]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/wfcheck.rs
Rollup merge of #60951 - saleemjaffer:mir_better_error_enum, r=oli-obk
[rust.git] / src / librustc_typeck / check / wfcheck.rs
1 use crate::check::{Inherited, FnCtxt};
2 use crate::constrained_generic_params::{identify_constrained_generic_params, Parameter};
3
4 use crate::hir::def_id::DefId;
5 use rustc::traits::{self, ObligationCauseCode};
6 use rustc::ty::{self, Ty, TyCtxt, GenericParamDefKind, TypeFoldable, ToPredicate};
7 use rustc::ty::subst::{Subst, InternalSubsts};
8 use rustc::util::nodemap::{FxHashSet, FxHashMap};
9 use rustc::mir::interpret::ConstValue;
10 use rustc::middle::lang_items;
11 use rustc::infer::opaque_types::may_define_existential_type;
12
13 use syntax::ast;
14 use syntax::feature_gate::{self, GateIssue};
15 use syntax_pos::Span;
16 use syntax::symbol::sym;
17 use errors::{DiagnosticBuilder, DiagnosticId};
18
19 use rustc::hir::itemlikevisit::ParItemLikeVisitor;
20 use rustc::hir;
21
22 /// Helper type of a temporary returned by `.for_item(...)`.
23 /// This is necessary because we can't write the following bound:
24 ///
25 /// ```rust
26 /// F: for<'b, 'tcx> where 'tcx FnOnce(FnCtxt<'b, 'tcx>)
27 /// ```
28 struct CheckWfFcxBuilder<'tcx> {
29     inherited: super::InheritedBuilder<'tcx>,
30     id: hir::HirId,
31     span: Span,
32     param_env: ty::ParamEnv<'tcx>,
33 }
34
35 impl<'tcx> CheckWfFcxBuilder<'tcx> {
36     fn with_fcx<F>(&mut self, f: F)
37     where
38         F: for<'b> FnOnce(&FnCtxt<'b, 'tcx>, TyCtxt<'tcx>) -> Vec<Ty<'tcx>>,
39     {
40         let id = self.id;
41         let span = self.span;
42         let param_env = self.param_env;
43         self.inherited.enter(|inh| {
44             let fcx = FnCtxt::new(&inh, param_env, id);
45             if !inh.tcx.features().trivial_bounds {
46                 // As predicates are cached rather than obligations, this
47                 // needsto be called first so that they are checked with an
48                 // empty `param_env`.
49                 check_false_global_bounds(&fcx, span, id);
50             }
51             let wf_tys = f(&fcx, fcx.tcx.global_tcx());
52             fcx.select_all_obligations_or_error();
53             fcx.regionck_item(id, span, &wf_tys);
54         });
55     }
56 }
57
58 /// Checks that the field types (in a struct def'n) or argument types (in an enum def'n) are
59 /// well-formed, meaning that they do not require any constraints not declared in the struct
60 /// definition itself. For example, this definition would be illegal:
61 ///
62 /// ```rust
63 /// struct Ref<'a, T> { x: &'a T }
64 /// ```
65 ///
66 /// because the type did not declare that `T:'a`.
67 ///
68 /// We do this check as a pre-pass before checking fn bodies because if these constraints are
69 /// not included it frequently leads to confusing errors in fn bodies. So it's better to check
70 /// the types first.
71 pub fn check_item_well_formed(tcx: TyCtxt<'_>, def_id: DefId) {
72     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
73     let item = tcx.hir().expect_item(hir_id);
74
75     debug!("check_item_well_formed(it.hir_id={:?}, it.name={})",
76            item.hir_id,
77            tcx.def_path_str(def_id));
78
79     match item.node {
80         // Right now we check that every default trait implementation
81         // has an implementation of itself. Basically, a case like:
82         //
83         //     impl Trait for T {}
84         //
85         // has a requirement of `T: Trait` which was required for default
86         // method implementations. Although this could be improved now that
87         // there's a better infrastructure in place for this, it's being left
88         // for a follow-up work.
89         //
90         // Since there's such a requirement, we need to check *just* positive
91         // implementations, otherwise things like:
92         //
93         //     impl !Send for T {}
94         //
95         // won't be allowed unless there's an *explicit* implementation of `Send`
96         // for `T`
97         hir::ItemKind::Impl(_, polarity, defaultness, _, ref trait_ref, ref self_ty, _) => {
98             let is_auto = tcx.impl_trait_ref(tcx.hir().local_def_id(item.hir_id))
99                                 .map_or(false, |trait_ref| tcx.trait_is_auto(trait_ref.def_id));
100             if let (hir::Defaultness::Default { .. }, true) = (defaultness, is_auto) {
101                 tcx.sess.span_err(item.span, "impls of auto traits cannot be default");
102             }
103             if polarity == hir::ImplPolarity::Positive {
104                 check_impl(tcx, item, self_ty, trait_ref);
105             } else {
106                 // FIXME(#27579): what amount of WF checking do we need for neg impls?
