]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/mod.rs
Add E0609
[rust.git] / src / librustc_typeck / check / mod.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 /*
12
13 # check.rs
14
15 Within the check phase of type check, we check each item one at a time
16 (bodies of function expressions are checked as part of the containing
17 function).  Inference is used to supply types wherever they are
18 unknown.
19
20 By far the most complex case is checking the body of a function. This
21 can be broken down into several distinct phases:
22
23 - gather: creates type variables to represent the type of each local
24   variable and pattern binding.
25
26 - main: the main pass does the lion's share of the work: it
27   determines the types of all expressions, resolves
28   methods, checks for most invalid conditions, and so forth.  In
29   some cases, where a type is unknown, it may create a type or region
30   variable and use that as the type of an expression.
31
32   In the process of checking, various constraints will be placed on
33   these type variables through the subtyping relationships requested
34   through the `demand` module.  The `infer` module is in charge
35   of resolving those constraints.
36
37 - regionck: after main is complete, the regionck pass goes over all
38   types looking for regions and making sure that they did not escape
39   into places they are not in scope.  This may also influence the
40   final assignments of the various region variables if there is some
41   flexibility.
42
43 - vtable: find and records the impls to use for each trait bound that
44   appears on a type parameter.
45
46 - writeback: writes the final types within a function body, replacing
47   type variables with their final inferred types.  These final types
48   are written into the `tcx.node_types` table, which should *never* contain
49   any reference to a type variable.
50
51 ## Intermediate types
52
53 While type checking a function, the intermediate types for the
54 expressions, blocks, and so forth contained within the function are
55 stored in `fcx.node_types` and `fcx.node_substs`.  These types
56 may contain unresolved type variables.  After type checking is
57 complete, the functions in the writeback module are used to take the
58 types from this table, resolve them, and then write them into their
59 permanent home in the type context `tcx`.
60
61 This means that during inferencing you should use `fcx.write_ty()`
62 and `fcx.expr_ty()` / `fcx.node_ty()` to write/obtain the types of
63 nodes within the function.
64
65 The types of top-level items, which never contain unbound type
66 variables, are stored directly into the `tcx` tables.
67
68 n.b.: A type variable is not the same thing as a type parameter.  A
69 type variable is rather an "instance" of a type parameter: that is,
70 given a generic function `fn foo<T>(t: T)`: while checking the
71 function `foo`, the type `ty_param(0)` refers to the type `T`, which
72 is treated in abstract.  When `foo()` is called, however, `T` will be
73 substituted for a fresh type variable `N`.  This variable will
74 eventually be resolved to some concrete type (which might itself be
75 type parameter).
76
77 */
78
79 pub use self::Expectation::*;
80 use self::autoderef::Autoderef;
81 use self::callee::DeferredCallResolution;
82 use self::coercion::{CoerceMany, DynamicCoerceMany};
83 pub use self::compare_method::{compare_impl_method, compare_const_impl};
84 use self::method::MethodCallee;
85 use self::TupleArgumentsFlag::*;
86
87 use astconv::AstConv;
88 use fmt_macros::{Parser, Piece, Position};
89 use hir::def::{Def, CtorKind};
90 use hir::def_id::{CrateNum, DefId, LOCAL_CRATE};
91 use rustc_back::slice::ref_slice;
92 use rustc::infer::{self, InferCtxt, InferOk, RegionVariableOrigin};
93 use rustc::infer::type_variable::{TypeVariableOrigin};
94 use rustc::middle::region::CodeExtent;
95 use rustc::ty::subst::{Kind, Subst, Substs};
96 use rustc::traits::{self, FulfillmentContext, ObligationCause, ObligationCauseCode};
97 use rustc::ty::{ParamTy, LvaluePreference, NoPreference, PreferMutLvalue};
98 use rustc::ty::{self, Ty, TyCtxt, Visibility};
99 use rustc::ty::adjustment::{Adjust, Adjustment, AutoBorrow};
100 use rustc::ty::fold::{BottomUpFolder, TypeFoldable};
101 use rustc::ty::maps::Providers;
102 use rustc::ty::util::{Representability, IntTypeExt};
103 use errors::DiagnosticBuilder;
104 use require_c_abi_if_variadic;
105 use session::{Session, CompileResult};
106 use TypeAndSubsts;
107 use lint;
108 use util::common::{ErrorReported, indenter};
109 use util::nodemap::{DefIdMap, FxHashMap, NodeMap};
110
111 use std::cell::{Cell, RefCell};
112 use std::collections::hash_map::Entry;
113 use std::cmp;
114 use std::mem::replace;
115 use std::ops::{self, Deref};
116 use syntax::abi::Abi;
117 use syntax::ast;
118 use syntax::codemap::{self, original_sp, Spanned};
119 use syntax::feature_gate::{GateIssue, emit_feature_err};
120 use syntax::ptr::P;
121 use syntax::symbol::{Symbol, InternedString, keywords};
122 use syntax::util::lev_distance::find_best_match_for_name;
123 use syntax_pos::{self, BytePos, Span};
124
125 use rustc::hir::intravisit::{self, Visitor, NestedVisitorMap};
126 use rustc::hir::itemlikevisit::ItemLikeVisitor;
127 use rustc::hir::{self, PatKind};
128 use rustc::middle::lang_items;
129 use rustc_back::slice;
130 use rustc::middle::const_val::eval_length;
131 use rustc_const_math::ConstInt;
132
133 mod autoderef;
134 pub mod dropck;
135 pub mod _match;
136 pub mod writeback;
137 pub mod regionck;
138 pub mod coercion;
139 pub mod demand;
140 pub mod method;
141 mod upvar;
142 mod wfcheck;
143 mod cast;
144 mod closure;
145 mod callee;
146 mod compare_method;
147 mod intrinsic;
148 mod op;
149
150 /// closures defined within the function.  For example:
151 ///
152 ///     fn foo() {
153 ///         bar(move|| { ... })
154 ///     }
155 ///
156 /// Here, the function `foo()` and the closure passed to
157 /// `bar()` will each have their own `FnCtxt`, but they will
158 /// share the inherited fields.
159 pub struct Inherited<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
160     infcx: InferCtxt<'a, 'gcx, 'tcx>,
161
162     locals: RefCell<NodeMap<Ty<'tcx>>>,
163
164     fulfillment_cx: RefCell<traits::FulfillmentContext<'tcx>>,
165
166     // When we process a call like `c()` where `c` is a closure type,
167     // we may not have decided yet whether `c` is a `Fn`, `FnMut`, or
168     // `FnOnce` closure. In that case, we defer full resolution of the
169     // call until upvar inference can kick in and make the
170     // decision. We keep these deferred resolutions grouped by the
171     // def-id of the closure, so that once we decide, we can easily go
172     // back and process them.
173     deferred_call_resolutions: RefCell<DefIdMap<Vec<DeferredCallResolution<'gcx, 'tcx>>>>,
174
175     deferred_cast_checks: RefCell<Vec<cast::CastCheck<'tcx>>>,
176
177     // Anonymized types found in explicit return types and their
178     // associated fresh inference variable. Writeback resolves these
179     // variables to get the concrete type, which can be used to
180     // deanonymize TyAnon, after typeck is done with all functions.
181     anon_types: RefCell<NodeMap<Ty<'tcx>>>,
182
183     /// Each type parameter has an implicit region bound that
184     /// indicates it must outlive at least the function body (the user
185     /// may specify stronger requirements). This field indicates the
186     /// region of the callee. If it is `None`, then the parameter
187     /// environment is for an item or something where the "callee" is
188     /// not clear.
189     implicit_region_bound: Option<ty::Region<'tcx>>,
190 }
191
192 impl<'a, 'gcx, 'tcx> Deref for Inherited<'a, 'gcx, 'tcx> {
193     type Target = InferCtxt<'a, 'gcx, 'tcx>;
194     fn deref(&self) -> &Self::Target {
195         &self.infcx
196     }
197 }
198
199 /// When type-checking an expression, we propagate downward
200 /// whatever type hint we are able in the form of an `Expectation`.
201 #[derive(Copy, Clone, Debug)]
202 pub enum Expectation<'tcx> {
203     /// We know nothing about what type this expression should have.
204     NoExpectation,
205
206     /// This expression should have the type given (or some subtype)
207     ExpectHasType(Ty<'tcx>),
208
209     /// This expression will be cast to the `Ty`
210     ExpectCastableToType(Ty<'tcx>),
211
212     /// This rvalue expression will be wrapped in `&` or `Box` and coerced
213     /// to `&Ty` or `Box<Ty>`, respectively. `Ty` is `[A]` or `Trait`.
214     ExpectRvalueLikeUnsized(Ty<'tcx>),
215 }
216
217 impl<'a, 'gcx, 'tcx> Expectation<'tcx> {
218     // Disregard "castable to" expectations because they
219     // can lead us astray. Consider for example `if cond
220     // {22} else {c} as u8` -- if we propagate the
221     // "castable to u8" constraint to 22, it will pick the
222     // type 22u8, which is overly constrained (c might not
223     // be a u8). In effect, the problem is that the
224     // "castable to" expectation is not the tightest thing
225     // we can say, so we want to drop it in this case.
226     // The tightest thing we can say is "must unify with
227     // else branch". Note that in the case of a "has type"
228     // constraint, this limitation does not hold.
229
230     // If the expected type is just a type variable, then don't use
231     // an expected type. Otherwise, we might write parts of the type
232     // when checking the 'then' block which are incompatible with the
233     // 'else' branch.
234     fn adjust_for_branches(&self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Expectation<'tcx> {
235         match *self {
236             ExpectHasType(ety) => {
237                 let ety = fcx.shallow_resolve(ety);
238                 if !ety.is_ty_var() {
239                     ExpectHasType(ety)
240                 } else {
241                     NoExpectation
242                 }
243             }
244             ExpectRvalueLikeUnsized(ety) => {
245                 ExpectRvalueLikeUnsized(ety)
246             }
247             _ => NoExpectation
248         }
249     }
250
251     /// Provide an expectation for an rvalue expression given an *optional*
252     /// hint, which is not required for type safety (the resulting type might
253     /// be checked higher up, as is the case with `&expr` and `box expr`), but
254     /// is useful in determining the concrete type.
255     ///
256     /// The primary use case is where the expected type is a fat pointer,
257     /// like `&[isize]`. For example, consider the following statement:
258     ///
259     ///    let x: &[isize] = &[1, 2, 3];
260     ///
261     /// In this case, the expected type for the `&[1, 2, 3]` expression is
262     /// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
263     /// expectation `ExpectHasType([isize])`, that would be too strong --
264     /// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
265     /// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
266     /// to the type `&[isize]`. Therefore, we propagate this more limited hint,
267     /// which still is useful, because it informs integer literals and the like.
268     /// See the test case `test/run-pass/coerce-expect-unsized.rs` and #20169
269     /// for examples of where this comes up,.
270     fn rvalue_hint(fcx: &FnCtxt<'a, 'gcx, 'tcx>, ty: Ty<'tcx>) -> Expectation<'tcx> {
271         match fcx.tcx.struct_tail(ty).sty {
272             ty::TySlice(_) | ty::TyStr | ty::TyDynamic(..) => {
273                 ExpectRvalueLikeUnsized(ty)
274             }
275             _ => ExpectHasType(ty)
276         }
277     }
278
279     // Resolves `expected` by a single level if it is a variable. If
280     // there is no expected type or resolution is not possible (e.g.,
281     // no constraints yet present), just returns `None`.
282     fn resolve(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Expectation<'tcx> {
283         match self {
284             NoExpectation => {
285                 NoExpectation
286             }
287             ExpectCastableToType(t) => {
288                 ExpectCastableToType(fcx.resolve_type_vars_if_possible(&t))
289             }
290             ExpectHasType(t) => {
291                 ExpectHasType(fcx.resolve_type_vars_if_possible(&t))
292             }
293             ExpectRvalueLikeUnsized(t) => {
294                 ExpectRvalueLikeUnsized(fcx.resolve_type_vars_if_possible(&t))
295             }
296         }
297     }
298
299     fn to_option(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Option<Ty<'tcx>> {
300         match self.resolve(fcx) {
301             NoExpectation => None,
302             ExpectCastableToType(ty) |
303             ExpectHasType(ty) |
304             ExpectRvalueLikeUnsized(ty) => Some(ty),
305         }
306     }
307
308     /// It sometimes happens that we want to turn an expectation into
309     /// a **hard constraint** (i.e., something that must be satisfied
310     /// for the program to type-check). `only_has_type` will return
311     /// such a constraint, if it exists.
312     fn only_has_type(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Option<Ty<'tcx>> {
313         match self.resolve(fcx) {
314             ExpectHasType(ty) => Some(ty),
315             _ => None
316         }
317     }
318
319     /// Like `only_has_type`, but instead of returning `None` if no
320     /// hard constraint exists, creates a fresh type variable.
321     fn coercion_target_type(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>, span: Span) -> Ty<'tcx> {
322         self.only_has_type(fcx)
323             .unwrap_or_else(|| fcx.next_ty_var(TypeVariableOrigin::MiscVariable(span)))
324     }
325 }
326
327 #[derive(Copy, Clone)]
328 pub struct UnsafetyState {
329     pub def: ast::NodeId,
330     pub unsafety: hir::Unsafety,
331     pub unsafe_push_count: u32,
332     from_fn: bool
333 }
334
335 impl UnsafetyState {
336     pub fn function(unsafety: hir::Unsafety, def: ast::NodeId) -> UnsafetyState {
337         UnsafetyState { def: def, unsafety: unsafety, unsafe_push_count: 0, from_fn: true }
338     }
339
340     pub fn recurse(&mut self, blk: &hir::Block) -> UnsafetyState {
341         match self.unsafety {
342             // If this unsafe, then if the outer function was already marked as
343             // unsafe we shouldn't attribute the unsafe'ness to the block. This
344             // way the block can be warned about instead of ignoring this
345             // extraneous block (functions are never warned about).
346             hir::Unsafety::Unsafe if self.from_fn => *self,
347
348             unsafety => {
349                 let (unsafety, def, count) = match blk.rules {
350                     hir::PushUnsafeBlock(..) =>
351                         (unsafety, blk.id, self.unsafe_push_count.checked_add(1).unwrap()),
352                     hir::PopUnsafeBlock(..) =>
353                         (unsafety, blk.id, self.unsafe_push_count.checked_sub(1).unwrap()),
354                     hir::UnsafeBlock(..) =>
355                         (hir::Unsafety::Unsafe, blk.id, self.unsafe_push_count),
356                     hir::DefaultBlock =>
357                         (unsafety, self.def, self.unsafe_push_count),
358                 };
359                 UnsafetyState{ def: def,
360                                unsafety: unsafety,
361                                unsafe_push_count: count,
362                                from_fn: false }
363             }
364         }
365     }
366 }
367
368 #[derive(Debug, Copy, Clone)]
369 pub enum LvalueOp {
370     Deref,
371     Index
372 }
373
374 /// Tracks whether executing a node may exit normally (versus
375 /// return/break/panic, which "diverge", leaving dead code in their
376 /// wake). Tracked semi-automatically (through type variables marked
377 /// as diverging), with some manual adjustments for control-flow
378 /// primitives (approximating a CFG).
379 #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
380 pub enum Diverges {
381     /// Potentially unknown, some cases converge,
382     /// others require a CFG to determine them.
383     Maybe,
384
385     /// Definitely known to diverge and therefore
386     /// not reach the next sibling or its parent.
387     Always,
388
389     /// Same as `Always` but with a reachability
390     /// warning already emitted
391     WarnedAlways
392 }
393
394 // Convenience impls for combinig `Diverges`.
395
396 impl ops::BitAnd for Diverges {
397     type Output = Self;
398     fn bitand(self, other: Self) -> Self {
399         cmp::min(self, other)
400     }
401 }
402
403 impl ops::BitOr for Diverges {
404     type Output = Self;
405     fn bitor(self, other: Self) -> Self {
406         cmp::max(self, other)
407     }
408 }
409
410 impl ops::BitAndAssign for Diverges {
411     fn bitand_assign(&mut self, other: Self) {
412         *self = *self & other;
413     }
414 }
415
416 impl ops::BitOrAssign for Diverges {
417     fn bitor_assign(&mut self, other: Self) {
418         *self = *self | other;
419     }
420 }
421
422 impl Diverges {
423     fn always(self) -> bool {
424         self >= Diverges::Always
425     }
426 }
427
428 pub struct BreakableCtxt<'gcx: 'tcx, 'tcx> {
429     may_break: bool,
430
431     // this is `null` for loops where break with a value is illegal,
432     // such as `while`, `for`, and `while let`
433     coerce: Option<DynamicCoerceMany<'gcx, 'tcx>>,
434 }
435
436 pub struct EnclosingBreakables<'gcx: 'tcx, 'tcx> {
437     stack: Vec<BreakableCtxt<'gcx, 'tcx>>,
438     by_id: NodeMap<usize>,
439 }
440
441 impl<'gcx, 'tcx> EnclosingBreakables<'gcx, 'tcx> {
442     fn find_breakable(&mut self, target_id: ast::NodeId) -> &mut BreakableCtxt<'gcx, 'tcx> {
443         let ix = *self.by_id.get(&target_id).unwrap_or_else(|| {
444             bug!("could not find enclosing breakable with id {}", target_id);
445         });
446         &mut self.stack[ix]
447     }
448 }
449
450 pub struct FnCtxt<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
451     body_id: ast::NodeId,
452
453     /// The parameter environment used for proving trait obligations
454     /// in this function. This can change when we descend into
455     /// closures (as they bring new things into scope), hence it is
456     /// not part of `Inherited` (as of the time of this writing,
457     /// closures do not yet change the environment, but they will
458     /// eventually).
459     param_env: ty::ParamEnv<'tcx>,
460
461     // Number of errors that had been reported when we started
462     // checking this function. On exit, if we find that *more* errors
463     // have been reported, we will skip regionck and other work that
464     // expects the types within the function to be consistent.
465     err_count_on_creation: usize,
466
467     ret_coercion: Option<RefCell<DynamicCoerceMany<'gcx, 'tcx>>>,
468
469     ps: RefCell<UnsafetyState>,
470
471     /// Whether the last checked node generates a divergence (e.g.,
472     /// `return` will set this to Always). In general, when entering
473     /// an expression or other node in the tree, the initial value
474     /// indicates whether prior parts of the containing expression may
475     /// have diverged. It is then typically set to `Maybe` (and the
476     /// old value remembered) for processing the subparts of the
477     /// current expression. As each subpart is processed, they may set
478     /// the flag to `Always` etc.  Finally, at the end, we take the
479     /// result and "union" it with the original value, so that when we
480     /// return the flag indicates if any subpart of the the parent
481     /// expression (up to and including this part) has diverged.  So,
482     /// if you read it after evaluating a subexpression `X`, the value
483     /// you get indicates whether any subexpression that was
484     /// evaluating up to and including `X` diverged.
485     ///
486     /// We use this flag for two purposes:
487     ///
488     /// - To warn about unreachable code: if, after processing a
489     ///   sub-expression but before we have applied the effects of the
490     ///   current node, we see that the flag is set to `Always`, we
491     ///   can issue a warning. This corresponds to something like
492     ///   `foo(return)`; we warn on the `foo()` expression. (We then
493     ///   update the flag to `WarnedAlways` to suppress duplicate
494     ///   reports.) Similarly, if we traverse to a fresh statement (or
495     ///   tail expression) from a `Always` setting, we will isssue a
496     ///   warning. This corresponds to something like `{return;
497     ///   foo();}` or `{return; 22}`, where we would warn on the
498     ///   `foo()` or `22`.
499     ///
500     /// - To permit assignment into a local variable or other lvalue
501     ///   (including the "return slot") of type `!`.  This is allowed
502     ///   if **either** the type of value being assigned is `!`, which
503     ///   means the current code is dead, **or** the expression's
504     ///   divering flag is true, which means that a divering value was
505     ///   wrapped (e.g., `let x: ! = foo(return)`).
506     ///
507     /// To repeat the last point: an expression represents dead-code
508     /// if, after checking it, **either** its type is `!` OR the
509     /// diverges flag is set to something other than `Maybe`.
510     diverges: Cell<Diverges>,
511
512     /// Whether any child nodes have any type errors.
513     has_errors: Cell<bool>,
514
515     enclosing_breakables: RefCell<EnclosingBreakables<'gcx, 'tcx>>,
516
517     inh: &'a Inherited<'a, 'gcx, 'tcx>,
518 }
519
520 impl<'a, 'gcx, 'tcx> Deref for FnCtxt<'a, 'gcx, 'tcx> {
521     type Target = Inherited<'a, 'gcx, 'tcx>;
522     fn deref(&self) -> &Self::Target {
523         &self.inh
524     }
525 }
526
527 /// Helper type of a temporary returned by Inherited::build(...).
528 /// Necessary because we can't write the following bound:
529 /// F: for<'b, 'tcx> where 'gcx: 'tcx FnOnce(Inherited<'b, 'gcx, 'tcx>).
530 pub struct InheritedBuilder<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
531     infcx: infer::InferCtxtBuilder<'a, 'gcx, 'tcx>,
532     def_id: DefId,
533 }
534
535 impl<'a, 'gcx, 'tcx> Inherited<'a, 'gcx, 'tcx> {
536     pub fn build(tcx: TyCtxt<'a, 'gcx, 'gcx>, def_id: DefId)
537                  -> InheritedBuilder<'a, 'gcx, 'tcx> {
538         let tables = ty::TypeckTables::empty();
539         InheritedBuilder {
540             infcx: tcx.infer_ctxt(tables),
541             def_id,
542         }
543     }
544 }
545
546 impl<'a, 'gcx, 'tcx> InheritedBuilder<'a, 'gcx, 'tcx> {
547     fn enter<F, R>(&'tcx mut self, f: F) -> R
548         where F: for<'b> FnOnce(Inherited<'b, 'gcx, 'tcx>) -> R
549     {
550         let def_id = self.def_id;
551         self.infcx.enter(|infcx| f(Inherited::new(infcx, def_id)))
552     }
553 }
554
555 impl<'a, 'gcx, 'tcx> Inherited<'a, 'gcx, 'tcx> {
556     fn new(infcx: InferCtxt<'a, 'gcx, 'tcx>, def_id: DefId) -> Self {
557         let tcx = infcx.tcx;
558         let item_id = tcx.hir.as_local_node_id(def_id);
559         let body_id = item_id.and_then(|id| tcx.hir.maybe_body_owned_by(id));
560         let implicit_region_bound = body_id.map(|body| {
561             tcx.mk_region(ty::ReScope(CodeExtent::CallSiteScope(body)))
562         });
563
564         Inherited {
565             infcx: infcx,
566             fulfillment_cx: RefCell::new(traits::FulfillmentContext::new()),
567             locals: RefCell::new(NodeMap()),
568             deferred_call_resolutions: RefCell::new(DefIdMap()),
569             deferred_cast_checks: RefCell::new(Vec::new()),
570             anon_types: RefCell::new(NodeMap()),
571             implicit_region_bound,
572         }
573     }
574
575     fn register_predicate(&self, obligation: traits::PredicateObligation<'tcx>) {
576         debug!("register_predicate({:?})", obligation);
577         if obligation.has_escaping_regions() {
578             span_bug!(obligation.cause.span, "escaping regions in predicate {:?}",
579                       obligation);
580         }
581         self.fulfillment_cx
582             .borrow_mut()
583             .register_predicate_obligation(self, obligation);
584     }
585
586     fn register_predicates(&self, obligations: Vec<traits::PredicateObligation<'tcx>>) {
587         for obligation in obligations {
588             self.register_predicate(obligation);
589         }
590     }
591
592     fn register_infer_ok_obligations<T>(&self, infer_ok: InferOk<'tcx, T>) -> T {
593         self.register_predicates(infer_ok.obligations);
594         infer_ok.value
595     }
596
597     fn normalize_associated_types_in<T>(&self,
598                                         span: Span,
599                                         body_id: ast::NodeId,
600                                         param_env: ty::ParamEnv<'tcx>,
601                                         value: &T) -> T
602         where T : TypeFoldable<'tcx>
603     {
604         let ok = self.normalize_associated_types_in_as_infer_ok(span, body_id, param_env, value);
605         self.register_infer_ok_obligations(ok)
606     }
607
608     fn normalize_associated_types_in_as_infer_ok<T>(&self,
609                                                     span: Span,
610                                                     body_id: ast::NodeId,
611                                                     param_env: ty::ParamEnv<'tcx>,
612                                                     value: &T)
613                                                     -> InferOk<'tcx, T>
614         where T : TypeFoldable<'tcx>
615     {
616         debug!("normalize_associated_types_in(value={:?})", value);
617         let mut selcx = traits::SelectionContext::new(self);
618         let cause = ObligationCause::misc(span, body_id);
619         let traits::Normalized { value, obligations } =
620             traits::normalize(&mut selcx, param_env, cause, value);
621         debug!("normalize_associated_types_in: result={:?} predicates={:?}",
622             value,
623             obligations);
624         InferOk { value, obligations }
625     }
626
627     /// Replace any late-bound regions bound in `value` with
628     /// free variants attached to `all_outlive_scope`.
