]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/collect.rs
0b98e4b781d77359bc6519b4bcd7b9f364e2d75c
[rust.git] / src / librustc_typeck / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::{AstConv, Bounds, SizedByDefault};
18 use crate::constrained_generic_params as cgp;
19 use crate::check::intrinsic::intrinsic_operation_unsafety;
20 use crate::lint;
21 use crate::middle::resolve_lifetime as rl;
22 use crate::middle::weak_lang_items;
23 use rustc::mir::mono::Linkage;
24 use rustc::ty::query::Providers;
25 use rustc::ty::subst::{Subst, InternalSubsts};
26 use rustc::ty::util::Discr;
27 use rustc::ty::util::IntTypeExt;
28 use rustc::ty::subst::GenericArgKind;
29 use rustc::ty::{self, AdtKind, DefIdTree, ToPolyTraitRef, Ty, TyCtxt, Const};
30 use rustc::ty::{ReprOptions, ToPredicate};
31 use rustc::util::captures::Captures;
32 use rustc::util::nodemap::FxHashMap;
33 use rustc_target::spec::abi;
34
35 use syntax::ast;
36 use syntax::ast::{Ident, MetaItemKind};
37 use syntax::attr::{InlineAttr, OptimizeAttr, list_contains_name, mark_used};
38 use syntax::feature_gate;
39 use syntax::symbol::{InternedString, kw, Symbol, sym};
40 use syntax_pos::{Span, DUMMY_SP};
41
42 use rustc::hir::def::{CtorKind, Res, DefKind};
43 use rustc::hir::Node;
44 use rustc::hir::def_id::{DefId, LOCAL_CRATE};
45 use rustc::hir::intravisit::{self, NestedVisitorMap, Visitor};
46 use rustc::hir::GenericParamKind;
47 use rustc::hir::{self, CodegenFnAttrFlags, CodegenFnAttrs, Unsafety};
48
49 use errors::{Applicability, DiagnosticId, StashKey};
50
51 struct OnlySelfBounds(bool);
52
53 ///////////////////////////////////////////////////////////////////////////
54 // Main entry point
55
56 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: DefId) {
57     tcx.hir().visit_item_likes_in_module(
58         module_def_id,
59         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor()
60     );
61 }
62
63 pub fn provide(providers: &mut Providers<'_>) {
64     *providers = Providers {
65         type_of,
66         generics_of,
67         predicates_of,
68         predicates_defined_on,
69         explicit_predicates_of,
70         super_predicates_of,
71         type_param_predicates,
72         trait_def,
73         adt_def,
74         fn_sig,
75         impl_trait_ref,
76         impl_polarity,
77         is_foreign_item,
78         static_mutability,
79         codegen_fn_attrs,
80         collect_mod_item_types,
81         ..*providers
82     };
83 }
84
85 ///////////////////////////////////////////////////////////////////////////
86
87 /// Context specific to some particular item. This is what implements
88 /// `AstConv`. It has information about the predicates that are defined
89 /// on the trait. Unfortunately, this predicate information is
90 /// available in various different forms at various points in the
91 /// process. So we can't just store a pointer to e.g., the AST or the
92 /// parsed ty form, we have to be more flexible. To this end, the
93 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
94 /// `get_type_parameter_bounds` requests, drawing the information from
95 /// the AST (`hir::Generics`), recursively.
96 pub struct ItemCtxt<'tcx> {
97     tcx: TyCtxt<'tcx>,
98     item_def_id: DefId,
99 }
100
101 ///////////////////////////////////////////////////////////////////////////
102
103 struct CollectItemTypesVisitor<'tcx> {
104     tcx: TyCtxt<'tcx>,
105 }
106
107 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
108     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
109         NestedVisitorMap::OnlyBodies(&self.tcx.hir())
110     }
111
112     fn visit_item(&mut self, item: &'tcx hir::Item) {
113         convert_item(self.tcx, item.hir_id);
114         intravisit::walk_item(self, item);
115     }
116
117     fn visit_generics(&mut self, generics: &'tcx hir::Generics) {
118         for param in &generics.params {
119             match param.kind {
120                 hir::GenericParamKind::Lifetime { .. } => {}
121                 hir::GenericParamKind::Type {
122                     default: Some(_), ..
123                 } => {
124                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
125                     self.tcx.type_of(def_id);
126                 }
127                 hir::GenericParamKind::Type { .. } => {}
128                 hir::GenericParamKind::Const { .. } => {
129                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
130                     self.tcx.type_of(def_id);
131                 }
132             }
133         }
134         intravisit::walk_generics(self, generics);
135     }
136
137     fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
138         if let hir::ExprKind::Closure(..) = expr.kind {
139             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
140             self.tcx.generics_of(def_id);
141             self.tcx.type_of(def_id);
142         }
143         intravisit::walk_expr(self, expr);
144     }
145
146     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem) {
147         convert_trait_item(self.tcx, trait_item.hir_id);
148         intravisit::walk_trait_item(self, trait_item);
149     }
150
151     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem) {
152         convert_impl_item(self.tcx, impl_item.hir_id);
153         intravisit::walk_impl_item(self, impl_item);
154     }
155 }
156
157 ///////////////////////////////////////////////////////////////////////////
158 // Utility types and common code for the above passes.
159
160 fn bad_placeholder_type(tcx: TyCtxt<'tcx>, span: Span) -> errors::DiagnosticBuilder<'tcx> {
161     let mut diag = tcx.sess.struct_span_err_with_code(
162         span,
163         "the type placeholder `_` is not allowed within types on item signatures",
164         DiagnosticId::Error("E0121".into()),
165     );
166     diag.span_label(span, "not allowed in type signatures");
167     diag
168 }
169
170 impl ItemCtxt<'tcx> {
171     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
172         ItemCtxt { tcx, item_def_id }
173     }
174
175     pub fn to_ty(&self, ast_ty: &'tcx hir::Ty) -> Ty<'tcx> {
176         AstConv::ast_ty_to_ty(self, ast_ty)
177     }
178 }
179
180 impl AstConv<'tcx> for ItemCtxt<'tcx> {
181     fn tcx(&self) -> TyCtxt<'tcx> {
182         self.tcx
183     }
184
185     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId)
186                                  -> &'tcx ty::GenericPredicates<'tcx> {
187         self.tcx
188             .at(span)
189             .type_param_predicates((self.item_def_id, def_id))
190     }
191
192     fn re_infer(
193         &self,
194         _: Option<&ty::GenericParamDef>,
195         _: Span,
196     ) -> Option<ty::Region<'tcx>> {
197         None
198     }
199
200     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
201         bad_placeholder_type(self.tcx(), span).emit();
202
203         self.tcx().types.err
204     }
205
206     fn ct_infer(
207         &self,
208         _: Ty<'tcx>,
209         _: Option<&ty::GenericParamDef>,
210         span: Span,
211     ) -> &'tcx Const<'tcx> {
212         bad_placeholder_type(self.tcx(), span).emit();
213
214         self.tcx().consts.err
215     }
216
217     fn projected_ty_from_poly_trait_ref(
218         &self,
219         span: Span,
220         item_def_id: DefId,
221         poly_trait_ref: ty::PolyTraitRef<'tcx>,
222     ) -> Ty<'tcx> {
223         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
224             self.tcx().mk_projection(item_def_id, trait_ref.substs)
225         } else {
226             // There are no late-bound regions; we can just ignore the binder.
227             span_err!(
228                 self.tcx().sess,
229                 span,
230                 E0212,
231                 "cannot extract an associated type from a higher-ranked trait bound \
232                  in this context"
233             );
234             self.tcx().types.err
235         }
236     }
237
238     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
239         // Types in item signatures are not normalized to avoid undue dependencies.
240         ty
241     }
242
243     fn set_tainted_by_errors(&self) {
244         // There's no obvious place to track this, so just let it go.
245     }
246
247     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
248         // There's no place to record types from signatures?
249     }
250 }
251
252 /// Returns the predicates defined on `item_def_id` of the form
253 /// `X: Foo` where `X` is the type parameter `def_id`.
254 fn type_param_predicates(
255     tcx: TyCtxt<'_>,
256     (item_def_id, def_id): (DefId, DefId),
257 ) -> &ty::GenericPredicates<'_> {
258     use rustc::hir::*;
259
260     // In the AST, bounds can derive from two places. Either
261     // written inline like `<T: Foo>` or in a where-clause like
262     // `where T: Foo`.
263
264     let param_id = tcx.hir().as_local_hir_id(def_id).unwrap();
265     let param_owner = tcx.hir().ty_param_owner(param_id);
266     let param_owner_def_id = tcx.hir().local_def_id(param_owner);
267     let generics = tcx.generics_of(param_owner_def_id);
268     let index = generics.param_def_id_to_index[&def_id];
269     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id).as_interned_str());
270
271     // Don't look for bounds where the type parameter isn't in scope.
272     let parent = if item_def_id == param_owner_def_id {
273         None
274     } else {
275         tcx.generics_of(item_def_id).parent
276     };
277
278     let result = parent.map_or(&tcx.common.empty_predicates, |parent| {
279         let icx = ItemCtxt::new(tcx, parent);
280         icx.get_type_parameter_bounds(DUMMY_SP, def_id)
281     });
282     let mut extend = None;
283
284     let item_hir_id = tcx.hir().as_local_hir_id(item_def_id).unwrap();
285     let ast_generics = match tcx.hir().get(item_hir_id) {
286         Node::TraitItem(item) => &item.generics,
287
288         Node::ImplItem(item) => &item.generics,
289
290         Node::Item(item) => {
291             match item.kind {
292                 ItemKind::Fn(.., ref generics, _)
293                 | ItemKind::Impl(_, _, _, ref generics, ..)
294                 | ItemKind::TyAlias(_, ref generics)
295                 | ItemKind::OpaqueTy(OpaqueTy {
296                     ref generics,
297                     impl_trait_fn: None,
298                     ..
299                 })
300                 | ItemKind::Enum(_, ref generics)
301                 | ItemKind::Struct(_, ref generics)
302                 | ItemKind::Union(_, ref generics) => generics,
303                 ItemKind::Trait(_, _, ref generics, ..) => {
304                     // Implied `Self: Trait` and supertrait bounds.
305                     if param_id == item_hir_id {
306                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
307                         extend = Some((identity_trait_ref.to_predicate(), item.span));
308                     }
309                     generics
310                 }
311                 _ => return result,
312             }
313         }
314
315         Node::ForeignItem(item) => match item.kind {
316             ForeignItemKind::Fn(_, _, ref generics) => generics,
317             _ => return result,
318         },
319
320         _ => return result,
321     };
322
323     let icx = ItemCtxt::new(tcx, item_def_id);
324     let mut result = (*result).clone();
325     result.predicates.extend(extend.into_iter());
326     result.predicates.extend(
327         icx.type_parameter_bounds_in_generics(ast_generics, param_id, ty, OnlySelfBounds(true))
328             .into_iter()
329             .filter(|(predicate, _)| {
330                 match predicate {
331                     ty::Predicate::Trait(ref data) => data.skip_binder().self_ty().is_param(index),
332                     _ => false,
333                 }
334             })
335     );
336     tcx.arena.alloc(result)
337 }
338
339 impl ItemCtxt<'tcx> {
340     /// Finds bounds from `hir::Generics`. This requires scanning through the
341     /// AST. We do this to avoid having to convert *all* the bounds, which
342     /// would create artificial cycles. Instead, we can only convert the
343     /// bounds for a type parameter `X` if `X::Foo` is used.
344     fn type_parameter_bounds_in_generics(
345         &self,
346         ast_generics: &'tcx hir::Generics,
347         param_id: hir::HirId,
348         ty: Ty<'tcx>,
349         only_self_bounds: OnlySelfBounds,
350     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
351         let from_ty_params = ast_generics
352             .params
353             .iter()
354             .filter_map(|param| match param.kind {
355                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
356                 _ => None,
357             })
358             .flat_map(|bounds| bounds.iter())
359             .flat_map(|b| predicates_from_bound(self, ty, b));
360
361         let from_where_clauses = ast_generics
362             .where_clause
363             .predicates
364             .iter()
365             .filter_map(|wp| match *wp {
366                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
367                 _ => None,
368             })
369             .flat_map(|bp| {
370                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
371                     Some(ty)
372                 } else if !only_self_bounds.0 {
373                     Some(self.to_ty(&bp.bounded_ty))
374                 } else {
375                     None
376                 };
377                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b)))
378             })
379             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b));
380
381         from_ty_params.chain(from_where_clauses).collect()
382     }
383 }
384
385 /// Tests whether this is the AST for a reference to the type
386 /// parameter with ID `param_id`. We use this so as to avoid running
387 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
388 /// conversion of the type to avoid inducing unnecessary cycles.
