]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/mod.rs
Rollup merge of #45059 - tmccombs:pid, r=alexcrichton
[rust.git] / src / librustc_typeck / check / mod.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 /*
12
13 # check.rs
14
15 Within the check phase of type check, we check each item one at a time
16 (bodies of function expressions are checked as part of the containing
17 function).  Inference is used to supply types wherever they are
18 unknown.
19
20 By far the most complex case is checking the body of a function. This
21 can be broken down into several distinct phases:
22
23 - gather: creates type variables to represent the type of each local
24   variable and pattern binding.
25
26 - main: the main pass does the lion's share of the work: it
27   determines the types of all expressions, resolves
28   methods, checks for most invalid conditions, and so forth.  In
29   some cases, where a type is unknown, it may create a type or region
30   variable and use that as the type of an expression.
31
32   In the process of checking, various constraints will be placed on
33   these type variables through the subtyping relationships requested
34   through the `demand` module.  The `infer` module is in charge
35   of resolving those constraints.
36
37 - regionck: after main is complete, the regionck pass goes over all
38   types looking for regions and making sure that they did not escape
39   into places they are not in scope.  This may also influence the
40   final assignments of the various region variables if there is some
41   flexibility.
42
43 - vtable: find and records the impls to use for each trait bound that
44   appears on a type parameter.
45
46 - writeback: writes the final types within a function body, replacing
47   type variables with their final inferred types.  These final types
48   are written into the `tcx.node_types` table, which should *never* contain
49   any reference to a type variable.
50
51 ## Intermediate types
52
53 While type checking a function, the intermediate types for the
54 expressions, blocks, and so forth contained within the function are
55 stored in `fcx.node_types` and `fcx.node_substs`.  These types
56 may contain unresolved type variables.  After type checking is
57 complete, the functions in the writeback module are used to take the
58 types from this table, resolve them, and then write them into their
59 permanent home in the type context `tcx`.
60
61 This means that during inferencing you should use `fcx.write_ty()`
62 and `fcx.expr_ty()` / `fcx.node_ty()` to write/obtain the types of
63 nodes within the function.
64
65 The types of top-level items, which never contain unbound type
66 variables, are stored directly into the `tcx` tables.
67
68 n.b.: A type variable is not the same thing as a type parameter.  A
69 type variable is rather an "instance" of a type parameter: that is,
70 given a generic function `fn foo<T>(t: T)`: while checking the
71 function `foo`, the type `ty_param(0)` refers to the type `T`, which
72 is treated in abstract.  When `foo()` is called, however, `T` will be
73 substituted for a fresh type variable `N`.  This variable will
74 eventually be resolved to some concrete type (which might itself be
75 type parameter).
76
77 */
78
79 pub use self::Expectation::*;
80 use self::autoderef::Autoderef;
81 use self::callee::DeferredCallResolution;
82 use self::coercion::{CoerceMany, DynamicCoerceMany};
83 pub use self::compare_method::{compare_impl_method, compare_const_impl};
84 use self::method::MethodCallee;
85 use self::TupleArgumentsFlag::*;
86
87 use astconv::AstConv;
88 use hir::def::{Def, CtorKind};
89 use hir::def_id::{CrateNum, DefId, LOCAL_CRATE};
90 use rustc_back::slice::ref_slice;
91 use namespace::Namespace;
92 use rustc::infer::{self, InferCtxt, InferOk, RegionVariableOrigin};
93 use rustc::infer::type_variable::{TypeVariableOrigin};
94 use rustc::middle::region;
95 use rustc::ty::subst::{Kind, Subst, Substs};
96 use rustc::traits::{self, FulfillmentContext, ObligationCause, ObligationCauseCode};
97 use rustc::ty::{ParamTy, LvaluePreference, NoPreference, PreferMutLvalue};
98 use rustc::ty::{self, Ty, TyCtxt, Visibility};
99 use rustc::ty::adjustment::{Adjust, Adjustment, AutoBorrow};
100 use rustc::ty::fold::{BottomUpFolder, TypeFoldable};
101 use rustc::ty::maps::Providers;
102 use rustc::ty::util::{Representability, IntTypeExt};
103 use errors::DiagnosticBuilder;
104 use require_c_abi_if_variadic;
105 use session::{CompileIncomplete, Session};
106 use TypeAndSubsts;
107 use lint;
108 use util::common::{ErrorReported, indenter};
109 use util::nodemap::{DefIdMap, DefIdSet, FxHashMap, NodeMap};
110
111 use std::cell::{Cell, RefCell, Ref, RefMut};
112 use std::rc::Rc;
113 use std::collections::hash_map::Entry;
114 use std::cmp;
115 use std::fmt::Display;
116 use std::mem::replace;
117 use std::ops::{self, Deref};
118 use syntax::abi::Abi;
119 use syntax::ast;
120 use syntax::codemap::{self, original_sp, Spanned};
121 use syntax::feature_gate::{GateIssue, emit_feature_err};
122 use syntax::ptr::P;
123 use syntax::symbol::{Symbol, InternedString, keywords};
124 use syntax::util::lev_distance::find_best_match_for_name;
125 use syntax_pos::{self, BytePos, Span, MultiSpan};
126
127 use rustc::hir::intravisit::{self, Visitor, NestedVisitorMap};
128 use rustc::hir::itemlikevisit::ItemLikeVisitor;
129 use rustc::hir::map::Node;
130 use rustc::hir::{self, PatKind};
131 use rustc::middle::lang_items;
132 use rustc_back::slice;
133 use rustc_const_math::ConstInt;
134
135 mod autoderef;
136 pub mod dropck;
137 pub mod _match;
138 pub mod writeback;
139 pub mod regionck;
140 pub mod coercion;
141 pub mod demand;
142 pub mod method;
143 mod upvar;
144 mod wfcheck;
145 mod cast;
146 mod closure;
147 mod callee;
148 mod compare_method;
149 mod generator_interior;
150 mod intrinsic;
151 mod op;
152
153 /// A wrapper for InferCtxt's `in_progress_tables` field.
154 #[derive(Copy, Clone)]
155 struct MaybeInProgressTables<'a, 'tcx: 'a> {
156     maybe_tables: Option<&'a RefCell<ty::TypeckTables<'tcx>>>,
157 }
158
159 impl<'a, 'tcx> MaybeInProgressTables<'a, 'tcx> {
160     fn borrow(self) -> Ref<'a, ty::TypeckTables<'tcx>> {
161         match self.maybe_tables {
162             Some(tables) => tables.borrow(),
163             None => {
164                 bug!("MaybeInProgressTables: inh/fcx.tables.borrow() with no tables")
165             }
166         }
167     }
168
169     fn borrow_mut(self) -> RefMut<'a, ty::TypeckTables<'tcx>> {
170         match self.maybe_tables {
171             Some(tables) => tables.borrow_mut(),
172             None => {
173                 bug!("MaybeInProgressTables: inh/fcx.tables.borrow_mut() with no tables")
174             }
175         }
176     }
177 }
178
179
180 /// closures defined within the function.  For example:
181 ///
182 ///     fn foo() {
183 ///         bar(move|| { ... })
184 ///     }
185 ///
186 /// Here, the function `foo()` and the closure passed to
187 /// `bar()` will each have their own `FnCtxt`, but they will
188 /// share the inherited fields.
189 pub struct Inherited<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
190     infcx: InferCtxt<'a, 'gcx, 'tcx>,
191
192     tables: MaybeInProgressTables<'a, 'tcx>,
193
194     locals: RefCell<NodeMap<Ty<'tcx>>>,
195
196     fulfillment_cx: RefCell<traits::FulfillmentContext<'tcx>>,
197
198     // When we process a call like `c()` where `c` is a closure type,
199     // we may not have decided yet whether `c` is a `Fn`, `FnMut`, or
200     // `FnOnce` closure. In that case, we defer full resolution of the
201     // call until upvar inference can kick in and make the
202     // decision. We keep these deferred resolutions grouped by the
203     // def-id of the closure, so that once we decide, we can easily go
204     // back and process them.
205     deferred_call_resolutions: RefCell<DefIdMap<Vec<DeferredCallResolution<'gcx, 'tcx>>>>,
206
207     deferred_cast_checks: RefCell<Vec<cast::CastCheck<'tcx>>>,
208
209     deferred_generator_interiors: RefCell<Vec<(hir::BodyId, Ty<'tcx>)>>,
210
211     // Anonymized types found in explicit return types and their
212     // associated fresh inference variable. Writeback resolves these
213     // variables to get the concrete type, which can be used to
214     // deanonymize TyAnon, after typeck is done with all functions.
215     anon_types: RefCell<NodeMap<Ty<'tcx>>>,
216
217     /// Each type parameter has an implicit region bound that
218     /// indicates it must outlive at least the function body (the user
219     /// may specify stronger requirements). This field indicates the
220     /// region of the callee. If it is `None`, then the parameter
221     /// environment is for an item or something where the "callee" is
222     /// not clear.
223     implicit_region_bound: Option<ty::Region<'tcx>>,
224
225     body_id: Option<hir::BodyId>,
226 }
227
228 impl<'a, 'gcx, 'tcx> Deref for Inherited<'a, 'gcx, 'tcx> {
229     type Target = InferCtxt<'a, 'gcx, 'tcx>;
230     fn deref(&self) -> &Self::Target {
231         &self.infcx
232     }
233 }
234
235 /// When type-checking an expression, we propagate downward
236 /// whatever type hint we are able in the form of an `Expectation`.
237 #[derive(Copy, Clone, Debug)]
238 pub enum Expectation<'tcx> {
239     /// We know nothing about what type this expression should have.
240     NoExpectation,
241
242     /// This expression is an `if` condition, it must resolve to `bool`.
243     ExpectIfCondition,
244
245     /// This expression should have the type given (or some subtype)
246     ExpectHasType(Ty<'tcx>),
247
248     /// This expression will be cast to the `Ty`
249     ExpectCastableToType(Ty<'tcx>),
250
251     /// This rvalue expression will be wrapped in `&` or `Box` and coerced
252     /// to `&Ty` or `Box<Ty>`, respectively. `Ty` is `[A]` or `Trait`.
253     ExpectRvalueLikeUnsized(Ty<'tcx>),
254 }
255
256 impl<'a, 'gcx, 'tcx> Expectation<'tcx> {
257     // Disregard "castable to" expectations because they
258     // can lead us astray. Consider for example `if cond
259     // {22} else {c} as u8` -- if we propagate the
260     // "castable to u8" constraint to 22, it will pick the
261     // type 22u8, which is overly constrained (c might not
262     // be a u8). In effect, the problem is that the
263     // "castable to" expectation is not the tightest thing
264     // we can say, so we want to drop it in this case.
265     // The tightest thing we can say is "must unify with
266     // else branch". Note that in the case of a "has type"
267     // constraint, this limitation does not hold.
268
269     // If the expected type is just a type variable, then don't use
270     // an expected type. Otherwise, we might write parts of the type
271     // when checking the 'then' block which are incompatible with the
272     // 'else' branch.
273     fn adjust_for_branches(&self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Expectation<'tcx> {
274         match *self {
275             ExpectHasType(ety) => {
276                 let ety = fcx.shallow_resolve(ety);
277                 if !ety.is_ty_var() {
278                     ExpectHasType(ety)
279                 } else {
280                     NoExpectation
281                 }
282             }
283             ExpectRvalueLikeUnsized(ety) => {
284                 ExpectRvalueLikeUnsized(ety)
285             }
286             _ => NoExpectation
287         }
288     }
289
290     /// Provide an expectation for an rvalue expression given an *optional*
291     /// hint, which is not required for type safety (the resulting type might
292     /// be checked higher up, as is the case with `&expr` and `box expr`), but
293     /// is useful in determining the concrete type.
294     ///
295     /// The primary use case is where the expected type is a fat pointer,
296     /// like `&[isize]`. For example, consider the following statement:
297     ///
298     ///    let x: &[isize] = &[1, 2, 3];
299     ///
300     /// In this case, the expected type for the `&[1, 2, 3]` expression is
301     /// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
302     /// expectation `ExpectHasType([isize])`, that would be too strong --
303     /// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
304     /// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
305     /// to the type `&[isize]`. Therefore, we propagate this more limited hint,
306     /// which still is useful, because it informs integer literals and the like.
307     /// See the test case `test/run-pass/coerce-expect-unsized.rs` and #20169
308     /// for examples of where this comes up,.
309     fn rvalue_hint(fcx: &FnCtxt<'a, 'gcx, 'tcx>, ty: Ty<'tcx>) -> Expectation<'tcx> {
310         match fcx.tcx.struct_tail(ty).sty {
311             ty::TySlice(_) | ty::TyStr | ty::TyDynamic(..) => {
312                 ExpectRvalueLikeUnsized(ty)
313             }
314             _ => ExpectHasType(ty)
315         }
316     }
317
318     // Resolves `expected` by a single level if it is a variable. If
319     // there is no expected type or resolution is not possible (e.g.,
320     // no constraints yet present), just returns `None`.
321     fn resolve(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Expectation<'tcx> {
322         match self {
323             NoExpectation => NoExpectation,
324             ExpectIfCondition => ExpectIfCondition,
325             ExpectCastableToType(t) => {
326                 ExpectCastableToType(fcx.resolve_type_vars_if_possible(&t))
327             }
328             ExpectHasType(t) => {
329                 ExpectHasType(fcx.resolve_type_vars_if_possible(&t))
330             }
331             ExpectRvalueLikeUnsized(t) => {
332                 ExpectRvalueLikeUnsized(fcx.resolve_type_vars_if_possible(&t))
333             }
334         }
335     }
336
337     fn to_option(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Option<Ty<'tcx>> {
338         match self.resolve(fcx) {
339             NoExpectation => None,
340             ExpectIfCondition => Some(fcx.tcx.types.bool),
341             ExpectCastableToType(ty) |
342             ExpectHasType(ty) |
343             ExpectRvalueLikeUnsized(ty) => Some(ty),
344         }
345     }
346
347     /// It sometimes happens that we want to turn an expectation into
348     /// a **hard constraint** (i.e., something that must be satisfied
349     /// for the program to type-check). `only_has_type` will return
350     /// such a constraint, if it exists.
351     fn only_has_type(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Option<Ty<'tcx>> {
352         match self.resolve(fcx) {
353             ExpectHasType(ty) => Some(ty),
354             ExpectIfCondition => Some(fcx.tcx.types.bool),
355             NoExpectation | ExpectCastableToType(_) | ExpectRvalueLikeUnsized(_) => None,
356         }
357     }
358
359     /// Like `only_has_type`, but instead of returning `None` if no
360     /// hard constraint exists, creates a fresh type variable.
361     fn coercion_target_type(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>, span: Span) -> Ty<'tcx> {
362         self.only_has_type(fcx)
363             .unwrap_or_else(|| fcx.next_ty_var(TypeVariableOrigin::MiscVariable(span)))
364     }
365 }
366
367 #[derive(Copy, Clone)]
368 pub struct UnsafetyState {
369     pub def: ast::NodeId,
370     pub unsafety: hir::Unsafety,
371     pub unsafe_push_count: u32,
372     from_fn: bool
373 }
374
375 impl UnsafetyState {
376     pub fn function(unsafety: hir::Unsafety, def: ast::NodeId) -> UnsafetyState {
377         UnsafetyState { def: def, unsafety: unsafety, unsafe_push_count: 0, from_fn: true }
378     }
379
380     pub fn recurse(&mut self, blk: &hir::Block) -> UnsafetyState {
381         match self.unsafety {
382             // If this unsafe, then if the outer function was already marked as
383             // unsafe we shouldn't attribute the unsafe'ness to the block. This
384             // way the block can be warned about instead of ignoring this
385             // extraneous block (functions are never warned about).