629     fn liberate_late_bound_regions<T>(&self,
630         all_outlive_scope: DefId,
631         value: &ty::Binder<T>)
632         -> T
633         where T: TypeFoldable<'tcx>
634     {
635         self.tcx.replace_late_bound_regions(value, |br| {
636             self.tcx.mk_region(ty::ReFree(ty::FreeRegion {
637                 scope: all_outlive_scope,
638                 bound_region: br
639             }))
640         }).0
641     }
642 }
643
644 struct CheckItemTypesVisitor<'a, 'tcx: 'a> { tcx: TyCtxt<'a, 'tcx, 'tcx> }
645
646 impl<'a, 'tcx> ItemLikeVisitor<'tcx> for CheckItemTypesVisitor<'a, 'tcx> {
647     fn visit_item(&mut self, i: &'tcx hir::Item) {
648         check_item_type(self.tcx, i);
649     }
650     fn visit_trait_item(&mut self, _: &'tcx hir::TraitItem) { }
651     fn visit_impl_item(&mut self, _: &'tcx hir::ImplItem) { }
652 }
653
654 pub fn check_wf_new<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> CompileResult {
655     tcx.sess.track_errors(|| {
656         let mut visit = wfcheck::CheckTypeWellFormedVisitor::new(tcx);
657         tcx.hir.krate().visit_all_item_likes(&mut visit.as_deep_visitor());
658     })
659 }
660
661 pub fn check_item_types<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> CompileResult {
662     tcx.sess.track_errors(|| {
663         tcx.hir.krate().visit_all_item_likes(&mut CheckItemTypesVisitor { tcx });
664     })
665 }
666
667 pub fn check_item_bodies<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> CompileResult {
668     tcx.typeck_item_bodies(LOCAL_CRATE)
669 }
670
671 fn typeck_item_bodies<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, crate_num: CrateNum) -> CompileResult {
672     debug_assert!(crate_num == LOCAL_CRATE);
673     tcx.sess.track_errors(|| {
674         for body_owner_def_id in tcx.body_owners() {
675             tcx.typeck_tables_of(body_owner_def_id);
676         }
677     })
678 }
679
680 pub fn provide(providers: &mut Providers) {
681     *providers = Providers {
682         typeck_item_bodies,
683         typeck_tables_of,
684         has_typeck_tables,
685         closure_type,
686         closure_kind,
687         adt_destructor,
688         ..*providers
689     };
690 }
691
692 fn closure_type<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
693                           def_id: DefId)
694                           -> ty::PolyFnSig<'tcx> {
695     let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
696     tcx.typeck_tables_of(def_id).closure_tys[&node_id]
697 }
698
699 fn closure_kind<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
700                           def_id: DefId)
701                           -> ty::ClosureKind {
702     let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
703     tcx.typeck_tables_of(def_id).closure_kinds[&node_id].0
704 }
705
706 fn adt_destructor<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
707                             def_id: DefId)
708                             -> Option<ty::Destructor> {
709     tcx.calculate_dtor(def_id, &mut dropck::check_drop_impl)
710 }
711
712 /// If this def-id is a "primary tables entry", returns `Some((body_id, decl))`
713 /// with information about it's body-id and fn-decl (if any). Otherwise,
714 /// returns `None`.
715 ///
716 /// If this function returns "some", then `typeck_tables(def_id)` will
717 /// succeed; if it returns `None`, then `typeck_tables(def_id)` may or
718 /// may not succeed.  In some cases where this function returns `None`
719 /// (notably closures), `typeck_tables(def_id)` would wind up
720 /// redirecting to the owning function.
721 fn primary_body_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
722                              id: ast::NodeId)
723                              -> Option<(hir::BodyId, Option<&'tcx hir::FnDecl>)>
724 {
725     match tcx.hir.get(id) {
726         hir::map::NodeItem(item) => {
727             match item.node {
728                 hir::ItemConst(_, body) |
729                 hir::ItemStatic(_, _, body) =>
730                     Some((body, None)),
731                 hir::ItemFn(ref decl, .., body) =>
732                     Some((body, Some(decl))),
733                 _ =>
734                     None,
735             }
736         }
737         hir::map::NodeTraitItem(item) => {
738             match item.node {
739                 hir::TraitItemKind::Const(_, Some(body)) =>
740                     Some((body, None)),
741                 hir::TraitItemKind::Method(ref sig, hir::TraitMethod::Provided(body)) =>
742                     Some((body, Some(&sig.decl))),
743                 _ =>
744                     None,
745             }
746         }
747         hir::map::NodeImplItem(item) => {
748             match item.node {
749                 hir::ImplItemKind::Const(_, body) =>
750                     Some((body, None)),
751                 hir::ImplItemKind::Method(ref sig, body) =>
752                     Some((body, Some(&sig.decl))),
753                 _ =>
754                     None,
755             }
756         }
757         hir::map::NodeExpr(expr) => {
758             // FIXME(eddyb) Closures should have separate
759             // function definition IDs and expression IDs.
760             // Type-checking should not let closures get
761             // this far in a constant position.
762             // Assume that everything other than closures
763             // is a constant "initializer" expression.
764             match expr.node {
765                 hir::ExprClosure(..) =>
766                     None,
767                 _ =>
768                     Some((hir::BodyId { node_id: expr.id }, None)),
769             }
770         }
771         _ => None,
772     }
773 }
774
775 fn has_typeck_tables<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
776                                def_id: DefId)
777                                -> bool {
778     // Closures' tables come from their outermost function,
779     // as they are part of the same "inference environment".
780     let outer_def_id = tcx.closure_base_def_id(def_id);
781     if outer_def_id != def_id {
782         return tcx.has_typeck_tables(outer_def_id);
783     }
784
785     let id = tcx.hir.as_local_node_id(def_id).unwrap();
786     primary_body_of(tcx, id).is_some()
787 }
788
789 fn typeck_tables_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
790                               def_id: DefId)
791                               -> &'tcx ty::TypeckTables<'tcx> {
792     // Closures' tables come from their outermost function,
793     // as they are part of the same "inference environment".
794     let outer_def_id = tcx.closure_base_def_id(def_id);
795     if outer_def_id != def_id {
796         return tcx.typeck_tables_of(outer_def_id);
797     }
798
799     let id = tcx.hir.as_local_node_id(def_id).unwrap();
800     let span = tcx.hir.span(id);
801
802     // Figure out what primary body this item has.
803     let (body_id, fn_decl) = primary_body_of(tcx, id).unwrap_or_else(|| {
804         span_bug!(span, "can't type-check body of {:?}", def_id);
805     });
806     let body = tcx.hir.body(body_id);
807
808     Inherited::build(tcx, def_id).enter(|inh| {
809         let param_env = tcx.param_env(def_id);
810         let fcx = if let Some(decl) = fn_decl {
811             let fn_sig = tcx.type_of(def_id).fn_sig();
812
813             check_abi(tcx, span, fn_sig.abi());
814
815             // Compute the fty from point of view of inside fn.
816             let fn_sig =
817                 inh.liberate_late_bound_regions(def_id, &fn_sig);
818             let fn_sig =
819                 inh.normalize_associated_types_in(body.value.span,
820                                                   body_id.node_id,
821                                                   param_env,
822                                                   &fn_sig);
823
824             check_fn(&inh, param_env, fn_sig, decl, id, body)
825         } else {
826             let fcx = FnCtxt::new(&inh, param_env, body.value.id);
827             let expected_type = tcx.type_of(def_id);
828             let expected_type = fcx.normalize_associated_types_in(body.value.span, &expected_type);
829             fcx.require_type_is_sized(expected_type, body.value.span, traits::ConstSized);
830
831             // Gather locals in statics (because of block expressions).
832             // This is technically unnecessary because locals in static items are forbidden,
833             // but prevents type checking from blowing up before const checking can properly
834             // emit an error.
835             GatherLocalsVisitor { fcx: &fcx }.visit_body(body);
836
837             fcx.check_expr_coercable_to_type(&body.value, expected_type);
838
839             fcx
840         };
841
842         fcx.select_all_obligations_and_apply_defaults();
843         fcx.closure_analyze(body);
844         fcx.select_obligations_where_possible();
845         fcx.check_casts();
846         fcx.select_all_obligations_or_error();
847
848         if fn_decl.is_some() {
849             fcx.regionck_fn(id, body);
850         } else {
851             fcx.regionck_expr(body);
852         }
853
854         fcx.resolve_type_vars_in_body(body)
855     })
856 }
857
858 fn check_abi<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, span: Span, abi: Abi) {
859     if !tcx.sess.target.target.is_abi_supported(abi) {
860         struct_span_err!(tcx.sess, span, E0570,
861             "The ABI `{}` is not supported for the current target", abi).emit()
862     }
863 }
864
865 struct GatherLocalsVisitor<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
866     fcx: &'a FnCtxt<'a, 'gcx, 'tcx>
867 }
868
869 impl<'a, 'gcx, 'tcx> GatherLocalsVisitor<'a, 'gcx, 'tcx> {
870     fn assign(&mut self, span: Span, nid: ast::NodeId, ty_opt: Option<Ty<'tcx>>) -> Ty<'tcx> {
871         match ty_opt {
872             None => {
873                 // infer the variable's type
874                 let var_ty = self.fcx.next_ty_var(TypeVariableOrigin::TypeInference(span));
875                 self.fcx.locals.borrow_mut().insert(nid, var_ty);
876                 var_ty
877             }
878             Some(typ) => {
879                 // take type that the user specified
880                 self.fcx.locals.borrow_mut().insert(nid, typ);
881                 typ
882             }
883         }
884     }
885 }
886
887 impl<'a, 'gcx, 'tcx> Visitor<'gcx> for GatherLocalsVisitor<'a, 'gcx, 'tcx> {
888     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'gcx> {
889         NestedVisitorMap::None
890     }
891
892     // Add explicitly-declared locals.
893     fn visit_local(&mut self, local: &'gcx hir::Local) {
894         let o_ty = match local.ty {
895             Some(ref ty) => Some(self.fcx.to_ty(&ty)),
896             None => None
897         };
898         self.assign(local.span, local.id, o_ty);
899         debug!("Local variable {:?} is assigned type {}",
900                local.pat,
901                self.fcx.ty_to_string(
902                    self.fcx.locals.borrow().get(&local.id).unwrap().clone()));
903         intravisit::walk_local(self, local);
904     }
905
906     // Add pattern bindings.
907     fn visit_pat(&mut self, p: &'gcx hir::Pat) {
908         if let PatKind::Binding(_, _, ref path1, _) = p.node {
909             let var_ty = self.assign(p.span, p.id, None);
910
911             self.fcx.require_type_is_sized(var_ty, p.span,
912                                            traits::VariableType(p.id));
913
914             debug!("Pattern binding {} is assigned to {} with type {:?}",
915                    path1.node,
916                    self.fcx.ty_to_string(
917                        self.fcx.locals.borrow().get(&p.id).unwrap().clone()),
918                    var_ty);
919         }
920         intravisit::walk_pat(self, p);
921     }
922
923     // Don't descend into the bodies of nested closures
924     fn visit_fn(&mut self, _: intravisit::FnKind<'gcx>, _: &'gcx hir::FnDecl,
925                 _: hir::BodyId, _: Span, _: ast::NodeId) { }
926 }
927
928 /// Helper used for fns and closures. Does the grungy work of checking a function
929 /// body and returns the function context used for that purpose, since in the case of a fn item
930 /// there is still a bit more to do.
931 ///
932 /// * ...
933 /// * inherited: other fields inherited from the enclosing fn (if any)
934 fn check_fn<'a, 'gcx, 'tcx>(inherited: &'a Inherited<'a, 'gcx, 'tcx>,
935                             param_env: ty::ParamEnv<'tcx>,
936                             fn_sig: ty::FnSig<'tcx>,
937                             decl: &'gcx hir::FnDecl,
938                             fn_id: ast::NodeId,
939                             body: &'gcx hir::Body)
940                             -> FnCtxt<'a, 'gcx, 'tcx>
941 {
942     let mut fn_sig = fn_sig.clone();
943
944     debug!("check_fn(sig={:?}, fn_id={}, param_env={:?})", fn_sig, fn_id, param_env);
945
946     // Create the function context.  This is either derived from scratch or,
947     // in the case of function expressions, based on the outer context.
948     let mut fcx = FnCtxt::new(inherited, param_env, body.value.id);
949     *fcx.ps.borrow_mut() = UnsafetyState::function(fn_sig.unsafety, fn_id);
950
951     let ret_ty = fn_sig.output();
952     fcx.require_type_is_sized(ret_ty, decl.output.span(), traits::ReturnType);
953     let ret_ty = fcx.instantiate_anon_types(&ret_ty);
954     fcx.ret_coercion = Some(RefCell::new(CoerceMany::new(ret_ty)));
955     fn_sig = fcx.tcx.mk_fn_sig(
956         fn_sig.inputs().iter().cloned(),
957         ret_ty,
958         fn_sig.variadic,
959         fn_sig.unsafety,
960         fn_sig.abi
961     );
962
963     GatherLocalsVisitor { fcx: &fcx, }.visit_body(body);
964
965     // Add formal parameters.
966     for (arg_ty, arg) in fn_sig.inputs().iter().zip(&body.arguments) {
967         // The type of the argument must be well-formed.
968         //
969         // NB -- this is now checked in wfcheck, but that
970         // currently only results in warnings, so we issue an
971         // old-style WF obligation here so that we still get the
972         // errors that we used to get.
973         fcx.register_old_wf_obligation(arg_ty, arg.pat.span, traits::MiscObligation);
974
975         // Check the pattern.
976         fcx.check_pat_arg(&arg.pat, arg_ty, true);
977         fcx.write_ty(arg.id, arg_ty);
978     }
979
980     inherited.tables.borrow_mut().liberated_fn_sigs.insert(fn_id, fn_sig);
981
982     fcx.check_return_expr(&body.value);
983
984     // Finalize the return check by taking the LUB of the return types
985     // we saw and assigning it to the expected return type. This isn't
986     // really expected to fail, since the coercions would have failed
987     // earlier when trying to find a LUB.
988     //
989     // However, the behavior around `!` is sort of complex. In the
990     // event that the `actual_return_ty` comes back as `!`, that
991     // indicates that the fn either does not return or "returns" only
992     // values of type `!`. In this case, if there is an expected
993     // return type that is *not* `!`, that should be ok. But if the
994     // return type is being inferred, we want to "fallback" to `!`:
995     //
996     //     let x = move || panic!();
997     //
998     // To allow for that, I am creating a type variable with diverging
999     // fallback. This was deemed ever so slightly better than unifying
1000     // the return value with `!` because it allows for the caller to
1001     // make more assumptions about the return type (e.g., they could do
1002     //
1003     //     let y: Option<u32> = Some(x());
1004     //
1005     // which would then cause this return type to become `u32`, not
1006     // `!`).
1007     let coercion = fcx.ret_coercion.take().unwrap().into_inner();
1008     let mut actual_return_ty = coercion.complete(&fcx);
1009     if actual_return_ty.is_never() {
1010         actual_return_ty = fcx.next_diverging_ty_var(
1011             TypeVariableOrigin::DivergingFn(body.value.span));
1012     }
1013     fcx.demand_suptype(body.value.span, ret_ty, actual_return_ty);
1014
1015     fcx
1016 }
1017
1018 fn check_struct<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1019                           id: ast::NodeId,
1020                           span: Span) {
1021     let def_id = tcx.hir.local_def_id(id);
1022     let def = tcx.adt_def(def_id);
1023     def.destructor(tcx); // force the destructor to be evaluated
1024     check_representable(tcx, span, def_id);
1025
1026     if def.repr.simd() {
1027         check_simd(tcx, span, def_id);
1028     }
1029
1030     // if struct is packed and not aligned, check fields for alignment.
1031     // Checks for combining packed and align attrs on single struct are done elsewhere.
1032     if tcx.adt_def(def_id).repr.packed() && tcx.adt_def(def_id).repr.align == 0 {
1033         check_packed(tcx, span, def_id);
1034     }
1035 }
1036
1037 fn check_union<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1038                          id: ast::NodeId,
1039                          span: Span) {
1040     let def_id = tcx.hir.local_def_id(id);
1041     let def = tcx.adt_def(def_id);
1042     def.destructor(tcx); // force the destructor to be evaluated
1043     check_representable(tcx, span, def_id);
1044 }
1045
1046 pub fn check_item_type<'a,'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, it: &'tcx hir::Item) {
1047     debug!("check_item_type(it.id={}, it.name={})",
1048            it.id,
1049            tcx.item_path_str(tcx.hir.local_def_id(it.id)));
1050     let _indenter = indenter();
1051     match it.node {
1052       // Consts can play a role in type-checking, so they are included here.
1053       hir::ItemStatic(..) |
1054       hir::ItemConst(..) => {
1055         tcx.typeck_tables_of(tcx.hir.local_def_id(it.id));
1056       }
1057       hir::ItemEnum(ref enum_definition, _) => {
1058         check_enum(tcx,
1059                    it.span,
1060                    &enum_definition.variants,
1061                    it.id);
1062       }
1063       hir::ItemFn(..) => {} // entirely within check_item_body
1064       hir::ItemImpl(.., ref impl_item_refs) => {
1065           debug!("ItemImpl {} with id {}", it.name, it.id);
1066           let impl_def_id = tcx.hir.local_def_id(it.id);
1067           if let Some(impl_trait_ref) = tcx.impl_trait_ref(impl_def_id) {
1068               check_impl_items_against_trait(tcx,
1069                                              it.span,
1070                                              impl_def_id,
1071                                              impl_trait_ref,
1072                                              impl_item_refs);
1073               let trait_def_id = impl_trait_ref.def_id;
1074               check_on_unimplemented(tcx, trait_def_id, it);
1075           }
1076       }
1077       hir::ItemTrait(..) => {
1078         let def_id = tcx.hir.local_def_id(it.id);
1079         check_on_unimplemented(tcx, def_id, it);
1080       }
1081       hir::ItemStruct(..) => {
1082         check_struct(tcx, it.id, it.span);
1083       }
1084       hir::ItemUnion(..) => {
1085         check_union(tcx, it.id, it.span);
1086       }
1087       hir::ItemTy(_, ref generics) => {
1088         let def_id = tcx.hir.local_def_id(it.id);
1089         let pty_ty = tcx.type_of(def_id);
1090         check_bounds_are_used(tcx, generics, pty_ty);
1091       }
1092       hir::ItemForeignMod(ref m) => {
1093         check_abi(tcx, it.span, m.abi);
1094
1095         if m.abi == Abi::RustIntrinsic {
1096             for item in &m.items {
1097                 intrinsic::check_intrinsic_type(tcx, item);
1098             }
1099         } else if m.abi == Abi::PlatformIntrinsic {
1100             for item in &m.items {
1101                 intrinsic::check_platform_intrinsic_type(tcx, item);
1102             }
1103         } else {
1104             for item in &m.items {
1105                 let generics = tcx.generics_of(tcx.hir.local_def_id(item.id));
1106                 if !generics.types.is_empty() {
1107                     let mut err = struct_span_err!(tcx.sess, item.span, E0044,
1108                         "foreign items may not have type parameters");
1109                     span_help!(&mut err, item.span,
1110                         "consider using specialization instead of \
1111                         type parameters");
1112                     err.emit();
1113                 }
1114
1115                 if let hir::ForeignItemFn(ref fn_decl, _, _) = item.node {
1116                     require_c_abi_if_variadic(tcx, fn_decl, m.abi, item.span);
1117                 }
1118             }
1119         }
1120       }
1121       _ => {/* nothing to do */ }
1122     }
1123 }
1124
1125 fn check_on_unimplemented<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1126                                     def_id: DefId,
1127                                     item: &hir::Item) {
1128     let generics = tcx.generics_of(def_id);
1129     if let Some(ref attr) = item.attrs.iter().find(|a| {
1130         a.check_name("rustc_on_unimplemented")
1131     }) {
1132         if let Some(istring) = attr.value_str() {
1133             let istring = istring.as_str();
1134             let parser = Parser::new(&istring);
1135             let types = &generics.types;
1136             for token in parser {
1137                 match token {
1138                     Piece::String(_) => (), // Normal string, no need to check it
1139                     Piece::NextArgument(a) => match a.position {
1140                         // `{Self}` is allowed
1141                         Position::ArgumentNamed(s) if s == "Self" => (),
1142                         // So is `{A}` if A is a type parameter
1143                         Position::ArgumentNamed(s) => match types.iter().find(|t| {
1144                             t.name == s
1145                         }) {
1146                             Some(_) => (),
1147                             None => {
1148                                 let name = tcx.item_name(def_id);
1149                                 span_err!(tcx.sess, attr.span, E0230,
1150                                                  "there is no type parameter \
1151                                                           {} on trait {}",
1152                                                            s, name);
1153                             }
1154                         },
1155                         // `{:1}` and `{}` are not to be used
1156                         Position::ArgumentIs(_) => {
1157                             span_err!(tcx.sess, attr.span, E0231,
1158                                                   "only named substitution \
1159                                                    parameters are allowed");
1160                         }
1161                     }
1162                 }
1163             }
1164         } else {
1165             struct_span_err!(
1166                 tcx.sess, attr.span, E0232,
1167                 "this attribute must have a value")
1168                 .span_label(attr.span, "attribute requires a value")
1169                 .note(&format!("eg `#[rustc_on_unimplemented = \"foo\"]`"))
1170                 .emit();
1171         }
1172     }
1173 }
1174
1175 fn report_forbidden_specialization<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1176                                              impl_item: &hir::ImplItem,
1177                                              parent_impl: DefId)
1178 {
1179     let mut err = struct_span_err!(
1180         tcx.sess, impl_item.span, E0520,
1181         "`{}` specializes an item from a parent `impl`, but \
1182          that item is not marked `default`",
1183         impl_item.name);
1184     err.span_label(impl_item.span, format!("cannot specialize default item `{}`",
1185                                             impl_item.name));
1186
1187     match tcx.span_of_impl(parent_impl) {
1188         Ok(span) => {
1189             err.span_label(span, "parent `impl` is here");
1190             err.note(&format!("to specialize, `{}` in the parent `impl` must be marked `default`",
1191                               impl_item.name));
1192         }
1193         Err(cname) => {
1194             err.note(&format!("parent implementation is in crate `{}`", cname));
1195         }
1196     }
1197
1198     err.emit();
1199 }
1200
1201 fn check_specialization_validity<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1202                                            trait_def: &ty::TraitDef,
1203                                            impl_id: DefId,
1204                                            impl_item: &hir::ImplItem)
1205 {
1206     let ancestors = trait_def.ancestors(tcx, impl_id);
1207
1208     let kind = match impl_item.node {
1209         hir::ImplItemKind::Const(..) => ty::AssociatedKind::Const,
1210         hir::ImplItemKind::Method(..) => ty::AssociatedKind::Method,
1211         hir::ImplItemKind::Type(_) => ty::AssociatedKind::Type
1212     };
1213     let parent = ancestors.defs(tcx, impl_item.name, kind).skip(1).next()
1214         .map(|node_item| node_item.map(|parent| parent.defaultness));
1215
1216     if let Some(parent) = parent {
1217         if tcx.impl_item_is_final(&parent) {
1218             report_forbidden_specialization(tcx, impl_item, parent.node.def_id());
1219         }
1220     }
1221
1222 }
1223
1224 fn check_impl_items_against_trait<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1225                                             impl_span: Span,
1226                                             impl_id: DefId,
1227                                             impl_trait_ref: ty::TraitRef<'tcx>,
1228                                             impl_item_refs: &[hir::ImplItemRef]) {
1229     // If the trait reference itself is erroneous (so the compilation is going
1230     // to fail), skip checking the items here -- the `impl_item` table in `tcx`
1231     // isn't populated for such impls.