107                 if trait_ref.is_some() && !is_auto {
108                     span_err!(tcx.sess, item.span, E0192,
109                               "negative impls are only allowed for \
110                                auto traits (e.g., `Send` and `Sync`)")
111                 }
112             }
113         }
114         hir::ItemKind::Fn(..) => {
115             check_item_fn(tcx, item);
116         }
117         hir::ItemKind::Static(ref ty, ..) => {
118             check_item_type(tcx, item.hir_id, ty.span, false);
119         }
120         hir::ItemKind::Const(ref ty, ..) => {
121             check_item_type(tcx, item.hir_id, ty.span, false);
122         }
123         hir::ItemKind::ForeignMod(ref module) => for it in module.items.iter() {
124             if let hir::ForeignItemKind::Static(ref ty, ..) = it.node {
125                 check_item_type(tcx, it.hir_id, ty.span, true);
126             }
127         },
128         hir::ItemKind::Struct(ref struct_def, ref ast_generics) => {
129             check_type_defn(tcx, item, false, |fcx| {
130                 vec![fcx.non_enum_variant(struct_def)]
131             });
132
133             check_variances_for_type_defn(tcx, item, ast_generics);
134         }
135         hir::ItemKind::Union(ref struct_def, ref ast_generics) => {
136             check_type_defn(tcx, item, true, |fcx| {
137                 vec![fcx.non_enum_variant(struct_def)]
138             });
139
140             check_variances_for_type_defn(tcx, item, ast_generics);
141         }
142         hir::ItemKind::Enum(ref enum_def, ref ast_generics) => {
143             check_type_defn(tcx, item, true, |fcx| {
144                 fcx.enum_variants(enum_def)
145             });
146
147             check_variances_for_type_defn(tcx, item, ast_generics);
148         }
149         hir::ItemKind::Trait(..) => {
150             check_trait(tcx, item);
151         }
152         hir::ItemKind::TraitAlias(..) => {
153             check_trait(tcx, item);
154         }
155         _ => {}
156     }
157 }
158
159 pub fn check_trait_item(tcx: TyCtxt<'_>, def_id: DefId) {
160     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
161     let trait_item = tcx.hir().expect_trait_item(hir_id);
162
163     let method_sig = match trait_item.node {
164         hir::TraitItemKind::Method(ref sig, _) => Some(sig),
165         _ => None
166     };
167     check_associated_item(tcx, trait_item.hir_id, trait_item.span, method_sig);
168 }
169
170 pub fn check_impl_item(tcx: TyCtxt<'_>, def_id: DefId) {
171     let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
172     let impl_item = tcx.hir().expect_impl_item(hir_id);
173
174     let method_sig = match impl_item.node {
175         hir::ImplItemKind::Method(ref sig, _) => Some(sig),
176         _ => None
177     };
178     check_associated_item(tcx, impl_item.hir_id, impl_item.span, method_sig);
179 }
180
181 fn check_associated_item(
182     tcx: TyCtxt<'_>,
183     item_id: hir::HirId,
184     span: Span,
185     sig_if_method: Option<&hir::MethodSig>,
186 ) {
187     debug!("check_associated_item: {:?}", item_id);
188
189     let code = ObligationCauseCode::MiscObligation;
190     for_id(tcx, item_id, span).with_fcx(|fcx, tcx| {
191         let item = fcx.tcx.associated_item(fcx.tcx.hir().local_def_id(item_id));
192
193         let (mut implied_bounds, self_ty) = match item.container {
194             ty::TraitContainer(_) => (vec![], fcx.tcx.mk_self_type()),
195             ty::ImplContainer(def_id) => (fcx.impl_implied_bounds(def_id, span),
196                                           fcx.tcx.type_of(def_id))
197         };
198
199         match item.kind {
200             ty::AssocKind::Const => {
201                 let ty = fcx.tcx.type_of(item.def_id);
202                 let ty = fcx.normalize_associated_types_in(span, &ty);
203                 fcx.register_wf_obligation(ty, span, code.clone());
204             }
205             ty::AssocKind::Method => {
206                 reject_shadowing_parameters(fcx.tcx, item.def_id);
207                 let sig = fcx.tcx.fn_sig(item.def_id);
208                 let sig = fcx.normalize_associated_types_in(span, &sig);
209                 check_fn_or_method(tcx, fcx, span, sig,
210                                    item.def_id, &mut implied_bounds);
211                 let sig_if_method = sig_if_method.expect("bad signature for method");
212                 check_method_receiver(fcx, sig_if_method, &item, self_ty);
213             }
214             ty::AssocKind::Type => {
215                 if item.defaultness.has_value() {
216                     let ty = fcx.tcx.type_of(item.def_id);
217                     let ty = fcx.normalize_associated_types_in(span, &ty);
218                     fcx.register_wf_obligation(ty, span, code.clone());
219                 }
220             }
221             ty::AssocKind::Existential => {
222                 // do nothing, existential types check themselves
223             }
224         }
225
226         implied_bounds
227     })
228 }
229
230 fn for_item<'tcx>(tcx: TyCtxt<'tcx>, item: &hir::Item) -> CheckWfFcxBuilder<'tcx> {
231     for_id(tcx, item.hir_id, item.span)
232 }
233
234 fn for_id(tcx: TyCtxt<'_>, id: hir::HirId, span: Span) -> CheckWfFcxBuilder<'_> {
235     let def_id = tcx.hir().local_def_id(id);
236     CheckWfFcxBuilder {
237         inherited: Inherited::build(tcx, def_id),
238         id,
239         span,
240         param_env: tcx.param_env(def_id),
241     }
242 }
243
244 /// In a type definition, we check that to ensure that the types of the fields are well-formed.
245 fn check_type_defn<'tcx, F>(
246     tcx: TyCtxt<'tcx>,
247     item: &hir::Item,
248     all_sized: bool,
249     mut lookup_fields: F,
250 ) where
251     F: for<'fcx> FnMut(&FnCtxt<'fcx, 'tcx>) -> Vec<AdtVariant<'tcx>>,
252 {
253     for_item(tcx, item).with_fcx(|fcx, fcx_tcx| {
254         let variants = lookup_fields(fcx);
255         let def_id = fcx.tcx.hir().local_def_id(item.hir_id);
256         let packed = fcx.tcx.adt_def(def_id).repr.packed();
257
258         for variant in &variants {
259             // For DST, or when drop needs to copy things around, all
260             // intermediate types must be sized.
261             let needs_drop_copy = || {
262                 packed && {
263                     let ty = variant.fields.last().unwrap().ty;
264                     let ty = fcx.tcx.erase_regions(&ty);
265                     if ty.has_local_value() {
266                             fcx_tcx.sess.delay_span_bug(
267                                 item.span, &format!("inference variables in {:?}", ty));
268                             // Just treat unresolved type expression as if it needs drop.
