]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
Implement From<Local> for Place and PlaceBase
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds, SizedByDefault};
18 use crate::constrained_generic_params as cgp;
19 use crate::check::intrinsic::intrisic_operation_unsafety;
20 use crate::lint;
21 use crate::middle::resolve_lifetime as rl;
22 use crate::middle::weak_lang_items;
23 use rustc::mir::mono::Linkage;
24 use rustc::ty::query::Providers;
25 use rustc::ty::subst::{Subst, InternalSubsts};
26 use rustc::ty::util::Discr;
27 use rustc::ty::util::IntTypeExt;
28 use rustc::ty::subst::UnpackedKind;
29 use rustc::ty::{self, AdtKind, DefIdTree, ToPolyTraitRef, Ty, TyCtxt, Const};
30 use rustc::ty::{ReprOptions, ToPredicate};
31 use rustc::util::captures::Captures;
32 use rustc::util::nodemap::FxHashMap;
33 use rustc_target::spec::abi;
34
35 use syntax::ast;
36 use syntax::ast::{Ident, MetaItemKind};
37 use syntax::attr::{InlineAttr, OptimizeAttr, list_contains_name, mark_used};
38 use syntax::source_map::Spanned;
39 use syntax::feature_gate;
40 use syntax::symbol::{InternedString, kw, Symbol, sym};
41 use syntax_pos::{Span, DUMMY_SP};
42
43 use rustc::hir::def::{CtorKind, Res, DefKind};
44 use rustc::hir::Node;
45 use rustc::hir::def_id::{DefId, LOCAL_CRATE};
46 use rustc::hir::intravisit::{self, NestedVisitorMap, Visitor};
47 use rustc::hir::GenericParamKind;
48 use rustc::hir::{self, CodegenFnAttrFlags, CodegenFnAttrs, Unsafety};
49
50 use errors::{Applicability, DiagnosticId};
51
52 use std::iter;
53
54 struct OnlySelfBounds(bool);
55
56 ///////////////////////////////////////////////////////////////////////////
57 // Main entry point
58
59 fn collect_mod_item_types<'tcx>(tcx: TyCtxt<'tcx>, module_def_id: DefId) {
60     tcx.hir().visit_item_likes_in_module(
61         module_def_id,
62         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor()
63     );
64 }
65
66 pub fn provide(providers: &mut Providers<'_>) {
67     *providers = Providers {
68         type_of,
69         generics_of,
70         predicates_of,
71         predicates_defined_on,
72         explicit_predicates_of,
73         super_predicates_of,
74         type_param_predicates,
75         trait_def,
76         adt_def,
77         fn_sig,
78         impl_trait_ref,
79         impl_polarity,
80         is_foreign_item,
81         static_mutability,
82         codegen_fn_attrs,
83         collect_mod_item_types,
84         ..*providers
85     };
86 }
87
88 ///////////////////////////////////////////////////////////////////////////
89
90 /// Context specific to some particular item. This is what implements
91 /// `AstConv`. It has information about the predicates that are defined
92 /// on the trait. Unfortunately, this predicate information is
93 /// available in various different forms at various points in the
94 /// process. So we can't just store a pointer to e.g., the AST or the
95 /// parsed ty form, we have to be more flexible. To this end, the
96 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
97 /// `get_type_parameter_bounds` requests, drawing the information from
98 /// the AST (`hir::Generics`), recursively.
99 pub struct ItemCtxt<'tcx> {
100     tcx: TyCtxt<'tcx>,
101     item_def_id: DefId,
102 }
103
104 ///////////////////////////////////////////////////////////////////////////
105
106 struct CollectItemTypesVisitor<'tcx> {
107     tcx: TyCtxt<'tcx>,
108 }
109
110 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
111     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
112         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
113     }
114
115     fn visit_item(&mut self, item: &'tcx hir::Item) {
116         convert_item(self.tcx, item.hir_id);
117         intravisit::walk_item(self, item);
118     }
119
120     fn visit_generics(&mut self, generics: &'tcx hir::Generics) {
121         for param in &generics.params {
122             match param.kind {
123                 hir::GenericParamKind::Lifetime { .. } => {}
124                 hir::GenericParamKind::Type {
125                     default: Some(_), ..
126                 } => {
127                     let def_id = self.tcx.hir().local_def_id_from_hir_id(param.hir_id);
128                     self.tcx.type_of(def_id);
129                 }
130                 hir::GenericParamKind::Type { .. } => {}
131                 hir::GenericParamKind::Const { .. } => {
132                     let def_id = self.tcx.hir().local_def_id_from_hir_id(param.hir_id);
133                     self.tcx.type_of(def_id);
134                 }
135             }
136         }
137         intravisit::walk_generics(self, generics);
138     }
139
140     fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
141         if let hir::ExprKind::Closure(..) = expr.node {
142             let def_id = self.tcx.hir().local_def_id_from_hir_id(expr.hir_id);
143             self.tcx.generics_of(def_id);
144             self.tcx.type_of(def_id);
145         }
146         intravisit::walk_expr(self, expr);
147     }
148
149     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem) {
150         convert_trait_item(self.tcx, trait_item.hir_id);
151         intravisit::walk_trait_item(self, trait_item);
152     }
153
154     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem) {
155         convert_impl_item(self.tcx, impl_item.hir_id);
156         intravisit::walk_impl_item(self, impl_item);
157     }
158 }
159
160 ///////////////////////////////////////////////////////////////////////////
161 // Utility types and common code for the above passes.
162
163 impl ItemCtxt<'tcx> {
164     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
165         ItemCtxt { tcx, item_def_id }
166     }
167
168     pub fn to_ty(&self, ast_ty: &'tcx hir::Ty) -> Ty<'tcx> {
169         AstConv::ast_ty_to_ty(self, ast_ty)
170     }
171 }
172
173 impl AstConv<'tcx> for ItemCtxt<'tcx> {
174     fn tcx(&self) -> TyCtxt<'tcx> {
175         self.tcx
176     }
177
178     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId)
179                                  -> &'tcx ty::GenericPredicates<'tcx> {
180         self.tcx
181             .at(span)
182             .type_param_predicates((self.item_def_id, def_id))
183     }
184
185     fn re_infer(
186         &self,
187         _: Option<&ty::GenericParamDef>,
188         _: Span,
189     ) -> Option<ty::Region<'tcx>> {
190         None
191     }
192
193     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
194         self.tcx().sess.struct_span_err_with_code(
195             span,
196             "the type placeholder `_` is not allowed within types on item signatures",
197             DiagnosticId::Error("E0121".into()),
198         ).span_label(span, "not allowed in type signatures")
199          .emit();
200
201         self.tcx().types.err
202     }
203
204     fn ct_infer(
205         &self,
206         _: Ty<'tcx>,
207         _: Option<&ty::GenericParamDef>,
208         span: Span,
209     ) -> &'tcx Const<'tcx> {
210         self.tcx().sess.struct_span_err_with_code(
211             span,
212             "the const placeholder `_` is not allowed within types on item signatures",
213             DiagnosticId::Error("E0121".into()),
214         ).span_label(span, "not allowed in type signatures")
215          .emit();
216
217         self.tcx().consts.err
218     }
219
220     fn projected_ty_from_poly_trait_ref(
221         &self,
222         span: Span,
223         item_def_id: DefId,
224         poly_trait_ref: ty::PolyTraitRef<'tcx>,
225     ) -> Ty<'tcx> {
226         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
227             self.tcx().mk_projection(item_def_id, trait_ref.substs)
228         } else {
229             // no late-bound regions, we can just ignore the binder
230             span_err!(
231                 self.tcx().sess,
232                 span,
233                 E0212,
234                 "cannot extract an associated type from a higher-ranked trait bound \
235                  in this context"
236             );
237             self.tcx().types.err
238         }
239     }
240
241     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
242         // types in item signatures are not normalized, to avoid undue
243         // dependencies.
244         ty
245     }
246
247     fn set_tainted_by_errors(&self) {
248         // no obvious place to track this, so just let it go
249     }
250
251     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
252         // no place to record types from signatures?
253     }
254 }
255
256 fn type_param_predicates<'tcx>(
257     tcx: TyCtxt<'tcx>,
258     (item_def_id, def_id): (DefId, DefId),
259 ) -> &'tcx ty::GenericPredicates<'tcx> {
260     use rustc::hir::*;
261
262     // In the AST, bounds can derive from two places. Either
263     // written inline like `<T : Foo>` or in a where clause like
264     // `where T : Foo`.
265
266     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
267     let param_owner = tcx.hir().ty_param_owner(param_id);
268     let param_owner_def_id = tcx.hir().local_def_id_from_hir_id(param_owner);
269     let generics = tcx.generics_of(param_owner_def_id);
270     let index = generics.param_def_id_to_index[&def_id];
271     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id).as_interned_str());
272
273     // Don't look for bounds where the type parameter isn't in scope.
274     let parent = if item_def_id == param_owner_def_id {
275         None
276     } else {
277         tcx.generics_of(item_def_id).parent
278     };
279
280     let result = parent.map_or(&tcx.common.empty_predicates, |parent| {
281         let icx = ItemCtxt::new(tcx, parent);
282         icx.get_type_parameter_bounds(DUMMY_SP, def_id)
283     });
284     let mut extend = None;
285
286     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
287     let ast_generics = match tcx.hir().get(item_hir_id) {
288         Node::TraitItem(item) => &item.generics,
289
290         Node::ImplItem(item) => &item.generics,
291
292         Node::Item(item) => {
293             match item.node {
294                 ItemKind::Fn(.., ref generics, _)
295                 | ItemKind::Impl(_, _, _, ref generics, ..)
296                 | ItemKind::Ty(_, ref generics)
297                 | ItemKind::Existential(ExistTy {
298                     ref generics,
299                     impl_trait_fn: None,
300                     ..
301                 })
302                 | ItemKind::Enum(_, ref generics)
303                 | ItemKind::Struct(_, ref generics)
304                 | ItemKind::Union(_, ref generics) => generics,
305                 ItemKind::Trait(_, _, ref generics, ..) => {
306                     // Implied `Self: Trait` and supertrait bounds.
307                     if param_id == item_hir_id {
308                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
309                         extend = Some((identity_trait_ref.to_predicate(), item.span));
310                     }
311                     generics
312                 }
313                 _ => return result,
314             }
315         }
316
317         Node::ForeignItem(item) => match item.node {
318             ForeignItemKind::Fn(_, _, ref generics) => generics,
319             _ => return result,
320         },
321
322         _ => return result,
323     };
324
325     let icx = ItemCtxt::new(tcx, item_def_id);
326     let mut result = (*result).clone();
327     result.predicates.extend(extend.into_iter());
328     result.predicates
329           .extend(icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty,
330                   OnlySelfBounds(true)));
331     tcx.arena.alloc(result)
332 }
333
334 impl ItemCtxt<'tcx> {
335     /// Finds bounds from `hir::Generics`. This requires scanning through the
336     /// AST. We do this to avoid having to convert *all* the bounds, which
337     /// would create artificial cycles. Instead we can only convert the
338     /// bounds for a type parameter `X` if `X::Foo` is used.
