]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/mod.rs
ergonomic improvements to the methods in infcx
[rust.git] / src / librustc_typeck / check / mod.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 /*
12
13 # check.rs
14
15 Within the check phase of type check, we check each item one at a time
16 (bodies of function expressions are checked as part of the containing
17 function).  Inference is used to supply types wherever they are
18 unknown.
19
20 By far the most complex case is checking the body of a function. This
21 can be broken down into several distinct phases:
22
23 - gather: creates type variables to represent the type of each local
24   variable and pattern binding.
25
26 - main: the main pass does the lion's share of the work: it
27   determines the types of all expressions, resolves
28   methods, checks for most invalid conditions, and so forth.  In
29   some cases, where a type is unknown, it may create a type or region
30   variable and use that as the type of an expression.
31
32   In the process of checking, various constraints will be placed on
33   these type variables through the subtyping relationships requested
34   through the `demand` module.  The `infer` module is in charge
35   of resolving those constraints.
36
37 - regionck: after main is complete, the regionck pass goes over all
38   types looking for regions and making sure that they did not escape
39   into places they are not in scope.  This may also influence the
40   final assignments of the various region variables if there is some
41   flexibility.
42
43 - vtable: find and records the impls to use for each trait bound that
44   appears on a type parameter.
45
46 - writeback: writes the final types within a function body, replacing
47   type variables with their final inferred types.  These final types
48   are written into the `tcx.node_types` table, which should *never* contain
49   any reference to a type variable.
50
51 ## Intermediate types
52
53 While type checking a function, the intermediate types for the
54 expressions, blocks, and so forth contained within the function are
55 stored in `fcx.node_types` and `fcx.node_substs`.  These types
56 may contain unresolved type variables.  After type checking is
57 complete, the functions in the writeback module are used to take the
58 types from this table, resolve them, and then write them into their
59 permanent home in the type context `tcx`.
60
61 This means that during inferencing you should use `fcx.write_ty()`
62 and `fcx.expr_ty()` / `fcx.node_ty()` to write/obtain the types of
63 nodes within the function.
64
65 The types of top-level items, which never contain unbound type
66 variables, are stored directly into the `tcx` tables.
67
68 n.b.: A type variable is not the same thing as a type parameter.  A
69 type variable is rather an "instance" of a type parameter: that is,
70 given a generic function `fn foo<T>(t: T)`: while checking the
71 function `foo`, the type `ty_param(0)` refers to the type `T`, which
72 is treated in abstract.  When `foo()` is called, however, `T` will be
73 substituted for a fresh type variable `N`.  This variable will
74 eventually be resolved to some concrete type (which might itself be
75 type parameter).
76
77 */
78
79 pub use self::Expectation::*;
80 use self::autoderef::Autoderef;
81 use self::callee::DeferredCallResolution;
82 use self::coercion::{CoerceMany, DynamicCoerceMany};
83 pub use self::compare_method::{compare_impl_method, compare_const_impl};
84 use self::method::MethodCallee;
85 use self::TupleArgumentsFlag::*;
86
87 use astconv::AstConv;
88 use fmt_macros::{Parser, Piece, Position};
89 use hir::def::{Def, CtorKind};
90 use hir::def_id::{CrateNum, DefId, LOCAL_CRATE};
91 use rustc_back::slice::ref_slice;
92 use rustc::infer::{self, InferCtxt, InferOk, RegionVariableOrigin};
93 use rustc::infer::type_variable::{TypeVariableOrigin};
94 use rustc::middle::region::CodeExtent;
95 use rustc::ty::subst::{Kind, Subst, Substs};
96 use rustc::traits::{self, FulfillmentContext, ObligationCause, ObligationCauseCode};
97 use rustc::ty::{ParamTy, LvaluePreference, NoPreference, PreferMutLvalue};
98 use rustc::ty::{self, Ty, TyCtxt, Visibility};
99 use rustc::ty::adjustment::{Adjust, Adjustment, AutoBorrow};
100 use rustc::ty::fold::{BottomUpFolder, TypeFoldable};
101 use rustc::ty::maps::Providers;
102 use rustc::ty::util::{Representability, IntTypeExt};
103 use errors::DiagnosticBuilder;
104 use require_c_abi_if_variadic;
105 use session::{Session, CompileResult};
106 use TypeAndSubsts;
107 use lint;
108 use util::common::{ErrorReported, indenter};
109 use util::nodemap::{DefIdMap, FxHashMap, NodeMap};
110
111 use std::cell::{Cell, RefCell};
112 use std::collections::hash_map::Entry;
113 use std::cmp;
114 use std::mem::replace;
115 use std::ops::{self, Deref};
116 use syntax::abi::Abi;
117 use syntax::ast;
118 use syntax::codemap::{self, original_sp, Spanned};
119 use syntax::feature_gate::{GateIssue, emit_feature_err};
120 use syntax::ptr::P;
121 use syntax::symbol::{Symbol, InternedString, keywords};
122 use syntax::util::lev_distance::find_best_match_for_name;
123 use syntax_pos::{self, BytePos, Span, DUMMY_SP};
124
125 use rustc::hir::intravisit::{self, Visitor, NestedVisitorMap};
126 use rustc::hir::itemlikevisit::ItemLikeVisitor;
127 use rustc::hir::{self, PatKind};
128 use rustc::middle::lang_items;
129 use rustc_back::slice;
130 use rustc::middle::const_val::eval_length;
131 use rustc_const_math::ConstInt;
132
133 mod autoderef;
134 pub mod dropck;
135 pub mod _match;
136 pub mod writeback;
137 pub mod regionck;
138 pub mod coercion;
139 pub mod demand;
140 pub mod method;
141 mod upvar;
142 mod wfcheck;
143 mod cast;
144 mod closure;
145 mod callee;
146 mod compare_method;
147 mod intrinsic;
148 mod op;
149
150 /// closures defined within the function.  For example:
151 ///
152 ///     fn foo() {
153 ///         bar(move|| { ... })
154 ///     }
155 ///
156 /// Here, the function `foo()` and the closure passed to
157 /// `bar()` will each have their own `FnCtxt`, but they will
158 /// share the inherited fields.
159 pub struct Inherited<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
160     infcx: InferCtxt<'a, 'gcx, 'tcx>,
161
162     locals: RefCell<NodeMap<Ty<'tcx>>>,
163
164     fulfillment_cx: RefCell<traits::FulfillmentContext<'tcx>>,
165
166     // When we process a call like `c()` where `c` is a closure type,
167     // we may not have decided yet whether `c` is a `Fn`, `FnMut`, or
168     // `FnOnce` closure. In that case, we defer full resolution of the
169     // call until upvar inference can kick in and make the
170     // decision. We keep these deferred resolutions grouped by the
171     // def-id of the closure, so that once we decide, we can easily go
172     // back and process them.
173     deferred_call_resolutions: RefCell<DefIdMap<Vec<DeferredCallResolution<'gcx, 'tcx>>>>,
174
175     deferred_cast_checks: RefCell<Vec<cast::CastCheck<'tcx>>>,
176
177     // Anonymized types found in explicit return types and their
178     // associated fresh inference variable. Writeback resolves these
179     // variables to get the concrete type, which can be used to
180     // deanonymize TyAnon, after typeck is done with all functions.
181     anon_types: RefCell<NodeMap<Ty<'tcx>>>,
182
183     /// Each type parameter has an implicit region bound that
184     /// indicates it must outlive at least the function body (the user
185     /// may specify stronger requirements). This field indicates the
186     /// region of the callee. If it is `None`, then the parameter
187     /// environment is for an item or something where the "callee" is
188     /// not clear.
189     implicit_region_bound: Option<ty::Region<'tcx>>,
190 }
191
192 impl<'a, 'gcx, 'tcx> Deref for Inherited<'a, 'gcx, 'tcx> {
193     type Target = InferCtxt<'a, 'gcx, 'tcx>;
194     fn deref(&self) -> &Self::Target {
195         &self.infcx
196     }
197 }
198
199 /// When type-checking an expression, we propagate downward
200 /// whatever type hint we are able in the form of an `Expectation`.
201 #[derive(Copy, Clone, Debug)]
202 pub enum Expectation<'tcx> {
203     /// We know nothing about what type this expression should have.
204     NoExpectation,
205
206     /// This expression should have the type given (or some subtype)
207     ExpectHasType(Ty<'tcx>),
208
209     /// This expression will be cast to the `Ty`
210     ExpectCastableToType(Ty<'tcx>),
211
212     /// This rvalue expression will be wrapped in `&` or `Box` and coerced
213     /// to `&Ty` or `Box<Ty>`, respectively. `Ty` is `[A]` or `Trait`.
214     ExpectRvalueLikeUnsized(Ty<'tcx>),
215 }
216
217 impl<'a, 'gcx, 'tcx> Expectation<'tcx> {
218     // Disregard "castable to" expectations because they
219     // can lead us astray. Consider for example `if cond
220     // {22} else {c} as u8` -- if we propagate the
221     // "castable to u8" constraint to 22, it will pick the
222     // type 22u8, which is overly constrained (c might not
223     // be a u8). In effect, the problem is that the
224     // "castable to" expectation is not the tightest thing
225     // we can say, so we want to drop it in this case.
226     // The tightest thing we can say is "must unify with
227     // else branch". Note that in the case of a "has type"
228     // constraint, this limitation does not hold.
229
230     // If the expected type is just a type variable, then don't use
231     // an expected type. Otherwise, we might write parts of the type
232     // when checking the 'then' block which are incompatible with the
233     // 'else' branch.
234     fn adjust_for_branches(&self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Expectation<'tcx> {
235         match *self {
236             ExpectHasType(ety) => {
237                 let ety = fcx.shallow_resolve(ety);
238                 if !ety.is_ty_var() {
239                     ExpectHasType(ety)
240                 } else {
241                     NoExpectation
242                 }
243             }
244             ExpectRvalueLikeUnsized(ety) => {
245                 ExpectRvalueLikeUnsized(ety)
246             }
247             _ => NoExpectation
248         }
249     }
250
251     /// Provide an expectation for an rvalue expression given an *optional*
252     /// hint, which is not required for type safety (the resulting type might
253     /// be checked higher up, as is the case with `&expr` and `box expr`), but
254     /// is useful in determining the concrete type.
255     ///
256     /// The primary use case is where the expected type is a fat pointer,
257     /// like `&[isize]`. For example, consider the following statement:
258     ///
259     ///    let x: &[isize] = &[1, 2, 3];
260     ///
261     /// In this case, the expected type for the `&[1, 2, 3]` expression is
262     /// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
263     /// expectation `ExpectHasType([isize])`, that would be too strong --
264     /// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
265     /// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
266     /// to the type `&[isize]`. Therefore, we propagate this more limited hint,
267     /// which still is useful, because it informs integer literals and the like.
268     /// See the test case `test/run-pass/coerce-expect-unsized.rs` and #20169
269     /// for examples of where this comes up,.
270     fn rvalue_hint(fcx: &FnCtxt<'a, 'gcx, 'tcx>, ty: Ty<'tcx>) -> Expectation<'tcx> {
271         match fcx.tcx.struct_tail(ty).sty {
272             ty::TySlice(_) | ty::TyStr | ty::TyDynamic(..) => {
273                 ExpectRvalueLikeUnsized(ty)
274             }
275             _ => ExpectHasType(ty)
276         }
277     }
278
279     // Resolves `expected` by a single level if it is a variable. If
280     // there is no expected type or resolution is not possible (e.g.,
281     // no constraints yet present), just returns `None`.
282     fn resolve(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Expectation<'tcx> {
283         match self {
284             NoExpectation => {
285                 NoExpectation
286             }
287             ExpectCastableToType(t) => {
288                 ExpectCastableToType(fcx.resolve_type_vars_if_possible(&t))
289             }
290             ExpectHasType(t) => {
291                 ExpectHasType(fcx.resolve_type_vars_if_possible(&t))
292             }
293             ExpectRvalueLikeUnsized(t) => {
294                 ExpectRvalueLikeUnsized(fcx.resolve_type_vars_if_possible(&t))
295             }
296         }
297     }
298
299     fn to_option(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Option<Ty<'tcx>> {
300         match self.resolve(fcx) {
301             NoExpectation => None,
302             ExpectCastableToType(ty) |
303             ExpectHasType(ty) |
304             ExpectRvalueLikeUnsized(ty) => Some(ty),
305         }
306     }
307
308     /// It sometimes happens that we want to turn an expectation into
309     /// a **hard constraint** (i.e., something that must be satisfied
310     /// for the program to type-check). `only_has_type` will return
311     /// such a constraint, if it exists.
312     fn only_has_type(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Option<Ty<'tcx>> {
313         match self.resolve(fcx) {
314             ExpectHasType(ty) => Some(ty),
315             _ => None
316         }
317     }
318
319     /// Like `only_has_type`, but instead of returning `None` if no
320     /// hard constraint exists, creates a fresh type variable.
321     fn coercion_target_type(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>, span: Span) -> Ty<'tcx> {
322         self.only_has_type(fcx)
323             .unwrap_or_else(|| fcx.next_ty_var(TypeVariableOrigin::MiscVariable(span)))
324     }
325 }
326
327 #[derive(Copy, Clone)]
328 pub struct UnsafetyState {
329     pub def: ast::NodeId,
330     pub unsafety: hir::Unsafety,
331     pub unsafe_push_count: u32,
332     from_fn: bool
333 }
334
335 impl UnsafetyState {
336     pub fn function(unsafety: hir::Unsafety, def: ast::NodeId) -> UnsafetyState {
337         UnsafetyState { def: def, unsafety: unsafety, unsafe_push_count: 0, from_fn: true }
338     }
339
340     pub fn recurse(&mut self, blk: &hir::Block) -> UnsafetyState {
341         match self.unsafety {
342             // If this unsafe, then if the outer function was already marked as
343             // unsafe we shouldn't attribute the unsafe'ness to the block. This
344             // way the block can be warned about instead of ignoring this
345             // extraneous block (functions are never warned about).
346             hir::Unsafety::Unsafe if self.from_fn => *self,
347
348             unsafety => {
349                 let (unsafety, def, count) = match blk.rules {
350                     hir::PushUnsafeBlock(..) =>
351                         (unsafety, blk.id, self.unsafe_push_count.checked_add(1).unwrap()),
352                     hir::PopUnsafeBlock(..) =>
353                         (unsafety, blk.id, self.unsafe_push_count.checked_sub(1).unwrap()),
354                     hir::UnsafeBlock(..) =>
355                         (hir::Unsafety::Unsafe, blk.id, self.unsafe_push_count),
356                     hir::DefaultBlock =>
357                         (unsafety, self.def, self.unsafe_push_count),
358                 };
359                 UnsafetyState{ def: def,
360                                unsafety: unsafety,
361                                unsafe_push_count: count,
362                                from_fn: false }
363             }
364         }
365     }
366 }
367
368 #[derive(Debug, Copy, Clone)]
369 pub enum LvalueOp {
370     Deref,
371     Index
372 }
373
374 /// Tracks whether executing a node may exit normally (versus
375 /// return/break/panic, which "diverge", leaving dead code in their
376 /// wake). Tracked semi-automatically (through type variables marked
377 /// as diverging), with some manual adjustments for control-flow
378 /// primitives (approximating a CFG).
379 #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
380 pub enum Diverges {
381     /// Potentially unknown, some cases converge,
382     /// others require a CFG to determine them.
383     Maybe,
384
385     /// Definitely known to diverge and therefore
386     /// not reach the next sibling or its parent.
387     Always,
388
389     /// Same as `Always` but with a reachability
390     /// warning already emitted
391     WarnedAlways
392 }
393
394 // Convenience impls for combinig `Diverges`.
395
396 impl ops::BitAnd for Diverges {
397     type Output = Self;
398     fn bitand(self, other: Self) -> Self {
399         cmp::min(self, other)
400     }
401 }
402
403 impl ops::BitOr for Diverges {
404     type Output = Self;
405     fn bitor(self, other: Self) -> Self {
406         cmp::max(self, other)
407     }
408 }
409
410 impl ops::BitAndAssign for Diverges {
411     fn bitand_assign(&mut self, other: Self) {
412         *self = *self & other;
413     }
414 }
415
416 impl ops::BitOrAssign for Diverges {
417     fn bitor_assign(&mut self, other: Self) {
418         *self = *self | other;
419     }
420 }
421
422 impl Diverges {
423     fn always(self) -> bool {
424         self >= Diverges::Always
425     }
426 }
427
428 pub struct BreakableCtxt<'gcx: 'tcx, 'tcx> {
429     may_break: bool,
430
431     // this is `null` for loops where break with a value is illegal,
432     // such as `while`, `for`, and `while let`
433     coerce: Option<DynamicCoerceMany<'gcx, 'tcx>>,
434 }
435
436 pub struct EnclosingBreakables<'gcx: 'tcx, 'tcx> {
437     stack: Vec<BreakableCtxt<'gcx, 'tcx>>,
438     by_id: NodeMap<usize>,
439 }
440
441 impl<'gcx, 'tcx> EnclosingBreakables<'gcx, 'tcx> {
442     fn find_breakable(&mut self, target_id: ast::NodeId) -> &mut BreakableCtxt<'gcx, 'tcx> {
443         let ix = *self.by_id.get(&target_id).unwrap_or_else(|| {
444             bug!("could not find enclosing breakable with id {}", target_id);
445         });
446         &mut self.stack[ix]
447     }
448 }
449
450 pub struct FnCtxt<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
451     body_id: ast::NodeId,
452
453     /// The parameter environment used for proving trait obligations
454     /// in this function. This can change when we descend into
455     /// closures (as they bring new things into scope), hence it is
456     /// not part of `Inherited` (as of the time of this writing,
457     /// closures do not yet change the environment, but they will
458     /// eventually).
459     param_env: ty::ParamEnv<'tcx>,
460
461     // Number of errors that had been reported when we started
462     // checking this function. On exit, if we find that *more* errors
463     // have been reported, we will skip regionck and other work that
464     // expects the types within the function to be consistent.
465     err_count_on_creation: usize,
466
467     ret_coercion: Option<RefCell<DynamicCoerceMany<'gcx, 'tcx>>>,
468
469     ps: RefCell<UnsafetyState>,
470
471     /// Whether the last checked node generates a divergence (e.g.,
472     /// `return` will set this to Always). In general, when entering
473     /// an expression or other node in the tree, the initial value
474     /// indicates whether prior parts of the containing expression may
475     /// have diverged. It is then typically set to `Maybe` (and the
476     /// old value remembered) for processing the subparts of the
477     /// current expression. As each subpart is processed, they may set
478     /// the flag to `Always` etc.  Finally, at the end, we take the
479     /// result and "union" it with the original value, so that when we
480     /// return the flag indicates if any subpart of the the parent
481     /// expression (up to and including this part) has diverged.  So,
482     /// if you read it after evaluating a subexpression `X`, the value
483     /// you get indicates whether any subexpression that was
484     /// evaluating up to and including `X` diverged.
485     ///
486     /// We use this flag for two purposes:
487     ///
488     /// - To warn about unreachable code: if, after processing a
489     ///   sub-expression but before we have applied the effects of the
490     ///   current node, we see that the flag is set to `Always`, we
491     ///   can issue a warning. This corresponds to something like
492     ///   `foo(return)`; we warn on the `foo()` expression. (We then
493     ///   update the flag to `WarnedAlways` to suppress duplicate
494     ///   reports.) Similarly, if we traverse to a fresh statement (or
495     ///   tail expression) from a `Always` setting, we will isssue a
496     ///   warning. This corresponds to something like `{return;
497     ///   foo();}` or `{return; 22}`, where we would warn on the
498     ///   `foo()` or `22`.
499     ///
500     /// - To permit assignment into a local variable or other lvalue
501     ///   (including the "return slot") of type `!`.  This is allowed
502     ///   if **either** the type of value being assigned is `!`, which
503     ///   means the current code is dead, **or** the expression's
504     ///   divering flag is true, which means that a divering value was
505     ///   wrapped (e.g., `let x: ! = foo(return)`).
506     ///
507     /// To repeat the last point: an expression represents dead-code
508     /// if, after checking it, **either** its type is `!` OR the
509     /// diverges flag is set to something other than `Maybe`.
510     diverges: Cell<Diverges>,
511
512     /// Whether any child nodes have any type errors.
513     has_errors: Cell<bool>,
514
515     enclosing_breakables: RefCell<EnclosingBreakables<'gcx, 'tcx>>,
516
517     inh: &'a Inherited<'a, 'gcx, 'tcx>,
518 }
519
520 impl<'a, 'gcx, 'tcx> Deref for FnCtxt<'a, 'gcx, 'tcx> {
521     type Target = Inherited<'a, 'gcx, 'tcx>;
522     fn deref(&self) -> &Self::Target {
523         &self.inh
524     }
525 }
526
527 /// Helper type of a temporary returned by Inherited::build(...).
528 /// Necessary because we can't write the following bound:
529 /// F: for<'b, 'tcx> where 'gcx: 'tcx FnOnce(Inherited<'b, 'gcx, 'tcx>).
530 pub struct InheritedBuilder<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
531     infcx: infer::InferCtxtBuilder<'a, 'gcx, 'tcx>,
532     def_id: DefId,
533 }
534
535 impl<'a, 'gcx, 'tcx> Inherited<'a, 'gcx, 'tcx> {
536     pub fn build(tcx: TyCtxt<'a, 'gcx, 'gcx>, def_id: DefId)
537                  -> InheritedBuilder<'a, 'gcx, 'tcx> {
538         let tables = ty::TypeckTables::empty();
539         InheritedBuilder {
540             infcx: tcx.infer_ctxt(tables),
541             def_id,
542         }
543     }
544 }
545
546 impl<'a, 'gcx, 'tcx> InheritedBuilder<'a, 'gcx, 'tcx> {
547     fn enter<F, R>(&'tcx mut self, f: F) -> R
548         where F: for<'b> FnOnce(Inherited<'b, 'gcx, 'tcx>) -> R
549     {
550         let def_id = self.def_id;
551         self.infcx.enter(|infcx| f(Inherited::new(infcx, def_id)))
552     }
553 }
554
555 impl<'a, 'gcx, 'tcx> Inherited<'a, 'gcx, 'tcx> {
556     fn new(infcx: InferCtxt<'a, 'gcx, 'tcx>, def_id: DefId) -> Self {
557         let tcx = infcx.tcx;
558         let item_id = tcx.hir.as_local_node_id(def_id);
559         let body_id = item_id.and_then(|id| tcx.hir.maybe_body_owned_by(id));
560         let implicit_region_bound = body_id.map(|body| {
561             tcx.mk_region(ty::ReScope(CodeExtent::CallSiteScope(body)))
562         });
563
564         Inherited {
565             infcx: infcx,
566             fulfillment_cx: RefCell::new(traits::FulfillmentContext::new()),
567             locals: RefCell::new(NodeMap()),
568             deferred_call_resolutions: RefCell::new(DefIdMap()),
569             deferred_cast_checks: RefCell::new(Vec::new()),
570             anon_types: RefCell::new(NodeMap()),
571             implicit_region_bound,
572         }
573     }
574
575     fn register_predicate(&self, obligation: traits::PredicateObligation<'tcx>) {
576         debug!("register_predicate({:?})", obligation);
577         if obligation.has_escaping_regions() {
578             span_bug!(obligation.cause.span, "escaping regions in predicate {:?}",
579                       obligation);
580         }
581         self.fulfillment_cx
582             .borrow_mut()
583             .register_predicate_obligation(self, obligation);
584     }
585
586     fn register_predicates(&self, obligations: Vec<traits::PredicateObligation<'tcx>>) {
587         for obligation in obligations {
588             self.register_predicate(obligation);
589         }
590     }
591
592     fn register_infer_ok_obligations<T>(&self, infer_ok: InferOk<'tcx, T>) -> T {
593         self.register_predicates(infer_ok.obligations);
594         infer_ok.value
595     }
596
597     fn normalize_associated_types_in<T>(&self,
598                                         span: Span,
599                                         body_id: ast::NodeId,
600                                         param_env: ty::ParamEnv<'tcx>,
601                                         value: &T) -> T
602         where T : TypeFoldable<'tcx>
603     {
604         let ok = self.normalize_associated_types_in_as_infer_ok(span, body_id, param_env, value);
605         self.register_infer_ok_obligations(ok)
606     }
607
608     fn normalize_associated_types_in_as_infer_ok<T>(&self,
609                                                     span: Span,
610                                                     body_id: ast::NodeId,
611                                                     param_env: ty::ParamEnv<'tcx>,
612                                                     value: &T)
613                                                     -> InferOk<'tcx, T>
614         where T : TypeFoldable<'tcx>
615     {
616         debug!("normalize_associated_types_in(value={:?})", value);
617         let mut selcx = traits::SelectionContext::new(self);
618         let cause = ObligationCause::misc(span, body_id);
619         let traits::Normalized { value, obligations } =
620             traits::normalize(&mut selcx, param_env, cause, value);
621         debug!("normalize_associated_types_in: result={:?} predicates={:?}",
622             value,
623             obligations);
624         InferOk { value, obligations }
625     }
626
627     /// Replace any late-bound regions bound in `value` with
628     /// free variants attached to `all_outlive_scope`.
