]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/coherence/mod.rs
0c152a419d25f56ce19ec7f8a5913af2eef7b626
[rust.git] / src / librustc_typeck / coherence / mod.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 // Coherence phase
12 //
13 // The job of the coherence phase of typechecking is to ensure that
14 // each trait has at most one implementation for each type. This is
15 // done by the orphan and overlap modules. Then we build up various
16 // mappings. That mapping code resides here.
17
18
19 use middle::def_id::{DefId, LOCAL_CRATE};
20 use middle::lang_items::UnsizeTraitLangItem;
21 use middle::subst::{self, Subst};
22 use middle::traits;
23 use middle::ty;
24 use middle::ty::RegionEscape;
25 use middle::ty::{ImplContainer, ImplOrTraitItemId, ConstTraitItemId};
26 use middle::ty::{MethodTraitItemId, TypeTraitItemId, ParameterEnvironment};
27 use middle::ty::{Ty, TyBool, TyChar, TyEnum, TyError};
28 use middle::ty::{TyParam, TypeScheme, TyRawPtr};
29 use middle::ty::{TyRef, TyStruct, TyTrait, TyTuple};
30 use middle::ty::{TyStr, TyArray, TySlice, TyFloat, TyInfer, TyInt};
31 use middle::ty::{TyUint, TyClosure, TyBox, TyBareFn};
32 use middle::ty::TyProjection;
33 use middle::ty::util::CopyImplementationError;
34 use middle::free_region::FreeRegionMap;
35 use CrateCtxt;
36 use middle::infer::{self, InferCtxt, new_infer_ctxt};
37 use std::cell::RefCell;
38 use std::rc::Rc;
39 use syntax::codemap::Span;
40 use syntax::parse::token;
41 use util::nodemap::{DefIdMap, FnvHashMap};
42 use rustc::front::map as hir_map;
43 use rustc::front::map::NodeItem;
44 use rustc_front::visit;
45 use rustc_front::hir::{Item, ItemImpl,Crate};
46 use rustc_front::hir;
47
48 mod orphan;
49 mod overlap;
50 mod unsafety;
51
52 // Returns the def ID of the base type, if there is one.
53 fn get_base_type_def_id<'a, 'tcx>(inference_context: &InferCtxt<'a, 'tcx>,
54                                   span: Span,
55                                   ty: Ty<'tcx>)
56                                   -> Option<DefId> {
57     match ty.sty {
58         TyEnum(def, _) |
59         TyStruct(def, _) => {
60             Some(def.did)
61         }
62
63         TyTrait(ref t) => {
64             Some(t.principal_def_id())
65         }
66
67         TyBox(_) => {
68             inference_context.tcx.lang_items.owned_box()
69         }
70
71         TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
72         TyStr(..) | TyArray(..) | TySlice(..) | TyBareFn(..) | TyTuple(..) |
73         TyParam(..) | TyError |
74         TyRawPtr(_) | TyRef(_, _) | TyProjection(..) => {
75             None
76         }
77
78         TyInfer(..) | TyClosure(..) => {
79             // `ty` comes from a user declaration so we should only expect types
80             // that the user can type
81             inference_context.tcx.sess.span_bug(
82                 span,
83                 &format!("coherence encountered unexpected type searching for base type: {}",
84                          ty));
85         }
86     }
87 }
88
89 struct CoherenceChecker<'a, 'tcx: 'a> {
90     crate_context: &'a CrateCtxt<'a, 'tcx>,
91     inference_context: InferCtxt<'a, 'tcx>,
92     inherent_impls: RefCell<DefIdMap<Rc<RefCell<Vec<DefId>>>>>,
93 }
94
95 struct CoherenceCheckVisitor<'a, 'tcx: 'a> {
96     cc: &'a CoherenceChecker<'a, 'tcx>
97 }
98
99 impl<'a, 'tcx, 'v> visit::Visitor<'v> for CoherenceCheckVisitor<'a, 'tcx> {
100     fn visit_item(&mut self, item: &Item) {
101         if let ItemImpl(..) = item.node {
102             self.cc.check_implementation(item)
103         }
104
105         visit::walk_item(self, item);
106     }
107 }
108
109 impl<'a, 'tcx> CoherenceChecker<'a, 'tcx> {
110     fn check(&self, krate: &Crate) {
111         // Check implementations and traits. This populates the tables
112         // containing the inherent methods and extension methods. It also
113         // builds up the trait inheritance table.