339     fn type_parameter_bounds_in_generics(
340         &self,
341         ast_generics: &'tcx hir::Generics,
342         param_id: hir::HirId,
343         ty: Ty<'tcx>,
344         only_self_bounds: OnlySelfBounds,
345     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
346         let from_ty_params = ast_generics
347             .params
348             .iter()
349             .filter_map(|param| match param.kind {
350                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
351                 _ => None,
352             })
353             .flat_map(|bounds| bounds.iter())
354             .flat_map(|b| predicates_from_bound(self, ty, b));
355
356         let from_where_clauses = ast_generics
357             .where_clause
358             .predicates
359             .iter()
360             .filter_map(|wp| match *wp {
361                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
362                 _ => None,
363             })
364             .flat_map(|bp| {
365                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
366                     Some(ty)
367                 } else if !only_self_bounds.0 {
368                     Some(self.to_ty(&bp.bounded_ty))
369                 } else {
370                     None
371                 };
372                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
373             })
374             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b));
375
376         from_ty_params.chain(from_where_clauses).collect()
377     }
378 }
379
380 /// Tests whether this is the AST for a reference to the type
381 /// parameter with ID `param_id`. We use this so as to avoid running
382 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
383 /// conversion of the type to avoid inducing unnecessary cycles.
384 fn is_param<'tcx>(tcx: TyCtxt<'tcx>, ast_ty: &hir::Ty, param_id: hir::HirId) -> bool {
385     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.node {
386         match path.res {
387             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
388                 def_id == tcx.hir().local_def_id_from_hir_id(param_id)
389             }
390             _ => false,
391         }
392     } else {
393         false
394     }
395 }
396
397 fn convert_item<'tcx>(tcx: TyCtxt<'tcx>, item_id: hir::HirId) {
398     let it = tcx.hir().expect_item(item_id);
399     debug!("convert: item {} with id {}", it.ident, it.hir_id);
400     let def_id = tcx.hir().local_def_id_from_hir_id(item_id);
401     match it.node {
402         // These don't define types.
403         hir::ItemKind::ExternCrate(_)
404         | hir::ItemKind::Use(..)
405         | hir::ItemKind::Mod(_)
406         | hir::ItemKind::GlobalAsm(_) => {}
407         hir::ItemKind::ForeignMod(ref foreign_mod) => {
408             for item in &foreign_mod.items {
409                 let def_id = tcx.hir().local_def_id_from_hir_id(item.hir_id);
410                 tcx.generics_of(def_id);
411                 tcx.type_of(def_id);
412                 tcx.predicates_of(def_id);
413                 if let hir::ForeignItemKind::Fn(..) = item.node {
414                     tcx.fn_sig(def_id);
415                 }
416             }
417         }
418         hir::ItemKind::Enum(ref enum_definition, _) => {
419             tcx.generics_of(def_id);
420             tcx.type_of(def_id);
421             tcx.predicates_of(def_id);
422             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
423         }
424         hir::ItemKind::Impl(..) => {
425             tcx.generics_of(def_id);
426             tcx.type_of(def_id);
427             tcx.impl_trait_ref(def_id);
428             tcx.predicates_of(def_id);
429         }
430         hir::ItemKind::Trait(..) => {
431             tcx.generics_of(def_id);
432             tcx.trait_def(def_id);
433             tcx.at(it.span).super_predicates_of(def_id);
434             tcx.predicates_of(def_id);
435         }
436         hir::ItemKind::TraitAlias(..) => {
437             tcx.generics_of(def_id);
438             tcx.at(it.span).super_predicates_of(def_id);
439             tcx.predicates_of(def_id);
440         }
441         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
442             tcx.generics_of(def_id);
443             tcx.type_of(def_id);
444             tcx.predicates_of(def_id);
445
446             for f in struct_def.fields() {
447                 let def_id = tcx.hir().local_def_id_from_hir_id(f.hir_id);
448                 tcx.generics_of(def_id);
449                 tcx.type_of(def_id);
450                 tcx.predicates_of(def_id);
451             }
452
453             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
454                 convert_variant_ctor(tcx, ctor_hir_id);
455             }
456         }
457
458         // Desugared from `impl Trait`, so visited by the function's return type.
459         hir::ItemKind::Existential(hir::ExistTy {
460             impl_trait_fn: Some(_),
461             ..
462         }) => {}
463
464         hir::ItemKind::Existential(..)
465         | hir::ItemKind::Ty(..)
466         | hir::ItemKind::Static(..)
467         | hir::ItemKind::Const(..)
468         | hir::ItemKind::Fn(..) => {
469             tcx.generics_of(def_id);
470             tcx.type_of(def_id);
471             tcx.predicates_of(def_id);
472             if let hir::ItemKind::Fn(..) = it.node {
473                 tcx.fn_sig(def_id);
474             }
475         }
476     }
477 }
478
479 fn convert_trait_item<'tcx>(tcx: TyCtxt<'tcx>, trait_item_id: hir::HirId) {
480     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
481     let def_id = tcx.hir().local_def_id_from_hir_id(trait_item.hir_id);
482     tcx.generics_of(def_id);
483
484     match trait_item.node {
485         hir::TraitItemKind::Const(..)
486         | hir::TraitItemKind::Type(_, Some(_))
487         | hir::TraitItemKind::Method(..) => {
488             tcx.type_of(def_id);
489             if let hir::TraitItemKind::Method(..) = trait_item.node {
490                 tcx.fn_sig(def_id);
491             }
492         }
493
494         hir::TraitItemKind::Type(_, None) => {}
495     };
496
497     tcx.predicates_of(def_id);
498 }
499
500 fn convert_impl_item<'tcx>(tcx: TyCtxt<'tcx>, impl_item_id: hir::HirId) {
501     let def_id = tcx.hir().local_def_id_from_hir_id(impl_item_id);
502     tcx.generics_of(def_id);
503     tcx.type_of(def_id);
504     tcx.predicates_of(def_id);
505     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).node {
506         tcx.fn_sig(def_id);
507     }
508 }
509
510 fn convert_variant_ctor<'tcx>(tcx: TyCtxt<'tcx>, ctor_id: hir::HirId) {
511     let def_id = tcx.hir().local_def_id_from_hir_id(ctor_id);
512     tcx.generics_of(def_id);
513     tcx.type_of(def_id);
514     tcx.predicates_of(def_id);
515 }
516
517 fn convert_enum_variant_types<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, variants: &[hir::Variant]) {
518     let def = tcx.adt_def(def_id);
519     let repr_type = def.repr.discr_type();
520     let initial = repr_type.initial_discriminant(tcx);
521     let mut prev_discr = None::<Discr<'tcx>>;
522
523     // fill the discriminant values and field types
524     for variant in variants {
525         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
526         prev_discr = Some(
527             if let Some(ref e) = variant.node.disr_expr {
528                 let expr_did = tcx.hir().local_def_id_from_hir_id(e.hir_id);
529                 def.eval_explicit_discr(tcx, expr_did)
530             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
531                 Some(discr)
532             } else {
533                 struct_span_err!(
534                     tcx.sess,
535                     variant.span,
536                     E0370,
537                     "enum discriminant overflowed"
538                 ).span_label(
539                     variant.span,
540                     format!("overflowed on value after {}", prev_discr.unwrap()),
541                 ).note(&format!(
542                     "explicitly set `{} = {}` if that is desired outcome",
543                     variant.node.ident, wrapped_discr
544                 ))
545                 .emit();
546                 None
547             }.unwrap_or(wrapped_discr),
548         );
549
550         for f in variant.node.data.fields() {
551             let def_id = tcx.hir().local_def_id_from_hir_id(f.hir_id);
552             tcx.generics_of(def_id);
553             tcx.type_of(def_id);
554             tcx.predicates_of(def_id);
555         }
556
557         // Convert the ctor, if any. This also registers the variant as
558         // an item.
559         if let Some(ctor_hir_id) = variant.node.data.ctor_hir_id() {
560             convert_variant_ctor(tcx, ctor_hir_id);
561         }
562     }
563 }
564
565 fn convert_variant<'tcx>(
566     tcx: TyCtxt<'tcx>,
567     variant_did: Option<DefId>,
568     ctor_did: Option<DefId>,
569     ident: Ident,
570     discr: ty::VariantDiscr,
571     def: &hir::VariantData,
572     adt_kind: ty::AdtKind,
573     parent_did: DefId,
574 ) -> ty::VariantDef {
575     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
576     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
577     let fields = def
578         .fields()
579         .iter()
580         .map(|f| {
581             let fid = tcx.hir().local_def_id_from_hir_id(f.hir_id);
582             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
583             if let Some(prev_span) = dup_span {
584                 struct_span_err!(
585                     tcx.sess,
586                     f.span,
587                     E0124,
588                     "field `{}` is already declared",
589                     f.ident
590                 ).span_label(f.span, "field already declared")
591                  .span_label(prev_span, format!("`{}` first declared here", f.ident))
592                  .emit();
593             } else {
594                 seen_fields.insert(f.ident.modern(), f.span);
595             }
596
597             ty::FieldDef {
598                 did: fid,
599                 ident: f.ident,
600                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
601             }
602         })
603         .collect();
604     let recovered = match def {
605         hir::VariantData::Struct(_, r) => *r,
606         _ => false,
607     };
608     ty::VariantDef::new(
609         tcx,
610         ident,
611         variant_did,
612         ctor_did,
613         discr,
614         fields,
615         CtorKind::from_hir(def),
616         adt_kind,
617         parent_did,
618         recovered,
619     )
620 }
621
622 fn adt_def<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> &'tcx ty::AdtDef {
623     use rustc::hir::*;
624
625     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
626     let item = match tcx.hir().get(hir_id) {
627         Node::Item(item) => item,
628         _ => bug!(),
629     };
630
631     let repr = ReprOptions::new(tcx, def_id);
632     let (kind, variants) = match item.node {
633         ItemKind::Enum(ref def, _) => {
634             let mut distance_from_explicit = 0;
635             let variants = def.variants
636                 .iter()
637                 .map(|v| {
638                     let variant_did = Some(tcx.hir().local_def_id_from_hir_id(v.node.id));
639                     let ctor_did = v.node.data.ctor_hir_id()
640                         .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
641
642                     let discr = if let Some(ref e) = v.node.disr_expr {
643                         distance_from_explicit = 0;
644                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id_from_hir_id(e.hir_id))
645                     } else {
646                         ty::VariantDiscr::Relative(distance_from_explicit)
647                     };
648                     distance_from_explicit += 1;
649
650                     convert_variant(tcx, variant_did, ctor_did, v.node.ident, discr,
651                                     &v.node.data, AdtKind::Enum, def_id)
652                 })
653                 .collect();
654
655             (AdtKind::Enum, variants)
656         }
657         ItemKind::Struct(ref def, _) => {
658             let variant_did = None;
659             let ctor_did = def.ctor_hir_id()
660                 .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
661
662             let variants = std::iter::once(convert_variant(
663                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
664                 AdtKind::Struct, def_id,
665             )).collect();
666
667             (AdtKind::Struct, variants)
668         }
669         ItemKind::Union(ref def, _) => {
670             let variant_did = None;
671             let ctor_did = def.ctor_hir_id()
672                 .map(|hir_id| tcx.hir().local_def_id_from_hir_id(hir_id));
673
674             let variants = std::iter::once(convert_variant(
675                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
676                 AdtKind::Union, def_id,
677             )).collect();
678
679             (AdtKind::Union, variants)
680         },
681         _ => bug!(),
682     };
683     tcx.alloc_adt_def(def_id, kind, variants, repr)
684 }
685
686 /// Ensures that the super-predicates of the trait with a `DefId`
687 /// of `trait_def_id` are converted and stored. This also ensures that
688 /// the transitive super-predicates are converted.
