]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
Rollup merge of #61420 - felixrabe:patch-2, r=dtolnay
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *interprocedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds};
18 use crate::constrained_generic_params as cgp;
19 use crate::check::intrinsic::intrisic_operation_unsafety;
20 use crate::lint;
21 use crate::middle::lang_items::SizedTraitLangItem;
22 use crate::middle::resolve_lifetime as rl;
23 use crate::middle::weak_lang_items;
24 use rustc::mir::mono::Linkage;
25 use rustc::ty::query::Providers;
26 use rustc::ty::subst::{Subst, InternalSubsts};
27 use rustc::ty::util::Discr;
28 use rustc::ty::util::IntTypeExt;
29 use rustc::ty::subst::UnpackedKind;
30 use rustc::ty::{self, AdtKind, DefIdTree, ToPolyTraitRef, Ty, TyCtxt};
31 use rustc::ty::{ReprOptions, ToPredicate};
32 use rustc::util::captures::Captures;
33 use rustc::util::nodemap::FxHashMap;
34 use rustc_target::spec::abi;
35
36 use syntax::ast;
37 use syntax::ast::{Ident, MetaItemKind};
38 use syntax::attr::{InlineAttr, OptimizeAttr, list_contains_name, mark_used};
39 use syntax::source_map::Spanned;
40 use syntax::feature_gate;
41 use syntax::symbol::{InternedString, kw, Symbol, sym};
42 use syntax_pos::{Span, DUMMY_SP};
43
44 use rustc::hir::def::{CtorKind, Res, DefKind};
45 use rustc::hir::Node;
46 use rustc::hir::def_id::{DefId, LOCAL_CRATE};
47 use rustc::hir::intravisit::{self, NestedVisitorMap, Visitor};
48 use rustc::hir::GenericParamKind;
49 use rustc::hir::{self, CodegenFnAttrFlags, CodegenFnAttrs, Unsafety};
50
51 use errors::Applicability;
52
53 use std::iter;
54
55 struct OnlySelfBounds(bool);
56
57 ///////////////////////////////////////////////////////////////////////////
58 // Main entry point
59
60 fn collect_mod_item_types<'tcx>(tcx: TyCtxt<'_, 'tcx, 'tcx>, module_def_id: DefId) {
61     tcx.hir().visit_item_likes_in_module(
62         module_def_id,
63         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor()
64     );
65 }
66
67 pub fn provide(providers: &mut Providers<'_>) {
68     *providers = Providers {
69         type_of,
70         generics_of,
71         predicates_of,
72         predicates_defined_on,
73         explicit_predicates_of,
74         super_predicates_of,
75         type_param_predicates,
76         trait_def,
77         adt_def,
78         fn_sig,
79         impl_trait_ref,
80         impl_polarity,
81         is_foreign_item,
82         static_mutability,
83         codegen_fn_attrs,
84         collect_mod_item_types,
85         ..*providers
86     };
87 }
88
89 ///////////////////////////////////////////////////////////////////////////
90
91 /// Context specific to some particular item. This is what implements
92 /// `AstConv`. It has information about the predicates that are defined
93 /// on the trait. Unfortunately, this predicate information is
94 /// available in various different forms at various points in the
95 /// process. So we can't just store a pointer to e.g., the AST or the
96 /// parsed ty form, we have to be more flexible. To this end, the
97 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
98 /// `get_type_parameter_bounds` requests, drawing the information from
99 /// the AST (`hir::Generics`), recursively.
100 pub struct ItemCtxt<'a, 'tcx: 'a> {
101     tcx: TyCtxt<'a, 'tcx, 'tcx>,
102     item_def_id: DefId,
103 }
104
105 ///////////////////////////////////////////////////////////////////////////
106
107 struct CollectItemTypesVisitor<'a, 'tcx: 'a> {
108     tcx: TyCtxt<'a, 'tcx, 'tcx>,
109 }
110
111 impl<'a, 'tcx> Visitor<'tcx> for CollectItemTypesVisitor<'a, 'tcx> {
112     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
113         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
114     }
115
116     fn visit_item(&mut self, item: &'tcx hir::Item) {
117         convert_item(self.tcx, item.hir_id);
118         intravisit::walk_item(self, item);
119     }
120
121     fn visit_generics(&mut self, generics: &'tcx hir::Generics) {
122         for param in &generics.params {
123             match param.kind {
124                 hir::GenericParamKind::Lifetime { .. } => {}
125                 hir::GenericParamKind::Type {
126                     default: Some(_), ..
127                 } => {
128                     let def_id = self.tcx.hir().local_def_id_from_hir_id(param.hir_id);
129                     self.tcx.type_of(def_id);
130                 }
131                 hir::GenericParamKind::Type { .. } => {}
132                 hir::GenericParamKind::Const { .. } => {
133                     let def_id = self.tcx.hir().local_def_id_from_hir_id(param.hir_id);
134                     self.tcx.type_of(def_id);
135                 }
136             }
137         }
138         intravisit::walk_generics(self, generics);
139     }
140
141     fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
142         if let hir::ExprKind::Closure(..) = expr.node {
143             let def_id = self.tcx.hir().local_def_id_from_hir_id(expr.hir_id);
144             self.tcx.generics_of(def_id);
145             self.tcx.type_of(def_id);
146         }
147         intravisit::walk_expr(self, expr);
148     }
149
150     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem) {
151         convert_trait_item(self.tcx, trait_item.hir_id);
152         intravisit::walk_trait_item(self, trait_item);
153     }
154
155     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem) {
156         convert_impl_item(self.tcx, impl_item.hir_id);
157         intravisit::walk_impl_item(self, impl_item);
158     }
159 }
160
161 ///////////////////////////////////////////////////////////////////////////
162 // Utility types and common code for the above passes.
163
164 impl<'a, 'tcx> ItemCtxt<'a, 'tcx> {
165     pub fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>, item_def_id: DefId) -> ItemCtxt<'a, 'tcx> {
166         ItemCtxt { tcx, item_def_id }
167     }
168 }
169
170 impl<'a, 'tcx> ItemCtxt<'a, 'tcx> {
171     pub fn to_ty(&self, ast_ty: &hir::Ty) -> Ty<'tcx> {
172         AstConv::ast_ty_to_ty(self, ast_ty)
173     }
174 }
175
176 impl<'a, 'tcx> AstConv<'tcx, 'tcx> for ItemCtxt<'a, 'tcx> {
177     fn tcx<'b>(&'b self) -> TyCtxt<'b, 'tcx, 'tcx> {
178         self.tcx
179     }
180
181     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId)
182                                  -> &'tcx ty::GenericPredicates<'tcx> {
183         self.tcx
184             .at(span)
185             .type_param_predicates((self.item_def_id, def_id))
186     }
187
188     fn re_infer(
189         &self,
190         _span: Span,
191         _def: Option<&ty::GenericParamDef>,
192     ) -> Option<ty::Region<'tcx>> {
193         None
194     }
195
196     fn ty_infer(&self, span: Span) -> Ty<'tcx> {
197         struct_span_err!(
198             self.tcx().sess,
199             span,
200             E0121,
201             "the type placeholder `_` is not allowed within types on item signatures"
202         ).span_label(span, "not allowed in type signatures")
203          .emit();
204
205         self.tcx().types.err
206     }
207
208     fn projected_ty_from_poly_trait_ref(
209         &self,
210         span: Span,
211         item_def_id: DefId,
212         poly_trait_ref: ty::PolyTraitRef<'tcx>,
213     ) -> Ty<'tcx> {
214         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
215             self.tcx().mk_projection(item_def_id, trait_ref.substs)
216         } else {
217             // no late-bound regions, we can just ignore the binder
218             span_err!(
219                 self.tcx().sess,
220                 span,
221                 E0212,
222                 "cannot extract an associated type from a higher-ranked trait bound \
223                  in this context"
224             );
225             self.tcx().types.err
226         }
227     }
228
229     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
230         // types in item signatures are not normalized, to avoid undue
231         // dependencies.
232         ty
233     }
234
235     fn set_tainted_by_errors(&self) {
236         // no obvious place to track this, just let it go
237     }
238
239     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
240         // no place to record types from signatures?
241     }
242 }
243
244 fn type_param_predicates<'a, 'tcx>(
245     tcx: TyCtxt<'a, 'tcx, 'tcx>,
246     (item_def_id, def_id): (DefId, DefId),
247 ) -> &'tcx ty::GenericPredicates<'tcx> {
248     use rustc::hir::*;
249
250     // In the AST, bounds can derive from two places. Either
251     // written inline like `<T : Foo>` or in a where clause like
252     // `where T : Foo`.
253
254     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
255     let param_owner = tcx.hir().ty_param_owner(param_id);
256     let param_owner_def_id = tcx.hir().local_def_id_from_hir_id(param_owner);
257     let generics = tcx.generics_of(param_owner_def_id);
258     let index = generics.param_def_id_to_index[&def_id];
259     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id).as_interned_str());
260
261     // Don't look for bounds where the type parameter isn't in scope.
262     let parent = if item_def_id == param_owner_def_id {
263         None
264     } else {
265         tcx.generics_of(item_def_id).parent
266     };
267
268     let result = parent.map_or(&tcx.common.empty_predicates, |parent| {
269         let icx = ItemCtxt::new(tcx, parent);
270         icx.get_type_parameter_bounds(DUMMY_SP, def_id)
271     });
272     let mut extend = None;
273
274     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
275     let ast_generics = match tcx.hir().get_by_hir_id(item_hir_id) {
276         Node::TraitItem(item) => &item.generics,
277
278         Node::ImplItem(item) => &item.generics,
279
280         Node::Item(item) => {
281             match item.node {
282                 ItemKind::Fn(.., ref generics, _)
283                 | ItemKind::Impl(_, _, _, ref generics, ..)
284                 | ItemKind::Ty(_, ref generics)
285                 | ItemKind::Existential(ExistTy {
286                     ref generics,
287                     impl_trait_fn: None,
288                     ..
289                 })
290                 | ItemKind::Enum(_, ref generics)
291                 | ItemKind::Struct(_, ref generics)
292                 | ItemKind::Union(_, ref generics) => generics,
293                 ItemKind::Trait(_, _, ref generics, ..) => {
294                     // Implied `Self: Trait` and supertrait bounds.
295                     if param_id == item_hir_id {
296                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
297                         extend = Some((identity_trait_ref.to_predicate(), item.span));
298                     }
299                     generics
300                 }
301                 _ => return result,
302             }
303         }
304
305         Node::ForeignItem(item) => match item.node {
306             ForeignItemKind::Fn(_, _, ref generics) => generics,
307             _ => return result,
308         },
309
310         _ => return result,
311     };
312
313     let icx = ItemCtxt::new(tcx, item_def_id);
314     let mut result = (*result).clone();
315     result.predicates.extend(extend.into_iter());
316     result.predicates
317           .extend(icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty,
318                   OnlySelfBounds(true)));
319     tcx.arena.alloc(result)
320 }
321
322 impl<'a, 'tcx> ItemCtxt<'a, 'tcx> {
323     /// Finds bounds from `hir::Generics`. This requires scanning through the
324     /// AST. We do this to avoid having to convert *all* the bounds, which
325     /// would create artificial cycles. Instead we can only convert the
326     /// bounds for a type parameter `X` if `X::Foo` is used.