114         let mut visitor = CoherenceCheckVisitor { cc: self };
115         visit::walk_crate(&mut visitor, krate);
116
117         // Copy over the inherent impls we gathered up during the walk into
118         // the tcx.
119         let mut tcx_inherent_impls =
120             self.crate_context.tcx.inherent_impls.borrow_mut();
121         for (k, v) in self.inherent_impls.borrow().iter() {
122             tcx_inherent_impls.insert((*k).clone(),
123                                       Rc::new((*v.borrow()).clone()));
124         }
125
126         // Populate the table of destructors. It might seem a bit strange to
127         // do this here, but it's actually the most convenient place, since
128         // the coherence tables contain the trait -> type mappings.
129         self.populate_destructors();
130
131         // Check to make sure implementations of `Copy` are legal.
132         self.check_implementations_of_copy();
133
134         // Check to make sure implementations of `CoerceUnsized` are legal
135         // and collect the necessary information from them.
136         self.check_implementations_of_coerce_unsized();
137     }
138
139     fn check_implementation(&self, item: &Item) {
140         let tcx = self.crate_context.tcx;
141         let impl_did = DefId::local(item.id);
142         let self_type = tcx.lookup_item_type(impl_did);
143
144         // If there are no traits, then this implementation must have a
145         // base type.
146
147         let impl_items = self.create_impl_from_item(item);
148
149         if let Some(trait_ref) = self.crate_context.tcx.impl_trait_ref(impl_did) {
150             debug!("(checking implementation) adding impl for trait '{:?}', item '{}'",
151                    trait_ref,
152                    item.name);
153
154             enforce_trait_manually_implementable(self.crate_context.tcx,
155                                                  item.span,
156                                                  trait_ref.def_id);
157             self.add_trait_impl(trait_ref, impl_did);
158         } else {
159             // Add the implementation to the mapping from implementation to base
160             // type def ID, if there is a base type for this implementation and
161             // the implementation does not have any associated traits.
162             if let Some(base_type_def_id) = get_base_type_def_id(
163                     &self.inference_context, item.span, self_type.ty) {
164                 self.add_inherent_impl(base_type_def_id, impl_did);
165             }
166         }
167
168         tcx.impl_items.borrow_mut().insert(impl_did, impl_items);
169     }
170
171     // Creates default method IDs and performs type substitutions for an impl
172     // and trait pair. Then, for each provided method in the trait, inserts a
173     // `ProvidedMethodInfo` instance into the `provided_method_sources` map.
174     fn instantiate_default_methods(
175             &self,
176             impl_id: DefId,
177             trait_ref: &ty::TraitRef<'tcx>,
178             all_impl_items: &mut Vec<ImplOrTraitItemId>) {
179         let tcx = self.crate_context.tcx;
180         debug!("instantiate_default_methods(impl_id={:?}, trait_ref={:?})",
181                impl_id, trait_ref);
182
183         let impl_type_scheme = tcx.lookup_item_type(impl_id);
184
185         let prov = tcx.provided_trait_methods(trait_ref.def_id);
186         for trait_method in &prov {
187             // Synthesize an ID.
188             let new_id = tcx.sess.next_node_id();
189             let new_did = DefId::local(new_id);
190
191             debug!("new_did={:?} trait_method={:?}", new_did, trait_method);
192
193             // Create substitutions for the various trait parameters.
194             let new_method_ty =
195                 Rc::new(subst_receiver_types_in_method_ty(
196                     tcx,
197                     impl_id,
198                     &impl_type_scheme,
199                     trait_ref,
200                     new_did,
201                     &**trait_method,
202                     Some(trait_method.def_id)));
203
204             debug!("new_method_ty={:?}", new_method_ty);
205             all_impl_items.push(MethodTraitItemId(new_did));
206
207             // construct the polytype for the method based on the
208             // method_ty.  it will have all the generics from the
209             // impl, plus its own.
210             let new_polytype = ty::TypeScheme {
211                 generics: new_method_ty.generics.clone(),
212                 ty: tcx.mk_fn(Some(new_did),
213                               tcx.mk_bare_fn(new_method_ty.fty.clone()))
214             };
215             debug!("new_polytype={:?}", new_polytype);
216
217             tcx.register_item_type(new_did, new_polytype);
218             tcx.predicates.borrow_mut().insert(new_did, new_method_ty.predicates.clone());
219             tcx.impl_or_trait_items
220                .borrow_mut()
221                .insert(new_did, ty::MethodTraitItem(new_method_ty));
222
223             // Pair the new synthesized ID up with the
224             // ID of the method.