629     fn liberate_late_bound_regions<T>(&self,
630         all_outlive_scope: DefId,
631         value: &ty::Binder<T>)
632         -> T
633         where T: TypeFoldable<'tcx>
634     {
635         self.tcx.replace_late_bound_regions(value, |br| {
636             self.tcx.mk_region(ty::ReFree(ty::FreeRegion {
637                 scope: all_outlive_scope,
638                 bound_region: br
639             }))
640         }).0
641     }
642 }
643
644 struct CheckItemTypesVisitor<'a, 'tcx: 'a> { tcx: TyCtxt<'a, 'tcx, 'tcx> }
645
646 impl<'a, 'tcx> ItemLikeVisitor<'tcx> for CheckItemTypesVisitor<'a, 'tcx> {
647     fn visit_item(&mut self, i: &'tcx hir::Item) {
648         check_item_type(self.tcx, i);
649     }
650     fn visit_trait_item(&mut self, _: &'tcx hir::TraitItem) { }
651     fn visit_impl_item(&mut self, _: &'tcx hir::ImplItem) { }
652 }
653
654 pub fn check_wf_new<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> CompileResult {
655     tcx.sess.track_errors(|| {
656         let mut visit = wfcheck::CheckTypeWellFormedVisitor::new(tcx);
657         tcx.hir.krate().visit_all_item_likes(&mut visit.as_deep_visitor());
658     })
659 }
660
661 pub fn check_item_types<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> CompileResult {
662     tcx.sess.track_errors(|| {
663         tcx.hir.krate().visit_all_item_likes(&mut CheckItemTypesVisitor { tcx });
664     })
665 }
666
667 pub fn check_item_bodies<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> CompileResult {
668     tcx.typeck_item_bodies(LOCAL_CRATE)
669 }
670
671 fn typeck_item_bodies<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, crate_num: CrateNum) -> CompileResult {
672     debug_assert!(crate_num == LOCAL_CRATE);
673     tcx.sess.track_errors(|| {
674         for body_owner_def_id in tcx.body_owners() {
675             tcx.typeck_tables_of(body_owner_def_id);
676         }
677     })
678 }
679
680 pub fn provide(providers: &mut Providers) {
681     *providers = Providers {
682         typeck_item_bodies,
683         typeck_tables_of,
684         has_typeck_tables,
685         closure_type,
686         closure_kind,
687         adt_destructor,
688         ..*providers
689     };
690 }
691
692 fn closure_type<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
693                           def_id: DefId)
694                           -> ty::PolyFnSig<'tcx> {
695     let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
696     tcx.typeck_tables_of(def_id).closure_tys[&node_id]
697 }
698
699 fn closure_kind<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
700                           def_id: DefId)
701                           -> ty::ClosureKind {
702     let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
703     tcx.typeck_tables_of(def_id).closure_kinds[&node_id].0
704 }
705
706 fn adt_destructor<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
707                             def_id: DefId)
708                             -> Option<ty::Destructor> {
709     tcx.calculate_dtor(def_id, &mut dropck::check_drop_impl)
710 }
711
712 /// If this def-id is a "primary tables entry", returns `Some((body_id, decl))`
713 /// with information about it's body-id and fn-decl (if any). Otherwise,
714 /// returns `None`.
715 ///
716 /// If this function returns "some", then `typeck_tables(def_id)` will
717 /// succeed; if it returns `None`, then `typeck_tables(def_id)` may or
718 /// may not succeed.  In some cases where this function returns `None`
719 /// (notably closures), `typeck_tables(def_id)` would wind up
720 /// redirecting to the owning function.
721 fn primary_body_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
722                              id: ast::NodeId)
723                              -> Option<(hir::BodyId, Option<&'tcx hir::FnDecl>)>
724 {
725     match tcx.hir.get(id) {
726         hir::map::NodeItem(item) => {
727             match item.node {
728                 hir::ItemConst(_, body) |
729                 hir::ItemStatic(_, _, body) =>
730                     Some((body, None)),
731                 hir::ItemFn(ref decl, .., body) =>
732                     Some((body, Some(decl))),
733                 _ =>
734                     None,
735             }
736         }
737         hir::map::NodeTraitItem(item) => {
738             match item.node {
739                 hir::TraitItemKind::Const(_, Some(body)) =>
740                     Some((body, None)),
741                 hir::TraitItemKind::Method(ref sig, hir::TraitMethod::Provided(body)) =>
742                     Some((body, Some(&sig.decl))),
743                 _ =>
744                     None,
745             }
746         }
747         hir::map::NodeImplItem(item) => {
748             match item.node {
749                 hir::ImplItemKind::Const(_, body) =>
750                     Some((body, None)),
751                 hir::ImplItemKind::Method(ref sig, body) =>
752                     Some((body, Some(&sig.decl))),
753                 _ =>
754                     None,
755             }
756         }
757         hir::map::NodeExpr(expr) => {
758             // FIXME(eddyb) Closures should have separate
759             // function definition IDs and expression IDs.
760             // Type-checking should not let closures get
761             // this far in a constant position.
762             // Assume that everything other than closures
763             // is a constant "initializer" expression.
764             match expr.node {
765                 hir::ExprClosure(..) =>
766                     None,
767                 _ =>
768                     Some((hir::BodyId { node_id: expr.id }, None)),
769             }
770         }
771         _ => None,
772     }
773 }
774
775 fn has_typeck_tables<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
776                                def_id: DefId)
777                                -> bool {
778     // Closures' tables come from their outermost function,
779     // as they are part of the same "inference environment".
780     let outer_def_id = tcx.closure_base_def_id(def_id);
781     if outer_def_id != def_id {
782         return tcx.has_typeck_tables(outer_def_id);
783     }
784
785     let id = tcx.hir.as_local_node_id(def_id).unwrap();
786     primary_body_of(tcx, id).is_some()
787 }
788
789 fn typeck_tables_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
790                               def_id: DefId)
791                               -> &'tcx ty::TypeckTables<'tcx> {
792     // Closures' tables come from their outermost function,
793     // as they are part of the same "inference environment".
794     let outer_def_id = tcx.closure_base_def_id(def_id);
795     if outer_def_id != def_id {
796         return tcx.typeck_tables_of(outer_def_id);
797     }
798
799     let id = tcx.hir.as_local_node_id(def_id).unwrap();
800     let span = tcx.hir.span(id);
801
802     // Figure out what primary body this item has.
803     let (body_id, fn_decl) = primary_body_of(tcx, id).unwrap_or_else(|| {
804         span_bug!(span, "can't type-check body of {:?}", def_id);
805     });
806     let body = tcx.hir.body(body_id);
807
808     Inherited::build(tcx, def_id).enter(|inh| {
809         let param_env = tcx.param_env(def_id);
810         let fcx = if let Some(decl) = fn_decl {
811             let fn_sig = tcx.type_of(def_id).fn_sig();
812
813             check_abi(tcx, span, fn_sig.abi());
814
815             // Compute the fty from point of view of inside fn.
816             let fn_sig =
817                 inh.liberate_late_bound_regions(def_id, &fn_sig);
818             let fn_sig =
819                 inh.normalize_associated_types_in(body.value.span,
820                                                   body_id.node_id,
821                                                   param_env,
822                                                   &fn_sig);
823
824             check_fn(&inh, param_env, fn_sig, decl, id, body)
825         } else {
826             let fcx = FnCtxt::new(&inh, param_env, body.value.id);
827             let expected_type = tcx.type_of(def_id);
828             let expected_type = fcx.normalize_associated_types_in(body.value.span, &expected_type);
829             fcx.require_type_is_sized(expected_type, body.value.span, traits::ConstSized);
830
831             // Gather locals in statics (because of block expressions).
832             // This is technically unnecessary because locals in static items are forbidden,
833             // but prevents type checking from blowing up before const checking can properly
834             // emit an error.
835             GatherLocalsVisitor { fcx: &fcx }.visit_body(body);
836
837             fcx.check_expr_coercable_to_type(&body.value, expected_type);
838
839             fcx
840         };
841
842         fcx.select_all_obligations_and_apply_defaults();
843         fcx.closure_analyze(body);
844         fcx.select_obligations_where_possible();
845         fcx.check_casts();
846         fcx.select_all_obligations_or_error();
847
848         if fn_decl.is_some() {
849             fcx.regionck_fn(id, body);
850         } else {
851             fcx.regionck_expr(body);
852         }
853
854         fcx.resolve_type_vars_in_body(body)
855     })
856 }
857
858 fn check_abi<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, span: Span, abi: Abi) {
859     if !tcx.sess.target.target.is_abi_supported(abi) {
860         struct_span_err!(tcx.sess, span, E0570,
861             "The ABI `{}` is not supported for the current target", abi).emit()
862     }
863 }
864
865 struct GatherLocalsVisitor<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
866     fcx: &'a FnCtxt<'a, 'gcx, 'tcx>
867 }
868
869 impl<'a, 'gcx, 'tcx> GatherLocalsVisitor<'a, 'gcx, 'tcx> {
870     fn assign(&mut self, span: Span, nid: ast::NodeId, ty_opt: Option<Ty<'tcx>>) -> Ty<'tcx> {
871         match ty_opt {
872             None => {
873                 // infer the variable's type
874                 let var_ty = self.fcx.next_ty_var(TypeVariableOrigin::TypeInference(span));
875                 self.fcx.locals.borrow_mut().insert(nid, var_ty);
876                 var_ty
877             }
878             Some(typ) => {
879                 // take type that the user specified
880                 self.fcx.locals.borrow_mut().insert(nid, typ);
881                 typ
882             }
883         }
884     }
885 }
886
887 impl<'a, 'gcx, 'tcx> Visitor<'gcx> for GatherLocalsVisitor<'a, 'gcx, 'tcx> {
888     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'gcx> {
889         NestedVisitorMap::None
890     }
891
892     // Add explicitly-declared locals.
893     fn visit_local(&mut self, local: &'gcx hir::Local) {
894         let o_ty = match local.ty {
895             Some(ref ty) => Some(self.fcx.to_ty(&ty)),
896             None => None
897         };
898         self.assign(local.span, local.id, o_ty);
899         debug!("Local variable {:?} is assigned type {}",
900                local.pat,
901                self.fcx.ty_to_string(
902                    self.fcx.locals.borrow().get(&local.id).unwrap().clone()));
903         intravisit::walk_local(self, local);
904     }
905
906     // Add pattern bindings.
907     fn visit_pat(&mut self, p: &'gcx hir::Pat) {
908         if let PatKind::Binding(_, _, ref path1, _) = p.node {
909             let var_ty = self.assign(p.span, p.id, None);
910
911             self.fcx.require_type_is_sized(var_ty, p.span,
912                                            traits::VariableType(p.id));
913
914             debug!("Pattern binding {} is assigned to {} with type {:?}",
915                    path1.node,
916                    self.fcx.ty_to_string(
917                        self.fcx.locals.borrow().get(&p.id).unwrap().clone()),
918                    var_ty);
919         }
920         intravisit::walk_pat(self, p);
921     }
922
923     // Don't descend into the bodies of nested closures
924     fn visit_fn(&mut self, _: intravisit::FnKind<'gcx>, _: &'gcx hir::FnDecl,
925                 _: hir::BodyId, _: Span, _: ast::NodeId) { }
926 }
927
928 /// Helper used for fns and closures. Does the grungy work of checking a function
929 /// body and returns the function context used for that purpose, since in the case of a fn item
930 /// there is still a bit more to do.
931 ///
932 /// * ...
933 /// * inherited: other fields inherited from the enclosing fn (if any)
934 fn check_fn<'a, 'gcx, 'tcx>(inherited: &'a Inherited<'a, 'gcx, 'tcx>,
935                             param_env: ty::ParamEnv<'tcx>,
936                             fn_sig: ty::FnSig<'tcx>,
937                             decl: &'gcx hir::FnDecl,
938                             fn_id: ast::NodeId,
939                             body: &'gcx hir::Body)
940                             -> FnCtxt<'a, 'gcx, 'tcx>
941 {
942     let mut fn_sig = fn_sig.clone();
943
944     debug!("check_fn(sig={:?}, fn_id={}, param_env={:?})", fn_sig, fn_id, param_env);
945
946     // Create the function context.  This is either derived from scratch or,
947     // in the case of function expressions, based on the outer context.
948     let mut fcx = FnCtxt::new(inherited, param_env, body.value.id);
949     *fcx.ps.borrow_mut() = UnsafetyState::function(fn_sig.unsafety, fn_id);
950
951     let ret_ty = fn_sig.output();
952     fcx.require_type_is_sized(ret_ty, decl.output.span(), traits::ReturnType);
953     let ret_ty = fcx.instantiate_anon_types(&ret_ty);
954     fcx.ret_coercion = Some(RefCell::new(CoerceMany::new(ret_ty)));
955     fn_sig = fcx.tcx.mk_fn_sig(
956         fn_sig.inputs().iter().cloned(),
957         ret_ty,
958         fn_sig.variadic,
959         fn_sig.unsafety,
960         fn_sig.abi
961     );
962
963     GatherLocalsVisitor { fcx: &fcx, }.visit_body(body);
964
965     // Add formal parameters.
966     for (arg_ty, arg) in fn_sig.inputs().iter().zip(&body.arguments) {
967         // The type of the argument must be well-formed.
968         //
969         // NB -- this is now checked in wfcheck, but that
970         // currently only results in warnings, so we issue an
971         // old-style WF obligation here so that we still get the
972         // errors that we used to get.
973         fcx.register_old_wf_obligation(arg_ty, arg.pat.span, traits::MiscObligation);
974
975         // Check the pattern.
976         fcx.check_pat_arg(&arg.pat, arg_ty, true);
977         fcx.write_ty(arg.id, arg_ty);
978     }
979
980     inherited.tables.borrow_mut().liberated_fn_sigs.insert(fn_id, fn_sig);
981
982     fcx.check_return_expr(&body.value);
983
984     // Finalize the return check by taking the LUB of the return types
985     // we saw and assigning it to the expected return type. This isn't
986     // really expected to fail, since the coercions would have failed
987     // earlier when trying to find a LUB.
988     //
989     // However, the behavior around `!` is sort of complex. In the
990     // event that the `actual_return_ty` comes back as `!`, that
991     // indicates that the fn either does not return or "returns" only
992     // values of type `!`. In this case, if there is an expected
993     // return type that is *not* `!`, that should be ok. But if the
994     // return type is being inferred, we want to "fallback" to `!`:
995     //
996     //     let x = move || panic!();
997     //
998     // To allow for that, I am creating a type variable with diverging
999     // fallback. This was deemed ever so slightly better than unifying
1000     // the return value with `!` because it allows for the caller to
1001     // make more assumptions about the return type (e.g., they could do
1002     //
1003     //     let y: Option<u32> = Some(x());
1004     //
1005     // which would then cause this return type to become `u32`, not
1006     // `!`).
1007     let coercion = fcx.ret_coercion.take().unwrap().into_inner();
1008     let mut actual_return_ty = coercion.complete(&fcx);
1009     if actual_return_ty.is_never() {
1010         actual_return_ty = fcx.next_diverging_ty_var(
1011             TypeVariableOrigin::DivergingFn(body.value.span));
1012     }
1013     fcx.demand_suptype(body.value.span, ret_ty, actual_return_ty);
1014
1015     fcx
1016 }
1017
1018 fn check_struct<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1019                           id: ast::NodeId,
1020                           span: Span) {
1021     let def_id = tcx.hir.local_def_id(id);
1022     let def = tcx.adt_def(def_id);
1023     def.destructor(tcx); // force the destructor to be evaluated
1024     check_representable(tcx, span, def_id);
1025
1026     if def.repr.simd() {
1027         check_simd(tcx, span, def_id);
1028     }
1029
1030     // if struct is packed and not aligned, check fields for alignment.
1031     // Checks for combining packed and align attrs on single struct are done elsewhere.
1032     if tcx.adt_def(def_id).repr.packed() && tcx.adt_def(def_id).repr.align == 0 {
1033         check_packed(tcx, span, def_id);
1034     }
1035 }
1036
1037 fn check_union<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1038                          id: ast::NodeId,
1039                          span: Span) {
1040     let def_id = tcx.hir.local_def_id(id);
1041     let def = tcx.adt_def(def_id);
1042     def.destructor(tcx); // force the destructor to be evaluated
1043     check_representable(tcx, span, def_id);
1044 }
1045
1046 pub fn check_item_type<'a,'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, it: &'tcx hir::Item) {
1047     debug!("check_item_type(it.id={}, it.name={})",
1048            it.id,
1049            tcx.item_path_str(tcx.hir.local_def_id(it.id)));
1050     let _indenter = indenter();
1051     match it.node {
1052       // Consts can play a role in type-checking, so they are included here.
1053       hir::ItemStatic(..) |
1054       hir::ItemConst(..) => {
1055         tcx.typeck_tables_of(tcx.hir.local_def_id(it.id));
1056       }
1057       hir::ItemEnum(ref enum_definition, _) => {
1058         check_enum(tcx,
1059                    it.span,
1060                    &enum_definition.variants,
1061                    it.id);
1062       }
1063       hir::ItemFn(..) => {} // entirely within check_item_body
1064       hir::ItemImpl(.., ref impl_item_refs) => {
1065           debug!("ItemImpl {} with id {}", it.name, it.id);
1066           let impl_def_id = tcx.hir.local_def_id(it.id);
1067           if let Some(impl_trait_ref) = tcx.impl_trait_ref(impl_def_id) {
1068               check_impl_items_against_trait(tcx,
1069                                              it.span,
1070                                              impl_def_id,
1071                                              impl_trait_ref,
1072                                              impl_item_refs);
1073               let trait_def_id = impl_trait_ref.def_id;
1074               check_on_unimplemented(tcx, trait_def_id, it);
1075           }
1076       }
1077       hir::ItemTrait(..) => {
1078         let def_id = tcx.hir.local_def_id(it.id);
1079         check_on_unimplemented(tcx, def_id, it);
1080       }
1081       hir::ItemStruct(..) => {
1082         check_struct(tcx, it.id, it.span);
1083       }
1084       hir::ItemUnion(..) => {
1085         check_union(tcx, it.id, it.span);
1086       }
1087       hir::ItemTy(_, ref generics) => {
1088         let def_id = tcx.hir.local_def_id(it.id);
1089         let pty_ty = tcx.type_of(def_id);
1090         check_bounds_are_used(tcx, generics, pty_ty);
1091       }
1092       hir::ItemForeignMod(ref m) => {
1093         check_abi(tcx, it.span, m.abi);
1094
1095         if m.abi == Abi::RustIntrinsic {
1096             for item in &m.items {
1097                 intrinsic::check_intrinsic_type(tcx, item);
1098             }
1099         } else if m.abi == Abi::PlatformIntrinsic {
1100             for item in &m.items {
1101                 intrinsic::check_platform_intrinsic_type(tcx, item);
1102             }
1103         } else {
1104             for item in &m.items {
1105                 let generics = tcx.generics_of(tcx.hir.local_def_id(item.id));
1106                 if !generics.types.is_empty() {
1107                     let mut err = struct_span_err!(tcx.sess, item.span, E0044,
1108                         "foreign items may not have type parameters");
1109                     span_help!(&mut err, item.span,
1110                         "consider using specialization instead of \
1111                         type parameters");
1112                     err.emit();
1113                 }
1114
1115                 if let hir::ForeignItemFn(ref fn_decl, _, _) = item.node {
1116                     require_c_abi_if_variadic(tcx, fn_decl, m.abi, item.span);
1117                 }
1118             }
1119         }
1120       }
1121       _ => {/* nothing to do */ }
1122     }
1123 }
1124
1125 fn check_on_unimplemented<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1126                                     def_id: DefId,
1127                                     item: &hir::Item) {
1128     let generics = tcx.generics_of(def_id);
1129     if let Some(ref attr) = item.attrs.iter().find(|a| {
1130         a.check_name("rustc_on_unimplemented")
1131     }) {
1132         if let Some(istring) = attr.value_str() {
1133             let istring = istring.as_str();
1134             let parser = Parser::new(&istring);
1135             let types = &generics.types;
1136             for token in parser {
1137                 match token {
1138                     Piece::String(_) => (), // Normal string, no need to check it
1139                     Piece::NextArgument(a) => match a.position {
1140                         // `{Self}` is allowed
1141                         Position::ArgumentNamed(s) if s == "Self" => (),
1142                         // So is `{A}` if A is a type parameter
1143                         Position::ArgumentNamed(s) => match types.iter().find(|t| {
1144                             t.name == s
1145                         }) {
1146                             Some(_) => (),
1147                             None => {
1148                                 let name = tcx.item_name(def_id);
1149                                 span_err!(tcx.sess, attr.span, E0230,
1150                                                  "there is no type parameter \
1151                                                           {} on trait {}",
1152                                                            s, name);
1153                             }
1154                         },
1155                         // `{:1}` and `{}` are not to be used
1156                         Position::ArgumentIs(_) => {
1157                             span_err!(tcx.sess, attr.span, E0231,
1158                                                   "only named substitution \
1159                                                    parameters are allowed");
1160                         }
1161                     }
1162                 }
1163             }
1164         } else {
1165             struct_span_err!(
1166                 tcx.sess, attr.span, E0232,
1167                 "this attribute must have a value")
1168                 .span_label(attr.span, "attribute requires a value")
1169                 .note(&format!("eg `#[rustc_on_unimplemented = \"foo\"]`"))
1170                 .emit();
1171         }
1172     }
1173 }
1174
1175 fn report_forbidden_specialization<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1176                                              impl_item: &hir::ImplItem,
1177                                              parent_impl: DefId)
1178 {
1179     let mut err = struct_span_err!(
1180         tcx.sess, impl_item.span, E0520,
1181         "`{}` specializes an item from a parent `impl`, but \
1182          that item is not marked `default`",
1183         impl_item.name);
1184     err.span_label(impl_item.span, format!("cannot specialize default item `{}`",
1185                                             impl_item.name));
1186
1187     match tcx.span_of_impl(parent_impl) {
1188         Ok(span) => {
1189             err.span_label(span, "parent `impl` is here");
1190             err.note(&format!("to specialize, `{}` in the parent `impl` must be marked `default`",
1191                               impl_item.name));
1192         }
1193         Err(cname) => {
1194             err.note(&format!("parent implementation is in crate `{}`", cname));
1195         }
1196     }
1197
1198     err.emit();
1199 }
1200
1201 fn check_specialization_validity<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1202                                            trait_def: &ty::TraitDef,
1203                                            impl_id: DefId,
1204                                            impl_item: &hir::ImplItem)
1205 {
1206     let ancestors = trait_def.ancestors(tcx, impl_id);
1207
1208     let kind = match impl_item.node {
1209         hir::ImplItemKind::Const(..) => ty::AssociatedKind::Const,
1210         hir::ImplItemKind::Method(..) => ty::AssociatedKind::Method,
1211         hir::ImplItemKind::Type(_) => ty::AssociatedKind::Type
1212     };
1213     let parent = ancestors.defs(tcx, impl_item.name, kind).skip(1).next()
1214         .map(|node_item| node_item.map(|parent| parent.defaultness));
1215
1216     if let Some(parent) = parent {
1217         if tcx.impl_item_is_final(&parent) {
1218             report_forbidden_specialization(tcx, impl_item, parent.node.def_id());
1219         }
1220     }
1221
1222 }
1223
1224 fn check_impl_items_against_trait<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1225                                             impl_span: Span,
1226                                             impl_id: DefId,
1227                                             impl_trait_ref: ty::TraitRef<'tcx>,
1228                                             impl_item_refs: &[hir::ImplItemRef]) {
1229     // If the trait reference itself is erroneous (so the compilation is going
1230     // to fail), skip checking the items here -- the `impl_item` table in `tcx`
1231     // isn't populated for such impls.