389 fn is_param(tcx: TyCtxt<'_>, ast_ty: &hir::Ty, param_id: hir::HirId) -> bool {
390     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.kind {
391         match path.res {
392             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
393                 def_id == tcx.hir().local_def_id(param_id)
394             }
395             _ => false,
396         }
397     } else {
398         false
399     }
400 }
401
402 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::HirId) {
403     let it = tcx.hir().expect_item(item_id);
404     debug!("convert: item {} with id {}", it.ident, it.hir_id);
405     let def_id = tcx.hir().local_def_id(item_id);
406     match it.kind {
407         // These don't define types.
408         hir::ItemKind::ExternCrate(_)
409         | hir::ItemKind::Use(..)
410         | hir::ItemKind::Mod(_)
411         | hir::ItemKind::GlobalAsm(_) => {}
412         hir::ItemKind::ForeignMod(ref foreign_mod) => {
413             for item in &foreign_mod.items {
414                 let def_id = tcx.hir().local_def_id(item.hir_id);
415                 tcx.generics_of(def_id);
416                 tcx.type_of(def_id);
417                 tcx.predicates_of(def_id);
418                 if let hir::ForeignItemKind::Fn(..) = item.kind {
419                     tcx.fn_sig(def_id);
420                 }
421             }
422         }
423         hir::ItemKind::Enum(ref enum_definition, _) => {
424             tcx.generics_of(def_id);
425             tcx.type_of(def_id);
426             tcx.predicates_of(def_id);
427             convert_enum_variant_types(tcx, def_id, &enum_definition.variants);
428         }
429         hir::ItemKind::Impl(..) => {
430             tcx.generics_of(def_id);
431             tcx.type_of(def_id);
432             tcx.impl_trait_ref(def_id);
433             tcx.predicates_of(def_id);
434         }
435         hir::ItemKind::Trait(..) => {
436             tcx.generics_of(def_id);
437             tcx.trait_def(def_id);
438             tcx.at(it.span).super_predicates_of(def_id);
439             tcx.predicates_of(def_id);
440         }
441         hir::ItemKind::TraitAlias(..) => {
442             tcx.generics_of(def_id);
443             tcx.at(it.span).super_predicates_of(def_id);
444             tcx.predicates_of(def_id);
445         }
446         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
447             tcx.generics_of(def_id);
448             tcx.type_of(def_id);
449             tcx.predicates_of(def_id);
450
451             for f in struct_def.fields() {
452                 let def_id = tcx.hir().local_def_id(f.hir_id);
453                 tcx.generics_of(def_id);
454                 tcx.type_of(def_id);
455                 tcx.predicates_of(def_id);
456             }
457
458             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
459                 convert_variant_ctor(tcx, ctor_hir_id);
460             }
461         }
462
463         // Desugared from `impl Trait`, so visited by the function's return type.
464         hir::ItemKind::OpaqueTy(hir::OpaqueTy {
465             impl_trait_fn: Some(_),
466             ..
467         }) => {}
468
469         hir::ItemKind::OpaqueTy(..)
470         | hir::ItemKind::TyAlias(..)
471         | hir::ItemKind::Static(..)
472         | hir::ItemKind::Const(..)
473         | hir::ItemKind::Fn(..) => {
474             tcx.generics_of(def_id);
475             tcx.type_of(def_id);
476             tcx.predicates_of(def_id);
477             if let hir::ItemKind::Fn(..) = it.kind {
478                 tcx.fn_sig(def_id);
479             }
480         }
481     }
482 }
483
484 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::HirId) {
485     let trait_item = tcx.hir().expect_trait_item(trait_item_id);
486     let def_id = tcx.hir().local_def_id(trait_item.hir_id);
487     tcx.generics_of(def_id);
488
489     match trait_item.kind {
490         hir::TraitItemKind::Const(..)
491         | hir::TraitItemKind::Type(_, Some(_))
492         | hir::TraitItemKind::Method(..) => {
493             tcx.type_of(def_id);
494             if let hir::TraitItemKind::Method(..) = trait_item.kind {
495                 tcx.fn_sig(def_id);
496             }
497         }
498
499         hir::TraitItemKind::Type(_, None) => {}
500     };
501
502     tcx.predicates_of(def_id);
503 }
504
505 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::HirId) {
506     let def_id = tcx.hir().local_def_id(impl_item_id);
507     tcx.generics_of(def_id);
508     tcx.type_of(def_id);
509     tcx.predicates_of(def_id);
510     if let hir::ImplItemKind::Method(..) = tcx.hir().expect_impl_item(impl_item_id).kind {
511         tcx.fn_sig(def_id);
512     }
513 }
514
515 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
516     let def_id = tcx.hir().local_def_id(ctor_id);
517     tcx.generics_of(def_id);
518     tcx.type_of(def_id);
519     tcx.predicates_of(def_id);
520 }
521
522 fn convert_enum_variant_types(
523     tcx: TyCtxt<'_>,
524     def_id: DefId,
525     variants: &[hir::Variant]
526 ) {
527     let def = tcx.adt_def(def_id);
528     let repr_type = def.repr.discr_type();
529     let initial = repr_type.initial_discriminant(tcx);
530     let mut prev_discr = None::<Discr<'_>>;
531
532     // fill the discriminant values and field types
533     for variant in variants {
534         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
535         prev_discr = Some(
536             if let Some(ref e) = variant.disr_expr {
537                 let expr_did = tcx.hir().local_def_id(e.hir_id);
538                 def.eval_explicit_discr(tcx, expr_did)
539             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
540                 Some(discr)
541             } else {
542                 struct_span_err!(
543                     tcx.sess,
544                     variant.span,
545                     E0370,
546                     "enum discriminant overflowed"
547                 ).span_label(
548                     variant.span,
549                     format!("overflowed on value after {}", prev_discr.unwrap()),
550                 ).note(&format!(
551                     "explicitly set `{} = {}` if that is desired outcome",
552                     variant.ident, wrapped_discr
553                 ))
554                 .emit();
555                 None
556             }.unwrap_or(wrapped_discr),
557         );
558
559         for f in variant.data.fields() {
560             let def_id = tcx.hir().local_def_id(f.hir_id);
561             tcx.generics_of(def_id);
562             tcx.type_of(def_id);
563             tcx.predicates_of(def_id);
564         }
565
566         // Convert the ctor, if any. This also registers the variant as
567         // an item.
568         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
569             convert_variant_ctor(tcx, ctor_hir_id);
570         }
571     }
572 }
573
574 fn convert_variant(
575     tcx: TyCtxt<'_>,
576     variant_did: Option<DefId>,
577     ctor_did: Option<DefId>,
578     ident: Ident,
579     discr: ty::VariantDiscr,
580     def: &hir::VariantData,
581     adt_kind: ty::AdtKind,
582     parent_did: DefId,
583 ) -> ty::VariantDef {
584     let mut seen_fields: FxHashMap<ast::Ident, Span> = Default::default();
585     let hir_id = tcx.hir().as_local_hir_id(variant_did.unwrap_or(parent_did)).unwrap();
586     let fields = def
587         .fields()
588         .iter()
589         .map(|f| {
590             let fid = tcx.hir().local_def_id(f.hir_id);
591             let dup_span = seen_fields.get(&f.ident.modern()).cloned();
592             if let Some(prev_span) = dup_span {
593                 struct_span_err!(
594                     tcx.sess,
595                     f.span,
596                     E0124,
597                     "field `{}` is already declared",
598                     f.ident
599                 ).span_label(f.span, "field already declared")
600                  .span_label(prev_span, format!("`{}` first declared here", f.ident))
601                  .emit();
602             } else {
603                 seen_fields.insert(f.ident.modern(), f.span);
604             }
605
606             ty::FieldDef {
607                 did: fid,
608                 ident: f.ident,
609                 vis: ty::Visibility::from_hir(&f.vis, hir_id, tcx),
610             }
611         })
612         .collect();
613     let recovered = match def {
614         hir::VariantData::Struct(_, r) => *r,
615         _ => false,
616     };
617     ty::VariantDef::new(
618         tcx,
619         ident,
620         variant_did,
621         ctor_did,
622         discr,
623         fields,
624         CtorKind::from_hir(def),
625         adt_kind,
626         parent_did,
627         recovered,
628     )
629 }
630
631 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
632     use rustc::hir::*;
633
634     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
635     let item = match tcx.hir().get(hir_id) {
636         Node::Item(item) => item,
637         _ => bug!(),
638     };
639
640     let repr = ReprOptions::new(tcx, def_id);
641     let (kind, variants) = match item.kind {
642         ItemKind::Enum(ref def, _) => {
643             let mut distance_from_explicit = 0;
644             let variants = def.variants
645                 .iter()
646                 .map(|v| {
647                     let variant_did = Some(tcx.hir().local_def_id(v.id));
648                     let ctor_did = v.data.ctor_hir_id()
649                         .map(|hir_id| tcx.hir().local_def_id(hir_id));
650
651                     let discr = if let Some(ref e) = v.disr_expr {
652                         distance_from_explicit = 0;
653                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id))
654                     } else {
655                         ty::VariantDiscr::Relative(distance_from_explicit)
656                     };
657                     distance_from_explicit += 1;
658
659                     convert_variant(tcx, variant_did, ctor_did, v.ident, discr,
660                                     &v.data, AdtKind::Enum, def_id)
661                 })
662                 .collect();
663
664             (AdtKind::Enum, variants)
665         }
666         ItemKind::Struct(ref def, _) => {
667             let variant_did = None;
668             let ctor_did = def.ctor_hir_id()
669                 .map(|hir_id| tcx.hir().local_def_id(hir_id));
670
671             let variants = std::iter::once(convert_variant(
672                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
673                 AdtKind::Struct, def_id,
674             )).collect();
675
676             (AdtKind::Struct, variants)
677         }
678         ItemKind::Union(ref def, _) => {
679             let variant_did = None;
680             let ctor_did = def.ctor_hir_id()
681                 .map(|hir_id| tcx.hir().local_def_id(hir_id));
682
683             let variants = std::iter::once(convert_variant(
684                 tcx, variant_did, ctor_did, item.ident, ty::VariantDiscr::Relative(0), def,
685                 AdtKind::Union, def_id,
686             )).collect();
687
688             (AdtKind::Union, variants)
689         },
690         _ => bug!(),
691     };
692     tcx.alloc_adt_def(def_id, kind, variants, repr)
693 }
694
695 /// Ensures that the super-predicates of the trait with a `DefId`
696 /// of `trait_def_id` are converted and stored. This also ensures that
697 /// the transitive super-predicates are converted.
698 fn super_predicates_of(
699     tcx: TyCtxt<'_>,
700     trait_def_id: DefId,
701 ) -> &ty::GenericPredicates<'_> {
702     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
703     let trait_hir_id = tcx.hir().as_local_hir_id(trait_def_id).unwrap();
704
705     let item = match tcx.hir().get(trait_hir_id) {
706         Node::Item(item) => item,
707         _ => bug!("trait_node_id {} is not an item", trait_hir_id),
708     };
709
710     let (generics, bounds) = match item.kind {
711         hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
712         hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
713         _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
714     };
715
716     let icx = ItemCtxt::new(tcx, trait_def_id);
717
718     // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
719     let self_param_ty = tcx.types.self_param;
720     let superbounds1 = AstConv::compute_bounds(&icx, self_param_ty, bounds, SizedByDefault::No,
721         item.span);
722
723     let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
724
725     // Convert any explicit superbounds in the where-clause,
726     // e.g., `trait Foo where Self: Bar`.
727     // In the case of trait aliases, however, we include all bounds in the where-clause,
728     // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
729     // as one of its "superpredicates".