1232     if impl_trait_ref.references_error() { return; }
1233
1234     // Locate trait definition and items
1235     let trait_def = tcx.trait_def(impl_trait_ref.def_id);
1236     let mut overridden_associated_type = None;
1237
1238     let impl_items = || impl_item_refs.iter().map(|iiref| tcx.hir.impl_item(iiref.id));
1239
1240     // Check existing impl methods to see if they are both present in trait
1241     // and compatible with trait signature
1242     for impl_item in impl_items() {
1243         let ty_impl_item = tcx.associated_item(tcx.hir.local_def_id(impl_item.id));
1244         let ty_trait_item = tcx.associated_items(impl_trait_ref.def_id)
1245             .find(|ac| ac.name == ty_impl_item.name);
1246
1247         // Check that impl definition matches trait definition
1248         if let Some(ty_trait_item) = ty_trait_item {
1249             match impl_item.node {
1250                 hir::ImplItemKind::Const(..) => {
1251                     // Find associated const definition.
1252                     if ty_trait_item.kind == ty::AssociatedKind::Const {
1253                         compare_const_impl(tcx,
1254                                            &ty_impl_item,
1255                                            impl_item.span,
1256                                            &ty_trait_item,
1257                                            impl_trait_ref);
1258                     } else {
1259                          let mut err = struct_span_err!(tcx.sess, impl_item.span, E0323,
1260                                   "item `{}` is an associated const, \
1261                                   which doesn't match its trait `{}`",
1262                                   ty_impl_item.name,
1263                                   impl_trait_ref);
1264                          err.span_label(impl_item.span, "does not match trait");
1265                          // We can only get the spans from local trait definition
1266                          // Same for E0324 and E0325
1267                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1268                             err.span_label(trait_span, "item in trait");
1269                          }
1270                          err.emit()
1271                     }
1272                 }
1273                 hir::ImplItemKind::Method(..) => {
1274                     let trait_span = tcx.hir.span_if_local(ty_trait_item.def_id);
1275                     if ty_trait_item.kind == ty::AssociatedKind::Method {
1276                         let err_count = tcx.sess.err_count();
1277                         compare_impl_method(tcx,
1278                                             &ty_impl_item,
1279                                             impl_item.span,
1280                                             &ty_trait_item,
1281                                             impl_trait_ref,
1282                                             trait_span,
1283                                             true); // start with old-broken-mode
1284                         if err_count == tcx.sess.err_count() {
1285                             // old broken mode did not report an error. Try with the new mode.
1286                             compare_impl_method(tcx,
1287                                                 &ty_impl_item,
1288                                                 impl_item.span,
1289                                                 &ty_trait_item,
1290                                                 impl_trait_ref,
1291                                                 trait_span,
1292                                                 false); // use the new mode
1293                         }
1294                     } else {
1295                         let mut err = struct_span_err!(tcx.sess, impl_item.span, E0324,
1296                                   "item `{}` is an associated method, \
1297                                   which doesn't match its trait `{}`",
1298                                   ty_impl_item.name,
1299                                   impl_trait_ref);
1300                          err.span_label(impl_item.span, "does not match trait");
1301                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1302                             err.span_label(trait_span, "item in trait");
1303                          }
1304                          err.emit()
1305                     }
1306                 }
1307                 hir::ImplItemKind::Type(_) => {
1308                     if ty_trait_item.kind == ty::AssociatedKind::Type {
1309                         if ty_trait_item.defaultness.has_value() {
1310                             overridden_associated_type = Some(impl_item);
1311                         }
1312                     } else {
1313                         let mut err = struct_span_err!(tcx.sess, impl_item.span, E0325,
1314                                   "item `{}` is an associated type, \
1315                                   which doesn't match its trait `{}`",
1316                                   ty_impl_item.name,
1317                                   impl_trait_ref);
1318                          err.span_label(impl_item.span, "does not match trait");
1319                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1320                             err.span_label(trait_span, "item in trait");
1321                          }
1322                          err.emit()
1323                     }
1324                 }
1325             }
1326         }
1327
1328         check_specialization_validity(tcx, trait_def, impl_id, impl_item);
1329     }
1330
1331     // Check for missing items from trait
1332     let mut missing_items = Vec::new();
1333     let mut invalidated_items = Vec::new();
1334     let associated_type_overridden = overridden_associated_type.is_some();
1335     for trait_item in tcx.associated_items(impl_trait_ref.def_id) {
1336         let is_implemented = trait_def.ancestors(tcx, impl_id)
1337             .defs(tcx, trait_item.name, trait_item.kind)
1338             .next()
1339             .map(|node_item| !node_item.node.is_from_trait())
1340             .unwrap_or(false);
1341
1342         if !is_implemented {
1343             if !trait_item.defaultness.has_value() {
1344                 missing_items.push(trait_item);
1345             } else if associated_type_overridden {
1346                 invalidated_items.push(trait_item.name);
1347             }
1348         }
1349     }
1350
1351     if !missing_items.is_empty() {
1352         let mut err = struct_span_err!(tcx.sess, impl_span, E0046,
1353             "not all trait items implemented, missing: `{}`",
1354             missing_items.iter()
1355                   .map(|trait_item| trait_item.name.to_string())
1356                   .collect::<Vec<_>>().join("`, `"));
1357         err.span_label(impl_span, format!("missing `{}` in implementation",
1358                 missing_items.iter()
1359                     .map(|trait_item| trait_item.name.to_string())
1360                     .collect::<Vec<_>>().join("`, `")));
1361         for trait_item in missing_items {
1362             if let Some(span) = tcx.hir.span_if_local(trait_item.def_id) {
1363                 err.span_label(span, format!("`{}` from trait", trait_item.name));
1364             } else {
1365                 err.note_trait_signature(trait_item.name.to_string(),
1366                                          trait_item.signature(&tcx));
1367             }
1368         }
1369         err.emit();
1370     }
1371
1372     if !invalidated_items.is_empty() {
1373         let invalidator = overridden_associated_type.unwrap();
1374         span_err!(tcx.sess, invalidator.span, E0399,
1375                   "the following trait items need to be reimplemented \
1376                    as `{}` was overridden: `{}`",
1377                   invalidator.name,
1378                   invalidated_items.iter()
1379                                    .map(|name| name.to_string())
1380                                    .collect::<Vec<_>>().join("`, `"))
1381     }
1382 }
1383
1384 /// Checks whether a type can be represented in memory. In particular, it
1385 /// identifies types that contain themselves without indirection through a
1386 /// pointer, which would mean their size is unbounded.
1387 fn check_representable<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1388                                  sp: Span,
1389                                  item_def_id: DefId)
1390                                  -> bool {
1391     let rty = tcx.type_of(item_def_id);
1392
1393     // Check that it is possible to represent this type. This call identifies
1394     // (1) types that contain themselves and (2) types that contain a different
1395     // recursive type. It is only necessary to throw an error on those that
1396     // contain themselves. For case 2, there must be an inner type that will be
1397     // caught by case 1.
1398     match rty.is_representable(tcx, sp) {
1399         Representability::SelfRecursive(spans) => {
1400             let mut err = tcx.recursive_type_with_infinite_size_error(item_def_id);
1401             for span in spans {
1402                 err.span_label(span, "recursive without indirection");
1403             }
1404             err.emit();
1405             return false
1406         }
1407         Representability::Representable | Representability::ContainsRecursive => (),
1408     }
1409     return true
1410 }
1411
1412 pub fn check_simd<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span, def_id: DefId) {
1413     let t = tcx.type_of(def_id);
1414     match t.sty {
1415         ty::TyAdt(def, substs) if def.is_struct() => {
1416             let fields = &def.struct_variant().fields;
1417             if fields.is_empty() {
1418                 span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty");
1419                 return;
1420             }
1421             let e = fields[0].ty(tcx, substs);
1422             if !fields.iter().all(|f| f.ty(tcx, substs) == e) {
1423                 struct_span_err!(tcx.sess, sp, E0076, "SIMD vector should be homogeneous")
1424                                 .span_label(sp, "SIMD elements must have the same type")
1425                                 .emit();
1426                 return;
1427             }
1428             match e.sty {
1429                 ty::TyParam(_) => { /* struct<T>(T, T, T, T) is ok */ }
1430                 _ if e.is_machine()  => { /* struct(u8, u8, u8, u8) is ok */ }
1431                 _ => {
1432                     span_err!(tcx.sess, sp, E0077,
1433                               "SIMD vector element type should be machine type");
1434                     return;
1435                 }
1436             }
1437         }
1438         _ => ()
1439     }
1440 }
1441
1442 fn check_packed<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span, def_id: DefId) {
1443     if check_packed_inner(tcx, def_id, &mut Vec::new()) {
1444         struct_span_err!(tcx.sess, sp, E0588,
1445             "packed struct cannot transitively contain a `[repr(align)]` struct").emit();
1446     }
1447 }
1448
1449 fn check_packed_inner<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1450                                 def_id: DefId,
1451                                 stack: &mut Vec<DefId>) -> bool {
1452     let t = tcx.type_of(def_id);
1453     if stack.contains(&def_id) {
1454         debug!("check_packed_inner: {:?} is recursive", t);
1455         return false;
1456     }
1457     match t.sty {
1458         ty::TyAdt(def, substs) if def.is_struct() => {
1459             if tcx.adt_def(def.did).repr.align > 0 {
1460                 return true;
1461             }
1462             // push struct def_id before checking fields
1463             stack.push(def_id);
1464             for field in &def.struct_variant().fields {
1465                 let f = field.ty(tcx, substs);
1466                 match f.sty {
1467                     ty::TyAdt(def, _) => {
1468                         if check_packed_inner(tcx, def.did, stack) {
1469                             return true;
1470                         }
1471                     }
1472                     _ => ()
1473                 }
1474             }
1475             // only need to pop if not early out
1476             stack.pop();
1477         }
1478         _ => ()
1479     }
1480     false
1481 }
1482
1483 #[allow(trivial_numeric_casts)]
1484 pub fn check_enum<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1485                             sp: Span,
1486                             vs: &'tcx [hir::Variant],
1487                             id: ast::NodeId) {
1488     let def_id = tcx.hir.local_def_id(id);
1489     let def = tcx.adt_def(def_id);
1490     def.destructor(tcx); // force the destructor to be evaluated
1491
1492     if vs.is_empty() && tcx.has_attr(def_id, "repr") {
1493         struct_span_err!(
1494             tcx.sess, sp, E0084,
1495             "unsupported representation for zero-variant enum")
1496             .span_label(sp, "unsupported enum representation")
1497             .emit();
1498     }
1499
1500     let repr_type_ty = def.repr.discr_type().to_ty(tcx);
1501     if repr_type_ty == tcx.types.i128 || repr_type_ty == tcx.types.u128 {
1502         if !tcx.sess.features.borrow().i128_type {
1503             emit_feature_err(&tcx.sess.parse_sess,
1504                              "i128_type", sp, GateIssue::Language, "128-bit type is unstable");
1505         }
1506     }
1507
1508     for v in vs {
1509         if let Some(e) = v.node.disr_expr {
1510             tcx.typeck_tables_of(tcx.hir.local_def_id(e.node_id));
1511         }
1512     }
1513
1514     let mut disr_vals: Vec<ConstInt> = Vec::new();
1515     for (discr, v) in def.discriminants(tcx).zip(vs) {
1516         // Check for duplicate discriminant values
1517         if let Some(i) = disr_vals.iter().position(|&x| x == discr) {
1518             let variant_i_node_id = tcx.hir.as_local_node_id(def.variants[i].did).unwrap();
1519             let variant_i = tcx.hir.expect_variant(variant_i_node_id);
1520             let i_span = match variant_i.node.disr_expr {
1521                 Some(expr) => tcx.hir.span(expr.node_id),
1522                 None => tcx.hir.span(variant_i_node_id)
1523             };
1524             let span = match v.node.disr_expr {
1525                 Some(expr) => tcx.hir.span(expr.node_id),
1526                 None => v.span
1527             };
1528             struct_span_err!(tcx.sess, span, E0081,
1529                              "discriminant value `{}` already exists", disr_vals[i])
1530                 .span_label(i_span, format!("first use of `{}`", disr_vals[i]))
1531                 .span_label(span , format!("enum already has `{}`", disr_vals[i]))
1532                 .emit();
1533         }
1534         disr_vals.push(discr);
1535     }
1536
1537     check_representable(tcx, sp, def_id);
1538 }
1539
1540 impl<'a, 'gcx, 'tcx> AstConv<'gcx, 'tcx> for FnCtxt<'a, 'gcx, 'tcx> {
1541     fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.tcx }
1542
1543     fn get_type_parameter_bounds(&self, _: Span, def_id: DefId)
1544                                  -> ty::GenericPredicates<'tcx>
1545     {
1546         let tcx = self.tcx;
1547         let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
1548         let item_id = tcx.hir.ty_param_owner(node_id);
1549         let item_def_id = tcx.hir.local_def_id(item_id);
1550         let generics = tcx.generics_of(item_def_id);
1551         let index = generics.type_param_to_index[&def_id.index];
1552         ty::GenericPredicates {
1553             parent: None,
1554             predicates: self.param_env.caller_bounds.iter().filter(|predicate| {
1555                 match **predicate {
1556                     ty::Predicate::Trait(ref data) => {
1557                         data.0.self_ty().is_param(index)
1558                     }
1559                     _ => false
1560                 }
1561             }).cloned().collect()
1562         }
1563     }
1564
1565     fn re_infer(&self, span: Span, def: Option<&ty::RegionParameterDef>)
1566                 -> Option<ty::Region<'tcx>> {
1567         let v = match def {
1568             Some(def) => infer::EarlyBoundRegion(span, def.name, def.issue_32330),
1569             None => infer::MiscVariable(span)
1570         };
1571         Some(self.next_region_var(v))
1572     }
1573
1574     fn ty_infer(&self, span: Span) -> Ty<'tcx> {
1575         self.next_ty_var(TypeVariableOrigin::TypeInference(span))
1576     }
1577
1578     fn ty_infer_for_def(&self,
1579                         ty_param_def: &ty::TypeParameterDef,
1580                         substs: &[Kind<'tcx>],
1581                         span: Span) -> Ty<'tcx> {
1582         self.type_var_for_def(span, ty_param_def, substs)
1583     }
1584
1585     fn projected_ty_from_poly_trait_ref(&self,
1586                                         span: Span,
1587                                         poly_trait_ref: ty::PolyTraitRef<'tcx>,
1588                                         item_name: ast::Name)
1589                                         -> Ty<'tcx>
1590     {
1591         let (trait_ref, _) =
1592             self.replace_late_bound_regions_with_fresh_var(
1593                 span,
1594                 infer::LateBoundRegionConversionTime::AssocTypeProjection(item_name),
1595                 &poly_trait_ref);
1596
1597         self.tcx().mk_projection(trait_ref, item_name)
1598     }
1599
1600     fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
1601         if ty.has_escaping_regions() {
1602             ty // FIXME: normalization and escaping regions
1603         } else {
1604             self.normalize_associated_types_in(span, &ty)
1605         }
1606     }
1607
1608     fn set_tainted_by_errors(&self) {
1609         self.infcx.set_tainted_by_errors()
1610     }
1611 }
1612
1613 /// Controls whether the arguments are tupled. This is used for the call
1614 /// operator.
1615 ///
1616 /// Tupling means that all call-side arguments are packed into a tuple and
1617 /// passed as a single parameter. For example, if tupling is enabled, this
1618 /// function:
1619 ///
1620 ///     fn f(x: (isize, isize))
1621 ///
1622 /// Can be called as:
1623 ///
1624 ///     f(1, 2);
1625 ///
1626 /// Instead of:
1627 ///
1628 ///     f((1, 2));
1629 #[derive(Clone, Eq, PartialEq)]
1630 enum TupleArgumentsFlag {
1631     DontTupleArguments,
1632     TupleArguments,
1633 }
1634
1635 impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
1636     pub fn new(inh: &'a Inherited<'a, 'gcx, 'tcx>,
1637                param_env: ty::ParamEnv<'tcx>,
1638                body_id: ast::NodeId)
1639                -> FnCtxt<'a, 'gcx, 'tcx> {
1640         FnCtxt {
1641             body_id: body_id,
1642             param_env,
1643             err_count_on_creation: inh.tcx.sess.err_count(),
1644             ret_coercion: None,
1645             ps: RefCell::new(UnsafetyState::function(hir::Unsafety::Normal,
1646                                                      ast::CRATE_NODE_ID)),
1647             diverges: Cell::new(Diverges::Maybe),
1648             has_errors: Cell::new(false),
1649             enclosing_breakables: RefCell::new(EnclosingBreakables {
1650                 stack: Vec::new(),
1651                 by_id: NodeMap(),
1652             }),
1653             inh: inh,
1654         }
1655     }
1656
1657     pub fn sess(&self) -> &Session {
1658         &self.tcx.sess
1659     }
1660
1661     pub fn err_count_since_creation(&self) -> usize {
1662         self.tcx.sess.err_count() - self.err_count_on_creation
1663     }
1664
1665     /// Produce warning on the given node, if the current point in the
1666     /// function is unreachable, and there hasn't been another warning.
1667     fn warn_if_unreachable(&self, id: ast::NodeId, span: Span, kind: &str) {
1668         if self.diverges.get() == Diverges::Always {
1669             self.diverges.set(Diverges::WarnedAlways);
1670
1671             debug!("warn_if_unreachable: id={:?} span={:?} kind={}", id, span, kind);
1672
1673             self.tables.borrow_mut().lints.add_lint(
1674                 lint::builtin::UNREACHABLE_CODE,
1675                 id, span,
1676                 format!("unreachable {}", kind));
1677         }
1678     }
1679
1680     pub fn cause(&self,
1681                  span: Span,
1682                  code: ObligationCauseCode<'tcx>)
1683                  -> ObligationCause<'tcx> {
1684         ObligationCause::new(span, self.body_id, code)
1685     }
1686
1687     pub fn misc(&self, span: Span) -> ObligationCause<'tcx> {
1688         self.cause(span, ObligationCauseCode::MiscObligation)
1689     }
1690
1691     /// Resolves type variables in `ty` if possible. Unlike the infcx
1692     /// version (resolve_type_vars_if_possible), this version will
1693     /// also select obligations if it seems useful, in an effort
1694     /// to get more type information.
1695     fn resolve_type_vars_with_obligations(&self, mut ty: Ty<'tcx>) -> Ty<'tcx> {
1696         debug!("resolve_type_vars_with_obligations(ty={:?})", ty);
1697
1698         // No TyInfer()? Nothing needs doing.
1699         if !ty.has_infer_types() {
1700             debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1701             return ty;
1702         }
1703
1704         // If `ty` is a type variable, see whether we already know what it is.
1705         ty = self.resolve_type_vars_if_possible(&ty);
1706         if !ty.has_infer_types() {
1707             debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1708             return ty;
1709         }
1710
1711         // If not, try resolving pending obligations as much as
1712         // possible. This can help substantially when there are
1713         // indirect dependencies that don't seem worth tracking
1714         // precisely.
1715         self.select_obligations_where_possible();
1716         ty = self.resolve_type_vars_if_possible(&ty);
1717
1718         debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1719         ty
1720     }
1721
1722     fn record_deferred_call_resolution(&self,
1723                                        closure_def_id: DefId,
1724                                        r: DeferredCallResolution<'gcx, 'tcx>) {
1725         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
1726         deferred_call_resolutions.entry(closure_def_id).or_insert(vec![]).push(r);
1727     }
1728
1729     fn remove_deferred_call_resolutions(&self,
1730                                         closure_def_id: DefId)
1731                                         -> Vec<DeferredCallResolution<'gcx, 'tcx>>
1732     {
1733         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
1734         deferred_call_resolutions.remove(&closure_def_id).unwrap_or(vec![])
1735     }
1736
1737     pub fn tag(&self) -> String {
1738         let self_ptr: *const FnCtxt = self;
1739         format!("{:?}", self_ptr)
1740     }
1741
1742     pub fn local_ty(&self, span: Span, nid: ast::NodeId) -> Ty<'tcx> {
1743         match self.locals.borrow().get(&nid) {
1744             Some(&t) => t,
1745             None => {
1746                 span_bug!(span, "no type for local variable {}",
1747                           self.tcx.hir.node_to_string(nid));
1748             }
1749         }
1750     }
1751
1752     #[inline]
1753     pub fn write_ty(&self, node_id: ast::NodeId, ty: Ty<'tcx>) {
1754         debug!("write_ty({}, {:?}) in fcx {}",
1755                node_id, self.resolve_type_vars_if_possible(&ty), self.tag());
1756         self.tables.borrow_mut().node_types.insert(node_id, ty);
1757
1758         if ty.references_error() {
1759             self.has_errors.set(true);
1760             self.set_tainted_by_errors();
1761         }
1762     }
1763
1764     pub fn write_method_call(&self, node_id: ast::NodeId, method: MethodCallee<'tcx>) {
1765         self.tables.borrow_mut().type_dependent_defs.insert(node_id, Def::Method(method.def_id));
1766         self.write_substs(node_id, method.substs);
1767     }
1768
1769     pub fn write_substs(&self, node_id: ast::NodeId, substs: &'tcx Substs<'tcx>) {
1770         if !substs.is_noop() {
1771             debug!("write_substs({}, {:?}) in fcx {}",
1772                    node_id,
1773                    substs,
1774                    self.tag());
1775
1776             self.tables.borrow_mut().node_substs.insert(node_id, substs);
1777         }
1778     }
1779
1780     pub fn apply_adjustments(&self, expr: &hir::Expr, adj: Vec<Adjustment<'tcx>>) {
1781         debug!("apply_adjustments(expr={:?}, adj={:?})", expr, adj);
1782
1783         if adj.is_empty() {
1784             return;
1785         }
1786
1787         match self.tables.borrow_mut().adjustments.entry(expr.id) {
1788             Entry::Vacant(entry) => { entry.insert(adj); },
1789             Entry::Occupied(mut entry) => {
1790                 debug!(" - composing on top of {:?}", entry.get());
1791                 match (&entry.get()[..], &adj[..]) {
1792                     // Applying any adjustment on top of a NeverToAny
1793                     // is a valid NeverToAny adjustment, because it can't
1794                     // be reached.