225             self.crate_context.tcx.provided_method_sources.borrow_mut()
226                 .insert(new_did, trait_method.def_id);
227         }
228     }
229
230     fn add_inherent_impl(&self, base_def_id: DefId, impl_def_id: DefId) {
231         match self.inherent_impls.borrow().get(&base_def_id) {
232             Some(implementation_list) => {
233                 implementation_list.borrow_mut().push(impl_def_id);
234                 return;
235             }
236             None => {}
237         }
238
239         self.inherent_impls.borrow_mut().insert(
240             base_def_id,
241             Rc::new(RefCell::new(vec!(impl_def_id))));
242     }
243
244     fn add_trait_impl(&self, impl_trait_ref: ty::TraitRef<'tcx>, impl_def_id: DefId) {
245         debug!("add_trait_impl: impl_trait_ref={:?} impl_def_id={:?}",
246                impl_trait_ref, impl_def_id);
247         let trait_def = self.crate_context.tcx.lookup_trait_def(impl_trait_ref.def_id);
248         trait_def.record_impl(self.crate_context.tcx, impl_def_id, impl_trait_ref);
249     }
250
251     // Converts an implementation in the AST to a vector of items.
252     fn create_impl_from_item(&self, item: &Item) -> Vec<ImplOrTraitItemId> {
253         match item.node {
254             ItemImpl(_, _, _, _, _, ref impl_items) => {
255                 let mut items: Vec<ImplOrTraitItemId> =
256                         impl_items.iter().map(|impl_item| {
257                     match impl_item.node {
258                         hir::ConstImplItem(..) => {
259                             ConstTraitItemId(DefId::local(impl_item.id))
260                         }
261                         hir::MethodImplItem(..) => {
262                             MethodTraitItemId(DefId::local(impl_item.id))
263                         }
264                         hir::TypeImplItem(_) => {
265                             TypeTraitItemId(DefId::local(impl_item.id))
266                         }
267                     }
268                 }).collect();
269
270                 let def_id = DefId::local(item.id);
271                 if let Some(trait_ref) = self.crate_context.tcx.impl_trait_ref(def_id) {
272                     self.instantiate_default_methods(def_id, &trait_ref, &mut items);
273                 }
274
275                 items
276             }
277             _ => {
278                 self.crate_context.tcx.sess.span_bug(item.span,
279                                                      "can't convert a non-impl \
280                                                       to an impl");
281             }
282         }
283     }
284
285     //
286     // Destructors
287     //
288
289     fn populate_destructors(&self) {
290         let tcx = self.crate_context.tcx;
291         let drop_trait = match tcx.lang_items.drop_trait() {
292             Some(id) => id, None => { return }
293         };
294         tcx.populate_implementations_for_trait_if_necessary(drop_trait);
295         let drop_trait = tcx.lookup_trait_def(drop_trait);
296
297         let impl_items = tcx.impl_items.borrow();
298
299         drop_trait.for_each_impl(tcx, |impl_did| {
300             let items = impl_items.get(&impl_did).unwrap();
301             if items.is_empty() {
302                 // We'll error out later. For now, just don't ICE.
303                 return;
304             }
305             let method_def_id = items[0];
306
307             let self_type = tcx.lookup_item_type(impl_did);
308             match self_type.ty.sty {
309                 ty::TyEnum(type_def, _) |
310                 ty::TyStruct(type_def, _) => {
311                     type_def.set_destructor(method_def_id.def_id());
312                 }
313                 _ => {
314                     // Destructors only work on nominal types.
315                     if impl_did.is_local() {
316                         {
317                             match tcx.map.find(impl_did.node) {
318                                 Some(hir_map::NodeItem(item)) => {
319                                     span_err!(tcx.sess, item.span, E0120,
320                                         "the Drop trait may only be implemented on structures");
321                                 }
322                                 _ => {
323                                     tcx.sess.bug("didn't find impl in ast \
324                                                   map");
325                                 }
326                             }
327                         }
328                     } else {
329                         tcx.sess.bug("found external impl of Drop trait on \
330                                       something other than a struct");
331                     }
332                 }
333             }
334         });
335     }
336
337     /// Ensures that implementations of the built-in trait `Copy` are legal.