730     let is_trait_alias = tcx.is_trait_alias(trait_def_id);
731     let superbounds2 = icx.type_parameter_bounds_in_generics(
732         generics, item.hir_id, self_param_ty, OnlySelfBounds(!is_trait_alias));
733
734     // Combine the two lists to form the complete set of superbounds:
735     let superbounds: Vec<_> = superbounds1.into_iter().chain(superbounds2).collect();
736
737     // Now require that immediate supertraits are converted,
738     // which will, in turn, reach indirect supertraits.
739     for &(pred, span) in &superbounds {
740         debug!("superbound: {:?}", pred);
741         if let ty::Predicate::Trait(bound) = pred {
742             tcx.at(span).super_predicates_of(bound.def_id());
743         }
744     }
745
746     tcx.arena.alloc(ty::GenericPredicates {
747         parent: None,
748         predicates: superbounds,
749     })
750 }
751
752 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::TraitDef {
753     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
754     let item = tcx.hir().expect_item(hir_id);
755
756     let (is_auto, unsafety) = match item.kind {
757         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
758         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
759         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
760     };
761
762     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
763     if paren_sugar && !tcx.features().unboxed_closures {
764         let mut err = tcx.sess.struct_span_err(
765             item.span,
766             "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
767              which traits can use parenthetical notation",
768         );
769         help!(
770             &mut err,
771             "add `#![feature(unboxed_closures)]` to \
772              the crate attributes to use it"
773         );
774         err.emit();
775     }
776
777     let is_marker = tcx.has_attr(def_id, sym::marker);
778     let def_path_hash = tcx.def_path_hash(def_id);
779     let def = ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, def_path_hash);
780     tcx.arena.alloc(def)
781 }
782
783 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
784     struct LateBoundRegionsDetector<'tcx> {
785         tcx: TyCtxt<'tcx>,
786         outer_index: ty::DebruijnIndex,
787         has_late_bound_regions: Option<Span>,
788     }
789
790     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
791         fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
792             NestedVisitorMap::None
793         }
794
795         fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
796             if self.has_late_bound_regions.is_some() {
797                 return;
798             }
799             match ty.kind {
800                 hir::TyKind::BareFn(..) => {
801                     self.outer_index.shift_in(1);
802                     intravisit::walk_ty(self, ty);
803                     self.outer_index.shift_out(1);
804                 }
805                 _ => intravisit::walk_ty(self, ty),
806             }
807         }
808
809         fn visit_poly_trait_ref(
810             &mut self,
811             tr: &'tcx hir::PolyTraitRef,
812             m: hir::TraitBoundModifier,
813         ) {
814             if self.has_late_bound_regions.is_some() {
815                 return;
816             }
817             self.outer_index.shift_in(1);
818             intravisit::walk_poly_trait_ref(self, tr, m);
819             self.outer_index.shift_out(1);
820         }
821
822         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
823             if self.has_late_bound_regions.is_some() {
824                 return;
825             }
826
827             match self.tcx.named_region(lt.hir_id) {
828                 Some(rl::Region::Static) | Some(rl::Region::EarlyBound(..)) => {}
829                 Some(rl::Region::LateBound(debruijn, _, _))
830                 | Some(rl::Region::LateBoundAnon(debruijn, _)) if debruijn < self.outer_index => {}
831                 Some(rl::Region::LateBound(..))
832                 | Some(rl::Region::LateBoundAnon(..))
833                 | Some(rl::Region::Free(..))
834                 | None => {
835                     self.has_late_bound_regions = Some(lt.span);
836                 }
837             }
838         }
839     }
840
841     fn has_late_bound_regions<'tcx>(
842         tcx: TyCtxt<'tcx>,
843         generics: &'tcx hir::Generics,
844         decl: &'tcx hir::FnDecl,
845     ) -> Option<Span> {
846         let mut visitor = LateBoundRegionsDetector {
847             tcx,
848             outer_index: ty::INNERMOST,
849             has_late_bound_regions: None,
850         };
851         for param in &generics.params {
852             if let GenericParamKind::Lifetime { .. } = param.kind {
853                 if tcx.is_late_bound(param.hir_id) {
854                     return Some(param.span);
855                 }
856             }
857         }
858         visitor.visit_fn_decl(decl);
859         visitor.has_late_bound_regions
860     }
861
862     match node {
863         Node::TraitItem(item) => match item.kind {
864             hir::TraitItemKind::Method(ref sig, _) => {
865                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
866             }
867             _ => None,
868         },
869         Node::ImplItem(item) => match item.kind {
870             hir::ImplItemKind::Method(ref sig, _) => {
871                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
872             }
873             _ => None,
874         },
875         Node::ForeignItem(item) => match item.kind {
876             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
877                 has_late_bound_regions(tcx, generics, fn_decl)
878             }
879             _ => None,
880         },
881         Node::Item(item) => match item.kind {
882             hir::ItemKind::Fn(ref fn_decl, .., ref generics, _) => {
883                 has_late_bound_regions(tcx, generics, fn_decl)
884             }
885             _ => None,
886         },
887         _ => None,
888     }
889 }
890
891 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::Generics {
892     use rustc::hir::*;
893
894     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
895
896     let node = tcx.hir().get(hir_id);
897     let parent_def_id = match node {
898         Node::ImplItem(_) | Node::TraitItem(_) | Node::Variant(_) |
899         Node::Ctor(..) | Node::Field(_) => {
900             let parent_id = tcx.hir().get_parent_item(hir_id);
901             Some(tcx.hir().local_def_id(parent_id))
902         }
903         // FIXME(#43408) enable this in all cases when we get lazy normalization.
904         Node::AnonConst(&anon_const) => {
905             // HACK(eddyb) this provides the correct generics when the workaround
906             // for a const parameter `AnonConst` is being used elsewhere, as then
907             // there won't be the kind of cyclic dependency blocking #43408.
908             let expr = &tcx.hir().body(anon_const.body).value;
909             let icx = ItemCtxt::new(tcx, def_id);
910             if AstConv::const_param_def_id(&icx, expr).is_some() {
911                 let parent_id = tcx.hir().get_parent_item(hir_id);
912                 Some(tcx.hir().local_def_id(parent_id))
913             } else {
914                 None
915             }
916         }
917         Node::Expr(&hir::Expr {
918             kind: hir::ExprKind::Closure(..),
919             ..
920         }) => Some(tcx.closure_base_def_id(def_id)),
921         Node::Item(item) => match item.kind {
922             ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => impl_trait_fn,
923             _ => None,
924         },
925         _ => None,
926     };
927
928     let mut opt_self = None;
929     let mut allow_defaults = false;
930
931     let no_generics = hir::Generics::empty();
932     let ast_generics = match node {
933         Node::TraitItem(item) => &item.generics,
934
935         Node::ImplItem(item) => &item.generics,
936
937         Node::Item(item) => {
938             match item.kind {
939                 ItemKind::Fn(.., ref generics, _) | ItemKind::Impl(_, _, _, ref generics, ..) => {
940                     generics
941                 }
942
943                 ItemKind::TyAlias(_, ref generics)
944                 | ItemKind::Enum(_, ref generics)
945                 | ItemKind::Struct(_, ref generics)
946                 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
947                 | ItemKind::Union(_, ref generics) => {
948                     allow_defaults = true;
949                     generics
950                 }
951
952                 ItemKind::Trait(_, _, ref generics, ..)
953                 | ItemKind::TraitAlias(ref generics, ..) => {
954                     // Add in the self type parameter.
955                     //
956                     // Something of a hack: use the node id for the trait, also as
957                     // the node id for the Self type parameter.
958                     let param_id = item.hir_id;
959
960                     opt_self = Some(ty::GenericParamDef {
961                         index: 0,
962                         name: kw::SelfUpper.as_interned_str(),
963                         def_id: tcx.hir().local_def_id(param_id),
964                         pure_wrt_drop: false,
965                         kind: ty::GenericParamDefKind::Type {
966                             has_default: false,
967                             object_lifetime_default: rl::Set1::Empty,
968                             synthetic: None,
969                         },
970                     });
971
972                     allow_defaults = true;
973                     generics
974                 }
975
976                 _ => &no_generics,
977             }
978         }
979
980         Node::ForeignItem(item) => match item.kind {
981             ForeignItemKind::Static(..) => &no_generics,
982             ForeignItemKind::Fn(_, _, ref generics) => generics,
983             ForeignItemKind::Type => &no_generics,
984         },
985
986         _ => &no_generics,
987     };
988
989     let has_self = opt_self.is_some();
990     let mut parent_has_self = false;
991     let mut own_start = has_self as u32;
992     let parent_count = parent_def_id.map_or(0, |def_id| {
993         let generics = tcx.generics_of(def_id);
994         assert_eq!(has_self, false);
995         parent_has_self = generics.has_self;
996         own_start = generics.count() as u32;
997         generics.parent_count + generics.params.len()
998     });
999
1000     let mut params: Vec<_> = opt_self.into_iter().collect();
1001
1002     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1003     params.extend(
1004         early_lifetimes
1005             .enumerate()
1006             .map(|(i, param)| ty::GenericParamDef {
1007                 name: param.name.ident().as_interned_str(),
1008                 index: own_start + i as u32,
1009                 def_id: tcx.hir().local_def_id(param.hir_id),
1010                 pure_wrt_drop: param.pure_wrt_drop,
1011                 kind: ty::GenericParamDefKind::Lifetime,
1012             }),
1013     );
1014
1015     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
1016
1017     // Now create the real type parameters.
1018     let type_start = own_start - has_self as u32 + params.len() as u32;
1019     let mut i = 0;
1020     params.extend(
1021         ast_generics
1022             .params
1023             .iter()
1024             .filter_map(|param| {
1025                 let kind = match param.kind {
1026                     GenericParamKind::Type {
1027                         ref default,
1028                         synthetic,
1029                         ..
1030                     } => {
1031                         if !allow_defaults && default.is_some() {
1032                             if !tcx.features().default_type_parameter_fallback {
1033                                 tcx.lint_hir(
1034                                     lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1035                                     param.hir_id,
1036                                     param.span,
1037                                     &format!(
1038                                         "defaults for type parameters are only allowed in \
1039                                         `struct`, `enum`, `type`, or `trait` definitions."
1040                                     ),
1041                                 );
1042                             }
1043                         }
1044
1045                         ty::GenericParamDefKind::Type {
1046                             has_default: default.is_some(),
1047                             object_lifetime_default: object_lifetime_defaults
1048                                 .as_ref()
1049                                 .map_or(rl::Set1::Empty, |o| o[i]),
1050                             synthetic,
1051                         }
1052                     }
1053                     GenericParamKind::Const { .. } => {
1054                         ty::GenericParamDefKind::Const
1055                     }
1056                     _ => return None,
1057                 };
1058
1059                 let param_def = ty::GenericParamDef {
1060                     index: type_start + i as u32,
1061                     name: param.name.ident().as_interned_str(),
1062                     def_id: tcx.hir().local_def_id(param.hir_id),
1063                     pure_wrt_drop: param.pure_wrt_drop,
1064                     kind,
1065                 };
1066                 i += 1;
1067                 Some(param_def)
1068             })
1069     );
1070
1071     // provide junk type parameter defs - the only place that
1072     // cares about anything but the length is instantiation,
1073     // and we don't do that for closures.
1074     if let Node::Expr(&hir::Expr {
1075         kind: hir::ExprKind::Closure(.., gen),
1076         ..
1077     }) = node
1078     {
1079         let dummy_args = if gen.is_some() {
1080             &["<yield_ty>", "<return_ty>", "<witness>"][..]
1081         } else {
1082             &["<closure_kind>", "<closure_signature>"][..]