1795                     (&[Adjustment { kind: Adjust::NeverToAny, .. }], _) => return,
1796                     (&[
1797                         Adjustment { kind: Adjust::Deref(_), .. },
1798                         Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(..)), .. },
1799                     ], &[
1800                         Adjustment { kind: Adjust::Deref(_), .. },
1801                         .. // Any following adjustments are allowed.
1802                     ]) => {
1803                         // A reborrow has no effect before a dereference.
1804                     }
1805                     // FIXME: currently we never try to compose autoderefs
1806                     // and ReifyFnPointer/UnsafeFnPointer, but we could.
1807                     _ =>
1808                         bug!("while adjusting {:?}, can't compose {:?} and {:?}",
1809                              expr, entry.get(), adj)
1810                 };
1811                 *entry.get_mut() = adj;
1812             }
1813         }
1814     }
1815
1816     /// Basically whenever we are converting from a type scheme into
1817     /// the fn body space, we always want to normalize associated
1818     /// types as well. This function combines the two.
1819     fn instantiate_type_scheme<T>(&self,
1820                                   span: Span,
1821                                   substs: &Substs<'tcx>,
1822                                   value: &T)
1823                                   -> T
1824         where T : TypeFoldable<'tcx>
1825     {
1826         let value = value.subst(self.tcx, substs);
1827         let result = self.normalize_associated_types_in(span, &value);
1828         debug!("instantiate_type_scheme(value={:?}, substs={:?}) = {:?}",
1829                value,
1830                substs,
1831                result);
1832         result
1833     }
1834
1835     /// As `instantiate_type_scheme`, but for the bounds found in a
1836     /// generic type scheme.
1837     fn instantiate_bounds(&self, span: Span, def_id: DefId, substs: &Substs<'tcx>)
1838                           -> ty::InstantiatedPredicates<'tcx> {
1839         let bounds = self.tcx.predicates_of(def_id);
1840         let result = bounds.instantiate(self.tcx, substs);
1841         let result = self.normalize_associated_types_in(span, &result);
1842         debug!("instantiate_bounds(bounds={:?}, substs={:?}) = {:?}",
1843                bounds,
1844                substs,
1845                result);
1846         result
1847     }
1848
1849     /// Replace all anonymized types with fresh inference variables
1850     /// and record them for writeback.
1851     fn instantiate_anon_types<T: TypeFoldable<'tcx>>(&self, value: &T) -> T {
1852         value.fold_with(&mut BottomUpFolder { tcx: self.tcx, fldop: |ty| {
1853             if let ty::TyAnon(def_id, substs) = ty.sty {
1854                 // Use the same type variable if the exact same TyAnon appears more
1855                 // than once in the return type (e.g. if it's pased to a type alias).
1856                 let id = self.tcx.hir.as_local_node_id(def_id).unwrap();
1857                 if let Some(ty_var) = self.anon_types.borrow().get(&id) {
1858                     return ty_var;
1859                 }
1860                 let span = self.tcx.def_span(def_id);
1861                 let ty_var = self.next_ty_var(TypeVariableOrigin::TypeInference(span));
1862                 self.anon_types.borrow_mut().insert(id, ty_var);
1863
1864                 let predicates_of = self.tcx.predicates_of(def_id);
1865                 let bounds = predicates_of.instantiate(self.tcx, substs);
1866
1867                 for predicate in bounds.predicates {
1868                     // Change the predicate to refer to the type variable,
1869                     // which will be the concrete type, instead of the TyAnon.
1870                     // This also instantiates nested `impl Trait`.
1871                     let predicate = self.instantiate_anon_types(&predicate);
1872
1873                     // Require that the predicate holds for the concrete type.
1874                     let cause = traits::ObligationCause::new(span, self.body_id,
1875                                                              traits::ReturnType);
1876                     self.register_predicate(traits::Obligation::new(cause,
1877                                                                     self.param_env,
1878                                                                     predicate));
1879                 }
1880
1881                 ty_var
1882             } else {
1883                 ty
1884             }
1885         }})
1886     }
1887
1888     fn normalize_associated_types_in<T>(&self, span: Span, value: &T) -> T
1889         where T : TypeFoldable<'tcx>
1890     {
1891         self.inh.normalize_associated_types_in(span, self.body_id, self.param_env, value)
1892     }
1893
1894     fn normalize_associated_types_in_as_infer_ok<T>(&self, span: Span, value: &T)
1895                                                     -> InferOk<'tcx, T>
1896         where T : TypeFoldable<'tcx>
1897     {
1898         self.inh.normalize_associated_types_in_as_infer_ok(span,
1899                                                            self.body_id,
1900                                                            self.param_env,
1901                                                            value)
1902     }
1903
1904     pub fn require_type_meets(&self,
1905                               ty: Ty<'tcx>,
1906                               span: Span,
1907                               code: traits::ObligationCauseCode<'tcx>,
1908                               def_id: DefId)
1909     {
1910         self.register_bound(
1911             ty,
1912             def_id,
1913             traits::ObligationCause::new(span, self.body_id, code));
1914     }
1915
1916     pub fn require_type_is_sized(&self,
1917                                  ty: Ty<'tcx>,
1918                                  span: Span,
1919                                  code: traits::ObligationCauseCode<'tcx>)
1920     {
1921         let lang_item = self.tcx.require_lang_item(lang_items::SizedTraitLangItem);
1922         self.require_type_meets(ty, span, code, lang_item);
1923     }
1924
1925     pub fn register_bound(&self,
1926                           ty: Ty<'tcx>,
1927                           def_id: DefId,
1928                           cause: traits::ObligationCause<'tcx>)
1929     {
1930         self.fulfillment_cx.borrow_mut()
1931                            .register_bound(self, self.param_env, ty, def_id, cause);
1932     }
1933
1934     pub fn to_ty(&self, ast_t: &hir::Ty) -> Ty<'tcx> {
1935         let t = AstConv::ast_ty_to_ty(self, ast_t);
1936         self.register_wf_obligation(t, ast_t.span, traits::MiscObligation);
1937         t
1938     }
1939
1940     pub fn node_ty(&self, id: ast::NodeId) -> Ty<'tcx> {
1941         match self.tables.borrow().node_types.get(&id) {
1942             Some(&t) => t,
1943             None if self.err_count_since_creation() != 0 => self.tcx.types.err,
1944             None => {
1945                 bug!("no type for node {}: {} in fcx {}",
1946                      id, self.tcx.hir.node_to_string(id),
1947                      self.tag());
1948             }
1949         }
1950     }
1951
1952     /// Registers an obligation for checking later, during regionck, that the type `ty` must
1953     /// outlive the region `r`.
1954     pub fn register_region_obligation(&self,
1955                                       ty: Ty<'tcx>,
1956                                       region: ty::Region<'tcx>,
1957                                       cause: traits::ObligationCause<'tcx>)
1958     {
1959         let mut fulfillment_cx = self.fulfillment_cx.borrow_mut();
1960         fulfillment_cx.register_region_obligation(ty, region, cause);
1961     }
1962
1963     /// Registers an obligation for checking later, during regionck, that the type `ty` must
1964     /// outlive the region `r`.
1965     pub fn register_wf_obligation(&self,
1966                                   ty: Ty<'tcx>,
1967                                   span: Span,
1968                                   code: traits::ObligationCauseCode<'tcx>)
1969     {
1970         // WF obligations never themselves fail, so no real need to give a detailed cause:
1971         let cause = traits::ObligationCause::new(span, self.body_id, code);
1972         self.register_predicate(traits::Obligation::new(cause,
1973                                                         self.param_env,
1974                                                         ty::Predicate::WellFormed(ty)));
1975     }
1976
1977     pub fn register_old_wf_obligation(&self,
1978                                       ty: Ty<'tcx>,
1979                                       span: Span,
1980                                       code: traits::ObligationCauseCode<'tcx>)
1981     {
1982         // Registers an "old-style" WF obligation that uses the
1983         // implicator code.  This is basically a buggy version of
1984         // `register_wf_obligation` that is being kept around
1985         // temporarily just to help with phasing in the newer rules.
1986         //
1987         // FIXME(#27579) all uses of this should be migrated to register_wf_obligation eventually
1988         let cause = traits::ObligationCause::new(span, self.body_id, code);
1989         self.register_region_obligation(ty, self.tcx.types.re_empty, cause);
1990     }
1991
1992     /// Registers obligations that all types appearing in `substs` are well-formed.
1993     pub fn add_wf_bounds(&self, substs: &Substs<'tcx>, expr: &hir::Expr)
1994     {
1995         for ty in substs.types() {
1996             self.register_wf_obligation(ty, expr.span, traits::MiscObligation);
1997         }
1998     }
1999
2000     /// Given a fully substituted set of bounds (`generic_bounds`), and the values with which each
2001     /// type/region parameter was instantiated (`substs`), creates and registers suitable
2002     /// trait/region obligations.
2003     ///
2004     /// For example, if there is a function:
2005     ///
2006     /// ```
2007     /// fn foo<'a,T:'a>(...)
2008     /// ```
2009     ///
2010     /// and a reference:
2011     ///
2012     /// ```
2013     /// let f = foo;
2014     /// ```
2015     ///
2016     /// Then we will create a fresh region variable `'$0` and a fresh type variable `$1` for `'a`
2017     /// and `T`. This routine will add a region obligation `$1:'$0` and register it locally.
2018     pub fn add_obligations_for_parameters(&self,
2019                                           cause: traits::ObligationCause<'tcx>,
2020                                           predicates: &ty::InstantiatedPredicates<'tcx>)
2021     {
2022         assert!(!predicates.has_escaping_regions());
2023
2024         debug!("add_obligations_for_parameters(predicates={:?})",
2025                predicates);
2026
2027         for obligation in traits::predicates_for_generics(cause, self.param_env, predicates) {
2028             self.register_predicate(obligation);
2029         }
2030     }
2031
2032     // FIXME(arielb1): use this instead of field.ty everywhere
2033     // Only for fields! Returns <none> for methods>
2034     // Indifferent to privacy flags
2035     pub fn field_ty(&self,
2036                     span: Span,
2037                     field: &'tcx ty::FieldDef,
2038                     substs: &Substs<'tcx>)
2039                     -> Ty<'tcx>
2040     {
2041         self.normalize_associated_types_in(span,
2042                                            &field.ty(self.tcx, substs))
2043     }
2044
2045     fn check_casts(&self) {
2046         let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
2047         for cast in deferred_cast_checks.drain(..) {
2048             cast.check(self);
2049         }
2050     }
2051
2052     /// Apply "fallbacks" to some types
2053     /// unconstrained types get replaced with ! or  () (depending on whether
2054     /// feature(never_type) is enabled), unconstrained ints with i32, and
2055     /// unconstrained floats with f64.
2056     fn default_type_parameters(&self) {
2057         use rustc::ty::error::UnconstrainedNumeric::Neither;
2058         use rustc::ty::error::UnconstrainedNumeric::{UnconstrainedInt, UnconstrainedFloat};
2059
2060         // Defaulting inference variables becomes very dubious if we have
2061         // encountered type-checking errors. Therefore, if we think we saw
2062         // some errors in this function, just resolve all uninstanted type
2063         // varibles to TyError.
2064         if self.is_tainted_by_errors() {
2065             for ty in &self.unsolved_variables() {
2066                 if let ty::TyInfer(_) = self.shallow_resolve(ty).sty {
2067                     debug!("default_type_parameters: defaulting `{:?}` to error", ty);
2068                     self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx().types.err);
2069                 }
2070             }
2071             return;
2072         }
2073
2074         for ty in &self.unsolved_variables() {
2075             let resolved = self.resolve_type_vars_if_possible(ty);
2076             if self.type_var_diverges(resolved) {
2077                 debug!("default_type_parameters: defaulting `{:?}` to `!` because it diverges",
2078                        resolved);
2079                 self.demand_eqtype(syntax_pos::DUMMY_SP, *ty,
2080                                    self.tcx.mk_diverging_default());
2081             } else {
2082                 match self.type_is_unconstrained_numeric(resolved) {
2083                     UnconstrainedInt => {
2084                         debug!("default_type_parameters: defaulting `{:?}` to `i32`",
2085                                resolved);
2086                         self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx.types.i32)
2087                     },
2088                     UnconstrainedFloat => {
2089                         debug!("default_type_parameters: defaulting `{:?}` to `f32`",
2090                                resolved);
2091                         self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx.types.f64)
2092                     }
2093                     Neither => { }
2094                 }
2095             }
2096         }
2097     }
2098
2099     // Implements type inference fallback algorithm
2100     fn select_all_obligations_and_apply_defaults(&self) {
2101         self.select_obligations_where_possible();
2102         self.default_type_parameters();
2103         self.select_obligations_where_possible();
2104     }
2105
2106     fn select_all_obligations_or_error(&self) {
2107         debug!("select_all_obligations_or_error");
2108
2109         // upvar inference should have ensured that all deferred call
2110         // resolutions are handled by now.
2111         assert!(self.deferred_call_resolutions.borrow().is_empty());
2112
2113         self.select_all_obligations_and_apply_defaults();
2114
2115         let mut fulfillment_cx = self.fulfillment_cx.borrow_mut();
2116
2117         match fulfillment_cx.select_all_or_error(self) {
2118             Ok(()) => { }
2119             Err(errors) => { self.report_fulfillment_errors(&errors); }
2120         }
2121     }
2122
2123     /// Select as many obligations as we can at present.
2124     fn select_obligations_where_possible(&self) {
2125         match self.fulfillment_cx.borrow_mut().select_where_possible(self) {
2126             Ok(()) => { }
2127             Err(errors) => { self.report_fulfillment_errors(&errors); }
2128         }
2129     }
2130
2131     /// For the overloaded lvalue expressions (`*x`, `x[3]`), the trait
2132     /// returns a type of `&T`, but the actual type we assign to the
2133     /// *expression* is `T`. So this function just peels off the return
2134     /// type by one layer to yield `T`.
2135     fn make_overloaded_lvalue_return_type(&self,
2136                                           method: MethodCallee<'tcx>)
2137                                           -> ty::TypeAndMut<'tcx>
2138     {
2139         // extract method return type, which will be &T;
2140         // all LB regions should have been instantiated during method lookup
2141         let ret_ty = method.sig.output();
2142
2143         // method returns &T, but the type as visible to user is T, so deref
2144         ret_ty.builtin_deref(true, NoPreference).unwrap()
2145     }
2146
2147     fn lookup_indexing(&self,
2148                        expr: &hir::Expr,
2149                        base_expr: &'gcx hir::Expr,
2150                        base_ty: Ty<'tcx>,
2151                        idx_ty: Ty<'tcx>,
2152                        lvalue_pref: LvaluePreference)
2153                        -> Option<(/*index type*/ Ty<'tcx>, /*element type*/ Ty<'tcx>)>
2154     {
2155         // FIXME(#18741) -- this is almost but not quite the same as the
2156         // autoderef that normal method probing does. They could likely be
2157         // consolidated.
2158
2159         let mut autoderef = self.autoderef(base_expr.span, base_ty);
2160         let mut result = None;
2161         while result.is_none() && autoderef.next().is_some() {
2162             result = self.try_index_step(expr, base_expr, &autoderef, lvalue_pref, idx_ty);
2163         }
2164         autoderef.finalize();
2165         result
2166     }
2167
2168     /// To type-check `base_expr[index_expr]`, we progressively autoderef
2169     /// (and otherwise adjust) `base_expr`, looking for a type which either
2170     /// supports builtin indexing or overloaded indexing.
2171     /// This loop implements one step in that search; the autoderef loop
2172     /// is implemented by `lookup_indexing`.
2173     fn try_index_step(&self,
2174                       expr: &hir::Expr,
2175                       base_expr: &hir::Expr,
2176                       autoderef: &Autoderef<'a, 'gcx, 'tcx>,
2177                       lvalue_pref: LvaluePreference,
2178                       index_ty: Ty<'tcx>)
2179                       -> Option<(/*index type*/ Ty<'tcx>, /*element type*/ Ty<'tcx>)>
2180     {
2181         let adjusted_ty = autoderef.unambiguous_final_ty();
2182         debug!("try_index_step(expr={:?}, base_expr={:?}, adjusted_ty={:?}, \
2183                                index_ty={:?})",
2184                expr,
2185                base_expr,
2186                adjusted_ty,
2187                index_ty);
2188
2189
2190         // First, try built-in indexing.
2191         match (adjusted_ty.builtin_index(), &index_ty.sty) {
2192             (Some(ty), &ty::TyUint(ast::UintTy::Us)) | (Some(ty), &ty::TyInfer(ty::IntVar(_))) => {
2193                 debug!("try_index_step: success, using built-in indexing");
2194                 let adjustments = autoderef.adjust_steps(lvalue_pref);
2195                 self.apply_adjustments(base_expr, adjustments);
2196                 return Some((self.tcx.types.usize, ty));
2197             }
2198             _ => {}
2199         }
2200
2201         for &unsize in &[false, true] {
2202             let mut self_ty = adjusted_ty;
2203             if unsize {
2204                 // We only unsize arrays here.
2205                 if let ty::TyArray(element_ty, _) = adjusted_ty.sty {
2206                     self_ty = self.tcx.mk_slice(element_ty);
2207                 } else {
2208                     continue;
2209                 }
2210             }
2211
2212             // If some lookup succeeds, write callee into table and extract index/element
2213             // type from the method signature.
2214             // If some lookup succeeded, install method in table
2215             let input_ty = self.next_ty_var(TypeVariableOrigin::AutoDeref(base_expr.span));
2216             let method = self.try_overloaded_lvalue_op(
2217                 expr.span, self_ty, &[input_ty], lvalue_pref, LvalueOp::Index);
2218
2219             let result = method.map(|ok| {
2220                 debug!("try_index_step: success, using overloaded indexing");
2221                 let method = self.register_infer_ok_obligations(ok);
2222
2223                 let mut adjustments = autoderef.adjust_steps(lvalue_pref);
2224                 if let ty::TyRef(region, mt) = method.sig.inputs()[0].sty {
2225                     adjustments.push(Adjustment {
2226                         kind: Adjust::Borrow(AutoBorrow::Ref(region, mt.mutbl)),
2227                         target: self.tcx.mk_ref(region, ty::TypeAndMut {
2228                             mutbl: mt.mutbl,
2229                             ty: adjusted_ty
2230                         })
2231                     });
2232                 }
2233                 if unsize {
2234                     adjustments.push(Adjustment {
2235                         kind: Adjust::Unsize,
2236                         target: method.sig.inputs()[0]
2237                     });
2238                 }
2239                 self.apply_adjustments(base_expr, adjustments);
2240
2241                 self.write_method_call(expr.id, method);
2242                 (input_ty, self.make_overloaded_lvalue_return_type(method).ty)
2243             });
2244             if result.is_some() {
2245                 return result;
2246             }
2247         }
2248
2249         None
2250     }
2251
2252     fn resolve_lvalue_op(&self, op: LvalueOp, is_mut: bool) -> (Option<DefId>, Symbol) {
2253         let (tr, name) = match (op, is_mut) {
2254             (LvalueOp::Deref, false) =>
2255                 (self.tcx.lang_items.deref_trait(), "deref"),
2256             (LvalueOp::Deref, true) =>
2257                 (self.tcx.lang_items.deref_mut_trait(), "deref_mut"),
2258             (LvalueOp::Index, false) =>
2259                 (self.tcx.lang_items.index_trait(), "index"),
2260             (LvalueOp::Index, true) =>
2261                 (self.tcx.lang_items.index_mut_trait(), "index_mut"),
2262         };
2263         (tr, Symbol::intern(name))
2264     }
2265
2266     fn try_overloaded_lvalue_op(&self,
2267                                 span: Span,
2268                                 base_ty: Ty<'tcx>,
2269                                 arg_tys: &[Ty<'tcx>],
2270                                 lvalue_pref: LvaluePreference,
2271                                 op: LvalueOp)
2272                                 -> Option<InferOk<'tcx, MethodCallee<'tcx>>>
2273     {
2274         debug!("try_overloaded_lvalue_op({:?},{:?},{:?},{:?})",
2275                span,
2276                base_ty,
2277                lvalue_pref,
2278                op);
2279
2280         // Try Mut first, if preferred.
2281         let (mut_tr, mut_op) = self.resolve_lvalue_op(op, true);
2282         let method = match (lvalue_pref, mut_tr) {
2283             (PreferMutLvalue, Some(trait_did)) => {
2284                 self.lookup_method_in_trait(span, mut_op, trait_did, base_ty, Some(arg_tys))
2285             }
2286             _ => None,
2287         };
2288
2289         // Otherwise, fall back to the immutable version.
2290         let (imm_tr, imm_op) = self.resolve_lvalue_op(op, false);
2291         let method = match (method, imm_tr) {
2292             (None, Some(trait_did)) => {
2293                 self.lookup_method_in_trait(span, imm_op, trait_did, base_ty, Some(arg_tys))
2294             }
2295             (method, _) => method,
2296         };
2297
2298         method
2299     }
2300
2301     fn check_method_argument_types(&self,
2302                                    sp: Span,
2303                                    method: Result<MethodCallee<'tcx>, ()>,
2304                                    args_no_rcvr: &'gcx [hir::Expr],
2305                                    tuple_arguments: TupleArgumentsFlag,
2306                                    expected: Expectation<'tcx>)
2307                                    -> Ty<'tcx> {
2308         let has_error = match method {
2309             Ok(method) => {
2310                 method.substs.references_error() || method.sig.references_error()
2311             }
2312             Err(_) => true
2313         };
2314         if has_error {
2315             let err_inputs = self.err_args(args_no_rcvr.len());
2316
2317             let err_inputs = match tuple_arguments {
2318                 DontTupleArguments => err_inputs,
2319                 TupleArguments => vec![self.tcx.intern_tup(&err_inputs[..], false)],
2320             };
2321
2322             self.check_argument_types(sp, &err_inputs[..], &[], args_no_rcvr,
2323                                       false, tuple_arguments, None);
2324             return self.tcx.types.err;
2325         }
2326
2327         let method = method.unwrap();
2328         // HACK(eddyb) ignore self in the definition (see above).
2329         let expected_arg_tys = self.expected_inputs_for_expected_output(
2330             sp,
2331             expected,
2332             method.sig.output(),
2333             &method.sig.inputs()[1..]
2334         );
2335         self.check_argument_types(sp, &method.sig.inputs()[1..], &expected_arg_tys[..],
2336                                   args_no_rcvr, method.sig.variadic, tuple_arguments,
2337                                   self.tcx.hir.span_if_local(method.def_id));
2338         method.sig.output()
2339     }
2340
2341     /// Generic function that factors out common logic from function calls,
2342     /// method calls and overloaded operators.