386             hir::Unsafety::Unsafe if self.from_fn => *self,
387
388             unsafety => {
389                 let (unsafety, def, count) = match blk.rules {
390                     hir::PushUnsafeBlock(..) =>
391                         (unsafety, blk.id, self.unsafe_push_count.checked_add(1).unwrap()),
392                     hir::PopUnsafeBlock(..) =>
393                         (unsafety, blk.id, self.unsafe_push_count.checked_sub(1).unwrap()),
394                     hir::UnsafeBlock(..) =>
395                         (hir::Unsafety::Unsafe, blk.id, self.unsafe_push_count),
396                     hir::DefaultBlock =>
397                         (unsafety, self.def, self.unsafe_push_count),
398                 };
399                 UnsafetyState{ def,
400                                unsafety,
401                                unsafe_push_count: count,
402                                from_fn: false }
403             }
404         }
405     }
406 }
407
408 #[derive(Debug, Copy, Clone)]
409 pub enum LvalueOp {
410     Deref,
411     Index
412 }
413
414 /// Tracks whether executing a node may exit normally (versus
415 /// return/break/panic, which "diverge", leaving dead code in their
416 /// wake). Tracked semi-automatically (through type variables marked
417 /// as diverging), with some manual adjustments for control-flow
418 /// primitives (approximating a CFG).
419 #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
420 pub enum Diverges {
421     /// Potentially unknown, some cases converge,
422     /// others require a CFG to determine them.
423     Maybe,
424
425     /// Definitely known to diverge and therefore
426     /// not reach the next sibling or its parent.
427     Always,
428
429     /// Same as `Always` but with a reachability
430     /// warning already emitted
431     WarnedAlways
432 }
433
434 // Convenience impls for combinig `Diverges`.
435
436 impl ops::BitAnd for Diverges {
437     type Output = Self;
438     fn bitand(self, other: Self) -> Self {
439         cmp::min(self, other)
440     }
441 }
442
443 impl ops::BitOr for Diverges {
444     type Output = Self;
445     fn bitor(self, other: Self) -> Self {
446         cmp::max(self, other)
447     }
448 }
449
450 impl ops::BitAndAssign for Diverges {
451     fn bitand_assign(&mut self, other: Self) {
452         *self = *self & other;
453     }
454 }
455
456 impl ops::BitOrAssign for Diverges {
457     fn bitor_assign(&mut self, other: Self) {
458         *self = *self | other;
459     }
460 }
461
462 impl Diverges {
463     fn always(self) -> bool {
464         self >= Diverges::Always
465     }
466 }
467
468 pub struct BreakableCtxt<'gcx: 'tcx, 'tcx> {
469     may_break: bool,
470
471     // this is `null` for loops where break with a value is illegal,
472     // such as `while`, `for`, and `while let`
473     coerce: Option<DynamicCoerceMany<'gcx, 'tcx>>,
474 }
475
476 pub struct EnclosingBreakables<'gcx: 'tcx, 'tcx> {
477     stack: Vec<BreakableCtxt<'gcx, 'tcx>>,
478     by_id: NodeMap<usize>,
479 }
480
481 impl<'gcx, 'tcx> EnclosingBreakables<'gcx, 'tcx> {
482     fn find_breakable(&mut self, target_id: ast::NodeId) -> &mut BreakableCtxt<'gcx, 'tcx> {
483         let ix = *self.by_id.get(&target_id).unwrap_or_else(|| {
484             bug!("could not find enclosing breakable with id {}", target_id);
485         });
486         &mut self.stack[ix]
487     }
488 }
489
490 pub struct FnCtxt<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
491     body_id: ast::NodeId,
492
493     /// The parameter environment used for proving trait obligations
494     /// in this function. This can change when we descend into
495     /// closures (as they bring new things into scope), hence it is
496     /// not part of `Inherited` (as of the time of this writing,
497     /// closures do not yet change the environment, but they will
498     /// eventually).
499     param_env: ty::ParamEnv<'tcx>,
500
501     // Number of errors that had been reported when we started
502     // checking this function. On exit, if we find that *more* errors
503     // have been reported, we will skip regionck and other work that
504     // expects the types within the function to be consistent.
505     err_count_on_creation: usize,
506
507     ret_coercion: Option<RefCell<DynamicCoerceMany<'gcx, 'tcx>>>,
508
509     yield_ty: Option<Ty<'tcx>>,
510
511     ps: RefCell<UnsafetyState>,
512
513     /// Whether the last checked node generates a divergence (e.g.,
514     /// `return` will set this to Always). In general, when entering
515     /// an expression or other node in the tree, the initial value
516     /// indicates whether prior parts of the containing expression may
517     /// have diverged. It is then typically set to `Maybe` (and the
518     /// old value remembered) for processing the subparts of the
519     /// current expression. As each subpart is processed, they may set
520     /// the flag to `Always` etc.  Finally, at the end, we take the
521     /// result and "union" it with the original value, so that when we
522     /// return the flag indicates if any subpart of the the parent
523     /// expression (up to and including this part) has diverged.  So,
524     /// if you read it after evaluating a subexpression `X`, the value
525     /// you get indicates whether any subexpression that was
526     /// evaluating up to and including `X` diverged.
527     ///
528     /// We use this flag for two purposes:
529     ///
530     /// - To warn about unreachable code: if, after processing a
531     ///   sub-expression but before we have applied the effects of the
532     ///   current node, we see that the flag is set to `Always`, we
533     ///   can issue a warning. This corresponds to something like
534     ///   `foo(return)`; we warn on the `foo()` expression. (We then
535     ///   update the flag to `WarnedAlways` to suppress duplicate
536     ///   reports.) Similarly, if we traverse to a fresh statement (or
537     ///   tail expression) from a `Always` setting, we will issue a
538     ///   warning. This corresponds to something like `{return;
539     ///   foo();}` or `{return; 22}`, where we would warn on the
540     ///   `foo()` or `22`.
541     ///
542     /// - To permit assignment into a local variable or other lvalue
543     ///   (including the "return slot") of type `!`.  This is allowed
544     ///   if **either** the type of value being assigned is `!`, which
545     ///   means the current code is dead, **or** the expression's
546     ///   diverging flag is true, which means that a diverging value was
547     ///   wrapped (e.g., `let x: ! = foo(return)`).
548     ///
549     /// To repeat the last point: an expression represents dead-code
550     /// if, after checking it, **either** its type is `!` OR the
551     /// diverges flag is set to something other than `Maybe`.
552     diverges: Cell<Diverges>,
553
554     /// Whether any child nodes have any type errors.
555     has_errors: Cell<bool>,
556
557     enclosing_breakables: RefCell<EnclosingBreakables<'gcx, 'tcx>>,
558
559     inh: &'a Inherited<'a, 'gcx, 'tcx>,
560 }
561
562 impl<'a, 'gcx, 'tcx> Deref for FnCtxt<'a, 'gcx, 'tcx> {
563     type Target = Inherited<'a, 'gcx, 'tcx>;
564     fn deref(&self) -> &Self::Target {
565         &self.inh
566     }
567 }
568
569 /// Helper type of a temporary returned by Inherited::build(...).
570 /// Necessary because we can't write the following bound:
571 /// F: for<'b, 'tcx> where 'gcx: 'tcx FnOnce(Inherited<'b, 'gcx, 'tcx>).
572 pub struct InheritedBuilder<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
573     infcx: infer::InferCtxtBuilder<'a, 'gcx, 'tcx>,
574     def_id: DefId,
575 }
576
577 impl<'a, 'gcx, 'tcx> Inherited<'a, 'gcx, 'tcx> {
578     pub fn build(tcx: TyCtxt<'a, 'gcx, 'gcx>, def_id: DefId)
579                  -> InheritedBuilder<'a, 'gcx, 'tcx> {
580         let hir_id_root = if def_id.is_local() {
581             let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
582             let hir_id = tcx.hir.definitions().node_to_hir_id(node_id);
583             DefId::local(hir_id.owner)
584         } else {
585             def_id
586         };
587
588         InheritedBuilder {
589             infcx: tcx.infer_ctxt().with_fresh_in_progress_tables(hir_id_root),
590             def_id,
591         }
592     }
593 }
594
595 impl<'a, 'gcx, 'tcx> InheritedBuilder<'a, 'gcx, 'tcx> {
596     fn enter<F, R>(&'tcx mut self, f: F) -> R
597         where F: for<'b> FnOnce(Inherited<'b, 'gcx, 'tcx>) -> R
598     {
599         let def_id = self.def_id;
600         self.infcx.enter(|infcx| f(Inherited::new(infcx, def_id)))
601     }
602 }
603
604 impl<'a, 'gcx, 'tcx> Inherited<'a, 'gcx, 'tcx> {
605     fn new(infcx: InferCtxt<'a, 'gcx, 'tcx>, def_id: DefId) -> Self {
606         let tcx = infcx.tcx;
607         let item_id = tcx.hir.as_local_node_id(def_id);
608         let body_id = item_id.and_then(|id| tcx.hir.maybe_body_owned_by(id));
609         let implicit_region_bound = body_id.map(|body_id| {
610             let body = tcx.hir.body(body_id);
611             tcx.mk_region(ty::ReScope(region::Scope::CallSite(body.value.hir_id.local_id)))
612         });
613
614         Inherited {
615             tables: MaybeInProgressTables {
616                 maybe_tables: infcx.in_progress_tables,
617             },
618             infcx,
619             fulfillment_cx: RefCell::new(traits::FulfillmentContext::new()),
620             locals: RefCell::new(NodeMap()),
621             deferred_call_resolutions: RefCell::new(DefIdMap()),
622             deferred_cast_checks: RefCell::new(Vec::new()),
623             deferred_generator_interiors: RefCell::new(Vec::new()),
624             anon_types: RefCell::new(NodeMap()),
625             implicit_region_bound,
626             body_id,
627         }
628     }
629
630     fn register_predicate(&self, obligation: traits::PredicateObligation<'tcx>) {
631         debug!("register_predicate({:?})", obligation);
632         if obligation.has_escaping_regions() {
633             span_bug!(obligation.cause.span, "escaping regions in predicate {:?}",
634                       obligation);
635         }
636         self.fulfillment_cx
637             .borrow_mut()
638             .register_predicate_obligation(self, obligation);
639     }
640
641     fn register_predicates<I>(&self, obligations: I)
642     where I: IntoIterator<Item = traits::PredicateObligation<'tcx>> {
643         for obligation in obligations {
644             self.register_predicate(obligation);
645         }
646     }
647
648     fn register_infer_ok_obligations<T>(&self, infer_ok: InferOk<'tcx, T>) -> T {
649         self.register_predicates(infer_ok.obligations);
650         infer_ok.value
651     }
652
653     fn normalize_associated_types_in<T>(&self,
654                                         span: Span,
655                                         body_id: ast::NodeId,
656                                         param_env: ty::ParamEnv<'tcx>,
657                                         value: &T) -> T
658         where T : TypeFoldable<'tcx>
659     {
660         let ok = self.normalize_associated_types_in_as_infer_ok(span, body_id, param_env, value);
661         self.register_infer_ok_obligations(ok)
662     }
663
664     fn normalize_associated_types_in_as_infer_ok<T>(&self,
665                                                     span: Span,
666                                                     body_id: ast::NodeId,
667                                                     param_env: ty::ParamEnv<'tcx>,
668                                                     value: &T)
669                                                     -> InferOk<'tcx, T>
670         where T : TypeFoldable<'tcx>
671     {
672         debug!("normalize_associated_types_in(value={:?})", value);
673         let mut selcx = traits::SelectionContext::new(self);
674         let cause = ObligationCause::misc(span, body_id);
675         let traits::Normalized { value, obligations } =
676             traits::normalize(&mut selcx, param_env, cause, value);
677         debug!("normalize_associated_types_in: result={:?} predicates={:?}",
678             value,
679             obligations);
680         InferOk { value, obligations }
681     }
682
683     /// Replace any late-bound regions bound in `value` with
684     /// free variants attached to `all_outlive_scope`.
685     fn liberate_late_bound_regions<T>(&self,
686         all_outlive_scope: DefId,
687         value: &ty::Binder<T>)
688         -> T
689         where T: TypeFoldable<'tcx>
690     {
691         self.tcx.replace_late_bound_regions(value, |br| {
692             self.tcx.mk_region(ty::ReFree(ty::FreeRegion {
693                 scope: all_outlive_scope,
694                 bound_region: br
695             }))
696         }).0
697     }
698 }
699
700 struct CheckItemTypesVisitor<'a, 'tcx: 'a> { tcx: TyCtxt<'a, 'tcx, 'tcx> }
701
702 impl<'a, 'tcx> ItemLikeVisitor<'tcx> for CheckItemTypesVisitor<'a, 'tcx> {
703     fn visit_item(&mut self, i: &'tcx hir::Item) {
704         check_item_type(self.tcx, i);
705     }
706     fn visit_trait_item(&mut self, _: &'tcx hir::TraitItem) { }
707     fn visit_impl_item(&mut self, _: &'tcx hir::ImplItem) { }
708 }
709
710 pub fn check_wf_new<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Result<(), ErrorReported> {
711     tcx.sess.track_errors(|| {
712         let mut visit = wfcheck::CheckTypeWellFormedVisitor::new(tcx);
713         tcx.hir.krate().visit_all_item_likes(&mut visit.as_deep_visitor());
714     })
715 }
716
717 pub fn check_item_types<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Result<(), ErrorReported> {
718     tcx.sess.track_errors(|| {
719         tcx.hir.krate().visit_all_item_likes(&mut CheckItemTypesVisitor { tcx });
720     })
721 }
722
723 pub fn check_item_bodies<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Result<(), CompileIncomplete> {
724     tcx.typeck_item_bodies(LOCAL_CRATE)
725 }
726
727 fn typeck_item_bodies<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, crate_num: CrateNum)
728                                 -> Result<(), CompileIncomplete>
729 {
730     debug_assert!(crate_num == LOCAL_CRATE);
731     Ok(tcx.sess.track_errors(|| {
732         for body_owner_def_id in tcx.body_owners() {
733             ty::maps::queries::typeck_tables_of::ensure(tcx, body_owner_def_id);
734         }
735     })?)
736 }
737
738 pub fn provide(providers: &mut Providers) {
739     *providers = Providers {
740         typeck_item_bodies,
741         typeck_tables_of,
742         has_typeck_tables,
743         closure_kind,
744         generator_sig,
745         adt_destructor,
746         used_trait_imports,
747         ..*providers
748     };
749 }
750
751 fn generator_sig<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
752                           def_id: DefId)
753                           -> Option<ty::PolyGenSig<'tcx>> {
754     let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
755     let hir_id = tcx.hir.node_to_hir_id(node_id);
756     tcx.typeck_tables_of(def_id).generator_sigs()[hir_id].map(|s| ty::Binder(s))
757 }
758
759 fn closure_kind<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
760                           def_id: DefId)
761                           -> ty::ClosureKind {
762     let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
763     let hir_id = tcx.hir.node_to_hir_id(node_id);
764     tcx.typeck_tables_of(def_id).closure_kinds()[hir_id].0
765 }
766
767 fn adt_destructor<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
768                             def_id: DefId)
769                             -> Option<ty::Destructor> {
770     tcx.calculate_dtor(def_id, &mut dropck::check_drop_impl)
771 }
772
773 /// If this def-id is a "primary tables entry", returns `Some((body_id, decl))`
774 /// with information about it's body-id and fn-decl (if any). Otherwise,
775 /// returns `None`.
776 ///
777 /// If this function returns "some", then `typeck_tables(def_id)` will
778 /// succeed; if it returns `None`, then `typeck_tables(def_id)` may or
779 /// may not succeed.  In some cases where this function returns `None`
780 /// (notably closures), `typeck_tables(def_id)` would wind up
781 /// redirecting to the owning function.