269                             true
270                     } else {
271                         ty.needs_drop(fcx_tcx, fcx_tcx.param_env(def_id))
272                     }
273                 }
274             };
275             let all_sized =
276                 all_sized ||
277                 variant.fields.is_empty() ||
278                 needs_drop_copy();
279             let unsized_len = if all_sized {
280                 0
281             } else {
282                 1
283             };
284             for (idx, field) in variant.fields[..variant.fields.len() - unsized_len]
285                 .iter()
286                 .enumerate()
287             {
288                 let last = idx == variant.fields.len() - 1;
289                 fcx.register_bound(
290                     field.ty,
291                     fcx.tcx.require_lang_item(lang_items::SizedTraitLangItem),
292                     traits::ObligationCause::new(
293                         field.span,
294                         fcx.body_id,
295                         traits::FieldSized {
296                             adt_kind: match item.node.adt_kind() {
297                                 Some(i) => i,
298                                 None => bug!(),
299                             },
300                             last
301                         }
302                     )
303                 );
304             }
305
306             // All field types must be well-formed.
307             for field in &variant.fields {
308                 fcx.register_wf_obligation(field.ty, field.span,
309                     ObligationCauseCode::MiscObligation)
310             }
311         }
312
313         check_where_clauses(tcx, fcx, item.span, def_id, None);
314
315         // No implied bounds in a struct definition.
316         vec![]
317     });
318 }
319
320 fn check_trait(tcx: TyCtxt<'_>, item: &hir::Item) {
321     debug!("check_trait: {:?}", item.hir_id);
322
323     let trait_def_id = tcx.hir().local_def_id(item.hir_id);
324
325     let trait_def = tcx.trait_def(trait_def_id);
326     if trait_def.is_marker {
327         for associated_def_id in &*tcx.associated_item_def_ids(trait_def_id) {
328             struct_span_err!(
329                 tcx.sess,
330                 tcx.def_span(*associated_def_id),
331                 E0714,
332                 "marker traits cannot have associated items",
333             ).emit();
334         }
335     }
336
337     for_item(tcx, item).with_fcx(|fcx, _| {
338         check_where_clauses(tcx, fcx, item.span, trait_def_id, None);
339         vec![]
340     });
341 }
342
343 fn check_item_fn(tcx: TyCtxt<'_>, item: &hir::Item) {
344     for_item(tcx, item).with_fcx(|fcx, tcx| {
345         let def_id = fcx.tcx.hir().local_def_id(item.hir_id);
346         let sig = fcx.tcx.fn_sig(def_id);
347         let sig = fcx.normalize_associated_types_in(item.span, &sig);
348         let mut implied_bounds = vec![];
349         check_fn_or_method(tcx, fcx, item.span, sig,
350                            def_id, &mut implied_bounds);
351         implied_bounds
352     })
353 }
354
355 fn check_item_type(
356     tcx: TyCtxt<'_>,
357     item_id: hir::HirId,
358     ty_span: Span,
359     allow_foreign_ty: bool,
360 ) {
361     debug!("check_item_type: {:?}", item_id);
362
363     for_id(tcx, item_id, ty_span).with_fcx(|fcx, gcx| {
364         let ty = gcx.type_of(gcx.hir().local_def_id(item_id));
365         let item_ty = fcx.normalize_associated_types_in(ty_span, &ty);
366
367         let mut forbid_unsized = true;
368         if allow_foreign_ty {
369             let tail = fcx.tcx.struct_tail_erasing_lifetimes(item_ty, fcx.param_env);
370             if let ty::Foreign(_) = tail.sty {
371                 forbid_unsized = false;
372             }
373         }
374
375         fcx.register_wf_obligation(item_ty, ty_span, ObligationCauseCode::MiscObligation);
376         if forbid_unsized {
377             fcx.register_bound(
378                 item_ty,
379                 fcx.tcx.require_lang_item(lang_items::SizedTraitLangItem),
380                 traits::ObligationCause::new(ty_span, fcx.body_id, traits::MiscObligation),
381             );
382         }
383
384         // No implied bounds in a const, etc.
385         vec![]
386     });
387 }
388
389 fn check_impl<'tcx>(
390     tcx: TyCtxt<'tcx>,
391     item: &hir::Item,
392     ast_self_ty: &hir::Ty,
393     ast_trait_ref: &Option<hir::TraitRef>,
394 ) {
395     debug!("check_impl: {:?}", item);
396
397     for_item(tcx, item).with_fcx(|fcx, tcx| {
398         let item_def_id = fcx.tcx.hir().local_def_id(item.hir_id);
399
400         match *ast_trait_ref {
401             Some(ref ast_trait_ref) => {
402                 let trait_ref = fcx.tcx.impl_trait_ref(item_def_id).unwrap();
403                 let trait_ref =
404                     fcx.normalize_associated_types_in(
405                         ast_trait_ref.path.span, &trait_ref);
406                 let obligations =
407                     ty::wf::trait_obligations(fcx,
408                                                 fcx.param_env,
409                                                 fcx.body_id,
410                                                 &trait_ref,
411                                                 ast_trait_ref.path.span);
412                 for obligation in obligations {
413                     fcx.register_predicate(obligation);
414                 }
415             }
416             None => {
417                 let self_ty = fcx.tcx.type_of(item_def_id);
418                 let self_ty = fcx.normalize_associated_types_in(item.span, &self_ty);
419                 fcx.register_wf_obligation(self_ty, ast_self_ty.span,
420                     ObligationCauseCode::MiscObligation);
421             }
422         }
423
424         check_where_clauses(tcx, fcx, item.span, item_def_id, None);
425
426         fcx.impl_implied_bounds(item_def_id, item.span)
427     });
428 }
429
430 /// Checks where-clauses and inline bounds that are declared on `def_id`.