1232     if impl_trait_ref.references_error() { return; }
1233
1234     // Locate trait definition and items
1235     let trait_def = tcx.trait_def(impl_trait_ref.def_id);
1236     let mut overridden_associated_type = None;
1237
1238     let impl_items = || impl_item_refs.iter().map(|iiref| tcx.hir.impl_item(iiref.id));
1239
1240     // Check existing impl methods to see if they are both present in trait
1241     // and compatible with trait signature
1242     for impl_item in impl_items() {
1243         let ty_impl_item = tcx.associated_item(tcx.hir.local_def_id(impl_item.id));
1244         let ty_trait_item = tcx.associated_items(impl_trait_ref.def_id)
1245             .find(|ac| ac.name == ty_impl_item.name);
1246
1247         // Check that impl definition matches trait definition
1248         if let Some(ty_trait_item) = ty_trait_item {
1249             match impl_item.node {
1250                 hir::ImplItemKind::Const(..) => {
1251                     // Find associated const definition.
1252                     if ty_trait_item.kind == ty::AssociatedKind::Const {
1253                         compare_const_impl(tcx,
1254                                            &ty_impl_item,
1255                                            impl_item.span,
1256                                            &ty_trait_item,
1257                                            impl_trait_ref);
1258                     } else {
1259                          let mut err = struct_span_err!(tcx.sess, impl_item.span, E0323,
1260                                   "item `{}` is an associated const, \
1261                                   which doesn't match its trait `{}`",
1262                                   ty_impl_item.name,
1263                                   impl_trait_ref);
1264                          err.span_label(impl_item.span, "does not match trait");
1265                          // We can only get the spans from local trait definition
1266                          // Same for E0324 and E0325
1267                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1268                             err.span_label(trait_span, "item in trait");
1269                          }
1270                          err.emit()
1271                     }
1272                 }
1273                 hir::ImplItemKind::Method(..) => {
1274                     let trait_span = tcx.hir.span_if_local(ty_trait_item.def_id);
1275                     if ty_trait_item.kind == ty::AssociatedKind::Method {
1276                         let err_count = tcx.sess.err_count();
1277                         compare_impl_method(tcx,
1278                                             &ty_impl_item,
1279                                             impl_item.span,
1280                                             &ty_trait_item,
1281                                             impl_trait_ref,
1282                                             trait_span,
1283                                             true); // start with old-broken-mode
1284                         if err_count == tcx.sess.err_count() {
1285                             // old broken mode did not report an error. Try with the new mode.
1286                             compare_impl_method(tcx,
1287                                                 &ty_impl_item,
1288                                                 impl_item.span,
1289                                                 &ty_trait_item,
1290                                                 impl_trait_ref,
1291                                                 trait_span,
1292                                                 false); // use the new mode
1293                         }
1294                     } else {
1295                         let mut err = struct_span_err!(tcx.sess, impl_item.span, E0324,
1296                                   "item `{}` is an associated method, \
1297                                   which doesn't match its trait `{}`",
1298                                   ty_impl_item.name,
1299                                   impl_trait_ref);
1300                          err.span_label(impl_item.span, "does not match trait");
1301                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1302                             err.span_label(trait_span, "item in trait");
1303                          }
1304                          err.emit()
1305                     }
1306                 }
1307                 hir::ImplItemKind::Type(_) => {
1308                     if ty_trait_item.kind == ty::AssociatedKind::Type {
1309                         if ty_trait_item.defaultness.has_value() {
1310                             overridden_associated_type = Some(impl_item);
1311                         }
1312                     } else {
1313                         let mut err = struct_span_err!(tcx.sess, impl_item.span, E0325,
1314                                   "item `{}` is an associated type, \
1315                                   which doesn't match its trait `{}`",
1316                                   ty_impl_item.name,
1317                                   impl_trait_ref);
1318                          err.span_label(impl_item.span, "does not match trait");
1319                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1320                             err.span_label(trait_span, "item in trait");
1321                          }
1322                          err.emit()
1323                     }
1324                 }
1325             }
1326         }
1327
1328         check_specialization_validity(tcx, trait_def, impl_id, impl_item);
1329     }
1330
1331     // Check for missing items from trait
1332     let mut missing_items = Vec::new();
1333     let mut invalidated_items = Vec::new();
1334     let associated_type_overridden = overridden_associated_type.is_some();
1335     for trait_item in tcx.associated_items(impl_trait_ref.def_id) {
1336         let is_implemented = trait_def.ancestors(tcx, impl_id)
1337             .defs(tcx, trait_item.name, trait_item.kind)
1338             .next()
1339             .map(|node_item| !node_item.node.is_from_trait())
1340             .unwrap_or(false);
1341
1342         if !is_implemented {
1343             if !trait_item.defaultness.has_value() {
1344                 missing_items.push(trait_item);
1345             } else if associated_type_overridden {
1346                 invalidated_items.push(trait_item.name);
1347             }
1348         }
1349     }
1350
1351     let signature = |item: &ty::AssociatedItem| {
1352         match item.kind {
1353             ty::AssociatedKind::Method => {
1354                 format!("{}", tcx.type_of(item.def_id).fn_sig().0)
1355             }
1356             ty::AssociatedKind::Type => format!("type {};", item.name.to_string()),
1357             ty::AssociatedKind::Const => {
1358                 format!("const {}: {:?};", item.name.to_string(), tcx.type_of(item.def_id))
1359             }
1360         }
1361     };
1362
1363     if !missing_items.is_empty() {
1364         let mut err = struct_span_err!(tcx.sess, impl_span, E0046,
1365             "not all trait items implemented, missing: `{}`",
1366             missing_items.iter()
1367                   .map(|trait_item| trait_item.name.to_string())
1368                   .collect::<Vec<_>>().join("`, `"));
1369         err.span_label(impl_span, format!("missing `{}` in implementation",
1370                 missing_items.iter()
1371                     .map(|trait_item| trait_item.name.to_string())
1372                     .collect::<Vec<_>>().join("`, `")));
1373         for trait_item in missing_items {
1374             if let Some(span) = tcx.hir.span_if_local(trait_item.def_id) {
1375                 err.span_label(span, format!("`{}` from trait", trait_item.name));
1376             } else {
1377                 err.note(&format!("`{}` from trait: `{}`",
1378                                   trait_item.name,
1379                                   signature(&trait_item)));
1380             }
1381         }
1382         err.emit();
1383     }
1384
1385     if !invalidated_items.is_empty() {
1386         let invalidator = overridden_associated_type.unwrap();
1387         span_err!(tcx.sess, invalidator.span, E0399,
1388                   "the following trait items need to be reimplemented \
1389                    as `{}` was overridden: `{}`",
1390                   invalidator.name,
1391                   invalidated_items.iter()
1392                                    .map(|name| name.to_string())
1393                                    .collect::<Vec<_>>().join("`, `"))
1394     }
1395 }
1396
1397 /// Checks whether a type can be represented in memory. In particular, it
1398 /// identifies types that contain themselves without indirection through a
1399 /// pointer, which would mean their size is unbounded.
1400 fn check_representable<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1401                                  sp: Span,
1402                                  item_def_id: DefId)
1403                                  -> bool {
1404     let rty = tcx.type_of(item_def_id);
1405
1406     // Check that it is possible to represent this type. This call identifies
1407     // (1) types that contain themselves and (2) types that contain a different
1408     // recursive type. It is only necessary to throw an error on those that
1409     // contain themselves. For case 2, there must be an inner type that will be
1410     // caught by case 1.
1411     match rty.is_representable(tcx, sp) {
1412         Representability::SelfRecursive(spans) => {
1413             let mut err = tcx.recursive_type_with_infinite_size_error(item_def_id);
1414             for span in spans {
1415                 err.span_label(span, "recursive without indirection");
1416             }
1417             err.emit();
1418             return false
1419         }
1420         Representability::Representable | Representability::ContainsRecursive => (),
1421     }
1422     return true
1423 }
1424
1425 pub fn check_simd<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span, def_id: DefId) {
1426     let t = tcx.type_of(def_id);
1427     match t.sty {
1428         ty::TyAdt(def, substs) if def.is_struct() => {
1429             let fields = &def.struct_variant().fields;
1430             if fields.is_empty() {
1431                 span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty");
1432                 return;
1433             }
1434             let e = fields[0].ty(tcx, substs);
1435             if !fields.iter().all(|f| f.ty(tcx, substs) == e) {
1436                 struct_span_err!(tcx.sess, sp, E0076, "SIMD vector should be homogeneous")
1437                                 .span_label(sp, "SIMD elements must have the same type")
1438                                 .emit();
1439                 return;
1440             }
1441             match e.sty {
1442                 ty::TyParam(_) => { /* struct<T>(T, T, T, T) is ok */ }
1443                 _ if e.is_machine()  => { /* struct(u8, u8, u8, u8) is ok */ }
1444                 _ => {
1445                     span_err!(tcx.sess, sp, E0077,
1446                               "SIMD vector element type should be machine type");
1447                     return;
1448                 }
1449             }
1450         }
1451         _ => ()
1452     }
1453 }
1454
1455 fn check_packed<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span, def_id: DefId) {
1456     if check_packed_inner(tcx, def_id, &mut Vec::new()) {
1457         struct_span_err!(tcx.sess, sp, E0588,
1458             "packed struct cannot transitively contain a `[repr(align)]` struct").emit();
1459     }
1460 }
1461
1462 fn check_packed_inner<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1463                                 def_id: DefId,
1464                                 stack: &mut Vec<DefId>) -> bool {
1465     let t = tcx.type_of(def_id);
1466     if stack.contains(&def_id) {
1467         debug!("check_packed_inner: {:?} is recursive", t);
1468         return false;
1469     }
1470     match t.sty {
1471         ty::TyAdt(def, substs) if def.is_struct() => {
1472             if tcx.adt_def(def.did).repr.align > 0 {
1473                 return true;
1474             }
1475             // push struct def_id before checking fields
1476             stack.push(def_id);
1477             for field in &def.struct_variant().fields {
1478                 let f = field.ty(tcx, substs);
1479                 match f.sty {
1480                     ty::TyAdt(def, _) => {
1481                         if check_packed_inner(tcx, def.did, stack) {
1482                             return true;
1483                         }
1484                     }
1485                     _ => ()
1486                 }
1487             }
1488             // only need to pop if not early out
1489             stack.pop();
1490         }
1491         _ => ()
1492     }
1493     false
1494 }
1495
1496 #[allow(trivial_numeric_casts)]
1497 pub fn check_enum<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1498                             sp: Span,
1499                             vs: &'tcx [hir::Variant],
1500                             id: ast::NodeId) {
1501     let def_id = tcx.hir.local_def_id(id);
1502     let def = tcx.adt_def(def_id);
1503     def.destructor(tcx); // force the destructor to be evaluated
1504
1505     if vs.is_empty() && tcx.has_attr(def_id, "repr") {
1506         struct_span_err!(
1507             tcx.sess, sp, E0084,
1508             "unsupported representation for zero-variant enum")
1509             .span_label(sp, "unsupported enum representation")
1510             .emit();
1511     }
1512
1513     let repr_type_ty = def.repr.discr_type().to_ty(tcx);
1514     if repr_type_ty == tcx.types.i128 || repr_type_ty == tcx.types.u128 {
1515         if !tcx.sess.features.borrow().i128_type {
1516             emit_feature_err(&tcx.sess.parse_sess,
1517                              "i128_type", sp, GateIssue::Language, "128-bit type is unstable");
1518         }
1519     }
1520
1521     for v in vs {
1522         if let Some(e) = v.node.disr_expr {
1523             tcx.typeck_tables_of(tcx.hir.local_def_id(e.node_id));
1524         }
1525     }
1526
1527     let mut disr_vals: Vec<ConstInt> = Vec::new();
1528     for (discr, v) in def.discriminants(tcx).zip(vs) {
1529         // Check for duplicate discriminant values
1530         if let Some(i) = disr_vals.iter().position(|&x| x == discr) {
1531             let variant_i_node_id = tcx.hir.as_local_node_id(def.variants[i].did).unwrap();
1532             let variant_i = tcx.hir.expect_variant(variant_i_node_id);
1533             let i_span = match variant_i.node.disr_expr {
1534                 Some(expr) => tcx.hir.span(expr.node_id),
1535                 None => tcx.hir.span(variant_i_node_id)
1536             };
1537             let span = match v.node.disr_expr {
1538                 Some(expr) => tcx.hir.span(expr.node_id),
1539                 None => v.span
1540             };
1541             struct_span_err!(tcx.sess, span, E0081,
1542                              "discriminant value `{}` already exists", disr_vals[i])
1543                 .span_label(i_span, format!("first use of `{}`", disr_vals[i]))
1544                 .span_label(span , format!("enum already has `{}`", disr_vals[i]))
1545                 .emit();
1546         }
1547         disr_vals.push(discr);
1548     }
1549
1550     check_representable(tcx, sp, def_id);
1551 }
1552
1553 impl<'a, 'gcx, 'tcx> AstConv<'gcx, 'tcx> for FnCtxt<'a, 'gcx, 'tcx> {
1554     fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.tcx }
1555
1556     fn get_type_parameter_bounds(&self, _: Span, def_id: DefId)
1557                                  -> ty::GenericPredicates<'tcx>
1558     {
1559         let tcx = self.tcx;
1560         let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
1561         let item_id = tcx.hir.ty_param_owner(node_id);
1562         let item_def_id = tcx.hir.local_def_id(item_id);
1563         let generics = tcx.generics_of(item_def_id);
1564         let index = generics.type_param_to_index[&def_id.index];
1565         ty::GenericPredicates {
1566             parent: None,
1567             predicates: self.param_env.caller_bounds.iter().filter(|predicate| {
1568                 match **predicate {
1569                     ty::Predicate::Trait(ref data) => {
1570                         data.0.self_ty().is_param(index)
1571                     }
1572                     _ => false
1573                 }
1574             }).cloned().collect()
1575         }
1576     }
1577
1578     fn re_infer(&self, span: Span, def: Option<&ty::RegionParameterDef>)
1579                 -> Option<ty::Region<'tcx>> {
1580         let v = match def {
1581             Some(def) => infer::EarlyBoundRegion(span, def.name, def.issue_32330),
1582             None => infer::MiscVariable(span)
1583         };
1584         Some(self.next_region_var(v))
1585     }
1586
1587     fn ty_infer(&self, span: Span) -> Ty<'tcx> {
1588         self.next_ty_var(TypeVariableOrigin::TypeInference(span))
1589     }
1590
1591     fn ty_infer_for_def(&self,
1592                         ty_param_def: &ty::TypeParameterDef,
1593                         substs: &[Kind<'tcx>],
1594                         span: Span) -> Ty<'tcx> {
1595         self.type_var_for_def(span, ty_param_def, substs)
1596     }
1597
1598     fn projected_ty_from_poly_trait_ref(&self,
1599                                         span: Span,
1600                                         poly_trait_ref: ty::PolyTraitRef<'tcx>,
1601                                         item_name: ast::Name)
1602                                         -> Ty<'tcx>
1603     {
1604         let (trait_ref, _) =
1605             self.replace_late_bound_regions_with_fresh_var(
1606                 span,
1607                 infer::LateBoundRegionConversionTime::AssocTypeProjection(item_name),
1608                 &poly_trait_ref);
1609
1610         self.tcx().mk_projection(trait_ref, item_name)
1611     }
1612
1613     fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
1614         if ty.has_escaping_regions() {
1615             ty // FIXME: normalization and escaping regions
1616         } else {
1617             self.normalize_associated_types_in(span, &ty)
1618         }
1619     }
1620
1621     fn set_tainted_by_errors(&self) {
1622         self.infcx.set_tainted_by_errors()
1623     }
1624 }
1625
1626 /// Controls whether the arguments are tupled. This is used for the call
1627 /// operator.
1628 ///
1629 /// Tupling means that all call-side arguments are packed into a tuple and
1630 /// passed as a single parameter. For example, if tupling is enabled, this
1631 /// function:
1632 ///
1633 ///     fn f(x: (isize, isize))
1634 ///
1635 /// Can be called as:
1636 ///
1637 ///     f(1, 2);
1638 ///
1639 /// Instead of:
1640 ///
1641 ///     f((1, 2));
1642 #[derive(Clone, Eq, PartialEq)]
1643 enum TupleArgumentsFlag {
1644     DontTupleArguments,
1645     TupleArguments,
1646 }
1647
1648 impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
1649     pub fn new(inh: &'a Inherited<'a, 'gcx, 'tcx>,
1650                param_env: ty::ParamEnv<'tcx>,
1651                body_id: ast::NodeId)
1652                -> FnCtxt<'a, 'gcx, 'tcx> {
1653         FnCtxt {
1654             body_id: body_id,
1655             param_env,
1656             err_count_on_creation: inh.tcx.sess.err_count(),
1657             ret_coercion: None,
1658             ps: RefCell::new(UnsafetyState::function(hir::Unsafety::Normal,
1659                                                      ast::CRATE_NODE_ID)),
1660             diverges: Cell::new(Diverges::Maybe),
1661             has_errors: Cell::new(false),
1662             enclosing_breakables: RefCell::new(EnclosingBreakables {
1663                 stack: Vec::new(),
1664                 by_id: NodeMap(),
1665             }),
1666             inh: inh,
1667         }
1668     }
1669
1670     pub fn sess(&self) -> &Session {
1671         &self.tcx.sess
1672     }
1673
1674     pub fn err_count_since_creation(&self) -> usize {
1675         self.tcx.sess.err_count() - self.err_count_on_creation
1676     }
1677
1678     /// Produce warning on the given node, if the current point in the
1679     /// function is unreachable, and there hasn't been another warning.
1680     fn warn_if_unreachable(&self, id: ast::NodeId, span: Span, kind: &str) {
1681         if self.diverges.get() == Diverges::Always {
1682             self.diverges.set(Diverges::WarnedAlways);
1683
1684             debug!("warn_if_unreachable: id={:?} span={:?} kind={}", id, span, kind);
1685
1686             self.tables.borrow_mut().lints.add_lint(
1687                 lint::builtin::UNREACHABLE_CODE,
1688                 id, span,
1689                 format!("unreachable {}", kind));
1690         }
1691     }
1692
1693     pub fn cause(&self,
1694                  span: Span,
1695                  code: ObligationCauseCode<'tcx>)
1696                  -> ObligationCause<'tcx> {
1697         ObligationCause::new(span, self.body_id, code)
1698     }
1699
1700     pub fn misc(&self, span: Span) -> ObligationCause<'tcx> {
1701         self.cause(span, ObligationCauseCode::MiscObligation)
1702     }
1703
1704     /// Resolves type variables in `ty` if possible. Unlike the infcx
1705     /// version (resolve_type_vars_if_possible), this version will
1706     /// also select obligations if it seems useful, in an effort
1707     /// to get more type information.
1708     fn resolve_type_vars_with_obligations(&self, mut ty: Ty<'tcx>) -> Ty<'tcx> {
1709         debug!("resolve_type_vars_with_obligations(ty={:?})", ty);
1710
1711         // No TyInfer()? Nothing needs doing.
1712         if !ty.has_infer_types() {
1713             debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1714             return ty;
1715         }
1716
1717         // If `ty` is a type variable, see whether we already know what it is.
1718         ty = self.resolve_type_vars_if_possible(&ty);
1719         if !ty.has_infer_types() {
1720             debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1721             return ty;
1722         }
1723
1724         // If not, try resolving pending obligations as much as
1725         // possible. This can help substantially when there are
1726         // indirect dependencies that don't seem worth tracking
1727         // precisely.
1728         self.select_obligations_where_possible();
1729         ty = self.resolve_type_vars_if_possible(&ty);
1730
1731         debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1732         ty
1733     }
1734
1735     fn record_deferred_call_resolution(&self,
1736                                        closure_def_id: DefId,
1737                                        r: DeferredCallResolution<'gcx, 'tcx>) {
1738         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
1739         deferred_call_resolutions.entry(closure_def_id).or_insert(vec![]).push(r);
1740     }
1741
1742     fn remove_deferred_call_resolutions(&self,
1743                                         closure_def_id: DefId)
1744                                         -> Vec<DeferredCallResolution<'gcx, 'tcx>>
1745     {
1746         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
1747         deferred_call_resolutions.remove(&closure_def_id).unwrap_or(vec![])
1748     }
1749
1750     pub fn tag(&self) -> String {
1751         let self_ptr: *const FnCtxt = self;
1752         format!("{:?}", self_ptr)
1753     }
1754
1755     pub fn local_ty(&self, span: Span, nid: ast::NodeId) -> Ty<'tcx> {
1756         match self.locals.borrow().get(&nid) {
1757             Some(&t) => t,
1758             None => {
1759                 span_bug!(span, "no type for local variable {}",
1760                           self.tcx.hir.node_to_string(nid));
1761             }
1762         }
1763     }
1764
1765     #[inline]
1766     pub fn write_ty(&self, node_id: ast::NodeId, ty: Ty<'tcx>) {
1767         debug!("write_ty({}, {:?}) in fcx {}",
1768                node_id, self.resolve_type_vars_if_possible(&ty), self.tag());
1769         self.tables.borrow_mut().node_types.insert(node_id, ty);
1770
1771         if ty.references_error() {
1772             self.has_errors.set(true);
1773             self.set_tainted_by_errors();
1774         }
1775     }
1776
1777     pub fn write_method_call(&self, node_id: ast::NodeId, method: MethodCallee<'tcx>) {
1778         self.tables.borrow_mut().type_dependent_defs.insert(node_id, Def::Method(method.def_id));
1779         self.write_substs(node_id, method.substs);
1780     }
1781
1782     pub fn write_substs(&self, node_id: ast::NodeId, substs: &'tcx Substs<'tcx>) {
1783         if !substs.is_noop() {
1784             debug!("write_substs({}, {:?}) in fcx {}",
1785                    node_id,
1786                    substs,
1787                    self.tag());
1788
1789             self.tables.borrow_mut().node_substs.insert(node_id, substs);
1790         }
1791     }
1792
1793     pub fn apply_adjustments(&self, expr: &hir::Expr, adj: Vec<Adjustment<'tcx>>) {
1794         debug!("apply_adjustments(expr={:?}, adj={:?})", expr, adj);
1795
1796         if adj.is_empty() {
1797             return;
1798         }
1799
1800         match self.tables.borrow_mut().adjustments.entry(expr.id) {
1801             Entry::Vacant(entry) => { entry.insert(adj); },
1802             Entry::Occupied(mut entry) => {
1803                 debug!(" - composing on top of {:?}", entry.get());
1804                 match (&entry.get()[..], &adj[..]) {
1805                     // Applying any adjustment on top of a NeverToAny
1806                     // is a valid NeverToAny adjustment, because it can't
1807                     // be reached.