782 fn primary_body_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
783                              id: ast::NodeId)
784                              -> Option<(hir::BodyId, Option<&'tcx hir::FnDecl>)>
785 {
786     match tcx.hir.get(id) {
787         hir::map::NodeItem(item) => {
788             match item.node {
789                 hir::ItemConst(_, body) |
790                 hir::ItemStatic(_, _, body) =>
791                     Some((body, None)),
792                 hir::ItemFn(ref decl, .., body) =>
793                     Some((body, Some(decl))),
794                 _ =>
795                     None,
796             }
797         }
798         hir::map::NodeTraitItem(item) => {
799             match item.node {
800                 hir::TraitItemKind::Const(_, Some(body)) =>
801                     Some((body, None)),
802                 hir::TraitItemKind::Method(ref sig, hir::TraitMethod::Provided(body)) =>
803                     Some((body, Some(&sig.decl))),
804                 _ =>
805                     None,
806             }
807         }
808         hir::map::NodeImplItem(item) => {
809             match item.node {
810                 hir::ImplItemKind::Const(_, body) =>
811                     Some((body, None)),
812                 hir::ImplItemKind::Method(ref sig, body) =>
813                     Some((body, Some(&sig.decl))),
814                 _ =>
815                     None,
816             }
817         }
818         hir::map::NodeExpr(expr) => {
819             // FIXME(eddyb) Closures should have separate
820             // function definition IDs and expression IDs.
821             // Type-checking should not let closures get
822             // this far in a constant position.
823             // Assume that everything other than closures
824             // is a constant "initializer" expression.
825             match expr.node {
826                 hir::ExprClosure(..) =>
827                     None,
828                 _ =>
829                     Some((hir::BodyId { node_id: expr.id }, None)),
830             }
831         }
832         _ => None,
833     }
834 }
835
836 fn has_typeck_tables<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
837                                def_id: DefId)
838                                -> bool {
839     // Closures' tables come from their outermost function,
840     // as they are part of the same "inference environment".
841     let outer_def_id = tcx.closure_base_def_id(def_id);
842     if outer_def_id != def_id {
843         return tcx.has_typeck_tables(outer_def_id);
844     }
845
846     let id = tcx.hir.as_local_node_id(def_id).unwrap();
847     primary_body_of(tcx, id).is_some()
848 }
849
850 fn used_trait_imports<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
851                               def_id: DefId)
852                               -> Rc<DefIdSet> {
853     tcx.typeck_tables_of(def_id).used_trait_imports.clone()
854 }
855
856 fn typeck_tables_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
857                               def_id: DefId)
858                               -> &'tcx ty::TypeckTables<'tcx> {
859     // Closures' tables come from their outermost function,
860     // as they are part of the same "inference environment".
861     let outer_def_id = tcx.closure_base_def_id(def_id);
862     if outer_def_id != def_id {
863         return tcx.typeck_tables_of(outer_def_id);
864     }
865
866     let id = tcx.hir.as_local_node_id(def_id).unwrap();
867     let span = tcx.hir.span(id);
868
869     // Figure out what primary body this item has.
870     let (body_id, fn_decl) = primary_body_of(tcx, id).unwrap_or_else(|| {
871         span_bug!(span, "can't type-check body of {:?}", def_id);
872     });
873     let body = tcx.hir.body(body_id);
874
875     let tables = Inherited::build(tcx, def_id).enter(|inh| {
876         let param_env = tcx.param_env(def_id);
877         let fcx = if let Some(decl) = fn_decl {
878             let fn_sig = tcx.fn_sig(def_id);
879
880             check_abi(tcx, span, fn_sig.abi());
881
882             // Compute the fty from point of view of inside fn.
883             let fn_sig =
884                 inh.liberate_late_bound_regions(def_id, &fn_sig);
885             let fn_sig =
886                 inh.normalize_associated_types_in(body.value.span,
887                                                   body_id.node_id,
888                                                   param_env,
889                                                   &fn_sig);
890
891             check_fn(&inh, param_env, fn_sig, decl, id, body, false).0
892         } else {
893             let fcx = FnCtxt::new(&inh, param_env, body.value.id);
894             let expected_type = tcx.type_of(def_id);
895             let expected_type = fcx.normalize_associated_types_in(body.value.span, &expected_type);
896             fcx.require_type_is_sized(expected_type, body.value.span, traits::ConstSized);
897
898             // Gather locals in statics (because of block expressions).
899             // This is technically unnecessary because locals in static items are forbidden,
900             // but prevents type checking from blowing up before const checking can properly
901             // emit an error.
902             GatherLocalsVisitor { fcx: &fcx }.visit_body(body);
903
904             fcx.check_expr_coercable_to_type(&body.value, expected_type);
905
906             fcx
907         };
908
909         fcx.select_all_obligations_and_apply_defaults();
910         fcx.closure_analyze(body);
911         fcx.select_obligations_where_possible();
912         fcx.check_casts();
913         fcx.resolve_generator_interiors(def_id);
914         fcx.select_all_obligations_or_error();
915
916         if fn_decl.is_some() {
917             fcx.regionck_fn(id, body);
918         } else {
919             fcx.regionck_expr(body);
920         }
921
922         fcx.resolve_type_vars_in_body(body)
923     });
924
925     // Consistency check our TypeckTables instance can hold all ItemLocalIds
926     // it will need to hold.
927     assert_eq!(tables.local_id_root,
928                Some(DefId::local(tcx.hir.definitions().node_to_hir_id(id).owner)));
929     tables
930 }
931
932 fn check_abi<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, span: Span, abi: Abi) {
933     if !tcx.sess.target.target.is_abi_supported(abi) {
934         struct_span_err!(tcx.sess, span, E0570,
935             "The ABI `{}` is not supported for the current target", abi).emit()
936     }
937 }
938
939 struct GatherLocalsVisitor<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
940     fcx: &'a FnCtxt<'a, 'gcx, 'tcx>
941 }
942
943 impl<'a, 'gcx, 'tcx> GatherLocalsVisitor<'a, 'gcx, 'tcx> {
944     fn assign(&mut self, span: Span, nid: ast::NodeId, ty_opt: Option<Ty<'tcx>>) -> Ty<'tcx> {
945         match ty_opt {
946             None => {
947                 // infer the variable's type
948                 let var_ty = self.fcx.next_ty_var(TypeVariableOrigin::TypeInference(span));
949                 self.fcx.locals.borrow_mut().insert(nid, var_ty);
950                 var_ty
951             }
952             Some(typ) => {
953                 // take type that the user specified
954                 self.fcx.locals.borrow_mut().insert(nid, typ);
955                 typ
956             }
957         }
958     }
959 }
960
961 impl<'a, 'gcx, 'tcx> Visitor<'gcx> for GatherLocalsVisitor<'a, 'gcx, 'tcx> {
962     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'gcx> {
963         NestedVisitorMap::None
964     }
965
966     // Add explicitly-declared locals.
967     fn visit_local(&mut self, local: &'gcx hir::Local) {
968         let o_ty = match local.ty {
969             Some(ref ty) => Some(self.fcx.to_ty(&ty)),
970             None => None
971         };
972         self.assign(local.span, local.id, o_ty);
973         debug!("Local variable {:?} is assigned type {}",
974                local.pat,
975                self.fcx.ty_to_string(
976                    self.fcx.locals.borrow().get(&local.id).unwrap().clone()));
977         intravisit::walk_local(self, local);
978     }
979
980     // Add pattern bindings.
981     fn visit_pat(&mut self, p: &'gcx hir::Pat) {
982         if let PatKind::Binding(_, _, ref path1, _) = p.node {
983             let var_ty = self.assign(p.span, p.id, None);
984
985             self.fcx.require_type_is_sized(var_ty, p.span,
986                                            traits::VariableType(p.id));
987
988             debug!("Pattern binding {} is assigned to {} with type {:?}",
989                    path1.node,
990                    self.fcx.ty_to_string(
991                        self.fcx.locals.borrow().get(&p.id).unwrap().clone()),
992                    var_ty);
993         }
994         intravisit::walk_pat(self, p);
995     }
996
997     // Don't descend into the bodies of nested closures
998     fn visit_fn(&mut self, _: intravisit::FnKind<'gcx>, _: &'gcx hir::FnDecl,
999                 _: hir::BodyId, _: Span, _: ast::NodeId) { }
1000 }
1001
1002 /// Helper used for fns and closures. Does the grungy work of checking a function
1003 /// body and returns the function context used for that purpose, since in the case of a fn item
1004 /// there is still a bit more to do.
1005 ///
1006 /// * ...
1007 /// * inherited: other fields inherited from the enclosing fn (if any)
1008 fn check_fn<'a, 'gcx, 'tcx>(inherited: &'a Inherited<'a, 'gcx, 'tcx>,
1009                             param_env: ty::ParamEnv<'tcx>,
1010                             fn_sig: ty::FnSig<'tcx>,
1011                             decl: &'gcx hir::FnDecl,
1012                             fn_id: ast::NodeId,
1013                             body: &'gcx hir::Body,
1014                             can_be_generator: bool)
1015                             -> (FnCtxt<'a, 'gcx, 'tcx>, Option<ty::GeneratorInterior<'tcx>>)
1016 {
1017     let mut fn_sig = fn_sig.clone();
1018
1019     debug!("check_fn(sig={:?}, fn_id={}, param_env={:?})", fn_sig, fn_id, param_env);
1020
1021     // Create the function context.  This is either derived from scratch or,
1022     // in the case of function expressions, based on the outer context.
1023     let mut fcx = FnCtxt::new(inherited, param_env, body.value.id);
1024     *fcx.ps.borrow_mut() = UnsafetyState::function(fn_sig.unsafety, fn_id);
1025
1026     let ret_ty = fn_sig.output();
1027     fcx.require_type_is_sized(ret_ty, decl.output.span(), traits::SizedReturnType);
1028     let ret_ty = fcx.instantiate_anon_types(&ret_ty);
1029     fcx.ret_coercion = Some(RefCell::new(CoerceMany::new(ret_ty)));
1030     fn_sig = fcx.tcx.mk_fn_sig(
1031         fn_sig.inputs().iter().cloned(),
1032         ret_ty,
1033         fn_sig.variadic,
1034         fn_sig.unsafety,
1035         fn_sig.abi
1036     );
1037
1038     let span = body.value.span;
1039
1040     if body.is_generator && can_be_generator {
1041         fcx.yield_ty = Some(fcx.next_ty_var(TypeVariableOrigin::TypeInference(span)));
1042     }
1043
1044     GatherLocalsVisitor { fcx: &fcx, }.visit_body(body);
1045
1046     // Add formal parameters.
1047     for (arg_ty, arg) in fn_sig.inputs().iter().zip(&body.arguments) {
1048         // Check the pattern.
1049         fcx.check_pat_walk(&arg.pat, arg_ty,
1050             ty::BindingMode::BindByValue(hir::Mutability::MutImmutable), true);
1051
1052         // Check that argument is Sized.
1053         // The check for a non-trivial pattern is a hack to avoid duplicate warnings
1054         // for simple cases like `fn foo(x: Trait)`,
1055         // where we would error once on the parameter as a whole, and once on the binding `x`.
1056         if arg.pat.simple_name().is_none() {
1057             fcx.require_type_is_sized(arg_ty, decl.output.span(), traits::MiscObligation);
1058         }
1059
1060         fcx.write_ty(arg.hir_id, arg_ty);
1061     }
1062
1063     let fn_hir_id = fcx.tcx.hir.node_to_hir_id(fn_id);
1064     let gen_ty = if can_be_generator && body.is_generator {
1065         let gen_sig = ty::GenSig {
1066             yield_ty: fcx.yield_ty.unwrap(),
1067             return_ty: ret_ty,
1068         };
1069         inherited.tables.borrow_mut().generator_sigs_mut().insert(fn_hir_id, Some(gen_sig));
1070
1071         let witness = fcx.next_ty_var(TypeVariableOrigin::MiscVariable(span));
1072         fcx.deferred_generator_interiors.borrow_mut().push((body.id(), witness));
1073         let interior = ty::GeneratorInterior::new(witness);
1074
1075         inherited.tables.borrow_mut().generator_interiors_mut().insert(fn_hir_id, interior);
1076
1077         Some(interior)
1078     } else {
1079         inherited.tables.borrow_mut().generator_sigs_mut().insert(fn_hir_id, None);
1080         None
1081     };
1082     inherited.tables.borrow_mut().liberated_fn_sigs_mut().insert(fn_hir_id, fn_sig);
1083
1084     fcx.check_return_expr(&body.value);
1085
1086     // Finalize the return check by taking the LUB of the return types
1087     // we saw and assigning it to the expected return type. This isn't
1088     // really expected to fail, since the coercions would have failed
1089     // earlier when trying to find a LUB.
1090     //
1091     // However, the behavior around `!` is sort of complex. In the
1092     // event that the `actual_return_ty` comes back as `!`, that
1093     // indicates that the fn either does not return or "returns" only
1094     // values of type `!`. In this case, if there is an expected
1095     // return type that is *not* `!`, that should be ok. But if the
1096     // return type is being inferred, we want to "fallback" to `!`:
1097     //
1098     //     let x = move || panic!();
1099     //
1100     // To allow for that, I am creating a type variable with diverging
1101     // fallback. This was deemed ever so slightly better than unifying
1102     // the return value with `!` because it allows for the caller to
1103     // make more assumptions about the return type (e.g., they could do
1104     //
1105     //     let y: Option<u32> = Some(x());
1106     //
1107     // which would then cause this return type to become `u32`, not
1108     // `!`).
1109     let coercion = fcx.ret_coercion.take().unwrap().into_inner();
1110     let mut actual_return_ty = coercion.complete(&fcx);
1111     if actual_return_ty.is_never() {
1112         actual_return_ty = fcx.next_diverging_ty_var(
1113             TypeVariableOrigin::DivergingFn(span));
1114     }
1115     fcx.demand_suptype(span, ret_ty, actual_return_ty);
1116
1117     (fcx, gen_ty)
1118 }
1119
1120 fn check_struct<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1121                           id: ast::NodeId,
1122                           span: Span) {
1123     let def_id = tcx.hir.local_def_id(id);
1124     let def = tcx.adt_def(def_id);
1125     def.destructor(tcx); // force the destructor to be evaluated
1126     check_representable(tcx, span, def_id);
1127
1128     if def.repr.simd() {
1129         check_simd(tcx, span, def_id);
1130     }
1131
1132     check_packed(tcx, span, def_id);
1133 }
1134
1135 fn check_union<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1136                          id: ast::NodeId,
1137                          span: Span) {
1138     let def_id = tcx.hir.local_def_id(id);
1139     let def = tcx.adt_def(def_id);
1140     def.destructor(tcx); // force the destructor to be evaluated
1141     check_representable(tcx, span, def_id);
1142
1143     check_packed(tcx, span, def_id);
1144 }
1145
1146 pub fn check_item_type<'a,'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, it: &'tcx hir::Item) {
1147     debug!("check_item_type(it.id={}, it.name={})",
1148            it.id,
1149            tcx.item_path_str(tcx.hir.local_def_id(it.id)));
1150     let _indenter = indenter();
1151     match it.node {
1152       // Consts can play a role in type-checking, so they are included here.