431 fn check_where_clauses<'tcx, 'fcx>(
432     tcx: TyCtxt<'tcx>,
433     fcx: &FnCtxt<'fcx, 'tcx>,
434     span: Span,
435     def_id: DefId,
436     return_ty: Option<Ty<'tcx>>,
437 ) {
438     debug!("check_where_clauses(def_id={:?}, return_ty={:?})", def_id, return_ty);
439
440     let predicates = fcx.tcx.predicates_of(def_id);
441     let generics = tcx.generics_of(def_id);
442
443     let is_our_default = |def: &ty::GenericParamDef| {
444         match def.kind {
445             GenericParamDefKind::Type { has_default, .. } => {
446                 has_default && def.index >= generics.parent_count as u32
447             }
448             _ => unreachable!()
449         }
450     };
451
452     // Check that concrete defaults are well-formed. See test `type-check-defaults.rs`.
453     // For example, this forbids the declaration:
454     //
455     //     struct Foo<T = Vec<[u32]>> { .. }
456     //
457     // Here, the default `Vec<[u32]>` is not WF because `[u32]: Sized` does not hold.
458     for param in &generics.params {
459         if let GenericParamDefKind::Type { .. } = param.kind {
460             if is_our_default(&param) {
461                 let ty = fcx.tcx.type_of(param.def_id);
462                 // Ignore dependent defaults -- that is, where the default of one type
463                 // parameter includes another (e.g., `<T, U = T>`). In those cases, we can't
464                 // be sure if it will error or not as user might always specify the other.
465                 if !ty.needs_subst() {
466                     fcx.register_wf_obligation(ty, fcx.tcx.def_span(param.def_id),
467                         ObligationCauseCode::MiscObligation);
468                 }
469             }
470         }
471     }
472
473     // Check that trait predicates are WF when params are substituted by their defaults.
474     // We don't want to overly constrain the predicates that may be written but we want to
475     // catch cases where a default my never be applied such as `struct Foo<T: Copy = String>`.
476     // Therefore we check if a predicate which contains a single type param
477     // with a concrete default is WF with that default substituted.
478     // For more examples see tests `defaults-well-formedness.rs` and `type-check-defaults.rs`.
479     //
480     // First we build the defaulted substitution.
481     let substs = InternalSubsts::for_item(fcx.tcx, def_id, |param, _| {
482         match param.kind {
483             GenericParamDefKind::Lifetime => {
484                 // All regions are identity.
485                 fcx.tcx.mk_param_from_def(param)
486             }
487
488             GenericParamDefKind::Type { .. } => {
489                 // If the param has a default, ...
490                 if is_our_default(param) {
491                     let default_ty = fcx.tcx.type_of(param.def_id);
492                     // ... and it's not a dependent default, ...
493                     if !default_ty.needs_subst() {
494                         // ... then substitute it with the default.
495                         return default_ty.into();
496                     }
497                 }
498                 // Mark unwanted params as error.
499                 fcx.tcx.types.err.into()
500             }
501
502             GenericParamDefKind::Const => {
503                 // FIXME(const_generics:defaults)
504                 fcx.tcx.consts.err.into()
505             }
506         }
507     });
508
509     // Now we build the substituted predicates.
510     let default_obligations = predicates.predicates.iter().flat_map(|&(pred, _)| {
511         #[derive(Default)]
512         struct CountParams { params: FxHashSet<u32> }
513         impl<'tcx> ty::fold::TypeVisitor<'tcx> for CountParams {
514             fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
515                 if let ty::Param(param) = t.sty {
516                     self.params.insert(param.index);
517                 }
518                 t.super_visit_with(self)
519             }
520
521             fn visit_region(&mut self, _: ty::Region<'tcx>) -> bool {
522                 true
523             }
524
525             fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
526                 if let ConstValue::Param(param) = c.val {
527                     self.params.insert(param.index);
528                 }
529                 c.super_visit_with(self)
530             }
531         }
532         let mut param_count = CountParams::default();
533         let has_region = pred.visit_with(&mut param_count);
534         let substituted_pred = pred.subst(fcx.tcx, substs);
535         // Don't check non-defaulted params, dependent defaults (including lifetimes)
536         // or preds with multiple params.
537         if substituted_pred.references_error() || param_count.params.len() > 1 || has_region {
538             None
539         } else if predicates.predicates.iter().any(|&(p, _)| p == substituted_pred) {
540             // Avoid duplication of predicates that contain no parameters, for example.
541             None
542         } else {
543             Some(substituted_pred)
544         }
545     }).map(|pred| {
546         // Convert each of those into an obligation. So if you have
547         // something like `struct Foo<T: Copy = String>`, we would
548         // take that predicate `T: Copy`, substitute to `String: Copy`
549         // (actually that happens in the previous `flat_map` call),
550         // and then try to prove it (in this case, we'll fail).
551         //
552         // Note the subtle difference from how we handle `predicates`
553         // below: there, we are not trying to prove those predicates
554         // to be *true* but merely *well-formed*.