2343     fn check_argument_types(&self,
2344                             sp: Span,
2345                             fn_inputs: &[Ty<'tcx>],
2346                             expected_arg_tys: &[Ty<'tcx>],
2347                             args: &'gcx [hir::Expr],
2348                             variadic: bool,
2349                             tuple_arguments: TupleArgumentsFlag,
2350                             def_span: Option<Span>) {
2351         let tcx = self.tcx;
2352
2353         // Grab the argument types, supplying fresh type variables
2354         // if the wrong number of arguments were supplied
2355         let supplied_arg_count = if tuple_arguments == DontTupleArguments {
2356             args.len()
2357         } else {
2358             1
2359         };
2360
2361         // All the input types from the fn signature must outlive the call
2362         // so as to validate implied bounds.
2363         for &fn_input_ty in fn_inputs {
2364             self.register_wf_obligation(fn_input_ty, sp, traits::MiscObligation);
2365         }
2366
2367         let mut expected_arg_tys = expected_arg_tys;
2368         let expected_arg_count = fn_inputs.len();
2369
2370         let sp_args = if args.len() > 0 {
2371             let (first, args) = args.split_at(1);
2372             let mut sp_tmp = first[0].span;
2373             for arg in args {
2374                 let sp_opt = self.sess().codemap().merge_spans(sp_tmp, arg.span);
2375                 if ! sp_opt.is_some() {
2376                     break;
2377                 }
2378                 sp_tmp = sp_opt.unwrap();
2379             };
2380             sp_tmp
2381         } else {
2382             sp
2383         };
2384
2385         fn parameter_count_error<'tcx>(sess: &Session, sp: Span, expected_count: usize,
2386                                        arg_count: usize, error_code: &str, variadic: bool,
2387                                        def_span: Option<Span>) {
2388             let mut err = sess.struct_span_err_with_code(sp,
2389                 &format!("this function takes {}{} parameter{} but {} parameter{} supplied",
2390                     if variadic {"at least "} else {""},
2391                     expected_count,
2392                     if expected_count == 1 {""} else {"s"},
2393                     arg_count,
2394                     if arg_count == 1 {" was"} else {"s were"}),
2395                 error_code);
2396
2397             err.span_label(sp, format!("expected {}{} parameter{}",
2398                                         if variadic {"at least "} else {""},
2399                                         expected_count,
2400                                         if expected_count == 1 {""} else {"s"}));
2401             if let Some(def_s) = def_span {
2402                 err.span_label(def_s, "defined here");
2403             }
2404             err.emit();
2405         }
2406
2407         let formal_tys = if tuple_arguments == TupleArguments {
2408             let tuple_type = self.structurally_resolved_type(sp, fn_inputs[0]);
2409             match tuple_type.sty {
2410                 ty::TyTuple(arg_types, _) if arg_types.len() != args.len() => {
2411                     parameter_count_error(tcx.sess, sp_args, arg_types.len(), args.len(),
2412                                           "E0057", false, def_span);
2413                     expected_arg_tys = &[];
2414                     self.err_args(args.len())
2415                 }
2416                 ty::TyTuple(arg_types, _) => {
2417                     expected_arg_tys = match expected_arg_tys.get(0) {
2418                         Some(&ty) => match ty.sty {
2419                             ty::TyTuple(ref tys, _) => &tys,
2420                             _ => &[]
2421                         },
2422                         None => &[]
2423                     };
2424                     arg_types.to_vec()
2425                 }
2426                 _ => {
2427                     span_err!(tcx.sess, sp, E0059,
2428                         "cannot use call notation; the first type parameter \
2429                          for the function trait is neither a tuple nor unit");
2430                     expected_arg_tys = &[];
2431                     self.err_args(args.len())
2432                 }
2433             }
2434         } else if expected_arg_count == supplied_arg_count {
2435             fn_inputs.to_vec()
2436         } else if variadic {
2437             if supplied_arg_count >= expected_arg_count {
2438                 fn_inputs.to_vec()
2439             } else {
2440                 parameter_count_error(tcx.sess, sp_args, expected_arg_count,
2441                                       supplied_arg_count, "E0060", true, def_span);
2442                 expected_arg_tys = &[];
2443                 self.err_args(supplied_arg_count)
2444             }
2445         } else {
2446             parameter_count_error(tcx.sess, sp_args, expected_arg_count,
2447                                   supplied_arg_count, "E0061", false, def_span);
2448             expected_arg_tys = &[];
2449             self.err_args(supplied_arg_count)
2450         };
2451
2452         debug!("check_argument_types: formal_tys={:?}",
2453                formal_tys.iter().map(|t| self.ty_to_string(*t)).collect::<Vec<String>>());
2454
2455         // Check the arguments.
2456         // We do this in a pretty awful way: first we typecheck any arguments
2457         // that are not closures, then we typecheck the closures. This is so
2458         // that we have more information about the types of arguments when we
2459         // typecheck the functions. This isn't really the right way to do this.
2460         for &check_closures in &[false, true] {
2461             debug!("check_closures={}", check_closures);
2462
2463             // More awful hacks: before we check argument types, try to do
2464             // an "opportunistic" vtable resolution of any trait bounds on
2465             // the call. This helps coercions.
2466             if check_closures {
2467                 self.select_obligations_where_possible();
2468             }
2469
2470             // For variadic functions, we don't have a declared type for all of
2471             // the arguments hence we only do our usual type checking with
2472             // the arguments who's types we do know.
2473             let t = if variadic {
2474                 expected_arg_count
2475             } else if tuple_arguments == TupleArguments {
2476                 args.len()
2477             } else {
2478                 supplied_arg_count
2479             };
2480             for (i, arg) in args.iter().take(t).enumerate() {
2481                 // Warn only for the first loop (the "no closures" one).
2482                 // Closure arguments themselves can't be diverging, but
2483                 // a previous argument can, e.g. `foo(panic!(), || {})`.
2484                 if !check_closures {
2485                     self.warn_if_unreachable(arg.id, arg.span, "expression");
2486                 }
2487
2488                 let is_closure = match arg.node {
2489                     hir::ExprClosure(..) => true,
2490                     _ => false
2491                 };
2492
2493                 if is_closure != check_closures {
2494                     continue;
2495                 }
2496
2497                 debug!("checking the argument");
2498                 let formal_ty = formal_tys[i];
2499
2500                 // The special-cased logic below has three functions:
2501                 // 1. Provide as good of an expected type as possible.
2502                 let expected = expected_arg_tys.get(i).map(|&ty| {
2503                     Expectation::rvalue_hint(self, ty)
2504                 });
2505
2506                 let checked_ty = self.check_expr_with_expectation(
2507                     &arg,
2508                     expected.unwrap_or(ExpectHasType(formal_ty)));
2509
2510                 // 2. Coerce to the most detailed type that could be coerced
2511                 //    to, which is `expected_ty` if `rvalue_hint` returns an
2512                 //    `ExpectHasType(expected_ty)`, or the `formal_ty` otherwise.
2513                 let coerce_ty = expected.and_then(|e| e.only_has_type(self));
2514                 self.demand_coerce(&arg, checked_ty, coerce_ty.unwrap_or(formal_ty));
2515
2516                 // 3. Relate the expected type and the formal one,
2517                 //    if the expected type was used for the coercion.
2518                 coerce_ty.map(|ty| self.demand_suptype(arg.span, formal_ty, ty));
2519             }
2520         }
2521
2522         // We also need to make sure we at least write the ty of the other
2523         // arguments which we skipped above.
2524         if variadic {
2525             for arg in args.iter().skip(expected_arg_count) {
2526                 let arg_ty = self.check_expr(&arg);
2527
2528                 // There are a few types which get autopromoted when passed via varargs
2529                 // in C but we just error out instead and require explicit casts.
2530                 let arg_ty = self.structurally_resolved_type(arg.span,
2531                                                              arg_ty);
2532                 match arg_ty.sty {
2533                     ty::TyFloat(ast::FloatTy::F32) => {
2534                         self.type_error_message(arg.span, |t| {
2535                             format!("can't pass an `{}` to variadic \
2536                                      function, cast to `c_double`", t)
2537                         }, arg_ty);
2538                     }
2539                     ty::TyInt(ast::IntTy::I8) | ty::TyInt(ast::IntTy::I16) | ty::TyBool => {
2540                         self.type_error_message(arg.span, |t| {
2541                             format!("can't pass `{}` to variadic \
2542                                      function, cast to `c_int`",
2543                                            t)
2544                         }, arg_ty);
2545                     }
2546                     ty::TyUint(ast::UintTy::U8) | ty::TyUint(ast::UintTy::U16) => {
2547                         self.type_error_message(arg.span, |t| {
2548                             format!("can't pass `{}` to variadic \
2549                                      function, cast to `c_uint`",
2550                                            t)
2551                         }, arg_ty);
2552                     }
2553                     ty::TyFnDef(.., f) => {
2554                         let ptr_ty = self.tcx.mk_fn_ptr(f);
2555                         let ptr_ty = self.resolve_type_vars_if_possible(&ptr_ty);
2556                         self.type_error_message(arg.span,
2557                                                 |t| {
2558                             format!("can't pass `{}` to variadic \
2559                                      function, cast to `{}`", t, ptr_ty)
2560                         }, arg_ty);
2561                     }
2562                     _ => {}
2563                 }
2564             }
2565         }
2566     }
2567
2568     fn err_args(&self, len: usize) -> Vec<Ty<'tcx>> {
2569         (0..len).map(|_| self.tcx.types.err).collect()
2570     }
2571
2572     // AST fragment checking
2573     fn check_lit(&self,
2574                  lit: &ast::Lit,
2575                  expected: Expectation<'tcx>)
2576                  -> Ty<'tcx>
2577     {
2578         let tcx = self.tcx;
2579
2580         match lit.node {
2581             ast::LitKind::Str(..) => tcx.mk_static_str(),
2582             ast::LitKind::ByteStr(ref v) => {
2583                 tcx.mk_imm_ref(tcx.types.re_static,
2584                                 tcx.mk_array(tcx.types.u8, v.len()))
2585             }
2586             ast::LitKind::Byte(_) => tcx.types.u8,
2587             ast::LitKind::Char(_) => tcx.types.char,
2588             ast::LitKind::Int(_, ast::LitIntType::Signed(t)) => tcx.mk_mach_int(t),
2589             ast::LitKind::Int(_, ast::LitIntType::Unsigned(t)) => tcx.mk_mach_uint(t),
2590             ast::LitKind::Int(_, ast::LitIntType::Unsuffixed) => {
2591                 let opt_ty = expected.to_option(self).and_then(|ty| {
2592                     match ty.sty {
2593                         ty::TyInt(_) | ty::TyUint(_) => Some(ty),
2594                         ty::TyChar => Some(tcx.types.u8),
2595                         ty::TyRawPtr(..) => Some(tcx.types.usize),
2596                         ty::TyFnDef(..) | ty::TyFnPtr(_) => Some(tcx.types.usize),
2597                         _ => None
2598                     }
2599                 });
2600                 opt_ty.unwrap_or_else(
2601                     || tcx.mk_int_var(self.next_int_var_id()))
2602             }
2603             ast::LitKind::Float(_, t) => tcx.mk_mach_float(t),
2604             ast::LitKind::FloatUnsuffixed(_) => {
2605                 let opt_ty = expected.to_option(self).and_then(|ty| {
2606                     match ty.sty {
2607                         ty::TyFloat(_) => Some(ty),
2608                         _ => None
2609                     }
2610                 });
2611                 opt_ty.unwrap_or_else(
2612                     || tcx.mk_float_var(self.next_float_var_id()))
2613             }
2614             ast::LitKind::Bool(_) => tcx.types.bool
2615         }
2616     }
2617
2618     fn check_expr_eq_type(&self,
2619                           expr: &'gcx hir::Expr,
2620                           expected: Ty<'tcx>) {
2621         let ty = self.check_expr_with_hint(expr, expected);
2622         self.demand_eqtype(expr.span, expected, ty);
2623     }
2624
2625     pub fn check_expr_has_type(&self,
2626                                expr: &'gcx hir::Expr,
2627                                expected: Ty<'tcx>) -> Ty<'tcx> {
2628         let mut ty = self.check_expr_with_hint(expr, expected);
2629
2630         // While we don't allow *arbitrary* coercions here, we *do* allow
2631         // coercions from ! to `expected`.
2632         if ty.is_never() {
2633             assert!(!self.tables.borrow().adjustments.contains_key(&expr.id),
2634                     "expression with never type wound up being adjusted");
2635             let adj_ty = self.next_diverging_ty_var(
2636                 TypeVariableOrigin::AdjustmentType(expr.span));
2637             self.apply_adjustments(expr, vec![Adjustment {
2638                 kind: Adjust::NeverToAny,
2639                 target: adj_ty
2640             }]);
2641             ty = adj_ty;
2642         }
2643
2644         self.demand_suptype(expr.span, expected, ty);
2645         ty
2646     }
2647
2648     fn check_expr_coercable_to_type(&self,
2649                                     expr: &'gcx hir::Expr,
2650                                     expected: Ty<'tcx>) -> Ty<'tcx> {
2651         let ty = self.check_expr_with_hint(expr, expected);
2652         self.demand_coerce(expr, ty, expected);
2653         ty
2654     }
2655
2656     fn check_expr_with_hint(&self, expr: &'gcx hir::Expr,
2657                             expected: Ty<'tcx>) -> Ty<'tcx> {
2658         self.check_expr_with_expectation(expr, ExpectHasType(expected))
2659     }
2660
2661     fn check_expr_with_expectation(&self,
2662                                    expr: &'gcx hir::Expr,
2663                                    expected: Expectation<'tcx>) -> Ty<'tcx> {
2664         self.check_expr_with_expectation_and_lvalue_pref(expr, expected, NoPreference)
2665     }
2666
2667     fn check_expr(&self, expr: &'gcx hir::Expr) -> Ty<'tcx> {
2668         self.check_expr_with_expectation(expr, NoExpectation)
2669     }
2670
2671     fn check_expr_with_lvalue_pref(&self, expr: &'gcx hir::Expr,
2672                                    lvalue_pref: LvaluePreference) -> Ty<'tcx> {
2673         self.check_expr_with_expectation_and_lvalue_pref(expr, NoExpectation, lvalue_pref)
2674     }
2675
2676     // determine the `self` type, using fresh variables for all variables
2677     // declared on the impl declaration e.g., `impl<A,B> for Vec<(A,B)>`
2678     // would return ($0, $1) where $0 and $1 are freshly instantiated type
2679     // variables.
2680     pub fn impl_self_ty(&self,
2681                         span: Span, // (potential) receiver for this impl
2682                         did: DefId)
2683                         -> TypeAndSubsts<'tcx> {
2684         let ity = self.tcx.type_of(did);
2685         debug!("impl_self_ty: ity={:?}", ity);
2686
2687         let substs = self.fresh_substs_for_item(span, did);
2688         let substd_ty = self.instantiate_type_scheme(span, &substs, &ity);
2689
2690         TypeAndSubsts { substs: substs, ty: substd_ty }
2691     }
2692
2693     /// Unifies the output type with the expected type early, for more coercions
2694     /// and forward type information on the input expressions.
2695     fn expected_inputs_for_expected_output(&self,
2696                                            call_span: Span,
2697                                            expected_ret: Expectation<'tcx>,
2698                                            formal_ret: Ty<'tcx>,
2699                                            formal_args: &[Ty<'tcx>])
2700                                            -> Vec<Ty<'tcx>> {
2701         let expected_args = expected_ret.only_has_type(self).and_then(|ret_ty| {
2702             self.fudge_regions_if_ok(&RegionVariableOrigin::Coercion(call_span), || {
2703                 // Attempt to apply a subtyping relationship between the formal
2704                 // return type (likely containing type variables if the function
2705                 // is polymorphic) and the expected return type.
2706                 // No argument expectations are produced if unification fails.
2707                 let origin = self.misc(call_span);
2708                 let ures = self.at(&origin, self.param_env).sup(ret_ty, formal_ret);
2709
2710                 // FIXME(#15760) can't use try! here, FromError doesn't default
2711                 // to identity so the resulting type is not constrained.
2712                 match ures {
2713                     Ok(ok) => {
2714                         // Process any obligations locally as much as
2715                         // we can.  We don't care if some things turn
2716                         // out unconstrained or ambiguous, as we're
2717                         // just trying to get hints here.
2718                         let result = self.save_and_restore_in_snapshot_flag(|_| {
2719                             let mut fulfill = FulfillmentContext::new();
2720                             let ok = ok; // FIXME(#30046)
2721                             for obligation in ok.obligations {
2722                                 fulfill.register_predicate_obligation(self, obligation);
2723                             }
2724                             fulfill.select_where_possible(self)
2725                         });
2726
2727                         match result {
2728                             Ok(()) => { }
2729                             Err(_) => return Err(()),
2730                         }
2731                     }
2732                     Err(_) => return Err(()),
2733                 }
2734
2735                 // Record all the argument types, with the substitutions
2736                 // produced from the above subtyping unification.
2737                 Ok(formal_args.iter().map(|ty| {
2738                     self.resolve_type_vars_if_possible(ty)
2739                 }).collect())
2740             }).ok()
2741         }).unwrap_or(vec![]);
2742         debug!("expected_inputs_for_expected_output(formal={:?} -> {:?}, expected={:?} -> {:?})",
2743                formal_args, formal_ret,
2744                expected_args, expected_ret);
2745         expected_args
2746     }
2747
2748     // Checks a method call.
2749     fn check_method_call(&self,
2750                          expr: &'gcx hir::Expr,
2751                          method_name: Spanned<ast::Name>,
2752                          args: &'gcx [hir::Expr],
2753                          tps: &[P<hir::Ty>],
2754                          expected: Expectation<'tcx>,
2755                          lvalue_pref: LvaluePreference) -> Ty<'tcx> {
2756         let rcvr = &args[0];
2757         let rcvr_t = self.check_expr_with_lvalue_pref(&rcvr, lvalue_pref);
2758
2759         // no need to check for bot/err -- callee does that
2760         let expr_t = self.structurally_resolved_type(expr.span, rcvr_t);
2761
2762         let tps = tps.iter().map(|ast_ty| self.to_ty(&ast_ty)).collect::<Vec<_>>();
2763         let method = match self.lookup_method(method_name.span,
2764                                               method_name.node,
2765                                               expr_t,
2766                                               tps,
2767                                               expr,
2768                                               rcvr) {
2769             Ok(method) => {
2770                 self.write_method_call(expr.id, method);
2771                 Ok(method)
2772             }
2773             Err(error) => {
2774                 if method_name.node != keywords::Invalid.name() {
2775                     self.report_method_error(method_name.span,
2776                                              expr_t,
2777                                              method_name.node,
2778                                              Some(rcvr),
2779                                              error,
2780                                              Some(args));
2781                 }
2782                 Err(())
2783             }
2784         };
2785
2786         // Call the generic checker.
2787         self.check_method_argument_types(method_name.span, method,
2788                                          &args[1..],
2789                                          DontTupleArguments,
2790                                          expected)
2791     }
2792
2793     fn check_return_expr(&self, return_expr: &'gcx hir::Expr) {
2794         let ret_coercion =
2795             self.ret_coercion
2796                 .as_ref()
2797                 .unwrap_or_else(|| span_bug!(return_expr.span,
2798                                              "check_return_expr called outside fn body"));
2799
2800         let ret_ty = ret_coercion.borrow().expected_ty();
2801         let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
2802         ret_coercion.borrow_mut()
2803                     .coerce(self,
2804                             &self.misc(return_expr.span),
2805                             return_expr,
2806                             return_expr_ty,
2807                             self.diverges.get());
2808     }
2809
2810
2811     // A generic function for checking the then and else in an if
2812     // or if-else.
2813     fn check_then_else(&self,
2814                        cond_expr: &'gcx hir::Expr,
2815                        then_expr: &'gcx hir::Expr,
2816                        opt_else_expr: Option<&'gcx hir::Expr>,
2817                        sp: Span,
2818                        expected: Expectation<'tcx>) -> Ty<'tcx> {
2819         let cond_ty = self.check_expr_has_type(cond_expr, self.tcx.types.bool);
2820         let cond_diverges = self.diverges.get();
2821         self.diverges.set(Diverges::Maybe);
2822
2823         let expected = expected.adjust_for_branches(self);
2824         let then_ty = self.check_expr_with_expectation(then_expr, expected);
2825         let then_diverges = self.diverges.get();
2826         self.diverges.set(Diverges::Maybe);
2827
2828         // We've already taken the expected type's preferences
2829         // into account when typing the `then` branch. To figure
2830         // out the initial shot at a LUB, we thus only consider
2831         // `expected` if it represents a *hard* constraint
2832         // (`only_has_type`); otherwise, we just go with a
2833         // fresh type variable.
2834         let coerce_to_ty = expected.coercion_target_type(self, sp);
2835         let mut coerce: DynamicCoerceMany = CoerceMany::new(coerce_to_ty);
2836
2837         let if_cause = self.cause(sp, ObligationCauseCode::IfExpression);
2838         coerce.coerce(self, &if_cause, then_expr, then_ty, then_diverges);
2839
2840         if let Some(else_expr) = opt_else_expr {
2841             let else_ty = self.check_expr_with_expectation(else_expr, expected);
2842             let else_diverges = self.diverges.get();
2843
2844             coerce.coerce(self, &if_cause, else_expr, else_ty, else_diverges);
2845
2846             // We won't diverge unless both branches do (or the condition does).
2847             self.diverges.set(cond_diverges | then_diverges & else_diverges);
2848         } else {
2849             let else_cause = self.cause(sp, ObligationCauseCode::IfExpressionWithNoElse);
2850             coerce.coerce_forced_unit(self, &else_cause, &mut |_| (), true);
2851
2852             // If the condition is false we can't diverge.
2853             self.diverges.set(cond_diverges);
2854         }
2855
2856         let result_ty = coerce.complete(self);
2857         if cond_ty.references_error() {
2858             self.tcx.types.err
2859         } else {
2860             result_ty
2861         }
2862     }
2863
2864     // Check field access expressions
2865     fn check_field(&self,
2866                    expr: &'gcx hir::Expr,
2867                    lvalue_pref: LvaluePreference,
2868                    base: &'gcx hir::Expr,
2869                    field: &Spanned<ast::Name>) -> Ty<'tcx> {
2870         let expr_t = self.check_expr_with_lvalue_pref(base, lvalue_pref);
2871         let expr_t = self.structurally_resolved_type(expr.span,
2872                                                      expr_t);
2873         let mut private_candidate = None;
2874         let mut autoderef = self.autoderef(expr.span, expr_t);
2875         while let Some((base_t, _)) = autoderef.next() {
2876             match base_t.sty {
2877                 ty::TyAdt(base_def, substs) if !base_def.is_enum() => {
2878                     debug!("struct named {:?}",  base_t);
2879                     let (ident, def_scope) =
2880                         self.tcx.adjust(field.node, base_def.did, self.body_id);
2881                     let fields = &base_def.struct_variant().fields;
2882                     if let Some(field) = fields.iter().find(|f| f.name.to_ident() == ident) {
2883                         let field_ty = self.field_ty(expr.span, field, substs);
2884                         if field.vis.is_accessible_from(def_scope, self.tcx) {
2885                             let adjustments = autoderef.adjust_steps(lvalue_pref);
2886                             self.apply_adjustments(base, adjustments);
2887                             autoderef.finalize();
2888
2889                             self.tcx.check_stability(field.did, expr.id, expr.span);
2890
2891                             return field_ty;
2892                         }
2893                         private_candidate = Some((base_def.did, field_ty));
2894                     }
2895                 }
2896                 _ => {}
2897             }
2898         }
2899         autoderef.unambiguous_final_ty();
2900
2901         if let Some((did, field_ty)) = private_candidate {
2902             let struct_path = self.tcx().item_path_str(did);
2903             let msg = format!("field `{}` of struct `{}` is private", field.node, struct_path);
2904             let mut err = self.tcx().sess.struct_span_err(expr.span, &msg);
2905             // Also check if an accessible method exists, which is often what is meant.