1153       hir::ItemStatic(..) |
1154       hir::ItemConst(..) => {
1155         tcx.typeck_tables_of(tcx.hir.local_def_id(it.id));
1156       }
1157       hir::ItemEnum(ref enum_definition, _) => {
1158         check_enum(tcx,
1159                    it.span,
1160                    &enum_definition.variants,
1161                    it.id);
1162       }
1163       hir::ItemFn(..) => {} // entirely within check_item_body
1164       hir::ItemImpl(.., ref impl_item_refs) => {
1165           debug!("ItemImpl {} with id {}", it.name, it.id);
1166           let impl_def_id = tcx.hir.local_def_id(it.id);
1167           if let Some(impl_trait_ref) = tcx.impl_trait_ref(impl_def_id) {
1168               check_impl_items_against_trait(tcx,
1169                                              it.span,
1170                                              impl_def_id,
1171                                              impl_trait_ref,
1172                                              impl_item_refs);
1173               let trait_def_id = impl_trait_ref.def_id;
1174               check_on_unimplemented(tcx, trait_def_id, it);
1175           }
1176       }
1177       hir::ItemTrait(..) => {
1178         let def_id = tcx.hir.local_def_id(it.id);
1179         check_on_unimplemented(tcx, def_id, it);
1180       }
1181       hir::ItemStruct(..) => {
1182         check_struct(tcx, it.id, it.span);
1183       }
1184       hir::ItemUnion(..) => {
1185         check_union(tcx, it.id, it.span);
1186       }
1187       hir::ItemTy(_, ref generics) => {
1188         let def_id = tcx.hir.local_def_id(it.id);
1189         let pty_ty = tcx.type_of(def_id);
1190         check_bounds_are_used(tcx, generics, pty_ty);
1191       }
1192       hir::ItemForeignMod(ref m) => {
1193         check_abi(tcx, it.span, m.abi);
1194
1195         if m.abi == Abi::RustIntrinsic {
1196             for item in &m.items {
1197                 intrinsic::check_intrinsic_type(tcx, item);
1198             }
1199         } else if m.abi == Abi::PlatformIntrinsic {
1200             for item in &m.items {
1201                 intrinsic::check_platform_intrinsic_type(tcx, item);
1202             }
1203         } else {
1204             for item in &m.items {
1205                 let generics = tcx.generics_of(tcx.hir.local_def_id(item.id));
1206                 if !generics.types.is_empty() {
1207                     let mut err = struct_span_err!(tcx.sess, item.span, E0044,
1208                         "foreign items may not have type parameters");
1209                     span_help!(&mut err, item.span,
1210                         "consider using specialization instead of \
1211                         type parameters");
1212                     err.emit();
1213                 }
1214
1215                 if let hir::ForeignItemFn(ref fn_decl, _, _) = item.node {
1216                     require_c_abi_if_variadic(tcx, fn_decl, m.abi, item.span);
1217                 }
1218             }
1219         }
1220       }
1221       _ => {/* nothing to do */ }
1222     }
1223 }
1224
1225 fn check_on_unimplemented<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1226                                     trait_def_id: DefId,
1227                                     item: &hir::Item) {
1228     let item_def_id = tcx.hir.local_def_id(item.id);
1229     // an error would be reported if this fails.
1230     let _ = traits::OnUnimplementedDirective::of_item(tcx, trait_def_id, item_def_id);
1231 }
1232
1233 fn report_forbidden_specialization<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1234                                              impl_item: &hir::ImplItem,
1235                                              parent_impl: DefId)
1236 {
1237     let mut err = struct_span_err!(
1238         tcx.sess, impl_item.span, E0520,
1239         "`{}` specializes an item from a parent `impl`, but \
1240          that item is not marked `default`",
1241         impl_item.name);
1242     err.span_label(impl_item.span, format!("cannot specialize default item `{}`",
1243                                             impl_item.name));
1244
1245     match tcx.span_of_impl(parent_impl) {
1246         Ok(span) => {
1247             err.span_label(span, "parent `impl` is here");
1248             err.note(&format!("to specialize, `{}` in the parent `impl` must be marked `default`",
1249                               impl_item.name));
1250         }
1251         Err(cname) => {
1252             err.note(&format!("parent implementation is in crate `{}`", cname));
1253         }
1254     }
1255
1256     err.emit();
1257 }
1258
1259 fn check_specialization_validity<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1260                                            trait_def: &ty::TraitDef,
1261                                            trait_item: &ty::AssociatedItem,
1262                                            impl_id: DefId,
1263                                            impl_item: &hir::ImplItem)
1264 {
1265     let ancestors = trait_def.ancestors(tcx, impl_id);
1266
1267     let kind = match impl_item.node {
1268         hir::ImplItemKind::Const(..) => ty::AssociatedKind::Const,
1269         hir::ImplItemKind::Method(..) => ty::AssociatedKind::Method,
1270         hir::ImplItemKind::Type(_) => ty::AssociatedKind::Type
1271     };
1272
1273     let parent = ancestors.defs(tcx, trait_item.name, kind, trait_def.def_id).skip(1).next()
1274         .map(|node_item| node_item.map(|parent| parent.defaultness));
1275
1276     if let Some(parent) = parent {
1277         if tcx.impl_item_is_final(&parent) {
1278             report_forbidden_specialization(tcx, impl_item, parent.node.def_id());
1279         }
1280     }
1281
1282 }
1283
1284 fn check_impl_items_against_trait<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1285                                             impl_span: Span,
1286                                             impl_id: DefId,
1287                                             impl_trait_ref: ty::TraitRef<'tcx>,
1288                                             impl_item_refs: &[hir::ImplItemRef]) {
1289     // If the trait reference itself is erroneous (so the compilation is going
1290     // to fail), skip checking the items here -- the `impl_item` table in `tcx`
1291     // isn't populated for such impls.
1292     if impl_trait_ref.references_error() { return; }
1293
1294     // Locate trait definition and items
1295     let trait_def = tcx.trait_def(impl_trait_ref.def_id);
1296     let mut overridden_associated_type = None;
1297
1298     let impl_items = || impl_item_refs.iter().map(|iiref| tcx.hir.impl_item(iiref.id));
1299
1300     // Check existing impl methods to see if they are both present in trait
1301     // and compatible with trait signature
1302     for impl_item in impl_items() {
1303         let ty_impl_item = tcx.associated_item(tcx.hir.local_def_id(impl_item.id));
1304         let ty_trait_item = tcx.associated_items(impl_trait_ref.def_id)
1305             .find(|ac| Namespace::from(&impl_item.node) == Namespace::from(ac.kind) &&
1306                          tcx.hygienic_eq(ty_impl_item.name, ac.name, impl_trait_ref.def_id))
1307             .or_else(|| {
1308                 // Not compatible, but needed for the error message
1309                 tcx.associated_items(impl_trait_ref.def_id)
1310                    .find(|ac| tcx.hygienic_eq(ty_impl_item.name, ac.name, impl_trait_ref.def_id))
1311             });
1312
1313         // Check that impl definition matches trait definition
1314         if let Some(ty_trait_item) = ty_trait_item {
1315             match impl_item.node {
1316                 hir::ImplItemKind::Const(..) => {
1317                     // Find associated const definition.
1318                     if ty_trait_item.kind == ty::AssociatedKind::Const {
1319                         compare_const_impl(tcx,
1320                                            &ty_impl_item,
1321                                            impl_item.span,
1322                                            &ty_trait_item,
1323                                            impl_trait_ref);
1324                     } else {
1325                          let mut err = struct_span_err!(tcx.sess, impl_item.span, E0323,
1326                                   "item `{}` is an associated const, \
1327                                   which doesn't match its trait `{}`",
1328                                   ty_impl_item.name,
1329                                   impl_trait_ref);
1330                          err.span_label(impl_item.span, "does not match trait");
1331                          // We can only get the spans from local trait definition
1332                          // Same for E0324 and E0325
1333                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1334                             err.span_label(trait_span, "item in trait");
1335                          }
1336                          err.emit()
1337                     }
1338                 }
1339                 hir::ImplItemKind::Method(..) => {
1340                     let trait_span = tcx.hir.span_if_local(ty_trait_item.def_id);
1341                     if ty_trait_item.kind == ty::AssociatedKind::Method {
1342                         let err_count = tcx.sess.err_count();
1343                         compare_impl_method(tcx,
1344                                             &ty_impl_item,
1345                                             impl_item.span,
1346                                             &ty_trait_item,
1347                                             impl_trait_ref,
1348                                             trait_span,
1349                                             true); // start with old-broken-mode
1350                         if err_count == tcx.sess.err_count() {
1351                             // old broken mode did not report an error. Try with the new mode.
1352                             compare_impl_method(tcx,
1353                                                 &ty_impl_item,
1354                                                 impl_item.span,
1355                                                 &ty_trait_item,
1356                                                 impl_trait_ref,
1357                                                 trait_span,
1358                                                 false); // use the new mode
1359                         }
1360                     } else {
1361                         let mut err = struct_span_err!(tcx.sess, impl_item.span, E0324,
1362                                   "item `{}` is an associated method, \
1363                                   which doesn't match its trait `{}`",
1364                                   ty_impl_item.name,
1365                                   impl_trait_ref);
1366                          err.span_label(impl_item.span, "does not match trait");
1367                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1368                             err.span_label(trait_span, "item in trait");
1369                          }
1370                          err.emit()
1371                     }
1372                 }
1373                 hir::ImplItemKind::Type(_) => {
1374                     if ty_trait_item.kind == ty::AssociatedKind::Type {
1375                         if ty_trait_item.defaultness.has_value() {
1376                             overridden_associated_type = Some(impl_item);
1377                         }
1378                     } else {
1379                         let mut err = struct_span_err!(tcx.sess, impl_item.span, E0325,
1380                                   "item `{}` is an associated type, \
1381                                   which doesn't match its trait `{}`",
1382                                   ty_impl_item.name,
1383                                   impl_trait_ref);
1384                          err.span_label(impl_item.span, "does not match trait");
1385                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1386                             err.span_label(trait_span, "item in trait");
1387                          }
1388                          err.emit()
1389                     }
1390                 }
1391             }
1392
1393             check_specialization_validity(tcx, trait_def, &ty_trait_item, impl_id, impl_item);
1394         }
1395     }
1396
1397     // Check for missing items from trait
1398     let mut missing_items = Vec::new();
1399     let mut invalidated_items = Vec::new();
1400     let associated_type_overridden = overridden_associated_type.is_some();
1401     for trait_item in tcx.associated_items(impl_trait_ref.def_id) {
1402         let is_implemented = trait_def.ancestors(tcx, impl_id)
1403             .defs(tcx, trait_item.name, trait_item.kind, impl_trait_ref.def_id)
1404             .next()
1405             .map(|node_item| !node_item.node.is_from_trait())
1406             .unwrap_or(false);
1407
1408         if !is_implemented {
1409             if !trait_item.defaultness.has_value() {
1410                 missing_items.push(trait_item);
1411             } else if associated_type_overridden {
1412                 invalidated_items.push(trait_item.name);
1413             }
1414         }
1415     }
1416
1417     if !missing_items.is_empty() {
1418         let mut err = struct_span_err!(tcx.sess, impl_span, E0046,
1419             "not all trait items implemented, missing: `{}`",
1420             missing_items.iter()
1421                   .map(|trait_item| trait_item.name.to_string())
1422                   .collect::<Vec<_>>().join("`, `"));
1423         err.span_label(impl_span, format!("missing `{}` in implementation",
1424                 missing_items.iter()
1425                     .map(|trait_item| trait_item.name.to_string())
1426                     .collect::<Vec<_>>().join("`, `")));
1427         for trait_item in missing_items {
1428             if let Some(span) = tcx.hir.span_if_local(trait_item.def_id) {
1429                 err.span_label(span, format!("`{}` from trait", trait_item.name));
1430             } else {
1431                 err.note_trait_signature(trait_item.name.to_string(),
1432                                          trait_item.signature(&tcx));
1433             }
1434         }
1435         err.emit();
1436     }
1437
1438     if !invalidated_items.is_empty() {
1439         let invalidator = overridden_associated_type.unwrap();
1440         span_err!(tcx.sess, invalidator.span, E0399,
1441                   "the following trait items need to be reimplemented \
1442                    as `{}` was overridden: `{}`",
1443                   invalidator.name,
1444                   invalidated_items.iter()
1445                                    .map(|name| name.to_string())
1446                                    .collect::<Vec<_>>().join("`, `"))
1447     }
1448 }
1449
1450 /// Checks whether a type can be represented in memory. In particular, it
1451 /// identifies types that contain themselves without indirection through a
1452 /// pointer, which would mean their size is unbounded.
1453 fn check_representable<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1454                                  sp: Span,
1455                                  item_def_id: DefId)
1456                                  -> bool {
1457     let rty = tcx.type_of(item_def_id);
1458
1459     // Check that it is possible to represent this type. This call identifies
1460     // (1) types that contain themselves and (2) types that contain a different
1461     // recursive type. It is only necessary to throw an error on those that
1462     // contain themselves. For case 2, there must be an inner type that will be
1463     // caught by case 1.