555         let pred = fcx.normalize_associated_types_in(span, &pred);
556         let cause = traits::ObligationCause::new(span, fcx.body_id, traits::ItemObligation(def_id));
557         traits::Obligation::new(cause, fcx.param_env, pred)
558     });
559
560     let mut predicates = predicates.instantiate_identity(fcx.tcx);
561
562     if let Some(return_ty) = return_ty {
563         predicates.predicates.extend(check_existential_types(tcx, fcx, def_id, span, return_ty));
564     }
565
566     let predicates = fcx.normalize_associated_types_in(span, &predicates);
567
568     debug!("check_where_clauses: predicates={:?}", predicates.predicates);
569     let wf_obligations =
570         predicates.predicates
571                     .iter()
572                     .flat_map(|p| ty::wf::predicate_obligations(fcx,
573                                                                 fcx.param_env,
574                                                                 fcx.body_id,
575                                                                 p,
576                                                                 span));
577
578     for obligation in wf_obligations.chain(default_obligations) {
579         debug!("next obligation cause: {:?}", obligation.cause);
580         fcx.register_predicate(obligation);
581     }
582 }
583
584 fn check_fn_or_method<'fcx, 'tcx>(
585     tcx: TyCtxt<'tcx>,
586     fcx: &FnCtxt<'fcx, 'tcx>,
587     span: Span,
588     sig: ty::PolyFnSig<'tcx>,
589     def_id: DefId,
590     implied_bounds: &mut Vec<Ty<'tcx>>,
591 ) {
592     let sig = fcx.normalize_associated_types_in(span, &sig);
593     let sig = fcx.tcx.liberate_late_bound_regions(def_id, &sig);
594
595     for input_ty in sig.inputs() {
596         fcx.register_wf_obligation(&input_ty, span, ObligationCauseCode::MiscObligation);
597     }
598     implied_bounds.extend(sig.inputs());
599
600     fcx.register_wf_obligation(sig.output(), span, ObligationCauseCode::MiscObligation);
601
602     // FIXME(#25759) return types should not be implied bounds
603     implied_bounds.push(sig.output());
604
605     check_where_clauses(tcx, fcx, span, def_id, Some(sig.output()));
606 }
607
608 /// Checks "defining uses" of existential types to ensure that they meet the restrictions laid for
609 /// "higher-order pattern unification".
610 /// This ensures that inference is tractable.
611 /// In particular, definitions of existential types can only use other generics as arguments,
612 /// and they cannot repeat an argument. Example:
613 ///
614 /// ```rust
615 /// existential type Foo<A, B>;
616 ///
617 /// // Okay -- `Foo` is applied to two distinct, generic types.
618 /// fn a<T, U>() -> Foo<T, U> { .. }
619 ///
620 /// // Not okay -- `Foo` is applied to `T` twice.
621 /// fn b<T>() -> Foo<T, T> { .. }
622 ///
623 /// // Not okay -- `Foo` is applied to a non-generic type.
624 /// fn b<T>() -> Foo<T, u32> { .. }
625 /// ```
626 ///
627 fn check_existential_types<'fcx, 'tcx>(
628     tcx: TyCtxt<'tcx>,
629     fcx: &FnCtxt<'fcx, 'tcx>,
630     fn_def_id: DefId,
631     span: Span,
632     ty: Ty<'tcx>,
633 ) -> Vec<ty::Predicate<'tcx>> {
634     trace!("check_existential_types(ty={:?})", ty);
635     let mut substituted_predicates = Vec::new();
636     ty.fold_with(&mut ty::fold::BottomUpFolder {
637         tcx: fcx.tcx,
638         ty_op: |ty| {
639             if let ty::Opaque(def_id, substs) = ty.sty {
640                 trace!("check_existential_types: opaque_ty, {:?}, {:?}", def_id, substs);
641                 let generics = tcx.generics_of(def_id);
642                 // Only check named existential types defined in this crate.
643                 if generics.parent.is_none() && def_id.is_local() {
644                     let opaque_hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
645                     if may_define_existential_type(tcx, fn_def_id, opaque_hir_id) {
646                         trace!("check_existential_types: may define, generics={:#?}", generics);
647                         let mut seen: FxHashMap<_, Vec<_>> = FxHashMap::default();
648                         for (subst, param) in substs.iter().zip(&generics.params) {
649                             match subst.unpack() {
650                                 ty::subst::UnpackedKind::Type(ty) => match ty.sty {
651                                     ty::Param(..) => {}
652                                     // Prevent `fn foo() -> Foo<u32>` from being defining.
653                                     _ => {
654                                         tcx.sess
655                                             .struct_span_err(
656                                                 span,
657                                                 "non-defining existential type use \
658                                                  in defining scope",
659                                             )
660                                             .span_note(
661                                                 tcx.def_span(param.def_id),
662                                                 &format!(
663                                                     "used non-generic type {} for \
664                                                      generic parameter",
665                                                     ty,
666                                                 ),
667                                             )
668                                             .emit();
669                                     }
670                                 }
671
672                                 ty::subst::UnpackedKind::Lifetime(region) => {
673                                     let param_span = tcx.def_span(param.def_id);
674                                     if let ty::ReStatic = region {
675                                         tcx
676                                             .sess
677                                             .struct_span_err(
678                                                 span,
679                                                 "non-defining existential type use \
680                                                     in defining scope",
681                                             )
682                                             .span_label(
683                                                 param_span,
684                                                 "cannot use static lifetime, use a bound lifetime \
685                                                 instead or remove the lifetime parameter from the \
686                                                 existential type",
687                                             )
688                                             .emit();
689                                     } else {
690                                         seen.entry(region).or_default().push(param_span);
691                                     }
692                                 }
693
694                                 ty::subst::UnpackedKind::Const(ct) => match ct.val {
695                                     ConstValue::Param(_) => {}
696                                     _ => {
697                                         tcx.sess
698                                             .struct_span_err(
699                                                 span,
700                                                 "non-defining existential type use \
701                                                 in defining scope",
702                                             )
703                                             .span_note(
704                                                 tcx.def_span(param.def_id),
705                                                 &format!(
706                                                     "used non-generic const {} for \
707                                                     generic parameter",
708                                                     ty,
709                                                 ),
710                                             )
711                                             .emit();
712                                     }
713                                 }
714                             } // match subst
715                         } // for (subst, param)
716                         for (_, spans) in seen {
717                             if spans.len() > 1 {
718                                 tcx
719                                     .sess
720                                     .struct_span_err(
721                                         span,
722                                         "non-defining existential type use \
723                                             in defining scope",
724                                     ).
725                                     span_note(
726                                         spans,
727                                         "lifetime used multiple times",
728                                     )
729                                     .emit();
730                             }
731                         }
732                     } // if may_define_existential_type
733
734                     // Now register the bounds on the parameters of the existential type
735                     // so the parameters given by the function need to fulfill them.