327     fn type_parameter_bounds_in_generics(
328         &self,
329         ast_generics: &hir::Generics,
330         param_id: hir::HirId,
331         ty: Ty<'tcx>,
332         only_self_bounds: OnlySelfBounds,
333     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
334         let from_ty_params = ast_generics
335             .params
336             .iter()
337             .filter_map(|param| match param.kind {
338                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
339                 _ => None,
340             })
341             .flat_map(|bounds| bounds.iter())
342             .flat_map(|b| predicates_from_bound(self, ty, b));
343
344         let from_where_clauses = ast_generics
345             .where_clause
346             .predicates
347             .iter()
348             .filter_map(|wp| match *wp {
349                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
350                 _ => None,
351             })
352             .flat_map(|bp| {
353                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
354                     Some(ty)
355                 } else if !only_self_bounds.0 {
356                     Some(self.to_ty(&bp.bounded_ty))
357                 } else {
358                     None
359                 };
360                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
361             })
362             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b));
363
364         from_ty_params.chain(from_where_clauses).collect()
365     }
366 }
367
368 /// Tests whether this is the AST for a reference to the type
369 /// parameter with ID `param_id`. We use this so as to avoid running
370 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
371 /// conversion of the type to avoid inducing unnecessary cycles.
372 fn is_param<'a, 'tcx>(
373     tcx: TyCtxt<'a, 'tcx, 'tcx>,
374     ast_ty: &hir::Ty,
375     param_id: hir::HirId,
376 ) -> bool {
377     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.node {
378         match path.res {
379             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
380                 def_id == tcx.hir().local_def_id_from_hir_id(param_id)
381             }
382             _ => false,
383         }
384     } else {
385         false
386     }
387 }
388
389 fn convert_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, item_id: hir::HirId) {
390     let it = tcx.hir().expect_item_by_hir_id(item_id);
391     debug!("convert: item {} with id {}", it.ident, it.hir_id);
392     let def_id = tcx.hir().local_def_id_from_hir_id(item_id);
393     match it.node {
394         // These don't define types.
395         hir::ItemKind::ExternCrate(_)
396         | hir::ItemKind::Use(..)
397         | hir::ItemKind::Mod(_)
398         | hir::ItemKind::GlobalAsm(_) => {}
399         hir::ItemKind::ForeignMod(ref foreign_mod) => {
400             for item in &foreign_mod.items {
401                 let def_id = tcx.hir().local_def_id_from_hir_id(item.hir_id);
402                 tcx.generics_of(def_id);
403                 tcx.type_of(def_id);
404                 tcx.predicates_of(def_id);
405                 if let hir::ForeignItemKind::Fn(..) = item.node {
406                     tcx.fn_sig(def_id);
407                 }
408             }
409         }
410         hir::ItemKind::Enum(ref enum_definition, _) => {
411             tcx.generics_of(def_id);
412             tcx.type_of(def_id);
413             tcx.predicates_of(def_id);
414             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
415         }
416         hir::ItemKind::Impl(..) => {
417             tcx.generics_of(def_id);
418             tcx.type_of(def_id);
419             tcx.impl_trait_ref(def_id);
420             tcx.predicates_of(def_id);
421         }
422         hir::ItemKind::Trait(..) => {
423             tcx.generics_of(def_id);
424             tcx.trait_def(def_id);
425             tcx.at(it.span).super_predicates_of(def_id);
426             tcx.predicates_of(def_id);
427         }
428         hir::ItemKind::TraitAlias(..) => {
429             tcx.generics_of(def_id);
430             tcx.at(it.span).super_predicates_of(def_id);
431             tcx.predicates_of(def_id);
432         }
433         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
434             tcx.generics_of(def_id);
435             tcx.type_of(def_id);
436             tcx.predicates_of(def_id);
437
438             for f in struct_def.fields() {
439                 let def_id = tcx.hir().local_def_id_from_hir_id(f.hir_id);
440                 tcx.generics_of(def_id);
441                 tcx.type_of(def_id);
442                 tcx.predicates_of(def_id);
443             }
444
445             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
446                 convert_variant_ctor(tcx, ctor_hir_id);
447             }
448         }
449
450         // Desugared from `impl Trait` -> visited by the function's return type
451         hir::ItemKind::Existential(hir::ExistTy {
452             impl_trait_fn: Some(_),
453             ..
454         }) => {}
455
456         hir::ItemKind::Existential(..)
457         | hir::ItemKind::Ty(..)
458         | hir::ItemKind::Static(..)
459         | hir::ItemKind::Const(..)
460         | hir::ItemKind::Fn(..) => {
461             tcx.generics_of(def_id);
462             tcx.type_of(def_id);
463             tcx.predicates_of(def_id);
464             if let hir::ItemKind::Fn(..) = it.node {
465                 tcx.fn_sig(def_id);
466             }
467         }
468     }
469 }
470
471 fn convert_trait_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, trait_item_id: hir::HirId) {
472     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
473     let def_id = tcx.hir().local_def_id_from_hir_id(trait_item.hir_id);
474     tcx.generics_of(def_id);
475
476     match trait_item.node {
477         hir::TraitItemKind::Const(..)
478         | hir::TraitItemKind::Type(_, Some(_))
479         | hir::TraitItemKind::Method(..) => {
480             tcx.type_of(def_id);
481             if let hir::TraitItemKind::Method(..) = trait_item.node {
482                 tcx.fn_sig(def_id);
483             }
484         }
485
486         hir::TraitItemKind::Type(_, None) => {}
487     };
488
489     tcx.predicates_of(def_id);
490 }
491
492 fn convert_impl_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, impl_item_id: hir::HirId) {
493     let def_id = tcx.hir().local_def_id_from_hir_id(impl_item_id);
494     tcx.generics_of(def_id);
495     tcx.type_of(def_id);
496     tcx.predicates_of(def_id);
497     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).node {
498         tcx.fn_sig(def_id);
499     }
500 }
501
502 fn convert_variant_ctor<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ctor_id: hir::HirId) {
503     let def_id = tcx.hir().local_def_id_from_hir_id(ctor_id);
504     tcx.generics_of(def_id);
505     tcx.type_of(def_id);
506     tcx.predicates_of(def_id);
507 }
508
509 fn convert_enum_variant_types<'a, 'tcx>(
510     tcx: TyCtxt<'a, 'tcx, 'tcx>,
511     def_id: DefId,
512     variants: &[hir::Variant],
513 ) {
514     let def = tcx.adt_def(def_id);
515     let repr_type = def.repr.discr_type();
516     let initial = repr_type.initial_discriminant(tcx);
517     let mut prev_discr = None::<Discr<'tcx>>;
518
519     // fill the discriminant values and field types
520     for variant in variants {
521         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
522         prev_discr = Some(
523             if let Some(ref e) = variant.node.disr_expr {
524                 let expr_did = tcx.hir().local_def_id_from_hir_id(e.hir_id);
525                 def.eval_explicit_discr(tcx, expr_did)
526             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
527                 Some(discr)
528             } else {
529                 struct_span_err!(
530                     tcx.sess,
531                     variant.span,
532                     E0370,
533                     "enum discriminant overflowed"
534                 ).span_label(
535                     variant.span,
536                     format!("overflowed on value after {}", prev_discr.unwrap()),
537                 ).note(&format!(
538                     "explicitly set `{} = {}` if that is desired outcome",
539                     variant.node.ident, wrapped_discr
540                 ))
541                 .emit();
542                 None
543             }.unwrap_or(wrapped_discr),
544         );
545
546         for f in variant.node.data.fields() {
547             let def_id = tcx.hir().local_def_id_from_hir_id(f.hir_id);
548             tcx.generics_of(def_id);
549             tcx.type_of(def_id);
550             tcx.predicates_of(def_id);
551         }
552
553         // Convert the ctor, if any. This also registers the variant as
554         // an item.
555         if let Some(ctor_hir_id) = variant.node.data.ctor_hir_id() {
556             convert_variant_ctor(tcx, ctor_hir_id);
557         }
558     }
559 }
560
561 fn convert_variant<'a, 'tcx>(
562     tcx: TyCtxt<'a, 'tcx, 'tcx>,
563     variant_did: Option<DefId>,
564     ctor_did: Option<DefId>,
565     ident: Ident,
566     discr: ty::VariantDiscr,
567     def: &hir::VariantData,
568     adt_kind: ty::AdtKind,
569     parent_did: DefId
570 ) -> ty::VariantDef {
571     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
572     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
573     let fields = def
574         .fields()
575         .iter()
576         .map(|f| {
577             let fid = tcx.hir().local_def_id_from_hir_id(f.hir_id);
578             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
579             if let Some(prev_span) = dup_span {
580                 struct_span_err!(
581                     tcx.sess,
582                     f.span,
583                     E0124,
584                     "field `{}` is already declared",
585                     f.ident
586                 ).span_label(f.span, "field already declared")
587                  .span_label(prev_span, format!("`{}` first declared here", f.ident))
588                  .emit();
589             } else {
590                 seen_fields.insert(f.ident.modern(), f.span);
591             }
592
593             ty::FieldDef {
594                 did: fid,
595                 ident: f.ident,
596                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
597             }
598         })
599         .collect();
600     let recovered = match def {
601         hir::VariantData::Struct(_, r) => *r,
602         _ => false,
603     };
604     ty::VariantDef::new(
605         tcx,
606         ident,
607         variant_did,
608         ctor_did,
609         discr,
610         fields,
611         CtorKind::from_hir(def),
612         adt_kind,
613         parent_did,
614         recovered,
615     )
616 }
617
618 fn adt_def<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::AdtDef {
619     use rustc::hir::*;
620
621     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
622     let item = match tcx.hir().get_by_hir_id(hir_id) {
623         Node::Item(item) => item,
624         _ => bug!(),
625     };
626
627     let repr = ReprOptions::new(tcx, def_id);
628     let (kind, variants) = match item.node {
629         ItemKind::Enum(ref def, _) => {
630             let mut distance_from_explicit = 0;
631             let variants = def.variants
632                 .iter()
633                 .map(|v| {
634                     let variant_did = Some(tcx.hir().local_def_id_from_hir_id(v.node.id));
635                     let ctor_did = v.node.data.ctor_hir_id()
636                         .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
637
638                     let discr = if let Some(ref e) = v.node.disr_expr {
639                         distance_from_explicit = 0;
640                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id_from_hir_id(e.hir_id))
641                     } else {
642                         ty::VariantDiscr::Relative(distance_from_explicit)
643                     };
644                     distance_from_explicit += 1;
645
646                     convert_variant(tcx, variant_did, ctor_did, v.node.ident, discr,
647                                     &v.node.data, AdtKind::Enum, def_id)
648                 })
649                 .collect();
650
651             (AdtKind::Enum, variants)
652         }
653         ItemKind::Struct(ref def, _) => {
654             let variant_did = None;
655             let ctor_did = def.ctor_hir_id()
656                 .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
657
658             let variants = std::iter::once(convert_variant(
659                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
660                 AdtKind::Struct, def_id,
661             )).collect();
662
663             (AdtKind::Struct, variants)
664         }
665         ItemKind::Union(ref def, _) => {
666             let variant_did = None;
667             let ctor_did = def.ctor_hir_id()
668                 .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
669
670             let variants = std::iter::once(convert_variant(
671                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
672                 AdtKind::Union, def_id,
673             )).collect();
674
675             (AdtKind::Union, variants)
676         },
677         _ => bug!(),
678     };
679     tcx.alloc_adt_def(def_id, kind, variants, repr)
680 }
681
682 /// Ensures that the super-predicates of the trait with a `DefId`
683 /// of `trait_def_id` are converted and stored. This also ensures that
684 /// the transitive super-predicates are converted.