689 fn super_predicates_of<'tcx>(
690     tcx: TyCtxt<'tcx>,
691     trait_def_id: DefId,
692 ) -> &'tcx ty::GenericPredicates<'tcx> {
693     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
694     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
695
696     let item = match tcx.hir().get(trait_hir_id) {
697         Node::Item(item) => item,
698         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
699     };
700
701     let (generics, bounds) = match item.node {
702         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
703         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
704         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
705     };
706
707     let icx = ItemCtxt::new(tcx, trait_def_id);
708
709     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
710     let self_param_ty = tcx.mk_self_type();
711     let superbounds1 = AstConv::compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No,
712         item.span);
713
714     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
715
716     // Convert any explicit superbounds in the where-clause,
717     // e.g., `trait Foo where Self: Bar`.
718     // In the case of trait aliases, however, we include all bounds in the where-clause,
719     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
720     // as one of its "superpredicates".
721     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
722     let superbounds2 = icx.type_parameter_bounds_in_generics(
723         generics, item.hir_id, self_param_ty, OnlySelfBounds(!is_trait_alias));
724
725     // Combine the two lists to form the complete set of superbounds:
726     let superbounds: Vec<_> = superbounds1.into_iter().chain(superbounds2).collect();
727
728     // Now require that immediate supertraits are converted,
729     // which will, in turn, reach indirect supertraits.
730     for &(pred, span) in &superbounds {
731         debug!("superbound: {:?}", pred);
732         if let ty::Predicate::Trait(bound) = pred {
733             tcx.at(span).super_predicates_of(bound.def_id());
734         }
735     }
736
737     tcx.arena.alloc(ty::GenericPredicates {
738         parent: None,
739         predicates: superbounds,
740     })
741 }
742
743 fn trait_def<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> &'tcx ty::TraitDef {
744     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
745     let item = tcx.hir().expect_item(hir_id);
746
747     let (is_auto, unsafety) = match item.node {
748         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
749         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
750         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
751     };
752
753     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
754     if paren_sugar && !tcx.features().unboxed_closures {
755         let mut err = tcx.sess.struct_span_err(
756             item.span,
757             "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
758              which traits can use parenthetical notation",
759         );
760         help!(
761             &mut err,
762             "add `#![feature(unboxed_closures)]` to \
763              the crate attributes to use it"
764         );
765         err.emit();
766     }
767
768     let is_marker = tcx.has_attr(def_id, sym::marker);
769     let def_path_hash = tcx.def_path_hash(def_id);
770     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
771     tcx.arena.alloc(def)
772 }
773
774 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
775     struct LateBoundRegionsDetector<'tcx> {
776         tcx: TyCtxt<'tcx>,
777         outer_index: ty::DebruijnIndex,
778         has_late_bound_regions: Option<Span>,
779     }
780
781     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
782         fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
783             NestedVisitorMap::None
784         }
785
786         fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
787             if self.has_late_bound_regions.is_some() {
788                 return;
789             }
790             match ty.node {
791                 hir::TyKind::BareFn(..) => {
792                     self.outer_index.shift_in(1);
793                     intravisit::walk_ty(self, ty);
794                     self.outer_index.shift_out(1);
795                 }
796                 _ => intravisit::walk_ty(self, ty),
797             }
798         }
799
800         fn visit_poly_trait_ref(
801             &mut self,
802             tr: &'tcx hir::PolyTraitRef,
803             m: hir::TraitBoundModifier,
804         ) {
805             if self.has_late_bound_regions.is_some() {
806                 return;
807             }
808             self.outer_index.shift_in(1);
809             intravisit::walk_poly_trait_ref(self, tr, m);
810             self.outer_index.shift_out(1);
811         }
812
813         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
814             if self.has_late_bound_regions.is_some() {
815                 return;
816             }
817
818             match self.tcx.named_region(lt.hir_id) {
819                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
820                 Some(rl::Region::LateBound(debruijn, _, _))
821                 | Some(rl::Region::LateBoundAnon(debruijn, _)) if debruijn < self.outer_index => {}
822                 Some(rl::Region::LateBound(..))
823                 | Some(rl::Region::LateBoundAnon(..))
824                 | Some(rl::Region::Free(..))
825                 | None => {
826                     self.has_late_bound_regions = Some(lt.span);
827                 }
828             }
829         }
830     }
831
832     fn has_late_bound_regions<'tcx>(
833         tcx: TyCtxt<'tcx>,
834         generics: &'tcx hir::Generics,
835         decl: &'tcx hir::FnDecl,
836     ) -> Option<Span> {
837         let mut visitor = LateBoundRegionsDetector {
838             tcx,
839             outer_index: ty::INNERMOST,
840             has_late_bound_regions: None,
841         };
842         for param in &generics.params {
843             if let GenericParamKind::Lifetime { .. } = param.kind {
844                 if tcx.is_late_bound(param.hir_id) {
845                     return Some(param.span);
846                 }
847             }
848         }
849         visitor.visit_fn_decl(decl);
850         visitor.has_late_bound_regions
851     }
852
853     match node {
854         Node::TraitItem(item) => match item.node {
855             hir::TraitItemKind::Method(ref sig, _) => {
856                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
857             }
858             _ => None,
859         },
860         Node::ImplItem(item) => match item.node {
861             hir::ImplItemKind::Method(ref sig, _) => {
862                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
863             }
864             _ => None,
865         },
866         Node::ForeignItem(item) => match item.node {
867             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
868                 has_late_bound_regions(tcx, generics, fn_decl)
869             }
870             _ => None,
871         },
872         Node::Item(item) => match item.node {
873             hir::ItemKind::Fn(ref fn_decl, .., ref generics, _) => {
874                 has_late_bound_regions(tcx, generics, fn_decl)
875             }
876             _ => None,
877         },
878         _ => None,
879     }
880 }
881
882 fn generics_of<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> &'tcx ty::Generics {
883     use rustc::hir::*;
884
885     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
886
887     let node = tcx.hir().get(hir_id);
888     let parent_def_id = match node {
889         Node::ImplItem(_) | Node::TraitItem(_) | Node::Variant(_) |
890         Node::Ctor(..) | Node::Field(_) => {
891             let parent_id = tcx.hir().get_parent_item(hir_id);
892             Some(tcx.hir().local_def_id_from_hir_id(parent_id))
893         }
894         Node::Expr(&hir::Expr {
895             node: hir::ExprKind::Closure(..),
896             ..
897         }) => Some(tcx.closure_base_def_id(def_id)),
898         Node::Item(item) => match item.node {
899             ItemKind::Existential(hir::ExistTy { impl_trait_fn, .. }) => impl_trait_fn,
900             _ => None,
901         },
902         _ => None,
903     };
904
905     let mut opt_self = None;
906     let mut allow_defaults = false;
907
908     let no_generics = hir::Generics::empty();
909     let ast_generics = match node {
910         Node::TraitItem(item) => &item.generics,
911
912         Node::ImplItem(item) => &item.generics,
913
914         Node::Item(item) => {
915             match item.node {
916                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl(_, _, _, ref generics, ..) => {
917                     generics
918                 }
919
920                 ItemKind::Ty(_, ref generics)
921                 | ItemKind::Enum(_, ref generics)
922                 | ItemKind::Struct(_, ref generics)
923                 | ItemKind::Existential(hir::ExistTy { ref generics, .. })
924                 | ItemKind::Union(_, ref generics) => {
925                     allow_defaults = true;
926                     generics
927                 }
928
929                 ItemKind::Trait(_, _, ref generics, ..)
930                 | ItemKind::TraitAlias(ref generics, ..) => {
931                     // Add in the self type parameter.
932                     //
933                     // Something of a hack: use the node id for the trait, also as
934                     // the node id for the Self type parameter.
935                     let param_id = item.hir_id;
936
937                     opt_self = Some(ty::GenericParamDef {
938                         index: 0,
939                         name: kw::SelfUpper.as_interned_str(),
940                         def_id: tcx.hir().local_def_id_from_hir_id(param_id),
941                         pure_wrt_drop: false,
942                         kind: ty::GenericParamDefKind::Type {
943                             has_default: false,
944                             object_lifetime_default: rl::Set1::Empty,
945                             synthetic: None,
946                         },
947                     });
948
949                     allow_defaults = true;
950                     generics
951                 }
952
953                 _ => &no_generics,
954             }
955         }
956
957         Node::ForeignItem(item) => match item.node {
958             ForeignItemKind::Static(..) => &no_generics,
959             ForeignItemKind::Fn(_, _, ref generics) => generics,
960             ForeignItemKind::Type => &no_generics,
961         },
962
963         _ => &no_generics,
964     };
965
966     let has_self = opt_self.is_some();
967     let mut parent_has_self = false;
968     let mut own_start = has_self as u32;
969     let parent_count = parent_def_id.map_or(0, |def_id| {
970         let generics = tcx.generics_of(def_id);
971         assert_eq!(has_self, false);
972         parent_has_self = generics.has_self;
973         own_start = generics.count() as u32;
974         generics.parent_count + generics.params.len()
975     });
976
977     let mut params: Vec<_> = opt_self.into_iter().collect();
978
979     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
980     params.extend(
981         early_lifetimes
982             .enumerate()
983             .map(|(i, param)| ty::GenericParamDef {
984                 name: param.name.ident().as_interned_str(),
985                 index: own_start + i as u32,
986                 def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
987                 pure_wrt_drop: param.pure_wrt_drop,
988                 kind: ty::GenericParamDefKind::Lifetime,
989             }),
990     );
991
992     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
993
994     // Now create the real type parameters.
995     let type_start = own_start - has_self as u32 + params.len() as u32;
996     let mut i = 0;
997     params.extend(
998         ast_generics
999             .params
1000             .iter()
1001             .filter_map(|param| {
1002                 let kind = match param.kind {
1003                     GenericParamKind::Type {
1004                         ref default,
1005                         synthetic,
1006                         ..