736                     //
737                     //     existential type Foo<T: Bar>: 'static;
738                     //     fn foo<U>() -> Foo<U> { .. *}
739                     //
740                     // becomes
741                     //
742                     //     existential type Foo<T: Bar>: 'static;
743                     //     fn foo<U: Bar>() -> Foo<U> { .. *}
744                     let predicates = tcx.predicates_of(def_id);
745                     trace!(
746                         "check_existential_types: may define, predicates={:#?}",
747                         predicates,
748                     );
749                     for &(pred, _) in predicates.predicates.iter() {
750                         let substituted_pred = pred.subst(fcx.tcx, substs);
751                         // Avoid duplication of predicates that contain no parameters, for example.
752                         if !predicates.predicates.iter().any(|&(p, _)| p == substituted_pred) {
753                             substituted_predicates.push(substituted_pred);
754                         }
755                     }
756                 } // if is_named_existential_type
757             } // if let Opaque
758             ty
759         },
760         lt_op: |lt| lt,
761         ct_op: |ct| ct,
762     });
763     substituted_predicates
764 }
765
766 fn check_method_receiver<'fcx, 'tcx>(
767     fcx: &FnCtxt<'fcx, 'tcx>,
768     method_sig: &hir::MethodSig,
769     method: &ty::AssocItem,
770     self_ty: Ty<'tcx>,
771 ) {
772     const HELP_FOR_SELF_TYPE: &str =
773         "consider changing to `self`, `&self`, `&mut self`, `self: Box<Self>`, \
774          `self: Rc<Self>`, `self: Arc<Self>`, or `self: Pin<P>` (where P is one \
775          of the previous types except `Self`)";
776     // Check that the method has a valid receiver type, given the type `Self`.
777     debug!("check_method_receiver({:?}, self_ty={:?})",
778            method, self_ty);
779
780     if !method.method_has_self_argument {
781         return;
782     }
783
784     let span = method_sig.decl.inputs[0].span;
785
786     let sig = fcx.tcx.fn_sig(method.def_id);
787     let sig = fcx.normalize_associated_types_in(span, &sig);
788     let sig = fcx.tcx.liberate_late_bound_regions(method.def_id, &sig);
789
790     debug!("check_method_receiver: sig={:?}", sig);
791
792     let self_ty = fcx.normalize_associated_types_in(span, &self_ty);
793     let self_ty = fcx.tcx.liberate_late_bound_regions(
794         method.def_id,
795         &ty::Binder::bind(self_ty)
796     );
797
798     let receiver_ty = sig.inputs()[0];
799
800     let receiver_ty = fcx.normalize_associated_types_in(span, &receiver_ty);
801     let receiver_ty = fcx.tcx.liberate_late_bound_regions(
802         method.def_id,
803         &ty::Binder::bind(receiver_ty)
804     );
805
806     if fcx.tcx.features().arbitrary_self_types {
807         if !receiver_is_valid(fcx, span, receiver_ty, self_ty, true) {
808             // Report error; `arbitrary_self_types` was enabled.
809             fcx.tcx.sess.diagnostic().mut_span_err(
810                 span, &format!("invalid method receiver type: {:?}", receiver_ty)
811             ).note("type of `self` must be `Self` or a type that dereferences to it")
812             .help(HELP_FOR_SELF_TYPE)
813             .code(DiagnosticId::Error("E0307".into()))
814             .emit();
815         }
816     } else {
817         if !receiver_is_valid(fcx, span, receiver_ty, self_ty, false) {
818             if receiver_is_valid(fcx, span, receiver_ty, self_ty, true) {
819                 // Report error; would have worked with `arbitrary_self_types`.
820                 feature_gate::feature_err(
821                     &fcx.tcx.sess.parse_sess,
822                     sym::arbitrary_self_types,
823                     span,
824                     GateIssue::Language,
825                     &format!(
826                         "`{}` cannot be used as the type of `self` without \
827                             the `arbitrary_self_types` feature",
828                         receiver_ty,
829                     ),
830                 ).help(HELP_FOR_SELF_TYPE)
831                 .emit();
832             } else {
833                 // Report error; would not have worked with `arbitrary_self_types`.
834                 fcx.tcx.sess.diagnostic().mut_span_err(
835                     span, &format!("invalid method receiver type: {:?}", receiver_ty)
836                 ).note("type must be `Self` or a type that dereferences to it")
837                 .help(HELP_FOR_SELF_TYPE)
838                 .code(DiagnosticId::Error("E0307".into()))
839                 .emit();
840             }
841         }
842     }
843 }
844
845 /// Returns whether `receiver_ty` would be considered a valid receiver type for `self_ty`. If
846 /// `arbitrary_self_types` is enabled, `receiver_ty` must transitively deref to `self_ty`, possibly
847 /// through a `*const/mut T` raw pointer. If the feature is not enabled, the requirements are more
848 /// strict: `receiver_ty` must implement `Receiver` and directly implement
849 /// `Deref<Target = self_ty>`.
850 ///
851 /// N.B., there are cases this function returns `true` but causes an error to be emitted,
852 /// particularly when `receiver_ty` derefs to a type that is the same as `self_ty` but has the
853 /// wrong lifetime. Be careful of this if you are calling this function speculatively.
854 fn receiver_is_valid<'fcx, 'tcx>(
855     fcx: &FnCtxt<'fcx, 'tcx>,
856     span: Span,
857     receiver_ty: Ty<'tcx>,
858     self_ty: Ty<'tcx>,
859     arbitrary_self_types_enabled: bool,
860 ) -> bool {
861     let cause = fcx.cause(span, traits::ObligationCauseCode::MethodReceiver);
862
863     let can_eq_self = |ty| fcx.infcx.can_eq(fcx.param_env, self_ty, ty).is_ok();
864
865     // `self: Self` is always valid.