1464     match rty.is_representable(tcx, sp) {
1465         Representability::SelfRecursive(spans) => {
1466             let mut err = tcx.recursive_type_with_infinite_size_error(item_def_id);
1467             for span in spans {
1468                 err.span_label(span, "recursive without indirection");
1469             }
1470             err.emit();
1471             return false
1472         }
1473         Representability::Representable | Representability::ContainsRecursive => (),
1474     }
1475     return true
1476 }
1477
1478 pub fn check_simd<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span, def_id: DefId) {
1479     let t = tcx.type_of(def_id);
1480     match t.sty {
1481         ty::TyAdt(def, substs) if def.is_struct() => {
1482             let fields = &def.struct_variant().fields;
1483             if fields.is_empty() {
1484                 span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty");
1485                 return;
1486             }
1487             let e = fields[0].ty(tcx, substs);
1488             if !fields.iter().all(|f| f.ty(tcx, substs) == e) {
1489                 struct_span_err!(tcx.sess, sp, E0076, "SIMD vector should be homogeneous")
1490                                 .span_label(sp, "SIMD elements must have the same type")
1491                                 .emit();
1492                 return;
1493             }
1494             match e.sty {
1495                 ty::TyParam(_) => { /* struct<T>(T, T, T, T) is ok */ }
1496                 _ if e.is_machine()  => { /* struct(u8, u8, u8, u8) is ok */ }
1497                 _ => {
1498                     span_err!(tcx.sess, sp, E0077,
1499                               "SIMD vector element type should be machine type");
1500                     return;
1501                 }
1502             }
1503         }
1504         _ => ()
1505     }
1506 }
1507
1508 fn check_packed<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span, def_id: DefId) {
1509     if tcx.adt_def(def_id).repr.packed() {
1510         if tcx.adt_def(def_id).repr.align > 0 {
1511             struct_span_err!(tcx.sess, sp, E0587,
1512                              "type has conflicting packed and align representation hints").emit();
1513         }
1514         else if check_packed_inner(tcx, def_id, &mut Vec::new()) {
1515             struct_span_err!(tcx.sess, sp, E0588,
1516                 "packed type cannot transitively contain a `[repr(align)]` type").emit();
1517         }
1518     }
1519 }
1520
1521 fn check_packed_inner<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1522                                 def_id: DefId,
1523                                 stack: &mut Vec<DefId>) -> bool {
1524     let t = tcx.type_of(def_id);
1525     if stack.contains(&def_id) {
1526         debug!("check_packed_inner: {:?} is recursive", t);
1527         return false;
1528     }
1529     match t.sty {
1530         ty::TyAdt(def, substs) if def.is_struct() || def.is_union() => {
1531             if tcx.adt_def(def.did).repr.align > 0 {
1532                 return true;
1533             }
1534             // push struct def_id before checking fields
1535             stack.push(def_id);
1536             for field in &def.struct_variant().fields {
1537                 let f = field.ty(tcx, substs);
1538                 match f.sty {
1539                     ty::TyAdt(def, _) => {
1540                         if check_packed_inner(tcx, def.did, stack) {
1541                             return true;
1542                         }
1543                     }
1544                     _ => ()
1545                 }
1546             }
1547             // only need to pop if not early out
1548             stack.pop();
1549         }
1550         _ => ()
1551     }
1552     false
1553 }
1554
1555 #[allow(trivial_numeric_casts)]
1556 pub fn check_enum<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1557                             sp: Span,
1558                             vs: &'tcx [hir::Variant],
1559                             id: ast::NodeId) {
1560     let def_id = tcx.hir.local_def_id(id);
1561     let def = tcx.adt_def(def_id);
1562     def.destructor(tcx); // force the destructor to be evaluated
1563
1564     if vs.is_empty() && tcx.has_attr(def_id, "repr") {
1565         struct_span_err!(
1566             tcx.sess, sp, E0084,
1567             "unsupported representation for zero-variant enum")
1568             .span_label(sp, "unsupported enum representation")
1569             .emit();
1570     }
1571
1572     let repr_type_ty = def.repr.discr_type().to_ty(tcx);
1573     if repr_type_ty == tcx.types.i128 || repr_type_ty == tcx.types.u128 {
1574         if !tcx.sess.features.borrow().repr128 {
1575             emit_feature_err(&tcx.sess.parse_sess,
1576                              "repr128",
1577                              sp,
1578                              GateIssue::Language,
1579                              "repr with 128-bit type is unstable");
1580         }
1581     }
1582
1583     for v in vs {
1584         if let Some(e) = v.node.disr_expr {
1585             tcx.typeck_tables_of(tcx.hir.local_def_id(e.node_id));
1586         }
1587     }
1588
1589     let mut disr_vals: Vec<ConstInt> = Vec::new();
1590     for (discr, v) in def.discriminants(tcx).zip(vs) {
1591         // Check for duplicate discriminant values
1592         if let Some(i) = disr_vals.iter().position(|&x| x == discr) {
1593             let variant_i_node_id = tcx.hir.as_local_node_id(def.variants[i].did).unwrap();
1594             let variant_i = tcx.hir.expect_variant(variant_i_node_id);
1595             let i_span = match variant_i.node.disr_expr {
1596                 Some(expr) => tcx.hir.span(expr.node_id),
1597                 None => tcx.hir.span(variant_i_node_id)
1598             };
1599             let span = match v.node.disr_expr {
1600                 Some(expr) => tcx.hir.span(expr.node_id),
1601                 None => v.span
1602             };
1603             struct_span_err!(tcx.sess, span, E0081,
1604                              "discriminant value `{}` already exists", disr_vals[i])
1605                 .span_label(i_span, format!("first use of `{}`", disr_vals[i]))
1606                 .span_label(span , format!("enum already has `{}`", disr_vals[i]))
1607                 .emit();
1608         }
1609         disr_vals.push(discr);
1610     }
1611
1612     check_representable(tcx, sp, def_id);
1613 }
1614
1615 impl<'a, 'gcx, 'tcx> AstConv<'gcx, 'tcx> for FnCtxt<'a, 'gcx, 'tcx> {
1616     fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.tcx }
1617
1618     fn get_type_parameter_bounds(&self, _: Span, def_id: DefId)
1619                                  -> ty::GenericPredicates<'tcx>
1620     {
1621         let tcx = self.tcx;
1622         let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
1623         let item_id = tcx.hir.ty_param_owner(node_id);
1624         let item_def_id = tcx.hir.local_def_id(item_id);
1625         let generics = tcx.generics_of(item_def_id);
1626         let index = generics.type_param_to_index[&def_id.index];
1627         ty::GenericPredicates {
1628             parent: None,
1629             predicates: self.param_env.caller_bounds.iter().filter(|predicate| {
1630                 match **predicate {
1631                     ty::Predicate::Trait(ref data) => {
1632                         data.0.self_ty().is_param(index)
1633                     }
1634                     _ => false
1635                 }
1636             }).cloned().collect()
1637         }
1638     }
1639
1640     fn re_infer(&self, span: Span, def: Option<&ty::RegionParameterDef>)
1641                 -> Option<ty::Region<'tcx>> {
1642         let v = match def {
1643             Some(def) => infer::EarlyBoundRegion(span, def.name),
1644             None => infer::MiscVariable(span)
1645         };
1646         Some(self.next_region_var(v))
1647     }
1648
1649     fn ty_infer(&self, span: Span) -> Ty<'tcx> {
1650         self.next_ty_var(TypeVariableOrigin::TypeInference(span))
1651     }
1652
1653     fn ty_infer_for_def(&self,
1654                         ty_param_def: &ty::TypeParameterDef,
1655                         substs: &[Kind<'tcx>],
1656                         span: Span) -> Ty<'tcx> {
1657         self.type_var_for_def(span, ty_param_def, substs)
1658     }
1659
1660     fn projected_ty_from_poly_trait_ref(&self,
1661                                         span: Span,
1662                                         item_def_id: DefId,
1663                                         poly_trait_ref: ty::PolyTraitRef<'tcx>)
1664                                         -> Ty<'tcx>
1665     {
1666         let (trait_ref, _) =
1667             self.replace_late_bound_regions_with_fresh_var(
1668                 span,
1669                 infer::LateBoundRegionConversionTime::AssocTypeProjection(item_def_id),
1670                 &poly_trait_ref);
1671
1672         self.tcx().mk_projection(item_def_id, trait_ref.substs)
1673     }
1674
1675     fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
1676         if ty.has_escaping_regions() {
1677             ty // FIXME: normalization and escaping regions
1678         } else {
1679             self.normalize_associated_types_in(span, &ty)
1680         }
1681     }
1682
1683     fn set_tainted_by_errors(&self) {
1684         self.infcx.set_tainted_by_errors()
1685     }
1686
1687     fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, _span: Span) {
1688         self.write_ty(hir_id, ty)
1689     }
1690 }
1691
1692 /// Controls whether the arguments are tupled. This is used for the call
1693 /// operator.
1694 ///
1695 /// Tupling means that all call-side arguments are packed into a tuple and
1696 /// passed as a single parameter. For example, if tupling is enabled, this
1697 /// function:
1698 ///
1699 ///     fn f(x: (isize, isize))
1700 ///
1701 /// Can be called as:
1702 ///
1703 ///     f(1, 2);
1704 ///
1705 /// Instead of:
1706 ///
1707 ///     f((1, 2));
1708 #[derive(Clone, Eq, PartialEq)]
1709 enum TupleArgumentsFlag {
1710     DontTupleArguments,
1711     TupleArguments,
1712 }
1713
1714 impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
1715     pub fn new(inh: &'a Inherited<'a, 'gcx, 'tcx>,
1716                param_env: ty::ParamEnv<'tcx>,
1717                body_id: ast::NodeId)
1718                -> FnCtxt<'a, 'gcx, 'tcx> {
1719         FnCtxt {
1720             body_id,
1721             param_env,
1722             err_count_on_creation: inh.tcx.sess.err_count(),
1723             ret_coercion: None,
1724             yield_ty: None,
1725             ps: RefCell::new(UnsafetyState::function(hir::Unsafety::Normal,
1726                                                      ast::CRATE_NODE_ID)),
1727             diverges: Cell::new(Diverges::Maybe),
1728             has_errors: Cell::new(false),
1729             enclosing_breakables: RefCell::new(EnclosingBreakables {
1730                 stack: Vec::new(),
1731                 by_id: NodeMap(),
1732             }),
1733             inh,
1734         }
1735     }
1736
1737     pub fn sess(&self) -> &Session {
1738         &self.tcx.sess
1739     }
1740
1741     pub fn err_count_since_creation(&self) -> usize {
1742         self.tcx.sess.err_count() - self.err_count_on_creation
1743     }
1744
1745     /// Produce warning on the given node, if the current point in the
1746     /// function is unreachable, and there hasn't been another warning.
1747     fn warn_if_unreachable(&self, id: ast::NodeId, span: Span, kind: &str) {
1748         if self.diverges.get() == Diverges::Always {
1749             self.diverges.set(Diverges::WarnedAlways);
1750
1751             debug!("warn_if_unreachable: id={:?} span={:?} kind={}", id, span, kind);
1752
1753             self.tcx().lint_node(
1754                 lint::builtin::UNREACHABLE_CODE,
1755                 id, span,
1756                 &format!("unreachable {}", kind));
1757         }
1758     }
1759
1760     pub fn cause(&self,
1761                  span: Span,
1762                  code: ObligationCauseCode<'tcx>)
1763                  -> ObligationCause<'tcx> {
1764         ObligationCause::new(span, self.body_id, code)
1765     }
1766
1767     pub fn misc(&self, span: Span) -> ObligationCause<'tcx> {
1768         self.cause(span, ObligationCauseCode::MiscObligation)
1769     }
1770
1771     /// Resolves type variables in `ty` if possible. Unlike the infcx
1772     /// version (resolve_type_vars_if_possible), this version will
1773     /// also select obligations if it seems useful, in an effort
1774     /// to get more type information.
1775     fn resolve_type_vars_with_obligations(&self, mut ty: Ty<'tcx>) -> Ty<'tcx> {
1776         debug!("resolve_type_vars_with_obligations(ty={:?})", ty);
1777
1778         // No TyInfer()? Nothing needs doing.
1779         if !ty.has_infer_types() {
1780             debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1781             return ty;
1782         }
1783
1784         // If `ty` is a type variable, see whether we already know what it is.
1785         ty = self.resolve_type_vars_if_possible(&ty);
1786         if !ty.has_infer_types() {
1787             debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1788             return ty;
1789         }
1790
1791         // If not, try resolving pending obligations as much as
1792         // possible. This can help substantially when there are
1793         // indirect dependencies that don't seem worth tracking
1794         // precisely.
1795         self.select_obligations_where_possible();
1796         ty = self.resolve_type_vars_if_possible(&ty);
1797
1798         debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1799         ty
1800     }
1801
1802     fn record_deferred_call_resolution(&self,
1803                                        closure_def_id: DefId,
1804                                        r: DeferredCallResolution<'gcx, 'tcx>) {
1805         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
1806         deferred_call_resolutions.entry(closure_def_id).or_insert(vec![]).push(r);
1807     }
1808
1809     fn remove_deferred_call_resolutions(&self,
1810                                         closure_def_id: DefId)
1811                                         -> Vec<DeferredCallResolution<'gcx, 'tcx>>
1812     {
1813         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
1814         deferred_call_resolutions.remove(&closure_def_id).unwrap_or(vec![])
1815     }
1816
1817     pub fn tag(&self) -> String {
1818         let self_ptr: *const FnCtxt = self;
1819         format!("{:?}", self_ptr)
1820     }
1821
1822     pub fn local_ty(&self, span: Span, nid: ast::NodeId) -> Ty<'tcx> {
1823         match self.locals.borrow().get(&nid) {
1824             Some(&t) => t,
1825             None => {
1826                 span_bug!(span, "no type for local variable {}",
1827                           self.tcx.hir.node_to_string(nid));
1828             }
1829         }
1830     }
1831
1832     #[inline]
1833     pub fn write_ty(&self, id: hir::HirId, ty: Ty<'tcx>) {
1834         debug!("write_ty({:?}, {:?}) in fcx {}",
1835                id, self.resolve_type_vars_if_possible(&ty), self.tag());
1836         self.tables.borrow_mut().node_types_mut().insert(id, ty);
1837
1838         if ty.references_error() {
1839             self.has_errors.set(true);
1840             self.set_tainted_by_errors();
1841         }
1842     }
1843
1844     // The NodeId and the ItemLocalId must identify the same item. We just pass
1845     // both of them for consistency checking.
1846     pub fn write_method_call(&self,
1847                              hir_id: hir::HirId,
1848                              method: MethodCallee<'tcx>) {
1849         self.tables
1850             .borrow_mut()
1851             .type_dependent_defs_mut()
1852             .insert(hir_id, Def::Method(method.def_id));
1853         self.write_substs(hir_id, method.substs);
1854     }
1855
1856     pub fn write_substs(&self, node_id: hir::HirId, substs: &'tcx Substs<'tcx>) {
1857         if !substs.is_noop() {
1858             debug!("write_substs({:?}, {:?}) in fcx {}",
1859                    node_id,
1860                    substs,
1861                    self.tag());
1862
1863             self.tables.borrow_mut().node_substs_mut().insert(node_id, substs);
1864         }
1865     }
1866
1867     pub fn apply_adjustments(&self, expr: &hir::Expr, adj: Vec<Adjustment<'tcx>>) {
1868         debug!("apply_adjustments(expr={:?}, adj={:?})", expr, adj);
1869
1870         if adj.is_empty() {
1871             return;
1872         }
1873
1874         match self.tables.borrow_mut().adjustments_mut().entry(expr.hir_id) {
1875             Entry::Vacant(entry) => { entry.insert(adj); },
1876             Entry::Occupied(mut entry) => {
1877                 debug!(" - composing on top of {:?}", entry.get());
1878                 match (&entry.get()[..], &adj[..]) {
1879                     // Applying any adjustment on top of a NeverToAny
1880                     // is a valid NeverToAny adjustment, because it can't
1881                     // be reached.
1882                     (&[Adjustment { kind: Adjust::NeverToAny, .. }], _) => return,
1883                     (&[
1884                         Adjustment { kind: Adjust::Deref(_), .. },
1885                         Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(..)), .. },
1886                     ], &[
1887                         Adjustment { kind: Adjust::Deref(_), .. },
1888                         .. // Any following adjustments are allowed.
1889                     ]) => {
1890                         // A reborrow has no effect before a dereference.
1891                     }
1892                     // FIXME: currently we never try to compose autoderefs
1893                     // and ReifyFnPointer/UnsafeFnPointer, but we could.
1894                     _ =>
1895                         bug!("while adjusting {:?}, can't compose {:?} and {:?}",
1896                              expr, entry.get(), adj)
1897                 };
1898                 *entry.get_mut() = adj;
1899             }
1900         }
1901     }
1902
1903     /// Basically whenever we are converting from a type scheme into
1904     /// the fn body space, we always want to normalize associated
1905     /// types as well. This function combines the two.
1906     fn instantiate_type_scheme<T>(&self,
1907                                   span: Span,
1908                                   substs: &Substs<'tcx>,
1909                                   value: &T)
1910                                   -> T
1911         where T : TypeFoldable<'tcx>
1912     {
1913         let value = value.subst(self.tcx, substs);
1914         let result = self.normalize_associated_types_in(span, &value);
1915         debug!("instantiate_type_scheme(value={:?}, substs={:?}) = {:?}",
1916                value,
1917                substs,
1918                result);
1919         result
1920     }
1921
1922     /// As `instantiate_type_scheme`, but for the bounds found in a
1923     /// generic type scheme.
1924     fn instantiate_bounds(&self, span: Span, def_id: DefId, substs: &Substs<'tcx>)
1925                           -> ty::InstantiatedPredicates<'tcx> {
1926         let bounds = self.tcx.predicates_of(def_id);
1927         let result = bounds.instantiate(self.tcx, substs);
1928         let result = self.normalize_associated_types_in(span, &result);
1929         debug!("instantiate_bounds(bounds={:?}, substs={:?}) = {:?}",
1930                bounds,
1931                substs,
1932                result);
1933         result
1934     }
1935
1936     /// Replace all anonymized types with fresh inference variables
1937     /// and record them for writeback.
1938     fn instantiate_anon_types<T: TypeFoldable<'tcx>>(&self, value: &T) -> T {
1939         value.fold_with(&mut BottomUpFolder { tcx: self.tcx, fldop: |ty| {
1940             if let ty::TyAnon(def_id, substs) = ty.sty {
1941                 // Use the same type variable if the exact same TyAnon appears more
1942                 // than once in the return type (e.g. if it's passed to a type alias).
1943                 let id = self.tcx.hir.as_local_node_id(def_id).unwrap();
1944                 if let Some(ty_var) = self.anon_types.borrow().get(&id) {
1945                     return ty_var;
1946                 }
1947                 let span = self.tcx.def_span(def_id);
1948                 let ty_var = self.next_ty_var(TypeVariableOrigin::TypeInference(span));
1949                 self.anon_types.borrow_mut().insert(id, ty_var);
1950
1951                 let predicates_of = self.tcx.predicates_of(def_id);
1952                 let bounds = predicates_of.instantiate(self.tcx, substs);
1953
1954                 for predicate in bounds.predicates {
1955                     // Change the predicate to refer to the type variable,
1956                     // which will be the concrete type, instead of the TyAnon.
1957                     // This also instantiates nested `impl Trait`.
1958                     let predicate = self.instantiate_anon_types(&predicate);
1959
1960                     // Require that the predicate holds for the concrete type.