685 fn super_predicates_of<'a, 'tcx>(
686     tcx: TyCtxt<'a, 'tcx, 'tcx>,
687     trait_def_id: DefId,
688 ) -> &'tcx ty::GenericPredicates<'tcx> {
689     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
690     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
691
692     let item = match tcx.hir().get_by_hir_id(trait_hir_id) {
693         Node::Item(item) => item,
694         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
695     };
696
697     let (generics, bounds) = match item.node {
698         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
699         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
700         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
701     };
702
703     let icx = ItemCtxt::new(tcx, trait_def_id);
704
705     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
706     let self_param_ty = tcx.mk_self_type();
707     let superbounds1 = compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No, item.span);
708
709     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
710
711     // Convert any explicit superbounds in the where-clause,
712     // e.g., `trait Foo where Self: Bar`.
713     // In the case of trait aliases, however, we include all bounds in the where-clause,
714     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
715     // as one of its "superpredicates".
716     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
717     let superbounds2 = icx.type_parameter_bounds_in_generics(
718         generics, item.hir_id, self_param_ty, OnlySelfBounds(!is_trait_alias));
719
720     // Combine the two lists to form the complete set of superbounds:
721     let superbounds: Vec<_> = superbounds1.into_iter().chain(superbounds2).collect();
722
723     // Now require that immediate supertraits are converted,
724     // which will, in turn, reach indirect supertraits.
725     for &(pred, span) in &superbounds {
726         debug!("superbound: {:?}", pred);
727         if let ty::Predicate::Trait(bound) = pred {
728             tcx.at(span).super_predicates_of(bound.def_id());
729         }
730     }
731
732     tcx.arena.alloc(ty::GenericPredicates {
733         parent: None,
734         predicates: superbounds,
735     })
736 }
737
738 fn trait_def<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::TraitDef {
739     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
740     let item = tcx.hir().expect_item_by_hir_id(hir_id);
741
742     let (is_auto, unsafety) = match item.node {
743         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
744         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
745         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
746     };
747
748     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
749     if paren_sugar && !tcx.features().unboxed_closures {
750         let mut err = tcx.sess.struct_span_err(
751             item.span,
752             "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
753              which traits can use parenthetical notation",
754         );
755         help!(
756             &mut err,
757             "add `#![feature(unboxed_closures)]` to \
758              the crate attributes to use it"
759         );
760         err.emit();
761     }
762
763     let is_marker = tcx.has_attr(def_id, sym::marker);
764     let def_path_hash = tcx.def_path_hash(def_id);
765     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
766     tcx.arena.alloc(def)
767 }
768
769 fn has_late_bound_regions<'a, 'tcx>(
770     tcx: TyCtxt<'a, 'tcx, 'tcx>,
771     node: Node<'tcx>,
772 ) -> Option<Span> {
773     struct LateBoundRegionsDetector<'a, 'tcx: 'a> {
774         tcx: TyCtxt<'a, 'tcx, 'tcx>,
775         outer_index: ty::DebruijnIndex,
776         has_late_bound_regions: Option<Span>,
777     }
778
779     impl<'a, 'tcx> Visitor<'tcx> for LateBoundRegionsDetector<'a, 'tcx> {
780         fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
781             NestedVisitorMap::None
782         }
783
784         fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
785             if self.has_late_bound_regions.is_some() {
786                 return;
787             }
788             match ty.node {
789                 hir::TyKind::BareFn(..) => {
790                     self.outer_index.shift_in(1);
791                     intravisit::walk_ty(self, ty);
792                     self.outer_index.shift_out(1);
793                 }
794                 _ => intravisit::walk_ty(self, ty),
795             }
796         }
797
798         fn visit_poly_trait_ref(
799             &mut self,
800             tr: &'tcx hir::PolyTraitRef,
801             m: hir::TraitBoundModifier,
802         ) {
803             if self.has_late_bound_regions.is_some() {
804                 return;
805             }
806             self.outer_index.shift_in(1);
807             intravisit::walk_poly_trait_ref(self, tr, m);
808             self.outer_index.shift_out(1);
809         }
810
811         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
812             if self.has_late_bound_regions.is_some() {
813                 return;
814             }
815
816             match self.tcx.named_region(lt.hir_id) {
817                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
818                 Some(rl::Region::LateBound(debruijn, _, _))
819                 | Some(rl::Region::LateBoundAnon(debruijn, _)) if debruijn < self.outer_index => {}
820                 Some(rl::Region::LateBound(..))
821                 | Some(rl::Region::LateBoundAnon(..))
822                 | Some(rl::Region::Free(..))
823                 | None => {
824                     self.has_late_bound_regions = Some(lt.span);
825                 }
826             }
827         }
828     }
829
830     fn has_late_bound_regions<'a, 'tcx>(
831         tcx: TyCtxt<'a, 'tcx, 'tcx>,
832         generics: &'tcx hir::Generics,
833         decl: &'tcx hir::FnDecl,
834     ) -> Option<Span> {
835         let mut visitor = LateBoundRegionsDetector {
836             tcx,
837             outer_index: ty::INNERMOST,
838             has_late_bound_regions: None,
839         };
840         for param in &generics.params {
841             if let GenericParamKind::Lifetime { .. } = param.kind {
842                 if tcx.is_late_bound(param.hir_id) {
843                     return Some(param.span);
844                 }
845             }
846         }
847         visitor.visit_fn_decl(decl);
848         visitor.has_late_bound_regions
849     }
850
851     match node {
852         Node::TraitItem(item) => match item.node {
853             hir::TraitItemKind::Method(ref sig, _) => {
854                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
855             }
856             _ => None,
857         },
858         Node::ImplItem(item) => match item.node {
859             hir::ImplItemKind::Method(ref sig, _) => {
860                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
861             }
862             _ => None,
863         },
864         Node::ForeignItem(item) => match item.node {
865             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
866                 has_late_bound_regions(tcx, generics, fn_decl)
867             }
868             _ => None,
869         },
870         Node::Item(item) => match item.node {
871             hir::ItemKind::Fn(ref fn_decl, .., ref generics, _) => {
872                 has_late_bound_regions(tcx, generics, fn_decl)
873             }
874             _ => None,
875         },
876         _ => None,
877     }
878 }
879
880 fn generics_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> &'tcx ty::Generics {
881     use rustc::hir::*;
882
883     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
884
885     let node = tcx.hir().get_by_hir_id(hir_id);
886     let parent_def_id = match node {
887         Node::ImplItem(_) | Node::TraitItem(_) | Node::Variant(_) |
888         Node::Ctor(..) | Node::Field(_) => {
889             let parent_id = tcx.hir().get_parent_item(hir_id);
890             Some(tcx.hir().local_def_id_from_hir_id(parent_id))
891         }
892         Node::Expr(&hir::Expr {
893             node: hir::ExprKind::Closure(..),
894             ..
895         }) => Some(tcx.closure_base_def_id(def_id)),
896         Node::Item(item) => match item.node {
897             ItemKind::Existential(hir::ExistTy { impl_trait_fn, .. }) => impl_trait_fn,
898             _ => None,
899         },
900         _ => None,
901     };
902
903     let mut opt_self = None;
904     let mut allow_defaults = false;
905
906     let no_generics = hir::Generics::empty();
907     let ast_generics = match node {
908         Node::TraitItem(item) => &item.generics,
909
910         Node::ImplItem(item) => &item.generics,
911
912         Node::Item(item) => {
913             match item.node {
914                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl(_, _, _, ref generics, ..) => {
915                     generics
916                 }
917
918                 ItemKind::Ty(_, ref generics)
919                 | ItemKind::Enum(_, ref generics)
920                 | ItemKind::Struct(_, ref generics)
921                 | ItemKind::Existential(hir::ExistTy { ref generics, .. })
922                 | ItemKind::Union(_, ref generics) => {
923                     allow_defaults = true;
924                     generics
925                 }
926
927                 ItemKind::Trait(_, _, ref generics, ..)
928                 | ItemKind::TraitAlias(ref generics, ..) => {
929                     // Add in the self type parameter.
930                     //
931                     // Something of a hack: use the node id for the trait, also as
932                     // the node id for the Self type parameter.
933                     let param_id = item.hir_id;
934
935                     opt_self = Some(ty::GenericParamDef {
936                         index: 0,
937                         name: kw::SelfUpper.as_interned_str(),
938                         def_id: tcx.hir().local_def_id_from_hir_id(param_id),
939                         pure_wrt_drop: false,
940                         kind: ty::GenericParamDefKind::Type {
941                             has_default: false,
942                             object_lifetime_default: rl::Set1::Empty,
943                             synthetic: None,
944                         },
945                     });
946
947                     allow_defaults = true;
948                     generics
949                 }
950
951                 _ => &no_generics,
952             }
953         }
954
955         Node::ForeignItem(item) => match item.node {
956             ForeignItemKind::Static(..) => &no_generics,
957             ForeignItemKind::Fn(_, _, ref generics) => generics,
958             ForeignItemKind::Type => &no_generics,
959         },
960
961         _ => &no_generics,
962     };
963
964     let has_self = opt_self.is_some();
965     let mut parent_has_self = false;
966     let mut own_start = has_self as u32;
967     let parent_count = parent_def_id.map_or(0, |def_id| {
968         let generics = tcx.generics_of(def_id);
969         assert_eq!(has_self, false);
970         parent_has_self = generics.has_self;
971         own_start = generics.count() as u32;
972         generics.parent_count + generics.params.len()
973     });
974
975     let mut params: Vec<_> = opt_self.into_iter().collect();
976
977     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
978     params.extend(
979         early_lifetimes
980             .enumerate()
981             .map(|(i, param)| ty::GenericParamDef {
982                 name: param.name.ident().as_interned_str(),
983                 index: own_start + i as u32,
984                 def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
985                 pure_wrt_drop: param.pure_wrt_drop,
986                 kind: ty::GenericParamDefKind::Lifetime,
987             }),
988     );
989
990     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
991
992     // Now create the real type parameters.
993     let type_start = own_start - has_self as u32 + params.len() as u32;
994     let mut i = 0;
995     params.extend(
996         ast_generics
997             .params
998             .iter()
999             .filter_map(|param| {
1000                 let kind = match param.kind {
1001                     GenericParamKind::Type {
1002                         ref default,
1003                         synthetic,
1004                         ..
1005                     } => {
1006                         if param.name.ident().name == kw::SelfUpper {
1007                             span_bug!(
1008                                 param.span,
1009                                 "`Self` should not be the name of a regular parameter"
1010                             );
1011                         }
1012
1013                         if !allow_defaults && default.is_some() {
1014                             if !tcx.features().default_type_parameter_fallback {
1015                                 tcx.lint_hir(
1016                                     lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1017                                     param.hir_id,
1018                                     param.span,
1019                                     &format!(
1020                                         "defaults for type parameters are only allowed in \
1021                                         `struct`, `enum`, `type`, or `trait` definitions."