866     if can_eq_self(receiver_ty) {
867         if let Some(mut err) = fcx.demand_eqtype_with_origin(&cause, self_ty, receiver_ty) {
868             err.emit();
869         }
870         return true
871     }
872
873     let mut autoderef = fcx.autoderef(span, receiver_ty);
874
875     // The `arbitrary_self_types` feature allows raw pointer receivers like `self: *const Self`.
876     if arbitrary_self_types_enabled {
877         autoderef = autoderef.include_raw_pointers();
878     }
879
880     // The first type is `receiver_ty`, which we know its not equal to `self_ty`; skip it.
881     autoderef.next();
882
883     // Keep dereferencing `receiver_ty` until we get to `self_ty`.
884     loop {
885         if let Some((potential_self_ty, _)) = autoderef.next() {
886             debug!("receiver_is_valid: potential self type `{:?}` to match `{:?}`",
887                 potential_self_ty, self_ty);
888
889             if can_eq_self(potential_self_ty) {
890                 autoderef.finalize(fcx);
891
892                 if let Some(mut err) = fcx.demand_eqtype_with_origin(
893                     &cause, self_ty, potential_self_ty
894                 ) {
895                     err.emit();
896                 }
897
898                 break
899             }
900         } else {
901             debug!("receiver_is_valid: type `{:?}` does not deref to `{:?}`",
902                 receiver_ty, self_ty);
903             // If he receiver already has errors reported due to it, consider it valid to avoid
904             // unecessary errors (#58712).
905             return receiver_ty.references_error();
906         }
907
908         // Without the `arbitrary_self_types` feature, `receiver_ty` must directly deref to
909         // `self_ty`. Enforce this by only doing one iteration of the loop.
910         if !arbitrary_self_types_enabled {
911             return false
912         }
913     }
914
915     // Without `feature(arbitrary_self_types)`, we require that `receiver_ty` implements `Receiver`.
916     if !arbitrary_self_types_enabled {
917         let trait_def_id = match fcx.tcx.lang_items().receiver_trait() {
918             Some(did) => did,
919             None => {
920                 debug!("receiver_is_valid: missing Receiver trait");
921                 return false
922             }
923         };
924
925         let trait_ref = ty::TraitRef{
926             def_id: trait_def_id,
927             substs: fcx.tcx.mk_substs_trait(receiver_ty, &[]),
928         };
929
930         let obligation = traits::Obligation::new(
931             cause,
932             fcx.param_env,
933             trait_ref.to_predicate()
934         );
935
936         if !fcx.predicate_must_hold_modulo_regions(&obligation) {
937             debug!("receiver_is_valid: type `{:?}` does not implement `Receiver` trait",
938                 receiver_ty);
939             return false
940         }
941     }
942
943     true
944 }
945
946 fn check_variances_for_type_defn<'tcx>(
947     tcx: TyCtxt<'tcx>,
948     item: &hir::Item,
949     hir_generics: &hir::Generics,
950 ) {
951     let item_def_id = tcx.hir().local_def_id(item.hir_id);
952     let ty = tcx.type_of(item_def_id);
953     if tcx.has_error_field(ty) {
954         return;
955     }
956
957     let ty_predicates = tcx.predicates_of(item_def_id);
958     assert_eq!(ty_predicates.parent, None);
959     let variances = tcx.variances_of(item_def_id);
960
961     let mut constrained_parameters: FxHashSet<_> =
962         variances.iter().enumerate()
963                         .filter(|&(_, &variance)| variance != ty::Bivariant)
964                         .map(|(index, _)| Parameter(index as u32))
965                         .collect();
966
967     identify_constrained_generic_params(
968         tcx,
969         &ty_predicates,
970         None,
971         &mut constrained_parameters,
972     );
973
974     for (index, _) in variances.iter().enumerate() {
975         if constrained_parameters.contains(&Parameter(index as u32)) {
976             continue;
977         }
978
979         let param = &hir_generics.params[index];
980
981         match param.name {
982             hir::ParamName::Error => { }
983             _ => report_bivariance(tcx, param.span, param.name.ident().name),
984         }
985     }
986 }
987
988 fn report_bivariance(tcx: TyCtxt<'_>, span: Span, param_name: ast::Name) {
989     let mut err = error_392(tcx, span, param_name);
990
991     let suggested_marker_id = tcx.lang_items().phantom_data();
992     // Help is available only in presence of lang items.
993     if let Some(def_id) = suggested_marker_id {
994         err.help(&format!("consider removing `{}` or using a marker such as `{}`",
995                           param_name,
996                           tcx.def_path_str(def_id)));
997     }
998     err.emit();
999 }
1000
1001 fn reject_shadowing_parameters(tcx: TyCtxt<'_>, def_id: DefId) {
1002     let generics = tcx.generics_of(def_id);
1003     let parent = tcx.generics_of(generics.parent.unwrap());
1004     let impl_params: FxHashMap<_, _> = parent.params.iter().flat_map(|param| match param.kind {
1005         GenericParamDefKind::Lifetime => None,
1006         GenericParamDefKind::Type { .. } | GenericParamDefKind::Const => {
1007             Some((param.name, param.def_id))
1008         }
1009     }).collect();
1010
1011     for method_param in &generics.params {
1012         // Shadowing is checked in `resolve_lifetime`.
1013         if let GenericParamDefKind::Lifetime = method_param.kind {
1014             continue
1015         }
1016         if impl_params.contains_key(&method_param.name) {
1017             // Tighten up the span to focus on only the shadowing type.
1018             let type_span = tcx.def_span(method_param.def_id);
1019
1020             // The expectation here is that the original trait declaration is
1021             // local so it should be okay to just unwrap everything.