1961                     let cause = traits::ObligationCause::new(span, self.body_id,
1962                                                              traits::SizedReturnType);
1963                     self.register_predicate(traits::Obligation::new(cause,
1964                                                                     self.param_env,
1965                                                                     predicate));
1966                 }
1967
1968                 ty_var
1969             } else {
1970                 ty
1971             }
1972         }})
1973     }
1974
1975     fn normalize_associated_types_in<T>(&self, span: Span, value: &T) -> T
1976         where T : TypeFoldable<'tcx>
1977     {
1978         self.inh.normalize_associated_types_in(span, self.body_id, self.param_env, value)
1979     }
1980
1981     fn normalize_associated_types_in_as_infer_ok<T>(&self, span: Span, value: &T)
1982                                                     -> InferOk<'tcx, T>
1983         where T : TypeFoldable<'tcx>
1984     {
1985         self.inh.normalize_associated_types_in_as_infer_ok(span,
1986                                                            self.body_id,
1987                                                            self.param_env,
1988                                                            value)
1989     }
1990
1991     pub fn require_type_meets(&self,
1992                               ty: Ty<'tcx>,
1993                               span: Span,
1994                               code: traits::ObligationCauseCode<'tcx>,
1995                               def_id: DefId)
1996     {
1997         self.register_bound(
1998             ty,
1999             def_id,
2000             traits::ObligationCause::new(span, self.body_id, code));
2001     }
2002
2003     pub fn require_type_is_sized(&self,
2004                                  ty: Ty<'tcx>,
2005                                  span: Span,
2006                                  code: traits::ObligationCauseCode<'tcx>)
2007     {
2008         let lang_item = self.tcx.require_lang_item(lang_items::SizedTraitLangItem);
2009         self.require_type_meets(ty, span, code, lang_item);
2010     }
2011
2012     pub fn register_bound(&self,
2013                           ty: Ty<'tcx>,
2014                           def_id: DefId,
2015                           cause: traits::ObligationCause<'tcx>)
2016     {
2017         self.fulfillment_cx.borrow_mut()
2018                            .register_bound(self, self.param_env, ty, def_id, cause);
2019     }
2020
2021     pub fn to_ty(&self, ast_t: &hir::Ty) -> Ty<'tcx> {
2022         let t = AstConv::ast_ty_to_ty(self, ast_t);
2023         self.register_wf_obligation(t, ast_t.span, traits::MiscObligation);
2024         t
2025     }
2026
2027     pub fn node_ty(&self, id: hir::HirId) -> Ty<'tcx> {
2028         match self.tables.borrow().node_types().get(id) {
2029             Some(&t) => t,
2030             None if self.is_tainted_by_errors() => self.tcx.types.err,
2031             None => {
2032                 let node_id = self.tcx.hir.definitions().find_node_for_hir_id(id);
2033                 bug!("no type for node {}: {} in fcx {}",
2034                      node_id, self.tcx.hir.node_to_string(node_id),
2035                      self.tag());
2036             }
2037         }
2038     }
2039
2040     /// Registers an obligation for checking later, during regionck, that the type `ty` must
2041     /// outlive the region `r`.
2042     pub fn register_wf_obligation(&self,
2043                                   ty: Ty<'tcx>,
2044                                   span: Span,
2045                                   code: traits::ObligationCauseCode<'tcx>)
2046     {
2047         // WF obligations never themselves fail, so no real need to give a detailed cause:
2048         let cause = traits::ObligationCause::new(span, self.body_id, code);
2049         self.register_predicate(traits::Obligation::new(cause,
2050                                                         self.param_env,
2051                                                         ty::Predicate::WellFormed(ty)));
2052     }
2053
2054     /// Registers obligations that all types appearing in `substs` are well-formed.
2055     pub fn add_wf_bounds(&self, substs: &Substs<'tcx>, expr: &hir::Expr)
2056     {
2057         for ty in substs.types() {
2058             self.register_wf_obligation(ty, expr.span, traits::MiscObligation);
2059         }
2060     }
2061
2062     /// Given a fully substituted set of bounds (`generic_bounds`), and the values with which each
2063     /// type/region parameter was instantiated (`substs`), creates and registers suitable
2064     /// trait/region obligations.
2065     ///
2066     /// For example, if there is a function:
2067     ///
2068     /// ```
2069     /// fn foo<'a,T:'a>(...)
2070     /// ```
2071     ///
2072     /// and a reference:
2073     ///
2074     /// ```
2075     /// let f = foo;
2076     /// ```
2077     ///
2078     /// Then we will create a fresh region variable `'$0` and a fresh type variable `$1` for `'a`
2079     /// and `T`. This routine will add a region obligation `$1:'$0` and register it locally.
2080     pub fn add_obligations_for_parameters(&self,
2081                                           cause: traits::ObligationCause<'tcx>,
2082                                           predicates: &ty::InstantiatedPredicates<'tcx>)
2083     {
2084         assert!(!predicates.has_escaping_regions());
2085
2086         debug!("add_obligations_for_parameters(predicates={:?})",
2087                predicates);
2088
2089         for obligation in traits::predicates_for_generics(cause, self.param_env, predicates) {
2090             self.register_predicate(obligation);
2091         }
2092     }
2093
2094     // FIXME(arielb1): use this instead of field.ty everywhere
2095     // Only for fields! Returns <none> for methods>
2096     // Indifferent to privacy flags
2097     pub fn field_ty(&self,
2098                     span: Span,
2099                     field: &'tcx ty::FieldDef,
2100                     substs: &Substs<'tcx>)
2101                     -> Ty<'tcx>
2102     {
2103         self.normalize_associated_types_in(span,
2104                                            &field.ty(self.tcx, substs))
2105     }
2106
2107     fn check_casts(&self) {
2108         let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
2109         for cast in deferred_cast_checks.drain(..) {
2110             cast.check(self);
2111         }
2112     }
2113
2114     fn resolve_generator_interiors(&self, def_id: DefId) {
2115         let mut deferred_generator_interiors = self.deferred_generator_interiors.borrow_mut();
2116         for (body_id, witness) in deferred_generator_interiors.drain(..) {
2117             generator_interior::resolve_interior(self, def_id, body_id, witness);
2118         }
2119     }
2120
2121     /// Apply "fallbacks" to some types
2122     /// unconstrained types get replaced with ! or  () (depending on whether
2123     /// feature(never_type) is enabled), unconstrained ints with i32, and
2124     /// unconstrained floats with f64.
2125     fn default_type_parameters(&self) {
2126         use rustc::ty::error::UnconstrainedNumeric::Neither;
2127         use rustc::ty::error::UnconstrainedNumeric::{UnconstrainedInt, UnconstrainedFloat};
2128
2129         // Defaulting inference variables becomes very dubious if we have
2130         // encountered type-checking errors. Therefore, if we think we saw
2131         // some errors in this function, just resolve all uninstanted type
2132         // varibles to TyError.
2133         if self.is_tainted_by_errors() {
2134             for ty in &self.unsolved_variables() {
2135                 if let ty::TyInfer(_) = self.shallow_resolve(ty).sty {
2136                     debug!("default_type_parameters: defaulting `{:?}` to error", ty);
2137                     self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx().types.err);
2138                 }
2139             }
2140             return;
2141         }
2142
2143         for ty in &self.unsolved_variables() {
2144             let resolved = self.resolve_type_vars_if_possible(ty);
2145             if self.type_var_diverges(resolved) {
2146                 debug!("default_type_parameters: defaulting `{:?}` to `!` because it diverges",
2147                        resolved);
2148                 self.demand_eqtype(syntax_pos::DUMMY_SP, *ty,
2149                                    self.tcx.mk_diverging_default());
2150             } else {
2151                 match self.type_is_unconstrained_numeric(resolved) {
2152                     UnconstrainedInt => {
2153                         debug!("default_type_parameters: defaulting `{:?}` to `i32`",
2154                                resolved);
2155                         self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx.types.i32)
2156                     },
2157                     UnconstrainedFloat => {
2158                         debug!("default_type_parameters: defaulting `{:?}` to `f32`",
2159                                resolved);
2160                         self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx.types.f64)
2161                     }
2162                     Neither => { }
2163                 }
2164             }
2165         }
2166     }
2167
2168     // Implements type inference fallback algorithm
2169     fn select_all_obligations_and_apply_defaults(&self) {
2170         self.select_obligations_where_possible();
2171         self.default_type_parameters();
2172         self.select_obligations_where_possible();
2173     }
2174
2175     fn select_all_obligations_or_error(&self) {
2176         debug!("select_all_obligations_or_error");
2177
2178         // upvar inference should have ensured that all deferred call
2179         // resolutions are handled by now.
2180         assert!(self.deferred_call_resolutions.borrow().is_empty());
2181
2182         self.select_all_obligations_and_apply_defaults();
2183
2184         let mut fulfillment_cx = self.fulfillment_cx.borrow_mut();
2185
2186         match fulfillment_cx.select_all_or_error(self) {
2187             Ok(()) => { }
2188             Err(errors) => { self.report_fulfillment_errors(&errors, self.inh.body_id); }
2189         }
2190     }
2191
2192     /// Select as many obligations as we can at present.
2193     fn select_obligations_where_possible(&self) {
2194         match self.fulfillment_cx.borrow_mut().select_where_possible(self) {
2195             Ok(()) => { }
2196             Err(errors) => { self.report_fulfillment_errors(&errors, self.inh.body_id); }
2197         }
2198     }
2199
2200     /// For the overloaded lvalue expressions (`*x`, `x[3]`), the trait
2201     /// returns a type of `&T`, but the actual type we assign to the
2202     /// *expression* is `T`. So this function just peels off the return
2203     /// type by one layer to yield `T`.
2204     fn make_overloaded_lvalue_return_type(&self,
2205                                           method: MethodCallee<'tcx>)
2206                                           -> ty::TypeAndMut<'tcx>
2207     {
2208         // extract method return type, which will be &T;
2209         let ret_ty = method.sig.output();
2210
2211         // method returns &T, but the type as visible to user is T, so deref
2212         ret_ty.builtin_deref(true, NoPreference).unwrap()
2213     }
2214
2215     fn lookup_indexing(&self,
2216                        expr: &hir::Expr,
2217                        base_expr: &'gcx hir::Expr,
2218                        base_ty: Ty<'tcx>,
2219                        idx_ty: Ty<'tcx>,
2220                        lvalue_pref: LvaluePreference)
2221                        -> Option<(/*index type*/ Ty<'tcx>, /*element type*/ Ty<'tcx>)>
2222     {
2223         // FIXME(#18741) -- this is almost but not quite the same as the
2224         // autoderef that normal method probing does. They could likely be
2225         // consolidated.
2226
2227         let mut autoderef = self.autoderef(base_expr.span, base_ty);
2228         let mut result = None;
2229         while result.is_none() && autoderef.next().is_some() {
2230             result = self.try_index_step(expr, base_expr, &autoderef, lvalue_pref, idx_ty);
2231         }
2232         autoderef.finalize();
2233         result
2234     }
2235
2236     /// To type-check `base_expr[index_expr]`, we progressively autoderef
2237     /// (and otherwise adjust) `base_expr`, looking for a type which either
2238     /// supports builtin indexing or overloaded indexing.
2239     /// This loop implements one step in that search; the autoderef loop
2240     /// is implemented by `lookup_indexing`.
2241     fn try_index_step(&self,
2242                       expr: &hir::Expr,
2243                       base_expr: &hir::Expr,
2244                       autoderef: &Autoderef<'a, 'gcx, 'tcx>,
2245                       lvalue_pref: LvaluePreference,
2246                       index_ty: Ty<'tcx>)
2247                       -> Option<(/*index type*/ Ty<'tcx>, /*element type*/ Ty<'tcx>)>
2248     {
2249         let adjusted_ty = autoderef.unambiguous_final_ty();
2250         debug!("try_index_step(expr={:?}, base_expr={:?}, adjusted_ty={:?}, \
2251                                index_ty={:?})",
2252                expr,
2253                base_expr,
2254                adjusted_ty,
2255                index_ty);
2256
2257         // First, try built-in indexing.
2258         match (adjusted_ty.builtin_index(), &index_ty.sty) {
2259             (Some(ty), &ty::TyUint(ast::UintTy::Us)) | (Some(ty), &ty::TyInfer(ty::IntVar(_))) => {
2260                 debug!("try_index_step: success, using built-in indexing");
2261                 let adjustments = autoderef.adjust_steps(lvalue_pref);
2262                 self.apply_adjustments(base_expr, adjustments);
2263                 return Some((self.tcx.types.usize, ty));
2264             }
2265             _ => {}
2266         }
2267
2268         for &unsize in &[false, true] {
2269             let mut self_ty = adjusted_ty;
2270             if unsize {
2271                 // We only unsize arrays here.
2272                 if let ty::TyArray(element_ty, _) = adjusted_ty.sty {
2273                     self_ty = self.tcx.mk_slice(element_ty);
2274                 } else {
2275                     continue;
2276                 }
2277             }
2278
2279             // If some lookup succeeds, write callee into table and extract index/element
2280             // type from the method signature.
2281             // If some lookup succeeded, install method in table
2282             let input_ty = self.next_ty_var(TypeVariableOrigin::AutoDeref(base_expr.span));
2283             let method = self.try_overloaded_lvalue_op(
2284                 expr.span, self_ty, &[input_ty], lvalue_pref, LvalueOp::Index);
2285
2286             let result = method.map(|ok| {
2287                 debug!("try_index_step: success, using overloaded indexing");
2288                 let method = self.register_infer_ok_obligations(ok);
2289
2290                 let mut adjustments = autoderef.adjust_steps(lvalue_pref);
2291                 if let ty::TyRef(region, mt) = method.sig.inputs()[0].sty {
2292                     adjustments.push(Adjustment {
2293                         kind: Adjust::Borrow(AutoBorrow::Ref(region, mt.mutbl)),
2294                         target: self.tcx.mk_ref(region, ty::TypeAndMut {
2295                             mutbl: mt.mutbl,
2296                             ty: adjusted_ty
2297                         })
2298                     });
2299                 }
2300                 if unsize {
2301                     adjustments.push(Adjustment {
2302                         kind: Adjust::Unsize,
2303                         target: method.sig.inputs()[0]
2304                     });
2305                 }
2306                 self.apply_adjustments(base_expr, adjustments);
2307
2308                 self.write_method_call(expr.hir_id, method);
2309                 (input_ty, self.make_overloaded_lvalue_return_type(method).ty)
2310             });
2311             if result.is_some() {
2312                 return result;
2313             }
2314         }
2315
2316         None
2317     }
2318
2319     fn resolve_lvalue_op(&self, op: LvalueOp, is_mut: bool) -> (Option<DefId>, Symbol) {
2320         let (tr, name) = match (op, is_mut) {
2321             (LvalueOp::Deref, false) =>
2322                 (self.tcx.lang_items().deref_trait(), "deref"),
2323             (LvalueOp::Deref, true) =>
2324                 (self.tcx.lang_items().deref_mut_trait(), "deref_mut"),
2325             (LvalueOp::Index, false) =>
2326                 (self.tcx.lang_items().index_trait(), "index"),
2327             (LvalueOp::Index, true) =>
2328                 (self.tcx.lang_items().index_mut_trait(), "index_mut"),
2329         };
2330         (tr, Symbol::intern(name))
2331     }
2332
2333     fn try_overloaded_lvalue_op(&self,
2334                                 span: Span,
2335                                 base_ty: Ty<'tcx>,
2336                                 arg_tys: &[Ty<'tcx>],
2337                                 lvalue_pref: LvaluePreference,
2338                                 op: LvalueOp)
2339                                 -> Option<InferOk<'tcx, MethodCallee<'tcx>>>
2340     {
2341         debug!("try_overloaded_lvalue_op({:?},{:?},{:?},{:?})",
2342                span,
2343                base_ty,
2344                lvalue_pref,
2345                op);
2346
2347         // Try Mut first, if preferred.
2348         let (mut_tr, mut_op) = self.resolve_lvalue_op(op, true);
2349         let method = match (lvalue_pref, mut_tr) {
2350             (PreferMutLvalue, Some(trait_did)) => {
2351                 self.lookup_method_in_trait(span, mut_op, trait_did, base_ty, Some(arg_tys))
2352             }
2353             _ => None,
2354         };
2355
2356         // Otherwise, fall back to the immutable version.