1007                     } => {
1008                         if param.name.ident().name == kw::SelfUpper {
1009                             span_bug!(
1010                                 param.span,
1011                                 "`Self` should not be the name of a regular parameter"
1012                             );
1013                         }
1014
1015                         if !allow_defaults && default.is_some() {
1016                             if !tcx.features().default_type_parameter_fallback {
1017                                 tcx.lint_hir(
1018                                     lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1019                                     param.hir_id,
1020                                     param.span,
1021                                     &format!(
1022                                         "defaults for type parameters are only allowed in \
1023                                         `struct`, `enum`, `type`, or `trait` definitions."
1024                                     ),
1025                                 );
1026                             }
1027                         }
1028
1029                         ty::GenericParamDefKind::Type {
1030                             has_default: default.is_some(),
1031                             object_lifetime_default: object_lifetime_defaults
1032                                 .as_ref()
1033                                 .map_or(rl::Set1::Empty, |o| o[i]),
1034                             synthetic,
1035                         }
1036                     }
1037                     GenericParamKind::Const { .. } => {
1038                         if param.name.ident().name == kw::SelfUpper {
1039                             span_bug!(
1040                                 param.span,
1041                                 "`Self` should not be the name of a regular parameter",
1042                             );
1043                         }
1044
1045                         ty::GenericParamDefKind::Const
1046                     }
1047                     _ => return None,
1048                 };
1049
1050                 let param_def = ty::GenericParamDef {
1051                     index: type_start + i as u32,
1052                     name: param.name.ident().as_interned_str(),
1053                     def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
1054                     pure_wrt_drop: param.pure_wrt_drop,
1055                     kind,
1056                 };
1057                 i += 1;
1058                 Some(param_def)
1059             })
1060     );
1061
1062     // provide junk type parameter defs - the only place that
1063     // cares about anything but the length is instantiation,
1064     // and we don't do that for closures.
1065     if let Node::Expr(&hir::Expr {
1066         node: hir::ExprKind::Closure(.., gen),
1067         ..
1068     }) = node
1069     {
1070         let dummy_args = if gen.is_some() {
1071             &["<yield_ty>", "<return_ty>", "<witness>"][..]
1072         } else {
1073             &["<closure_kind>", "<closure_signature>"][..]
1074         };
1075
1076         params.extend(
1077             dummy_args
1078                 .iter()
1079                 .enumerate()
1080                 .map(|(i, &arg)| ty::GenericParamDef {
1081                     index: type_start + i as u32,
1082                     name: InternedString::intern(arg),
1083                     def_id,
1084                     pure_wrt_drop: false,
1085                     kind: ty::GenericParamDefKind::Type {
1086                         has_default: false,
1087                         object_lifetime_default: rl::Set1::Empty,
1088                         synthetic: None,
1089                     },
1090                 }),
1091         );
1092
1093         if let Some(upvars) = tcx.upvars(def_id) {
1094             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1095                 ty::GenericParamDef {
1096                     index: type_start + i,
1097                     name: InternedString::intern("<upvar>"),
1098                     def_id,
1099                     pure_wrt_drop: false,
1100                     kind: ty::GenericParamDefKind::Type {
1101                         has_default: false,
1102                         object_lifetime_default: rl::Set1::Empty,
1103                         synthetic: None,
1104                     },
1105                 }
1106             }));
1107         }
1108     }
1109
1110     let param_def_id_to_index = params
1111         .iter()
1112         .map(|param| (param.def_id, param.index))
1113         .collect();
1114
1115     tcx.arena.alloc(ty::Generics {
1116         parent: parent_def_id,
1117         parent_count,
1118         params,
1119         param_def_id_to_index,
1120         has_self: has_self || parent_has_self,
1121         has_late_bound_regions: has_late_bound_regions(tcx, node),
1122     })
1123 }
1124
1125 fn report_assoc_ty_on_inherent_impl<'tcx>(tcx: TyCtxt<'tcx>, span: Span) {
1126     span_err!(
1127         tcx.sess,
1128         span,
1129         E0202,
1130         "associated types are not yet supported in inherent impls (see #8995)"
1131     );
1132 }
1133
1134 fn type_of<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> Ty<'tcx> {
1135     checked_type_of(tcx, def_id, true).unwrap()
1136 }
1137
1138 /// Same as [`type_of`] but returns [`Option`] instead of failing.
1139 ///
1140 /// If you want to fail anyway, you can set the `fail` parameter to true, but in this case,
1141 /// you'd better just call [`type_of`] directly.
1142 pub fn checked_type_of<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, fail: bool) -> Option<Ty<'tcx>> {
1143     use rustc::hir::*;
1144
1145     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1146         Some(hir_id) => hir_id,
1147         None => {
1148             if !fail {
1149                 return None;
1150             }
1151             bug!("invalid node");
1152         }
1153     };
1154
1155     let icx = ItemCtxt::new(tcx, def_id);
1156
1157     Some(match tcx.hir().get(hir_id) {
1158         Node::TraitItem(item) => match item.node {
1159             TraitItemKind::Method(..) => {
1160                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1161                 tcx.mk_fn_def(def_id, substs)
1162             }
1163             TraitItemKind::Const(ref ty, _) | TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1164             TraitItemKind::Type(_, None) => {
1165                 if !fail {
1166                     return None;
1167                 }
1168                 span_bug!(item.span, "associated type missing default");
1169             }
1170         },
1171
1172         Node::ImplItem(item) => match item.node {
1173             ImplItemKind::Method(..) => {
1174                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1175                 tcx.mk_fn_def(def_id, substs)
1176             }
1177             ImplItemKind::Const(ref ty, _) => icx.to_ty(ty),
1178             ImplItemKind::Existential(_) => {
1179                 if tcx
1180                     .impl_trait_ref(tcx.hir().get_parent_did(hir_id))
1181                     .is_none()
1182                 {
1183                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1184                 }
1185
1186                 find_existential_constraints(tcx, def_id)
1187             }
1188             ImplItemKind::Type(ref ty) => {
1189                 if tcx
1190                     .impl_trait_ref(tcx.hir().get_parent_did(hir_id))
1191                     .is_none()
1192                 {
1193                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1194                 }
1195
1196                 icx.to_ty(ty)
1197             }
1198         },
1199
1200         Node::Item(item) => {
1201             match item.node {
1202                 ItemKind::Static(ref t, ..)
1203                 | ItemKind::Const(ref t, _)
1204                 | ItemKind::Ty(ref t, _)
1205                 | ItemKind::Impl(.., ref t, _) => icx.to_ty(t),
1206                 ItemKind::Fn(..) => {
1207                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1208                     tcx.mk_fn_def(def_id, substs)
1209                 }
1210                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1211                     let def = tcx.adt_def(def_id);
1212                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1213                     tcx.mk_adt(def, substs)
1214                 }
1215                 ItemKind::Existential(hir::ExistTy {
1216                     impl_trait_fn: None,
1217                     ..
1218                 }) => find_existential_constraints(tcx, def_id),
1219                 // Existential types desugared from `impl Trait`.
1220                 ItemKind::Existential(hir::ExistTy {
1221                     impl_trait_fn: Some(owner),
1222                     ..
1223                 }) => {
1224                     tcx.typeck_tables_of(owner)
1225                         .concrete_existential_types
1226                         .get(&def_id)
1227                         .map(|opaque| opaque.concrete_type)
1228                         .unwrap_or_else(|| {
1229                             // This can occur if some error in the
1230                             // owner fn prevented us from populating
1231                             // the `concrete_existential_types` table.
1232                             tcx.sess.delay_span_bug(
1233                                 DUMMY_SP,
1234                                 &format!(
1235                                     "owner {:?} has no existential type for {:?} in its tables",
1236                                     owner, def_id,
1237                                 ),
1238                             );
1239                             tcx.types.err
1240                         })
1241                 }
1242                 ItemKind::Trait(..)
1243                 | ItemKind::TraitAlias(..)
1244                 | ItemKind::Mod(..)
1245                 | ItemKind::ForeignMod(..)
1246                 | ItemKind::GlobalAsm(..)
1247                 | ItemKind::ExternCrate(..)
1248                 | ItemKind::Use(..) => {
1249                     if !fail {
1250                         return None;
1251                     }
1252                     span_bug!(
1253                         item.span,
1254                         "compute_type_of_item: unexpected item type: {:?}",
1255                         item.node
1256                     );
1257                 }
1258             }
1259         }
1260
1261         Node::ForeignItem(foreign_item) => match foreign_item.node {
1262             ForeignItemKind::Fn(..) => {
1263                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1264                 tcx.mk_fn_def(def_id, substs)
1265             }
1266             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1267             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1268         },
1269
1270         Node::Ctor(&ref def) | Node::Variant(&Spanned {
1271             node: hir::VariantKind { data: ref def, .. },
1272             ..
1273         }) => match *def {
1274             VariantData::Unit(..) | VariantData::Struct(..) => {
1275                 tcx.type_of(tcx.hir().get_parent_did(hir_id))
1276             }
1277             VariantData::Tuple(..) => {
1278                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1279                 tcx.mk_fn_def(def_id, substs)
1280             }
1281         },
1282
1283         Node::Field(field) => icx.to_ty(&field.ty),
1284
1285         Node::Expr(&hir::Expr {
1286             node: hir::ExprKind::Closure(.., gen),
1287             ..
1288         }) => {
1289             if gen.is_some() {
1290                 return Some(tcx.typeck_tables_of(def_id).node_type(hir_id));
1291             }
1292
1293             let substs = ty::ClosureSubsts {
1294                 substs: InternalSubsts::identity_for_item(tcx, def_id),
1295             };
1296
1297             tcx.mk_closure(def_id, substs)
1298         }
1299
1300         Node::AnonConst(_) => {
1301             let parent_node = tcx.hir().get(tcx.hir().get_parent_node_by_hir_id(hir_id));
1302             match parent_node {
1303                 Node::Ty(&hir::Ty {
1304                     node: hir::TyKind::Array(_, ref constant),
1305                     ..
1306                 })
1307                 | Node::Ty(&hir::Ty {
1308                     node: hir::TyKind::Typeof(ref constant),
1309                     ..
1310                 })
1311                 | Node::Expr(&hir::Expr {
1312                     node: ExprKind::Repeat(_, ref constant),
1313                     ..
1314                 }) if constant.hir_id == hir_id =>
1315                 {
1316                     tcx.types.usize
1317                 }
1318
1319                 Node::Variant(&Spanned {
1320                     node:
1321                         VariantKind {
1322                             disr_expr: Some(ref e),
1323                             ..
1324                         },
1325                     ..