338     fn check_implementations_of_copy(&self) {
339         let tcx = self.crate_context.tcx;
340         let copy_trait = match tcx.lang_items.copy_trait() {
341             Some(id) => id,
342             None => return,
343         };
344         tcx.populate_implementations_for_trait_if_necessary(copy_trait);
345         let copy_trait = tcx.lookup_trait_def(copy_trait);
346
347         copy_trait.for_each_impl(tcx, |impl_did| {
348             debug!("check_implementations_of_copy: impl_did={:?}",
349                    impl_did);
350
351             if impl_did.krate != LOCAL_CRATE {
352                 debug!("check_implementations_of_copy(): impl not in this \
353                         crate");
354                 return
355             }
356
357             let self_type = tcx.lookup_item_type(impl_did);
358             debug!("check_implementations_of_copy: self_type={:?} (bound)",
359                    self_type);
360
361             let span = tcx.map.span(impl_did.node);
362             let param_env = ParameterEnvironment::for_item(tcx, impl_did.node);
363             let self_type = self_type.ty.subst(tcx, &param_env.free_substs);
364             assert!(!self_type.has_escaping_regions());
365
366             debug!("check_implementations_of_copy: self_type={:?} (free)",
367                    self_type);
368
369             match param_env.can_type_implement_copy(self_type, span) {
370                 Ok(()) => {}
371                 Err(CopyImplementationError::InfrigingField(name)) => {
372                        span_err!(tcx.sess, span, E0204,
373                                  "the trait `Copy` may not be \
374                                           implemented for this type; field \
375                                           `{}` does not implement `Copy`",
376                                          name)
377                 }
378                 Err(CopyImplementationError::InfrigingVariant(name)) => {
379                        span_err!(tcx.sess, span, E0205,
380                                  "the trait `Copy` may not be \
381                                           implemented for this type; variant \
382                                           `{}` does not implement `Copy`",
383                                          name)
384                 }
385                 Err(CopyImplementationError::NotAnAdt) => {
386                        span_err!(tcx.sess, span, E0206,
387                                  "the trait `Copy` may not be implemented \
388                                   for this type; type is not a structure or \
389                                   enumeration")
390                 }
391                 Err(CopyImplementationError::HasDestructor) => {
392                     span_err!(tcx.sess, span, E0184,
393                               "the trait `Copy` may not be implemented for this type; \
394                                the type has a destructor");
395                 }
396             }
397         });
398     }
399
400     /// Process implementations of the built-in trait `CoerceUnsized`.
401     fn check_implementations_of_coerce_unsized(&self) {
402         let tcx = self.crate_context.tcx;
403         let coerce_unsized_trait = match tcx.lang_items.coerce_unsized_trait() {
404             Some(id) => id,
405             None => return,
406         };
407         let unsize_trait = match tcx.lang_items.require(UnsizeTraitLangItem) {
408             Ok(id) => id,
409             Err(err) => {
410                 tcx.sess.fatal(&format!("`CoerceUnsized` implementation {}", err));
411             }
412         };
413
414         let trait_def = tcx.lookup_trait_def(coerce_unsized_trait);
415
416         trait_def.for_each_impl(tcx, |impl_did| {
417             debug!("check_implementations_of_coerce_unsized: impl_did={:?}",
418                    impl_did);
419
420             if impl_did.krate != LOCAL_CRATE {
421                 debug!("check_implementations_of_coerce_unsized(): impl not \
422                         in this crate");
423                 return;
424             }
425
426             let source = tcx.lookup_item_type(impl_did).ty;
427             let trait_ref = self.crate_context.tcx.impl_trait_ref(impl_did).unwrap();
428             let target = *trait_ref.substs.types.get(subst::TypeSpace, 0);
429             debug!("check_implementations_of_coerce_unsized: {:?} -> {:?} (bound)",
430                    source, target);
431
432             let span = tcx.map.span(impl_did.node);
433             let param_env = ParameterEnvironment::for_item(tcx, impl_did.node);
434             let source = source.subst(tcx, &param_env.free_substs);
435             let target = target.subst(tcx, &param_env.free_substs);
436             assert!(!source.has_escaping_regions());
437
438             debug!("check_implementations_of_coerce_unsized: {:?} -> {:?} (free)",
439                    source, target);
440
441             let infcx = new_infer_ctxt(tcx, &tcx.tables, Some(param_env), true);
442
443             let check_mutbl = |mt_a: ty::TypeAndMut<'tcx>, mt_b: ty::TypeAndMut<'tcx>,