2906             if self.method_exists(field.span, field.node, expr_t, expr.id, false) {
2907                 err.note(&format!("a method `{}` also exists, perhaps you wish to call it",
2908                                   field.node));
2909             }
2910             err.emit();
2911             field_ty
2912         } else if field.node == keywords::Invalid.name() {
2913             self.tcx().types.err
2914         } else if self.method_exists(field.span, field.node, expr_t, expr.id, true) {
2915             self.type_error_struct(field.span, |actual| {
2916                 format!("attempted to take value of method `{}` on type \
2917                          `{}`", field.node, actual)
2918             }, expr_t)
2919                 .help("maybe a `()` to call it is missing? \
2920                        If not, try an anonymous function")
2921                 .emit();
2922             self.tcx().types.err
2923         } else {
2924             let mut err = type_error_struct!(self.tcx().sess, field.span, expr_t, E0609,
2925                                              "no field `{}` on type `{}`",
2926                                              field.node, expr_t);
2927             match expr_t.sty {
2928                 ty::TyAdt(def, _) if !def.is_enum() => {
2929                     if let Some(suggested_field_name) =
2930                         Self::suggest_field_name(def.struct_variant(), field, vec![]) {
2931                             err.span_label(field.span,
2932                                            format!("did you mean `{}`?", suggested_field_name));
2933                         } else {
2934                             err.span_label(field.span,
2935                                            "unknown field");
2936                         };
2937                 }
2938                 ty::TyRawPtr(..) => {
2939                     err.note(&format!("`{0}` is a native pointer; perhaps you need to deref with \
2940                                       `(*{0}).{1}`",
2941                                       self.tcx.hir.node_to_pretty_string(base.id),
2942                                       field.node));
2943                 }
2944                 _ => {}
2945             }
2946             err.emit();
2947             self.tcx().types.err
2948         }
2949     }
2950
2951     // Return an hint about the closest match in field names
2952     fn suggest_field_name(variant: &'tcx ty::VariantDef,
2953                           field: &Spanned<ast::Name>,
2954                           skip : Vec<InternedString>)
2955                           -> Option<Symbol> {
2956         let name = field.node.as_str();
2957         let names = variant.fields.iter().filter_map(|field| {
2958             // ignore already set fields and private fields from non-local crates
2959             if skip.iter().any(|x| *x == field.name.as_str()) ||
2960                (variant.did.krate != LOCAL_CRATE && field.vis != Visibility::Public) {
2961                 None
2962             } else {
2963                 Some(&field.name)
2964             }
2965         });
2966
2967         // only find fits with at least one matching letter
2968         find_best_match_for_name(names, &name, Some(name.len()))
2969     }
2970
2971     // Check tuple index expressions
2972     fn check_tup_field(&self,
2973                        expr: &'gcx hir::Expr,
2974                        lvalue_pref: LvaluePreference,
2975                        base: &'gcx hir::Expr,
2976                        idx: codemap::Spanned<usize>) -> Ty<'tcx> {
2977         let expr_t = self.check_expr_with_lvalue_pref(base, lvalue_pref);
2978         let expr_t = self.structurally_resolved_type(expr.span,
2979                                                      expr_t);
2980         let mut private_candidate = None;
2981         let mut tuple_like = false;
2982         let mut autoderef = self.autoderef(expr.span, expr_t);
2983         while let Some((base_t, _)) = autoderef.next() {
2984             let field = match base_t.sty {
2985                 ty::TyAdt(base_def, substs) if base_def.is_struct() => {
2986                     tuple_like = base_def.struct_variant().ctor_kind == CtorKind::Fn;
2987                     if !tuple_like { continue }
2988
2989                     debug!("tuple struct named {:?}",  base_t);
2990                     let ident = ast::Ident {
2991                         name: Symbol::intern(&idx.node.to_string()),
2992                         ctxt: idx.span.ctxt.modern(),
2993                     };
2994                     let (ident, def_scope) =
2995                         self.tcx.adjust_ident(ident, base_def.did, self.body_id);
2996                     let fields = &base_def.struct_variant().fields;
2997                     if let Some(field) = fields.iter().find(|f| f.name.to_ident() == ident) {
2998                         let field_ty = self.field_ty(expr.span, field, substs);
2999                         if field.vis.is_accessible_from(def_scope, self.tcx) {
3000                             self.tcx.check_stability(field.did, expr.id, expr.span);
3001                             Some(field_ty)
3002                         } else {
3003                             private_candidate = Some((base_def.did, field_ty));
3004                             None
3005                         }
3006                     } else {
3007                         None
3008                     }
3009                 }
3010                 ty::TyTuple(ref v, _) => {
3011                     tuple_like = true;
3012                     v.get(idx.node).cloned()
3013                 }
3014                 _ => continue
3015             };
3016
3017             if let Some(field_ty) = field {
3018                 let adjustments = autoderef.adjust_steps(lvalue_pref);
3019                 self.apply_adjustments(base, adjustments);
3020                 autoderef.finalize();
3021                 return field_ty;
3022             }
3023         }
3024         autoderef.unambiguous_final_ty();
3025
3026         if let Some((did, field_ty)) = private_candidate {
3027             let struct_path = self.tcx().item_path_str(did);
3028             let msg = format!("field `{}` of struct `{}` is private", idx.node, struct_path);
3029             self.tcx().sess.span_err(expr.span, &msg);
3030             return field_ty;
3031         }
3032
3033         self.type_error_message(
3034             expr.span,
3035             |actual| {
3036                 if tuple_like {
3037                     format!("attempted out-of-bounds tuple index `{}` on \
3038                                     type `{}`",
3039                                    idx.node,
3040                                    actual)
3041                 } else {
3042                     format!("attempted tuple index `{}` on type `{}`, but the \
3043                                      type was not a tuple or tuple struct",
3044                                     idx.node,
3045                                     actual)
3046                 }
3047             },
3048             expr_t);
3049
3050         self.tcx().types.err
3051     }
3052
3053     fn report_unknown_field(&self,
3054                             ty: Ty<'tcx>,
3055                             variant: &'tcx ty::VariantDef,
3056                             field: &hir::Field,
3057                             skip_fields: &[hir::Field],
3058                             kind_name: &str) {
3059         let mut err = self.type_error_struct_with_diag(
3060             field.name.span,
3061             |actual| match ty.sty {
3062                 ty::TyAdt(adt, ..) if adt.is_enum() => {
3063                     struct_span_err!(self.tcx.sess, field.name.span, E0559,
3064                                     "{} `{}::{}` has no field named `{}`",
3065                                     kind_name, actual, variant.name, field.name.node)
3066                 }
3067                 _ => {
3068                     struct_span_err!(self.tcx.sess, field.name.span, E0560,
3069                                     "{} `{}` has no field named `{}`",
3070                                     kind_name, actual, field.name.node)
3071                 }
3072             },
3073             ty);
3074         // prevent all specified fields from being suggested
3075         let skip_fields = skip_fields.iter().map(|ref x| x.name.node.as_str());
3076         if let Some(field_name) = Self::suggest_field_name(variant,
3077                                                            &field.name,
3078                                                            skip_fields.collect()) {
3079             err.span_label(field.name.span,
3080                            format!("field does not exist - did you mean `{}`?", field_name));
3081         } else {
3082             match ty.sty {
3083                 ty::TyAdt(adt, ..) if adt.is_enum() => {
3084                     err.span_label(field.name.span, format!("`{}::{}` does not have this field",
3085                                                              ty, variant.name));
3086                 }
3087                 _ => {
3088                     err.span_label(field.name.span, format!("`{}` does not have this field", ty));
3089                 }
3090             }
3091         };
3092         err.emit();
3093     }
3094
3095     fn check_expr_struct_fields(&self,
3096                                 adt_ty: Ty<'tcx>,
3097                                 expected: Expectation<'tcx>,
3098                                 expr_id: ast::NodeId,
3099                                 span: Span,
3100                                 variant: &'tcx ty::VariantDef,
3101                                 ast_fields: &'gcx [hir::Field],
3102                                 check_completeness: bool) {
3103         let tcx = self.tcx;
3104
3105         let adt_ty_hint =
3106             self.expected_inputs_for_expected_output(span, expected, adt_ty, &[adt_ty])
3107                 .get(0).cloned().unwrap_or(adt_ty);
3108
3109         let (substs, hint_substs, adt_kind, kind_name) = match (&adt_ty.sty, &adt_ty_hint.sty) {
3110             (&ty::TyAdt(adt, substs), &ty::TyAdt(_, hint_substs)) => {
3111                 (substs, hint_substs, adt.adt_kind(), adt.variant_descr())
3112             }
3113             _ => span_bug!(span, "non-ADT passed to check_expr_struct_fields")
3114         };
3115
3116         let mut remaining_fields = FxHashMap();
3117         for field in &variant.fields {
3118             remaining_fields.insert(field.name.to_ident(), field);
3119         }
3120
3121         let mut seen_fields = FxHashMap();
3122
3123         let mut error_happened = false;
3124
3125         // Typecheck each field.
3126         for field in ast_fields {
3127             let final_field_type;
3128             let field_type_hint;
3129
3130             let ident = tcx.adjust(field.name.node, variant.did, self.body_id).0;
3131             if let Some(v_field) = remaining_fields.remove(&ident) {
3132                 final_field_type = self.field_ty(field.span, v_field, substs);
3133                 field_type_hint = self.field_ty(field.span, v_field, hint_substs);
3134
3135                 seen_fields.insert(field.name.node, field.span);
3136
3137                 // we don't look at stability attributes on
3138                 // struct-like enums (yet...), but it's definitely not
3139                 // a bug to have construct one.
3140                 if adt_kind != ty::AdtKind::Enum {
3141                     tcx.check_stability(v_field.did, expr_id, field.span);
3142                 }
3143             } else {
3144                 error_happened = true;
3145                 final_field_type = tcx.types.err;
3146                 field_type_hint = tcx.types.err;
3147                 if let Some(_) = variant.find_field_named(field.name.node) {
3148                     let mut err = struct_span_err!(self.tcx.sess,
3149                                                 field.name.span,
3150                                                 E0062,
3151                                                 "field `{}` specified more than once",
3152                                                 field.name.node);
3153
3154                     err.span_label(field.name.span, "used more than once");
3155
3156                     if let Some(prev_span) = seen_fields.get(&field.name.node) {
3157                         err.span_label(*prev_span, format!("first use of `{}`", field.name.node));
3158                     }
3159
3160                     err.emit();
3161                 } else {
3162                     self.report_unknown_field(adt_ty, variant, field, ast_fields, kind_name);
3163                 }
3164             }
3165
3166             // Make sure to give a type to the field even if there's
3167             // an error, so we can continue typechecking
3168             let ty = self.check_expr_with_hint(&field.expr, field_type_hint);
3169             self.demand_coerce(&field.expr, ty, final_field_type);
3170         }
3171
3172         // Make sure the programmer specified correct number of fields.
3173         if kind_name == "union" {
3174             if ast_fields.len() != 1 {
3175                 tcx.sess.span_err(span, "union expressions should have exactly one field");
3176             }
3177         } else if check_completeness && !error_happened && !remaining_fields.is_empty() {
3178             let len = remaining_fields.len();
3179
3180             let mut displayable_field_names = remaining_fields
3181                                               .keys()
3182                                               .map(|ident| ident.name.as_str())
3183                                               .collect::<Vec<_>>();
3184
3185             displayable_field_names.sort();
3186
3187             let truncated_fields_error = if len <= 3 {
3188                 "".to_string()
3189             } else {
3190                 format!(" and {} other field{}", (len - 3), if len - 3 == 1 {""} else {"s"})
3191             };
3192
3193             let remaining_fields_names = displayable_field_names.iter().take(3)
3194                                         .map(|n| format!("`{}`", n))
3195                                         .collect::<Vec<_>>()
3196                                         .join(", ");
3197
3198             struct_span_err!(tcx.sess, span, E0063,
3199                         "missing field{} {}{} in initializer of `{}`",
3200                         if remaining_fields.len() == 1 {""} else {"s"},
3201                         remaining_fields_names,
3202                         truncated_fields_error,
3203                         adt_ty)
3204                         .span_label(span, format!("missing {}{}",
3205                             remaining_fields_names,
3206                             truncated_fields_error))
3207                         .emit();
3208         }
3209     }
3210
3211     fn check_struct_fields_on_error(&self,
3212                                     fields: &'gcx [hir::Field],
3213                                     base_expr: &'gcx Option<P<hir::Expr>>) {
3214         for field in fields {
3215             self.check_expr(&field.expr);
3216         }
3217         match *base_expr {
3218             Some(ref base) => {
3219                 self.check_expr(&base);
3220             },
3221             None => {}
3222         }
3223     }
3224
3225     pub fn check_struct_path(&self,
3226                              qpath: &hir::QPath,
3227                              node_id: ast::NodeId)
3228                              -> Option<(&'tcx ty::VariantDef,  Ty<'tcx>)> {
3229         let path_span = match *qpath {
3230             hir::QPath::Resolved(_, ref path) => path.span,
3231             hir::QPath::TypeRelative(ref qself, _) => qself.span
3232         };
3233         let (def, ty) = self.finish_resolving_struct_path(qpath, path_span, node_id);
3234         let variant = match def {
3235             Def::Err => {
3236                 self.set_tainted_by_errors();
3237                 return None;
3238             }
3239             Def::Variant(..) => {
3240                 match ty.sty {
3241                     ty::TyAdt(adt, substs) => {
3242                         Some((adt.variant_of_def(def), adt.did, substs))
3243                     }
3244                     _ => bug!("unexpected type: {:?}", ty.sty)
3245                 }
3246             }
3247             Def::Struct(..) | Def::Union(..) | Def::TyAlias(..) |
3248             Def::AssociatedTy(..) | Def::SelfTy(..) => {
3249                 match ty.sty {
3250                     ty::TyAdt(adt, substs) if !adt.is_enum() => {
3251                         Some((adt.struct_variant(), adt.did, substs))
3252                     }
3253                     _ => None,
3254                 }
3255             }
3256             _ => bug!("unexpected definition: {:?}", def)
3257         };
3258
3259         if let Some((variant, did, substs)) = variant {
3260             // Check bounds on type arguments used in the path.
3261             let bounds = self.instantiate_bounds(path_span, did, substs);
3262             let cause = traits::ObligationCause::new(path_span, self.body_id,
3263                                                      traits::ItemObligation(did));
3264             self.add_obligations_for_parameters(cause, &bounds);
3265
3266             Some((variant, ty))
3267         } else {
3268             struct_span_err!(self.tcx.sess, path_span, E0071,
3269                              "expected struct, variant or union type, found {}",
3270                              ty.sort_string(self.tcx))
3271                 .span_label(path_span, "not a struct")
3272                 .emit();
3273             None
3274         }
3275     }
3276
3277     fn check_expr_struct(&self,
3278                          expr: &hir::Expr,
3279                          expected: Expectation<'tcx>,
3280                          qpath: &hir::QPath,
3281                          fields: &'gcx [hir::Field],
3282                          base_expr: &'gcx Option<P<hir::Expr>>) -> Ty<'tcx>
3283     {
3284         // Find the relevant variant
3285         let (variant, struct_ty) =
3286         if let Some(variant_ty) = self.check_struct_path(qpath, expr.id) {
3287             variant_ty
3288         } else {
3289             self.check_struct_fields_on_error(fields, base_expr);
3290             return self.tcx.types.err;
3291         };
3292
3293         let path_span = match *qpath {
3294             hir::QPath::Resolved(_, ref path) => path.span,
3295             hir::QPath::TypeRelative(ref qself, _) => qself.span
3296         };
3297
3298         self.check_expr_struct_fields(struct_ty, expected, expr.id, path_span, variant, fields,
3299                                       base_expr.is_none());
3300         if let &Some(ref base_expr) = base_expr {
3301             self.check_expr_has_type(base_expr, struct_ty);
3302             match struct_ty.sty {
3303                 ty::TyAdt(adt, substs) if adt.is_struct() => {
3304                     self.tables.borrow_mut().fru_field_types.insert(
3305                         expr.id,
3306                         adt.struct_variant().fields.iter().map(|f| {
3307                             self.normalize_associated_types_in(
3308                                 expr.span, &f.ty(self.tcx, substs)
3309                             )
3310                         }).collect()
3311                     );
3312                 }
3313                 _ => {
3314                     span_err!(self.tcx.sess, base_expr.span, E0436,
3315                               "functional record update syntax requires a struct");
3316                 }
3317             }
3318         }
3319         self.require_type_is_sized(struct_ty, expr.span, traits::StructInitializerSized);
3320         struct_ty
3321     }
3322
3323
3324     /// Invariant:
3325     /// If an expression has any sub-expressions that result in a type error,
3326     /// inspecting that expression's type with `ty.references_error()` will return
3327     /// true. Likewise, if an expression is known to diverge, inspecting its
3328     /// type with `ty::type_is_bot` will return true (n.b.: since Rust is
3329     /// strict, _|_ can appear in the type of an expression that does not,
3330     /// itself, diverge: for example, fn() -> _|_.)
3331     /// Note that inspecting a type's structure *directly* may expose the fact
3332     /// that there are actually multiple representations for `TyError`, so avoid
3333     /// that when err needs to be handled differently.
3334     fn check_expr_with_expectation_and_lvalue_pref(&self,
3335                                                    expr: &'gcx hir::Expr,
3336                                                    expected: Expectation<'tcx>,
3337                                                    lvalue_pref: LvaluePreference) -> Ty<'tcx> {
3338         debug!(">> typechecking: expr={:?} expected={:?}",
3339                expr, expected);
3340
3341         // Warn for expressions after diverging siblings.
3342         self.warn_if_unreachable(expr.id, expr.span, "expression");
3343
3344         // Hide the outer diverging and has_errors flags.
3345         let old_diverges = self.diverges.get();
3346         let old_has_errors = self.has_errors.get();
3347         self.diverges.set(Diverges::Maybe);
3348         self.has_errors.set(false);
3349
3350         let ty = self.check_expr_kind(expr, expected, lvalue_pref);
3351
3352         // Warn for non-block expressions with diverging children.
3353         match expr.node {
3354             hir::ExprBlock(_) |
3355             hir::ExprLoop(..) | hir::ExprWhile(..) |
3356             hir::ExprIf(..) | hir::ExprMatch(..) => {}
3357
3358             _ => self.warn_if_unreachable(expr.id, expr.span, "expression")
3359         }
3360
3361         // Any expression that produces a value of type `!` must have diverged
3362         if ty.is_never() {
3363             self.diverges.set(self.diverges.get() | Diverges::Always);
3364         }
3365
3366         // Record the type, which applies it effects.
3367         // We need to do this after the warning above, so that
3368         // we don't warn for the diverging expression itself.
3369         self.write_ty(expr.id, ty);
3370
3371         // Combine the diverging and has_error flags.
3372         self.diverges.set(self.diverges.get() | old_diverges);
3373         self.has_errors.set(self.has_errors.get() | old_has_errors);
3374
3375         debug!("type of {} is...", self.tcx.hir.node_to_string(expr.id));
3376         debug!("... {:?}, expected is {:?}", ty, expected);
3377
3378         ty
3379     }
3380
3381     fn check_expr_kind(&self,
3382                        expr: &'gcx hir::Expr,
3383                        expected: Expectation<'tcx>,
3384                        lvalue_pref: LvaluePreference) -> Ty<'tcx> {
3385         let tcx = self.tcx;
3386         let id = expr.id;
3387         match expr.node {
3388           hir::ExprBox(ref subexpr) => {
3389             let expected_inner = expected.to_option(self).map_or(NoExpectation, |ty| {
3390                 match ty.sty {
3391                     ty::TyAdt(def, _) if def.is_box()
3392                         => Expectation::rvalue_hint(self, ty.boxed_ty()),
3393                     _ => NoExpectation
3394                 }
3395             });
3396             let referent_ty = self.check_expr_with_expectation(subexpr, expected_inner);
3397             tcx.mk_box(referent_ty)
3398           }
3399
3400           hir::ExprLit(ref lit) => {
3401             self.check_lit(&lit, expected)
3402           }
3403           hir::ExprBinary(op, ref lhs, ref rhs) => {
3404             self.check_binop(expr, op, lhs, rhs)
3405           }
3406           hir::ExprAssignOp(op, ref lhs, ref rhs) => {
3407             self.check_binop_assign(expr, op, lhs, rhs)
3408           }
3409           hir::ExprUnary(unop, ref oprnd) => {
3410             let expected_inner = match unop {
3411                 hir::UnNot | hir::UnNeg => {
3412                     expected
3413                 }
3414                 hir::UnDeref => {
3415                     NoExpectation
3416                 }
3417             };
3418             let lvalue_pref = match unop {
3419                 hir::UnDeref => lvalue_pref,
3420                 _ => NoPreference
3421             };
3422             let mut oprnd_t = self.check_expr_with_expectation_and_lvalue_pref(&oprnd,
3423                                                                                expected_inner,
3424                                                                                lvalue_pref);
3425
3426             if !oprnd_t.references_error() {
3427                 oprnd_t = self.structurally_resolved_type(expr.span, oprnd_t);
3428                 match unop {
3429                     hir::UnDeref => {
3430                         if let Some(mt) = oprnd_t.builtin_deref(true, NoPreference) {
3431                             oprnd_t = mt.ty;
3432                         } else if let Some(ok) = self.try_overloaded_deref(
3433                                 expr.span, oprnd_t, lvalue_pref) {
3434                             let method = self.register_infer_ok_obligations(ok);
3435                             if let ty::TyRef(region, mt) = method.sig.inputs()[0].sty {
3436                                 self.apply_adjustments(oprnd, vec![Adjustment {
3437                                     kind: Adjust::Borrow(AutoBorrow::Ref(region, mt.mutbl)),
3438                                     target: method.sig.inputs()[0]
3439                                 }]);
3440                             }
3441                             oprnd_t = self.make_overloaded_lvalue_return_type(method).ty;
3442                             self.write_method_call(expr.id, method);
3443                         } else {
3444                             self.type_error_message(expr.span, |actual| {
3445                                 format!("type `{}` cannot be \
3446                                         dereferenced", actual)
3447                             }, oprnd_t);
3448                             oprnd_t = tcx.types.err;
3449                         }
3450                     }
3451                     hir::UnNot => {
3452                         let result = self.check_user_unop(expr, oprnd_t, unop);
3453                         // If it's builtin, we can reuse the type, this helps inference.
3454                         if !(oprnd_t.is_integral() || oprnd_t.sty == ty::TyBool) {
3455                             oprnd_t = result;
3456                         }
3457                     }
3458                     hir::UnNeg => {
3459                         let result = self.check_user_unop(expr, oprnd_t, unop);
3460                         // If it's builtin, we can reuse the type, this helps inference.
3461                         if !(oprnd_t.is_integral() || oprnd_t.is_fp()) {
3462                             oprnd_t = result;
3463                         }
3464                     }
3465                 }
3466             }
3467             oprnd_t
3468           }
3469           hir::ExprAddrOf(mutbl, ref oprnd) => {
3470             let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
3471                 match ty.sty {
3472                     ty::TyRef(_, ref mt) | ty::TyRawPtr(ref mt) => {
3473                         if self.tcx.expr_is_lval(&oprnd) {
3474                             // Lvalues may legitimately have unsized types.