1326                 }) if e.hir_id == hir_id =>
1327                 {
1328                     tcx.adt_def(tcx.hir().get_parent_did(hir_id))
1329                         .repr
1330                         .discr_type()
1331                         .to_ty(tcx)
1332                 }
1333
1334                 Node::Ty(&hir::Ty { node: hir::TyKind::Path(_), .. }) |
1335                 Node::Expr(&hir::Expr { node: ExprKind::Struct(..), .. }) |
1336                 Node::Expr(&hir::Expr { node: ExprKind::Path(_), .. }) |
1337                 Node::TraitRef(..) => {
1338                     let path = match parent_node {
1339                         Node::Ty(&hir::Ty {
1340                             node: hir::TyKind::Path(QPath::Resolved(_, ref path)),
1341                             ..
1342                         })
1343                         | Node::Expr(&hir::Expr {
1344                             node: ExprKind::Path(QPath::Resolved(_, ref path)),
1345                             ..
1346                         }) => {
1347                             Some(&**path)
1348                         }
1349                         Node::Expr(&hir::Expr { node: ExprKind::Struct(ref path, ..), .. }) => {
1350                             if let QPath::Resolved(_, ref path) = **path {
1351                                 Some(&**path)
1352                             } else {
1353                                 None
1354                             }
1355                         }
1356                         Node::TraitRef(&hir::TraitRef { ref path, .. }) => Some(path),
1357                         _ => None,
1358                     };
1359
1360                     if let Some(path) = path {
1361                         let arg_index = path.segments.iter()
1362                             .filter_map(|seg| seg.args.as_ref())
1363                             .map(|generic_args| generic_args.args.as_ref())
1364                             .find_map(|args| {
1365                                 args.iter()
1366                                     .filter(|arg| arg.is_const())
1367                                     .enumerate()
1368                                     .filter(|(_, arg)| arg.id() == hir_id)
1369                                     .map(|(index, _)| index)
1370                                     .next()
1371                             })
1372                             .or_else(|| {
1373                                 if !fail {
1374                                     None
1375                                 } else {
1376                                     bug!("no arg matching AnonConst in path")
1377                                 }
1378                             })?;
1379
1380                         // We've encountered an `AnonConst` in some path, so we need to
1381                         // figure out which generic parameter it corresponds to and return
1382                         // the relevant type.
1383                         let generics = match path.res {
1384                             Res::Def(DefKind::Ctor(..), def_id) => {
1385                                 tcx.generics_of(tcx.parent(def_id).unwrap())
1386                             }
1387                             Res::Def(_, def_id) => tcx.generics_of(def_id),
1388                             Res::Err => return Some(tcx.types.err),
1389                             _ if !fail => return None,
1390                             res => {
1391                                 tcx.sess.delay_span_bug(
1392                                     DUMMY_SP,
1393                                     &format!(
1394                                         "unexpected const parent path def {:?}",
1395                                         res,
1396                                     ),
1397                                 );
1398                                 return Some(tcx.types.err);
1399                             }
1400                         };
1401
1402                         generics.params.iter()
1403                             .filter(|param| {
1404                                 if let ty::GenericParamDefKind::Const = param.kind {
1405                                     true
1406                                 } else {
1407                                     false
1408                                 }
1409                             })
1410                             .nth(arg_index)
1411                             .map(|param| tcx.type_of(param.def_id))
1412                             // This is no generic parameter associated with the arg. This is
1413                             // probably from an extra arg where one is not needed.
1414                             .unwrap_or(tcx.types.err)
1415                     } else {
1416                         if !fail {
1417                             return None;
1418                         }
1419                         tcx.sess.delay_span_bug(
1420                             DUMMY_SP,
1421                             &format!(
1422                                 "unexpected const parent path {:?}",
1423                                 parent_node,
1424                             ),
1425                         );
1426                         return Some(tcx.types.err);
1427                     }
1428                 }
1429
1430                 x => {
1431                     if !fail {
1432                         return None;
1433                     }
1434                     tcx.sess.delay_span_bug(
1435                         DUMMY_SP,
1436                         &format!(
1437                             "unexpected const parent in type_of_def_id(): {:?}", x
1438                         ),
1439                     );
1440                     tcx.types.err
1441                 }
1442             }
1443         }
1444
1445         Node::GenericParam(param) => match &param.kind {
1446             hir::GenericParamKind::Type { default: Some(ref ty), .. } |
1447             hir::GenericParamKind::Const { ref ty, .. } => {
1448                 icx.to_ty(ty)
1449             }
1450             x => {
1451                 if !fail {
1452                     return None;
1453                 }
1454                 bug!("unexpected non-type Node::GenericParam: {:?}", x)
1455             },
1456         },
1457
1458         x => {
1459             if !fail {
1460                 return None;
1461             }
1462             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1463         }
1464     })
1465 }
1466
1467 fn find_existential_constraints<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> Ty<'tcx> {
1468     use rustc::hir::{ImplItem, Item, TraitItem};
1469
1470     debug!("find_existential_constraints({:?})", def_id);
1471
1472     struct ConstraintLocator<'tcx> {
1473         tcx: TyCtxt<'tcx>,
1474         def_id: DefId,
1475         // (first found type span, actual type, mapping from the existential type's generic
1476         // parameters to the concrete type's generic parameters)
1477         //
1478         // The mapping is an index for each use site of a generic parameter in the concrete type
1479         //
1480         // The indices index into the generic parameters on the existential type.
1481         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1482     }
1483
1484     impl ConstraintLocator<'tcx> {
1485         fn check(&mut self, def_id: DefId) {
1486             // Don't try to check items that cannot possibly constrain the type.
1487             if !self.tcx.has_typeck_tables(def_id) {
1488                 debug!(
1489                     "find_existential_constraints: no constraint for `{:?}` at `{:?}`: no tables",
1490                     self.def_id,
1491                     def_id,
1492                 );
1493                 return;
1494             }
1495             let ty = self
1496                 .tcx
1497                 .typeck_tables_of(def_id)
1498                 .concrete_existential_types
1499                 .get(&self.def_id);
1500             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1501                 debug!(
1502                     "find_existential_constraints: found constraint for `{:?}` at `{:?}`: {:?}",
1503                     self.def_id,
1504                     def_id,
1505                     ty,
1506                 );
1507
1508                 // FIXME(oli-obk): trace the actual span from inference to improve errors.
1509                 let span = self.tcx.def_span(def_id);
1510                 // used to quickly look up the position of a generic parameter
1511                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1512                 // Skipping binder is ok, since we only use this to find generic parameters and
1513                 // their positions.
1514                 for (idx, subst) in substs.iter().enumerate() {
1515                     if let UnpackedKind::Type(ty) = subst.unpack() {
1516                         if let ty::Param(p) = ty.sty {
1517                             if index_map.insert(p, idx).is_some() {
1518                                 // There was already an entry for `p`, meaning a generic parameter
1519                                 // was used twice.
1520                                 self.tcx.sess.span_err(
1521                                     span,
1522                                     &format!(
1523                                         "defining existential type use restricts existential \
1524                                          type by using the generic parameter `{}` twice",
1525                                         p.name
1526                                     ),
1527                                 );
1528                                 return;
1529                             }
1530                         } else {
1531                             self.tcx.sess.delay_span_bug(
1532                                 span,
1533                                 &format!(
1534                                     "non-defining exist ty use in defining scope: {:?}, {:?}",
1535                                     concrete_type, substs,
1536                                 ),
1537                             );
1538                         }
1539                     }
1540                 }
1541                 // Compute the index within the existential type for each generic parameter used in
1542                 // the concrete type.
1543                 let indices = concrete_type
1544                     .subst(self.tcx, substs)
1545                     .walk()
1546                     .filter_map(|t| match &t.sty {
1547                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1548                         _ => None,
1549                     }).collect();
1550                 let is_param = |ty: Ty<'_>| match ty.sty {
1551                     ty::Param(_) => true,
1552                     _ => false,
1553                 };
1554                 if !substs.types().all(is_param) {
1555                     self.tcx.sess.span_err(
1556                         span,
1557                         "defining existential type use does not fully define existential type",
1558                     );
1559                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1560                     let mut ty = concrete_type.walk().fuse();
1561                     let mut p_ty = prev_ty.walk().fuse();
1562                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.sty, &p.sty) {
1563                         // Type parameters are equal to any other type parameter for the purpose of
1564                         // concrete type equality, as it is possible to obtain the same type just
1565                         // by passing matching parameters to a function.
1566                         (ty::Param(_), ty::Param(_)) => true,
1567                         _ => t == p,
1568                     });
1569                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1570                         debug!("find_existential_constraints: span={:?}", span);
1571                         // Found different concrete types for the existential type.
1572                         let mut err = self.tcx.sess.struct_span_err(
1573                             span,
1574                             "concrete type differs from previous defining existential type use",
1575                         );
1576                         err.span_label(
1577                             span,
1578                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1579                         );
1580                         err.span_note(prev_span, "previous use here");
1581                         err.emit();
1582                     } else if indices != *prev_indices {
1583                         // Found "same" concrete types, but the generic parameter order differs.
1584                         let mut err = self.tcx.sess.struct_span_err(
1585                             span,
1586                             "concrete type's generic parameters differ from previous defining use",
1587                         );
1588                         use std::fmt::Write;
1589                         let mut s = String::new();
1590                         write!(s, "expected [").unwrap();
1591                         let list = |s: &mut String, indices: &Vec<usize>| {
1592                             let mut indices = indices.iter().cloned();
1593                             if let Some(first) = indices.next() {
1594                                 write!(s, "`{}`", substs[first]).unwrap();
1595                                 for i in indices {
1596                                     write!(s, ", `{}`", substs[i]).unwrap();
1597                                 }
1598                             }
1599                         };
1600                         list(&mut s, prev_indices);
1601                         write!(s, "], got [").unwrap();
1602                         list(&mut s, &indices);
1603                         write!(s, "]").unwrap();
1604                         err.span_label(span, s);
1605                         err.span_note(prev_span, "previous use here");
1606                         err.emit();
1607                     }
1608                 } else {
1609                     self.found = Some((span, concrete_type, indices));
1610                 }
1611             } else {
1612                 debug!(
1613                     "find_existential_constraints: no constraint for `{:?}` at `{:?}`",
1614                     self.def_id,
1615                     def_id,
1616                 );
1617             }
1618         }
1619     }
1620
1621     impl<'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'tcx> {
1622         fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'tcx> {
1623             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1624         }
1625         fn visit_item(&mut self, it: &'tcx Item) {
1626             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1627             // The existential type itself or its children are not within its reveal scope.
1628             if def_id != self.def_id {
1629                 self.check(def_id);
1630                 intravisit::walk_item(self, it);
1631             }
1632         }
1633         fn visit_impl_item(&mut self, it: &'tcx ImplItem) {
1634             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1635             // The existential type itself or its children are not within its reveal scope.