1022                                     ),
1023                                 );
1024                             }
1025                         }
1026
1027                         ty::GenericParamDefKind::Type {
1028                             has_default: default.is_some(),
1029                             object_lifetime_default: object_lifetime_defaults
1030                                 .as_ref()
1031                                 .map_or(rl::Set1::Empty, |o| o[i]),
1032                             synthetic,
1033                         }
1034                     }
1035                     GenericParamKind::Const { .. } => {
1036                         if param.name.ident().name == kw::SelfUpper {
1037                             span_bug!(
1038                                 param.span,
1039                                 "`Self` should not be the name of a regular parameter",
1040                             );
1041                         }
1042
1043                         ty::GenericParamDefKind::Const
1044                     }
1045                     _ => return None,
1046                 };
1047
1048                 let param_def = ty::GenericParamDef {
1049                     index: type_start + i as u32,
1050                     name: param.name.ident().as_interned_str(),
1051                     def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
1052                     pure_wrt_drop: param.pure_wrt_drop,
1053                     kind,
1054                 };
1055                 i += 1;
1056                 Some(param_def)
1057             })
1058     );
1059
1060     // provide junk type parameter defs - the only place that
1061     // cares about anything but the length is instantiation,
1062     // and we don't do that for closures.
1063     if let Node::Expr(&hir::Expr {
1064         node: hir::ExprKind::Closure(.., gen),
1065         ..
1066     }) = node
1067     {
1068         let dummy_args = if gen.is_some() {
1069             &["<yield_ty>", "<return_ty>", "<witness>"][..]
1070         } else {
1071             &["<closure_kind>", "<closure_signature>"][..]
1072         };
1073
1074         params.extend(
1075             dummy_args
1076                 .iter()
1077                 .enumerate()
1078                 .map(|(i, &arg)| ty::GenericParamDef {
1079                     index: type_start + i as u32,
1080                     name: InternedString::intern(arg),
1081                     def_id,
1082                     pure_wrt_drop: false,
1083                     kind: ty::GenericParamDefKind::Type {
1084                         has_default: false,
1085                         object_lifetime_default: rl::Set1::Empty,
1086                         synthetic: None,
1087                     },
1088                 }),
1089         );
1090
1091         if let Some(upvars) = tcx.upvars(def_id) {
1092             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1093                 ty::GenericParamDef {
1094                     index: type_start + i,
1095                     name: InternedString::intern("<upvar>"),
1096                     def_id,
1097                     pure_wrt_drop: false,
1098                     kind: ty::GenericParamDefKind::Type {
1099                         has_default: false,
1100                         object_lifetime_default: rl::Set1::Empty,
1101                         synthetic: None,
1102                     },
1103                 }
1104             }));
1105         }
1106     }
1107
1108     let param_def_id_to_index = params
1109         .iter()
1110         .map(|param| (param.def_id, param.index))
1111         .collect();
1112
1113     tcx.arena.alloc(ty::Generics {
1114         parent: parent_def_id,
1115         parent_count,
1116         params,
1117         param_def_id_to_index,
1118         has_self: has_self || parent_has_self,
1119         has_late_bound_regions: has_late_bound_regions(tcx, node),
1120     })
1121 }
1122
1123 fn report_assoc_ty_on_inherent_impl<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, span: Span) {
1124     span_err!(
1125         tcx.sess,
1126         span,
1127         E0202,
1128         "associated types are not yet supported in inherent impls (see #8995)"
1129     );
1130 }
1131
1132 fn type_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Ty<'tcx> {
1133     checked_type_of(tcx, def_id, true).unwrap()
1134 }
1135
1136 /// Same as [`type_of`] but returns [`Option`] instead of failing.
1137 ///
1138 /// If you want to fail anyway, you can set the `fail` parameter to true, but in this case,
1139 /// you'd better just call [`type_of`] directly.
1140 pub fn checked_type_of<'a, 'tcx>(
1141     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1142     def_id: DefId,
1143     fail: bool,
1144 ) -> Option<Ty<'tcx>> {
1145     use rustc::hir::*;
1146
1147     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1148         Some(hir_id) => hir_id,
1149         None => {
1150             if !fail {
1151                 return None;
1152             }
1153             bug!("invalid node");
1154         }
1155     };
1156
1157     let icx = ItemCtxt::new(tcx, def_id);
1158
1159     Some(match tcx.hir().get_by_hir_id(hir_id) {
1160         Node::TraitItem(item) => match item.node {
1161             TraitItemKind::Method(..) => {
1162                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1163                 tcx.mk_fn_def(def_id, substs)
1164             }
1165             TraitItemKind::Const(ref ty, _) | TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1166             TraitItemKind::Type(_, None) => {
1167                 if !fail {
1168                     return None;
1169                 }
1170                 span_bug!(item.span, "associated type missing default");
1171             }
1172         },
1173
1174         Node::ImplItem(item) => match item.node {
1175             ImplItemKind::Method(..) => {
1176                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1177                 tcx.mk_fn_def(def_id, substs)
1178             }
1179             ImplItemKind::Const(ref ty, _) => icx.to_ty(ty),
1180             ImplItemKind::Existential(_) => {
1181                 if tcx
1182                     .impl_trait_ref(tcx.hir().get_parent_did_by_hir_id(hir_id))
1183                     .is_none()
1184                 {
1185                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1186                 }
1187
1188                 find_existential_constraints(tcx, def_id)
1189             }
1190             ImplItemKind::Type(ref ty) => {
1191                 if tcx
1192                     .impl_trait_ref(tcx.hir().get_parent_did_by_hir_id(hir_id))
1193                     .is_none()
1194                 {
1195                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1196                 }
1197
1198                 icx.to_ty(ty)
1199             }
1200         },
1201
1202         Node::Item(item) => {
1203             match item.node {
1204                 ItemKind::Static(ref t, ..)
1205                 | ItemKind::Const(ref t, _)
1206                 | ItemKind::Ty(ref t, _)
1207                 | ItemKind::Impl(.., ref t, _) => icx.to_ty(t),
1208                 ItemKind::Fn(..) => {
1209                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1210                     tcx.mk_fn_def(def_id, substs)
1211                 }
1212                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1213                     let def = tcx.adt_def(def_id);
1214                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1215                     tcx.mk_adt(def, substs)
1216                 }
1217                 ItemKind::Existential(hir::ExistTy {
1218                     impl_trait_fn: None,
1219                     ..
1220                 }) => find_existential_constraints(tcx, def_id),
1221                 // existential types desugared from impl Trait
1222                 ItemKind::Existential(hir::ExistTy {
1223                     impl_trait_fn: Some(owner),
1224                     ..
1225                 }) => {
1226                     tcx.typeck_tables_of(owner)
1227                         .concrete_existential_types
1228                         .get(&def_id)
1229                         .map(|opaque| opaque.concrete_type)
1230                         .unwrap_or_else(|| {
1231                             // This can occur if some error in the
1232                             // owner fn prevented us from populating
1233                             // the `concrete_existential_types` table.
1234                             tcx.sess.delay_span_bug(
1235                                 DUMMY_SP,
1236                                 &format!(
1237                                     "owner {:?} has no existential type for {:?} in its tables",
1238                                     owner, def_id,
1239                                 ),
1240                             );
1241                             tcx.types.err
1242                         })
1243                 }
1244                 ItemKind::Trait(..)
1245                 | ItemKind::TraitAlias(..)
1246                 | ItemKind::Mod(..)
1247                 | ItemKind::ForeignMod(..)
1248                 | ItemKind::GlobalAsm(..)
1249                 | ItemKind::ExternCrate(..)
1250                 | ItemKind::Use(..) => {
1251                     if !fail {
1252                         return None;
1253                     }
1254                     span_bug!(
1255                         item.span,
1256                         "compute_type_of_item: unexpected item type: {:?}",
1257                         item.node
1258                     );
1259                 }
1260             }
1261         }
1262
1263         Node::ForeignItem(foreign_item) => match foreign_item.node {
1264             ForeignItemKind::Fn(..) => {
1265                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1266                 tcx.mk_fn_def(def_id, substs)
1267             }
1268             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1269             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1270         },
1271
1272         Node::Ctor(&ref def) | Node::Variant(&Spanned {
1273             node: hir::VariantKind { data: ref def, .. },
1274             ..
1275         }) => match *def {
1276             VariantData::Unit(..) | VariantData::Struct(..) => {
1277                 tcx.type_of(tcx.hir().get_parent_did_by_hir_id(hir_id))
1278             }
1279             VariantData::Tuple(..) => {
1280                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1281                 tcx.mk_fn_def(def_id, substs)
1282             }
1283         },
1284
1285         Node::Field(field) => icx.to_ty(&field.ty),
1286
1287         Node::Expr(&hir::Expr {
1288             node: hir::ExprKind::Closure(.., gen),
1289             ..
1290         }) => {
1291             if gen.is_some() {
1292                 return Some(tcx.typeck_tables_of(def_id).node_type(hir_id));
1293             }
1294
1295             let substs = ty::ClosureSubsts {
1296                 substs: InternalSubsts::identity_for_item(tcx, def_id),
1297             };
1298
1299             tcx.mk_closure(def_id, substs)
1300         }
1301
1302         Node::AnonConst(_) => {
1303             let parent_node = tcx.hir().get_by_hir_id(tcx.hir().get_parent_node_by_hir_id(hir_id));
1304             match parent_node {
1305                 Node::Ty(&hir::Ty {
1306                     node: hir::TyKind::Array(_, ref constant),
1307                     ..
1308                 })
1309                 | Node::Ty(&hir::Ty {
1310                     node: hir::TyKind::Typeof(ref constant),
1311                     ..
1312                 })
1313                 | Node::Expr(&hir::Expr {
1314                     node: ExprKind::Repeat(_, ref constant),
1315                     ..
1316                 }) if constant.hir_id == hir_id =>
1317                 {
1318                     tcx.types.usize
1319                 }
1320
1321                 Node::Variant(&Spanned {
1322                     node:
1323                         VariantKind {
1324                             disr_expr: Some(ref e),
1325                             ..
1326                         },
1327                     ..
1328                 }) if e.hir_id == hir_id =>
1329                 {
1330                     tcx.adt_def(tcx.hir().get_parent_did_by_hir_id(hir_id))
1331                         .repr
1332                         .discr_type()
1333                         .to_ty(tcx)
1334                 }
1335
1336                 Node::Ty(&hir::Ty { node: hir::TyKind::Path(_), .. }) |
1337                 Node::Expr(&hir::Expr { node: ExprKind::Struct(..), .. }) |
1338                 Node::Expr(&hir::Expr { node: ExprKind::Path(_), .. }) |
1339                 Node::TraitRef(..) => {
1340                     let path = match parent_node {
1341                         Node::Ty(&hir::Ty {
1342                             node: hir::TyKind::Path(QPath::Resolved(_, ref path)),
1343                             ..
1344                         })
1345                         | Node::Expr(&hir::Expr {
1346                             node: ExprKind::Path(QPath::Resolved(_, ref path)),
1347                             ..
1348                         }) => {
1349                             Some(&**path)
1350                         }
1351                         Node::Expr(&hir::Expr { node: ExprKind::Struct(ref path, ..), .. }) => {
1352                             if let QPath::Resolved(_, ref path) = **path {
1353                                 Some(&**path)
1354                             } else {
1355                                 None
1356                             }
1357                         }
1358                         Node::TraitRef(&hir::TraitRef { ref path, .. }) => Some(path),
1359                         _ => None,
1360                     };
1361
1362                     if let Some(path) = path {
1363                         let arg_index = path.segments.iter()
1364                             .filter_map(|seg| seg.args.as_ref())
1365                             .map(|generic_args| generic_args.args.as_ref())
1366                             .find_map(|args| {
1367                                 args.iter()
1368                                     .filter(|arg| arg.is_const())
1369                                     .enumerate()
1370                                     .filter(|(_, arg)| arg.id() == hir_id)
1371                                     .map(|(index, _)| index)
1372                                     .next()
1373                             })
1374                             .or_else(|| {
1375                                 if !fail {
1376                                     None
1377                                 } else {
1378                                     bug!("no arg matching AnonConst in path")
1379                                 }
1380                             })?;
1381
1382                         // We've encountered an `AnonConst` in some path, so we need to
1383                         // figure out which generic parameter it corresponds to and return
1384                         // the relevant type.