444                                mk_ptr: &Fn(Ty<'tcx>) -> Ty<'tcx>| {
445                 if (mt_a.mutbl, mt_b.mutbl) == (hir::MutImmutable, hir::MutMutable) {
446                     infcx.report_mismatched_types(span, mk_ptr(mt_b.ty),
447                                                   target, &ty::error::TypeError::Mutability);
448                 }
449                 (mt_a.ty, mt_b.ty, unsize_trait, None)
450             };
451             let (source, target, trait_def_id, kind) = match (&source.sty, &target.sty) {
452                 (&ty::TyBox(a), &ty::TyBox(b)) => (a, b, unsize_trait, None),
453
454                 (&ty::TyRef(r_a, mt_a), &ty::TyRef(r_b, mt_b)) => {
455                     infer::mk_subr(&infcx, infer::RelateObjectBound(span), *r_b, *r_a);
456                     check_mutbl(mt_a, mt_b, &|ty| tcx.mk_imm_ref(r_b, ty))
457                 }
458
459                 (&ty::TyRef(_, mt_a), &ty::TyRawPtr(mt_b)) |
460                 (&ty::TyRawPtr(mt_a), &ty::TyRawPtr(mt_b)) => {
461                     check_mutbl(mt_a, mt_b, &|ty| tcx.mk_imm_ptr(ty))
462                 }
463
464                 (&ty::TyStruct(def_a, substs_a), &ty::TyStruct(def_b, substs_b)) => {
465                     if def_a != def_b {
466                         let source_path = tcx.item_path_str(def_a.did);
467                         let target_path = tcx.item_path_str(def_b.did);
468                         span_err!(tcx.sess, span, E0377,
469                                   "the trait `CoerceUnsized` may only be implemented \
470                                    for a coercion between structures with the same \
471                                    definition; expected {}, found {}",
472                                   source_path, target_path);
473                         return;
474                     }
475
476                     let origin = infer::Misc(span);
477                     let fields = &def_a.struct_variant().fields;
478                     let diff_fields = fields.iter().enumerate().filter_map(|(i, f)| {
479                         let (a, b) = (f.ty(tcx, substs_a), f.ty(tcx, substs_b));
480
481                         if f.unsubst_ty().is_phantom_data() {
482                             // Ignore PhantomData fields
483                             None
484                         } else if infcx.sub_types(false, origin, b, a).is_ok() {
485                             // Ignore fields that aren't significantly changed
486                             None
487                         } else {
488                             // Collect up all fields that were significantly changed
489                             // i.e. those that contain T in coerce_unsized T -> U
490                             Some((i, a, b))
491                         }
492                     }).collect::<Vec<_>>();
493
494                     if diff_fields.is_empty() {
495                         span_err!(tcx.sess, span, E0374,
496                                   "the trait `CoerceUnsized` may only be implemented \
497                                    for a coercion between structures with one field \
498                                    being coerced, none found");
499                         return;
500                     } else if diff_fields.len() > 1 {
501                         span_err!(tcx.sess, span, E0375,
502                                   "the trait `CoerceUnsized` may only be implemented \
503                                    for a coercion between structures with one field \
504                                    being coerced, but {} fields need coercions: {}",
505                                    diff_fields.len(), diff_fields.iter().map(|&(i, a, b)| {
506                                         let name = fields[i].name;
507                                         format!("{} ({} to {})",
508                                                 if name == token::special_names::unnamed_field {
509                                                     i.to_string()
510                                                 } else {
511                                                     name.to_string()
512                                                 }, a, b)
513                                    }).collect::<Vec<_>>().join(", "));
514                         return;
515                     }
516
517                     let (i, a, b) = diff_fields[0];
518                     let kind = ty::adjustment::CustomCoerceUnsized::Struct(i);
519                     (a, b, coerce_unsized_trait, Some(kind))
520                 }
521
522                 _ => {
523                     span_err!(tcx.sess, span, E0376,
524                               "the trait `CoerceUnsized` may only be implemented \
525                                for a coercion between structures");
526                     return;
527                 }
528             };
529
530             let mut fulfill_cx = infcx.fulfillment_cx.borrow_mut();
531
532             // Register an obligation for `A: Trait<B>`.