1083         };
1084
1085         params.extend(
1086             dummy_args
1087                 .iter()
1088                 .enumerate()
1089                 .map(|(i, &arg)| ty::GenericParamDef {
1090                     index: type_start + i as u32,
1091                     name: InternedString::intern(arg),
1092                     def_id,
1093                     pure_wrt_drop: false,
1094                     kind: ty::GenericParamDefKind::Type {
1095                         has_default: false,
1096                         object_lifetime_default: rl::Set1::Empty,
1097                         synthetic: None,
1098                     },
1099                 }),
1100         );
1101
1102         if let Some(upvars) = tcx.upvars(def_id) {
1103             params.extend(upvars.iter().zip((dummy_args.len() as u32)..).map(|(_, i)| {
1104                 ty::GenericParamDef {
1105                     index: type_start + i,
1106                     name: InternedString::intern("<upvar>"),
1107                     def_id,
1108                     pure_wrt_drop: false,
1109                     kind: ty::GenericParamDefKind::Type {
1110                         has_default: false,
1111                         object_lifetime_default: rl::Set1::Empty,
1112                         synthetic: None,
1113                     },
1114                 }
1115             }));
1116         }
1117     }
1118
1119     let param_def_id_to_index = params
1120         .iter()
1121         .map(|param| (param.def_id, param.index))
1122         .collect();
1123
1124     tcx.arena.alloc(ty::Generics {
1125         parent: parent_def_id,
1126         parent_count,
1127         params,
1128         param_def_id_to_index,
1129         has_self: has_self || parent_has_self,
1130         has_late_bound_regions: has_late_bound_regions(tcx, node),
1131     })
1132 }
1133
1134 fn report_assoc_ty_on_inherent_impl(tcx: TyCtxt<'_>, span: Span) {
1135     span_err!(
1136         tcx.sess,
1137         span,
1138         E0202,
1139         "associated types are not yet supported in inherent impls (see #8995)"
1140     );
1141 }
1142
1143 fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1144     checked_type_of(tcx, def_id, true).unwrap()
1145 }
1146
1147 fn infer_placeholder_type(
1148     tcx: TyCtxt<'_>,
1149     def_id: DefId,
1150     body_id: hir::BodyId,
1151     span: Span,
1152     item_ident: Ident,
1153 ) -> Ty<'_> {
1154     let ty = tcx.typeck_tables_of(def_id).node_type(body_id.hir_id);
1155
1156     // If this came from a free `const` or `static mut?` item,
1157     // then the user may have written e.g. `const A = 42;`.
1158     // In this case, the parser has stashed a diagnostic for
1159     // us to improve in typeck so we do that now.
1160     match tcx.sess.diagnostic().steal_diagnostic(span, StashKey::ItemNoType) {
1161         Some(mut err) => {
1162             // The parser provided a sub-optimal `HasPlaceholders` suggestion for the type.
1163             // We are typeck and have the real type, so remove that and suggest the actual type.
1164             err.suggestions.clear();
1165             err.span_suggestion(
1166                 span,
1167                 "provide a type for the item",
1168                 format!("{}: {}", item_ident, ty),
1169                 Applicability::MachineApplicable,
1170             )
1171             .emit();
1172         }
1173         None => {
1174             let mut diag = bad_placeholder_type(tcx, span);
1175             if ty != tcx.types.err {
1176                 diag.span_suggestion(
1177                     span,
1178                     "replace `_` with the correct type",
1179                     ty.to_string(),
1180                     Applicability::MaybeIncorrect,
1181                 );
1182             }
1183             diag.emit();
1184         }
1185     }
1186
1187     ty
1188 }
1189
1190 /// Same as [`type_of`] but returns [`Option`] instead of failing.
1191 ///
1192 /// If you want to fail anyway, you can set the `fail` parameter to true, but in this case,
1193 /// you'd better just call [`type_of`] directly.
1194 pub fn checked_type_of(tcx: TyCtxt<'_>, def_id: DefId, fail: bool) -> Option<Ty<'_>> {
1195     use rustc::hir::*;
1196
1197     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
1198         Some(hir_id) => hir_id,
1199         None => {
1200             if !fail {
1201                 return None;
1202             }
1203             bug!("invalid node");
1204         }
1205     };
1206
1207     let icx = ItemCtxt::new(tcx, def_id);
1208
1209     Some(match tcx.hir().get(hir_id) {
1210         Node::TraitItem(item) => match item.kind {
1211             TraitItemKind::Method(..) => {
1212                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1213                 tcx.mk_fn_def(def_id, substs)
1214             }
1215             TraitItemKind::Const(ref ty, body_id)  => {
1216                 body_id.and_then(|body_id| {
1217                     if let hir::TyKind::Infer = ty.kind {
1218                         Some(infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident))
1219                     } else {
1220                         None
1221                     }
1222                 }).unwrap_or_else(|| icx.to_ty(ty))
1223             },
1224             TraitItemKind::Type(_, Some(ref ty)) => icx.to_ty(ty),
1225             TraitItemKind::Type(_, None) => {
1226                 if !fail {
1227                     return None;
1228                 }
1229                 span_bug!(item.span, "associated type missing default");
1230             }
1231         },
1232
1233         Node::ImplItem(item) => match item.kind {
1234             ImplItemKind::Method(..) => {
1235                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1236                 tcx.mk_fn_def(def_id, substs)
1237             }
1238             ImplItemKind::Const(ref ty, body_id) => {
1239                 if let hir::TyKind::Infer = ty.kind {
1240                     infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1241                 } else {
1242                     icx.to_ty(ty)
1243                 }
1244             },
1245             ImplItemKind::OpaqueTy(_) => {
1246                 if tcx
1247                     .impl_trait_ref(tcx.hir().get_parent_did(hir_id))
1248                     .is_none()
1249                 {
1250                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1251                 }
1252
1253                 find_opaque_ty_constraints(tcx, def_id)
1254             }
1255             ImplItemKind::TyAlias(ref ty) => {
1256                 if tcx
1257                     .impl_trait_ref(tcx.hir().get_parent_did(hir_id))
1258                     .is_none()
1259                 {
1260                     report_assoc_ty_on_inherent_impl(tcx, item.span);
1261                 }
1262
1263                 icx.to_ty(ty)
1264             }
1265         },
1266
1267         Node::Item(item) => {
1268             match item.kind {
1269                 ItemKind::Static(ref ty, .., body_id)
1270                 | ItemKind::Const(ref ty, body_id) => {
1271                     if let hir::TyKind::Infer = ty.kind {
1272                         infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident)
1273                     } else {
1274                         icx.to_ty(ty)
1275                     }
1276                 },
1277                 ItemKind::TyAlias(ref ty, _)
1278                 | ItemKind::Impl(.., ref ty, _) => icx.to_ty(ty),
1279                 ItemKind::Fn(..) => {
1280                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1281                     tcx.mk_fn_def(def_id, substs)
1282                 }
1283                 ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
1284                     let def = tcx.adt_def(def_id);
1285                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
1286                     tcx.mk_adt(def, substs)
1287                 }
1288                 ItemKind::OpaqueTy(hir::OpaqueTy {
1289                     impl_trait_fn: None,
1290                     ..
1291                 }) => find_opaque_ty_constraints(tcx, def_id),
1292                 // Opaque types desugared from `impl Trait`.
1293                 ItemKind::OpaqueTy(hir::OpaqueTy {
1294                     impl_trait_fn: Some(owner),
1295                     ..
1296                 }) => {
1297                     tcx.typeck_tables_of(owner)
1298                         .concrete_opaque_types
1299                         .get(&def_id)
1300                         .map(|opaque| opaque.concrete_type)
1301                         .unwrap_or_else(|| {
1302                             // This can occur if some error in the
1303                             // owner fn prevented us from populating
1304                             // the `concrete_opaque_types` table.
1305                             tcx.sess.delay_span_bug(
1306                                 DUMMY_SP,
1307                                 &format!(
1308                                     "owner {:?} has no opaque type for {:?} in its tables",
1309                                     owner, def_id,
1310                                 ),
1311                             );
1312                             tcx.types.err
1313                         })
1314                 }
1315                 ItemKind::Trait(..)
1316                 | ItemKind::TraitAlias(..)
1317                 | ItemKind::Mod(..)
1318                 | ItemKind::ForeignMod(..)
1319                 | ItemKind::GlobalAsm(..)
1320                 | ItemKind::ExternCrate(..)
1321                 | ItemKind::Use(..) => {
1322                     if !fail {
1323                         return None;
1324                     }
1325                     span_bug!(
1326                         item.span,
1327                         "compute_type_of_item: unexpected item type: {:?}",
1328                         item.kind
1329                     );
1330                 }
1331             }
1332         }
1333
1334         Node::ForeignItem(foreign_item) => match foreign_item.kind {
1335             ForeignItemKind::Fn(..) => {
1336                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1337                 tcx.mk_fn_def(def_id, substs)
1338             }
1339             ForeignItemKind::Static(ref t, _) => icx.to_ty(t),
1340             ForeignItemKind::Type => tcx.mk_foreign(def_id),
1341         },
1342
1343         Node::Ctor(&ref def) | Node::Variant(
1344             hir::Variant { data: ref def, .. }
1345         ) => match *def {
1346             VariantData::Unit(..) | VariantData::Struct(..) => {
1347                 tcx.type_of(tcx.hir().get_parent_did(hir_id))
1348             }
1349             VariantData::Tuple(..) => {
1350                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
1351                 tcx.mk_fn_def(def_id, substs)
1352             }
1353         },
1354
1355         Node::Field(field) => icx.to_ty(&field.ty),
1356
1357         Node::Expr(&hir::Expr {
1358             kind: hir::ExprKind::Closure(.., gen),
1359             ..
1360         }) => {
1361             if gen.is_some() {
1362                 return Some(tcx.typeck_tables_of(def_id).node_type(hir_id));
1363             }
1364
1365             let substs = InternalSubsts::identity_for_item(tcx, def_id);
1366             tcx.mk_closure(def_id, substs)
1367         }
1368
1369         Node::AnonConst(_) => {
1370             let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1371             match parent_node {
1372                 Node::Ty(&hir::Ty {
1373                     kind: hir::TyKind::Array(_, ref constant),
1374                     ..
1375                 })
1376                 | Node::Ty(&hir::Ty {
1377                     kind: hir::TyKind::Typeof(ref constant),
1378                     ..
1379                 })
1380                 | Node::Expr(&hir::Expr {
1381                     kind: ExprKind::Repeat(_, ref constant),
1382                     ..
1383                 }) if constant.hir_id == hir_id =>
1384                 {
1385                     tcx.types.usize
1386                 }
1387
1388                 Node::Variant(Variant {
1389                     disr_expr: Some(ref e),
1390                     ..
1391                 }) if e.hir_id == hir_id =>
1392                 {
1393                     tcx.adt_def(tcx.hir().get_parent_did(hir_id))
1394                         .repr
1395                         .discr_type()
1396                         .to_ty(tcx)
1397                 }
1398
1399                 Node::Ty(&hir::Ty { kind: hir::TyKind::Path(_), .. }) |
1400                 Node::Expr(&hir::Expr { kind: ExprKind::Struct(..), .. }) |
1401                 Node::Expr(&hir::Expr { kind: ExprKind::Path(_), .. }) |
1402                 Node::TraitRef(..) => {
1403                     let path = match parent_node {
1404                         Node::Ty(&hir::Ty {
1405                             kind: hir::TyKind::Path(QPath::Resolved(_, ref path)),
1406                             ..
1407                         })
1408                         | Node::Expr(&hir::Expr {
1409                             kind: ExprKind::Path(QPath::Resolved(_, ref path)),
1410                             ..
1411                         }) => {
1412                             Some(&**path)
1413                         }
1414                         Node::Expr(&hir::Expr { kind: ExprKind::Struct(ref path, ..), .. }) => {
1415                             if let QPath::Resolved(_, ref path) = **path {
1416                                 Some(&**path)
1417                             } else {
1418                                 None
1419                             }
1420                         }
1421                         Node::TraitRef(&hir::TraitRef { ref path, .. }) => Some(&**path),
1422                         _ => None,
1423                     };
1424
1425                     if let Some(path) = path {
1426                         let arg_index = path.segments.iter()
1427                             .filter_map(|seg| seg.args.as_ref())
1428                             .map(|generic_args| generic_args.args.as_ref())
1429                             .find_map(|args| {
1430                                 args.iter()
1431                                     .filter(|arg| arg.is_const())
1432                                     .enumerate()
1433                                     .filter(|(_, arg)| arg.id() == hir_id)
1434                                     .map(|(index, _)| index)
1435                                     .next()
1436                             })
1437                             .or_else(|| {
1438                                 if !fail {
1439                                     None
1440                                 } else {
1441                                     bug!("no arg matching AnonConst in path")
1442                                 }
1443                             })?;
1444
1445                         // We've encountered an `AnonConst` in some path, so we need to
1446                         // figure out which generic parameter it corresponds to and return
1447                         // the relevant type.