1385                         let generics = match path.res {
1386                             Res::Def(DefKind::Ctor(..), def_id) => {
1387                                 tcx.generics_of(tcx.parent(def_id).unwrap())
1388                             }
1389                             Res::Def(_, def_id) => tcx.generics_of(def_id),
1390                             Res::Err => return Some(tcx.types.err),
1391                             _ if !fail => return None,
1392                             res => {
1393                                 tcx.sess.delay_span_bug(
1394                                     DUMMY_SP,
1395                                     &format!(
1396                                         "unexpected const parent path def {:?}",
1397                                         res,
1398                                     ),
1399                                 );
1400                                 return Some(tcx.types.err);
1401                             }
1402                         };
1403
1404                         generics.params.iter()
1405                             .filter(|param| {
1406                                 if let ty::GenericParamDefKind::Const = param.kind {
1407                                     true
1408                                 } else {
1409                                     false
1410                                 }
1411                             })
1412                             .nth(arg_index)
1413                             .map(|param| tcx.type_of(param.def_id))
1414                             // This is no generic parameter associated with the arg. This is
1415                             // probably from an extra arg where one is not needed.
1416                             .unwrap_or(tcx.types.err)
1417                     } else {
1418                         if !fail {
1419                             return None;
1420                         }
1421                         tcx.sess.delay_span_bug(
1422                             DUMMY_SP,
1423                             &format!(
1424                                 "unexpected const parent path {:?}",
1425                                 parent_node,
1426                             ),
1427                         );
1428                         return Some(tcx.types.err);
1429                     }
1430                 }
1431
1432                 x => {
1433                     if !fail {
1434                         return None;
1435                     }
1436                     tcx.sess.delay_span_bug(
1437                         DUMMY_SP,
1438                         &format!(
1439                             "unexpected const parent in type_of_def_id(): {:?}", x
1440                         ),
1441                     );
1442                     tcx.types.err
1443                 }
1444             }
1445         }
1446
1447         Node::GenericParam(param) => match &param.kind {
1448             hir::GenericParamKind::Type { default: Some(ref ty), .. } |
1449             hir::GenericParamKind::Const { ref ty, .. } => {
1450                 icx.to_ty(ty)
1451             }
1452             x => {
1453                 if !fail {
1454                     return None;
1455                 }
1456                 bug!("unexpected non-type Node::GenericParam: {:?}", x)
1457             },
1458         },
1459
1460         x => {
1461             if !fail {
1462                 return None;
1463             }
1464             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1465         }
1466     })
1467 }
1468
1469 fn find_existential_constraints<'a, 'tcx>(
1470     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1471     def_id: DefId,
1472 ) -> Ty<'tcx> {
1473     use rustc::hir::{ImplItem, Item, TraitItem};
1474
1475     struct ConstraintLocator<'a, 'tcx: 'a> {
1476         tcx: TyCtxt<'a, 'tcx, 'tcx>,
1477         def_id: DefId,
1478         // First found type span, actual type, mapping from the existential type's generic
1479         // parameters to the concrete type's generic parameters
1480         //
1481         // The mapping is an index for each use site of a generic parameter in the concrete type
1482         //
1483         // The indices index into the generic parameters on the existential type.
1484         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1485     }
1486
1487     impl<'a, 'tcx> ConstraintLocator<'a, 'tcx> {
1488         fn check(&mut self, def_id: DefId) {
1489             trace!("checking {:?}", def_id);
1490             // don't try to check items that cannot possibly constrain the type
1491             if !self.tcx.has_typeck_tables(def_id) {
1492                 trace!("no typeck tables for {:?}", def_id);
1493                 return;
1494             }
1495             let ty = self
1496                 .tcx
1497                 .typeck_tables_of(def_id)
1498                 .concrete_existential_types
1499                 .get(&self.def_id);
1500             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1501                 // FIXME(oli-obk): trace the actual span from inference to improve errors
1502                 let span = self.tcx.def_span(def_id);
1503                 // used to quickly look up the position of a generic parameter
1504                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1505                 // skip binder is ok, since we only use this to find generic parameters and their
1506                 // positions.
1507                 for (idx, subst) in substs.iter().enumerate() {
1508                     if let UnpackedKind::Type(ty) = subst.unpack() {
1509                         if let ty::Param(p) = ty.sty {
1510                             if index_map.insert(p, idx).is_some() {
1511                                 // there was already an entry for `p`, meaning a generic parameter
1512                                 // was used twice
1513                                 self.tcx.sess.span_err(
1514                                     span,
1515                                     &format!("defining existential type use restricts existential \
1516                                     type by using the generic parameter `{}` twice", p.name),
1517                                 );
1518                                 return;
1519                             }
1520                         } else {
1521                             self.tcx.sess.delay_span_bug(
1522                                 span,
1523                                 &format!(
1524                                     "non-defining exist ty use in defining scope: {:?}, {:?}",
1525                                     concrete_type, substs,
1526                                 ),
1527                             );
1528                         }
1529                     }
1530                 }
1531                 // compute the index within the existential type for each generic parameter used in
1532                 // the concrete type
1533                 let indices = concrete_type
1534                     .subst(self.tcx, substs)
1535                     .walk()
1536                     .filter_map(|t| match &t.sty {
1537                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1538                         _ => None,
1539                     }).collect();
1540                 let is_param = |ty: Ty<'_>| match ty.sty {
1541                     ty::Param(_) => true,
1542                     _ => false,
1543                 };
1544                 if !substs.types().all(is_param) {
1545                     self.tcx.sess.span_err(
1546                         span,
1547                         "defining existential type use does not fully define existential type",
1548                     );
1549                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1550                     let mut ty = concrete_type.walk().fuse();
1551                     let mut p_ty = prev_ty.walk().fuse();
1552                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.sty, &p.sty) {
1553                         // type parameters are equal to any other type parameter for the purpose of
1554                         // concrete type equality, as it is possible to obtain the same type just
1555                         // by passing matching parameters to a function.
1556                         (ty::Param(_), ty::Param(_)) => true,
1557                         _ => t == p,
1558                     });
1559                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1560                         // found different concrete types for the existential type
1561                         let mut err = self.tcx.sess.struct_span_err(
1562                             span,
1563                             "concrete type differs from previous defining existential type use",
1564                         );
1565                         err.span_label(
1566                             span,
1567                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1568                         );
1569                         err.span_note(prev_span, "previous use here");
1570                         err.emit();
1571                     } else if indices != *prev_indices {
1572                         // found "same" concrete types, but the generic parameter order differs
1573                         let mut err = self.tcx.sess.struct_span_err(
1574                             span,
1575                             "concrete type's generic parameters differ from previous defining use",
1576                         );
1577                         use std::fmt::Write;
1578                         let mut s = String::new();
1579                         write!(s, "expected [").unwrap();
1580                         let list = |s: &mut String, indices: &Vec<usize>| {
1581                             let mut indices = indices.iter().cloned();
1582                             if let Some(first) = indices.next() {
1583                                 write!(s, "`{}`", substs[first]).unwrap();
1584                                 for i in indices {
1585                                     write!(s, ", `{}`", substs[i]).unwrap();
1586                                 }
1587                             }
1588                         };
1589                         list(&mut s, prev_indices);
1590                         write!(s, "], got [").unwrap();
1591                         list(&mut s, &indices);
1592                         write!(s, "]").unwrap();
1593                         err.span_label(span, s);
1594                         err.span_note(prev_span, "previous use here");
1595                         err.emit();
1596                     }
1597                 } else {
1598                     self.found = Some((span, concrete_type, indices));
1599                 }
1600             }
1601         }
1602     }
1603
1604     impl<'a, 'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'a, 'tcx> {
1605         fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'tcx> {
1606             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1607         }
1608         fn visit_item(&mut self, it: &'tcx Item) {
1609             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1610             // the existential type itself or its children are not within its reveal scope
1611             if def_id != self.def_id {
1612                 self.check(def_id);
1613                 intravisit::walk_item(self, it);
1614             }
1615         }
1616         fn visit_impl_item(&mut self, it: &'tcx ImplItem) {
1617             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1618             // the existential type itself or its children are not within its reveal scope
1619             if def_id != self.def_id {
1620                 self.check(def_id);
1621                 intravisit::walk_impl_item(self, it);
1622             }
1623         }
1624         fn visit_trait_item(&mut self, it: &'tcx TraitItem) {
1625             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1626             self.check(def_id);
1627             intravisit::walk_trait_item(self, it);
1628         }
1629     }
1630
1631     let mut locator = ConstraintLocator {
1632         def_id,
1633         tcx,
1634         found: None,
1635     };
1636     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1637     let parent = tcx.hir().get_parent_item(hir_id);
1638
1639     trace!("parent_id: {:?}", parent);
1640
1641     if parent == hir::CRATE_HIR_ID {
1642         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1643     } else {
1644         trace!("parent: {:?}", tcx.hir().get_by_hir_id(parent));
1645         match tcx.hir().get_by_hir_id(parent) {
1646             Node::Item(ref it) => intravisit::walk_item(&mut locator, it),
1647             Node::ImplItem(ref it) => intravisit::walk_impl_item(&mut locator, it),
1648             Node::TraitItem(ref it) => intravisit::walk_trait_item(&mut locator, it),
1649             other => bug!(
1650                 "{:?} is not a valid parent of an existential type item",
1651                 other
1652             ),
1653         }
1654     }
1655
1656     match locator.found {
1657         Some((_, ty, _)) => ty,
1658         None => {
1659             let span = tcx.def_span(def_id);
1660             tcx.sess.span_err(span, "could not find defining uses");
1661             tcx.types.err
1662         }
1663     }
1664 }
1665
1666 fn fn_sig<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> ty::PolyFnSig<'tcx> {
1667     use rustc::hir::*;
1668     use rustc::hir::Node::*;
1669
1670     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1671
1672     let icx = ItemCtxt::new(tcx, def_id);
1673
1674     match tcx.hir().get_by_hir_id(hir_id) {
1675         TraitItem(hir::TraitItem {
1676             node: TraitItemKind::Method(sig, _),
1677             ..
1678         })
1679         | ImplItem(hir::ImplItem {
1680             node: ImplItemKind::Method(sig, _),
1681             ..
1682         }) => AstConv::ty_of_fn(&icx, sig.header.unsafety, sig.header.abi, &sig.decl),
1683
1684         Item(hir::Item {
1685             node: ItemKind::Fn(decl, header, _, _),
1686             ..
1687         }) => AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl),
1688
1689         ForeignItem(&hir::ForeignItem {
1690             node: ForeignItemKind::Fn(ref fn_decl, _, _),
1691             ..
1692         }) => {
1693             let abi = tcx.hir().get_foreign_abi_by_hir_id(hir_id);
1694             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
1695         }
1696
1697         Ctor(data) | Variant(Spanned {
1698             node: hir::VariantKind { data, ..  },
1699             ..