533             let cause = traits::ObligationCause::misc(span, impl_did.node);
534             let predicate = traits::predicate_for_trait_def(tcx, cause, trait_def_id,
535                                                             0, source, vec![target]);
536             fulfill_cx.register_predicate_obligation(&infcx, predicate);
537
538             // Check that all transitive obligations are satisfied.
539             if let Err(errors) = fulfill_cx.select_all_or_error(&infcx) {
540                 traits::report_fulfillment_errors(&infcx, &errors);
541             }
542
543             // Finally, resolve all regions.
544             let mut free_regions = FreeRegionMap::new();
545             free_regions.relate_free_regions_from_predicates(tcx, &infcx.parameter_environment
546                                                                         .caller_bounds);
547             infcx.resolve_regions_and_report_errors(&free_regions, impl_did.node);
548
549             if let Some(kind) = kind {
550                 tcx.custom_coerce_unsized_kinds.borrow_mut().insert(impl_did, kind);
551             }
552         });
553     }
554 }
555
556 fn enforce_trait_manually_implementable(tcx: &ty::ctxt, sp: Span, trait_def_id: DefId) {
557     if tcx.sess.features.borrow().unboxed_closures {
558         // the feature gate allows all of them
559         return
560     }
561     let did = Some(trait_def_id);
562     let li = &tcx.lang_items;
563
564     let trait_name = if did == li.fn_trait() {
565         "Fn"
566     } else if did == li.fn_mut_trait() {
567         "FnMut"
568     } else if did == li.fn_once_trait() {
569         "FnOnce"
570     } else {
571         return // everything OK
572     };
573     span_err!(tcx.sess, sp, E0183, "manual implementations of `{}` are experimental", trait_name);
574     fileline_help!(tcx.sess, sp,
575                "add `#![feature(unboxed_closures)]` to the crate attributes to enable");
576 }
577
578 fn subst_receiver_types_in_method_ty<'tcx>(tcx: &ty::ctxt<'tcx>,
579                                            impl_id: DefId,
580                                            impl_type_scheme: &ty::TypeScheme<'tcx>,
581                                            trait_ref: &ty::TraitRef<'tcx>,
582                                            new_def_id: DefId,
583                                            method: &ty::Method<'tcx>,
584                                            provided_source: Option<DefId>)
585                                            -> ty::Method<'tcx>
586 {
587     let combined_substs = tcx.make_substs_for_receiver_types(trait_ref, method);
588
589     debug!("subst_receiver_types_in_method_ty: combined_substs={:?}",
590            combined_substs);
591
592     let method_predicates = method.predicates.subst(tcx, &combined_substs);
593     let mut method_generics = method.generics.subst(tcx, &combined_substs);
594
595     // replace the type parameters declared on the trait with those
596     // from the impl
597     for &space in &[subst::TypeSpace, subst::SelfSpace] {
598         method_generics.types.replace(
599             space,
600             impl_type_scheme.generics.types.get_slice(space).to_vec());
601         method_generics.regions.replace(
602             space,
603             impl_type_scheme.generics.regions.get_slice(space).to_vec());
604     }
605
606     debug!("subst_receiver_types_in_method_ty: method_generics={:?}",
607            method_generics);
608
609     let method_fty = method.fty.subst(tcx, &combined_substs);
610
611     debug!("subst_receiver_types_in_method_ty: method_ty={:?}",
612            method.fty);
613
614     ty::Method::new(
615         method.name,
616         method_generics,
617         method_predicates,
618         method_fty,
619         method.explicit_self,
620         method.vis,
621         new_def_id,
622         ImplContainer(impl_id),
623         provided_source
624     )
625 }
626
627 pub fn check_coherence(crate_context: &CrateCtxt) {
628     CoherenceChecker {
629         crate_context: crate_context,
630         inference_context: new_infer_ctxt(crate_context.tcx, &crate_context.tcx.tables, None, true),
631         inherent_impls: RefCell::new(FnvHashMap()),
632     }.check(crate_context.tcx.map.krate());
633     unsafety::check(crate_context.tcx);
634     orphan::check(crate_context.tcx);
635     overlap::check(crate_context.tcx);
636 }