1448                         let generics = match path.res {
1449                             Res::Def(DefKind::Ctor(..), def_id) => {
1450                                 tcx.generics_of(tcx.parent(def_id).unwrap())
1451                             }
1452                             Res::Def(_, def_id) => tcx.generics_of(def_id),
1453                             Res::Err => return Some(tcx.types.err),
1454                             _ if !fail => return None,
1455                             res => {
1456                                 tcx.sess.delay_span_bug(
1457                                     DUMMY_SP,
1458                                     &format!(
1459                                         "unexpected const parent path def {:?}",
1460                                         res,
1461                                     ),
1462                                 );
1463                                 return Some(tcx.types.err);
1464                             }
1465                         };
1466
1467                         generics.params.iter()
1468                             .filter(|param| {
1469                                 if let ty::GenericParamDefKind::Const = param.kind {
1470                                     true
1471                                 } else {
1472                                     false
1473                                 }
1474                             })
1475                             .nth(arg_index)
1476                             .map(|param| tcx.type_of(param.def_id))
1477                             // This is no generic parameter associated with the arg. This is
1478                             // probably from an extra arg where one is not needed.
1479                             .unwrap_or(tcx.types.err)
1480                     } else {
1481                         if !fail {
1482                             return None;
1483                         }
1484                         tcx.sess.delay_span_bug(
1485                             DUMMY_SP,
1486                             &format!(
1487                                 "unexpected const parent path {:?}",
1488                                 parent_node,
1489                             ),
1490                         );
1491                         return Some(tcx.types.err);
1492                     }
1493                 }
1494
1495                 x => {
1496                     if !fail {
1497                         return None;
1498                     }
1499                     tcx.sess.delay_span_bug(
1500                         DUMMY_SP,
1501                         &format!(
1502                             "unexpected const parent in type_of_def_id(): {:?}", x
1503                         ),
1504                     );
1505                     tcx.types.err
1506                 }
1507             }
1508         }
1509
1510         Node::GenericParam(param) => match &param.kind {
1511             hir::GenericParamKind::Type { default: Some(ref ty), .. } |
1512             hir::GenericParamKind::Const { ref ty, .. } => {
1513                 icx.to_ty(ty)
1514             }
1515             x => {
1516                 if !fail {
1517                     return None;
1518                 }
1519                 bug!("unexpected non-type Node::GenericParam: {:?}", x)
1520             },
1521         },
1522
1523         x => {
1524             if !fail {
1525                 return None;
1526             }
1527             bug!("unexpected sort of node in type_of_def_id(): {:?}", x);
1528         }
1529     })
1530 }
1531
1532 fn find_opaque_ty_constraints(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
1533     use rustc::hir::{ImplItem, Item, TraitItem};
1534
1535     debug!("find_opaque_ty_constraints({:?})", def_id);
1536
1537     struct ConstraintLocator<'tcx> {
1538         tcx: TyCtxt<'tcx>,
1539         def_id: DefId,
1540         // (first found type span, actual type, mapping from the opaque type's generic
1541         // parameters to the concrete type's generic parameters)
1542         //
1543         // The mapping is an index for each use site of a generic parameter in the concrete type
1544         //
1545         // The indices index into the generic parameters on the opaque type.
1546         found: Option<(Span, Ty<'tcx>, Vec<usize>)>,
1547     }
1548
1549     impl ConstraintLocator<'tcx> {
1550         fn check(&mut self, def_id: DefId) {
1551             // Don't try to check items that cannot possibly constrain the type.
1552             if !self.tcx.has_typeck_tables(def_id) {
1553                 debug!(
1554                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`: no tables",
1555                     self.def_id,
1556                     def_id,
1557                 );
1558                 return;
1559             }
1560             let ty = self
1561                 .tcx
1562                 .typeck_tables_of(def_id)
1563                 .concrete_opaque_types
1564                 .get(&self.def_id);
1565             if let Some(ty::ResolvedOpaqueTy { concrete_type, substs }) = ty {
1566                 debug!(
1567                     "find_opaque_ty_constraints: found constraint for `{:?}` at `{:?}`: {:?}",
1568                     self.def_id,
1569                     def_id,
1570                     ty,
1571                 );
1572
1573                 // FIXME(oli-obk): trace the actual span from inference to improve errors.
1574                 let span = self.tcx.def_span(def_id);
1575                 // used to quickly look up the position of a generic parameter
1576                 let mut index_map: FxHashMap<ty::ParamTy, usize> = FxHashMap::default();
1577                 // Skipping binder is ok, since we only use this to find generic parameters and
1578                 // their positions.
1579                 for (idx, subst) in substs.iter().enumerate() {
1580                     if let GenericArgKind::Type(ty) = subst.unpack() {
1581                         if let ty::Param(p) = ty.kind {
1582                             if index_map.insert(p, idx).is_some() {
1583                                 // There was already an entry for `p`, meaning a generic parameter
1584                                 // was used twice.
1585                                 self.tcx.sess.span_err(
1586                                     span,
1587                                     &format!(
1588                                         "defining opaque type use restricts opaque \
1589                                          type by using the generic parameter `{}` twice",
1590                                         p,
1591                                     ),
1592                                 );
1593                                 return;
1594                             }
1595                         } else {
1596                             self.tcx.sess.delay_span_bug(
1597                                 span,
1598                                 &format!(
1599                                     "non-defining opaque ty use in defining scope: {:?}, {:?}",
1600                                     concrete_type, substs,
1601                                 ),
1602                             );
1603                         }
1604                     }
1605                 }
1606                 // Compute the index within the opaque type for each generic parameter used in
1607                 // the concrete type.
1608                 let indices = concrete_type
1609                     .subst(self.tcx, substs)
1610                     .walk()
1611                     .filter_map(|t| match &t.kind {
1612                         ty::Param(p) => Some(*index_map.get(p).unwrap()),
1613                         _ => None,
1614                     }).collect();
1615                 let is_param = |ty: Ty<'_>| match ty.kind {
1616                     ty::Param(_) => true,
1617                     _ => false,
1618                 };
1619                 if !substs.types().all(is_param) {
1620                     self.tcx.sess.span_err(
1621                         span,
1622                         "defining opaque type use does not fully define opaque type",
1623                     );
1624                 } else if let Some((prev_span, prev_ty, ref prev_indices)) = self.found {
1625                     let mut ty = concrete_type.walk().fuse();
1626                     let mut p_ty = prev_ty.walk().fuse();
1627                     let iter_eq = (&mut ty).zip(&mut p_ty).all(|(t, p)| match (&t.kind, &p.kind) {
1628                         // Type parameters are equal to any other type parameter for the purpose of
1629                         // concrete type equality, as it is possible to obtain the same type just
1630                         // by passing matching parameters to a function.
1631                         (ty::Param(_), ty::Param(_)) => true,
1632                         _ => t == p,
1633                     });
1634                     if !iter_eq || ty.next().is_some() || p_ty.next().is_some() {
1635                         debug!("find_opaque_ty_constraints: span={:?}", span);
1636                         // Found different concrete types for the opaque type.
1637                         let mut err = self.tcx.sess.struct_span_err(
1638                             span,
1639                             "concrete type differs from previous defining opaque type use",
1640                         );
1641                         err.span_label(
1642                             span,
1643                             format!("expected `{}`, got `{}`", prev_ty, concrete_type),
1644                         );
1645                         err.span_note(prev_span, "previous use here");
1646                         err.emit();
1647                     } else if indices != *prev_indices {
1648                         // Found "same" concrete types, but the generic parameter order differs.
1649                         let mut err = self.tcx.sess.struct_span_err(
1650                             span,
1651                             "concrete type's generic parameters differ from previous defining use",
1652                         );
1653                         use std::fmt::Write;
1654                         let mut s = String::new();
1655                         write!(s, "expected [").unwrap();
1656                         let list = |s: &mut String, indices: &Vec<usize>| {
1657                             let mut indices = indices.iter().cloned();
1658                             if let Some(first) = indices.next() {
1659                                 write!(s, "`{}`", substs[first]).unwrap();
1660                                 for i in indices {
1661                                     write!(s, ", `{}`", substs[i]).unwrap();
1662                                 }
1663                             }
1664                         };
1665                         list(&mut s, prev_indices);
1666                         write!(s, "], got [").unwrap();
1667                         list(&mut s, &indices);
1668                         write!(s, "]").unwrap();
1669                         err.span_label(span, s);
1670                         err.span_note(prev_span, "previous use here");
1671                         err.emit();
1672                     }
1673                 } else {
1674                     self.found = Some((span, concrete_type, indices));
1675                 }
1676             } else {
1677                 debug!(
1678                     "find_opaque_ty_constraints: no constraint for `{:?}` at `{:?}`",
1679                     self.def_id,
1680                     def_id,
1681                 );
1682             }
1683         }
1684     }
1685
1686     impl<'tcx> intravisit::Visitor<'tcx> for ConstraintLocator<'tcx> {
1687         fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'tcx> {
1688             intravisit::NestedVisitorMap::All(&self.tcx.hir())
1689         }
1690         fn visit_item(&mut self, it: &'tcx Item) {
1691             debug!("find_existential_constraints: visiting {:?}", it);
1692             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1693             // The opaque type itself or its children are not within its reveal scope.
1694             if def_id != self.def_id {
1695                 self.check(def_id);
1696                 intravisit::walk_item(self, it);
1697             }
1698         }
1699         fn visit_impl_item(&mut self, it: &'tcx ImplItem) {
1700             debug!("find_existential_constraints: visiting {:?}", it);
1701             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1702             // The opaque type itself or its children are not within its reveal scope.
1703             if def_id != self.def_id {
1704                 self.check(def_id);
1705                 intravisit::walk_impl_item(self, it);
1706             }
1707         }
1708         fn visit_trait_item(&mut self, it: &'tcx TraitItem) {
1709             debug!("find_existential_constraints: visiting {:?}", it);
1710             let def_id = self.tcx.hir().local_def_id(it.hir_id);
1711             self.check(def_id);
1712             intravisit::walk_trait_item(self, it);
1713         }
1714     }
1715
1716     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1717     let scope = tcx.hir().get_defining_scope(hir_id);
1718     let mut locator = ConstraintLocator {
1719         def_id,
1720         tcx,
1721         found: None,
1722     };
1723
1724     debug!("find_opaque_ty_constraints: scope={:?}", scope);
1725
1726     if scope == hir::CRATE_HIR_ID {
1727         intravisit::walk_crate(&mut locator, tcx.hir().krate());
1728     } else {
1729         debug!("find_opaque_ty_constraints: scope={:?}", tcx.hir().get(scope));
1730         match tcx.hir().get(scope) {
1731             // We explicitly call `visit_*` methods, instead of using `intravisit::walk_*` methods
1732             // This allows our visitor to process the defining item itself, causing
1733             // it to pick up any 'sibling' defining uses.
1734             //
1735             // For example, this code:
1736             // ```
1737             // fn foo() {
1738             //     type Blah = impl Debug;
1739             //     let my_closure = || -> Blah { true };
1740             // }
1741             // ```
1742             //
1743             // requires us to explicitly process `foo()` in order
1744             // to notice the defining usage of `Blah`.
1745             Node::Item(ref it) => locator.visit_item(it),
1746             Node::ImplItem(ref it) => locator.visit_impl_item(it),
1747             Node::TraitItem(ref it) => locator.visit_trait_item(it),
1748             other => bug!(
1749                 "{:?} is not a valid scope for an opaque type item",
1750                 other
1751             ),
1752         }
1753     }
1754
1755     match locator.found {
1756         Some((_, ty, _)) => ty,
1757         None => {
1758             let span = tcx.def_span(def_id);
1759             tcx.sess.span_err(span, "could not find defining uses");
1760             tcx.types.err
1761         }
1762     }
1763 }
1764
1765 pub fn get_infer_ret_ty(output: &'_ hir::FunctionRetTy) -> Option<&hir::Ty> {
1766     if let hir::FunctionRetTy::Return(ref ty) = output {
1767         if let hir::TyKind::Infer = ty.kind {
1768             return Some(&**ty)
1769         }
1770     }
1771     None
1772 }
1773
1774 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1775     use rustc::hir::*;
1776     use rustc::hir::Node::*;
1777
1778     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1779
1780     let icx = ItemCtxt::new(tcx, def_id);
1781
1782     match tcx.hir().get(hir_id) {
1783         TraitItem(hir::TraitItem {
1784             kind: TraitItemKind::Method(MethodSig { header, decl }, TraitMethod::Provided(_)),
1785             ..