1808                     (&[Adjustment { kind: Adjust::NeverToAny, .. }], _) => return,
1809                     (&[
1810                         Adjustment { kind: Adjust::Deref(_), .. },
1811                         Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(..)), .. },
1812                     ], &[
1813                         Adjustment { kind: Adjust::Deref(_), .. },
1814                         .. // Any following adjustments are allowed.
1815                     ]) => {
1816                         // A reborrow has no effect before a dereference.
1817                     }
1818                     // FIXME: currently we never try to compose autoderefs
1819                     // and ReifyFnPointer/UnsafeFnPointer, but we could.
1820                     _ =>
1821                         bug!("while adjusting {:?}, can't compose {:?} and {:?}",
1822                              expr, entry.get(), adj)
1823                 };
1824                 *entry.get_mut() = adj;
1825             }
1826         }
1827     }
1828
1829     /// Basically whenever we are converting from a type scheme into
1830     /// the fn body space, we always want to normalize associated
1831     /// types as well. This function combines the two.
1832     fn instantiate_type_scheme<T>(&self,
1833                                   span: Span,
1834                                   substs: &Substs<'tcx>,
1835                                   value: &T)
1836                                   -> T
1837         where T : TypeFoldable<'tcx>
1838     {
1839         let value = value.subst(self.tcx, substs);
1840         let result = self.normalize_associated_types_in(span, &value);
1841         debug!("instantiate_type_scheme(value={:?}, substs={:?}) = {:?}",
1842                value,
1843                substs,
1844                result);
1845         result
1846     }
1847
1848     /// As `instantiate_type_scheme`, but for the bounds found in a
1849     /// generic type scheme.
1850     fn instantiate_bounds(&self, span: Span, def_id: DefId, substs: &Substs<'tcx>)
1851                           -> ty::InstantiatedPredicates<'tcx> {
1852         let bounds = self.tcx.predicates_of(def_id);
1853         let result = bounds.instantiate(self.tcx, substs);
1854         let result = self.normalize_associated_types_in(span, &result);
1855         debug!("instantiate_bounds(bounds={:?}, substs={:?}) = {:?}",
1856                bounds,
1857                substs,
1858                result);
1859         result
1860     }
1861
1862     /// Replace all anonymized types with fresh inference variables
1863     /// and record them for writeback.
1864     fn instantiate_anon_types<T: TypeFoldable<'tcx>>(&self, value: &T) -> T {
1865         value.fold_with(&mut BottomUpFolder { tcx: self.tcx, fldop: |ty| {
1866             if let ty::TyAnon(def_id, substs) = ty.sty {
1867                 // Use the same type variable if the exact same TyAnon appears more
1868                 // than once in the return type (e.g. if it's pased to a type alias).
1869                 let id = self.tcx.hir.as_local_node_id(def_id).unwrap();
1870                 if let Some(ty_var) = self.anon_types.borrow().get(&id) {
1871                     return ty_var;
1872                 }
1873                 let span = self.tcx.def_span(def_id);
1874                 let ty_var = self.next_ty_var(TypeVariableOrigin::TypeInference(span));
1875                 self.anon_types.borrow_mut().insert(id, ty_var);
1876
1877                 let predicates_of = self.tcx.predicates_of(def_id);
1878                 let bounds = predicates_of.instantiate(self.tcx, substs);
1879
1880                 for predicate in bounds.predicates {
1881                     // Change the predicate to refer to the type variable,
1882                     // which will be the concrete type, instead of the TyAnon.
1883                     // This also instantiates nested `impl Trait`.
1884                     let predicate = self.instantiate_anon_types(&predicate);
1885
1886                     // Require that the predicate holds for the concrete type.
1887                     let cause = traits::ObligationCause::new(span, self.body_id,
1888                                                              traits::ReturnType);
1889                     self.register_predicate(traits::Obligation::new(cause,
1890                                                                     self.param_env,
1891                                                                     predicate));
1892                 }
1893
1894                 ty_var
1895             } else {
1896                 ty
1897             }
1898         }})
1899     }
1900
1901     fn normalize_associated_types_in<T>(&self, span: Span, value: &T) -> T
1902         where T : TypeFoldable<'tcx>
1903     {
1904         self.inh.normalize_associated_types_in(span, self.body_id, self.param_env, value)
1905     }
1906
1907     fn normalize_associated_types_in_as_infer_ok<T>(&self, span: Span, value: &T)
1908                                                     -> InferOk<'tcx, T>
1909         where T : TypeFoldable<'tcx>
1910     {
1911         self.inh.normalize_associated_types_in_as_infer_ok(span, self.body_id, self.param_env, value)
1912     }
1913
1914     pub fn write_nil(&self, node_id: ast::NodeId) {
1915         self.write_ty(node_id, self.tcx.mk_nil());
1916     }
1917
1918     pub fn write_error(&self, node_id: ast::NodeId) {
1919         self.write_ty(node_id, self.tcx.types.err);
1920     }
1921
1922     pub fn require_type_meets(&self,
1923                               ty: Ty<'tcx>,
1924                               span: Span,
1925                               code: traits::ObligationCauseCode<'tcx>,
1926                               def_id: DefId)
1927     {
1928         self.register_bound(
1929             ty,
1930             def_id,
1931             traits::ObligationCause::new(span, self.body_id, code));
1932     }
1933
1934     pub fn require_type_is_sized(&self,
1935                                  ty: Ty<'tcx>,
1936                                  span: Span,
1937                                  code: traits::ObligationCauseCode<'tcx>)
1938     {
1939         let lang_item = self.tcx.require_lang_item(lang_items::SizedTraitLangItem);
1940         self.require_type_meets(ty, span, code, lang_item);
1941     }
1942
1943     pub fn register_bound(&self,
1944                           ty: Ty<'tcx>,
1945                           def_id: DefId,
1946                           cause: traits::ObligationCause<'tcx>)
1947     {
1948         self.fulfillment_cx.borrow_mut()
1949                            .register_bound(self, self.param_env, ty, def_id, cause);
1950     }
1951
1952     pub fn to_ty(&self, ast_t: &hir::Ty) -> Ty<'tcx> {
1953         let t = AstConv::ast_ty_to_ty(self, ast_t);
1954         self.register_wf_obligation(t, ast_t.span, traits::MiscObligation);
1955         t
1956     }
1957
1958     pub fn node_ty(&self, id: ast::NodeId) -> Ty<'tcx> {
1959         match self.tables.borrow().node_types.get(&id) {
1960             Some(&t) => t,
1961             None if self.err_count_since_creation() != 0 => self.tcx.types.err,
1962             None => {
1963                 bug!("no type for node {}: {} in fcx {}",
1964                      id, self.tcx.hir.node_to_string(id),
1965                      self.tag());
1966             }
1967         }
1968     }
1969
1970     /// Registers an obligation for checking later, during regionck, that the type `ty` must
1971     /// outlive the region `r`.
1972     pub fn register_region_obligation(&self,
1973                                       ty: Ty<'tcx>,
1974                                       region: ty::Region<'tcx>,
1975                                       cause: traits::ObligationCause<'tcx>)
1976     {
1977         let mut fulfillment_cx = self.fulfillment_cx.borrow_mut();
1978         fulfillment_cx.register_region_obligation(ty, region, cause);
1979     }
1980
1981     /// Registers an obligation for checking later, during regionck, that the type `ty` must
1982     /// outlive the region `r`.
1983     pub fn register_wf_obligation(&self,
1984                                   ty: Ty<'tcx>,
1985                                   span: Span,
1986                                   code: traits::ObligationCauseCode<'tcx>)
1987     {
1988         // WF obligations never themselves fail, so no real need to give a detailed cause:
1989         let cause = traits::ObligationCause::new(span, self.body_id, code);
1990         self.register_predicate(traits::Obligation::new(cause,
1991                                                         self.param_env,
1992                                                         ty::Predicate::WellFormed(ty)));
1993     }
1994
1995     pub fn register_old_wf_obligation(&self,
1996                                       ty: Ty<'tcx>,
1997                                       span: Span,
1998                                       code: traits::ObligationCauseCode<'tcx>)
1999     {
2000         // Registers an "old-style" WF obligation that uses the
2001         // implicator code.  This is basically a buggy version of
2002         // `register_wf_obligation` that is being kept around
2003         // temporarily just to help with phasing in the newer rules.
2004         //
2005         // FIXME(#27579) all uses of this should be migrated to register_wf_obligation eventually
2006         let cause = traits::ObligationCause::new(span, self.body_id, code);
2007         self.register_region_obligation(ty, self.tcx.types.re_empty, cause);
2008     }
2009
2010     /// Registers obligations that all types appearing in `substs` are well-formed.
2011     pub fn add_wf_bounds(&self, substs: &Substs<'tcx>, expr: &hir::Expr)
2012     {
2013         for ty in substs.types() {
2014             self.register_wf_obligation(ty, expr.span, traits::MiscObligation);
2015         }
2016     }
2017
2018     /// Given a fully substituted set of bounds (`generic_bounds`), and the values with which each
2019     /// type/region parameter was instantiated (`substs`), creates and registers suitable
2020     /// trait/region obligations.
2021     ///
2022     /// For example, if there is a function:
2023     ///
2024     /// ```
2025     /// fn foo<'a,T:'a>(...)
2026     /// ```
2027     ///
2028     /// and a reference:
2029     ///
2030     /// ```
2031     /// let f = foo;
2032     /// ```
2033     ///
2034     /// Then we will create a fresh region variable `'$0` and a fresh type variable `$1` for `'a`
2035     /// and `T`. This routine will add a region obligation `$1:'$0` and register it locally.
2036     pub fn add_obligations_for_parameters(&self,
2037                                           cause: traits::ObligationCause<'tcx>,
2038                                           predicates: &ty::InstantiatedPredicates<'tcx>)
2039     {
2040         assert!(!predicates.has_escaping_regions());
2041
2042         debug!("add_obligations_for_parameters(predicates={:?})",
2043                predicates);
2044
2045         for obligation in traits::predicates_for_generics(cause, self.param_env, predicates) {
2046             self.register_predicate(obligation);
2047         }
2048     }
2049
2050     // FIXME(arielb1): use this instead of field.ty everywhere
2051     // Only for fields! Returns <none> for methods>
2052     // Indifferent to privacy flags
2053     pub fn field_ty(&self,
2054                     span: Span,
2055                     field: &'tcx ty::FieldDef,
2056                     substs: &Substs<'tcx>)
2057                     -> Ty<'tcx>
2058     {
2059         self.normalize_associated_types_in(span,
2060                                            &field.ty(self.tcx, substs))
2061     }
2062
2063     fn check_casts(&self) {
2064         let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
2065         for cast in deferred_cast_checks.drain(..) {
2066             cast.check(self);
2067         }
2068     }
2069
2070     /// Apply "fallbacks" to some types
2071     /// unconstrained types get replaced with ! or  () (depending on whether
2072     /// feature(never_type) is enabled), unconstrained ints with i32, and
2073     /// unconstrained floats with f64.
2074     fn default_type_parameters(&self) {
2075         use rustc::ty::error::UnconstrainedNumeric::Neither;
2076         use rustc::ty::error::UnconstrainedNumeric::{UnconstrainedInt, UnconstrainedFloat};
2077
2078         // Defaulting inference variables becomes very dubious if we have
2079         // encountered type-checking errors. Therefore, if we think we saw
2080         // some errors in this function, just resolve all uninstanted type
2081         // varibles to TyError.
2082         if self.is_tainted_by_errors() {
2083             for ty in &self.unsolved_variables() {
2084                 if let ty::TyInfer(_) = self.shallow_resolve(ty).sty {
2085                     debug!("default_type_parameters: defaulting `{:?}` to error", ty);
2086                     self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx().types.err);
2087                 }
2088             }
2089             return;
2090         }
2091
2092         for ty in &self.unsolved_variables() {
2093             let resolved = self.resolve_type_vars_if_possible(ty);
2094             if self.type_var_diverges(resolved) {
2095                 debug!("default_type_parameters: defaulting `{:?}` to `!` because it diverges",
2096                        resolved);
2097                 self.demand_eqtype(syntax_pos::DUMMY_SP, *ty,
2098                                    self.tcx.mk_diverging_default());
2099             } else {
2100                 match self.type_is_unconstrained_numeric(resolved) {
2101                     UnconstrainedInt => {
2102                         debug!("default_type_parameters: defaulting `{:?}` to `i32`",
2103                                resolved);
2104                         self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx.types.i32)
2105                     },
2106                     UnconstrainedFloat => {
2107                         debug!("default_type_parameters: defaulting `{:?}` to `f32`",
2108                                resolved);
2109                         self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx.types.f64)
2110                     }
2111                     Neither => { }
2112                 }
2113             }
2114         }
2115     }
2116
2117     // Implements type inference fallback algorithm
2118     fn select_all_obligations_and_apply_defaults(&self) {
2119         self.select_obligations_where_possible();
2120         self.default_type_parameters();
2121         self.select_obligations_where_possible();
2122     }
2123
2124     fn select_all_obligations_or_error(&self) {
2125         debug!("select_all_obligations_or_error");
2126
2127         // upvar inference should have ensured that all deferred call
2128         // resolutions are handled by now.
2129         assert!(self.deferred_call_resolutions.borrow().is_empty());
2130
2131         self.select_all_obligations_and_apply_defaults();
2132
2133         let mut fulfillment_cx = self.fulfillment_cx.borrow_mut();
2134
2135         match fulfillment_cx.select_all_or_error(self) {
2136             Ok(()) => { }
2137             Err(errors) => { self.report_fulfillment_errors(&errors); }
2138         }
2139     }
2140
2141     /// Select as many obligations as we can at present.
2142     fn select_obligations_where_possible(&self) {
2143         match self.fulfillment_cx.borrow_mut().select_where_possible(self) {
2144             Ok(()) => { }
2145             Err(errors) => { self.report_fulfillment_errors(&errors); }
2146         }
2147     }
2148
2149     /// For the overloaded lvalue expressions (`*x`, `x[3]`), the trait
2150     /// returns a type of `&T`, but the actual type we assign to the
2151     /// *expression* is `T`. So this function just peels off the return
2152     /// type by one layer to yield `T`.
2153     fn make_overloaded_lvalue_return_type(&self,
2154                                           method: MethodCallee<'tcx>)
2155                                           -> ty::TypeAndMut<'tcx>
2156     {
2157         // extract method return type, which will be &T;
2158         // all LB regions should have been instantiated during method lookup
2159         let ret_ty = method.sig.output();
2160
2161         // method returns &T, but the type as visible to user is T, so deref
2162         ret_ty.builtin_deref(true, NoPreference).unwrap()
2163     }
2164
2165     fn lookup_indexing(&self,
2166                        expr: &hir::Expr,
2167                        base_expr: &'gcx hir::Expr,
2168                        base_ty: Ty<'tcx>,
2169                        idx_ty: Ty<'tcx>,
2170                        lvalue_pref: LvaluePreference)
2171                        -> Option<(/*index type*/ Ty<'tcx>, /*element type*/ Ty<'tcx>)>
2172     {
2173         // FIXME(#18741) -- this is almost but not quite the same as the
2174         // autoderef that normal method probing does. They could likely be
2175         // consolidated.
2176
2177         let mut autoderef = self.autoderef(base_expr.span, base_ty);
2178         let mut result = None;
2179         while result.is_none() && autoderef.next().is_some() {
2180             result = self.try_index_step(expr, base_expr, &autoderef, lvalue_pref, idx_ty);
2181         }
2182         autoderef.finalize();
2183         result
2184     }
2185
2186     /// To type-check `base_expr[index_expr]`, we progressively autoderef
2187     /// (and otherwise adjust) `base_expr`, looking for a type which either
2188     /// supports builtin indexing or overloaded indexing.
2189     /// This loop implements one step in that search; the autoderef loop
2190     /// is implemented by `lookup_indexing`.
2191     fn try_index_step(&self,
2192                       expr: &hir::Expr,
2193                       base_expr: &hir::Expr,
2194                       autoderef: &Autoderef<'a, 'gcx, 'tcx>,
2195                       lvalue_pref: LvaluePreference,
2196                       index_ty: Ty<'tcx>)
2197                       -> Option<(/*index type*/ Ty<'tcx>, /*element type*/ Ty<'tcx>)>
2198     {
2199         let adjusted_ty = autoderef.unambiguous_final_ty();
2200         debug!("try_index_step(expr={:?}, base_expr={:?}, adjusted_ty={:?}, \
2201                                index_ty={:?})",
2202                expr,
2203                base_expr,
2204                adjusted_ty,
2205                index_ty);
2206
2207
2208         // First, try built-in indexing.
2209         match (adjusted_ty.builtin_index(), &index_ty.sty) {
2210             (Some(ty), &ty::TyUint(ast::UintTy::Us)) | (Some(ty), &ty::TyInfer(ty::IntVar(_))) => {
2211                 debug!("try_index_step: success, using built-in indexing");
2212                 let adjustments = autoderef.adjust_steps(lvalue_pref);
2213                 self.apply_adjustments(base_expr, adjustments);
2214                 return Some((self.tcx.types.usize, ty));
2215             }
2216             _ => {}
2217         }
2218
2219         for &unsize in &[false, true] {
2220             let mut self_ty = adjusted_ty;
2221             if unsize {
2222                 // We only unsize arrays here.
2223                 if let ty::TyArray(element_ty, _) = adjusted_ty.sty {
2224                     self_ty = self.tcx.mk_slice(element_ty);
2225                 } else {
2226                     continue;
2227                 }
2228             }
2229
2230             // If some lookup succeeds, write callee into table and extract index/element
2231             // type from the method signature.
2232             // If some lookup succeeded, install method in table
2233             let input_ty = self.next_ty_var(TypeVariableOrigin::AutoDeref(base_expr.span));
2234             let method = self.try_overloaded_lvalue_op(
2235                 expr.span, self_ty, &[input_ty], lvalue_pref, LvalueOp::Index);
2236
2237             let result = method.map(|ok| {
2238                 debug!("try_index_step: success, using overloaded indexing");
2239                 let method = self.register_infer_ok_obligations(ok);
2240
2241                 let mut adjustments = autoderef.adjust_steps(lvalue_pref);
2242                 if let ty::TyRef(region, mt) = method.sig.inputs()[0].sty {
2243                     adjustments.push(Adjustment {
2244                         kind: Adjust::Borrow(AutoBorrow::Ref(region, mt.mutbl)),
2245                         target: self.tcx.mk_ref(region, ty::TypeAndMut {
2246                             mutbl: mt.mutbl,
2247                             ty: adjusted_ty
2248                         })
2249                     });
2250                 }
2251                 if unsize {
2252                     adjustments.push(Adjustment {
2253                         kind: Adjust::Unsize,
2254                         target: method.sig.inputs()[0]
2255                     });
2256                 }
2257                 self.apply_adjustments(base_expr, adjustments);
2258
2259                 self.write_method_call(expr.id, method);
2260                 (input_ty, self.make_overloaded_lvalue_return_type(method).ty)
2261             });
2262             if result.is_some() {
2263                 return result;
2264             }
2265         }
2266
2267         None
2268     }
2269
2270     fn resolve_lvalue_op(&self, op: LvalueOp, is_mut: bool) -> (Option<DefId>, Symbol) {
2271         let (tr, name) = match (op, is_mut) {
2272             (LvalueOp::Deref, false) =>
2273                 (self.tcx.lang_items.deref_trait(), "deref"),
2274             (LvalueOp::Deref, true) =>
2275                 (self.tcx.lang_items.deref_mut_trait(), "deref_mut"),
2276             (LvalueOp::Index, false) =>
2277                 (self.tcx.lang_items.index_trait(), "index"),
2278             (LvalueOp::Index, true) =>
2279                 (self.tcx.lang_items.index_mut_trait(), "index_mut"),
2280         };
2281         (tr, Symbol::intern(name))
2282     }
2283
2284     fn try_overloaded_lvalue_op(&self,
2285                                 span: Span,
2286                                 base_ty: Ty<'tcx>,
2287                                 arg_tys: &[Ty<'tcx>],
2288                                 lvalue_pref: LvaluePreference,
2289                                 op: LvalueOp)
2290                                 -> Option<InferOk<'tcx, MethodCallee<'tcx>>>
2291     {
2292         debug!("try_overloaded_lvalue_op({:?},{:?},{:?},{:?})",
2293                span,
2294                base_ty,
2295                lvalue_pref,
2296                op);
2297
2298         // Try Mut first, if preferred.
2299         let (mut_tr, mut_op) = self.resolve_lvalue_op(op, true);
2300         let method = match (lvalue_pref, mut_tr) {
2301             (PreferMutLvalue, Some(trait_did)) => {
2302                 self.lookup_method_in_trait(span, mut_op, trait_did, base_ty, Some(arg_tys))
2303             }
2304             _ => None,
2305         };
2306
2307         // Otherwise, fall back to the immutable version.
2308         let (imm_tr, imm_op) = self.resolve_lvalue_op(op, false);
2309         let method = match (method, imm_tr) {
2310             (None, Some(trait_did)) => {
2311                 self.lookup_method_in_trait(span, imm_op, trait_did, base_ty, Some(arg_tys))
2312             }
2313             (method, _) => method,
2314         };
2315
2316         method
2317     }
2318
2319     fn check_method_argument_types(&self,
2320                                    sp: Span,
2321                                    method: Result<MethodCallee<'tcx>, ()>,
2322                                    args_no_rcvr: &'gcx [hir::Expr],
2323                                    tuple_arguments: TupleArgumentsFlag,
2324                                    expected: Expectation<'tcx>)
2325                                    -> Ty<'tcx> {
2326         let has_error = match method {
2327             Ok(method) => {
2328                 method.substs.references_error() || method.sig.references_error()
2329             }
2330             Err(_) => true
2331         };
2332         if has_error {
2333             let err_inputs = self.err_args(args_no_rcvr.len());
2334
2335             let err_inputs = match tuple_arguments {
2336                 DontTupleArguments => err_inputs,
2337                 TupleArguments => vec![self.tcx.intern_tup(&err_inputs[..], false)],
2338             };
2339
2340             self.check_argument_types(sp, &err_inputs[..], &[], args_no_rcvr,
2341                                       false, tuple_arguments, None);
2342             return self.tcx.types.err;
2343         }
2344
2345         let method = method.unwrap();
2346         // HACK(eddyb) ignore self in the definition (see above).
2347         let expected_arg_tys = self.expected_inputs_for_expected_output(
2348             sp,
2349             expected,
2350             method.sig.output(),
2351             &method.sig.inputs()[1..]
2352         );
2353         self.check_argument_types(sp, &method.sig.inputs()[1..], &expected_arg_tys[..],
2354                                   args_no_rcvr, method.sig.variadic, tuple_arguments,
2355                                   self.tcx.hir.span_if_local(method.def_id));
2356         method.sig.output()
2357     }
2358
2359     /// Generic function that factors out common logic from function calls,
2360     /// method calls and overloaded operators.