1636             if def_id != self.def_id {
1637                 self.check(def_id);
1638                 intravisit::walk_impl_item(self, it);
1639             }
1640         }
1641         fn visit_trait_item(&mut self, it: &'tcx TraitItem) {
1642             let def_id = self.tcx.hir().local_def_id_from_hir_id(it.hir_id);
1643             self.check(def_id);
1644             intravisit::walk_trait_item(self, it);
1645         }
1646     }
1647
1648     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1649     let scope = tcx.hir()
1650         .get_defining_scope(hir_id)
1651         .expect("could not get defining scope");
1652     let mut locator = ConstraintLocator {
1653         def_id,
1654         tcx,
1655         found: None,
1656     };
1657
1658     debug!("find_existential_constraints: scope={:?}", scope);
1659
1660     if scope == hir::CRATE_HIR_ID {
1661         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1662     } else {
1663         debug!("find_existential_constraints: scope={:?}", tcx.hir().get(scope));
1664         match tcx.hir().get(scope) {
1665             Node::Item(ref it) => intravisit::walk_item(&mut locator, it),
1666             Node::ImplItem(ref it) => intravisit::walk_impl_item(&mut locator, it),
1667             Node::TraitItem(ref it) => intravisit::walk_trait_item(&mut locator, it),
1668             other => bug!(
1669                 "{:?} is not a valid scope for an existential type item",
1670                 other
1671             ),
1672         }
1673     }
1674
1675     match locator.found {
1676         Some((_, ty, _)) => ty,
1677         None => {
1678             let span = tcx.def_span(def_id);
1679             tcx.sess.span_err(span, "could not find defining uses");
1680             tcx.types.err
1681         }
1682     }
1683 }
1684
1685 fn fn_sig<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> ty::PolyFnSig<'tcx> {
1686     use rustc::hir::*;
1687     use rustc::hir::Node::*;
1688
1689     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1690
1691     let icx = ItemCtxt::new(tcx, def_id);
1692
1693     match tcx.hir().get(hir_id) {
1694         TraitItem(hir::TraitItem {
1695             node: TraitItemKind::Method(sig, _),
1696             ..
1697         })
1698         | ImplItem(hir::ImplItem {
1699             node: ImplItemKind::Method(sig, _),
1700             ..
1701         }) => AstConv::ty_of_fn(&icx, sig.header.unsafety, sig.header.abi, &sig.decl),
1702
1703         Item(hir::Item {
1704             node: ItemKind::Fn(decl, header, _, _),
1705             ..
1706         }) => AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl),
1707
1708         ForeignItem(&hir::ForeignItem {
1709             node: ForeignItemKind::Fn(ref fn_decl, _, _),
1710             ..
1711         }) => {
1712             let abi = tcx.hir().get_foreign_abi(hir_id);
1713             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
1714         }
1715
1716         Ctor(data) | Variant(Spanned {
1717             node: hir::VariantKind { data, ..  },
1718             ..
1719         }) if data.ctor_hir_id().is_some() => {
1720             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id));
1721             let inputs = data.fields()
1722                 .iter()
1723                 .map(|f| tcx.type_of(tcx.hir().local_def_id_from_hir_id(f.hir_id)));
1724             ty::Binder::bind(tcx.mk_fn_sig(
1725                 inputs,
1726                 ty,
1727                 false,
1728                 hir::Unsafety::Normal,
1729                 abi::Abi::Rust,
1730             ))
1731         }
1732
1733         Expr(&hir::Expr {
1734             node: hir::ExprKind::Closure(..),
1735             ..
1736         }) => {
1737             // Closure signatures are not like other function
1738             // signatures and cannot be accessed through `fn_sig`. For
1739             // example, a closure signature excludes the `self`
1740             // argument. In any case they are embedded within the
1741             // closure type as part of the `ClosureSubsts`.
1742             //
1743             // To get
1744             // the signature of a closure, you should use the
1745             // `closure_sig` method on the `ClosureSubsts`:
1746             //
1747             //    closure_substs.closure_sig(def_id, tcx)
1748             //
1749             // or, inside of an inference context, you can use
1750             //
1751             //    infcx.closure_sig(def_id, closure_substs)
1752             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
1753         }
1754
1755         x => {
1756             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1757         }
1758     }
1759 }
1760
1761 fn impl_trait_ref<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> Option<ty::TraitRef<'tcx>> {
1762     let icx = ItemCtxt::new(tcx, def_id);
1763
1764     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1765     match tcx.hir().expect_item(hir_id).node {
1766         hir::ItemKind::Impl(.., ref opt_trait_ref, _, _) => {
1767             opt_trait_ref.as_ref().map(|ast_trait_ref| {
1768                 let selfty = tcx.type_of(def_id);
1769                 AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1770             })
1771         }
1772         _ => bug!(),
1773     }
1774 }
1775
1776 fn impl_polarity<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> hir::ImplPolarity {
1777     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1778     match tcx.hir().expect_item(hir_id).node {
1779         hir::ItemKind::Impl(_, polarity, ..) => polarity,
1780         ref item => bug!("impl_polarity: {:?} not an impl", item),
1781     }
1782 }
1783
1784 /// Returns the early-bound lifetimes declared in this generics
1785 /// listing. For anything other than fns/methods, this is just all
1786 /// the lifetimes that are declared. For fns or methods, we have to
1787 /// screen out those that do not appear in any where-clauses etc using
1788 /// `resolve_lifetime::early_bound_lifetimes`.
1789 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
1790     tcx: TyCtxt<'tcx>,
1791     generics: &'a hir::Generics,
1792 ) -> impl Iterator<Item = &'a hir::GenericParam> + Captures<'tcx> {
1793     generics
1794         .params
1795         .iter()
1796         .filter(move |param| match param.kind {
1797             GenericParamKind::Lifetime { .. } => {
1798                 !tcx.is_late_bound(param.hir_id)
1799             }
1800             _ => false,
1801         })
1802 }
1803
1804 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1805 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1806 /// inferred constraints concerning which regions outlive other regions.
1807 fn predicates_defined_on<'tcx>(
1808     tcx: TyCtxt<'tcx>,
1809     def_id: DefId,
1810 ) -> &'tcx ty::GenericPredicates<'tcx> {
1811     debug!("predicates_defined_on({:?})", def_id);
1812     let mut result = tcx.explicit_predicates_of(def_id);
1813     debug!(
1814         "predicates_defined_on: explicit_predicates_of({:?}) = {:?}",
1815         def_id,
1816         result,
1817     );
1818     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1819     if !inferred_outlives.is_empty() {
1820         let span = tcx.def_span(def_id);
1821         debug!(
1822             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1823             def_id,
1824             inferred_outlives,
1825         );
1826         let mut predicates = (*result).clone();
1827         predicates.predicates.extend(inferred_outlives.iter().map(|&p| (p, span)));
1828         result = tcx.arena.alloc(predicates);
1829     }
1830     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1831     result
1832 }
1833
1834 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1835 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1836 /// `Self: Trait` predicates for traits.
1837 fn predicates_of<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> &'tcx ty::GenericPredicates<'tcx> {
1838     let mut result = tcx.predicates_defined_on(def_id);
1839
1840     if tcx.is_trait(def_id) {
1841         // For traits, add `Self: Trait` predicate. This is
1842         // not part of the predicates that a user writes, but it
1843         // is something that one must prove in order to invoke a
1844         // method or project an associated type.
1845         //
1846         // In the chalk setup, this predicate is not part of the
1847         // "predicates" for a trait item. But it is useful in
1848         // rustc because if you directly (e.g.) invoke a trait
1849         // method like `Trait::method(...)`, you must naturally
1850         // prove that the trait applies to the types that were
1851         // used, and adding the predicate into this list ensures
1852         // that this is done.
1853         let span = tcx.def_span(def_id);
1854         let mut predicates = (*result).clone();
1855         predicates.predicates.push((ty::TraitRef::identity(tcx, def_id).to_predicate(), span));
1856         result = tcx.arena.alloc(predicates);
1857     }
1858     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
1859     result
1860 }
1861
1862 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
1863 /// N.B., this does not include any implied/inferred constraints.
1864 fn explicit_predicates_of<'tcx>(
1865     tcx: TyCtxt<'tcx>,
1866     def_id: DefId,
1867 ) -> &'tcx ty::GenericPredicates<'tcx> {
1868     use rustc::hir::*;
1869     use rustc_data_structures::fx::FxHashSet;
1870
1871     debug!("explicit_predicates_of(def_id={:?})", def_id);
1872
1873     /// A data structure with unique elements, which preserves order of insertion.
1874     /// Preserving the order of insertion is important here so as not to break
1875     /// compile-fail UI tests.
1876     struct UniquePredicates<'tcx> {
1877         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
1878         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
1879     }
1880
1881     impl<'tcx> UniquePredicates<'tcx> {
1882         fn new() -> Self {
1883             UniquePredicates {
1884                 predicates: vec![],
1885                 uniques: FxHashSet::default(),
1886             }
1887         }
1888
1889         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
1890             if self.uniques.insert(value) {
1891                 self.predicates.push(value);
1892             }
1893         }
1894
1895         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
1896             for value in iter {
1897                 self.push(value);
1898             }
1899         }
1900     }
1901
1902     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1903         Some(hir_id) => hir_id,
1904         None => return tcx.predicates_of(def_id),
1905     };
1906     let node = tcx.hir().get(hir_id);
1907
1908     let mut is_trait = None;
1909     let mut is_default_impl_trait = None;
1910
1911     let icx = ItemCtxt::new(tcx, def_id);
1912
1913     const NO_GENERICS: &hir::Generics = &hir::Generics::empty();
1914
1915     let empty_trait_items = HirVec::new();
1916
1917     let mut predicates = UniquePredicates::new();
1918
1919     let ast_generics = match node {
1920         Node::TraitItem(item) => &item.generics,
1921
1922         Node::ImplItem(item) => match item.node {
1923             ImplItemKind::Existential(ref bounds) => {
1924                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1925                 let opaque_ty = tcx.mk_opaque(def_id, substs);
1926
1927                 // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
1928                 let bounds = AstConv::compute_bounds(
1929                     &icx,
1930                     opaque_ty,
1931                     bounds,
1932                     SizedByDefault::Yes,
1933                     tcx.def_span(def_id),
1934                 );
1935
1936                 predicates.extend(bounds.predicates(tcx, opaque_ty));
1937                 &item.generics
1938             }
1939             _ => &item.generics,
1940         },
1941
1942         Node::Item(item) => {
1943             match item.node {
1944                 ItemKind::Impl(_, _, defaultness, ref generics, ..) => {
1945                     if defaultness.is_default() {
1946                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
1947                     }
1948                     generics
1949                 }
1950                 ItemKind::Fn(.., ref generics, _)
1951                 | ItemKind::Ty(_, ref generics)
1952                 | ItemKind::Enum(_, ref generics)
1953                 | ItemKind::Struct(_, ref generics)
1954                 | ItemKind::Union(_, ref generics) => generics,
1955
1956                 ItemKind::Trait(_, _, ref generics, .., ref items) => {
1957                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
1958                     generics
1959                 }
1960                 ItemKind::TraitAlias(ref generics, _) => {
1961                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &empty_trait_items));
1962                     generics
1963                 }
1964                 ItemKind::Existential(ExistTy {
1965                     ref bounds,
1966                     impl_trait_fn,
1967                     ref generics,
1968                     origin: _,
1969                 }) => {
1970                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1971                     let opaque_ty = tcx.mk_opaque(def_id, substs);
1972
1973                     // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
1974                     let bounds = AstConv::compute_bounds(
1975                         &icx,
1976                         opaque_ty,
1977                         bounds,
1978                         SizedByDefault::Yes,
1979                         tcx.def_span(def_id),
1980                     );
1981
1982                     let bounds_predicates = bounds.predicates(tcx, opaque_ty);
1983                     if impl_trait_fn.is_some() {
1984                         // opaque types
1985                         return tcx.arena.alloc(ty::GenericPredicates {
1986                             parent: None,
1987                             predicates: bounds_predicates,
1988                         });
1989                     } else {
1990                         // named existential types
1991                         predicates.extend(bounds_predicates);
1992                         generics
1993                     }
1994                 }
1995
1996                 _ => NO_GENERICS,
1997             }
1998         }
1999
2000         Node::ForeignItem(item) => match item.node {
2001             ForeignItemKind::Static(..) => NO_GENERICS,
2002             ForeignItemKind::Fn(_, _, ref generics) => generics,
2003             ForeignItemKind::Type => NO_GENERICS,
2004         },
2005
2006         _ => NO_GENERICS,
2007     };
2008
2009     let generics = tcx.generics_of(def_id);
2010     let parent_count = generics.parent_count as u32;
2011     let has_own_self = generics.has_self && parent_count == 0;
2012
2013     // Below we'll consider the bounds on the type parameters (including `Self`)
2014     // and the explicit where-clauses, but to get the full set of predicates
2015     // on a trait we need to add in the supertrait bounds and bounds found on
2016     // associated types.