1786         })
1787         | ImplItem(hir::ImplItem {
1788             kind: ImplItemKind::Method(MethodSig { header, decl }, _),
1789             ..
1790         })
1791         | Item(hir::Item {
1792             kind: ItemKind::Fn(decl, header, _, _),
1793             ..
1794         }) => match get_infer_ret_ty(&decl.output) {
1795             Some(ty) => {
1796                 let fn_sig = tcx.typeck_tables_of(def_id).liberated_fn_sigs()[hir_id];
1797                 let mut diag = bad_placeholder_type(tcx, ty.span);
1798                 let ret_ty = fn_sig.output();
1799                 if ret_ty != tcx.types.err  {
1800                     diag.span_suggestion(
1801                         ty.span,
1802                         "replace `_` with the correct return type",
1803                         ret_ty.to_string(),
1804                         Applicability::MaybeIncorrect,
1805                     );
1806                 }
1807                 diag.emit();
1808                 ty::Binder::bind(fn_sig)
1809             },
1810             None => AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl)
1811         },
1812
1813         TraitItem(hir::TraitItem {
1814             kind: TraitItemKind::Method(MethodSig { header, decl }, _),
1815             ..
1816         }) => {
1817             AstConv::ty_of_fn(&icx, header.unsafety, header.abi, decl)
1818         },
1819
1820         ForeignItem(&hir::ForeignItem {
1821             kind: ForeignItemKind::Fn(ref fn_decl, _, _),
1822             ..
1823         }) => {
1824             let abi = tcx.hir().get_foreign_abi(hir_id);
1825             compute_sig_of_foreign_fn_decl(tcx, def_id, fn_decl, abi)
1826         }
1827
1828         Ctor(data) | Variant(
1829             hir::Variant { data, ..  }
1830         ) if data.ctor_hir_id().is_some() => {
1831             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id));
1832             let inputs = data.fields()
1833                 .iter()
1834                 .map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1835             ty::Binder::bind(tcx.mk_fn_sig(
1836                 inputs,
1837                 ty,
1838                 false,
1839                 hir::Unsafety::Normal,
1840                 abi::Abi::Rust,
1841             ))
1842         }
1843
1844         Expr(&hir::Expr {
1845             kind: hir::ExprKind::Closure(..),
1846             ..
1847         }) => {
1848             // Closure signatures are not like other function
1849             // signatures and cannot be accessed through `fn_sig`. For
1850             // example, a closure signature excludes the `self`
1851             // argument. In any case they are embedded within the
1852             // closure type as part of the `ClosureSubsts`.
1853             //
1854             // To get
1855             // the signature of a closure, you should use the
1856             // `closure_sig` method on the `ClosureSubsts`:
1857             //
1858             //    closure_substs.sig(def_id, tcx)
1859             //
1860             // or, inside of an inference context, you can use
1861             //
1862             //    infcx.closure_sig(def_id, closure_substs)
1863             bug!("to get the signature of a closure, use `closure_sig()` not `fn_sig()`");
1864         }
1865
1866         x => {
1867             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1868         }
1869     }
1870 }
1871
1872 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1873     let icx = ItemCtxt::new(tcx, def_id);
1874
1875     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1876     match tcx.hir().expect_item(hir_id).kind {
1877         hir::ItemKind::Impl(.., ref opt_trait_ref, _, _) => {
1878             opt_trait_ref.as_ref().map(|ast_trait_ref| {
1879                 let selfty = tcx.type_of(def_id);
1880                 AstConv::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1881             })
1882         }
1883         _ => bug!(),
1884     }
1885 }
1886
1887 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
1888     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
1889     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
1890     let item = tcx.hir().expect_item(hir_id);
1891     match &item.kind {
1892         hir::ItemKind::Impl(_, hir::ImplPolarity::Negative, ..) => {
1893             if is_rustc_reservation {
1894                 tcx.sess.span_err(item.span, "reservation impls can't be negative");
1895             }
1896             ty::ImplPolarity::Negative
1897         }
1898         hir::ItemKind::Impl(_, hir::ImplPolarity::Positive, _, _, None, _, _) => {
1899             if is_rustc_reservation {
1900                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
1901             }
1902             ty::ImplPolarity::Positive
1903         }
1904         hir::ItemKind::Impl(_, hir::ImplPolarity::Positive, _, _, Some(_tr), _, _) => {
1905             if is_rustc_reservation {
1906                 ty::ImplPolarity::Reservation
1907             } else {
1908                 ty::ImplPolarity::Positive
1909             }
1910         }
1911         ref item => bug!("impl_polarity: {:?} not an impl", item),
1912     }
1913 }
1914
1915 /// Returns the early-bound lifetimes declared in this generics
1916 /// listing. For anything other than fns/methods, this is just all
1917 /// the lifetimes that are declared. For fns or methods, we have to
1918 /// screen out those that do not appear in any where-clauses etc using
1919 /// `resolve_lifetime::early_bound_lifetimes`.
1920 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
1921     tcx: TyCtxt<'tcx>,
1922     generics: &'a hir::Generics,
1923 ) -> impl Iterator<Item = &'a hir::GenericParam> + Captures<'tcx> {
1924     generics
1925         .params
1926         .iter()
1927         .filter(move |param| match param.kind {
1928             GenericParamKind::Lifetime { .. } => {
1929                 !tcx.is_late_bound(param.hir_id)
1930             }
1931             _ => false,
1932         })
1933 }
1934
1935 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1936 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1937 /// inferred constraints concerning which regions outlive other regions.
1938 fn predicates_defined_on(
1939     tcx: TyCtxt<'_>,
1940     def_id: DefId,
1941 ) -> &ty::GenericPredicates<'_> {
1942     debug!("predicates_defined_on({:?})", def_id);
1943     let mut result = tcx.explicit_predicates_of(def_id);
1944     debug!(
1945         "predicates_defined_on: explicit_predicates_of({:?}) = {:?}",
1946         def_id,
1947         result,
1948     );
1949     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1950     if !inferred_outlives.is_empty() {
1951         let span = tcx.def_span(def_id);
1952         debug!(
1953             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1954             def_id,
1955             inferred_outlives,
1956         );
1957         let mut predicates = (*result).clone();
1958         predicates.predicates.extend(inferred_outlives.iter().map(|&p| (p, span)));
1959         result = tcx.arena.alloc(predicates);
1960     }
1961     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1962     result
1963 }
1964
1965 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1966 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1967 /// `Self: Trait` predicates for traits.
1968 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::GenericPredicates<'_> {
1969     let mut result = tcx.predicates_defined_on(def_id);
1970
1971     if tcx.is_trait(def_id) {
1972         // For traits, add `Self: Trait` predicate. This is
1973         // not part of the predicates that a user writes, but it
1974         // is something that one must prove in order to invoke a
1975         // method or project an associated type.
1976         //
1977         // In the chalk setup, this predicate is not part of the
1978         // "predicates" for a trait item. But it is useful in
1979         // rustc because if you directly (e.g.) invoke a trait
1980         // method like `Trait::method(...)`, you must naturally
1981         // prove that the trait applies to the types that were
1982         // used, and adding the predicate into this list ensures
1983         // that this is done.
1984         let span = tcx.def_span(def_id);
1985         let mut predicates = (*result).clone();
1986         predicates.predicates.push((ty::TraitRef::identity(tcx, def_id).to_predicate(), span));
1987         result = tcx.arena.alloc(predicates);
1988     }
1989     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
1990     result
1991 }
1992
1993 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
1994 /// N.B., this does not include any implied/inferred constraints.
1995 fn explicit_predicates_of(
1996     tcx: TyCtxt<'_>,
1997     def_id: DefId,
1998 ) -> &ty::GenericPredicates<'_> {
1999     use rustc::hir::*;
2000     use rustc_data_structures::fx::FxHashSet;
2001
2002     debug!("explicit_predicates_of(def_id={:?})", def_id);
2003
2004     /// A data structure with unique elements, which preserves order of insertion.
2005     /// Preserving the order of insertion is important here so as not to break
2006     /// compile-fail UI tests.
2007     struct UniquePredicates<'tcx> {
2008         predicates: Vec<(ty::Predicate<'tcx>, Span)>,
2009         uniques: FxHashSet<(ty::Predicate<'tcx>, Span)>,
2010     }
2011
2012     impl<'tcx> UniquePredicates<'tcx> {
2013         fn new() -> Self {
2014             UniquePredicates {
2015                 predicates: vec![],
2016                 uniques: FxHashSet::default(),
2017             }
2018         }
2019
2020         fn push(&mut self, value: (ty::Predicate<'tcx>, Span)) {
2021             if self.uniques.insert(value) {
2022                 self.predicates.push(value);
2023             }
2024         }
2025
2026         fn extend<I: IntoIterator<Item = (ty::Predicate<'tcx>, Span)>>(&mut self, iter: I) {
2027             for value in iter {
2028                 self.push(value);
2029             }
2030         }
2031     }
2032
2033     let hir_id = match tcx.hir().as_local_hir_id(def_id) {
2034         Some(hir_id) => hir_id,
2035         None => return tcx.predicates_of(def_id),
2036     };
2037     let node = tcx.hir().get(hir_id);
2038
2039     let mut is_trait = None;
2040     let mut is_default_impl_trait = None;
2041
2042     let icx = ItemCtxt::new(tcx, def_id);
2043
2044     const NO_GENERICS: &hir::Generics = &hir::Generics::empty();
2045
2046     let empty_trait_items = HirVec::new();
2047
2048     let mut predicates = UniquePredicates::new();
2049
2050     let ast_generics = match node {
2051         Node::TraitItem(item) => &item.generics,
2052
2053         Node::ImplItem(item) => match item.kind {
2054             ImplItemKind::OpaqueTy(ref bounds) => {
2055                 let substs = InternalSubsts::identity_for_item(tcx, def_id);
2056                 let opaque_ty = tcx.mk_opaque(def_id, substs);
2057
2058                 // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2059                 let bounds = AstConv::compute_bounds(
2060                     &icx,
2061                     opaque_ty,
2062                     bounds,
2063                     SizedByDefault::Yes,
2064                     tcx.def_span(def_id),
2065                 );
2066
2067                 predicates.extend(bounds.predicates(tcx, opaque_ty));
2068                 &item.generics
2069             }
2070             _ => &item.generics,
2071         },
2072
2073         Node::Item(item) => {
2074             match item.kind {
2075                 ItemKind::Impl(_, _, defaultness, ref generics, ..) => {
2076                     if defaultness.is_default() {
2077                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
2078                     }
2079                     generics
2080                 }
2081                 ItemKind::Fn(.., ref generics, _)
2082                 | ItemKind::TyAlias(_, ref generics)
2083                 | ItemKind::Enum(_, ref generics)
2084                 | ItemKind::Struct(_, ref generics)
2085                 | ItemKind::Union(_, ref generics) => generics,
2086
2087                 ItemKind::Trait(_, _, ref generics, .., ref items) => {
2088                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), items));
2089                     generics
2090                 }
2091                 ItemKind::TraitAlias(ref generics, _) => {
2092                     is_trait = Some((ty::TraitRef::identity(tcx, def_id), &empty_trait_items));
2093                     generics
2094                 }
2095                 ItemKind::OpaqueTy(OpaqueTy {
2096                     ref bounds,
2097                     impl_trait_fn,
2098                     ref generics,
2099                     origin: _,
2100                 }) => {
2101                     let substs = InternalSubsts::identity_for_item(tcx, def_id);
2102                     let opaque_ty = tcx.mk_opaque(def_id, substs);
2103
2104                     // Collect the bounds, i.e., the `A + B + 'c` in `impl A + B + 'c`.