2361     fn check_argument_types(&self,
2362                             sp: Span,
2363                             fn_inputs: &[Ty<'tcx>],
2364                             expected_arg_tys: &[Ty<'tcx>],
2365                             args: &'gcx [hir::Expr],
2366                             variadic: bool,
2367                             tuple_arguments: TupleArgumentsFlag,
2368                             def_span: Option<Span>) {
2369         let tcx = self.tcx;
2370
2371         // Grab the argument types, supplying fresh type variables
2372         // if the wrong number of arguments were supplied
2373         let supplied_arg_count = if tuple_arguments == DontTupleArguments {
2374             args.len()
2375         } else {
2376             1
2377         };
2378
2379         // All the input types from the fn signature must outlive the call
2380         // so as to validate implied bounds.
2381         for &fn_input_ty in fn_inputs {
2382             self.register_wf_obligation(fn_input_ty, sp, traits::MiscObligation);
2383         }
2384
2385         let mut expected_arg_tys = expected_arg_tys;
2386         let expected_arg_count = fn_inputs.len();
2387
2388         let sp_args = if args.len() > 0 {
2389             let (first, args) = args.split_at(1);
2390             let mut sp_tmp = first[0].span;
2391             for arg in args {
2392                 let sp_opt = self.sess().codemap().merge_spans(sp_tmp, arg.span);
2393                 if ! sp_opt.is_some() {
2394                     break;
2395                 }
2396                 sp_tmp = sp_opt.unwrap();
2397             };
2398             sp_tmp
2399         } else {
2400             sp
2401         };
2402
2403         fn parameter_count_error<'tcx>(sess: &Session, sp: Span, expected_count: usize,
2404                                        arg_count: usize, error_code: &str, variadic: bool,
2405                                        def_span: Option<Span>) {
2406             let mut err = sess.struct_span_err_with_code(sp,
2407                 &format!("this function takes {}{} parameter{} but {} parameter{} supplied",
2408                     if variadic {"at least "} else {""},
2409                     expected_count,
2410                     if expected_count == 1 {""} else {"s"},
2411                     arg_count,
2412                     if arg_count == 1 {" was"} else {"s were"}),
2413                 error_code);
2414
2415             err.span_label(sp, format!("expected {}{} parameter{}",
2416                                         if variadic {"at least "} else {""},
2417                                         expected_count,
2418                                         if expected_count == 1 {""} else {"s"}));
2419             if let Some(def_s) = def_span {
2420                 err.span_label(def_s, "defined here");
2421             }
2422             err.emit();
2423         }
2424
2425         let formal_tys = if tuple_arguments == TupleArguments {
2426             let tuple_type = self.structurally_resolved_type(sp, fn_inputs[0]);
2427             match tuple_type.sty {
2428                 ty::TyTuple(arg_types, _) if arg_types.len() != args.len() => {
2429                     parameter_count_error(tcx.sess, sp_args, arg_types.len(), args.len(),
2430                                           "E0057", false, def_span);
2431                     expected_arg_tys = &[];
2432                     self.err_args(args.len())
2433                 }
2434                 ty::TyTuple(arg_types, _) => {
2435                     expected_arg_tys = match expected_arg_tys.get(0) {
2436                         Some(&ty) => match ty.sty {
2437                             ty::TyTuple(ref tys, _) => &tys,
2438                             _ => &[]
2439                         },
2440                         None => &[]
2441                     };
2442                     arg_types.to_vec()
2443                 }
2444                 _ => {
2445                     span_err!(tcx.sess, sp, E0059,
2446                         "cannot use call notation; the first type parameter \
2447                          for the function trait is neither a tuple nor unit");
2448                     expected_arg_tys = &[];
2449                     self.err_args(args.len())
2450                 }
2451             }
2452         } else if expected_arg_count == supplied_arg_count {
2453             fn_inputs.to_vec()
2454         } else if variadic {
2455             if supplied_arg_count >= expected_arg_count {
2456                 fn_inputs.to_vec()
2457             } else {
2458                 parameter_count_error(tcx.sess, sp_args, expected_arg_count,
2459                                       supplied_arg_count, "E0060", true, def_span);
2460                 expected_arg_tys = &[];
2461                 self.err_args(supplied_arg_count)
2462             }
2463         } else {
2464             parameter_count_error(tcx.sess, sp_args, expected_arg_count,
2465                                   supplied_arg_count, "E0061", false, def_span);
2466             expected_arg_tys = &[];
2467             self.err_args(supplied_arg_count)
2468         };
2469
2470         debug!("check_argument_types: formal_tys={:?}",
2471                formal_tys.iter().map(|t| self.ty_to_string(*t)).collect::<Vec<String>>());
2472
2473         // Check the arguments.
2474         // We do this in a pretty awful way: first we typecheck any arguments
2475         // that are not closures, then we typecheck the closures. This is so
2476         // that we have more information about the types of arguments when we
2477         // typecheck the functions. This isn't really the right way to do this.
2478         for &check_closures in &[false, true] {
2479             debug!("check_closures={}", check_closures);
2480
2481             // More awful hacks: before we check argument types, try to do
2482             // an "opportunistic" vtable resolution of any trait bounds on
2483             // the call. This helps coercions.
2484             if check_closures {
2485                 self.select_obligations_where_possible();
2486             }
2487
2488             // For variadic functions, we don't have a declared type for all of
2489             // the arguments hence we only do our usual type checking with
2490             // the arguments who's types we do know.
2491             let t = if variadic {
2492                 expected_arg_count
2493             } else if tuple_arguments == TupleArguments {
2494                 args.len()
2495             } else {
2496                 supplied_arg_count
2497             };
2498             for (i, arg) in args.iter().take(t).enumerate() {
2499                 // Warn only for the first loop (the "no closures" one).
2500                 // Closure arguments themselves can't be diverging, but
2501                 // a previous argument can, e.g. `foo(panic!(), || {})`.
2502                 if !check_closures {
2503                     self.warn_if_unreachable(arg.id, arg.span, "expression");
2504                 }
2505
2506                 let is_closure = match arg.node {
2507                     hir::ExprClosure(..) => true,
2508                     _ => false
2509                 };
2510
2511                 if is_closure != check_closures {
2512                     continue;
2513                 }
2514
2515                 debug!("checking the argument");
2516                 let formal_ty = formal_tys[i];
2517
2518                 // The special-cased logic below has three functions:
2519                 // 1. Provide as good of an expected type as possible.
2520                 let expected = expected_arg_tys.get(i).map(|&ty| {
2521                     Expectation::rvalue_hint(self, ty)
2522                 });
2523
2524                 let checked_ty = self.check_expr_with_expectation(
2525                     &arg,
2526                     expected.unwrap_or(ExpectHasType(formal_ty)));
2527
2528                 // 2. Coerce to the most detailed type that could be coerced
2529                 //    to, which is `expected_ty` if `rvalue_hint` returns an
2530                 //    `ExpectHasType(expected_ty)`, or the `formal_ty` otherwise.
2531                 let coerce_ty = expected.and_then(|e| e.only_has_type(self));
2532                 self.demand_coerce(&arg, checked_ty, coerce_ty.unwrap_or(formal_ty));
2533
2534                 // 3. Relate the expected type and the formal one,
2535                 //    if the expected type was used for the coercion.
2536                 coerce_ty.map(|ty| self.demand_suptype(arg.span, formal_ty, ty));
2537             }
2538         }
2539
2540         // We also need to make sure we at least write the ty of the other
2541         // arguments which we skipped above.
2542         if variadic {
2543             for arg in args.iter().skip(expected_arg_count) {
2544                 let arg_ty = self.check_expr(&arg);
2545
2546                 // There are a few types which get autopromoted when passed via varargs
2547                 // in C but we just error out instead and require explicit casts.
2548                 let arg_ty = self.structurally_resolved_type(arg.span,
2549                                                              arg_ty);
2550                 match arg_ty.sty {
2551                     ty::TyFloat(ast::FloatTy::F32) => {
2552                         self.type_error_message(arg.span, |t| {
2553                             format!("can't pass an `{}` to variadic \
2554                                      function, cast to `c_double`", t)
2555                         }, arg_ty);
2556                     }
2557                     ty::TyInt(ast::IntTy::I8) | ty::TyInt(ast::IntTy::I16) | ty::TyBool => {
2558                         self.type_error_message(arg.span, |t| {
2559                             format!("can't pass `{}` to variadic \
2560                                      function, cast to `c_int`",
2561                                            t)
2562                         }, arg_ty);
2563                     }
2564                     ty::TyUint(ast::UintTy::U8) | ty::TyUint(ast::UintTy::U16) => {
2565                         self.type_error_message(arg.span, |t| {
2566                             format!("can't pass `{}` to variadic \
2567                                      function, cast to `c_uint`",
2568                                            t)
2569                         }, arg_ty);
2570                     }
2571                     ty::TyFnDef(.., f) => {
2572                         let ptr_ty = self.tcx.mk_fn_ptr(f);
2573                         let ptr_ty = self.resolve_type_vars_if_possible(&ptr_ty);
2574                         self.type_error_message(arg.span,
2575                                                 |t| {
2576                             format!("can't pass `{}` to variadic \
2577                                      function, cast to `{}`", t, ptr_ty)
2578                         }, arg_ty);
2579                     }
2580                     _ => {}
2581                 }
2582             }
2583         }
2584     }
2585
2586     fn err_args(&self, len: usize) -> Vec<Ty<'tcx>> {
2587         (0..len).map(|_| self.tcx.types.err).collect()
2588     }
2589
2590     // AST fragment checking
2591     fn check_lit(&self,
2592                  lit: &ast::Lit,
2593                  expected: Expectation<'tcx>)
2594                  -> Ty<'tcx>
2595     {
2596         let tcx = self.tcx;
2597
2598         match lit.node {
2599             ast::LitKind::Str(..) => tcx.mk_static_str(),
2600             ast::LitKind::ByteStr(ref v) => {
2601                 tcx.mk_imm_ref(tcx.types.re_static,
2602                                 tcx.mk_array(tcx.types.u8, v.len()))
2603             }
2604             ast::LitKind::Byte(_) => tcx.types.u8,
2605             ast::LitKind::Char(_) => tcx.types.char,
2606             ast::LitKind::Int(_, ast::LitIntType::Signed(t)) => tcx.mk_mach_int(t),
2607             ast::LitKind::Int(_, ast::LitIntType::Unsigned(t)) => tcx.mk_mach_uint(t),
2608             ast::LitKind::Int(_, ast::LitIntType::Unsuffixed) => {
2609                 let opt_ty = expected.to_option(self).and_then(|ty| {
2610                     match ty.sty {
2611                         ty::TyInt(_) | ty::TyUint(_) => Some(ty),
2612                         ty::TyChar => Some(tcx.types.u8),
2613                         ty::TyRawPtr(..) => Some(tcx.types.usize),
2614                         ty::TyFnDef(..) | ty::TyFnPtr(_) => Some(tcx.types.usize),
2615                         _ => None
2616                     }
2617                 });
2618                 opt_ty.unwrap_or_else(
2619                     || tcx.mk_int_var(self.next_int_var_id()))
2620             }
2621             ast::LitKind::Float(_, t) => tcx.mk_mach_float(t),
2622             ast::LitKind::FloatUnsuffixed(_) => {
2623                 let opt_ty = expected.to_option(self).and_then(|ty| {
2624                     match ty.sty {
2625                         ty::TyFloat(_) => Some(ty),
2626                         _ => None
2627                     }
2628                 });
2629                 opt_ty.unwrap_or_else(
2630                     || tcx.mk_float_var(self.next_float_var_id()))
2631             }
2632             ast::LitKind::Bool(_) => tcx.types.bool
2633         }
2634     }
2635
2636     fn check_expr_eq_type(&self,
2637                           expr: &'gcx hir::Expr,
2638                           expected: Ty<'tcx>) {
2639         let ty = self.check_expr_with_hint(expr, expected);
2640         self.demand_eqtype(expr.span, expected, ty);
2641     }
2642
2643     pub fn check_expr_has_type(&self,
2644                                expr: &'gcx hir::Expr,
2645                                expected: Ty<'tcx>) -> Ty<'tcx> {
2646         let mut ty = self.check_expr_with_hint(expr, expected);
2647
2648         // While we don't allow *arbitrary* coercions here, we *do* allow
2649         // coercions from ! to `expected`.
2650         if ty.is_never() {
2651             assert!(!self.tables.borrow().adjustments.contains_key(&expr.id),
2652                     "expression with never type wound up being adjusted");
2653             let adj_ty = self.next_diverging_ty_var(
2654                 TypeVariableOrigin::AdjustmentType(expr.span));
2655             self.apply_adjustments(expr, vec![Adjustment {
2656                 kind: Adjust::NeverToAny,
2657                 target: adj_ty
2658             }]);
2659             ty = adj_ty;
2660         }
2661
2662         self.demand_suptype(expr.span, expected, ty);
2663         ty
2664     }
2665
2666     fn check_expr_coercable_to_type(&self,
2667                                     expr: &'gcx hir::Expr,
2668                                     expected: Ty<'tcx>) -> Ty<'tcx> {
2669         let ty = self.check_expr_with_hint(expr, expected);
2670         self.demand_coerce(expr, ty, expected);
2671         ty
2672     }
2673
2674     fn check_expr_with_hint(&self, expr: &'gcx hir::Expr,
2675                             expected: Ty<'tcx>) -> Ty<'tcx> {
2676         self.check_expr_with_expectation(expr, ExpectHasType(expected))
2677     }
2678
2679     fn check_expr_with_expectation(&self,
2680                                    expr: &'gcx hir::Expr,
2681                                    expected: Expectation<'tcx>) -> Ty<'tcx> {
2682         self.check_expr_with_expectation_and_lvalue_pref(expr, expected, NoPreference)
2683     }
2684
2685     fn check_expr(&self, expr: &'gcx hir::Expr) -> Ty<'tcx> {
2686         self.check_expr_with_expectation(expr, NoExpectation)
2687     }
2688
2689     fn check_expr_with_lvalue_pref(&self, expr: &'gcx hir::Expr,
2690                                    lvalue_pref: LvaluePreference) -> Ty<'tcx> {
2691         self.check_expr_with_expectation_and_lvalue_pref(expr, NoExpectation, lvalue_pref)
2692     }
2693
2694     // determine the `self` type, using fresh variables for all variables
2695     // declared on the impl declaration e.g., `impl<A,B> for Vec<(A,B)>`
2696     // would return ($0, $1) where $0 and $1 are freshly instantiated type
2697     // variables.
2698     pub fn impl_self_ty(&self,
2699                         span: Span, // (potential) receiver for this impl
2700                         did: DefId)
2701                         -> TypeAndSubsts<'tcx> {
2702         let ity = self.tcx.type_of(did);
2703         debug!("impl_self_ty: ity={:?}", ity);
2704
2705         let substs = self.fresh_substs_for_item(span, did);
2706         let substd_ty = self.instantiate_type_scheme(span, &substs, &ity);
2707
2708         TypeAndSubsts { substs: substs, ty: substd_ty }
2709     }
2710
2711     /// Unifies the output type with the expected type early, for more coercions
2712     /// and forward type information on the input expressions.
2713     fn expected_inputs_for_expected_output(&self,
2714                                            call_span: Span,
2715                                            expected_ret: Expectation<'tcx>,
2716                                            formal_ret: Ty<'tcx>,
2717                                            formal_args: &[Ty<'tcx>])
2718                                            -> Vec<Ty<'tcx>> {
2719         let expected_args = expected_ret.only_has_type(self).and_then(|ret_ty| {
2720             self.fudge_regions_if_ok(&RegionVariableOrigin::Coercion(call_span), || {
2721                 // Attempt to apply a subtyping relationship between the formal
2722                 // return type (likely containing type variables if the function
2723                 // is polymorphic) and the expected return type.
2724                 // No argument expectations are produced if unification fails.
2725                 let origin = self.misc(call_span);
2726                 let ures = self.at(&origin, self.param_env).sup(ret_ty, formal_ret);
2727
2728                 // FIXME(#15760) can't use try! here, FromError doesn't default
2729                 // to identity so the resulting type is not constrained.
2730                 match ures {
2731                     Ok(ok) => {
2732                         // Process any obligations locally as much as
2733                         // we can.  We don't care if some things turn
2734                         // out unconstrained or ambiguous, as we're
2735                         // just trying to get hints here.
2736                         let result = self.save_and_restore_in_snapshot_flag(|_| {
2737                             let mut fulfill = FulfillmentContext::new();
2738                             let ok = ok; // FIXME(#30046)
2739                             for obligation in ok.obligations {
2740                                 fulfill.register_predicate_obligation(self, obligation);
2741                             }
2742                             fulfill.select_where_possible(self)
2743                         });
2744
2745                         match result {
2746                             Ok(()) => { }
2747                             Err(_) => return Err(()),
2748                         }
2749                     }
2750                     Err(_) => return Err(()),
2751                 }
2752
2753                 // Record all the argument types, with the substitutions
2754                 // produced from the above subtyping unification.
2755                 Ok(formal_args.iter().map(|ty| {
2756                     self.resolve_type_vars_if_possible(ty)
2757                 }).collect())
2758             }).ok()
2759         }).unwrap_or(vec![]);
2760         debug!("expected_inputs_for_expected_output(formal={:?} -> {:?}, expected={:?} -> {:?})",
2761                formal_args, formal_ret,
2762                expected_args, expected_ret);
2763         expected_args
2764     }
2765
2766     // Checks a method call.
2767     fn check_method_call(&self,
2768                          expr: &'gcx hir::Expr,
2769                          method_name: Spanned<ast::Name>,
2770                          args: &'gcx [hir::Expr],
2771                          tps: &[P<hir::Ty>],
2772                          expected: Expectation<'tcx>,
2773                          lvalue_pref: LvaluePreference) -> Ty<'tcx> {
2774         let rcvr = &args[0];
2775         let rcvr_t = self.check_expr_with_lvalue_pref(&rcvr, lvalue_pref);
2776
2777         // no need to check for bot/err -- callee does that
2778         let expr_t = self.structurally_resolved_type(expr.span, rcvr_t);
2779
2780         let tps = tps.iter().map(|ast_ty| self.to_ty(&ast_ty)).collect::<Vec<_>>();
2781         let method = match self.lookup_method(method_name.span,
2782                                               method_name.node,
2783                                               expr_t,
2784                                               tps,
2785                                               expr,
2786                                               rcvr) {
2787             Ok(method) => {
2788                 self.write_method_call(expr.id, method);
2789                 Ok(method)
2790             }
2791             Err(error) => {
2792                 if method_name.node != keywords::Invalid.name() {
2793                     self.report_method_error(method_name.span,
2794                                              expr_t,
2795                                              method_name.node,
2796                                              Some(rcvr),
2797                                              error,
2798                                              Some(args));
2799                 }
2800                 Err(())
2801             }
2802         };
2803
2804         // Call the generic checker.
2805         self.check_method_argument_types(method_name.span, method,
2806                                          &args[1..],
2807                                          DontTupleArguments,
2808                                          expected)
2809     }
2810
2811     fn check_return_expr(&self, return_expr: &'gcx hir::Expr) {
2812         let ret_coercion =
2813             self.ret_coercion
2814                 .as_ref()
2815                 .unwrap_or_else(|| span_bug!(return_expr.span,
2816                                              "check_return_expr called outside fn body"));
2817
2818         let ret_ty = ret_coercion.borrow().expected_ty();
2819         let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
2820         ret_coercion.borrow_mut()
2821                     .coerce(self,
2822                             &self.misc(return_expr.span),
2823                             return_expr,
2824                             return_expr_ty,
2825                             self.diverges.get());
2826     }
2827
2828
2829     // A generic function for checking the then and else in an if
2830     // or if-else.
2831     fn check_then_else(&self,
2832                        cond_expr: &'gcx hir::Expr,
2833                        then_expr: &'gcx hir::Expr,
2834                        opt_else_expr: Option<&'gcx hir::Expr>,
2835                        sp: Span,
2836                        expected: Expectation<'tcx>) -> Ty<'tcx> {
2837         let cond_ty = self.check_expr_has_type(cond_expr, self.tcx.types.bool);
2838         let cond_diverges = self.diverges.get();
2839         self.diverges.set(Diverges::Maybe);
2840
2841         let expected = expected.adjust_for_branches(self);
2842         let then_ty = self.check_expr_with_expectation(then_expr, expected);
2843         let then_diverges = self.diverges.get();
2844         self.diverges.set(Diverges::Maybe);
2845
2846         // We've already taken the expected type's preferences
2847         // into account when typing the `then` branch. To figure
2848         // out the initial shot at a LUB, we thus only consider
2849         // `expected` if it represents a *hard* constraint
2850         // (`only_has_type`); otherwise, we just go with a
2851         // fresh type variable.
2852         let coerce_to_ty = expected.coercion_target_type(self, sp);
2853         let mut coerce: DynamicCoerceMany = CoerceMany::new(coerce_to_ty);
2854
2855         let if_cause = self.cause(sp, ObligationCauseCode::IfExpression);
2856         coerce.coerce(self, &if_cause, then_expr, then_ty, then_diverges);
2857
2858         if let Some(else_expr) = opt_else_expr {
2859             let else_ty = self.check_expr_with_expectation(else_expr, expected);
2860             let else_diverges = self.diverges.get();
2861
2862             coerce.coerce(self, &if_cause, else_expr, else_ty, else_diverges);
2863
2864             // We won't diverge unless both branches do (or the condition does).
2865             self.diverges.set(cond_diverges | then_diverges & else_diverges);
2866         } else {
2867             let else_cause = self.cause(sp, ObligationCauseCode::IfExpressionWithNoElse);
2868             coerce.coerce_forced_unit(self, &else_cause, &mut |_| (), true);
2869
2870             // If the condition is false we can't diverge.
2871             self.diverges.set(cond_diverges);
2872         }
2873
2874         let result_ty = coerce.complete(self);
2875         if cond_ty.references_error() {
2876             self.tcx.types.err
2877         } else {
2878             result_ty
2879         }
2880     }
2881
2882     // Check field access expressions
2883     fn check_field(&self,
2884                    expr: &'gcx hir::Expr,
2885                    lvalue_pref: LvaluePreference,
2886                    base: &'gcx hir::Expr,
2887                    field: &Spanned<ast::Name>) -> Ty<'tcx> {
2888         let expr_t = self.check_expr_with_lvalue_pref(base, lvalue_pref);
2889         let expr_t = self.structurally_resolved_type(expr.span,
2890                                                      expr_t);
2891         let mut private_candidate = None;
2892         let mut autoderef = self.autoderef(expr.span, expr_t);
2893         while let Some((base_t, _)) = autoderef.next() {
2894             match base_t.sty {
2895                 ty::TyAdt(base_def, substs) if !base_def.is_enum() => {
2896                     debug!("struct named {:?}",  base_t);
2897                     let (ident, def_scope) =
2898                         self.tcx.adjust(field.node, base_def.did, self.body_id);
2899                     let fields = &base_def.struct_variant().fields;
2900                     if let Some(field) = fields.iter().find(|f| f.name.to_ident() == ident) {
2901                         let field_ty = self.field_ty(expr.span, field, substs);
2902                         if field.vis.is_accessible_from(def_scope, self.tcx) {
2903                             let adjustments = autoderef.adjust_steps(lvalue_pref);
2904                             self.apply_adjustments(base, adjustments);
2905                             autoderef.finalize();
2906
2907                             self.tcx.check_stability(field.did, expr.id, expr.span);
2908
2909                             return field_ty;
2910                         }
2911                         private_candidate = Some((base_def.did, field_ty));
2912                     }
2913                 }
2914                 _ => {}
2915             }
2916         }
2917         autoderef.unambiguous_final_ty();
2918
2919         if let Some((did, field_ty)) = private_candidate {
2920             let struct_path = self.tcx().item_path_str(did);
2921             let msg = format!("field `{}` of struct `{}` is private", field.node, struct_path);
2922             let mut err = self.tcx().sess.struct_span_err(expr.span, &msg);
2923             // Also check if an accessible method exists, which is often what is meant.