3475                             // For example, dereferences of a fat pointer and
3476                             // the last field of a struct can be unsized.
3477                             ExpectHasType(mt.ty)
3478                         } else {
3479                             Expectation::rvalue_hint(self, mt.ty)
3480                         }
3481                     }
3482                     _ => NoExpectation
3483                 }
3484             });
3485             let lvalue_pref = LvaluePreference::from_mutbl(mutbl);
3486             let ty = self.check_expr_with_expectation_and_lvalue_pref(&oprnd, hint, lvalue_pref);
3487
3488             let tm = ty::TypeAndMut { ty: ty, mutbl: mutbl };
3489             if tm.ty.references_error() {
3490                 tcx.types.err
3491             } else {
3492                 // Note: at this point, we cannot say what the best lifetime
3493                 // is to use for resulting pointer.  We want to use the
3494                 // shortest lifetime possible so as to avoid spurious borrowck
3495                 // errors.  Moreover, the longest lifetime will depend on the
3496                 // precise details of the value whose address is being taken
3497                 // (and how long it is valid), which we don't know yet until type
3498                 // inference is complete.
3499                 //
3500                 // Therefore, here we simply generate a region variable.  The
3501                 // region inferencer will then select the ultimate value.
3502                 // Finally, borrowck is charged with guaranteeing that the
3503                 // value whose address was taken can actually be made to live
3504                 // as long as it needs to live.
3505                 let region = self.next_region_var(infer::AddrOfRegion(expr.span));
3506                 tcx.mk_ref(region, tm)
3507             }
3508           }
3509           hir::ExprPath(ref qpath) => {
3510               let (def, opt_ty, segments) = self.resolve_ty_and_def_ufcs(qpath,
3511                                                                          expr.id, expr.span);
3512               let ty = if def != Def::Err {
3513                   self.instantiate_value_path(segments, opt_ty, def, expr.span, id)
3514               } else {
3515                   self.set_tainted_by_errors();
3516                   tcx.types.err
3517               };
3518
3519               // We always require that the type provided as the value for
3520               // a type parameter outlives the moment of instantiation.
3521               let substs = self.tables.borrow().node_substs(expr.id);
3522               self.add_wf_bounds(substs, expr);
3523
3524               ty
3525           }
3526           hir::ExprInlineAsm(_, ref outputs, ref inputs) => {
3527               for output in outputs {
3528                   self.check_expr(output);
3529               }
3530               for input in inputs {
3531                   self.check_expr(input);
3532               }
3533               tcx.mk_nil()
3534           }
3535           hir::ExprBreak(destination, ref expr_opt) => {
3536               if let Some(target_id) = destination.target_id.opt_id() {
3537                   let (e_ty, e_diverges, cause);
3538                   if let Some(ref e) = *expr_opt {
3539                       // If this is a break with a value, we need to type-check
3540                       // the expression. Get an expected type from the loop context.
3541                       let opt_coerce_to = {
3542                           let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
3543                           enclosing_breakables.find_breakable(target_id)
3544                                               .coerce
3545                                               .as_ref()
3546                                               .map(|coerce| coerce.expected_ty())
3547                       };
3548
3549                       // If the loop context is not a `loop { }`, then break with
3550                       // a value is illegal, and `opt_coerce_to` will be `None`.
3551                       // Just set expectation to error in that case.
3552                       let coerce_to = opt_coerce_to.unwrap_or(tcx.types.err);
3553
3554                       // Recurse without `enclosing_breakables` borrowed.
3555                       e_ty = self.check_expr_with_hint(e, coerce_to);
3556                       e_diverges = self.diverges.get();
3557                       cause = self.misc(e.span);
3558                   } else {
3559                       // Otherwise, this is a break *without* a value. That's
3560                       // always legal, and is equivalent to `break ()`.
3561                       e_ty = tcx.mk_nil();
3562                       e_diverges = Diverges::Maybe;
3563                       cause = self.misc(expr.span);
3564                   }
3565
3566                   // Now that we have type-checked `expr_opt`, borrow
3567                   // the `enclosing_loops` field and let's coerce the
3568                   // type of `expr_opt` into what is expected.
3569                   let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
3570                   let ctxt = enclosing_breakables.find_breakable(target_id);
3571                   if let Some(ref mut coerce) = ctxt.coerce {
3572                       if let Some(ref e) = *expr_opt {
3573                           coerce.coerce(self, &cause, e, e_ty, e_diverges);
3574                       } else {
3575                           assert!(e_ty.is_nil());
3576                           coerce.coerce_forced_unit(self, &cause, &mut |_| (), true);
3577                       }
3578                   } else {
3579                       // If `ctxt.coerce` is `None`, we can just ignore
3580                       // the type of the expresison.  This is because
3581                       // either this was a break *without* a value, in
3582                       // which case it is always a legal type (`()`), or
3583                       // else an error would have been flagged by the
3584                       // `loops` pass for using break with an expression
3585                       // where you are not supposed to.
3586                       assert!(expr_opt.is_none() || self.tcx.sess.err_count() > 0);
3587                   }
3588
3589                   ctxt.may_break = true;
3590               } else {
3591                   // Otherwise, we failed to find the enclosing loop;
3592                   // this can only happen if the `break` was not
3593                   // inside a loop at all, which is caught by the
3594                   // loop-checking pass.
3595                   assert!(self.tcx.sess.err_count() > 0);
3596               }
3597
3598               // the type of a `break` is always `!`, since it diverges
3599               tcx.types.never
3600           }
3601           hir::ExprAgain(_) => { tcx.types.never }
3602           hir::ExprRet(ref expr_opt) => {
3603             if self.ret_coercion.is_none() {
3604                 struct_span_err!(self.tcx.sess, expr.span, E0572,
3605                                  "return statement outside of function body").emit();
3606             } else if let Some(ref e) = *expr_opt {
3607                 self.check_return_expr(e);
3608             } else {
3609                 let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
3610                 let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
3611                 coercion.coerce_forced_unit(self, &cause, &mut |_| (), true);
3612             }
3613             tcx.types.never
3614           }
3615           hir::ExprAssign(ref lhs, ref rhs) => {
3616             let lhs_ty = self.check_expr_with_lvalue_pref(&lhs, PreferMutLvalue);
3617
3618             let tcx = self.tcx;
3619             if !tcx.expr_is_lval(&lhs) {
3620                 struct_span_err!(
3621                     tcx.sess, expr.span, E0070,
3622                     "invalid left-hand side expression")
3623                 .span_label(
3624                     expr.span,
3625                     "left-hand of expression not valid")
3626                 .emit();
3627             }
3628
3629             let rhs_ty = self.check_expr_coercable_to_type(&rhs, lhs_ty);
3630
3631             self.require_type_is_sized(lhs_ty, lhs.span, traits::AssignmentLhsSized);
3632
3633             if lhs_ty.references_error() || rhs_ty.references_error() {
3634                 tcx.types.err
3635             } else {
3636                 tcx.mk_nil()
3637             }
3638           }
3639           hir::ExprIf(ref cond, ref then_expr, ref opt_else_expr) => {
3640               self.check_then_else(&cond, then_expr, opt_else_expr.as_ref().map(|e| &**e),
3641                                    expr.span, expected)
3642           }
3643           hir::ExprWhile(ref cond, ref body, _) => {
3644               let ctxt = BreakableCtxt {
3645                   // cannot use break with a value from a while loop
3646                   coerce: None,
3647                   may_break: true,
3648               };
3649
3650               self.with_breakable_ctxt(expr.id, ctxt, || {
3651                   self.check_expr_has_type(&cond, tcx.types.bool);
3652                   let cond_diverging = self.diverges.get();
3653                   self.check_block_no_value(&body);
3654
3655                   // We may never reach the body so it diverging means nothing.
3656                   self.diverges.set(cond_diverging);
3657               });
3658
3659               self.tcx.mk_nil()
3660           }
3661           hir::ExprLoop(ref body, _, source) => {
3662               let coerce = match source {
3663                   // you can only use break with a value from a normal `loop { }`
3664                   hir::LoopSource::Loop => {
3665                       let coerce_to = expected.coercion_target_type(self, body.span);
3666                       Some(CoerceMany::new(coerce_to))
3667                   }
3668
3669                   hir::LoopSource::WhileLet |
3670                   hir::LoopSource::ForLoop => {
3671                       None
3672                   }
3673               };
3674
3675               let ctxt = BreakableCtxt {
3676                   coerce: coerce,
3677                   may_break: false, // will get updated if/when we find a `break`
3678               };
3679
3680               let (ctxt, ()) = self.with_breakable_ctxt(expr.id, ctxt, || {
3681                   self.check_block_no_value(&body);
3682               });
3683
3684               if ctxt.may_break {
3685                   // No way to know whether it's diverging because
3686                   // of a `break` or an outer `break` or `return.
3687                   self.diverges.set(Diverges::Maybe);
3688               }
3689
3690               // If we permit break with a value, then result type is
3691               // the LUB of the breaks (possibly ! if none); else, it
3692               // is nil. This makes sense because infinite loops
3693               // (which would have type !) are only possible iff we
3694               // permit break with a value [1].
3695               assert!(ctxt.coerce.is_some() || ctxt.may_break); // [1]
3696               ctxt.coerce.map(|c| c.complete(self)).unwrap_or(self.tcx.mk_nil())
3697           }
3698           hir::ExprMatch(ref discrim, ref arms, match_src) => {
3699             self.check_match(expr, &discrim, arms, expected, match_src)
3700           }
3701           hir::ExprClosure(capture, ref decl, body_id, _) => {
3702               self.check_expr_closure(expr, capture, &decl, body_id, expected)
3703           }
3704           hir::ExprBlock(ref body) => {
3705             self.check_block_with_expected(&body, expected)
3706           }
3707           hir::ExprCall(ref callee, ref args) => {
3708               self.check_call(expr, &callee, args, expected)
3709           }
3710           hir::ExprMethodCall(name, ref tps, ref args) => {
3711               self.check_method_call(expr, name, args, &tps[..], expected, lvalue_pref)
3712           }
3713           hir::ExprCast(ref e, ref t) => {
3714             // Find the type of `e`. Supply hints based on the type we are casting to,
3715             // if appropriate.
3716             let t_cast = self.to_ty(t);
3717             let t_cast = self.resolve_type_vars_if_possible(&t_cast);
3718             let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
3719             let t_cast = self.resolve_type_vars_if_possible(&t_cast);
3720             let diverges = self.diverges.get();
3721
3722             // Eagerly check for some obvious errors.
3723             if t_expr.references_error() || t_cast.references_error() {
3724                 tcx.types.err
3725             } else {
3726                 // Defer other checks until we're done type checking.
3727                 let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
3728                 match cast::CastCheck::new(self, e, t_expr, diverges, t_cast, t.span, expr.span) {
3729                     Ok(cast_check) => {
3730                         deferred_cast_checks.push(cast_check);
3731                         t_cast
3732                     }
3733                     Err(ErrorReported) => {
3734                         tcx.types.err
3735                     }
3736                 }
3737             }
3738           }
3739           hir::ExprType(ref e, ref t) => {
3740             let typ = self.to_ty(&t);
3741             self.check_expr_eq_type(&e, typ);
3742             typ
3743           }
3744           hir::ExprArray(ref args) => {
3745               let uty = expected.to_option(self).and_then(|uty| {
3746                   match uty.sty {
3747                       ty::TyArray(ty, _) | ty::TySlice(ty) => Some(ty),
3748                       _ => None
3749                   }
3750               });
3751
3752               let element_ty = if !args.is_empty() {
3753                   let coerce_to = uty.unwrap_or_else(
3754                       || self.next_ty_var(TypeVariableOrigin::TypeInference(expr.span)));
3755                   let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
3756                   assert_eq!(self.diverges.get(), Diverges::Maybe);
3757                   for e in args {
3758                       let e_ty = self.check_expr_with_hint(e, coerce_to);
3759                       let cause = self.misc(e.span);
3760                       coerce.coerce(self, &cause, e, e_ty, self.diverges.get());
3761                   }
3762                   coerce.complete(self)
3763               } else {
3764                   self.next_ty_var(TypeVariableOrigin::TypeInference(expr.span))
3765               };
3766               tcx.mk_array(element_ty, args.len())
3767           }
3768           hir::ExprRepeat(ref element, count) => {
3769             let count = eval_length(self.tcx, count, "repeat count")
3770                   .unwrap_or(0);
3771
3772             let uty = match expected {
3773                 ExpectHasType(uty) => {
3774                     match uty.sty {
3775                         ty::TyArray(ty, _) | ty::TySlice(ty) => Some(ty),
3776                         _ => None
3777                     }
3778                 }
3779                 _ => None
3780             };
3781
3782             let (element_ty, t) = match uty {
3783                 Some(uty) => {
3784                     self.check_expr_coercable_to_type(&element, uty);
3785                     (uty, uty)
3786                 }
3787                 None => {
3788                     let t: Ty = self.next_ty_var(TypeVariableOrigin::MiscVariable(element.span));
3789                     let element_ty = self.check_expr_has_type(&element, t);
3790                     (element_ty, t)
3791                 }
3792             };
3793
3794             if count > 1 {
3795                 // For [foo, ..n] where n > 1, `foo` must have
3796                 // Copy type:
3797                 let lang_item = self.tcx.require_lang_item(lang_items::CopyTraitLangItem);
3798                 self.require_type_meets(t, expr.span, traits::RepeatVec, lang_item);
3799             }
3800
3801             if element_ty.references_error() {
3802                 tcx.types.err
3803             } else {
3804                 tcx.mk_array(t, count)
3805             }
3806           }
3807           hir::ExprTup(ref elts) => {
3808             let flds = expected.only_has_type(self).and_then(|ty| {
3809                 match ty.sty {
3810                     ty::TyTuple(ref flds, _) => Some(&flds[..]),
3811                     _ => None
3812                 }
3813             });
3814
3815             let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| {
3816                 let t = match flds {
3817                     Some(ref fs) if i < fs.len() => {
3818                         let ety = fs[i];
3819                         self.check_expr_coercable_to_type(&e, ety);
3820                         ety
3821                     }
3822                     _ => {
3823                         self.check_expr_with_expectation(&e, NoExpectation)
3824                     }
3825                 };
3826                 t
3827             });
3828             let tuple = tcx.mk_tup(elt_ts_iter, false);
3829             if tuple.references_error() {
3830                 tcx.types.err
3831             } else {
3832                 tuple
3833             }
3834           }
3835           hir::ExprStruct(ref qpath, ref fields, ref base_expr) => {
3836             self.check_expr_struct(expr, expected, qpath, fields, base_expr)
3837           }
3838           hir::ExprField(ref base, ref field) => {
3839             self.check_field(expr, lvalue_pref, &base, field)
3840           }
3841           hir::ExprTupField(ref base, idx) => {
3842             self.check_tup_field(expr, lvalue_pref, &base, idx)
3843           }
3844           hir::ExprIndex(ref base, ref idx) => {
3845               let base_t = self.check_expr_with_lvalue_pref(&base, lvalue_pref);
3846               let idx_t = self.check_expr(&idx);
3847
3848               if base_t.references_error() {
3849                   base_t
3850               } else if idx_t.references_error() {
3851                   idx_t
3852               } else {
3853                   let base_t = self.structurally_resolved_type(expr.span, base_t);
3854                   match self.lookup_indexing(expr, base, base_t, idx_t, lvalue_pref) {
3855                       Some((index_ty, element_ty)) => {
3856                           self.demand_coerce(idx, idx_t, index_ty);
3857                           element_ty
3858                       }
3859                       None => {
3860                           let mut err = self.type_error_struct(
3861                               expr.span,
3862                               |actual| {
3863                                   format!("cannot index a value of type `{}`",
3864                                           actual)
3865                               },
3866                               base_t);
3867                           // Try to give some advice about indexing tuples.
3868                           if let ty::TyTuple(..) = base_t.sty {
3869                               let mut needs_note = true;
3870                               // If the index is an integer, we can show the actual
3871                               // fixed expression:
3872                               if let hir::ExprLit(ref lit) = idx.node {
3873                                   if let ast::LitKind::Int(i,
3874                                             ast::LitIntType::Unsuffixed) = lit.node {
3875                                       let snip = tcx.sess.codemap().span_to_snippet(base.span);
3876                                       if let Ok(snip) = snip {
3877                                           err.span_suggestion(expr.span,
3878                                                               "to access tuple elements, use",
3879                                                               format!("{}.{}", snip, i));
3880                                           needs_note = false;
3881                                       }
3882                                   }
3883                               }
3884                               if needs_note {
3885                                   err.help("to access tuple elements, use tuple indexing \
3886                                             syntax (e.g. `tuple.0`)");
3887                               }
3888                           }
3889                           err.emit();
3890                           self.tcx.types.err
3891                       }
3892                   }
3893               }
3894            }
3895         }
3896     }
3897
3898     // Finish resolving a path in a struct expression or pattern `S::A { .. }` if necessary.
3899     // The newly resolved definition is written into `type_dependent_defs`.
3900     fn finish_resolving_struct_path(&self,
3901                                     qpath: &hir::QPath,
3902                                     path_span: Span,
3903                                     node_id: ast::NodeId)
3904                                     -> (Def, Ty<'tcx>)
3905     {
3906         match *qpath {
3907             hir::QPath::Resolved(ref maybe_qself, ref path) => {
3908                 let opt_self_ty = maybe_qself.as_ref().map(|qself| self.to_ty(qself));
3909                 let ty = AstConv::def_to_ty(self, opt_self_ty, path, true);
3910                 (path.def, ty)
3911             }
3912             hir::QPath::TypeRelative(ref qself, ref segment) => {
3913                 let ty = self.to_ty(qself);
3914
3915                 let def = if let hir::TyPath(hir::QPath::Resolved(_, ref path)) = qself.node {
3916                     path.def
3917                 } else {
3918                     Def::Err
3919                 };
3920                 let (ty, def) = AstConv::associated_path_def_to_ty(self, node_id, path_span,
3921                                                                    ty, def, segment);
3922
3923                 // Write back the new resolution.
3924                 self.tables.borrow_mut().type_dependent_defs.insert(node_id, def);
3925
3926                 (def, ty)
3927             }
3928         }
3929     }
3930
3931     // Resolve associated value path into a base type and associated constant or method definition.
3932     // The newly resolved definition is written into `type_dependent_defs`.
3933     pub fn resolve_ty_and_def_ufcs<'b>(&self,
3934                                        qpath: &'b hir::QPath,
3935                                        node_id: ast::NodeId,
3936                                        span: Span)
3937                                        -> (Def, Option<Ty<'tcx>>, &'b [hir::PathSegment])
3938     {
3939         let (ty, item_segment) = match *qpath {
3940             hir::QPath::Resolved(ref opt_qself, ref path) => {
3941                 return (path.def,
3942                         opt_qself.as_ref().map(|qself| self.to_ty(qself)),
3943                         &path.segments[..]);
3944             }
3945             hir::QPath::TypeRelative(ref qself, ref segment) => {
3946                 (self.to_ty(qself), segment)
3947             }
3948         };
3949         let item_name = item_segment.name;
3950         let def = match self.resolve_ufcs(span, item_name, ty, node_id) {
3951             Ok(def) => def,
3952             Err(error) => {
3953                 let def = match error {
3954                     method::MethodError::PrivateMatch(def) => def,
3955                     _ => Def::Err,
3956                 };
3957                 if item_name != keywords::Invalid.name() {
3958                     self.report_method_error(span, ty, item_name, None, error, None);
3959                 }
3960                 def
3961             }
3962         };
3963
3964         // Write back the new resolution.
3965         self.tables.borrow_mut().type_dependent_defs.insert(node_id, def);
3966         (def, Some(ty), slice::ref_slice(&**item_segment))
3967     }
3968
3969     pub fn check_decl_initializer(&self,
3970                                   local: &'gcx hir::Local,
3971                                   init: &'gcx hir::Expr) -> Ty<'tcx>
3972     {
3973         let ref_bindings = local.pat.contains_ref_binding();
3974
3975         let local_ty = self.local_ty(init.span, local.id);
3976         if let Some(m) = ref_bindings {
3977             // Somewhat subtle: if we have a `ref` binding in the pattern,
3978             // we want to avoid introducing coercions for the RHS. This is
3979             // both because it helps preserve sanity and, in the case of
3980             // ref mut, for soundness (issue #23116). In particular, in
3981             // the latter case, we need to be clear that the type of the
3982             // referent for the reference that results is *equal to* the
3983             // type of the lvalue it is referencing, and not some
3984             // supertype thereof.
3985             let init_ty = self.check_expr_with_lvalue_pref(init, LvaluePreference::from_mutbl(m));
3986             self.demand_eqtype(init.span, init_ty, local_ty);
3987             init_ty
3988         } else {
3989             self.check_expr_coercable_to_type(init, local_ty)
3990         }
3991     }
3992
3993     pub fn check_decl_local(&self, local: &'gcx hir::Local)  {
3994         let t = self.local_ty(local.span, local.id);
3995         self.write_ty(local.id, t);
3996
3997         if let Some(ref init) = local.init {
3998             let init_ty = self.check_decl_initializer(local, &init);
3999             if init_ty.references_error() {
4000                 self.write_ty(local.id, init_ty);
4001             }
4002         }
4003
4004         self.check_pat(&local.pat, t);
4005         let pat_ty = self.node_ty(local.pat.id);
4006         if pat_ty.references_error() {
4007             self.write_ty(local.id, pat_ty);
4008         }
4009     }
4010
4011     pub fn check_stmt(&self, stmt: &'gcx hir::Stmt) {
4012         // Don't do all the complex logic below for DeclItem.
4013         match stmt.node {
4014             hir::StmtDecl(ref decl, _) => {
4015                 match decl.node {
4016                     hir::DeclLocal(_) => {}
4017                     hir::DeclItem(_) => {
4018                         return;
4019                     }
4020                 }
4021             }
4022             hir::StmtExpr(..) | hir::StmtSemi(..) => {}
4023         }
4024
4025         self.warn_if_unreachable(stmt.node.id(), stmt.span, "statement");
4026
4027         // Hide the outer diverging and has_errors flags.
4028         let old_diverges = self.diverges.get();
4029         let old_has_errors = self.has_errors.get();
4030         self.diverges.set(Diverges::Maybe);
4031         self.has_errors.set(false);
4032
4033         match stmt.node {
4034             hir::StmtDecl(ref decl, _) => {
4035                 match decl.node {
4036                     hir::DeclLocal(ref l) => {
4037                         self.check_decl_local(&l);
4038                     }
4039                     hir::DeclItem(_) => {/* ignore for now */}
4040                 }
4041             }
4042             hir::StmtExpr(ref expr, _) => {
4043                 // Check with expected type of ()
4044                 self.check_expr_has_type(&expr, self.tcx.mk_nil());
4045             }
4046             hir::StmtSemi(ref expr, _) => {
4047                 self.check_expr(&expr);
4048             }
4049         }
4050
4051         // Combine the diverging and has_error flags.
4052         self.diverges.set(self.diverges.get() | old_diverges);
4053         self.has_errors.set(self.has_errors.get() | old_has_errors);
4054     }
4055
4056     pub fn check_block_no_value(&self, blk: &'gcx hir::Block)  {
4057         let unit = self.tcx.mk_nil();
4058         let ty = self.check_block_with_expected(blk, ExpectHasType(unit));
4059
4060         // if the block produces a `!` value, that can always be
4061         // (effectively) coerced to unit.