2017     if let Some((_trait_ref, _)) = is_trait {
2018         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2019     }
2020
2021     // In default impls, we can assume that the self type implements
2022     // the trait. So in:
2023     //
2024     //     default impl Foo for Bar { .. }
2025     //
2026     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2027     // (see below). Recall that a default impl is not itself an impl, but rather a
2028     // set of defaults that can be incorporated into another impl.
2029     if let Some(trait_ref) = is_default_impl_trait {
2030         predicates.push((trait_ref.to_poly_trait_ref().to_predicate(), tcx.def_span(def_id)));
2031     }
2032
2033     // Collect the region predicates that were declared inline as
2034     // well. In the case of parameters declared on a fn or method, we
2035     // have to be careful to only iterate over early-bound regions.
2036     let mut index = parent_count + has_own_self as u32;
2037     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2038         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2039             def_id: tcx.hir().local_def_id_from_hir_id(param.hir_id),
2040             index,
2041             name: param.name.ident().as_interned_str(),
2042         }));
2043         index += 1;
2044
2045         match param.kind {
2046             GenericParamKind::Lifetime { .. } => {
2047                 param.bounds.iter().for_each(|bound| match bound {
2048                     hir::GenericBound::Outlives(lt) => {
2049                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2050                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2051                         predicates.push((outlives.to_predicate(), lt.span));
2052                     }
2053                     _ => bug!(),
2054                 });
2055             }
2056             _ => bug!(),
2057         }
2058     }
2059
2060     // Collect the predicates that were written inline by the user on each
2061     // type parameter (e.g., `<T: Foo>`).
2062     for param in &ast_generics.params {
2063         if let GenericParamKind::Type { .. } = param.kind {
2064             let name = param.name.ident().as_interned_str();
2065             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2066             index += 1;
2067
2068             let sized = SizedByDefault::Yes;
2069             let bounds = AstConv::compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2070             predicates.extend(bounds.predicates(tcx, param_ty));
2071         }
2072     }
2073
2074     // Add in the bounds that appear in the where-clause.
2075     let where_clause = &ast_generics.where_clause;
2076     for predicate in &where_clause.predicates {
2077         match predicate {
2078             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2079                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2080
2081                 // Keep the type around in a dummy predicate, in case of no bounds.
2082                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2083                 // is still checked for WF.
2084                 if bound_pred.bounds.is_empty() {
2085                     if let ty::Param(_) = ty.sty {
2086                         // This is a `where T:`, which can be in the HIR from the
2087                         // transformation that moves `?Sized` to `T`'s declaration.
2088                         // We can skip the predicate because type parameters are
2089                         // trivially WF, but also we *should*, to avoid exposing
2090                         // users who never wrote `where Type:,` themselves, to
2091                         // compiler/tooling bugs from not handling WF predicates.
2092                     } else {
2093                         let span = bound_pred.bounded_ty.span;
2094                         let predicate = ty::OutlivesPredicate(ty, tcx.mk_region(ty::ReEmpty));
2095                         predicates.push(
2096                             (ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)), span)
2097                         );
2098                     }
2099                 }
2100
2101                 for bound in bound_pred.bounds.iter() {
2102                     match bound {
2103                         &hir::GenericBound::Trait(ref poly_trait_ref, _) => {
2104                             let mut bounds = Bounds::default();
2105
2106                             let (trait_ref, _) = AstConv::instantiate_poly_trait_ref(
2107                                 &icx,
2108                                 poly_trait_ref,
2109                                 ty,
2110                                 &mut bounds,
2111                             );
2112
2113                             predicates.push((trait_ref.to_predicate(), poly_trait_ref.span));
2114                             predicates.extend(bounds.predicates(tcx, ty));
2115                         }
2116
2117                         &hir::GenericBound::Outlives(ref lifetime) => {
2118                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2119                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2120                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2121                         }
2122                     }
2123                 }
2124             }
2125
2126             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2127                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2128                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2129                     let (r2, span) = match bound {
2130                         hir::GenericBound::Outlives(lt) => {
2131                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2132                         }
2133                         _ => bug!(),
2134                     };
2135                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2136
2137                     (ty::Predicate::RegionOutlives(pred), span)
2138                 }))
2139             }
2140
2141             &hir::WherePredicate::EqPredicate(..) => {
2142                 // FIXME(#20041)
2143             }
2144         }
2145     }
2146
2147     // Add predicates from associated type bounds.
2148     if let Some((self_trait_ref, trait_items)) = is_trait {
2149         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2150             let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2151             let bounds = match trait_item.node {
2152                 hir::TraitItemKind::Type(ref bounds, _) => bounds,
2153                 _ => return Vec::new().into_iter()
2154             };
2155
2156             let assoc_ty =
2157                 tcx.mk_projection(tcx.hir().local_def_id_from_hir_id(trait_item.hir_id),
2158                     self_trait_ref.substs);
2159
2160             let bounds = AstConv::compute_bounds(
2161                 &ItemCtxt::new(tcx, def_id),
2162                 assoc_ty,
2163                 bounds,
2164                 SizedByDefault::Yes,
2165                 trait_item.span,
2166             );
2167
2168             bounds.predicates(tcx, assoc_ty).into_iter()
2169         }))
2170     }
2171
2172     let mut predicates = predicates.predicates;
2173
2174     // Subtle: before we store the predicates into the tcx, we
2175     // sort them so that predicates like `T: Foo<Item=U>` come
2176     // before uses of `U`.  This avoids false ambiguity errors
2177     // in trait checking. See `setup_constraining_predicates`
2178     // for details.
2179     if let Node::Item(&Item {
2180         node: ItemKind::Impl(..),
2181         ..
2182     }) = node
2183     {
2184         let self_ty = tcx.type_of(def_id);
2185         let trait_ref = tcx.impl_trait_ref(def_id);
2186         cgp::setup_constraining_predicates(
2187             tcx,
2188             &mut predicates,
2189             trait_ref,
2190             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2191         );
2192     }
2193
2194     let result = tcx.arena.alloc(ty::GenericPredicates {
2195         parent: generics.parent,
2196         predicates,
2197     });
2198     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2199     result
2200 }
2201
2202 /// Converts a specific `GenericBound` from the AST into a set of
2203 /// predicates that apply to the self type. A vector is returned
2204 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2205 /// predicates) to one (`T: Foo`) to many (`T: Bar<X=i32>` adds `T: Bar`
2206 /// and `<T as Bar>::X == i32`).
2207 fn predicates_from_bound<'tcx>(
2208     astconv: &dyn AstConv<'tcx>,
2209     param_ty: Ty<'tcx>,
2210     bound: &'tcx hir::GenericBound,
2211 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2212     match *bound {
2213         hir::GenericBound::Trait(ref tr, hir::TraitBoundModifier::None) => {
2214             let mut bounds = Bounds::default();
2215             let (pred, _) = astconv.instantiate_poly_trait_ref(tr, param_ty, &mut bounds);
2216             iter::once((pred.to_predicate(), tr.span))
2217                 .chain(bounds.predicates(astconv.tcx(), param_ty))
2218                 .collect()
2219         }
2220         hir::GenericBound::Outlives(ref lifetime) => {
2221             let region = astconv.ast_region_to_region(lifetime, None);
2222             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2223             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2224         }
2225         hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => vec![],
2226     }
2227 }
2228
2229 fn compute_sig_of_foreign_fn_decl<'tcx>(
2230     tcx: TyCtxt<'tcx>,
2231     def_id: DefId,
2232     decl: &'tcx hir::FnDecl,
2233     abi: abi::Abi,
2234 ) -> ty::PolyFnSig<'tcx> {
2235     let unsafety = if abi == abi::Abi::RustIntrinsic {
2236         intrisic_operation_unsafety(&*tcx.item_name(def_id).as_str())
2237     } else {
2238         hir::Unsafety::Unsafe
2239     };
2240     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl);
2241
2242     // Feature gate SIMD types in FFI, since I am not sure that the
2243     // ABIs are handled at all correctly. -huonw
2244     if abi != abi::Abi::RustIntrinsic
2245         && abi != abi::Abi::PlatformIntrinsic
2246         && !tcx.features().simd_ffi
2247     {
2248         let check = |ast_ty: &hir::Ty, ty: Ty<'_>| {
2249             if ty.is_simd() {
2250                 tcx.sess
2251                    .struct_span_err(
2252                        ast_ty.span,
2253                        &format!(
2254                            "use of SIMD type `{}` in FFI is highly experimental and \
2255                             may result in invalid code",
2256                            tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2257                        ),
2258                    )
2259                    .help("add #![feature(simd_ffi)] to the crate attributes to enable")
2260                    .emit();
2261             }
2262         };
2263         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2264             check(&input, ty)
2265         }
2266         if let hir::Return(ref ty) = decl.output {
2267             check(&ty, *fty.output().skip_binder())
2268         }
2269     }
2270
2271     fty
2272 }
2273
2274 fn is_foreign_item<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> bool {
2275     match tcx.hir().get_if_local(def_id) {
2276         Some(Node::ForeignItem(..)) => true,
2277         Some(_) => false,
2278         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2279     }
2280 }
2281
2282 fn static_mutability<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> Option<hir::Mutability> {
2283     match tcx.hir().get_if_local(def_id) {
2284         Some(Node::Item(&hir::Item {
2285             node: hir::ItemKind::Static(_, mutbl, _), ..