2924             if self.method_exists(field.span, field.node, expr_t, expr.id, false) {
2925                 err.note(&format!("a method `{}` also exists, perhaps you wish to call it",
2926                                   field.node));
2927             }
2928             err.emit();
2929             field_ty
2930         } else if field.node == keywords::Invalid.name() {
2931             self.tcx().types.err
2932         } else if self.method_exists(field.span, field.node, expr_t, expr.id, true) {
2933             self.type_error_struct(field.span, |actual| {
2934                 format!("attempted to take value of method `{}` on type \
2935                          `{}`", field.node, actual)
2936             }, expr_t)
2937                 .help("maybe a `()` to call it is missing? \
2938                        If not, try an anonymous function")
2939                 .emit();
2940             self.tcx().types.err
2941         } else {
2942             let mut err = self.type_error_struct(field.span, |actual| {
2943                 format!("no field `{}` on type `{}`",
2944                         field.node, actual)
2945             }, expr_t);
2946             match expr_t.sty {
2947                 ty::TyAdt(def, _) if !def.is_enum() => {
2948                     if let Some(suggested_field_name) =
2949                         Self::suggest_field_name(def.struct_variant(), field, vec![]) {
2950                             err.span_label(field.span,
2951                                            format!("did you mean `{}`?", suggested_field_name));
2952                         } else {
2953                             err.span_label(field.span,
2954                                            "unknown field");
2955                         };
2956                 }
2957                 ty::TyRawPtr(..) => {
2958                     err.note(&format!("`{0}` is a native pointer; perhaps you need to deref with \
2959                                       `(*{0}).{1}`",
2960                                       self.tcx.hir.node_to_pretty_string(base.id),
2961                                       field.node));
2962                 }
2963                 _ => {}
2964             }
2965             err.emit();
2966             self.tcx().types.err
2967         }
2968     }
2969
2970     // Return an hint about the closest match in field names
2971     fn suggest_field_name(variant: &'tcx ty::VariantDef,
2972                           field: &Spanned<ast::Name>,
2973                           skip : Vec<InternedString>)
2974                           -> Option<Symbol> {
2975         let name = field.node.as_str();
2976         let names = variant.fields.iter().filter_map(|field| {
2977             // ignore already set fields and private fields from non-local crates
2978             if skip.iter().any(|x| *x == field.name.as_str()) ||
2979                (variant.did.krate != LOCAL_CRATE && field.vis != Visibility::Public) {
2980                 None
2981             } else {
2982                 Some(&field.name)
2983             }
2984         });
2985
2986         // only find fits with at least one matching letter
2987         find_best_match_for_name(names, &name, Some(name.len()))
2988     }
2989
2990     // Check tuple index expressions
2991     fn check_tup_field(&self,
2992                        expr: &'gcx hir::Expr,
2993                        lvalue_pref: LvaluePreference,
2994                        base: &'gcx hir::Expr,
2995                        idx: codemap::Spanned<usize>) -> Ty<'tcx> {
2996         let expr_t = self.check_expr_with_lvalue_pref(base, lvalue_pref);
2997         let expr_t = self.structurally_resolved_type(expr.span,
2998                                                      expr_t);
2999         let mut private_candidate = None;
3000         let mut tuple_like = false;
3001         let mut autoderef = self.autoderef(expr.span, expr_t);
3002         while let Some((base_t, _)) = autoderef.next() {
3003             let field = match base_t.sty {
3004                 ty::TyAdt(base_def, substs) if base_def.is_struct() => {
3005                     tuple_like = base_def.struct_variant().ctor_kind == CtorKind::Fn;
3006                     if !tuple_like { continue }
3007
3008                     debug!("tuple struct named {:?}",  base_t);
3009                     let ident = ast::Ident {
3010                         name: Symbol::intern(&idx.node.to_string()),
3011                         ctxt: idx.span.ctxt.modern(),
3012                     };
3013                     let (ident, def_scope) =
3014                         self.tcx.adjust_ident(ident, base_def.did, self.body_id);
3015                     let fields = &base_def.struct_variant().fields;
3016                     if let Some(field) = fields.iter().find(|f| f.name.to_ident() == ident) {
3017                         let field_ty = self.field_ty(expr.span, field, substs);
3018                         if field.vis.is_accessible_from(def_scope, self.tcx) {
3019                             self.tcx.check_stability(field.did, expr.id, expr.span);
3020                             Some(field_ty)
3021                         } else {
3022                             private_candidate = Some((base_def.did, field_ty));
3023                             None
3024                         }
3025                     } else {
3026                         None
3027                     }
3028                 }
3029                 ty::TyTuple(ref v, _) => {
3030                     tuple_like = true;
3031                     v.get(idx.node).cloned()
3032                 }
3033                 _ => continue
3034             };
3035
3036             if let Some(field_ty) = field {
3037                 let adjustments = autoderef.adjust_steps(lvalue_pref);
3038                 self.apply_adjustments(base, adjustments);
3039                 autoderef.finalize();
3040                 return field_ty;
3041             }
3042         }
3043         autoderef.unambiguous_final_ty();
3044
3045         if let Some((did, field_ty)) = private_candidate {
3046             let struct_path = self.tcx().item_path_str(did);
3047             let msg = format!("field `{}` of struct `{}` is private", idx.node, struct_path);
3048             self.tcx().sess.span_err(expr.span, &msg);
3049             return field_ty;
3050         }
3051
3052         self.type_error_message(
3053             expr.span,
3054             |actual| {
3055                 if tuple_like {
3056                     format!("attempted out-of-bounds tuple index `{}` on \
3057                                     type `{}`",
3058                                    idx.node,
3059                                    actual)
3060                 } else {
3061                     format!("attempted tuple index `{}` on type `{}`, but the \
3062                                      type was not a tuple or tuple struct",
3063                                     idx.node,
3064                                     actual)
3065                 }
3066             },
3067             expr_t);
3068
3069         self.tcx().types.err
3070     }
3071
3072     fn report_unknown_field(&self,
3073                             ty: Ty<'tcx>,
3074                             variant: &'tcx ty::VariantDef,
3075                             field: &hir::Field,
3076                             skip_fields: &[hir::Field],
3077                             kind_name: &str) {
3078         let mut err = self.type_error_struct_with_diag(
3079             field.name.span,
3080             |actual| match ty.sty {
3081                 ty::TyAdt(adt, ..) if adt.is_enum() => {
3082                     struct_span_err!(self.tcx.sess, field.name.span, E0559,
3083                                     "{} `{}::{}` has no field named `{}`",
3084                                     kind_name, actual, variant.name, field.name.node)
3085                 }
3086                 _ => {
3087                     struct_span_err!(self.tcx.sess, field.name.span, E0560,
3088                                     "{} `{}` has no field named `{}`",
3089                                     kind_name, actual, field.name.node)
3090                 }
3091             },
3092             ty);
3093         // prevent all specified fields from being suggested
3094         let skip_fields = skip_fields.iter().map(|ref x| x.name.node.as_str());
3095         if let Some(field_name) = Self::suggest_field_name(variant,
3096                                                            &field.name,
3097                                                            skip_fields.collect()) {
3098             err.span_label(field.name.span,
3099                            format!("field does not exist - did you mean `{}`?", field_name));
3100         } else {
3101             match ty.sty {
3102                 ty::TyAdt(adt, ..) if adt.is_enum() => {
3103                     err.span_label(field.name.span, format!("`{}::{}` does not have this field",
3104                                                              ty, variant.name));
3105                 }
3106                 _ => {
3107                     err.span_label(field.name.span, format!("`{}` does not have this field", ty));
3108                 }
3109             }
3110         };
3111         err.emit();
3112     }
3113
3114     fn check_expr_struct_fields(&self,
3115                                 adt_ty: Ty<'tcx>,
3116                                 expected: Expectation<'tcx>,
3117                                 expr_id: ast::NodeId,
3118                                 span: Span,
3119                                 variant: &'tcx ty::VariantDef,
3120                                 ast_fields: &'gcx [hir::Field],
3121                                 check_completeness: bool) {
3122         let tcx = self.tcx;
3123
3124         let adt_ty_hint =
3125             self.expected_inputs_for_expected_output(span, expected, adt_ty, &[adt_ty])
3126                 .get(0).cloned().unwrap_or(adt_ty);
3127
3128         let (substs, hint_substs, adt_kind, kind_name) = match (&adt_ty.sty, &adt_ty_hint.sty) {
3129             (&ty::TyAdt(adt, substs), &ty::TyAdt(_, hint_substs)) => {
3130                 (substs, hint_substs, adt.adt_kind(), adt.variant_descr())
3131             }
3132             _ => span_bug!(span, "non-ADT passed to check_expr_struct_fields")
3133         };
3134
3135         let mut remaining_fields = FxHashMap();
3136         for field in &variant.fields {
3137             remaining_fields.insert(field.name.to_ident(), field);
3138         }
3139
3140         let mut seen_fields = FxHashMap();
3141
3142         let mut error_happened = false;
3143
3144         // Typecheck each field.
3145         for field in ast_fields {
3146             let final_field_type;
3147             let field_type_hint;
3148
3149             let ident = tcx.adjust(field.name.node, variant.did, self.body_id).0;
3150             if let Some(v_field) = remaining_fields.remove(&ident) {
3151                 final_field_type = self.field_ty(field.span, v_field, substs);
3152                 field_type_hint = self.field_ty(field.span, v_field, hint_substs);
3153
3154                 seen_fields.insert(field.name.node, field.span);
3155
3156                 // we don't look at stability attributes on
3157                 // struct-like enums (yet...), but it's definitely not
3158                 // a bug to have construct one.
3159                 if adt_kind != ty::AdtKind::Enum {
3160                     tcx.check_stability(v_field.did, expr_id, field.span);
3161                 }
3162             } else {
3163                 error_happened = true;
3164                 final_field_type = tcx.types.err;
3165                 field_type_hint = tcx.types.err;
3166                 if let Some(_) = variant.find_field_named(field.name.node) {
3167                     let mut err = struct_span_err!(self.tcx.sess,
3168                                                 field.name.span,
3169                                                 E0062,
3170                                                 "field `{}` specified more than once",
3171                                                 field.name.node);
3172
3173                     err.span_label(field.name.span, "used more than once");
3174
3175                     if let Some(prev_span) = seen_fields.get(&field.name.node) {
3176                         err.span_label(*prev_span, format!("first use of `{}`", field.name.node));
3177                     }
3178
3179                     err.emit();
3180                 } else {
3181                     self.report_unknown_field(adt_ty, variant, field, ast_fields, kind_name);
3182                 }
3183             }
3184
3185             // Make sure to give a type to the field even if there's
3186             // an error, so we can continue typechecking
3187             let ty = self.check_expr_with_hint(&field.expr, field_type_hint);
3188             self.demand_coerce(&field.expr, ty, final_field_type);
3189         }
3190
3191         // Make sure the programmer specified correct number of fields.
3192         if kind_name == "union" {
3193             if ast_fields.len() != 1 {
3194                 tcx.sess.span_err(span, "union expressions should have exactly one field");
3195             }
3196         } else if check_completeness && !error_happened && !remaining_fields.is_empty() {
3197             let len = remaining_fields.len();
3198
3199             let mut displayable_field_names = remaining_fields
3200                                               .keys()
3201                                               .map(|ident| ident.name.as_str())
3202                                               .collect::<Vec<_>>();
3203
3204             displayable_field_names.sort();
3205
3206             let truncated_fields_error = if len <= 3 {
3207                 "".to_string()
3208             } else {
3209                 format!(" and {} other field{}", (len - 3), if len - 3 == 1 {""} else {"s"})
3210             };
3211
3212             let remaining_fields_names = displayable_field_names.iter().take(3)
3213                                         .map(|n| format!("`{}`", n))
3214                                         .collect::<Vec<_>>()
3215                                         .join(", ");
3216
3217             struct_span_err!(tcx.sess, span, E0063,
3218                         "missing field{} {}{} in initializer of `{}`",
3219                         if remaining_fields.len() == 1 {""} else {"s"},
3220                         remaining_fields_names,
3221                         truncated_fields_error,
3222                         adt_ty)
3223                         .span_label(span, format!("missing {}{}",
3224                             remaining_fields_names,
3225                             truncated_fields_error))
3226                         .emit();
3227         }
3228     }
3229
3230     fn check_struct_fields_on_error(&self,
3231                                     fields: &'gcx [hir::Field],
3232                                     base_expr: &'gcx Option<P<hir::Expr>>) {
3233         for field in fields {
3234             self.check_expr(&field.expr);
3235         }
3236         match *base_expr {
3237             Some(ref base) => {
3238                 self.check_expr(&base);
3239             },
3240             None => {}
3241         }
3242     }
3243
3244     pub fn check_struct_path(&self,
3245                              qpath: &hir::QPath,
3246                              node_id: ast::NodeId)
3247                              -> Option<(&'tcx ty::VariantDef,  Ty<'tcx>)> {
3248         let path_span = match *qpath {
3249             hir::QPath::Resolved(_, ref path) => path.span,
3250             hir::QPath::TypeRelative(ref qself, _) => qself.span
3251         };
3252         let (def, ty) = self.finish_resolving_struct_path(qpath, path_span, node_id);
3253         let variant = match def {
3254             Def::Err => {
3255                 self.set_tainted_by_errors();
3256                 return None;
3257             }
3258             Def::Variant(..) => {
3259                 match ty.sty {
3260                     ty::TyAdt(adt, substs) => {
3261                         Some((adt.variant_of_def(def), adt.did, substs))
3262                     }
3263                     _ => bug!("unexpected type: {:?}", ty.sty)
3264                 }
3265             }
3266             Def::Struct(..) | Def::Union(..) | Def::TyAlias(..) |
3267             Def::AssociatedTy(..) | Def::SelfTy(..) => {
3268                 match ty.sty {
3269                     ty::TyAdt(adt, substs) if !adt.is_enum() => {
3270                         Some((adt.struct_variant(), adt.did, substs))
3271                     }
3272                     _ => None,
3273                 }
3274             }
3275             _ => bug!("unexpected definition: {:?}", def)
3276         };
3277
3278         if let Some((variant, did, substs)) = variant {
3279             // Check bounds on type arguments used in the path.
3280             let bounds = self.instantiate_bounds(path_span, did, substs);
3281             let cause = traits::ObligationCause::new(path_span, self.body_id,
3282                                                      traits::ItemObligation(did));
3283             self.add_obligations_for_parameters(cause, &bounds);
3284
3285             Some((variant, ty))
3286         } else {
3287             struct_span_err!(self.tcx.sess, path_span, E0071,
3288                              "expected struct, variant or union type, found {}",
3289                              ty.sort_string(self.tcx))
3290                 .span_label(path_span, "not a struct")
3291                 .emit();
3292             None
3293         }
3294     }
3295
3296     fn check_expr_struct(&self,
3297                          expr: &hir::Expr,
3298                          expected: Expectation<'tcx>,
3299                          qpath: &hir::QPath,
3300                          fields: &'gcx [hir::Field],
3301                          base_expr: &'gcx Option<P<hir::Expr>>) -> Ty<'tcx>
3302     {
3303         // Find the relevant variant
3304         let (variant, struct_ty) =
3305         if let Some(variant_ty) = self.check_struct_path(qpath, expr.id) {
3306             variant_ty
3307         } else {
3308             self.check_struct_fields_on_error(fields, base_expr);
3309             return self.tcx.types.err;
3310         };
3311
3312         let path_span = match *qpath {
3313             hir::QPath::Resolved(_, ref path) => path.span,
3314             hir::QPath::TypeRelative(ref qself, _) => qself.span
3315         };
3316
3317         self.check_expr_struct_fields(struct_ty, expected, expr.id, path_span, variant, fields,
3318                                       base_expr.is_none());
3319         if let &Some(ref base_expr) = base_expr {
3320             self.check_expr_has_type(base_expr, struct_ty);
3321             match struct_ty.sty {
3322                 ty::TyAdt(adt, substs) if adt.is_struct() => {
3323                     self.tables.borrow_mut().fru_field_types.insert(
3324                         expr.id,
3325                         adt.struct_variant().fields.iter().map(|f| {
3326                             self.normalize_associated_types_in(
3327                                 expr.span, &f.ty(self.tcx, substs)
3328                             )
3329                         }).collect()
3330                     );
3331                 }
3332                 _ => {
3333                     span_err!(self.tcx.sess, base_expr.span, E0436,
3334                               "functional record update syntax requires a struct");
3335                 }
3336             }
3337         }
3338         self.require_type_is_sized(struct_ty, expr.span, traits::StructInitializerSized);
3339         struct_ty
3340     }
3341
3342
3343     /// Invariant:
3344     /// If an expression has any sub-expressions that result in a type error,
3345     /// inspecting that expression's type with `ty.references_error()` will return
3346     /// true. Likewise, if an expression is known to diverge, inspecting its
3347     /// type with `ty::type_is_bot` will return true (n.b.: since Rust is
3348     /// strict, _|_ can appear in the type of an expression that does not,
3349     /// itself, diverge: for example, fn() -> _|_.)
3350     /// Note that inspecting a type's structure *directly* may expose the fact
3351     /// that there are actually multiple representations for `TyError`, so avoid
3352     /// that when err needs to be handled differently.
3353     fn check_expr_with_expectation_and_lvalue_pref(&self,
3354                                                    expr: &'gcx hir::Expr,
3355                                                    expected: Expectation<'tcx>,
3356                                                    lvalue_pref: LvaluePreference) -> Ty<'tcx> {
3357         debug!(">> typechecking: expr={:?} expected={:?}",
3358                expr, expected);
3359
3360         // Warn for expressions after diverging siblings.
3361         self.warn_if_unreachable(expr.id, expr.span, "expression");
3362
3363         // Hide the outer diverging and has_errors flags.
3364         let old_diverges = self.diverges.get();
3365         let old_has_errors = self.has_errors.get();
3366         self.diverges.set(Diverges::Maybe);
3367         self.has_errors.set(false);
3368
3369         let ty = self.check_expr_kind(expr, expected, lvalue_pref);
3370
3371         // Warn for non-block expressions with diverging children.
3372         match expr.node {
3373             hir::ExprBlock(_) |
3374             hir::ExprLoop(..) | hir::ExprWhile(..) |
3375             hir::ExprIf(..) | hir::ExprMatch(..) => {}
3376
3377             _ => self.warn_if_unreachable(expr.id, expr.span, "expression")
3378         }
3379
3380         // Any expression that produces a value of type `!` must have diverged
3381         if ty.is_never() {
3382             self.diverges.set(self.diverges.get() | Diverges::Always);
3383         }
3384
3385         // Record the type, which applies it effects.
3386         // We need to do this after the warning above, so that
3387         // we don't warn for the diverging expression itself.
3388         self.write_ty(expr.id, ty);
3389
3390         // Combine the diverging and has_error flags.
3391         self.diverges.set(self.diverges.get() | old_diverges);
3392         self.has_errors.set(self.has_errors.get() | old_has_errors);
3393
3394         debug!("type of {} is...", self.tcx.hir.node_to_string(expr.id));
3395         debug!("... {:?}, expected is {:?}", ty, expected);
3396
3397         ty
3398     }
3399
3400     fn check_expr_kind(&self,
3401                        expr: &'gcx hir::Expr,
3402                        expected: Expectation<'tcx>,
3403                        lvalue_pref: LvaluePreference) -> Ty<'tcx> {
3404         let tcx = self.tcx;
3405         let id = expr.id;
3406         match expr.node {
3407           hir::ExprBox(ref subexpr) => {
3408             let expected_inner = expected.to_option(self).map_or(NoExpectation, |ty| {
3409                 match ty.sty {
3410                     ty::TyAdt(def, _) if def.is_box()
3411                         => Expectation::rvalue_hint(self, ty.boxed_ty()),
3412                     _ => NoExpectation
3413                 }
3414             });
3415             let referent_ty = self.check_expr_with_expectation(subexpr, expected_inner);
3416             tcx.mk_box(referent_ty)
3417           }
3418
3419           hir::ExprLit(ref lit) => {
3420             self.check_lit(&lit, expected)
3421           }
3422           hir::ExprBinary(op, ref lhs, ref rhs) => {
3423             self.check_binop(expr, op, lhs, rhs)
3424           }
3425           hir::ExprAssignOp(op, ref lhs, ref rhs) => {
3426             self.check_binop_assign(expr, op, lhs, rhs)
3427           }
3428           hir::ExprUnary(unop, ref oprnd) => {
3429             let expected_inner = match unop {
3430                 hir::UnNot | hir::UnNeg => {
3431                     expected
3432                 }
3433                 hir::UnDeref => {
3434                     NoExpectation
3435                 }
3436             };
3437             let lvalue_pref = match unop {
3438                 hir::UnDeref => lvalue_pref,
3439                 _ => NoPreference
3440             };
3441             let mut oprnd_t = self.check_expr_with_expectation_and_lvalue_pref(&oprnd,
3442                                                                                expected_inner,
3443                                                                                lvalue_pref);
3444
3445             if !oprnd_t.references_error() {
3446                 oprnd_t = self.structurally_resolved_type(expr.span, oprnd_t);
3447                 match unop {
3448                     hir::UnDeref => {
3449                         if let Some(mt) = oprnd_t.builtin_deref(true, NoPreference) {
3450                             oprnd_t = mt.ty;
3451                         } else if let Some(ok) = self.try_overloaded_deref(
3452                                 expr.span, oprnd_t, lvalue_pref) {
3453                             let method = self.register_infer_ok_obligations(ok);
3454                             if let ty::TyRef(region, mt) = method.sig.inputs()[0].sty {
3455                                 self.apply_adjustments(oprnd, vec![Adjustment {
3456                                     kind: Adjust::Borrow(AutoBorrow::Ref(region, mt.mutbl)),
3457                                     target: method.sig.inputs()[0]
3458                                 }]);
3459                             }
3460                             oprnd_t = self.make_overloaded_lvalue_return_type(method).ty;
3461                             self.write_method_call(expr.id, method);
3462                         } else {
3463                             self.type_error_message(expr.span, |actual| {
3464                                 format!("type `{}` cannot be \
3465                                         dereferenced", actual)
3466                             }, oprnd_t);
3467                             oprnd_t = tcx.types.err;
3468                         }
3469                     }
3470                     hir::UnNot => {
3471                         let result = self.check_user_unop(expr, oprnd_t, unop);
3472                         // If it's builtin, we can reuse the type, this helps inference.
3473                         if !(oprnd_t.is_integral() || oprnd_t.sty == ty::TyBool) {
3474                             oprnd_t = result;
3475                         }
3476                     }
3477                     hir::UnNeg => {
3478                         let result = self.check_user_unop(expr, oprnd_t, unop);
3479                         // If it's builtin, we can reuse the type, this helps inference.
3480                         if !(oprnd_t.is_integral() || oprnd_t.is_fp()) {
3481                             oprnd_t = result;
3482                         }
3483                     }
3484                 }
3485             }
3486             oprnd_t
3487           }
3488           hir::ExprAddrOf(mutbl, ref oprnd) => {
3489             let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
3490                 match ty.sty {
3491                     ty::TyRef(_, ref mt) | ty::TyRawPtr(ref mt) => {
3492                         if self.tcx.expr_is_lval(&oprnd) {
3493                             // Lvalues may legitimately have unsized types.