4062         if !ty.is_never() {
4063             self.demand_suptype(blk.span, unit, ty);
4064         }
4065     }
4066
4067     fn check_block_with_expected(&self,
4068                                  blk: &'gcx hir::Block,
4069                                  expected: Expectation<'tcx>) -> Ty<'tcx> {
4070         let prev = {
4071             let mut fcx_ps = self.ps.borrow_mut();
4072             let unsafety_state = fcx_ps.recurse(blk);
4073             replace(&mut *fcx_ps, unsafety_state)
4074         };
4075
4076         // In some cases, blocks have just one exit, but other blocks
4077         // can be targeted by multiple breaks. This cannot happen in
4078         // normal Rust syntax today, but it can happen when we desugar
4079         // a `do catch { ... }` expression.
4080         //
4081         // Example 1:
4082         //
4083         //    'a: { if true { break 'a Err(()); } Ok(()) }
4084         //
4085         // Here we would wind up with two coercions, one from
4086         // `Err(())` and the other from the tail expression
4087         // `Ok(())`. If the tail expression is omitted, that's a
4088         // "forced unit" -- unless the block diverges, in which
4089         // case we can ignore the tail expression (e.g., `'a: {
4090         // break 'a 22; }` would not force the type of the block
4091         // to be `()`).
4092         let tail_expr = blk.expr.as_ref();
4093         let coerce_to_ty = expected.coercion_target_type(self, blk.span);
4094         let coerce = if blk.targeted_by_break {
4095             CoerceMany::new(coerce_to_ty)
4096         } else {
4097             let tail_expr: &[P<hir::Expr>] = match tail_expr {
4098                 Some(e) => ref_slice(e),
4099                 None => &[],
4100             };
4101             CoerceMany::with_coercion_sites(coerce_to_ty, tail_expr)
4102         };
4103
4104         let ctxt = BreakableCtxt {
4105             coerce: Some(coerce),
4106             may_break: false,
4107         };
4108
4109         let (ctxt, ()) = self.with_breakable_ctxt(blk.id, ctxt, || {
4110             for s in &blk.stmts {
4111                 self.check_stmt(s);
4112             }
4113
4114             // check the tail expression **without** holding the
4115             // `enclosing_breakables` lock below.
4116             let tail_expr_ty = tail_expr.map(|t| self.check_expr_with_expectation(t, expected));
4117
4118             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4119             let mut ctxt = enclosing_breakables.find_breakable(blk.id);
4120             let mut coerce = ctxt.coerce.as_mut().unwrap();
4121             if let Some(tail_expr_ty) = tail_expr_ty {
4122                 let tail_expr = tail_expr.unwrap();
4123                 coerce.coerce(self,
4124                               &self.misc(tail_expr.span),
4125                               tail_expr,
4126                               tail_expr_ty,
4127                               self.diverges.get());
4128             } else {
4129                 // Subtle: if there is no explicit tail expression,
4130                 // that is typically equivalent to a tail expression
4131                 // of `()` -- except if the block diverges. In that
4132                 // case, there is no value supplied from the tail
4133                 // expression (assuming there are no other breaks,
4134                 // this implies that the type of the block will be
4135                 // `!`).
4136                 //
4137                 // #41425 -- label the implicit `()` as being the
4138                 // "found type" here, rather than the "expected type".
4139                 if !self.diverges.get().always() {
4140                     coerce.coerce_forced_unit(self, &self.misc(blk.span), &mut |err| {
4141                         if let Some(expected_ty) = expected.only_has_type(self) {
4142                             self.consider_hint_about_removing_semicolon(blk,
4143                                                                         expected_ty,
4144                                                                         err);
4145                         }
4146                     }, false);
4147                 }
4148             }
4149         });
4150
4151         let mut ty = ctxt.coerce.unwrap().complete(self);
4152
4153         if self.has_errors.get() || ty.references_error() {
4154             ty = self.tcx.types.err
4155         }
4156
4157         self.write_ty(blk.id, ty);
4158
4159         *self.ps.borrow_mut() = prev;
4160         ty
4161     }
4162
4163     /// A common error is to add an extra semicolon:
4164     ///
4165     /// ```
4166     /// fn foo() -> usize {
4167     ///     22;
4168     /// }
4169     /// ```
4170     ///
4171     /// This routine checks if the final statement in a block is an
4172     /// expression with an explicit semicolon whose type is compatible
4173     /// with `expected_ty`. If so, it suggests removing the semicolon.
4174     fn consider_hint_about_removing_semicolon(&self,
4175                                               blk: &'gcx hir::Block,
4176                                               expected_ty: Ty<'tcx>,
4177                                               err: &mut DiagnosticBuilder) {
4178         // Be helpful when the user wrote `{... expr;}` and
4179         // taking the `;` off is enough to fix the error.
4180         let last_stmt = match blk.stmts.last() {
4181             Some(s) => s,
4182             None => return,
4183         };
4184         let last_expr = match last_stmt.node {
4185             hir::StmtSemi(ref e, _) => e,
4186             _ => return,
4187         };
4188         let last_expr_ty = self.expr_ty(last_expr);
4189         if self.can_sub(self.param_env, last_expr_ty, expected_ty).is_err() {
4190             return;
4191         }
4192         let original_span = original_sp(last_stmt.span, blk.span);
4193         let span_semi = Span {
4194             lo: original_span.hi - BytePos(1),
4195             hi: original_span.hi,
4196             ctxt: original_span.ctxt,
4197         };
4198         err.span_help(span_semi, "consider removing this semicolon:");
4199     }
4200
4201     // Instantiates the given path, which must refer to an item with the given
4202     // number of type parameters and type.
4203     pub fn instantiate_value_path(&self,
4204                                   segments: &[hir::PathSegment],
4205                                   opt_self_ty: Option<Ty<'tcx>>,
4206                                   def: Def,
4207                                   span: Span,
4208                                   node_id: ast::NodeId)
4209                                   -> Ty<'tcx> {
4210         debug!("instantiate_value_path(path={:?}, def={:?}, node_id={})",
4211                segments,
4212                def,
4213                node_id);
4214
4215         // We need to extract the type parameters supplied by the user in
4216         // the path `path`. Due to the current setup, this is a bit of a
4217         // tricky-process; the problem is that resolve only tells us the
4218         // end-point of the path resolution, and not the intermediate steps.
4219         // Luckily, we can (at least for now) deduce the intermediate steps
4220         // just from the end-point.
4221         //
4222         // There are basically four cases to consider:
4223         //
4224         // 1. Reference to a constructor of enum variant or struct:
4225         //
4226         //        struct Foo<T>(...)
4227         //        enum E<T> { Foo(...) }
4228         //
4229         //    In these cases, the parameters are declared in the type
4230         //    space.
4231         //
4232         // 2. Reference to a fn item or a free constant:
4233         //
4234         //        fn foo<T>() { }
4235         //
4236         //    In this case, the path will again always have the form
4237         //    `a::b::foo::<T>` where only the final segment should have
4238         //    type parameters. However, in this case, those parameters are
4239         //    declared on a value, and hence are in the `FnSpace`.
4240         //
4241         // 3. Reference to a method or an associated constant:
4242         //
4243         //        impl<A> SomeStruct<A> {
4244         //            fn foo<B>(...)
4245         //        }
4246         //
4247         //    Here we can have a path like
4248         //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
4249         //    may appear in two places. The penultimate segment,
4250         //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
4251         //    final segment, `foo::<B>` contains parameters in fn space.
4252         //
4253         // 4. Reference to a local variable
4254         //
4255         //    Local variables can't have any type parameters.
4256         //
4257         // The first step then is to categorize the segments appropriately.
4258
4259         assert!(!segments.is_empty());
4260
4261         let mut ufcs_associated = None;
4262         let mut type_segment = None;
4263         let mut fn_segment = None;
4264         match def {
4265             // Case 1. Reference to a struct/variant constructor.
4266             Def::StructCtor(def_id, ..) |
4267             Def::VariantCtor(def_id, ..) => {
4268                 // Everything but the final segment should have no
4269                 // parameters at all.
4270                 let mut generics = self.tcx.generics_of(def_id);
4271                 if let Some(def_id) = generics.parent {
4272                     // Variant and struct constructors use the
4273                     // generics of their parent type definition.
4274                     generics = self.tcx.generics_of(def_id);
4275                 }
4276                 type_segment = Some((segments.last().unwrap(), generics));
4277             }
4278
4279             // Case 2. Reference to a top-level value.
4280             Def::Fn(def_id) |
4281             Def::Const(def_id) |
4282             Def::Static(def_id, _) => {
4283                 fn_segment = Some((segments.last().unwrap(),
4284                                    self.tcx.generics_of(def_id)));
4285             }
4286
4287             // Case 3. Reference to a method or associated const.
4288             Def::Method(def_id) |
4289             Def::AssociatedConst(def_id) => {
4290                 let container = self.tcx.associated_item(def_id).container;
4291                 match container {
4292                     ty::TraitContainer(trait_did) => {
4293                         callee::check_legal_trait_for_method_call(self.tcx, span, trait_did)
4294                     }
4295                     ty::ImplContainer(_) => {}
4296                 }
4297
4298                 let generics = self.tcx.generics_of(def_id);
4299                 if segments.len() >= 2 {
4300                     let parent_generics = self.tcx.generics_of(generics.parent.unwrap());
4301                     type_segment = Some((&segments[segments.len() - 2], parent_generics));
4302                 } else {
4303                     // `<T>::assoc` will end up here, and so can `T::assoc`.
4304                     let self_ty = opt_self_ty.expect("UFCS sugared assoc missing Self");
4305                     ufcs_associated = Some((container, self_ty));
4306                 }
4307                 fn_segment = Some((segments.last().unwrap(), generics));
4308             }
4309
4310             // Case 4. Local variable, no generics.
4311             Def::Local(..) | Def::Upvar(..) => {}
4312
4313             _ => bug!("unexpected definition: {:?}", def),
4314         }
4315
4316         debug!("type_segment={:?} fn_segment={:?}", type_segment, fn_segment);
4317
4318         // Now that we have categorized what space the parameters for each
4319         // segment belong to, let's sort out the parameters that the user
4320         // provided (if any) into their appropriate spaces. We'll also report
4321         // errors if type parameters are provided in an inappropriate place.
4322         let poly_segments = type_segment.is_some() as usize +
4323                             fn_segment.is_some() as usize;
4324         AstConv::prohibit_type_params(self, &segments[..segments.len() - poly_segments]);
4325
4326         match def {
4327             Def::Local(def_id) | Def::Upvar(def_id, ..) => {
4328                 let nid = self.tcx.hir.as_local_node_id(def_id).unwrap();
4329                 let ty = self.local_ty(span, nid);
4330                 let ty = self.normalize_associated_types_in(span, &ty);
4331                 self.write_ty(node_id, ty);
4332                 return ty;
4333             }
4334             _ => {}
4335         }
4336
4337         // Now we have to compare the types that the user *actually*
4338         // provided against the types that were *expected*. If the user
4339         // did not provide any types, then we want to substitute inference
4340         // variables. If the user provided some types, we may still need
4341         // to add defaults. If the user provided *too many* types, that's
4342         // a problem.
4343         self.check_path_parameter_count(span, &mut type_segment);
4344         self.check_path_parameter_count(span, &mut fn_segment);
4345
4346         let (fn_start, has_self) = match (type_segment, fn_segment) {
4347             (_, Some((_, generics))) => {
4348                 (generics.parent_count(), generics.has_self)
4349             }
4350             (Some((_, generics)), None) => {
4351                 (generics.own_count(), generics.has_self)
4352             }
4353             (None, None) => (0, false)
4354         };
4355         let substs = Substs::for_item(self.tcx, def.def_id(), |def, _| {
4356             let mut i = def.index as usize;
4357
4358             let segment = if i < fn_start {
4359                 i -= has_self as usize;
4360                 type_segment
4361             } else {
4362                 i -= fn_start;
4363                 fn_segment
4364             };
4365             let lifetimes = match segment.map(|(s, _)| &s.parameters) {
4366                 Some(&hir::AngleBracketedParameters(ref data)) => &data.lifetimes[..],
4367                 Some(&hir::ParenthesizedParameters(_)) => bug!(),
4368                 None => &[]
4369             };
4370
4371             if let Some(lifetime) = lifetimes.get(i) {
4372                 AstConv::ast_region_to_region(self, lifetime, Some(def))
4373             } else {
4374                 self.re_infer(span, Some(def)).unwrap()
4375             }
4376         }, |def, substs| {
4377             let mut i = def.index as usize;
4378
4379             let segment = if i < fn_start {
4380                 // Handle Self first, so we can adjust the index to match the AST.
4381                 if has_self && i == 0 {
4382                     return opt_self_ty.unwrap_or_else(|| {
4383                         self.type_var_for_def(span, def, substs)
4384                     });
4385                 }
4386                 i -= has_self as usize;
4387                 type_segment
4388             } else {
4389                 i -= fn_start;
4390                 fn_segment
4391             };
4392             let (types, infer_types) = match segment.map(|(s, _)| &s.parameters) {
4393                 Some(&hir::AngleBracketedParameters(ref data)) => {
4394                     (&data.types[..], data.infer_types)
4395                 }
4396                 Some(&hir::ParenthesizedParameters(_)) => bug!(),
4397                 None => (&[][..], true)
4398             };
4399
4400             // Skip over the lifetimes in the same segment.
4401             if let Some((_, generics)) = segment {
4402                 i -= generics.regions.len();
4403             }
4404
4405             if let Some(ast_ty) = types.get(i) {
4406                 // A provided type parameter.
4407                 self.to_ty(ast_ty)
4408             } else if !infer_types && def.has_default {
4409                 // No type parameter provided, but a default exists.
4410                 let default = self.tcx.type_of(def.def_id);
4411                 self.normalize_ty(
4412                     span,
4413                     default.subst_spanned(self.tcx, substs, Some(span))
4414                 )
4415             } else {
4416                 // No type parameters were provided, we can infer all.
4417                 // This can also be reached in some error cases:
4418                 // We prefer to use inference variables instead of
4419                 // TyError to let type inference recover somewhat.
4420                 self.type_var_for_def(span, def, substs)
4421             }
4422         });
4423
4424         // The things we are substituting into the type should not contain
4425         // escaping late-bound regions, and nor should the base type scheme.
4426         let ty = self.tcx.type_of(def.def_id());
4427         assert!(!substs.has_escaping_regions());
4428         assert!(!ty.has_escaping_regions());
4429
4430         // Add all the obligations that are required, substituting and
4431         // normalized appropriately.
4432         let bounds = self.instantiate_bounds(span, def.def_id(), &substs);
4433         self.add_obligations_for_parameters(
4434             traits::ObligationCause::new(span, self.body_id, traits::ItemObligation(def.def_id())),
4435             &bounds);
4436
4437         // Substitute the values for the type parameters into the type of
4438         // the referenced item.
4439         let ty_substituted = self.instantiate_type_scheme(span, &substs, &ty);
4440
4441         if let Some((ty::ImplContainer(impl_def_id), self_ty)) = ufcs_associated {
4442             // In the case of `Foo<T>::method` and `<Foo<T>>::method`, if `method`
4443             // is inherent, there is no `Self` parameter, instead, the impl needs
4444             // type parameters, which we can infer by unifying the provided `Self`
4445             // with the substituted impl type.
4446             let ty = self.tcx.type_of(impl_def_id);
4447
4448             let impl_ty = self.instantiate_type_scheme(span, &substs, &ty);
4449             match self.at(&self.misc(span), self.param_env).sup(impl_ty, self_ty) {
4450                 Ok(ok) => self.register_infer_ok_obligations(ok),
4451                 Err(_) => {
4452                     span_bug!(span,
4453                         "instantiate_value_path: (UFCS) {:?} was a subtype of {:?} but now is not?",
4454                         self_ty,
4455                         impl_ty);
4456                 }
4457             }
4458         }
4459
4460         debug!("instantiate_value_path: type of {:?} is {:?}",
4461                node_id,
4462                ty_substituted);
4463         self.write_substs(node_id, substs);
4464         ty_substituted
4465     }
4466
4467     /// Report errors if the provided parameters are too few or too many.
4468     fn check_path_parameter_count(&self,
4469                                   span: Span,
4470                                   segment: &mut Option<(&hir::PathSegment, &ty::Generics)>) {
4471         let (lifetimes, types, infer_types, bindings) = {
4472             match segment.map(|(s, _)| &s.parameters) {
4473                 Some(&hir::AngleBracketedParameters(ref data)) => {
4474                     (&data.lifetimes[..], &data.types[..], data.infer_types, &data.bindings[..])
4475                 }
4476                 Some(&hir::ParenthesizedParameters(_)) => {
4477                     AstConv::prohibit_parenthesized_params(self, &segment.as_ref().unwrap().0,
4478                                                            false);
4479                     (&[][..], &[][..], true, &[][..])
4480                 }
4481                 None => (&[][..], &[][..], true, &[][..])
4482             }
4483         };
4484
4485         let count_lifetime_params = |n| {
4486             format!("{} lifetime parameter{}", n, if n == 1 { "" } else { "s" })
4487         };
4488         let count_type_params = |n| {
4489             format!("{} type parameter{}", n, if n == 1 { "" } else { "s" })
4490         };
4491
4492         // Check provided lifetime parameters.
4493         let lifetime_defs = segment.map_or(&[][..], |(_, generics)| &generics.regions);
4494         if lifetimes.len() > lifetime_defs.len() {
4495             let expected_text = count_lifetime_params(lifetime_defs.len());
4496             let actual_text = count_lifetime_params(lifetimes.len());
4497             struct_span_err!(self.tcx.sess, span, E0088,
4498                              "too many lifetime parameters provided: \
4499                               expected at most {}, found {}",
4500                              expected_text, actual_text)
4501                 .span_label(span, format!("expected {}", expected_text))
4502                 .emit();
4503         } else if lifetimes.len() > 0 && lifetimes.len() < lifetime_defs.len() {
4504             let expected_text = count_lifetime_params(lifetime_defs.len());
4505             let actual_text = count_lifetime_params(lifetimes.len());
4506             struct_span_err!(self.tcx.sess, span, E0090,
4507                              "too few lifetime parameters provided: \
4508                               expected {}, found {}",
4509                              expected_text, actual_text)
4510                 .span_label(span, format!("expected {}", expected_text))
4511                 .emit();
4512         }
4513
4514         // The case where there is not enough lifetime parameters is not checked,
4515         // because this is not possible - a function never takes lifetime parameters.
4516         // See discussion for Pull Request 36208.
4517
4518         // Check provided type parameters.
4519         let type_defs = segment.map_or(&[][..], |(_, generics)| {
4520             if generics.parent.is_none() {
4521                 &generics.types[generics.has_self as usize..]
4522             } else {
4523                 &generics.types
4524             }
4525         });
4526         let required_len = type_defs.iter().take_while(|d| !d.has_default).count();
4527         if types.len() > type_defs.len() {
4528             let span = types[type_defs.len()].span;
4529             let expected_text = count_type_params(type_defs.len());
4530             let actual_text = count_type_params(types.len());
4531             struct_span_err!(self.tcx.sess, span, E0087,
4532                              "too many type parameters provided: \
4533                               expected at most {}, found {}",
4534                              expected_text, actual_text)
4535                 .span_label(span, format!("expected {}", expected_text))
4536                 .emit();
4537
4538             // To prevent derived errors to accumulate due to extra
4539             // type parameters, we force instantiate_value_path to
4540             // use inference variables instead of the provided types.
4541             *segment = None;
4542         } else if !infer_types && types.len() < required_len {
4543             let expected_text = count_type_params(required_len);
4544             let actual_text = count_type_params(types.len());
4545             struct_span_err!(self.tcx.sess, span, E0089,
4546                              "too few type parameters provided: \
4547                               expected {}, found {}",
4548                              expected_text, actual_text)
4549                 .span_label(span, format!("expected {}", expected_text))
4550                 .emit();
4551         }
4552
4553         if !bindings.is_empty() {
4554             span_err!(self.tcx.sess, bindings[0].span, E0182,
4555                       "unexpected binding of associated item in expression path \
4556                        (only allowed in type paths)");
4557         }
4558     }
4559
4560     fn structurally_resolve_type_or_else<F>(&self, sp: Span, ty: Ty<'tcx>, f: F)
4561                                             -> Ty<'tcx>
4562         where F: Fn() -> Ty<'tcx>
4563     {
4564         let mut ty = self.resolve_type_vars_with_obligations(ty);
4565
4566         if ty.is_ty_var() {
4567             let alternative = f();
4568
4569             // If not, error.
4570             if alternative.is_ty_var() || alternative.references_error() {
4571                 if !self.is_tainted_by_errors() {
4572                     self.type_error_message(sp, |_actual| {
4573                         "the type of this value must be known in this context".to_string()
4574                     }, ty);
4575                 }
4576                 self.demand_suptype(sp, self.tcx.types.err, ty);
4577                 ty = self.tcx.types.err;
4578             } else {
4579                 self.demand_suptype(sp, alternative, ty);
4580                 ty = alternative;
4581             }
4582         }
4583
4584         ty
4585     }
4586
4587     // Resolves `typ` by a single level if `typ` is a type variable.  If no
4588     // resolution is possible, then an error is reported.
4589     pub fn structurally_resolved_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
4590         self.structurally_resolve_type_or_else(sp, ty, || {
4591             self.tcx.types.err
4592         })
4593     }
4594
4595     fn with_breakable_ctxt<F: FnOnce() -> R, R>(&self, id: ast::NodeId,
4596                                         ctxt: BreakableCtxt<'gcx, 'tcx>, f: F)
4597                                    -> (BreakableCtxt<'gcx, 'tcx>, R) {
4598         let index;
4599         {
4600             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4601             index = enclosing_breakables.stack.len();
4602             enclosing_breakables.by_id.insert(id, index);
4603             enclosing_breakables.stack.push(ctxt);
4604         }
4605         let result = f();
4606         let ctxt = {
4607             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4608             debug_assert!(enclosing_breakables.stack.len() == index + 1);
4609             enclosing_breakables.by_id.remove(&id).expect("missing breakable context");
4610             enclosing_breakables.stack.pop().expect("missing breakable context")
4611         };
4612         (ctxt, result)
4613     }
4614 }
4615
4616 pub fn check_bounds_are_used<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
4617                                        generics: &hir::Generics,
4618                                        ty: Ty<'tcx>) {
4619     debug!("check_bounds_are_used(n_tps={}, ty={:?})",
4620            generics.ty_params.len(),  ty);
4621
4622     // make a vector of booleans initially false, set to true when used
4623     if generics.ty_params.is_empty() { return; }
4624     let mut tps_used = vec![false; generics.ty_params.len()];
4625
4626     for leaf_ty in ty.walk() {
4627         if let ty::TyParam(ParamTy {idx, ..}) = leaf_ty.sty {
4628             debug!("Found use of ty param num {}", idx);
4629             tps_used[idx as usize - generics.lifetimes.len()] = true;
4630         }
4631     }
4632
4633     for (&used, param) in tps_used.iter().zip(&generics.ty_params) {
4634         if !used {
4635             struct_span_err!(tcx.sess, param.span, E0091,
4636                 "type parameter `{}` is unused",
4637                 param.name)
4638                 .span_label(param.span, "unused type parameter")
4639                 .emit();
4640         }
4641     }
4642 }