap(),
2639                     item.span(),
2640                     &format!("the target feature `{}` is currently unstable", feature),
2641                 )
2642                 .emit();
2643             }
2644             Some(Symbol::intern(feature))
2645         }));
2646     }
2647 }
2648
2649 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2650     use rustc::mir::mono::Linkage::*;
2651
2652     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2653     // applicable to variable declarations and may not really make sense for
2654     // Rust code in the first place but whitelist them anyway and trust that
2655     // the user knows what s/he's doing. Who knows, unanticipated use cases
2656     // may pop up in the future.
2657     //
2658     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2659     // and don't have to be, LLVM treats them as no-ops.
2660     match name {
2661         "appending" => Appending,
2662         "available_externally" => AvailableExternally,
2663         "common" => Common,
2664         "extern_weak" => ExternalWeak,
2665         "external" => External,
2666         "internal" => Internal,
2667         "linkonce" => LinkOnceAny,
2668         "linkonce_odr" => LinkOnceODR,
2669         "private" => Private,
2670         "weak" => WeakAny,
2671         "weak_odr" => WeakODR,
2672         _ => {
2673             let span = tcx.hir().span_if_local(def_id);
2674             if let Some(span) = span {
2675                 tcx.sess.span_fatal(span, "invalid linkage specified")
2676             } else {
2677                 tcx.sess.fatal(&format!("invalid linkage specified: {}", name))
2678             }
2679         }
2680     }
2681 }
2682
2683 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2684     let attrs = tcx.get_attrs(id);
2685
2686     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2687
2688     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2689
2690     let mut inline_span = None;
2691     let mut link_ordinal_span = None;
2692     for attr in attrs.iter() {
2693         if attr.check_name(sym::cold) {
2694             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2695         } else if attr.check_name(sym::rustc_allocator) {
2696             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2697         } else if attr.check_name(sym::unwind) {
2698             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2699         } else if attr.check_name(sym::ffi_returns_twice) {
2700             if tcx.is_foreign_item(id) {
2701                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2702             } else {
2703                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2704                 struct_span_err!(
2705                     tcx.sess,
2706                     attr.span,
2707                     E0724,
2708                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2709                 )
2710                 .emit();
2711             }
2712         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2713             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2714         } else if attr.check_name(sym::naked) {
2715             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2716         } else if attr.check_name(sym::no_mangle) {
2717             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2718         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2719             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2720         } else if attr.check_name(sym::no_debug) {
2721             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2722         } else if attr.check_name(sym::used) {
2723             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2724         } else if attr.check_name(sym::thread_local) {
2725             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2726         } else if attr.check_name(sym::track_caller) {
2727             if tcx.fn_sig(id).abi() != abi::Abi::Rust {
2728                 struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
2729                     .emit();
2730             }
2731             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2732         } else if attr.check_name(sym::export_name) {
2733             if let Some(s) = attr.value_str() {
2734                 if s.as_str().contains("\0") {
2735                     // `#[export_name = ...]` will be converted to a null-terminated string,
2736                     // so it may not contain any null characters.
2737                     struct_span_err!(
2738                         tcx.sess,
2739                         attr.span,
2740                         E0648,
2741                         "`export_name` may not contain null characters"
2742                     )
2743                     .emit();
2744                 }
2745                 codegen_fn_attrs.export_name = Some(s);
2746             }
2747         } else if attr.check_name(sym::target_feature) {
2748             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2749                 let msg = "`#[target_feature(..)]` can only be applied to `unsafe` functions";
2750                 tcx.sess
2751                     .struct_span_err(attr.span, msg)
2752                     .span_label(attr.span, "can only be applied to `unsafe` functions")
2753                     .span_label(tcx.def_span(id), "not an `unsafe` function")
2754                     .emit();
2755             }
2756             from_target_feature(tcx, id, attr, &whitelist, &mut codegen_fn_attrs.target_features);
2757         } else if attr.check_name(sym::linkage) {
2758             if let Some(val) = attr.value_str() {
2759                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2760             }
2761         } else if attr.check_name(sym::link_section) {
2762             if let Some(val) = attr.value_str() {
2763                 if val.as_str().bytes().any(|b| b == 0) {
2764                     let msg = format!(
2765                         "illegal null byte in link_section \
2766                          value: `{}`",
2767                         &val
2768                     );
2769                     tcx.sess.span_err(attr.span, &msg);
2770                 } else {
2771                     codegen_fn_attrs.link_section = Some(val);
2772                 }
2773             }
2774         } else if attr.check_name(sym::link_name) {
2775             codegen_fn_attrs.link_name = attr.value_str();