1022             let trait_def_id = impl_params[&method_param.name];
1023             let trait_decl_span = tcx.def_span(trait_def_id);
1024             error_194(tcx, type_span, trait_decl_span, &method_param.name.as_str()[..]);
1025         }
1026     }
1027 }
1028
1029 /// Feature gates RFC 2056 -- trivial bounds, checking for global bounds that
1030 /// aren't true.
1031 fn check_false_global_bounds(fcx: &FnCtxt<'_, '_>, span: Span, id: hir::HirId) {
1032     let empty_env = ty::ParamEnv::empty();
1033
1034     let def_id = fcx.tcx.hir().local_def_id(id);
1035     let predicates = fcx.tcx.predicates_of(def_id).predicates
1036         .iter()
1037         .map(|(p, _)| *p)
1038         .collect();
1039     // Check elaborated bounds.
1040     let implied_obligations = traits::elaborate_predicates(fcx.tcx, predicates);
1041
1042     for pred in implied_obligations {
1043         // Match the existing behavior.
1044         if pred.is_global() && !pred.has_late_bound_regions() {
1045             let pred = fcx.normalize_associated_types_in(span, &pred);
1046             let obligation = traits::Obligation::new(
1047                 traits::ObligationCause::new(
1048                     span,
1049                     id,
1050                     traits::TrivialBound,
1051                 ),
1052                 empty_env,
1053                 pred,
1054             );
1055             fcx.register_predicate(obligation);
1056         }
1057     }
1058
1059     fcx.select_all_obligations_or_error();
1060 }
1061
1062 pub struct CheckTypeWellFormedVisitor<'tcx> {
1063     tcx: TyCtxt<'tcx>,
1064 }
1065
1066 impl CheckTypeWellFormedVisitor<'tcx> {
1067     pub fn new(tcx: TyCtxt<'tcx>) -> CheckTypeWellFormedVisitor<'tcx> {
1068         CheckTypeWellFormedVisitor {
1069             tcx,
1070         }
1071     }
1072 }
1073
1074 impl ParItemLikeVisitor<'tcx> for CheckTypeWellFormedVisitor<'tcx> {
1075     fn visit_item(&self, i: &'tcx hir::Item) {
1076         debug!("visit_item: {:?}", i);
1077         let def_id = self.tcx.hir().local_def_id(i.hir_id);
1078         self.tcx.ensure().check_item_well_formed(def_id);
1079     }
1080
1081     fn visit_trait_item(&self, trait_item: &'tcx hir::TraitItem) {
1082         debug!("visit_trait_item: {:?}", trait_item);
1083         let def_id = self.tcx.hir().local_def_id(trait_item.hir_id);
1084         self.tcx.ensure().check_trait_item_well_formed(def_id);
1085     }
1086
1087     fn visit_impl_item(&self, impl_item: &'tcx hir::ImplItem) {
1088         debug!("visit_impl_item: {:?}", impl_item);
1089         let def_id = self.tcx.hir().local_def_id(impl_item.hir_id);
1090         self.tcx.ensure().check_impl_item_well_formed(def_id);
1091     }
1092 }
1093
1094 ///////////////////////////////////////////////////////////////////////////
1095 // ADT
1096
1097 struct AdtVariant<'tcx> {
1098     fields: Vec<AdtField<'tcx>>,
1099 }
1100
1101 struct AdtField<'tcx> {
1102     ty: Ty<'tcx>,
1103     span: Span,
1104 }
1105
1106 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
1107     fn non_enum_variant(&self, struct_def: &hir::VariantData) -> AdtVariant<'tcx> {
1108         let fields = struct_def.fields().iter().map(|field| {
1109             let field_ty = self.tcx.type_of(self.tcx.hir().local_def_id(field.hir_id));
1110             let field_ty = self.normalize_associated_types_in(field.span,
1111                                                               &field_ty);
1112             let field_ty = self.resolve_vars_if_possible(&field_ty);
1113             debug!("non_enum_variant: type of field {:?} is {:?}", field, field_ty);
1114             AdtField { ty: field_ty, span: field.span }
1115         })
1116         .collect();
1117         AdtVariant { fields }
1118     }
1119
1120     fn enum_variants(&self, enum_def: &hir::EnumDef) -> Vec<AdtVariant<'tcx>> {
1121         enum_def.variants.iter()
1122             .map(|variant| self.non_enum_variant(&variant.node.data))
1123             .collect()
1124     }
1125
1126     fn impl_implied_bounds(&self, impl_def_id: DefId, span: Span) -> Vec<Ty<'tcx>> {
1127         match self.tcx.impl_trait_ref(impl_def_id) {
1128             Some(ref trait_ref) => {
1129                 // Trait impl: take implied bounds from all types that
1130                 // appear in the trait reference.
1131                 let trait_ref = self.normalize_associated_types_in(span, trait_ref);
1132                 trait_ref.substs.types().collect()
1133             }
1134
1135             None => {
1136                 // Inherent impl: take implied bounds from the `self` type.
1137                 let self_ty = self.tcx.type_of(impl_def_id);
1138                 let self_ty = self.normalize_associated_types_in(span, &self_ty);
1139                 vec![self_ty]
1140             }
1141         }
1142     }
1143 }
1144
1145 fn error_392(
1146     tcx: TyCtxt<'_>,
1147     span: Span,
1148     param_name: ast::Name,
1149 ) -> DiagnosticBuilder<'_> {
1150     let mut err = struct_span_err!(tcx.sess, span, E0392,
1151                   "parameter `{}` is never used", param_name);
1152     err.span_label(span, "unused parameter");
1153     err
1154 }
1155
1156 fn error_194(tcx: TyCtxt<'_>, span: Span, trait_decl_span: Span, name: &str) {
1157     struct_span_err!(tcx.sess, span, E0194,
1158                      "type parameter `{}` shadows another type parameter of the same name",
1159                      name)
1160         .span_label(span, "shadows another type parameter")
1161         .span_label(trait_decl_span, format!("first `{}` declared here", name))
1162         .emit();
1163 }