2105                     let bounds = AstConv::compute_bounds(
2106                         &icx,
2107                         opaque_ty,
2108                         bounds,
2109                         SizedByDefault::Yes,
2110                         tcx.def_span(def_id),
2111                     );
2112
2113                     let bounds_predicates = bounds.predicates(tcx, opaque_ty);
2114                     if impl_trait_fn.is_some() {
2115                         // opaque types
2116                         return tcx.arena.alloc(ty::GenericPredicates {
2117                             parent: None,
2118                             predicates: bounds_predicates,
2119                         });
2120                     } else {
2121                         // named opaque types
2122                         predicates.extend(bounds_predicates);
2123                         generics
2124                     }
2125                 }
2126
2127                 _ => NO_GENERICS,
2128             }
2129         }
2130
2131         Node::ForeignItem(item) => match item.kind {
2132             ForeignItemKind::Static(..) => NO_GENERICS,
2133             ForeignItemKind::Fn(_, _, ref generics) => generics,
2134             ForeignItemKind::Type => NO_GENERICS,
2135         },
2136
2137         _ => NO_GENERICS,
2138     };
2139
2140     let generics = tcx.generics_of(def_id);
2141     let parent_count = generics.parent_count as u32;
2142     let has_own_self = generics.has_self && parent_count == 0;
2143
2144     // Below we'll consider the bounds on the type parameters (including `Self`)
2145     // and the explicit where-clauses, but to get the full set of predicates
2146     // on a trait we need to add in the supertrait bounds and bounds found on
2147     // associated types.
2148     if let Some((_trait_ref, _)) = is_trait {
2149         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2150     }
2151
2152     // In default impls, we can assume that the self type implements
2153     // the trait. So in:
2154     //
2155     //     default impl Foo for Bar { .. }
2156     //
2157     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2158     // (see below). Recall that a default impl is not itself an impl, but rather a
2159     // set of defaults that can be incorporated into another impl.
2160     if let Some(trait_ref) = is_default_impl_trait {
2161         predicates.push((trait_ref.to_poly_trait_ref().to_predicate(), tcx.def_span(def_id)));
2162     }
2163
2164     // Collect the region predicates that were declared inline as
2165     // well. In the case of parameters declared on a fn or method, we
2166     // have to be careful to only iterate over early-bound regions.
2167     let mut index = parent_count + has_own_self as u32;
2168     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2169         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2170             def_id: tcx.hir().local_def_id(param.hir_id),
2171             index,
2172             name: param.name.ident().as_interned_str(),
2173         }));
2174         index += 1;
2175
2176         match param.kind {
2177             GenericParamKind::Lifetime { .. } => {
2178                 param.bounds.iter().for_each(|bound| match bound {
2179                     hir::GenericBound::Outlives(lt) => {
2180                         let bound = AstConv::ast_region_to_region(&icx, &lt, None);
2181                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2182                         predicates.push((outlives.to_predicate(), lt.span));
2183                     }
2184                     _ => bug!(),
2185                 });
2186             }
2187             _ => bug!(),
2188         }
2189     }
2190
2191     // Collect the predicates that were written inline by the user on each
2192     // type parameter (e.g., `<T: Foo>`).
2193     for param in &ast_generics.params {
2194         if let GenericParamKind::Type { .. } = param.kind {
2195             let name = param.name.ident().as_interned_str();
2196             let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2197             index += 1;
2198
2199             let sized = SizedByDefault::Yes;
2200             let bounds = AstConv::compute_bounds(&icx, param_ty, &param.bounds, sized, param.span);
2201             predicates.extend(bounds.predicates(tcx, param_ty));
2202         }
2203     }
2204
2205     // Add in the bounds that appear in the where-clause.
2206     let where_clause = &ast_generics.where_clause;
2207     for predicate in &where_clause.predicates {
2208         match predicate {
2209             &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
2210                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2211
2212                 // Keep the type around in a dummy predicate, in case of no bounds.
2213                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2214                 // is still checked for WF.
2215                 if bound_pred.bounds.is_empty() {
2216                     if let ty::Param(_) = ty.kind {
2217                         // This is a `where T:`, which can be in the HIR from the
2218                         // transformation that moves `?Sized` to `T`'s declaration.
2219                         // We can skip the predicate because type parameters are
2220                         // trivially WF, but also we *should*, to avoid exposing
2221                         // users who never wrote `where Type:,` themselves, to
2222                         // compiler/tooling bugs from not handling WF predicates.
2223                     } else {
2224                         let span = bound_pred.bounded_ty.span;
2225                         let predicate = ty::OutlivesPredicate(ty, tcx.mk_region(ty::ReEmpty));
2226                         predicates.push(
2227                             (ty::Predicate::TypeOutlives(ty::Binder::dummy(predicate)), span)
2228                         );
2229                     }
2230                 }
2231
2232                 for bound in bound_pred.bounds.iter() {
2233                     match bound {
2234                         &hir::GenericBound::Trait(ref poly_trait_ref, _) => {
2235                             let mut bounds = Bounds::default();
2236                             let _ = AstConv::instantiate_poly_trait_ref(
2237                                 &icx,
2238                                 poly_trait_ref,
2239                                 ty,
2240                                 &mut bounds,
2241                             );
2242                             predicates.extend(bounds.predicates(tcx, ty));
2243                         }
2244
2245                         &hir::GenericBound::Outlives(ref lifetime) => {
2246                             let region = AstConv::ast_region_to_region(&icx, lifetime, None);
2247                             let pred = ty::Binder::bind(ty::OutlivesPredicate(ty, region));
2248                             predicates.push((ty::Predicate::TypeOutlives(pred), lifetime.span))
2249                         }
2250                     }
2251                 }
2252             }
2253
2254             &hir::WherePredicate::RegionPredicate(ref region_pred) => {
2255                 let r1 = AstConv::ast_region_to_region(&icx, &region_pred.lifetime, None);
2256                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2257                     let (r2, span) = match bound {
2258                         hir::GenericBound::Outlives(lt) => {
2259                             (AstConv::ast_region_to_region(&icx, lt, None), lt.span)
2260                         }
2261                         _ => bug!(),
2262                     };
2263                     let pred = ty::Binder::bind(ty::OutlivesPredicate(r1, r2));
2264
2265                     (ty::Predicate::RegionOutlives(pred), span)
2266                 }))
2267             }
2268
2269             &hir::WherePredicate::EqPredicate(..) => {
2270                 // FIXME(#20041)
2271             }
2272         }
2273     }
2274
2275     // Add predicates from associated type bounds.
2276     if let Some((self_trait_ref, trait_items)) = is_trait {
2277         predicates.extend(trait_items.iter().flat_map(|trait_item_ref| {
2278             let trait_item = tcx.hir().trait_item(trait_item_ref.id);
2279             let bounds = match trait_item.kind {
2280                 hir::TraitItemKind::Type(ref bounds, _) => bounds,
2281                 _ => return Vec::new().into_iter()
2282             };
2283
2284             let assoc_ty =
2285                 tcx.mk_projection(tcx.hir().local_def_id(trait_item.hir_id),
2286                     self_trait_ref.substs);
2287
2288             let bounds = AstConv::compute_bounds(
2289                 &ItemCtxt::new(tcx, def_id),
2290                 assoc_ty,
2291                 bounds,
2292                 SizedByDefault::Yes,
2293                 trait_item.span,
2294             );
2295
2296             bounds.predicates(tcx, assoc_ty).into_iter()
2297         }))
2298     }
2299
2300     let mut predicates = predicates.predicates;
2301
2302     // Subtle: before we store the predicates into the tcx, we
2303     // sort them so that predicates like `T: Foo<Item=U>` come
2304     // before uses of `U`.  This avoids false ambiguity errors
2305     // in trait checking. See `setup_constraining_predicates`
2306     // for details.
2307     if let Node::Item(&Item {
2308         kind: ItemKind::Impl(..),
2309         ..
2310     }) = node
2311     {
2312         let self_ty = tcx.type_of(def_id);
2313         let trait_ref = tcx.impl_trait_ref(def_id);
2314         cgp::setup_constraining_predicates(
2315             tcx,
2316             &mut predicates,
2317             trait_ref,
2318             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2319         );
2320     }
2321
2322     let result = tcx.arena.alloc(ty::GenericPredicates {
2323         parent: generics.parent,
2324         predicates,
2325     });
2326     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2327     result
2328 }
2329
2330 /// Converts a specific `GenericBound` from the AST into a set of
2331 /// predicates that apply to the self type. A vector is returned
2332 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2333 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2334 /// and `<T as Bar>::X == i32`).
2335 fn predicates_from_bound<'tcx>(
2336     astconv: &dyn AstConv<'tcx>,
2337     param_ty: Ty<'tcx>,
2338     bound: &'tcx hir::GenericBound,
2339 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2340     match *bound {
2341         hir::GenericBound::Trait(ref tr, hir::TraitBoundModifier::None) => {
2342             let mut bounds = Bounds::default();
2343             let _ = astconv.instantiate_poly_trait_ref(
2344                 tr,
2345                 param_ty,
2346                 &mut bounds,
2347             );
2348             bounds.predicates(astconv.tcx(), param_ty)
2349         }
2350         hir::GenericBound::Outlives(ref lifetime) => {
2351             let region = astconv.ast_region_to_region(lifetime, None);
2352             let pred = ty::Binder::bind(ty::OutlivesPredicate(param_ty, region));
2353             vec![(ty::Predicate::TypeOutlives(pred), lifetime.span)]
2354         }
2355         hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => vec![],
2356     }
2357 }
2358
2359 fn compute_sig_of_foreign_fn_decl<'tcx>(
2360     tcx: TyCtxt<'tcx>,
2361     def_id: DefId,
2362     decl: &'tcx hir::FnDecl,
2363     abi: abi::Abi,
2364 ) -> ty::PolyFnSig<'tcx> {
2365     let unsafety = if abi == abi::Abi::RustIntrinsic {
2366         intrinsic_operation_unsafety(&*tcx.item_name(def_id).as_str())
2367     } else {
2368         hir::Unsafety::Unsafe
2369     };
2370     let fty = AstConv::ty_of_fn(&ItemCtxt::new(tcx, def_id), unsafety, abi, decl);
2371
2372     // Feature gate SIMD types in FFI, since I am not sure that the
2373     // ABIs are handled at all correctly. -huonw
2374     if abi != abi::Abi::RustIntrinsic
2375         && abi != abi::Abi::PlatformIntrinsic
2376         && !tcx.features().simd_ffi
2377     {
2378         let check = |ast_ty: &hir::Ty, ty: Ty<'_>| {
2379             if ty.is_simd() {
2380                 tcx.sess
2381                    .struct_span_err(
2382                        ast_ty.span,
2383                        &format!(
2384                            "use of SIMD type `{}` in FFI is highly experimental and \
2385                             may result in invalid code",
2386                            tcx.hir().hir_to_pretty_string(ast_ty.hir_id)
2387                        ),
2388                    )
2389                    .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2390                    .emit();
2391             }
2392         };
2393         for (input, ty) in decl.inputs.iter().zip(*fty.inputs().skip_binder()) {
2394             check(&input, ty)
2395         }
2396         if let hir::Return(ref ty) = decl.output {
2397             check(&ty, *fty.output().skip_binder())
2398         }
2399     }
2400
2401     fty
2402 }
2403
2404 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2405     match tcx.hir().get_if_local(def_id) {
2406         Some(Node::ForeignItem(..)) => true,
2407         Some(_) => false,
2408         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2409     }
2410 }
2411
2412 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2413     match tcx.hir().get_if_local(def_id) {
2414         Some(Node::Item(&hir::Item {
2415             kind: hir::ItemKind::Static(_, mutbl, _), ..
2416         })) |
2417         Some(Node::ForeignItem( &hir::ForeignItem {
2418             kind: hir::ForeignItemKind::Static(_, mutbl), ..
2419         })) => Some(mutbl),
2420         Some(_) => None,
2421         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2422     }
2423 }
2424
2425 fn from_target_feature(
2426     tcx: TyCtxt<'_>,
2427     id: DefId,
2428     attr: &ast::Attribute,
2429     whitelist: &FxHashMap<String, Option<Symbol>>,
2430     target_features: &mut Vec<Symbol>,
2431 ) {
2432     let list = match attr.meta_item_list() {
2433         Some(list) => list,
2434         None => return,
2435     };
2436     let bad_item = |span| {
2437         let msg = "malformed `target_feature` attribute input";
2438         let code = "enable = \"..\"".to_owned();
2439         tcx.sess.struct_span_err(span, &msg)
2440             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2441             .emit();
2442     };
2443     let rust_features = tcx.features();
2444     for item in list {
2445         // Only `enable = ...` is accepted in the meta-item list.