2776         } else if attr.check_name(sym::link_ordinal) {
2777             link_ordinal_span = Some(attr.span);
2778             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2779                 codegen_fn_attrs.link_ordinal = ordinal;
2780             }
2781         }
2782     }
2783
2784     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2785         if !attr.has_name(sym::inline) {
2786             return ia;
2787         }
2788         match attr.meta().map(|i| i.kind) {
2789             Some(MetaItemKind::Word) => {
2790                 mark_used(attr);
2791                 InlineAttr::Hint
2792             }
2793             Some(MetaItemKind::List(ref items)) => {
2794                 mark_used(attr);
2795                 inline_span = Some(attr.span);
2796                 if items.len() != 1 {
2797                     struct_span_err!(
2798                         tcx.sess.diagnostic(),
2799                         attr.span,
2800                         E0534,
2801                         "expected one argument"
2802                     )
2803                     .emit();
2804                     InlineAttr::None
2805                 } else if list_contains_name(&items[..], sym::always) {
2806                     InlineAttr::Always
2807                 } else if list_contains_name(&items[..], sym::never) {
2808                     InlineAttr::Never
2809                 } else {
2810                     struct_span_err!(
2811                         tcx.sess.diagnostic(),
2812                         items[0].span(),
2813                         E0535,
2814                         "invalid argument"
2815                     )
2816                     .emit();
2817
2818                     InlineAttr::None
2819                 }
2820             }
2821             Some(MetaItemKind::NameValue(_)) => ia,
2822             None => ia,
2823         }
2824     });
2825
2826     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2827         if !attr.has_name(sym::optimize) {
2828             return ia;
2829         }
2830         let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
2831         match attr.meta().map(|i| i.kind) {
2832             Some(MetaItemKind::Word) => {
2833                 err(attr.span, "expected one argument");
2834                 ia
2835             }
2836             Some(MetaItemKind::List(ref items)) => {
2837                 mark_used(attr);
2838                 inline_span = Some(attr.span);
2839                 if items.len() != 1 {
2840                     err(attr.span, "expected one argument");
2841                     OptimizeAttr::None
2842                 } else if list_contains_name(&items[..], sym::size) {
2843                     OptimizeAttr::Size
2844                 } else if list_contains_name(&items[..], sym::speed) {
2845                     OptimizeAttr::Speed
2846                 } else {
2847                     err(items[0].span(), "invalid argument");
2848                     OptimizeAttr::None
2849                 }
2850             }
2851             Some(MetaItemKind::NameValue(_)) => ia,
2852             None => ia,
2853         }
2854     });
2855
2856     // If a function uses #[target_feature] it can't be inlined into general
2857     // purpose functions as they wouldn't have the right target features
2858     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2859     // respected.
2860
2861     if codegen_fn_attrs.target_features.len() > 0 {
2862         if codegen_fn_attrs.inline == InlineAttr::Always {
2863             if let Some(span) = inline_span {
2864                 tcx.sess.span_err(
2865                     span,
2866                     "cannot use `#[inline(always)]` with \
2867                      `#[target_feature]`",
2868                 );
2869             }
2870         }
2871     }
2872
2873     // Weak lang items have the same semantics as "std internal" symbols in the
2874     // sense that they're preserved through all our LTO passes and only
2875     // strippable by the linker.
2876     //
2877     // Additionally weak lang items have predetermined symbol names.
2878     if tcx.is_weak_lang_item(id) {
2879         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2880     }
2881     if let Some(name) = weak_lang_items::link_name(&attrs) {
2882         codegen_fn_attrs.export_name = Some(name);
2883         codegen_fn_attrs.link_name = Some(name);
2884     }
2885     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
2886
2887     // Internal symbols to the standard library all have no_mangle semantics in
2888     // that they have defined symbol names present in the function name. This
2889     // also applies to weak symbols where they all have known symbol names.
2890     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2891         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2892     }
2893
2894     codegen_fn_attrs
2895 }
2896
2897 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<usize> {
2898     use syntax::ast::{Lit, LitIntType, LitKind};
2899     let meta_item_list = attr.meta_item_list();
2900     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
2901     let sole_meta_list = match meta_item_list {
2902         Some([item]) => item.literal(),
2903         _ => None,
2904     };
2905     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
2906         if *ordinal <= std::usize::MAX as u128 {
2907             Some(*ordinal as usize)
2908         } else {
2909             let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
2910             tcx.sess
2911                 .struct_span_err(attr.span, &msg)
2912                 .note("the value may not exceed `std::usize::MAX`")
2913                 .emit();
2914             None
2915         }
2916     } else {
2917         tcx.sess
2918             .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
2919             .note("an unsuffixed integer value, e.g., `1`, is expected")
2920             .emit();
2921         None
2922     }
2923 }
2924
2925 fn check_link_name_xor_ordinal(
2926     tcx: TyCtxt<'_>,
2927     codegen_fn_attrs: &CodegenFnAttrs,
2928     inline_span: Option<Span>,
2929 ) {
2930     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
2931         return;
2932     }
2933     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
2934     if let Some(span) = inline_span {
2935         tcx.sess.span_err(span, msg);
2936     } else {
2937         tcx.sess.err(msg);
2938     }
2939 }