1700         }) if data.ctor_hir_id().is_some() => {
1701             let ty = tcx.type_of(tcx.hir().get_parent_did_by_hir_id(hir_id));
1702             let inputs = data.fields()
1703                 .iter()
1704                 .map(|f| tcx.type_of(tcx.hir().local_def_id_from_hir_id(f.hir_id)));
1705             ty::Binder::bind(tcx.mk_fn_sig(
1706                 inputs,
1707                 ty,
1708                 false,
1709                 hir::Unsafety::Normal,
1710                 abi::Abi::Rust,
1711             ))
1712         }
1713
1714         Expr(&hir::Expr {
1715             node: hir::ExprKind::Closure(..),
1716             ..
1717         }) => {
1718             // Closure signatures are not like other function
1719             // signatures and cannot be accessed through `fn_sig`. For
1720             // example, a closure signature excludes the `self`
1721             // argument. In any case they are embedded within the
1722             // closure type as part of the `ClosureSubsts`.
1723             //
1724             // To get
1725             // the signature of a closure, you should use the
1726             // `closure_sig` method on the `ClosureSubsts`:
1727             //
1728             //    closure_substs.closure_sig(def_id, tcx)
1729             //
1730             // or, inside of an inference context, you can use
1731             //
1732             //    infcx.closure_sig(def_id, closure_substs)
1733             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
1734         }
1735
1736         x => {
1737             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1738         }
1739     }
1740 }
1741
1742 fn impl_trait_ref<'a, 'tcx>(
1743     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1744     def_id: DefId,
1745 ) -> Option<ty::TraitRef<'tcx>> {
1746     let icx = ItemCtxt::new(tcx, def_id);
1747
1748     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1749     match tcx.hir().expect_item_by_hir_id(hir_id).node {
1750         hir::ItemKind::Impl(.., ref opt_trait_ref, _, _) => {
1751             opt_trait_ref.as_ref().map(|ast_trait_ref| {
1752                 let selfty = tcx.type_of(def_id);
1753                 AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1754             })
1755         }
1756         _ => bug!(),
1757     }
1758 }
1759
1760 fn impl_polarity<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> hir::ImplPolarity {
1761     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1762     match tcx.hir().expect_item_by_hir_id(hir_id).node {
1763         hir::ItemKind::Impl(_, polarity, ..) => polarity,
1764         ref item => bug!("impl_polarity: {:?} not an impl", item),
1765     }
1766 }
1767
1768 // Is it marked with ?Sized
1769 fn is_unsized<'gcx: 'tcx, 'tcx>(
1770     astconv: &dyn AstConv<'gcx, 'tcx>,
1771     ast_bounds: &[hir::GenericBound],
1772     span: Span,
1773 ) -> bool {
1774     let tcx = astconv.tcx();
1775
1776     // Try to find an unbound in bounds.
1777     let mut unbound = None;
1778     for ab in ast_bounds {
1779         if let &hir::GenericBound::Trait(ref ptr, hir::TraitBoundModifier::Maybe) = ab {
1780             if unbound.is_none() {
1781                 unbound = Some(ptr.trait_ref.clone());
1782             } else {
1783                 span_err!(
1784                     tcx.sess,
1785                     span,
1786                     E0203,
1787                     "type parameter has more than one relaxed default \
1788                      bound, only one is supported"
1789                 );
1790             }
1791         }
1792     }
1793
1794     let kind_id = tcx.lang_items().require(SizedTraitLangItem);
1795     match unbound {
1796         Some(ref tpb) => {
1797             // FIXME(#8559) currently requires the unbound to be built-in.
1798             if let Ok(kind_id) = kind_id {
1799                 if tpb.path.res != Res::Def(DefKind::Trait, kind_id) {
1800                     tcx.sess.span_warn(
1801                         span,
1802                         "default bound relaxed for a type parameter, but \
1803                          this does nothing because the given bound is not \
1804                          a default. Only `?Sized` is supported",
1805                     );
1806                 }
1807             }
1808         }
1809         _ if kind_id.is_ok() => {
1810             return false;
1811         }
1812         // No lang item for Sized, so we can't add it as a bound.
1813         None => {}
1814     }
1815
1816     true
1817 }
1818
1819 /// Returns the early-bound lifetimes declared in this generics
1820 /// listing. For anything other than fns/methods, this is just all
1821 /// the lifetimes that are declared. For fns or methods, we have to
1822 /// screen out those that do not appear in any where-clauses etc using
1823 /// `resolve_lifetime::early_bound_lifetimes`.
1824 fn early_bound_lifetimes_from_generics<'a, 'tcx>(
1825     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1826     generics: &'a hir::Generics,
1827 ) -> impl Iterator<Item = &'a hir::GenericParam> + Captures<'tcx> {
1828     generics
1829         .params
1830         .iter()
1831         .filter(move |param| match param.kind {
1832             GenericParamKind::Lifetime { .. } => {
1833                 !tcx.is_late_bound(param.hir_id)
1834             }
1835             _ => false,
1836         })
1837 }
1838
1839 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1840 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1841 /// inferred constraints concerning which regions outlive other regions.
1842 fn predicates_defined_on<'a, 'tcx>(
1843     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1844     def_id: DefId,
1845 ) -> &'tcx ty::GenericPredicates<'tcx> {
1846     debug!("predicates_defined_on({:?})", def_id);
1847     let mut result = tcx.explicit_predicates_of(def_id);
1848     debug!(
1849         "predicates_defined_on: explicit_predicates_of({:?}) = {:?}",
1850         def_id,
1851         result,
1852     );
1853     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1854     if !inferred_outlives.is_empty() {
1855         let span = tcx.def_span(def_id);
1856         debug!(
1857             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1858             def_id,
1859             inferred_outlives,
1860         );
1861         let mut predicates = (*result).clone();
1862         predicates.predicates.extend(inferred_outlives.iter().map(|&p| (p, span)));
1863         result = tcx.arena.alloc(predicates);
1864     }
1865     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1866     result
1867 }
1868
1869 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1870 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1871 /// `Self: Trait` predicates for traits.
1872 fn predicates_of<'a, 'tcx>(
1873     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1874     def_id: DefId,
1875 ) -> &'tcx ty::GenericPredicates<'tcx> {
1876     let mut result = tcx.predicates_defined_on(def_id);
1877
1878     if tcx.is_trait(def_id) {
1879         // For traits, add `Self: Trait` predicate. This is
1880         // not part of the predicates that a user writes, but it
1881         // is something that one must prove in order to invoke a
1882         // method or project an associated type.
1883         //
1884         // In the chalk setup, this predicate is not part of the
1885         // "predicates" for a trait item. But it is useful in
1886         // rustc because if you directly (e.g.) invoke a trait
1887         // method like `Trait::method(...)`, you must naturally
1888         // prove that the trait applies to the types that were
1889         // used, and adding the predicate into this list ensures
1890         // that this is done.
1891         let span = tcx.def_span(def_id);
1892         let mut predicates = (*result).clone();
1893         predicates.predicates.push((ty::TraitRef::identity(tcx, def_id).to_predicate(), span));
1894         result = tcx.arena.alloc(predicates);
1895     }
1896     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
1897     result
1898 }
1899
1900 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
1901 /// N.B., this does not include any implied/inferred constraints.
1902 fn explicit_predicates_of<'a, 'tcx>(
1903     tcx: TyCtxt<'a, 'tcx, 'tcx>,
1904     def_id: DefId,
1905 ) -> &'tcx ty::GenericPredicates<'tcx> {
1906     use rustc::hir::*;
1907     use rustc_data_structures::fx::FxHashSet;
1908
1909     debug!("explicit_predicates_of(def_id={:?})", def_id);
1910
1911     /// A data structure with unique elements, which preserves order of insertion.
1912     /// Preserving the order of insertion is important here so as not to break
1913     /// compile-fail UI tests.
1914     struct UniquePredicates<'tcx> {
1915         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
1916         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
1917     }
1918
1919     impl<'tcx> UniquePredicates<'tcx> {
1920         fn new() -> Self {
1921             UniquePredicates {
1922                 predicates: vec![],
1923                 uniques: FxHashSet::default(),
1924             }
1925         }
1926
1927         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
1928             if self.uniques.insert(value) {
1929                 self.predicates.push(value);
1930             }
1931         }
1932
1933         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
1934             for value in iter {
1935                 self.push(value);
1936             }
1937         }
1938     }
1939
1940     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1941         Some(hir_id) => hir_id,
1942         None => return tcx.predicates_of(def_id),
1943     };
1944     let node = tcx.hir().get_by_hir_id(hir_id);
1945
1946     let mut is_trait = None;
1947     let mut is_default_impl_trait = None;
1948
1949     let icx = ItemCtxt::new(tcx, def_id);
1950     let no_generics = hir::Generics::empty();
1951     let empty_trait_items = HirVec::new();
1952
1953     let mut predicates = UniquePredicates::new();
1954
1955     let ast_generics = match node {
1956         Node::TraitItem(item) => &item.generics,
1957
1958         Node::ImplItem(item) => match item.node {
1959             ImplItemKind::Existential(ref bounds) => {
1960                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1961                 let opaque_ty = tcx.mk_opaque(def_id, substs);
1962
1963                 // Collect the bounds, i.e., the `A+B+'c` in `impl A+B+'c`.
1964                 let bounds = compute_bounds(
1965                     &icx,
1966                     opaque_ty,
1967                     bounds,
1968                     SizedByDefault::Yes,
1969                     tcx.def_span(def_id),
1970                 );
1971
1972                 predicates.extend(bounds.predicates(tcx, opaque_ty));
1973                 &item.generics
1974             }
1975             _ => &item.generics,
1976         },
1977
1978         Node::Item(item) => {
1979             match item.node {
1980                 ItemKind::Impl(_, _, defaultness, ref generics, ..) => {
1981                     if defaultness.is_default() {
1982                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
1983                     }
1984                     generics
1985                 }
1986                 ItemKind::Fn(.., ref generics, _)
1987                 | ItemKind::Ty(_, ref generics)
1988                 | ItemKind::Enum(_, ref generics)
1989                 | ItemKind::Struct(_, ref generics)
1990                 | ItemKind::Union(_, ref generics) => generics,
1991
1992                 ItemKind::Trait(_, _, ref generics, .., ref items) => {
1993                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
1994                     generics
1995                 }
1996                 ItemKind::TraitAlias(ref generics, _) => {
1997                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &empty_trait_items));
1998                     generics
1999                 }
2000                 ItemKind::Existential(ExistTy {
2001                     ref bounds,
2002                     impl_trait_fn,
2003                     ref generics,
2004                     origin: _,
2005                 }) => {
2006                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
2007                     let opaque_ty = tcx.mk_opaque(def_id, substs);
2008
2009                     // Collect the bounds, i.e., the `A+B+'c` in `impl A+B+'c`.
2010                     let bounds = compute_bounds(
2011                         &icx,
2012                         opaque_ty,
2013                         bounds,
2014                         SizedByDefault::Yes,
2015                         tcx.def_span(def_id),
2016                     );
2017
2018                     if impl_trait_fn.is_some() {
2019                         // impl Trait
2020                         return tcx.arena.alloc(ty::GenericPredicates {
2021                             parent: None,
2022                             predicates: bounds.predicates(tcx, opaque_ty),
2023                         });
2024                     } else {
2025                         // named existential types
2026                         predicates.extend(bounds.predicates(tcx, opaque_ty));
2027                         generics
2028                     }
2029                 }
2030
2031                 _ => &no_generics,
2032             }
2033         }
2034
2035         Node::ForeignItem(item) => match item.node {
2036             ForeignItemKind::Static(..) => &no_generics,
2037             ForeignItemKind::Fn(_, _, ref generics) => generics,
2038             ForeignItemKind::Type => &no_generics,
2039         },
2040
2041         _ => &no_generics,
2042     };
2043
2044     let generics = tcx.generics_of(def_id);
2045     let parent_count = generics.parent_count as u32;
2046     let has_own_self = generics.has_self && parent_count == 0;
2047
2048     // Below we'll consider the bounds on the type parameters (including `Self`)
2049     // and the explicit where-clauses, but to get the full set of predicates
2050     // on a trait we need to add in the supertrait bounds and bounds found on
2051     // associated types.