2446         if !item.check_name(sym::enable) {
2447             bad_item(item.span());
2448             continue;
2449         }
2450
2451         // Must be of the form `enable = "..."` (a string).
2452         let value = match item.value_str() {
2453             Some(value) => value,
2454             None => {
2455                 bad_item(item.span());
2456                 continue;
2457             }
2458         };
2459
2460         // We allow comma separation to enable multiple features.
2461         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2462             // Only allow whitelisted features per platform.
2463             let feature_gate = match whitelist.get(feature) {
2464                 Some(g) => g,
2465                 None => {
2466                     let msg = format!(
2467                         "the feature named `{}` is not valid for this target",
2468                         feature
2469                     );
2470                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2471                     err.span_label(
2472                         item.span(),
2473                         format!("`{}` is not valid for this target", feature),
2474                     );
2475                     if feature.starts_with("+") {
2476                         let valid = whitelist.contains_key(&feature[1..]);
2477                         if valid {
2478                             err.help("consider removing the leading `+` in the feature name");
2479                         }
2480                     }
2481                     err.emit();
2482                     return None;
2483                 }
2484             };
2485
2486             // Only allow features whose feature gates have been enabled.
2487             let allowed = match feature_gate.as_ref().map(|s| *s) {
2488                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2489                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2490                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2491                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2492                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2493                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2494                 Some(sym::mmx_target_feature) => rust_features.mmx_target_feature,
2495                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2496                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2497                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2498                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2499                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2500                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2501                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2502                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2503                 Some(name) => bug!("unknown target feature gate {}", name),
2504                 None => true,
2505             };
2506             if !allowed && id.is_local() {
2507                 feature_gate::emit_feature_err(
2508                     &tcx.sess.parse_sess,
2509                     feature_gate.unwrap(),
2510                     item.span(),
2511                     feature_gate::GateIssue::Language,
2512                     &format!("the target feature `{}` is currently unstable", feature),
2513                 );
2514             }
2515             Some(Symbol::intern(feature))
2516         }));
2517     }
2518 }
2519
2520 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2521     use rustc::mir::mono::Linkage::*;
2522
2523     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2524     // applicable to variable declarations and may not really make sense for
2525     // Rust code in the first place but whitelist them anyway and trust that
2526     // the user knows what s/he's doing. Who knows, unanticipated use cases
2527     // may pop up in the future.
2528     //
2529     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2530     // and don't have to be, LLVM treats them as no-ops.
2531     match name {
2532         "appending" => Appending,
2533         "available_externally" => AvailableExternally,
2534         "common" => Common,
2535         "extern_weak" => ExternalWeak,
2536         "external" => External,
2537         "internal" => Internal,
2538         "linkonce" => LinkOnceAny,
2539         "linkonce_odr" => LinkOnceODR,
2540         "private" => Private,
2541         "weak" => WeakAny,
2542         "weak_odr" => WeakODR,
2543         _ => {
2544             let span = tcx.hir().span_if_local(def_id);
2545             if let Some(span) = span {
2546                 tcx.sess.span_fatal(span, "invalid linkage specified")
2547             } else {
2548                 tcx.sess
2549                    .fatal(&format!("invalid linkage specified: {}", name))
2550             }
2551         }
2552     }
2553 }
2554
2555 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2556     let attrs = tcx.get_attrs(id);
2557
2558     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2559
2560     let whitelist = tcx.target_features_whitelist(LOCAL_CRATE);
2561
2562     let mut inline_span = None;
2563     let mut link_ordinal_span = None;
2564     for attr in attrs.iter() {
2565         if attr.check_name(sym::cold) {
2566             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2567         } else if attr.check_name(sym::rustc_allocator) {
2568             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2569         } else if attr.check_name(sym::unwind) {
2570             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2571         } else if attr.check_name(sym::ffi_returns_twice) {
2572             if tcx.is_foreign_item(id) {
2573                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2574             } else {
2575                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2576                 struct_span_err!(
2577                     tcx.sess,
2578                     attr.span,
2579                     E0724,
2580                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2581                 ).emit();
2582             }
2583         } else if attr.check_name(sym::rustc_allocator_nounwind) {
2584             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2585         } else if attr.check_name(sym::naked) {
2586             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2587         } else if attr.check_name(sym::no_mangle) {
2588             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2589         } else if attr.check_name(sym::rustc_std_internal_symbol) {
2590             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2591         } else if attr.check_name(sym::no_debug) {
2592             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_DEBUG;
2593         } else if attr.check_name(sym::used) {
2594             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2595         } else if attr.check_name(sym::thread_local) {
2596             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2597         } else if attr.check_name(sym::track_caller) {
2598             if tcx.fn_sig(id).abi() != abi::Abi::Rust {
2599                 struct_span_err!(
2600                     tcx.sess,
2601                     attr.span,
2602                     E0902,
2603                     "rust ABI is required to use `#[track_caller]`"
2604                 ).emit();
2605             }
2606             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2607         } else if attr.check_name(sym::export_name) {
2608             if let Some(s) = attr.value_str() {
2609                 if s.as_str().contains("\0") {
2610                     // `#[export_name = ...]` will be converted to a null-terminated string,
2611                     // so it may not contain any null characters.
2612                     struct_span_err!(
2613                         tcx.sess,
2614                         attr.span,
2615                         E0648,
2616                         "`export_name` may not contain null characters"
2617                     ).emit();
2618                 }
2619                 codegen_fn_attrs.export_name = Some(s);
2620             }
2621         } else if attr.check_name(sym::target_feature) {
2622             if tcx.fn_sig(id).unsafety() == Unsafety::Normal {
2623                 let msg = "`#[target_feature(..)]` can only be applied to `unsafe` functions";
2624                 tcx.sess.struct_span_err(attr.span, msg)
2625                     .span_label(attr.span, "can only be applied to `unsafe` functions")
2626                     .span_label(tcx.def_span(id), "not an `unsafe` function")
2627                     .emit();
2628             }
2629             from_target_feature(
2630                 tcx,
2631                 id,
2632                 attr,
2633                 &whitelist,
2634                 &mut codegen_fn_attrs.target_features,
2635             );
2636         } else if attr.check_name(sym::linkage) {
2637             if let Some(val) = attr.value_str() {
2638                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2639             }
2640         } else if attr.check_name(sym::link_section) {
2641             if let Some(val) = attr.value_str() {
2642                 if val.as_str().bytes().any(|b| b == 0) {
2643                     let msg = format!(
2644                         "illegal null byte in link_section \
2645                          value: `{}`",
2646                         &val
2647                     );
2648                     tcx.sess.span_err(attr.span, &msg);
2649                 } else {
2650                     codegen_fn_attrs.link_section = Some(val);
2651                 }
2652             }
2653         } else if attr.check_name(sym::link_name) {
2654             codegen_fn_attrs.link_name = attr.value_str();
2655         } else if attr.check_name(sym::link_ordinal) {
2656             link_ordinal_span = Some(attr.span);
2657             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2658                 codegen_fn_attrs.link_ordinal = ordinal;
2659             }
2660         }
2661     }
2662
2663     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2664         if attr.path != sym::inline {
2665             return ia;
2666         }
2667         match attr.meta().map(|i| i.kind) {
2668             Some(MetaItemKind::Word) => {
2669                 mark_used(attr);
2670                 InlineAttr::Hint
2671             }
2672             Some(MetaItemKind::List(ref items)) => {
2673                 mark_used(attr);
2674                 inline_span = Some(attr.span);
2675                 if items.len() != 1 {
2676                     span_err!(
2677                         tcx.sess.diagnostic(),
2678                         attr.span,
2679                         E0534,
2680                         "expected one argument"
2681                     );
2682                     InlineAttr::None
2683                 } else if list_contains_name(&items[..], sym::always) {
2684                     InlineAttr::Always
2685                 } else if list_contains_name(&items[..], sym::never) {
2686                     InlineAttr::Never
2687                 } else {
2688                     span_err!(
2689                         tcx.sess.diagnostic(),
2690                         items[0].span(),
2691                         E0535,
2692                         "invalid argument"
2693                     );
2694
2695                     InlineAttr::None
2696                 }
2697             }
2698             Some(MetaItemKind::NameValue(_)) => ia,
2699             None => ia,
2700         }
2701     });
2702
2703     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2704         if attr.path != sym::optimize {
2705             return ia;
2706         }
2707         let err = |sp, s| span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s);
2708         match attr.meta().map(|i| i.kind) {
2709             Some(MetaItemKind::Word) => {
2710                 err(attr.span, "expected one argument");
2711                 ia
2712             }
2713             Some(MetaItemKind::List(ref items)) => {
2714                 mark_used(attr);
2715                 inline_span = Some(attr.span);
2716                 if items.len() != 1 {
2717                     err(attr.span, "expected one argument");
2718                     OptimizeAttr::None
2719                 } else if list_contains_name(&items[..], sym::size) {
2720                     OptimizeAttr::Size
2721                 } else if list_contains_name(&items[..], sym::speed) {
2722                     OptimizeAttr::Speed
2723                 } else {
2724                     err(items[0].span(), "invalid argument");
2725                     OptimizeAttr::None
2726                 }
2727             }
2728             Some(MetaItemKind::NameValue(_)) => ia,
2729             None => ia,
2730         }
2731     });
2732
2733     // If a function uses #[target_feature] it can't be inlined into general
2734     // purpose functions as they wouldn't have the right target features
2735     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2736     // respected.
2737
2738     if codegen_fn_attrs.target_features.len() > 0 {
2739         if codegen_fn_attrs.inline == InlineAttr::Always {
2740             if let Some(span) = inline_span {
2741                 tcx.sess.span_err(
2742                     span,
2743                     "cannot use `#[inline(always)]` with \
2744                      `#[target_feature]`",
2745                 );
2746             }
2747         }
2748     }
2749
2750     // Weak lang items have the same semantics as "std internal" symbols in the
2751     // sense that they're preserved through all our LTO passes and only
2752     // strippable by the linker.
2753     //
2754     // Additionally weak lang items have predetermined symbol names.
2755     if tcx.is_weak_lang_item(id) {
2756         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2757     }
2758     if let Some(name) = weak_lang_items::link_name(&attrs) {
2759         codegen_fn_attrs.export_name = Some(name);
2760         codegen_fn_attrs.link_name = Some(name);
2761     }
2762     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
2763
2764     // Internal symbols to the standard library all have no_mangle semantics in
2765     // that they have defined symbol names present in the function name. This
2766     // also applies to weak symbols where they all have known symbol names.
2767     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2768         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2769     }
2770
2771     codegen_fn_attrs
2772 }
2773
2774 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<usize> {
2775     use syntax::ast::{Lit, LitIntType, LitKind};
2776     let meta_item_list = attr.meta_item_list();
2777     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
2778     let sole_meta_list = match meta_item_list {
2779         Some([item]) => item.literal(),
2780         _ => None,
2781     };
2782     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
2783         if *ordinal <= std::usize::MAX as u128 {
2784             Some(*ordinal as usize)
2785         } else {
2786             let msg = format!(
2787                 "ordinal value in `link_ordinal` is too large: `{}`",
2788                 &ordinal
2789             );
2790             tcx.sess.struct_span_err(attr.span, &msg)
2791                 .note("the value may not exceed `std::usize::MAX`")
2792                 .emit();
2793             None
2794         }
2795     } else {
2796         tcx.sess.struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
2797             .note("an unsuffixed integer value, e.g., `1`, is expected")
2798             .emit();
2799         None
2800     }
2801 }
2802
2803 fn check_link_name_xor_ordinal(
2804     tcx: TyCtxt<'_>,
2805     codegen_fn_attrs: &CodegenFnAttrs,
2806     inline_span: Option<Span>,
2807 ) {
2808     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
2809         return;
2810     }
2811     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
2812     if let Some(span) = inline_span {
2813         tcx.sess.span_err(span, msg);
2814     } else {
2815         tcx.sess.err(msg);
2816     }
2817 }