3494                             // For example, dereferences of a fat pointer and
3495                             // the last field of a struct can be unsized.
3496                             ExpectHasType(mt.ty)
3497                         } else {
3498                             Expectation::rvalue_hint(self, mt.ty)
3499                         }
3500                     }
3501                     _ => NoExpectation
3502                 }
3503             });
3504             let lvalue_pref = LvaluePreference::from_mutbl(mutbl);
3505             let ty = self.check_expr_with_expectation_and_lvalue_pref(&oprnd, hint, lvalue_pref);
3506
3507             let tm = ty::TypeAndMut { ty: ty, mutbl: mutbl };
3508             if tm.ty.references_error() {
3509                 tcx.types.err
3510             } else {
3511                 // Note: at this point, we cannot say what the best lifetime
3512                 // is to use for resulting pointer.  We want to use the
3513                 // shortest lifetime possible so as to avoid spurious borrowck
3514                 // errors.  Moreover, the longest lifetime will depend on the
3515                 // precise details of the value whose address is being taken
3516                 // (and how long it is valid), which we don't know yet until type
3517                 // inference is complete.
3518                 //
3519                 // Therefore, here we simply generate a region variable.  The
3520                 // region inferencer will then select the ultimate value.
3521                 // Finally, borrowck is charged with guaranteeing that the
3522                 // value whose address was taken can actually be made to live
3523                 // as long as it needs to live.
3524                 let region = self.next_region_var(infer::AddrOfRegion(expr.span));
3525                 tcx.mk_ref(region, tm)
3526             }
3527           }
3528           hir::ExprPath(ref qpath) => {
3529               let (def, opt_ty, segments) = self.resolve_ty_and_def_ufcs(qpath,
3530                                                                          expr.id, expr.span);
3531               let ty = if def != Def::Err {
3532                   self.instantiate_value_path(segments, opt_ty, def, expr.span, id)
3533               } else {
3534                   self.set_tainted_by_errors();
3535                   tcx.types.err
3536               };
3537
3538               // We always require that the type provided as the value for
3539               // a type parameter outlives the moment of instantiation.
3540               let substs = self.tables.borrow().node_substs(expr.id);
3541               self.add_wf_bounds(substs, expr);
3542
3543               ty
3544           }
3545           hir::ExprInlineAsm(_, ref outputs, ref inputs) => {
3546               for output in outputs {
3547                   self.check_expr(output);
3548               }
3549               for input in inputs {
3550                   self.check_expr(input);
3551               }
3552               tcx.mk_nil()
3553           }
3554           hir::ExprBreak(destination, ref expr_opt) => {
3555               if let Some(target_id) = destination.target_id.opt_id() {
3556                   let (e_ty, e_diverges, cause);
3557                   if let Some(ref e) = *expr_opt {
3558                       // If this is a break with a value, we need to type-check
3559                       // the expression. Get an expected type from the loop context.
3560                       let opt_coerce_to = {
3561                           let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
3562                           enclosing_breakables.find_breakable(target_id)
3563                                               .coerce
3564                                               .as_ref()
3565                                               .map(|coerce| coerce.expected_ty())
3566                       };
3567
3568                       // If the loop context is not a `loop { }`, then break with
3569                       // a value is illegal, and `opt_coerce_to` will be `None`.
3570                       // Just set expectation to error in that case.
3571                       let coerce_to = opt_coerce_to.unwrap_or(tcx.types.err);
3572
3573                       // Recurse without `enclosing_breakables` borrowed.
3574                       e_ty = self.check_expr_with_hint(e, coerce_to);
3575                       e_diverges = self.diverges.get();
3576                       cause = self.misc(e.span);
3577                   } else {
3578                       // Otherwise, this is a break *without* a value. That's
3579                       // always legal, and is equivalent to `break ()`.
3580                       e_ty = tcx.mk_nil();
3581                       e_diverges = Diverges::Maybe;
3582                       cause = self.misc(expr.span);
3583                   }
3584
3585                   // Now that we have type-checked `expr_opt`, borrow
3586                   // the `enclosing_loops` field and let's coerce the
3587                   // type of `expr_opt` into what is expected.
3588                   let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
3589                   let ctxt = enclosing_breakables.find_breakable(target_id);
3590                   if let Some(ref mut coerce) = ctxt.coerce {
3591                       if let Some(ref e) = *expr_opt {
3592                           coerce.coerce(self, &cause, e, e_ty, e_diverges);
3593                       } else {
3594                           assert!(e_ty.is_nil());
3595                           coerce.coerce_forced_unit(self, &cause, &mut |_| (), true);
3596                       }
3597                   } else {
3598                       // If `ctxt.coerce` is `None`, we can just ignore
3599                       // the type of the expresison.  This is because
3600                       // either this was a break *without* a value, in
3601                       // which case it is always a legal type (`()`), or
3602                       // else an error would have been flagged by the
3603                       // `loops` pass for using break with an expression
3604                       // where you are not supposed to.
3605                       assert!(expr_opt.is_none() || self.tcx.sess.err_count() > 0);
3606                   }
3607
3608                   ctxt.may_break = true;
3609               } else {
3610                   // Otherwise, we failed to find the enclosing loop;
3611                   // this can only happen if the `break` was not
3612                   // inside a loop at all, which is caught by the
3613                   // loop-checking pass.
3614                   assert!(self.tcx.sess.err_count() > 0);
3615               }
3616
3617               // the type of a `break` is always `!`, since it diverges
3618               tcx.types.never
3619           }
3620           hir::ExprAgain(_) => { tcx.types.never }
3621           hir::ExprRet(ref expr_opt) => {
3622             if self.ret_coercion.is_none() {
3623                 struct_span_err!(self.tcx.sess, expr.span, E0572,
3624                                  "return statement outside of function body").emit();
3625             } else if let Some(ref e) = *expr_opt {
3626                 self.check_return_expr(e);
3627             } else {
3628                 let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
3629                 let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
3630                 coercion.coerce_forced_unit(self, &cause, &mut |_| (), true);
3631             }
3632             tcx.types.never
3633           }
3634           hir::ExprAssign(ref lhs, ref rhs) => {
3635             let lhs_ty = self.check_expr_with_lvalue_pref(&lhs, PreferMutLvalue);
3636
3637             let tcx = self.tcx;
3638             if !tcx.expr_is_lval(&lhs) {
3639                 struct_span_err!(
3640                     tcx.sess, expr.span, E0070,
3641                     "invalid left-hand side expression")
3642                 .span_label(
3643                     expr.span,
3644                     "left-hand of expression not valid")
3645                 .emit();
3646             }
3647
3648             let rhs_ty = self.check_expr_coercable_to_type(&rhs, lhs_ty);
3649
3650             self.require_type_is_sized(lhs_ty, lhs.span, traits::AssignmentLhsSized);
3651
3652             if lhs_ty.references_error() || rhs_ty.references_error() {
3653                 tcx.types.err
3654             } else {
3655                 tcx.mk_nil()
3656             }
3657           }
3658           hir::ExprIf(ref cond, ref then_expr, ref opt_else_expr) => {
3659               self.check_then_else(&cond, then_expr, opt_else_expr.as_ref().map(|e| &**e),
3660                                    expr.span, expected)
3661           }
3662           hir::ExprWhile(ref cond, ref body, _) => {
3663               let ctxt = BreakableCtxt {
3664                   // cannot use break with a value from a while loop
3665                   coerce: None,
3666                   may_break: true,
3667               };
3668
3669               self.with_breakable_ctxt(expr.id, ctxt, || {
3670                   self.check_expr_has_type(&cond, tcx.types.bool);
3671                   let cond_diverging = self.diverges.get();
3672                   self.check_block_no_value(&body);
3673
3674                   // We may never reach the body so it diverging means nothing.
3675                   self.diverges.set(cond_diverging);
3676               });
3677
3678               self.tcx.mk_nil()
3679           }
3680           hir::ExprLoop(ref body, _, source) => {
3681               let coerce = match source {
3682                   // you can only use break with a value from a normal `loop { }`
3683                   hir::LoopSource::Loop => {
3684                       let coerce_to = expected.coercion_target_type(self, body.span);
3685                       Some(CoerceMany::new(coerce_to))
3686                   }
3687
3688                   hir::LoopSource::WhileLet |
3689                   hir::LoopSource::ForLoop => {
3690                       None
3691                   }
3692               };
3693
3694               let ctxt = BreakableCtxt {
3695                   coerce: coerce,
3696                   may_break: false, // will get updated if/when we find a `break`
3697               };
3698
3699               let (ctxt, ()) = self.with_breakable_ctxt(expr.id, ctxt, || {
3700                   self.check_block_no_value(&body);
3701               });
3702
3703               if ctxt.may_break {
3704                   // No way to know whether it's diverging because
3705                   // of a `break` or an outer `break` or `return.
3706                   self.diverges.set(Diverges::Maybe);
3707               }
3708
3709               // If we permit break with a value, then result type is
3710               // the LUB of the breaks (possibly ! if none); else, it
3711               // is nil. This makes sense because infinite loops
3712               // (which would have type !) are only possible iff we
3713               // permit break with a value [1].
3714               assert!(ctxt.coerce.is_some() || ctxt.may_break); // [1]
3715               ctxt.coerce.map(|c| c.complete(self)).unwrap_or(self.tcx.mk_nil())
3716           }
3717           hir::ExprMatch(ref discrim, ref arms, match_src) => {
3718             self.check_match(expr, &discrim, arms, expected, match_src)
3719           }
3720           hir::ExprClosure(capture, ref decl, body_id, _) => {
3721               self.check_expr_closure(expr, capture, &decl, body_id, expected)
3722           }
3723           hir::ExprBlock(ref body) => {
3724             self.check_block_with_expected(&body, expected)
3725           }
3726           hir::ExprCall(ref callee, ref args) => {
3727               self.check_call(expr, &callee, args, expected)
3728           }
3729           hir::ExprMethodCall(name, ref tps, ref args) => {
3730               self.check_method_call(expr, name, args, &tps[..], expected, lvalue_pref)
3731           }
3732           hir::ExprCast(ref e, ref t) => {
3733             // Find the type of `e`. Supply hints based on the type we are casting to,
3734             // if appropriate.
3735             let t_cast = self.to_ty(t);
3736             let t_cast = self.resolve_type_vars_if_possible(&t_cast);
3737             let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
3738             let t_cast = self.resolve_type_vars_if_possible(&t_cast);
3739             let diverges = self.diverges.get();
3740
3741             // Eagerly check for some obvious errors.
3742             if t_expr.references_error() || t_cast.references_error() {
3743                 tcx.types.err
3744             } else {
3745                 // Defer other checks until we're done type checking.
3746                 let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
3747                 match cast::CastCheck::new(self, e, t_expr, diverges, t_cast, t.span, expr.span) {
3748                     Ok(cast_check) => {
3749                         deferred_cast_checks.push(cast_check);
3750                         t_cast
3751                     }
3752                     Err(ErrorReported) => {
3753                         tcx.types.err
3754                     }
3755                 }
3756             }
3757           }
3758           hir::ExprType(ref e, ref t) => {
3759             let typ = self.to_ty(&t);
3760             self.check_expr_eq_type(&e, typ);
3761             typ
3762           }
3763           hir::ExprArray(ref args) => {
3764               let uty = expected.to_option(self).and_then(|uty| {
3765                   match uty.sty {
3766                       ty::TyArray(ty, _) | ty::TySlice(ty) => Some(ty),
3767                       _ => None
3768                   }
3769               });
3770
3771               let element_ty = if !args.is_empty() {
3772                   let coerce_to = uty.unwrap_or_else(
3773                       || self.next_ty_var(TypeVariableOrigin::TypeInference(expr.span)));
3774                   let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
3775                   assert_eq!(self.diverges.get(), Diverges::Maybe);
3776                   for e in args {
3777                       let e_ty = self.check_expr_with_hint(e, coerce_to);
3778                       let cause = self.misc(e.span);
3779                       coerce.coerce(self, &cause, e, e_ty, self.diverges.get());
3780                   }
3781                   coerce.complete(self)
3782               } else {
3783                   self.next_ty_var(TypeVariableOrigin::TypeInference(expr.span))
3784               };
3785               tcx.mk_array(element_ty, args.len())
3786           }
3787           hir::ExprRepeat(ref element, count) => {
3788             let count = eval_length(self.tcx, count, "repeat count")
3789                   .unwrap_or(0);
3790
3791             let uty = match expected {
3792                 ExpectHasType(uty) => {
3793                     match uty.sty {
3794                         ty::TyArray(ty, _) | ty::TySlice(ty) => Some(ty),
3795                         _ => None
3796                     }
3797                 }
3798                 _ => None
3799             };
3800
3801             let (element_ty, t) = match uty {
3802                 Some(uty) => {
3803                     self.check_expr_coercable_to_type(&element, uty);
3804                     (uty, uty)
3805                 }
3806                 None => {
3807                     let t: Ty = self.next_ty_var(TypeVariableOrigin::MiscVariable(element.span));
3808                     let element_ty = self.check_expr_has_type(&element, t);
3809                     (element_ty, t)
3810                 }
3811             };
3812
3813             if count > 1 {
3814                 // For [foo, ..n] where n > 1, `foo` must have
3815                 // Copy type:
3816                 let lang_item = self.tcx.require_lang_item(lang_items::CopyTraitLangItem);
3817                 self.require_type_meets(t, expr.span, traits::RepeatVec, lang_item);
3818             }
3819
3820             if element_ty.references_error() {
3821                 tcx.types.err
3822             } else {
3823                 tcx.mk_array(t, count)
3824             }
3825           }
3826           hir::ExprTup(ref elts) => {
3827             let flds = expected.only_has_type(self).and_then(|ty| {
3828                 match ty.sty {
3829                     ty::TyTuple(ref flds, _) => Some(&flds[..]),
3830                     _ => None
3831                 }
3832             });
3833
3834             let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| {
3835                 let t = match flds {
3836                     Some(ref fs) if i < fs.len() => {
3837                         let ety = fs[i];
3838                         self.check_expr_coercable_to_type(&e, ety);
3839                         ety
3840                     }
3841                     _ => {
3842                         self.check_expr_with_expectation(&e, NoExpectation)
3843                     }
3844                 };
3845                 t
3846             });
3847             let tuple = tcx.mk_tup(elt_ts_iter, false);
3848             if tuple.references_error() {
3849                 tcx.types.err
3850             } else {
3851                 tuple
3852             }
3853           }
3854           hir::ExprStruct(ref qpath, ref fields, ref base_expr) => {
3855             self.check_expr_struct(expr, expected, qpath, fields, base_expr)
3856           }
3857           hir::ExprField(ref base, ref field) => {
3858             self.check_field(expr, lvalue_pref, &base, field)
3859           }
3860           hir::ExprTupField(ref base, idx) => {
3861             self.check_tup_field(expr, lvalue_pref, &base, idx)
3862           }
3863           hir::ExprIndex(ref base, ref idx) => {
3864               let base_t = self.check_expr_with_lvalue_pref(&base, lvalue_pref);
3865               let idx_t = self.check_expr(&idx);
3866
3867               if base_t.references_error() {
3868                   base_t
3869               } else if idx_t.references_error() {
3870                   idx_t
3871               } else {
3872                   let base_t = self.structurally_resolved_type(expr.span, base_t);
3873                   match self.lookup_indexing(expr, base, base_t, idx_t, lvalue_pref) {
3874                       Some((index_ty, element_ty)) => {
3875                           self.demand_coerce(idx, idx_t, index_ty);
3876                           element_ty
3877                       }
3878                       None => {
3879                           let mut err = self.type_error_struct(
3880                               expr.span,
3881                               |actual| {
3882                                   format!("cannot index a value of type `{}`",
3883                                           actual)
3884                               },
3885                               base_t);
3886                           // Try to give some advice about indexing tuples.
3887                           if let ty::TyTuple(..) = base_t.sty {
3888                               let mut needs_note = true;
3889                               // If the index is an integer, we can show the actual
3890                               // fixed expression:
3891                               if let hir::ExprLit(ref lit) = idx.node {
3892                                   if let ast::LitKind::Int(i,
3893                                             ast::LitIntType::Unsuffixed) = lit.node {
3894                                       let snip = tcx.sess.codemap().span_to_snippet(base.span);
3895                                       if let Ok(snip) = snip {
3896                                           err.span_suggestion(expr.span,
3897                                                               "to access tuple elements, use",
3898                                                               format!("{}.{}", snip, i));
3899                                           needs_note = false;
3900                                       }
3901                                   }
3902                               }
3903                               if needs_note {
3904                                   err.help("to access tuple elements, use tuple indexing \
3905                                             syntax (e.g. `tuple.0`)");
3906                               }
3907                           }
3908                           err.emit();
3909                           self.tcx.types.err
3910                       }
3911                   }
3912               }
3913            }
3914         }
3915     }
3916
3917     // Finish resolving a path in a struct expression or pattern `S::A { .. }` if necessary.
3918     // The newly resolved definition is written into `type_dependent_defs`.
3919     fn finish_resolving_struct_path(&self,
3920                                     qpath: &hir::QPath,
3921                                     path_span: Span,
3922                                     node_id: ast::NodeId)
3923                                     -> (Def, Ty<'tcx>)
3924     {
3925         match *qpath {
3926             hir::QPath::Resolved(ref maybe_qself, ref path) => {
3927                 let opt_self_ty = maybe_qself.as_ref().map(|qself| self.to_ty(qself));
3928                 let ty = AstConv::def_to_ty(self, opt_self_ty, path, true);
3929                 (path.def, ty)
3930             }
3931             hir::QPath::TypeRelative(ref qself, ref segment) => {
3932                 let ty = self.to_ty(qself);
3933
3934                 let def = if let hir::TyPath(hir::QPath::Resolved(_, ref path)) = qself.node {
3935                     path.def
3936                 } else {
3937                     Def::Err
3938                 };
3939                 let (ty, def) = AstConv::associated_path_def_to_ty(self, node_id, path_span,
3940                                                                    ty, def, segment);
3941
3942                 // Write back the new resolution.
3943                 self.tables.borrow_mut().type_dependent_defs.insert(node_id, def);
3944
3945                 (def, ty)
3946             }
3947         }
3948     }
3949
3950     // Resolve associated value path into a base type and associated constant or method definition.
3951     // The newly resolved definition is written into `type_dependent_defs`.
3952     pub fn resolve_ty_and_def_ufcs<'b>(&self,
3953                                        qpath: &'b hir::QPath,
3954                                        node_id: ast::NodeId,
3955                                        span: Span)
3956                                        -> (Def, Option<Ty<'tcx>>, &'b [hir::PathSegment])
3957     {
3958         let (ty, item_segment) = match *qpath {
3959             hir::QPath::Resolved(ref opt_qself, ref path) => {
3960                 return (path.def,
3961                         opt_qself.as_ref().map(|qself| self.to_ty(qself)),
3962                         &path.segments[..]);
3963             }
3964             hir::QPath::TypeRelative(ref qself, ref segment) => {
3965                 (self.to_ty(qself), segment)
3966             }
3967         };
3968         let item_name = item_segment.name;
3969         let def = match self.resolve_ufcs(span, item_name, ty, node_id) {
3970             Ok(def) => def,
3971             Err(error) => {
3972                 let def = match error {
3973                     method::MethodError::PrivateMatch(def) => def,
3974                     _ => Def::Err,
3975                 };
3976                 if item_name != keywords::Invalid.name() {
3977                     self.report_method_error(span, ty, item_name, None, error, None);
3978                 }
3979                 def
3980             }
3981         };
3982
3983         // Write back the new resolution.
3984         self.tables.borrow_mut().type_dependent_defs.insert(node_id, def);
3985         (def, Some(ty), slice::ref_slice(&**item_segment))
3986     }
3987
3988     pub fn check_decl_initializer(&self,
3989                                   local: &'gcx hir::Local,
3990                                   init: &'gcx hir::Expr) -> Ty<'tcx>
3991     {
3992         let ref_bindings = local.pat.contains_ref_binding();
3993
3994         let local_ty = self.local_ty(init.span, local.id);
3995         if let Some(m) = ref_bindings {
3996             // Somewhat subtle: if we have a `ref` binding in the pattern,
3997             // we want to avoid introducing coercions for the RHS. This is
3998             // both because it helps preserve sanity and, in the case of
3999             // ref mut, for soundness (issue #23116). In particular, in
4000             // the latter case, we need to be clear that the type of the
4001             // referent for the reference that results is *equal to* the
4002             // type of the lvalue it is referencing, and not some
4003             // supertype thereof.
4004             let init_ty = self.check_expr_with_lvalue_pref(init, LvaluePreference::from_mutbl(m));
4005             self.demand_eqtype(init.span, init_ty, local_ty);
4006             init_ty
4007         } else {
4008             self.check_expr_coercable_to_type(init, local_ty)
4009         }
4010     }
4011
4012     pub fn check_decl_local(&self, local: &'gcx hir::Local)  {
4013         let t = self.local_ty(local.span, local.id);
4014         self.write_ty(local.id, t);
4015
4016         if let Some(ref init) = local.init {
4017             let init_ty = self.check_decl_initializer(local, &init);
4018             if init_ty.references_error() {
4019                 self.write_ty(local.id, init_ty);
4020             }
4021         }
4022
4023         self.check_pat(&local.pat, t);
4024         let pat_ty = self.node_ty(local.pat.id);
4025         if pat_ty.references_error() {
4026             self.write_ty(local.id, pat_ty);
4027         }
4028     }
4029
4030     pub fn check_stmt(&self, stmt: &'gcx hir::Stmt) {
4031         // Don't do all the complex logic below for DeclItem.
4032         match stmt.node {
4033             hir::StmtDecl(ref decl, id) => {
4034                 match decl.node {
4035                     hir::DeclLocal(_) => {}
4036                     hir::DeclItem(_) => {
4037                         self.write_nil(id);
4038                         return;
4039                     }
4040                 }
4041             }
4042             hir::StmtExpr(..) | hir::StmtSemi(..) => {}
4043         }
4044
4045         self.warn_if_unreachable(stmt.node.id(), stmt.span, "statement");
4046
4047         // Hide the outer diverging and has_errors flags.
4048         let old_diverges = self.diverges.get();
4049         let old_has_errors = self.has_errors.get();
4050         self.diverges.set(Diverges::Maybe);
4051         self.has_errors.set(false);
4052
4053         let (node_id, _span) = match stmt.node {
4054             hir::StmtDecl(ref decl, id) => {
4055                 let span = match decl.node {
4056                     hir::DeclLocal(ref l) => {
4057                         self.check_decl_local(&l);
4058                         l.span
4059                     }
4060                     hir::DeclItem(_) => {/* ignore for now */
4061                         DUMMY_SP
4062                     }
4063                 };
4064                 (id, span)
4065             }
4066             hir::StmtExpr(ref expr, id) => {
4067                 // Check with expected type of ()
4068                 self.check_expr_has_type(&expr, self.tcx.mk_nil());
4069                 (id, expr.span)
4070             }
4071             hir::StmtSemi(ref expr, id) => {
4072                 self.check_expr(&expr);
4073                 (id, expr.span)
4074             }
4075         };
4076
4077         if self.has_errors.get() {
4078             self.write_error(node_id);
4079         } else {
4080             self.write_nil(node_id);
4081         }
4082
4083         // Combine the diverging and has_error flags.