2052     if let Some((_trait_ref, _)) = is_trait {
2053         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2054     }
2055
2056     // In default impls, we can assume that the self type implements
2057     // the trait. So in:
2058     //
2059     //     default impl Foo for Bar { .. }
2060     //
2061     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2062     // (see below). Recall that a default impl is not itself an impl, but rather a
2063     // set of defaults that can be incorporated into another impl.
2064     if let Some(trait_ref) = is_default_impl_trait {
2065         predicates.push((trait_ref.to_poly_trait_ref().to_predicate(), tcx.def_span(def_id)));
2066     }
2067
2068     // Collect the region predicates that were declared inline as
2069     // well. In the case of parameters declared on a fn or method, we
2070     // have to be careful to only iterate over early-bound regions.
2071     let mut index = parent_count + has_own_self as u32;
2072     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2073         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2074             def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
2075             index,
2076             name: param.name.ident().as_interned_str(),
2077         }));
2078         index += 1;
2079
2080         match param.kind {
2081             GenericParamKind::Lifetime { .. } => {
2082                 param.bounds.iter().for_each(|bound| match bound {
2083                     hir::GenericBound::Outlives(lt) => {
2084                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2085                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2086                         predicates.push((outlives.to_predicate(), lt.span));
2087                     }
2088                     _ => bug!(),
2089                 });
2090             }
2091             _ => bug!(),
2092         }
2093     }
2094
2095     // Collect the predicates that were written inline by the user on each
2096     // type parameter (e.g., `<T:Foo>`).
2097     for param in &ast_generics.params {
2098         if let GenericParamKind::Type { .. } = param.kind {
2099             let name = param.name.ident().as_interned_str();
2100             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2101             index += 1;
2102
2103             let sized = SizedByDefault::Yes;
2104             let bounds = compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2105             predicates.extend(bounds.predicates(tcx, param_ty));
2106         }
2107     }
2108
2109     // Add in the bounds that appear in the where-clause
2110     let where_clause = &ast_generics.where_clause;
2111     for predicate in &where_clause.predicates {
2112         match predicate {
2113             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2114                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2115
2116                 // Keep the type around in a dummy predicate, in case of no bounds.
2117                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2118                 // is still checked for WF.
2119                 if bound_pred.bounds.is_empty() {
2120                     if let ty::Param(_) = ty.sty {
2121                         // This is a `where T:`, which can be in the HIR from the
2122                         // transformation that moves `?Sized` to `T`'s declaration.
2123                         // We can skip the predicate because type parameters are
2124                         // trivially WF, but also we *should*, to avoid exposing
2125                         // users who never wrote `where Type:,` themselves, to
2126                         // compiler/tooling bugs from not handling WF predicates.
2127                     } else {
2128                         let span = bound_pred.bounded_ty.span;
2129                         let predicate = ty::OutlivesPredicate(ty, tcx.mk_region(ty::ReEmpty));
2130                         predicates.push(
2131                             (ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)), span)
2132                         );
2133                     }
2134                 }
2135
2136                 for bound in bound_pred.bounds.iter() {
2137                     match bound {
2138                         &hir::GenericBound::Trait(ref poly_trait_ref, _) => {
2139                             let mut projections = Vec::new();
2140
2141                             let (trait_ref, _) = AstConv::instantiate_poly_trait_ref(
2142                                 &icx,
2143                                 poly_trait_ref,
2144                                 ty,
2145                                 &mut projections,
2146                             );
2147
2148                             predicates.extend(
2149                                 iter::once((trait_ref.to_predicate(), poly_trait_ref.span)).chain(
2150                                     projections.iter().map(|&(p, span)| (p.to_predicate(), span)
2151                             )));
2152                         }
2153
2154                         &hir::GenericBound::Outlives(ref lifetime) => {
2155                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2156                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2157                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2158                         }
2159                     }
2160                 }
2161             }
2162
2163             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2164                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2165                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2166                     let (r2, span) = match bound {
2167                         hir::GenericBound::Outlives(lt) => {
2168                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2169                         }
2170                         _ => bug!(),
2171                     };
2172                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2173
2174                     (ty::Predicate::RegionOutlives(pred), span)
2175                 }))
2176             }
2177
2178             &hir::WherePredicate::EqPredicate(..) => {
2179                 // FIXME(#20041)
2180             }
2181         }
2182     }
2183
2184     // Add predicates from associated type bounds.
2185     if let Some((self_trait_ref, trait_items)) = is_trait {
2186         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2187             let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2188             let bounds = match trait_item.node {
2189                 hir::TraitItemKind::Type(ref bounds, _) => bounds,
2190                 _ => return vec![].into_iter()
2191             };
2192
2193             let assoc_ty =
2194                 tcx.mk_projection(tcx.hir().local_def_id_from_hir_id(trait_item.hir_id),
2195                     self_trait_ref.substs);
2196
2197             let bounds = compute_bounds(
2198                 &ItemCtxt::new(tcx, def_id),
2199                 assoc_ty,
2200                 bounds,
2201                 SizedByDefault::Yes,
2202                 trait_item.span,
2203             );
2204
2205             bounds.predicates(tcx, assoc_ty).into_iter()
2206         }))
2207     }
2208
2209     let mut predicates = predicates.predicates;
2210
2211     // Subtle: before we store the predicates into the tcx, we
2212     // sort them so that predicates like `T: Foo<Item=U>` come
2213     // before uses of `U`.  This avoids false ambiguity errors
2214     // in trait checking. See `setup_constraining_predicates`
2215     // for details.
2216     if let Node::Item(&Item {
2217         node: ItemKind::Impl(..),
2218         ..
2219     }) = node
2220     {
2221         let self_ty = tcx.type_of(def_id);
2222         let trait_ref = tcx.impl_trait_ref(def_id);
2223         cgp::setup_constraining_predicates(
2224             tcx,
2225             &mut predicates,
2226             trait_ref,
2227             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2228         );
2229     }
2230
2231     let result = tcx.arena.alloc(ty::GenericPredicates {
2232         parent: generics.parent,
2233         predicates,
2234     });
2235     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2236     result
2237 }
2238
2239 pub enum SizedByDefault {
2240     Yes,
2241     No,
2242 }
2243
2244 /// Translate the AST's notion of ty param bounds (which are an enum consisting of a newtyped `Ty`
2245 /// or a region) to ty's notion of ty param bounds, which can either be user-defined traits, or the
2246 /// built-in trait `Send`.
2247 pub fn compute_bounds<'gcx: 'tcx, 'tcx>(
2248     astconv: &dyn AstConv<'gcx, 'tcx>,
2249     param_ty: Ty<'tcx>,
2250     ast_bounds: &[hir::GenericBound],
2251     sized_by_default: SizedByDefault,
2252     span: Span,
2253 ) -> Bounds<'tcx> {
2254     let mut region_bounds = Vec::new();
2255     let mut trait_bounds = Vec::new();
2256
2257     for ast_bound in ast_bounds {
2258         match *ast_bound {
2259             hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::None) => trait_bounds.push(b),
2260             hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => {}
2261             hir::GenericBound::Outlives(ref l) => region_bounds.push(l),
2262         }
2263     }
2264
2265     let mut projection_bounds = Vec::new();
2266
2267     let mut trait_bounds: Vec<_> = trait_bounds.iter().map(|&bound| {
2268         let (poly_trait_ref, _) = astconv.instantiate_poly_trait_ref(
2269             bound,
2270             param_ty,
2271             &mut projection_bounds,
2272         );
2273         (poly_trait_ref, bound.span)
2274     }).collect();
2275
2276     let region_bounds = region_bounds
2277         .into_iter()
2278         .map(|r| (astconv.ast_region_to_region(r, None), r.span))
2279         .collect();
2280
2281     trait_bounds.sort_by_key(|(t, _)| t.def_id());
2282
2283     let implicitly_sized = if let SizedByDefault::Yes = sized_by_default {
2284         if !is_unsized(astconv, ast_bounds, span) {
2285             Some(span)
2286         } else {
2287             None
2288         }
2289     } else {
2290         None
2291     };
2292
2293     Bounds {
2294         region_bounds,
2295         implicitly_sized,
2296         trait_bounds,
2297         projection_bounds,
2298     }
2299 }
2300
2301 /// Converts a specific `GenericBound` from the AST into a set of
2302 /// predicates that apply to the self type. A vector is returned
2303 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2304 /// predicates) to one (`T: Foo`) to many (`T: Bar<X=i32>` adds `T: Bar`
2305 /// and `<T as Bar>::X == i32`).
2306 fn predicates_from_bound<'tcx>(
2307     astconv: &dyn AstConv<'tcx, 'tcx>,
2308     param_ty: Ty<'tcx>,
2309     bound: &hir::GenericBound,
2310 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2311     match *bound {
2312         hir::GenericBound::Trait(ref tr, hir::TraitBoundModifier::None) => {
2313             let mut projections = Vec::new();
2314             let (pred, _) = astconv.instantiate_poly_trait_ref(tr, param_ty, &mut projections);
2315             iter::once((pred.to_predicate(), tr.span)).chain(
2316                 projections
2317                     .into_iter()
2318                     .map(|(p, span)| (p.to_predicate(), span))
2319             ).collect()
2320         }
2321         hir::GenericBound::Outlives(ref lifetime) => {
2322             let region = astconv.ast_region_to_region(lifetime, None);
2323             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2324             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2325         }
2326         hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => vec![],
2327     }
2328 }
2329
2330 fn compute_sig_of_foreign_fn_decl<'a, 'tcx>(
2331     tcx: TyCtxt<'a, 'tcx, 'tcx>,
2332     def_id: DefId,
2333     decl: &hir::FnDecl,
2334     abi: abi::Abi,
2335 ) -> ty::PolyFnSig<'tcx> {
2336     let unsafety = if abi == abi::Abi::RustIntrinsic {
2337         intrisic_operation_unsafety(&*tcx.item_name(def_id).as_str())
2338     } else {
2339         hir::Unsafety::Unsafe
2340     };
2341     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl);
2342
2343     // feature gate SIMD types in FFI, since I (huonw) am not sure the
2344     // ABIs are handled at all correctly.
2345     if abi != abi::Abi::RustIntrinsic
2346         && abi != abi::Abi::PlatformIntrinsic
2347         && !tcx.features().simd_ffi
2348     {
2349         let check = |ast_ty: &hir::Ty, ty: Ty<'_>| {
2350             if ty.is_simd() {
2351                 tcx.sess
2352                    .struct_span_err(
2353                        ast_ty.span,
2354                        &format!(
2355                            "use of SIMD type `{}` in FFI is highly experimental and \
2356                             may result in invalid code",
2357                            tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2358                        ),
2359                    )
2360                    .help("add #![feature(simd_ffi)] to the crate attributes to enable")
2361                    .emit();
2362             }
2363         };
2364         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2365             check(&input, ty)
2366         }
2367         if let hir::Return(ref ty) = decl.output {
2368             check(&ty, *fty.output().skip_binder())
2369         }
2370     }
2371
2372     fty
2373 }
2374
2375 fn is_foreign_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> bool {
2376     match tcx.hir().get_if_local(def_id) {
2377         Some(Node::ForeignItem(..)) => true,
2378         Some(_) => false,
2379         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2380     }
2381 }
2382
2383 fn static_mutability<'a, 'tcx>(
2384     tcx: TyCtxt<'a, 'tcx, 'tcx>,
2385     def_id: DefId,
2386 ) -> Option<hir::Mutability> {
2387     match tcx.hir().get_if_local(def_id) {
2388         Some(Node::Item(&hir::Item {
2389             node: hir::ItemKind::Static(_, mutbl, _), ..