2357         let (imm_tr, imm_op) = self.resolve_lvalue_op(op, false);
2358         let method = match (method, imm_tr) {
2359             (None, Some(trait_did)) => {
2360                 self.lookup_method_in_trait(span, imm_op, trait_did, base_ty, Some(arg_tys))
2361             }
2362             (method, _) => method,
2363         };
2364
2365         method
2366     }
2367
2368     fn check_method_argument_types(&self,
2369                                    sp: Span,
2370                                    expr_sp: Span,
2371                                    method: Result<MethodCallee<'tcx>, ()>,
2372                                    args_no_rcvr: &'gcx [hir::Expr],
2373                                    tuple_arguments: TupleArgumentsFlag,
2374                                    expected: Expectation<'tcx>)
2375                                    -> Ty<'tcx> {
2376         let has_error = match method {
2377             Ok(method) => {
2378                 method.substs.references_error() || method.sig.references_error()
2379             }
2380             Err(_) => true
2381         };
2382         if has_error {
2383             let err_inputs = self.err_args(args_no_rcvr.len());
2384
2385             let err_inputs = match tuple_arguments {
2386                 DontTupleArguments => err_inputs,
2387                 TupleArguments => vec![self.tcx.intern_tup(&err_inputs[..], false)],
2388             };
2389
2390             self.check_argument_types(sp, expr_sp, &err_inputs[..], &[], args_no_rcvr,
2391                                       false, tuple_arguments, None);
2392             return self.tcx.types.err;
2393         }
2394
2395         let method = method.unwrap();
2396         // HACK(eddyb) ignore self in the definition (see above).
2397         let expected_arg_tys = self.expected_inputs_for_expected_output(
2398             sp,
2399             expected,
2400             method.sig.output(),
2401             &method.sig.inputs()[1..]
2402         );
2403         self.check_argument_types(sp, expr_sp, &method.sig.inputs()[1..], &expected_arg_tys[..],
2404                                   args_no_rcvr, method.sig.variadic, tuple_arguments,
2405                                   self.tcx.hir.span_if_local(method.def_id));
2406         method.sig.output()
2407     }
2408
2409     /// Generic function that factors out common logic from function calls,
2410     /// method calls and overloaded operators.
2411     fn check_argument_types(&self,
2412                             sp: Span,
2413                             expr_sp: Span,
2414                             fn_inputs: &[Ty<'tcx>],
2415                             expected_arg_tys: &[Ty<'tcx>],
2416                             args: &'gcx [hir::Expr],
2417                             variadic: bool,
2418                             tuple_arguments: TupleArgumentsFlag,
2419                             def_span: Option<Span>) {
2420         let tcx = self.tcx;
2421
2422         // Grab the argument types, supplying fresh type variables
2423         // if the wrong number of arguments were supplied
2424         let supplied_arg_count = if tuple_arguments == DontTupleArguments {
2425             args.len()
2426         } else {
2427             1
2428         };
2429
2430         // All the input types from the fn signature must outlive the call
2431         // so as to validate implied bounds.
2432         for &fn_input_ty in fn_inputs {
2433             self.register_wf_obligation(fn_input_ty, sp, traits::MiscObligation);
2434         }
2435
2436         let mut expected_arg_tys = expected_arg_tys;
2437         let expected_arg_count = fn_inputs.len();
2438
2439         let sp_args = if args.len() > 0 {
2440             let (first, args) = args.split_at(1);
2441             let mut sp_tmp = first[0].span;
2442             for arg in args {
2443                 let sp_opt = self.sess().codemap().merge_spans(sp_tmp, arg.span);
2444                 if ! sp_opt.is_some() {
2445                     break;
2446                 }
2447                 sp_tmp = sp_opt.unwrap();
2448             };
2449             sp_tmp
2450         } else {
2451             sp
2452         };
2453
2454         fn parameter_count_error<'tcx>(sess: &Session,
2455                                        sp: Span,
2456                                        expr_sp: Span,
2457                                        expected_count: usize,
2458                                        arg_count: usize,
2459                                        error_code: &str,
2460                                        variadic: bool,
2461                                        def_span: Option<Span>,
2462                                        sugg_unit: bool) {
2463             let mut err = sess.struct_span_err_with_code(sp,
2464                 &format!("this function takes {}{} parameter{} but {} parameter{} supplied",
2465                     if variadic {"at least "} else {""},
2466                     expected_count,
2467                     if expected_count == 1 {""} else {"s"},
2468                     arg_count,
2469                     if arg_count == 1 {" was"} else {"s were"}),
2470                 error_code);
2471
2472             if let Some(def_s) = def_span {
2473                 err.span_label(def_s, "defined here");
2474             }
2475             if sugg_unit {
2476                 let sugg_span = expr_sp.end_point();
2477                 // remove closing `)` from the span
2478                 let sugg_span = sugg_span.with_hi(sugg_span.lo());
2479                 err.span_suggestion(
2480                     sugg_span,
2481                     "expected the unit value `()`; create it with empty parentheses",
2482                     String::from("()"));
2483             } else {
2484                 err.span_label(sp, format!("expected {}{} parameter{}",
2485                                             if variadic {"at least "} else {""},
2486                                             expected_count,
2487                                             if expected_count == 1 {""} else {"s"}));
2488             }
2489             err.emit();
2490         }
2491
2492         let formal_tys = if tuple_arguments == TupleArguments {
2493             let tuple_type = self.structurally_resolved_type(sp, fn_inputs[0]);
2494             match tuple_type.sty {
2495                 ty::TyTuple(arg_types, _) if arg_types.len() != args.len() => {
2496                     parameter_count_error(tcx.sess, sp_args, expr_sp, arg_types.len(), args.len(),
2497                                           "E0057", false, def_span, false);
2498                     expected_arg_tys = &[];
2499                     self.err_args(args.len())
2500                 }
2501                 ty::TyTuple(arg_types, _) => {
2502                     expected_arg_tys = match expected_arg_tys.get(0) {
2503                         Some(&ty) => match ty.sty {
2504                             ty::TyTuple(ref tys, _) => &tys,
2505                             _ => &[]
2506                         },
2507                         None => &[]
2508                     };
2509                     arg_types.to_vec()
2510                 }
2511                 _ => {
2512                     span_err!(tcx.sess, sp, E0059,
2513                         "cannot use call notation; the first type parameter \
2514                          for the function trait is neither a tuple nor unit");
2515                     expected_arg_tys = &[];
2516                     self.err_args(args.len())
2517                 }
2518             }
2519         } else if expected_arg_count == supplied_arg_count {
2520             fn_inputs.to_vec()
2521         } else if variadic {
2522             if supplied_arg_count >= expected_arg_count {
2523                 fn_inputs.to_vec()
2524             } else {
2525                 parameter_count_error(tcx.sess, sp_args, expr_sp, expected_arg_count,
2526                                       supplied_arg_count, "E0060", true, def_span, false);
2527                 expected_arg_tys = &[];
2528                 self.err_args(supplied_arg_count)
2529             }
2530         } else {
2531             // is the missing argument of type `()`?
2532             let sugg_unit = if expected_arg_tys.len() == 1 && supplied_arg_count == 0 {
2533                 self.resolve_type_vars_if_possible(&expected_arg_tys[0]).is_nil()
2534             } else if fn_inputs.len() == 1 && supplied_arg_count == 0 {
2535                 self.resolve_type_vars_if_possible(&fn_inputs[0]).is_nil()
2536             } else {
2537                 false
2538             };
2539             parameter_count_error(tcx.sess, sp_args, expr_sp, expected_arg_count,
2540                                   supplied_arg_count, "E0061", false, def_span, sugg_unit);
2541             expected_arg_tys = &[];
2542             self.err_args(supplied_arg_count)
2543         };
2544
2545         debug!("check_argument_types: formal_tys={:?}",
2546                formal_tys.iter().map(|t| self.ty_to_string(*t)).collect::<Vec<String>>());
2547
2548         // Check the arguments.
2549         // We do this in a pretty awful way: first we typecheck any arguments
2550         // that are not closures, then we typecheck the closures. This is so
2551         // that we have more information about the types of arguments when we
2552         // typecheck the functions. This isn't really the right way to do this.
2553         for &check_closures in &[false, true] {
2554             debug!("check_closures={}", check_closures);
2555
2556             // More awful hacks: before we check argument types, try to do
2557             // an "opportunistic" vtable resolution of any trait bounds on
2558             // the call. This helps coercions.
2559             if check_closures {
2560                 self.select_obligations_where_possible();
2561             }
2562
2563             // For variadic functions, we don't have a declared type for all of
2564             // the arguments hence we only do our usual type checking with
2565             // the arguments who's types we do know.
2566             let t = if variadic {
2567                 expected_arg_count
2568             } else if tuple_arguments == TupleArguments {
2569                 args.len()
2570             } else {
2571                 supplied_arg_count
2572             };
2573             for (i, arg) in args.iter().take(t).enumerate() {
2574                 // Warn only for the first loop (the "no closures" one).
2575                 // Closure arguments themselves can't be diverging, but
2576                 // a previous argument can, e.g. `foo(panic!(), || {})`.
2577                 if !check_closures {
2578                     self.warn_if_unreachable(arg.id, arg.span, "expression");
2579                 }
2580
2581                 let is_closure = match arg.node {
2582                     hir::ExprClosure(..) => true,
2583                     _ => false
2584                 };
2585
2586                 if is_closure != check_closures {
2587                     continue;
2588                 }
2589
2590                 debug!("checking the argument");
2591                 let formal_ty = formal_tys[i];
2592
2593                 // The special-cased logic below has three functions:
2594                 // 1. Provide as good of an expected type as possible.
2595                 let expected = expected_arg_tys.get(i).map(|&ty| {
2596                     Expectation::rvalue_hint(self, ty)
2597                 });
2598
2599                 let checked_ty = self.check_expr_with_expectation(
2600                     &arg,
2601                     expected.unwrap_or(ExpectHasType(formal_ty)));
2602
2603                 // 2. Coerce to the most detailed type that could be coerced
2604                 //    to, which is `expected_ty` if `rvalue_hint` returns an
2605                 //    `ExpectHasType(expected_ty)`, or the `formal_ty` otherwise.
2606                 let coerce_ty = expected.and_then(|e| e.only_has_type(self));
2607                 self.demand_coerce(&arg, checked_ty, coerce_ty.unwrap_or(formal_ty));
2608
2609                 // 3. Relate the expected type and the formal one,
2610                 //    if the expected type was used for the coercion.
2611                 coerce_ty.map(|ty| self.demand_suptype(arg.span, formal_ty, ty));
2612             }
2613         }
2614
2615         // We also need to make sure we at least write the ty of the other
2616         // arguments which we skipped above.
2617         if variadic {
2618             fn variadic_error<'tcx>(s: &Session, span: Span, t: Ty<'tcx>, cast_ty: &str) {
2619                 type_error_struct!(s, span, t, E0617,
2620                                    "can't pass `{}` to variadic function, cast to `{}`",
2621                                    t, cast_ty).emit();
2622             }
2623
2624             for arg in args.iter().skip(expected_arg_count) {
2625                 let arg_ty = self.check_expr(&arg);
2626
2627                 // There are a few types which get autopromoted when passed via varargs
2628                 // in C but we just error out instead and require explicit casts.
2629                 let arg_ty = self.structurally_resolved_type(arg.span, arg_ty);
2630                 match arg_ty.sty {
2631                     ty::TyFloat(ast::FloatTy::F32) => {
2632                         variadic_error(tcx.sess, arg.span, arg_ty, "c_double");
2633                     }
2634                     ty::TyInt(ast::IntTy::I8) | ty::TyInt(ast::IntTy::I16) | ty::TyBool => {
2635                         variadic_error(tcx.sess, arg.span, arg_ty, "c_int");
2636                     }
2637                     ty::TyUint(ast::UintTy::U8) | ty::TyUint(ast::UintTy::U16) => {
2638                         variadic_error(tcx.sess, arg.span, arg_ty, "c_uint");
2639                     }
2640                     ty::TyFnDef(..) => {
2641                         let ptr_ty = self.tcx.mk_fn_ptr(arg_ty.fn_sig(self.tcx));
2642                         let ptr_ty = self.resolve_type_vars_if_possible(&ptr_ty);
2643                         variadic_error(tcx.sess, arg.span, arg_ty, &format!("{}", ptr_ty));
2644                     }
2645                     _ => {}
2646                 }
2647             }
2648         }
2649     }
2650
2651     fn err_args(&self, len: usize) -> Vec<Ty<'tcx>> {
2652         (0..len).map(|_| self.tcx.types.err).collect()
2653     }
2654
2655     // AST fragment checking
2656     fn check_lit(&self,
2657                  lit: &ast::Lit,
2658                  expected: Expectation<'tcx>)
2659                  -> Ty<'tcx>
2660     {
2661         let tcx = self.tcx;
2662
2663         match lit.node {
2664             ast::LitKind::Str(..) => tcx.mk_static_str(),
2665             ast::LitKind::ByteStr(ref v) => {
2666                 tcx.mk_imm_ref(tcx.types.re_static,
2667                                 tcx.mk_array(tcx.types.u8, v.len() as u64))
2668             }
2669             ast::LitKind::Byte(_) => tcx.types.u8,
2670             ast::LitKind::Char(_) => tcx.types.char,
2671             ast::LitKind::Int(_, ast::LitIntType::Signed(t)) => tcx.mk_mach_int(t),
2672             ast::LitKind::Int(_, ast::LitIntType::Unsigned(t)) => tcx.mk_mach_uint(t),
2673             ast::LitKind::Int(_, ast::LitIntType::Unsuffixed) => {
2674                 let opt_ty = expected.to_option(self).and_then(|ty| {
2675                     match ty.sty {
2676                         ty::TyInt(_) | ty::TyUint(_) => Some(ty),
2677                         ty::TyChar => Some(tcx.types.u8),
2678                         ty::TyRawPtr(..) => Some(tcx.types.usize),
2679                         ty::TyFnDef(..) | ty::TyFnPtr(_) => Some(tcx.types.usize),
2680                         _ => None
2681                     }
2682                 });
2683                 opt_ty.unwrap_or_else(
2684                     || tcx.mk_int_var(self.next_int_var_id()))
2685             }
2686             ast::LitKind::Float(_, t) => tcx.mk_mach_float(t),
2687             ast::LitKind::FloatUnsuffixed(_) => {
2688                 let opt_ty = expected.to_option(self).and_then(|ty| {
2689                     match ty.sty {
2690                         ty::TyFloat(_) => Some(ty),
2691                         _ => None
2692                     }
2693                 });
2694                 opt_ty.unwrap_or_else(
2695                     || tcx.mk_float_var(self.next_float_var_id()))
2696             }
2697             ast::LitKind::Bool(_) => tcx.types.bool
2698         }
2699     }
2700
2701     fn check_expr_eq_type(&self,
2702                           expr: &'gcx hir::Expr,
2703                           expected: Ty<'tcx>) {
2704         let ty = self.check_expr_with_hint(expr, expected);
2705         self.demand_eqtype(expr.span, expected, ty);
2706     }
2707
2708     pub fn check_expr_has_type_or_error(&self,
2709                                         expr: &'gcx hir::Expr,
2710                                         expected: Ty<'tcx>) -> Ty<'tcx> {
2711         self.check_expr_meets_expectation_or_error(expr, ExpectHasType(expected))
2712     }
2713
2714     fn check_expr_meets_expectation_or_error(&self,
2715                                              expr: &'gcx hir::Expr,
2716                                              expected: Expectation<'tcx>) -> Ty<'tcx> {
2717         let expected_ty = expected.to_option(&self).unwrap_or(self.tcx.types.bool);
2718         let mut ty = self.check_expr_with_expectation(expr, expected);
2719
2720         // While we don't allow *arbitrary* coercions here, we *do* allow
2721         // coercions from ! to `expected`.