2286         })) |
2287         Some(Node::ForeignItem( &hir::ForeignItem {
2288             node: hir::ForeignItemKind::Static(_, mutbl), ..
2289         })) => Some(mutbl),
2290         Some(_) => None,
2291         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2292     }
2293 }
2294
2295 fn from_target_feature(
2296     tcx: TyCtxt<'_>,
2297     id: DefId,
2298     attr: &ast::Attribute,
2299     whitelist: &FxHashMap<String, Option<Symbol>>,
2300     target_features: &mut Vec<Symbol>,
2301 ) {
2302     let list = match attr.meta_item_list() {
2303         Some(list) => list,
2304         None => return,
2305     };
2306     let bad_item = |span| {
2307         let msg = "malformed `target_feature` attribute input";
2308         let code = "enable = \"..\"".to_owned();
2309         tcx.sess.struct_span_err(span, &msg)
2310             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2311             .emit();
2312     };
2313     let rust_features = tcx.features();
2314     for item in list {
2315         // Only `enable = ...` is accepted in the meta-item list.
2316         if !item.check_name(sym::enable) {
2317             bad_item(item.span());
2318             continue;
2319         }
2320
2321         // Must be of the form `enable = "..."` (a string).
2322         let value = match item.value_str() {
2323             Some(value) => value,
2324             None => {
2325                 bad_item(item.span());
2326                 continue;
2327             }
2328         };
2329
2330         // We allow comma separation to enable multiple features.
2331         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2332             // Only allow whitelisted features per platform.
2333             let feature_gate = match whitelist.get(feature) {
2334                 Some(g) => g,
2335                 None => {
2336                     let msg = format!(
2337                         "the feature named `{}` is not valid for this target",
2338                         feature
2339                     );
2340                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2341                     err.span_label(
2342                         item.span(),
2343                         format!("`{}` is not valid for this target", feature),
2344                     );
2345                     if feature.starts_with("+") {
2346                         let valid = whitelist.contains_key(&feature[1..]);
2347                         if valid {
2348                             err.help("consider removing the leading `+` in the feature name");
2349                         }
2350                     }
2351                     err.emit();
2352                     return None;
2353                 }
2354             };
2355
2356             // Only allow features whose feature gates have been enabled.
2357             let allowed = match feature_gate.as_ref().map(|s| *s) {
2358                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2359                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2360                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2361                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2362                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2363                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2364                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2365                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2366                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2367                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2368                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2369                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2370                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2371                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2372                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2373                 Some(name) => bug!("unknown target feature gate {}", name),
2374                 None => true,
2375             };
2376             if !allowed && id.is_local() {
2377                 feature_gate::emit_feature_err(
2378                     &tcx.sess.parse_sess,
2379                     feature_gate.unwrap(),
2380                     item.span(),
2381                     feature_gate::GateIssue::Language,
2382                     &format!("the target feature `{}` is currently unstable", feature),
2383                 );
2384             }
2385             Some(Symbol::intern(feature))
2386         }));
2387     }
2388 }
2389
2390 fn linkage_by_name<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, name: &str) -> Linkage {
2391     use rustc::mir::mono::Linkage::*;
2392
2393     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2394     // applicable to variable declarations and may not really make sense for
2395     // Rust code in the first place but whitelist them anyway and trust that
2396     // the user knows what s/he's doing. Who knows, unanticipated use cases
2397     // may pop up in the future.
2398     //
2399     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2400     // and don't have to be, LLVM treats them as no-ops.
2401     match name {
2402         "appending" => Appending,
2403         "available_externally" => AvailableExternally,
2404         "common" => Common,
2405         "extern_weak" => ExternalWeak,
2406         "external" => External,
2407         "internal" => Internal,
2408         "linkonce" => LinkOnceAny,
2409         "linkonce_odr" => LinkOnceODR,
2410         "private" => Private,
2411         "weak" => WeakAny,
2412         "weak_odr" => WeakODR,
2413         _ => {
2414             let span = tcx.hir().span_if_local(def_id);
2415             if let Some(span) = span {
2416                 tcx.sess.span_fatal(span, "invalid linkage specified")
2417             } else {
2418                 tcx.sess
2419                    .fatal(&format!("invalid linkage specified: {}", name))
2420             }
2421         }
2422     }
2423 }
2424
2425 fn codegen_fn_attrs<'tcx>(tcx: TyCtxt<'tcx>, id: DefId) -> CodegenFnAttrs {
2426     let attrs = tcx.get_attrs(id);
2427
2428     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2429
2430     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2431
2432     let mut inline_span = None;
2433     for attr in attrs.iter() {
2434         if attr.check_name(sym::cold) {
2435             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2436         } else if attr.check_name(sym::rustc_allocator) {
2437             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2438         } else if attr.check_name(sym::unwind) {
2439             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2440         } else if attr.check_name(sym::ffi_returns_twice) {
2441             if tcx.is_foreign_item(id) {
2442                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2443             } else {
2444                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2445                 struct_span_err!(
2446                     tcx.sess,
2447                     attr.span,
2448                     E0724,
2449                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2450                 ).emit();
2451             }
2452         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2453             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2454         } else if attr.check_name(sym::naked) {
2455             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2456         } else if attr.check_name(sym::no_mangle) {
2457             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2458         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2459             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2460         } else if attr.check_name(sym::no_debug) {
2461             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2462         } else if attr.check_name(sym::used) {
2463             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2464         } else if attr.check_name(sym::thread_local) {
2465             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2466         } else if attr.check_name(sym::export_name) {
2467             if let Some(s) = attr.value_str() {
2468                 if s.as_str().contains("\0") {
2469                     // `#[export_name = ...]` will be converted to a null-terminated string,
2470                     // so it may not contain any null characters.
2471                     struct_span_err!(
2472                         tcx.sess,
2473                         attr.span,
2474                         E0648,
2475                         "`export_name` may not contain null characters"
2476                     ).emit();
2477                 }
2478                 codegen_fn_attrs.export_name = Some(s);
2479             }
2480         } else if attr.check_name(sym::target_feature) {
2481             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2482                 let msg = "#[target_feature(..)] can only be applied to `unsafe` functions";
2483                 tcx.sess.struct_span_err(attr.span, msg)
2484                     .span_label(attr.span, "can only be applied to `unsafe` functions")
2485                     .span_label(tcx.def_span(id), "not an `unsafe` function")
2486                     .emit();
2487             }
2488             from_target_feature(
2489                 tcx,
2490                 id,
2491                 attr,
2492                 &whitelist,
2493                 &mut codegen_fn_attrs.target_features,
2494             );
2495         } else if attr.check_name(sym::linkage) {
2496             if let Some(val) = attr.value_str() {
2497                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2498             }
2499         } else if attr.check_name(sym::link_section) {
2500             if let Some(val) = attr.value_str() {
2501                 if val.as_str().bytes().any(|b| b == 0) {
2502                     let msg = format!(
2503                         "illegal null byte in link_section \
2504                          value: `{}`",
2505                         &val
2506                     );
2507                     tcx.sess.span_err(attr.span, &msg);
2508                 } else {
2509                     codegen_fn_attrs.link_section = Some(val);
2510                 }
2511             }
2512         } else if attr.check_name(sym::link_name) {
2513             codegen_fn_attrs.link_name = attr.value_str();
2514         }
2515     }
2516
2517     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2518         if attr.path != sym::inline {
2519             return ia;
2520         }
2521         match attr.meta().map(|i| i.node) {
2522             Some(MetaItemKind::Word) => {
2523                 mark_used(attr);
2524                 InlineAttr::Hint
2525             }
2526             Some(MetaItemKind::List(ref items)) => {
2527                 mark_used(attr);
2528                 inline_span = Some(attr.span);
2529                 if items.len() != 1 {
2530                     span_err!(
2531                         tcx.sess.diagnostic(),
2532                         attr.span,
2533                         E0534,
2534                         "expected one argument"
2535                     );
2536                     InlineAttr::None
2537                 } else if list_contains_name(&items[..], sym::always) {
2538                     InlineAttr::Always
2539                 } else if list_contains_name(&items[..], sym::never) {
2540                     InlineAttr::Never
2541                 } else {
2542                     span_err!(
2543                         tcx.sess.diagnostic(),
2544                         items[0].span(),
2545                         E0535,
2546                         "invalid argument"
2547                     );
2548
2549                     InlineAttr::None
2550                 }
2551             }
2552             Some(MetaItemKind::NameValue(_)) => ia,
2553             None => ia,
2554         }
2555     });
2556
2557     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2558         if attr.path != sym::optimize {
2559             return ia;
2560         }
2561         let err = |sp, s| span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s);
2562         match attr.meta().map(|i| i.node) {
2563             Some(MetaItemKind::Word) => {
2564                 err(attr.span, "expected one argument");
2565                 ia
2566             }
2567             Some(MetaItemKind::List(ref items)) => {
2568                 mark_used(attr);
2569                 inline_span = Some(attr.span);
2570                 if items.len() != 1 {
2571                     err(attr.span, "expected one argument");
2572                     OptimizeAttr::None
2573                 } else if list_contains_name(&items[..], sym::size) {
2574                     OptimizeAttr::Size
2575                 } else if list_contains_name(&items[..], sym::speed) {
2576                     OptimizeAttr::Speed
2577                 } else {
2578                     err(items[0].span(), "invalid argument");
2579                     OptimizeAttr::None
2580                 }
2581             }
2582             Some(MetaItemKind::NameValue(_)) => ia,
2583             None => ia,
2584         }
2585     });
2586
2587     // If a function uses #[target_feature] it can't be inlined into general
2588     // purpose functions as they wouldn't have the right target features
2589     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2590     // respected.
2591     if codegen_fn_attrs.target_features.len() > 0 {
2592         if codegen_fn_attrs.inline == InlineAttr::Always {
2593             if let Some(span) = inline_span {
2594                 tcx.sess.span_err(
2595                     span,
2596                     "cannot use #[inline(always)] with \
2597                      #[target_feature]",
2598                 );
2599             }
2600         }
2601     }
2602
2603     // Weak lang items have the same semantics as "std internal" symbols in the
2604     // sense that they're preserved through all our LTO passes and only
2605     // strippable by the linker.
2606     //
2607     // Additionally weak lang items have predetermined symbol names.
2608     if tcx.is_weak_lang_item(id) {
2609         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2610     }
2611     if let Some(name) = weak_lang_items::link_name(&attrs) {
2612         codegen_fn_attrs.export_name = Some(name);
2613         codegen_fn_attrs.link_name = Some(name);
2614     }
2615
2616     // Internal symbols to the standard library all have no_mangle semantics in
2617     // that they have defined symbol names present in the function name. This
2618     // also applies to weak symbols where they all have known symbol names.
2619     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2620         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2621     }
2622
2623     codegen_fn_attrs
2624 }