2390         })) |
2391         Some(Node::ForeignItem( &hir::ForeignItem {
2392             node: hir::ForeignItemKind::Static(_, mutbl), ..
2393         })) => Some(mutbl),
2394         Some(_) => None,
2395         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2396     }
2397 }
2398
2399 fn from_target_feature(
2400     tcx: TyCtxt<'_, '_, '_>,
2401     id: DefId,
2402     attr: &ast::Attribute,
2403     whitelist: &FxHashMap<String, Option<Symbol>>,
2404     target_features: &mut Vec<Symbol>,
2405 ) {
2406     let list = match attr.meta_item_list() {
2407         Some(list) => list,
2408         None => return,
2409     };
2410     let bad_item = |span| {
2411         let msg = "malformed `target_feature` attribute input";
2412         let code = "enable = \"..\"".to_owned();
2413         tcx.sess.struct_span_err(span, &msg)
2414             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2415             .emit();
2416     };
2417     let rust_features = tcx.features();
2418     for item in list {
2419         // Only `enable = ...` is accepted in the meta item list
2420         if !item.check_name(sym::enable) {
2421             bad_item(item.span());
2422             continue;
2423         }
2424
2425         // Must be of the form `enable = "..."` ( a string)
2426         let value = match item.value_str() {
2427             Some(value) => value,
2428             None => {
2429                 bad_item(item.span());
2430                 continue;
2431             }
2432         };
2433
2434         // We allow comma separation to enable multiple features
2435         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2436             // Only allow whitelisted features per platform
2437             let feature_gate = match whitelist.get(feature) {
2438                 Some(g) => g,
2439                 None => {
2440                     let msg = format!(
2441                         "the feature named `{}` is not valid for this target",
2442                         feature
2443                     );
2444                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2445                     err.span_label(
2446                         item.span(),
2447                         format!("`{}` is not valid for this target", feature),
2448                     );
2449                     if feature.starts_with("+") {
2450                         let valid = whitelist.contains_key(&feature[1..]);
2451                         if valid {
2452                             err.help("consider removing the leading `+` in the feature name");
2453                         }
2454                     }
2455                     err.emit();
2456                     return None;
2457                 }
2458             };
2459
2460             // Only allow features whose feature gates have been enabled
2461             let allowed = match feature_gate.as_ref().map(|s| *s) {
2462                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2463                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2464                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2465                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2466                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2467                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2468                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2469                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2470                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2471                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2472                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2473                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2474                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2475                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2476                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2477                 Some(name) => bug!("unknown target feature gate {}", name),
2478                 None => true,
2479             };
2480             if !allowed && id.is_local() {
2481                 feature_gate::emit_feature_err(
2482                     &tcx.sess.parse_sess,
2483                     feature_gate.unwrap(),
2484                     item.span(),
2485                     feature_gate::GateIssue::Language,
2486                     &format!("the target feature `{}` is currently unstable", feature),
2487                 );
2488             }
2489             Some(Symbol::intern(feature))
2490         }));
2491     }
2492 }
2493
2494 fn linkage_by_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, name: &str) -> Linkage {
2495     use rustc::mir::mono::Linkage::*;
2496
2497     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2498     // applicable to variable declarations and may not really make sense for
2499     // Rust code in the first place but whitelist them anyway and trust that
2500     // the user knows what s/he's doing. Who knows, unanticipated use cases
2501     // may pop up in the future.
2502     //
2503     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2504     // and don't have to be, LLVM treats them as no-ops.
2505     match name {
2506         "appending" => Appending,
2507         "available_externally" => AvailableExternally,
2508         "common" => Common,
2509         "extern_weak" => ExternalWeak,
2510         "external" => External,
2511         "internal" => Internal,
2512         "linkonce" => LinkOnceAny,
2513         "linkonce_odr" => LinkOnceODR,
2514         "private" => Private,
2515         "weak" => WeakAny,
2516         "weak_odr" => WeakODR,
2517         _ => {
2518             let span = tcx.hir().span_if_local(def_id);
2519             if let Some(span) = span {
2520                 tcx.sess.span_fatal(span, "invalid linkage specified")
2521             } else {
2522                 tcx.sess
2523                    .fatal(&format!("invalid linkage specified: {}", name))
2524             }
2525         }
2526     }
2527 }
2528
2529 fn codegen_fn_attrs<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, id: DefId) -> CodegenFnAttrs {
2530     let attrs = tcx.get_attrs(id);
2531
2532     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2533
2534     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2535
2536     let mut inline_span = None;
2537     for attr in attrs.iter() {
2538         if attr.check_name(sym::cold) {
2539             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2540         } else if attr.check_name(sym::allocator) {
2541             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2542         } else if attr.check_name(sym::unwind) {
2543             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2544         } else if attr.check_name(sym::ffi_returns_twice) {
2545             if tcx.is_foreign_item(id) {
2546                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2547             } else {
2548                 // `#[ffi_returns_twice]` is only allowed `extern fn`s
2549                 struct_span_err!(
2550                     tcx.sess,
2551                     attr.span,
2552                     E0724,
2553                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2554                 ).emit();
2555             }
2556         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2557             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2558         } else if attr.check_name(sym::naked) {
2559             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2560         } else if attr.check_name(sym::no_mangle) {
2561             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2562         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2563             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2564         } else if attr.check_name(sym::no_debug) {
2565             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2566         } else if attr.check_name(sym::used) {
2567             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2568         } else if attr.check_name(sym::thread_local) {
2569             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2570         } else if attr.check_name(sym::export_name) {
2571             if let Some(s) = attr.value_str() {
2572                 if s.as_str().contains("\0") {
2573                     // `#[export_name = ...]` will be converted to a null-terminated string,
2574                     // so it may not contain any null characters.
2575                     struct_span_err!(
2576                         tcx.sess,
2577                         attr.span,
2578                         E0648,
2579                         "`export_name` may not contain null characters"
2580                     ).emit();
2581                 }
2582                 codegen_fn_attrs.export_name = Some(s);
2583             }
2584         } else if attr.check_name(sym::target_feature) {
2585             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2586                 let msg = "#[target_feature(..)] can only be applied to `unsafe` functions";
2587                 tcx.sess.struct_span_err(attr.span, msg)
2588                     .span_label(attr.span, "can only be applied to `unsafe` functions")
2589                     .span_label(tcx.def_span(id), "not an `unsafe` function")
2590                     .emit();
2591             }
2592             from_target_feature(
2593                 tcx,
2594                 id,
2595                 attr,
2596                 &whitelist,
2597                 &mut codegen_fn_attrs.target_features,
2598             );
2599         } else if attr.check_name(sym::linkage) {
2600             if let Some(val) = attr.value_str() {
2601                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2602             }
2603         } else if attr.check_name(sym::link_section) {
2604             if let Some(val) = attr.value_str() {
2605                 if val.as_str().bytes().any(|b| b == 0) {
2606                     let msg = format!(
2607                         "illegal null byte in link_section \
2608                          value: `{}`",
2609                         &val
2610                     );
2611                     tcx.sess.span_err(attr.span, &msg);
2612                 } else {
2613                     codegen_fn_attrs.link_section = Some(val);
2614                 }
2615             }
2616         } else if attr.check_name(sym::link_name) {
2617             codegen_fn_attrs.link_name = attr.value_str();
2618         }
2619     }
2620
2621     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2622         if attr.path != sym::inline {
2623             return ia;
2624         }
2625         match attr.meta().map(|i| i.node) {
2626             Some(MetaItemKind::Word) => {
2627                 mark_used(attr);
2628                 InlineAttr::Hint
2629             }
2630             Some(MetaItemKind::List(ref items)) => {
2631                 mark_used(attr);
2632                 inline_span = Some(attr.span);
2633                 if items.len() != 1 {
2634                     span_err!(
2635                         tcx.sess.diagnostic(),
2636                         attr.span,
2637                         E0534,
2638                         "expected one argument"
2639                     );
2640                     InlineAttr::None
2641                 } else if list_contains_name(&items[..], sym::always) {
2642                     InlineAttr::Always
2643                 } else if list_contains_name(&items[..], sym::never) {
2644                     InlineAttr::Never
2645                 } else {
2646                     span_err!(
2647                         tcx.sess.diagnostic(),
2648                         items[0].span(),
2649                         E0535,
2650                         "invalid argument"
2651                     );
2652
2653                     InlineAttr::None
2654                 }
2655             }
2656             Some(MetaItemKind::NameValue(_)) => ia,
2657             None => ia,
2658         }
2659     });
2660
2661     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2662         if attr.path != sym::optimize {
2663             return ia;
2664         }
2665         let err = |sp, s| span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s);
2666         match attr.meta().map(|i| i.node) {
2667             Some(MetaItemKind::Word) => {
2668                 err(attr.span, "expected one argument");
2669                 ia
2670             }
2671             Some(MetaItemKind::List(ref items)) => {
2672                 mark_used(attr);
2673                 inline_span = Some(attr.span);
2674                 if items.len() != 1 {
2675                     err(attr.span, "expected one argument");
2676                     OptimizeAttr::None
2677                 } else if list_contains_name(&items[..], sym::size) {
2678                     OptimizeAttr::Size
2679                 } else if list_contains_name(&items[..], sym::speed) {
2680                     OptimizeAttr::Speed
2681                 } else {
2682                     err(items[0].span(), "invalid argument");
2683                     OptimizeAttr::None
2684                 }
2685             }
2686             Some(MetaItemKind::NameValue(_)) => ia,
2687             None => ia,
2688         }
2689     });
2690
2691     // If a function uses #[target_feature] it can't be inlined into general
2692     // purpose functions as they wouldn't have the right target features
2693     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2694     // respected.
2695     if codegen_fn_attrs.target_features.len() > 0 {
2696         if codegen_fn_attrs.inline == InlineAttr::Always {
2697             if let Some(span) = inline_span {
2698                 tcx.sess.span_err(
2699                     span,
2700                     "cannot use #[inline(always)] with \
2701                      #[target_feature]",
2702                 );
2703             }
2704         }
2705     }
2706
2707     // Weak lang items have the same semantics as "std internal" symbols in the
2708     // sense that they're preserved through all our LTO passes and only
2709     // strippable by the linker.
2710     //
2711     // Additionally weak lang items have predetermined symbol names.
2712     if tcx.is_weak_lang_item(id) {
2713         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2714     }
2715     if let Some(name) = weak_lang_items::link_name(&attrs) {
2716         codegen_fn_attrs.export_name = Some(name);
2717         codegen_fn_attrs.link_name = Some(name);
2718     }
2719
2720     // Internal symbols to the standard library all have no_mangle semantics in
2721     // that they have defined symbol names present in the function name. This
2722     // also applies to weak symbols where they all have known symbol names.
2723     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2724         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2725     }
2726
2727     codegen_fn_attrs
2728 }