4084         self.diverges.set(self.diverges.get() | old_diverges);
4085         self.has_errors.set(self.has_errors.get() | old_has_errors);
4086     }
4087
4088     pub fn check_block_no_value(&self, blk: &'gcx hir::Block)  {
4089         let unit = self.tcx.mk_nil();
4090         let ty = self.check_block_with_expected(blk, ExpectHasType(unit));
4091
4092         // if the block produces a `!` value, that can always be
4093         // (effectively) coerced to unit.
4094         if !ty.is_never() {
4095             self.demand_suptype(blk.span, unit, ty);
4096         }
4097     }
4098
4099     fn check_block_with_expected(&self,
4100                                  blk: &'gcx hir::Block,
4101                                  expected: Expectation<'tcx>) -> Ty<'tcx> {
4102         let prev = {
4103             let mut fcx_ps = self.ps.borrow_mut();
4104             let unsafety_state = fcx_ps.recurse(blk);
4105             replace(&mut *fcx_ps, unsafety_state)
4106         };
4107
4108         // In some cases, blocks have just one exit, but other blocks
4109         // can be targeted by multiple breaks. This cannot happen in
4110         // normal Rust syntax today, but it can happen when we desugar
4111         // a `do catch { ... }` expression.
4112         //
4113         // Example 1:
4114         //
4115         //    'a: { if true { break 'a Err(()); } Ok(()) }
4116         //
4117         // Here we would wind up with two coercions, one from
4118         // `Err(())` and the other from the tail expression
4119         // `Ok(())`. If the tail expression is omitted, that's a
4120         // "forced unit" -- unless the block diverges, in which
4121         // case we can ignore the tail expression (e.g., `'a: {
4122         // break 'a 22; }` would not force the type of the block
4123         // to be `()`).
4124         let tail_expr = blk.expr.as_ref();
4125         let coerce_to_ty = expected.coercion_target_type(self, blk.span);
4126         let coerce = if blk.targeted_by_break {
4127             CoerceMany::new(coerce_to_ty)
4128         } else {
4129             let tail_expr: &[P<hir::Expr>] = match tail_expr {
4130                 Some(e) => ref_slice(e),
4131                 None => &[],
4132             };
4133             CoerceMany::with_coercion_sites(coerce_to_ty, tail_expr)
4134         };
4135
4136         let ctxt = BreakableCtxt {
4137             coerce: Some(coerce),
4138             may_break: false,
4139         };
4140
4141         let (ctxt, ()) = self.with_breakable_ctxt(blk.id, ctxt, || {
4142             for s in &blk.stmts {
4143                 self.check_stmt(s);
4144             }
4145
4146             // check the tail expression **without** holding the
4147             // `enclosing_breakables` lock below.
4148             let tail_expr_ty = tail_expr.map(|t| self.check_expr_with_expectation(t, expected));
4149
4150             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4151             let mut ctxt = enclosing_breakables.find_breakable(blk.id);
4152             let mut coerce = ctxt.coerce.as_mut().unwrap();
4153             if let Some(tail_expr_ty) = tail_expr_ty {
4154                 let tail_expr = tail_expr.unwrap();
4155                 coerce.coerce(self,
4156                               &self.misc(tail_expr.span),
4157                               tail_expr,
4158                               tail_expr_ty,
4159                               self.diverges.get());
4160             } else {
4161                 // Subtle: if there is no explicit tail expression,
4162                 // that is typically equivalent to a tail expression
4163                 // of `()` -- except if the block diverges. In that
4164                 // case, there is no value supplied from the tail
4165                 // expression (assuming there are no other breaks,
4166                 // this implies that the type of the block will be
4167                 // `!`).
4168                 //
4169                 // #41425 -- label the implicit `()` as being the
4170                 // "found type" here, rather than the "expected type".
4171                 if !self.diverges.get().always() {
4172                     coerce.coerce_forced_unit(self, &self.misc(blk.span), &mut |err| {
4173                         if let Some(expected_ty) = expected.only_has_type(self) {
4174                             self.consider_hint_about_removing_semicolon(blk,
4175                                                                         expected_ty,
4176                                                                         err);
4177                         }
4178                     }, false);
4179                 }
4180             }
4181         });
4182
4183         let mut ty = ctxt.coerce.unwrap().complete(self);
4184
4185         if self.has_errors.get() || ty.references_error() {
4186             ty = self.tcx.types.err
4187         }
4188
4189         self.write_ty(blk.id, ty);
4190
4191         *self.ps.borrow_mut() = prev;
4192         ty
4193     }
4194
4195     /// A common error is to add an extra semicolon:
4196     ///
4197     /// ```
4198     /// fn foo() -> usize {
4199     ///     22;
4200     /// }
4201     /// ```
4202     ///
4203     /// This routine checks if the final statement in a block is an
4204     /// expression with an explicit semicolon whose type is compatible
4205     /// with `expected_ty`. If so, it suggests removing the semicolon.
4206     fn consider_hint_about_removing_semicolon(&self,
4207                                               blk: &'gcx hir::Block,
4208                                               expected_ty: Ty<'tcx>,
4209                                               err: &mut DiagnosticBuilder) {
4210         // Be helpful when the user wrote `{... expr;}` and
4211         // taking the `;` off is enough to fix the error.
4212         let last_stmt = match blk.stmts.last() {
4213             Some(s) => s,
4214             None => return,
4215         };
4216         let last_expr = match last_stmt.node {
4217             hir::StmtSemi(ref e, _) => e,
4218             _ => return,
4219         };
4220         let last_expr_ty = self.expr_ty(last_expr);
4221         if self.can_sub(self.param_env, last_expr_ty, expected_ty).is_err() {
4222             return;
4223         }
4224         let original_span = original_sp(last_stmt.span, blk.span);
4225         let span_semi = Span {
4226             lo: original_span.hi - BytePos(1),
4227             hi: original_span.hi,
4228             ctxt: original_span.ctxt,
4229         };
4230         err.span_help(span_semi, "consider removing this semicolon:");
4231     }
4232
4233     // Instantiates the given path, which must refer to an item with the given
4234     // number of type parameters and type.
4235     pub fn instantiate_value_path(&self,
4236                                   segments: &[hir::PathSegment],
4237                                   opt_self_ty: Option<Ty<'tcx>>,
4238                                   def: Def,
4239                                   span: Span,
4240                                   node_id: ast::NodeId)
4241                                   -> Ty<'tcx> {
4242         debug!("instantiate_value_path(path={:?}, def={:?}, node_id={})",
4243                segments,
4244                def,
4245                node_id);
4246
4247         // We need to extract the type parameters supplied by the user in
4248         // the path `path`. Due to the current setup, this is a bit of a
4249         // tricky-process; the problem is that resolve only tells us the
4250         // end-point of the path resolution, and not the intermediate steps.
4251         // Luckily, we can (at least for now) deduce the intermediate steps
4252         // just from the end-point.
4253         //
4254         // There are basically four cases to consider:
4255         //
4256         // 1. Reference to a constructor of enum variant or struct:
4257         //
4258         //        struct Foo<T>(...)
4259         //        enum E<T> { Foo(...) }
4260         //
4261         //    In these cases, the parameters are declared in the type
4262         //    space.
4263         //
4264         // 2. Reference to a fn item or a free constant:
4265         //
4266         //        fn foo<T>() { }
4267         //
4268         //    In this case, the path will again always have the form
4269         //    `a::b::foo::<T>` where only the final segment should have
4270         //    type parameters. However, in this case, those parameters are
4271         //    declared on a value, and hence are in the `FnSpace`.
4272         //
4273         // 3. Reference to a method or an associated constant:
4274         //
4275         //        impl<A> SomeStruct<A> {
4276         //            fn foo<B>(...)
4277         //        }
4278         //
4279         //    Here we can have a path like
4280         //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
4281         //    may appear in two places. The penultimate segment,
4282         //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
4283         //    final segment, `foo::<B>` contains parameters in fn space.
4284         //
4285         // 4. Reference to a local variable
4286         //
4287         //    Local variables can't have any type parameters.
4288         //
4289         // The first step then is to categorize the segments appropriately.
4290
4291         assert!(!segments.is_empty());
4292
4293         let mut ufcs_associated = None;
4294         let mut type_segment = None;
4295         let mut fn_segment = None;
4296         match def {
4297             // Case 1. Reference to a struct/variant constructor.
4298             Def::StructCtor(def_id, ..) |
4299             Def::VariantCtor(def_id, ..) => {
4300                 // Everything but the final segment should have no
4301                 // parameters at all.
4302                 let mut generics = self.tcx.generics_of(def_id);
4303                 if let Some(def_id) = generics.parent {
4304                     // Variant and struct constructors use the
4305                     // generics of their parent type definition.
4306                     generics = self.tcx.generics_of(def_id);
4307                 }
4308                 type_segment = Some((segments.last().unwrap(), generics));
4309             }
4310
4311             // Case 2. Reference to a top-level value.
4312             Def::Fn(def_id) |
4313             Def::Const(def_id) |
4314             Def::Static(def_id, _) => {
4315                 fn_segment = Some((segments.last().unwrap(),
4316                                    self.tcx.generics_of(def_id)));
4317             }
4318
4319             // Case 3. Reference to a method or associated const.
4320             Def::Method(def_id) |
4321             Def::AssociatedConst(def_id) => {
4322                 let container = self.tcx.associated_item(def_id).container;
4323                 match container {
4324                     ty::TraitContainer(trait_did) => {
4325                         callee::check_legal_trait_for_method_call(self.tcx, span, trait_did)
4326                     }
4327                     ty::ImplContainer(_) => {}
4328                 }
4329
4330                 let generics = self.tcx.generics_of(def_id);
4331                 if segments.len() >= 2 {
4332                     let parent_generics = self.tcx.generics_of(generics.parent.unwrap());
4333                     type_segment = Some((&segments[segments.len() - 2], parent_generics));
4334                 } else {
4335                     // `<T>::assoc` will end up here, and so can `T::assoc`.
4336                     let self_ty = opt_self_ty.expect("UFCS sugared assoc missing Self");
4337                     ufcs_associated = Some((container, self_ty));
4338                 }
4339                 fn_segment = Some((segments.last().unwrap(), generics));
4340             }
4341
4342             // Case 4. Local variable, no generics.
4343             Def::Local(..) | Def::Upvar(..) => {}
4344
4345             _ => bug!("unexpected definition: {:?}", def),
4346         }
4347
4348         debug!("type_segment={:?} fn_segment={:?}", type_segment, fn_segment);
4349
4350         // Now that we have categorized what space the parameters for each
4351         // segment belong to, let's sort out the parameters that the user
4352         // provided (if any) into their appropriate spaces. We'll also report
4353         // errors if type parameters are provided in an inappropriate place.
4354         let poly_segments = type_segment.is_some() as usize +
4355                             fn_segment.is_some() as usize;
4356         AstConv::prohibit_type_params(self, &segments[..segments.len() - poly_segments]);
4357
4358         match def {
4359             Def::Local(def_id) | Def::Upvar(def_id, ..) => {
4360                 let nid = self.tcx.hir.as_local_node_id(def_id).unwrap();
4361                 let ty = self.local_ty(span, nid);
4362                 let ty = self.normalize_associated_types_in(span, &ty);
4363                 self.write_ty(node_id, ty);
4364                 return ty;
4365             }
4366             _ => {}
4367         }
4368
4369         // Now we have to compare the types that the user *actually*
4370         // provided against the types that were *expected*. If the user
4371         // did not provide any types, then we want to substitute inference
4372         // variables. If the user provided some types, we may still need
4373         // to add defaults. If the user provided *too many* types, that's
4374         // a problem.
4375         self.check_path_parameter_count(span, &mut type_segment);
4376         self.check_path_parameter_count(span, &mut fn_segment);
4377
4378         let (fn_start, has_self) = match (type_segment, fn_segment) {
4379             (_, Some((_, generics))) => {
4380                 (generics.parent_count(), generics.has_self)
4381             }
4382             (Some((_, generics)), None) => {
4383                 (generics.own_count(), generics.has_self)
4384             }
4385             (None, None) => (0, false)
4386         };
4387         let substs = Substs::for_item(self.tcx, def.def_id(), |def, _| {
4388             let mut i = def.index as usize;
4389
4390             let segment = if i < fn_start {
4391                 i -= has_self as usize;
4392                 type_segment
4393             } else {
4394                 i -= fn_start;
4395                 fn_segment
4396             };
4397             let lifetimes = match segment.map(|(s, _)| &s.parameters) {
4398                 Some(&hir::AngleBracketedParameters(ref data)) => &data.lifetimes[..],
4399                 Some(&hir::ParenthesizedParameters(_)) => bug!(),
4400                 None => &[]
4401             };
4402
4403             if let Some(lifetime) = lifetimes.get(i) {
4404                 AstConv::ast_region_to_region(self, lifetime, Some(def))
4405             } else {
4406                 self.re_infer(span, Some(def)).unwrap()
4407             }
4408         }, |def, substs| {
4409             let mut i = def.index as usize;
4410
4411             let segment = if i < fn_start {
4412                 // Handle Self first, so we can adjust the index to match the AST.
4413                 if has_self && i == 0 {
4414                     return opt_self_ty.unwrap_or_else(|| {
4415                         self.type_var_for_def(span, def, substs)
4416                     });
4417                 }
4418                 i -= has_self as usize;
4419                 type_segment
4420             } else {
4421                 i -= fn_start;
4422                 fn_segment
4423             };
4424             let (types, infer_types) = match segment.map(|(s, _)| &s.parameters) {
4425                 Some(&hir::AngleBracketedParameters(ref data)) => {
4426                     (&data.types[..], data.infer_types)
4427                 }
4428                 Some(&hir::ParenthesizedParameters(_)) => bug!(),
4429                 None => (&[][..], true)
4430             };
4431
4432             // Skip over the lifetimes in the same segment.
4433             if let Some((_, generics)) = segment {
4434                 i -= generics.regions.len();
4435             }
4436
4437             if let Some(ast_ty) = types.get(i) {
4438                 // A provided type parameter.
4439                 self.to_ty(ast_ty)
4440             } else if !infer_types && def.has_default {
4441                 // No type parameter provided, but a default exists.
4442                 let default = self.tcx.type_of(def.def_id);
4443                 self.normalize_ty(
4444                     span,
4445                     default.subst_spanned(self.tcx, substs, Some(span))
4446                 )
4447             } else {
4448                 // No type parameters were provided, we can infer all.
4449                 // This can also be reached in some error cases:
4450                 // We prefer to use inference variables instead of
4451                 // TyError to let type inference recover somewhat.
4452                 self.type_var_for_def(span, def, substs)
4453             }
4454         });
4455
4456         // The things we are substituting into the type should not contain
4457         // escaping late-bound regions, and nor should the base type scheme.
4458         let ty = self.tcx.type_of(def.def_id());
4459         assert!(!substs.has_escaping_regions());
4460         assert!(!ty.has_escaping_regions());
4461
4462         // Add all the obligations that are required, substituting and
4463         // normalized appropriately.
4464         let bounds = self.instantiate_bounds(span, def.def_id(), &substs);
4465         self.add_obligations_for_parameters(
4466             traits::ObligationCause::new(span, self.body_id, traits::ItemObligation(def.def_id())),
4467             &bounds);
4468
4469         // Substitute the values for the type parameters into the type of
4470         // the referenced item.
4471         let ty_substituted = self.instantiate_type_scheme(span, &substs, &ty);
4472
4473         if let Some((ty::ImplContainer(impl_def_id), self_ty)) = ufcs_associated {
4474             // In the case of `Foo<T>::method` and `<Foo<T>>::method`, if `method`
4475             // is inherent, there is no `Self` parameter, instead, the impl needs
4476             // type parameters, which we can infer by unifying the provided `Self`
4477             // with the substituted impl type.
4478             let ty = self.tcx.type_of(impl_def_id);
4479
4480             let impl_ty = self.instantiate_type_scheme(span, &substs, &ty);
4481             match self.at(&self.misc(span), self.param_env).sup(impl_ty, self_ty) {
4482                 Ok(ok) => self.register_infer_ok_obligations(ok),
4483                 Err(_) => {
4484                     span_bug!(span,
4485                         "instantiate_value_path: (UFCS) {:?} was a subtype of {:?} but now is not?",
4486                         self_ty,
4487                         impl_ty);
4488                 }
4489             }
4490         }
4491
4492         debug!("instantiate_value_path: type of {:?} is {:?}",
4493                node_id,
4494                ty_substituted);
4495         self.write_substs(node_id, substs);
4496         ty_substituted
4497     }
4498
4499     /// Report errors if the provided parameters are too few or too many.
4500     fn check_path_parameter_count(&self,
4501                                   span: Span,
4502                                   segment: &mut Option<(&hir::PathSegment, &ty::Generics)>) {
4503         let (lifetimes, types, infer_types, bindings) = {
4504             match segment.map(|(s, _)| &s.parameters) {
4505                 Some(&hir::AngleBracketedParameters(ref data)) => {
4506                     (&data.lifetimes[..], &data.types[..], data.infer_types, &data.bindings[..])
4507                 }
4508                 Some(&hir::ParenthesizedParameters(_)) => {
4509                     AstConv::prohibit_parenthesized_params(self, &segment.as_ref().unwrap().0,
4510                                                            false);
4511                     (&[][..], &[][..], true, &[][..])
4512                 }
4513                 None => (&[][..], &[][..], true, &[][..])
4514             }
4515         };
4516
4517         let count_lifetime_params = |n| {
4518             format!("{} lifetime parameter{}", n, if n == 1 { "" } else { "s" })
4519         };
4520         let count_type_params = |n| {
4521             format!("{} type parameter{}", n, if n == 1 { "" } else { "s" })
4522         };
4523
4524         // Check provided lifetime parameters.
4525         let lifetime_defs = segment.map_or(&[][..], |(_, generics)| &generics.regions);
4526         if lifetimes.len() > lifetime_defs.len() {
4527             let expected_text = count_lifetime_params(lifetime_defs.len());
4528             let actual_text = count_lifetime_params(lifetimes.len());
4529             struct_span_err!(self.tcx.sess, span, E0088,
4530                              "too many lifetime parameters provided: \
4531                               expected at most {}, found {}",
4532                              expected_text, actual_text)
4533                 .span_label(span, format!("expected {}", expected_text))
4534                 .emit();
4535         } else if lifetimes.len() > 0 && lifetimes.len() < lifetime_defs.len() {
4536             let expected_text = count_lifetime_params(lifetime_defs.len());
4537             let actual_text = count_lifetime_params(lifetimes.len());
4538             struct_span_err!(self.tcx.sess, span, E0090,
4539                              "too few lifetime parameters provided: \
4540                               expected {}, found {}",
4541                              expected_text, actual_text)
4542                 .span_label(span, format!("expected {}", expected_text))
4543                 .emit();
4544         }
4545
4546         // The case where there is not enough lifetime parameters is not checked,
4547         // because this is not possible - a function never takes lifetime parameters.
4548         // See discussion for Pull Request 36208.
4549
4550         // Check provided type parameters.
4551         let type_defs = segment.map_or(&[][..], |(_, generics)| {
4552             if generics.parent.is_none() {
4553                 &generics.types[generics.has_self as usize..]
4554             } else {
4555                 &generics.types
4556             }
4557         });
4558         let required_len = type_defs.iter().take_while(|d| !d.has_default).count();
4559         if types.len() > type_defs.len() {
4560             let span = types[type_defs.len()].span;
4561             let expected_text = count_type_params(type_defs.len());
4562             let actual_text = count_type_params(types.len());
4563             struct_span_err!(self.tcx.sess, span, E0087,
4564                              "too many type parameters provided: \
4565                               expected at most {}, found {}",
4566                              expected_text, actual_text)
4567                 .span_label(span, format!("expected {}", expected_text))
4568                 .emit();
4569
4570             // To prevent derived errors to accumulate due to extra
4571             // type parameters, we force instantiate_value_path to
4572             // use inference variables instead of the provided types.
4573             *segment = None;
4574         } else if !infer_types && types.len() < required_len {
4575             let expected_text = count_type_params(required_len);
4576             let actual_text = count_type_params(types.len());
4577             struct_span_err!(self.tcx.sess, span, E0089,
4578                              "too few type parameters provided: \
4579                               expected {}, found {}",
4580                              expected_text, actual_text)
4581                 .span_label(span, format!("expected {}", expected_text))
4582                 .emit();
4583         }
4584
4585         if !bindings.is_empty() {
4586             span_err!(self.tcx.sess, bindings[0].span, E0182,
4587                       "unexpected binding of associated item in expression path \
4588                        (only allowed in type paths)");
4589         }
4590     }
4591
4592     fn structurally_resolve_type_or_else<F>(&self, sp: Span, ty: Ty<'tcx>, f: F)
4593                                             -> Ty<'tcx>
4594         where F: Fn() -> Ty<'tcx>
4595     {
4596         let mut ty = self.resolve_type_vars_with_obligations(ty);
4597
4598         if ty.is_ty_var() {
4599             let alternative = f();
4600
4601             // If not, error.
4602             if alternative.is_ty_var() || alternative.references_error() {
4603                 if !self.is_tainted_by_errors() {
4604                     self.type_error_message(sp, |_actual| {
4605                         "the type of this value must be known in this context".to_string()
4606                     }, ty);
4607                 }
4608                 self.demand_suptype(sp, self.tcx.types.err, ty);
4609                 ty = self.tcx.types.err;
4610             } else {
4611                 self.demand_suptype(sp, alternative, ty);
4612                 ty = alternative;
4613             }
4614         }
4615
4616         ty
4617     }
4618
4619     // Resolves `typ` by a single level if `typ` is a type variable.  If no
4620     // resolution is possible, then an error is reported.
4621     pub fn structurally_resolved_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
4622         self.structurally_resolve_type_or_else(sp, ty, || {
4623             self.tcx.types.err
4624         })
4625     }
4626
4627     fn with_breakable_ctxt<F: FnOnce() -> R, R>(&self, id: ast::NodeId,
4628                                         ctxt: BreakableCtxt<'gcx, 'tcx>, f: F)
4629                                    -> (BreakableCtxt<'gcx, 'tcx>, R) {
4630         let index;
4631         {
4632             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4633             index = enclosing_breakables.stack.len();
4634             enclosing_breakables.by_id.insert(id, index);
4635             enclosing_breakables.stack.push(ctxt);
4636         }
4637         let result = f();
4638         let ctxt = {
4639             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4640             debug_assert!(enclosing_breakables.stack.len() == index + 1);
4641             enclosing_breakables.by_id.remove(&id).expect("missing breakable context");
4642             enclosing_breakables.stack.pop().expect("missing breakable context")
4643         };
4644         (ctxt, result)
4645     }
4646 }
4647
4648 pub fn check_bounds_are_used<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
4649                                        generics: &hir::Generics,
4650                                        ty: Ty<'tcx>) {
4651     debug!("check_bounds_are_used(n_tps={}, ty={:?})",
4652            generics.ty_params.len(),  ty);
4653
4654     // make a vector of booleans initially false, set to true when used
4655     if generics.ty_params.is_empty() { return; }
4656     let mut tps_used = vec![false; generics.ty_params.len()];
4657
4658     for leaf_ty in ty.walk() {
4659         if let ty::TyParam(ParamTy {idx, ..}) = leaf_ty.sty {
4660             debug!("Found use of ty param num {}", idx);
4661             tps_used[idx as usize - generics.lifetimes.len()] = true;
4662         }
4663     }
4664
4665     for (&used, param) in tps_used.iter().zip(&generics.ty_params) {
4666         if !used {
4667             struct_span_err!(tcx.sess, param.span, E0091,
4668                 "type parameter `{}` is unused",
4669                 param.name)
4670                 .span_label(param.span, "unused type parameter")
4671                 .emit();
4672         }
4673     }
4674 }