2722         if ty.is_never() {
2723             assert!(!self.tables.borrow().adjustments().contains_key(expr.hir_id),
2724                     "expression with never type wound up being adjusted");
2725             let adj_ty = self.next_diverging_ty_var(
2726                 TypeVariableOrigin::AdjustmentType(expr.span));
2727             self.apply_adjustments(expr, vec![Adjustment {
2728                 kind: Adjust::NeverToAny,
2729                 target: adj_ty
2730             }]);
2731             ty = adj_ty;
2732         }
2733
2734         if let Some(mut err) = self.demand_suptype_diag(expr.span, expected_ty, ty) {
2735             // Add help to type error if this is an `if` condition with an assignment
2736             match (expected, &expr.node) {
2737                 (ExpectIfCondition, &hir::ExprAssign(ref lhs, ref rhs)) => {
2738                     let msg = "try comparing for equality";
2739                     if let (Ok(left), Ok(right)) = (
2740                         self.tcx.sess.codemap().span_to_snippet(lhs.span),
2741                         self.tcx.sess.codemap().span_to_snippet(rhs.span))
2742                     {
2743                         err.span_suggestion(expr.span, msg, format!("{} == {}", left, right));
2744                     } else {
2745                         err.help(msg);
2746                     }
2747                 }
2748                 _ => (),
2749             }
2750             err.emit();
2751         }
2752         ty
2753     }
2754
2755     fn check_expr_coercable_to_type(&self,
2756                                     expr: &'gcx hir::Expr,
2757                                     expected: Ty<'tcx>) -> Ty<'tcx> {
2758         let ty = self.check_expr_with_hint(expr, expected);
2759         self.demand_coerce(expr, ty, expected);
2760         ty
2761     }
2762
2763     fn check_expr_with_hint(&self, expr: &'gcx hir::Expr,
2764                             expected: Ty<'tcx>) -> Ty<'tcx> {
2765         self.check_expr_with_expectation(expr, ExpectHasType(expected))
2766     }
2767
2768     fn check_expr_with_expectation(&self,
2769                                    expr: &'gcx hir::Expr,
2770                                    expected: Expectation<'tcx>) -> Ty<'tcx> {
2771         self.check_expr_with_expectation_and_lvalue_pref(expr, expected, NoPreference)
2772     }
2773
2774     fn check_expr(&self, expr: &'gcx hir::Expr) -> Ty<'tcx> {
2775         self.check_expr_with_expectation(expr, NoExpectation)
2776     }
2777
2778     fn check_expr_with_lvalue_pref(&self, expr: &'gcx hir::Expr,
2779                                    lvalue_pref: LvaluePreference) -> Ty<'tcx> {
2780         self.check_expr_with_expectation_and_lvalue_pref(expr, NoExpectation, lvalue_pref)
2781     }
2782
2783     // determine the `self` type, using fresh variables for all variables
2784     // declared on the impl declaration e.g., `impl<A,B> for Vec<(A,B)>`
2785     // would return ($0, $1) where $0 and $1 are freshly instantiated type
2786     // variables.
2787     pub fn impl_self_ty(&self,
2788                         span: Span, // (potential) receiver for this impl
2789                         did: DefId)
2790                         -> TypeAndSubsts<'tcx> {
2791         let ity = self.tcx.type_of(did);
2792         debug!("impl_self_ty: ity={:?}", ity);
2793
2794         let substs = self.fresh_substs_for_item(span, did);
2795         let substd_ty = self.instantiate_type_scheme(span, &substs, &ity);
2796
2797         TypeAndSubsts { substs: substs, ty: substd_ty }
2798     }
2799
2800     /// Unifies the output type with the expected type early, for more coercions
2801     /// and forward type information on the input expressions.
2802     fn expected_inputs_for_expected_output(&self,
2803                                            call_span: Span,
2804                                            expected_ret: Expectation<'tcx>,
2805                                            formal_ret: Ty<'tcx>,
2806                                            formal_args: &[Ty<'tcx>])
2807                                            -> Vec<Ty<'tcx>> {
2808         let formal_ret = self.resolve_type_vars_with_obligations(formal_ret);
2809         let expected_args = expected_ret.only_has_type(self).and_then(|ret_ty| {
2810             self.fudge_regions_if_ok(&RegionVariableOrigin::Coercion(call_span), || {
2811                 // Attempt to apply a subtyping relationship between the formal
2812                 // return type (likely containing type variables if the function
2813                 // is polymorphic) and the expected return type.
2814                 // No argument expectations are produced if unification fails.
2815                 let origin = self.misc(call_span);
2816                 let ures = self.at(&origin, self.param_env).sup(ret_ty, formal_ret);
2817
2818                 // FIXME(#15760) can't use try! here, FromError doesn't default
2819                 // to identity so the resulting type is not constrained.
2820                 match ures {
2821                     Ok(ok) => {
2822                         // Process any obligations locally as much as
2823                         // we can.  We don't care if some things turn
2824                         // out unconstrained or ambiguous, as we're
2825                         // just trying to get hints here.
2826                         let result = self.save_and_restore_in_snapshot_flag(|_| {
2827                             let mut fulfill = FulfillmentContext::new();
2828                             let ok = ok; // FIXME(#30046)
2829                             for obligation in ok.obligations {
2830                                 fulfill.register_predicate_obligation(self, obligation);
2831                             }
2832                             fulfill.select_where_possible(self)
2833                         });
2834
2835                         match result {
2836                             Ok(()) => { }
2837                             Err(_) => return Err(()),
2838                         }
2839                     }
2840                     Err(_) => return Err(()),
2841                 }
2842
2843                 // Record all the argument types, with the substitutions
2844                 // produced from the above subtyping unification.
2845                 Ok(formal_args.iter().map(|ty| {
2846                     self.resolve_type_vars_if_possible(ty)
2847                 }).collect())
2848             }).ok()
2849         }).unwrap_or(vec![]);
2850         debug!("expected_inputs_for_expected_output(formal={:?} -> {:?}, expected={:?} -> {:?})",
2851                formal_args, formal_ret,
2852                expected_args, expected_ret);
2853         expected_args
2854     }
2855
2856     // Checks a method call.
2857     fn check_method_call(&self,
2858                          expr: &'gcx hir::Expr,
2859                          segment: &hir::PathSegment,
2860                          span: Span,
2861                          args: &'gcx [hir::Expr],
2862                          expected: Expectation<'tcx>,
2863                          lvalue_pref: LvaluePreference) -> Ty<'tcx> {
2864         let rcvr = &args[0];
2865         let rcvr_t = self.check_expr_with_lvalue_pref(&rcvr, lvalue_pref);
2866         // no need to check for bot/err -- callee does that
2867         let rcvr_t = self.structurally_resolved_type(expr.span, rcvr_t);
2868
2869         let method = match self.lookup_method(rcvr_t,
2870                                               segment,
2871                                               span,
2872                                               expr,
2873                                               rcvr) {
2874             Ok(method) => {
2875                 self.write_method_call(expr.hir_id, method);
2876                 Ok(method)
2877             }
2878             Err(error) => {
2879                 if segment.name != keywords::Invalid.name() {
2880                     self.report_method_error(span,
2881                                              rcvr_t,
2882                                              segment.name,
2883                                              Some(rcvr),
2884                                              error,
2885                                              Some(args));
2886                 }
2887                 Err(())
2888             }
2889         };
2890
2891         // Call the generic checker.
2892         self.check_method_argument_types(span,
2893                                          expr.span,
2894                                          method,
2895                                          &args[1..],
2896                                          DontTupleArguments,
2897                                          expected)
2898     }
2899
2900     fn check_return_expr(&self, return_expr: &'gcx hir::Expr) {
2901         let ret_coercion =
2902             self.ret_coercion
2903                 .as_ref()
2904                 .unwrap_or_else(|| span_bug!(return_expr.span,
2905                                              "check_return_expr called outside fn body"));
2906
2907         let ret_ty = ret_coercion.borrow().expected_ty();
2908         let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty.clone());
2909         ret_coercion.borrow_mut()
2910                     .coerce(self,
2911                             &self.cause(return_expr.span,
2912                                         ObligationCauseCode::ReturnType(return_expr.id)),
2913                             return_expr,
2914                             return_expr_ty,
2915                             self.diverges.get());
2916     }
2917
2918
2919     // A generic function for checking the then and else in an if
2920     // or if-else.
2921     fn check_then_else(&self,
2922                        cond_expr: &'gcx hir::Expr,
2923                        then_expr: &'gcx hir::Expr,
2924                        opt_else_expr: Option<&'gcx hir::Expr>,
2925                        sp: Span,
2926                        expected: Expectation<'tcx>) -> Ty<'tcx> {
2927         let cond_ty = self.check_expr_meets_expectation_or_error(cond_expr, ExpectIfCondition);
2928         let cond_diverges = self.diverges.get();
2929         self.diverges.set(Diverges::Maybe);
2930
2931         let expected = expected.adjust_for_branches(self);
2932         let then_ty = self.check_expr_with_expectation(then_expr, expected);
2933         let then_diverges = self.diverges.get();
2934         self.diverges.set(Diverges::Maybe);
2935
2936         // We've already taken the expected type's preferences
2937         // into account when typing the `then` branch. To figure
2938         // out the initial shot at a LUB, we thus only consider
2939         // `expected` if it represents a *hard* constraint
2940         // (`only_has_type`); otherwise, we just go with a
2941         // fresh type variable.
2942         let coerce_to_ty = expected.coercion_target_type(self, sp);
2943         let mut coerce: DynamicCoerceMany = CoerceMany::new(coerce_to_ty);
2944
2945         let if_cause = self.cause(sp, ObligationCauseCode::IfExpression);
2946         coerce.coerce(self, &if_cause, then_expr, then_ty, then_diverges);
2947
2948         if let Some(else_expr) = opt_else_expr {
2949             let else_ty = self.check_expr_with_expectation(else_expr, expected);
2950             let else_diverges = self.diverges.get();
2951
2952             coerce.coerce(self, &if_cause, else_expr, else_ty, else_diverges);
2953
2954             // We won't diverge unless both branches do (or the condition does).
2955             self.diverges.set(cond_diverges | then_diverges & else_diverges);
2956         } else {
2957             let else_cause = self.cause(sp, ObligationCauseCode::IfExpressionWithNoElse);
2958             coerce.coerce_forced_unit(self, &else_cause, &mut |_| (), true);
2959
2960             // If the condition is false we can't diverge.
2961             self.diverges.set(cond_diverges);
2962         }
2963
2964         let result_ty = coerce.complete(self);
2965         if cond_ty.references_error() {
2966             self.tcx.types.err
2967         } else {
2968             result_ty
2969         }
2970     }
2971
2972     // Check field access expressions
2973     fn check_field(&self,
2974                    expr: &'gcx hir::Expr,
2975                    lvalue_pref: LvaluePreference,
2976                    base: &'gcx hir::Expr,
2977                    field: &Spanned<ast::Name>) -> Ty<'tcx> {
2978         let expr_t = self.check_expr_with_lvalue_pref(base, lvalue_pref);
2979         let expr_t = self.structurally_resolved_type(expr.span,
2980                                                      expr_t);
2981         let mut private_candidate = None;
2982         let mut autoderef = self.autoderef(expr.span, expr_t);
2983         while let Some((base_t, _)) = autoderef.next() {
2984             match base_t.sty {
2985                 ty::TyAdt(base_def, substs) if !base_def.is_enum() => {
2986                     debug!("struct named {:?}",  base_t);
2987                     let (ident, def_scope) =
2988                         self.tcx.adjust(field.node, base_def.did, self.body_id);
2989                     let fields = &base_def.struct_variant().fields;
2990                     if let Some(field) = fields.iter().find(|f| f.name.to_ident() == ident) {
2991                         let field_ty = self.field_ty(expr.span, field, substs);
2992                         if field.vis.is_accessible_from(def_scope, self.tcx) {
2993                             let adjustments = autoderef.adjust_steps(lvalue_pref);
2994                             self.apply_adjustments(base, adjustments);
2995                             autoderef.finalize();
2996
2997                             self.tcx.check_stability(field.did, expr.id, expr.span);
2998
2999                             return field_ty;
3000                         }
3001                         private_candidate = Some((base_def.did, field_ty));
3002                     }
3003                 }
3004                 _ => {}
3005             }
3006         }
3007         autoderef.unambiguous_final_ty();
3008
3009         if let Some((did, field_ty)) = private_candidate {
3010             let struct_path = self.tcx().item_path_str(did);
3011             let mut err = struct_span_err!(self.tcx().sess, expr.span, E0616,
3012                                            "field `{}` of struct `{}` is private",
3013                                            field.node, struct_path);
3014             // Also check if an accessible method exists, which is often what is meant.
3015             if self.method_exists(field.span, field.node, expr_t, expr.id, false) {
3016                 err.note(&format!("a method `{}` also exists, perhaps you wish to call it",
3017                                   field.node));
3018             }
3019             err.emit();
3020             field_ty
3021         } else if field.node == keywords::Invalid.name() {
3022             self.tcx().types.err
3023         } else if self.method_exists(field.span, field.node, expr_t, expr.id, true) {
3024             type_error_struct!(self.tcx().sess, field.span, expr_t, E0615,
3025                               "attempted to take value of method `{}` on type `{}`",
3026                               field.node, expr_t)
3027                 .help("maybe a `()` to call it is missing?")
3028                 .emit();
3029             self.tcx().types.err
3030         } else {
3031             if !expr_t.is_primitive_ty() {
3032                 let mut err = self.no_such_field_err(field.span, &field.node, expr_t);
3033
3034                 match expr_t.sty {
3035                     ty::TyAdt(def, _) if !def.is_enum() => {
3036                         if let Some(suggested_field_name) =
3037                             Self::suggest_field_name(def.struct_variant(), field, vec![]) {
3038                                 err.span_label(field.span,
3039                                                format!("did you mean `{}`?", suggested_field_name));
3040                             } else {
3041                                 err.span_label(field.span, "unknown field");
3042                                 let struct_variant_def = def.struct_variant();
3043                                 let field_names = self.available_field_names(struct_variant_def);
3044                                 if !field_names.is_empty() {
3045                                     err.note(&format!("available fields are: {}",
3046                                                       self.name_series_display(field_names)));
3047                                 }
3048                             };
3049                     }
3050                     ty::TyRawPtr(..) => {
3051                         err.note(&format!("`{0}` is a native pointer; perhaps you need to deref \
3052                                            with `(*{0}).{1}`",
3053                                           self.tcx.hir.node_to_pretty_string(base.id),
3054                                           field.node));
3055                     }
3056                     _ => {}
3057                 }
3058                 err
3059             } else {
3060                 type_error_struct!(self.tcx().sess, field.span, expr_t, E0610,
3061                                    "`{}` is a primitive type and therefore doesn't have fields",
3062                                    expr_t)
3063             }.emit();
3064             self.tcx().types.err
3065         }
3066     }
3067
3068     // Return an hint about the closest match in field names
3069     fn suggest_field_name(variant: &'tcx ty::VariantDef,
3070                           field: &Spanned<ast::Name>,
3071                           skip: Vec<InternedString>)
3072                           -> Option<Symbol> {
3073         let name = field.node.as_str();
3074         let names = variant.fields.iter().filter_map(|field| {
3075             // ignore already set fields and private fields from non-local crates
3076             if skip.iter().any(|x| *x == field.name.as_str()) ||
3077                (variant.did.krate != LOCAL_CRATE && field.vis != Visibility::Public) {
3078                 None
3079             } else {
3080                 Some(&field.name)
3081             }
3082         });
3083
3084         find_best_match_for_name(names, &name, None)
3085     }
3086
3087     fn available_field_names(&self, variant: &'tcx ty::VariantDef) -> Vec<ast::Name> {
3088         let mut available = Vec::new();
3089         for field in variant.fields.iter() {
3090             let (_, def_scope) = self.tcx.adjust(field.name, variant.did, self.body_id);
3091             if field.vis.is_accessible_from(def_scope, self.tcx) {
3092                 available.push(field.name);
3093             }
3094         }
3095         available
3096     }
3097
3098     fn name_series_display(&self, names: Vec<ast::Name>) -> String {
3099         // dynamic limit, to never omit just one field
3100         let limit = if names.len() == 6 { 6 } else { 5 };
3101         let mut display = names.iter().take(limit)
3102             .map(|n| format!("`{}`", n)).collect::<Vec<_>>().join(", ");
3103         if names.len() > limit {
3104             display = format!("{} ... and {} others", display, names.len() - limit);
3105         }
3106         display
3107     }
3108
3109     // Check tuple index expressions
3110     fn check_tup_field(&self,
3111                        expr: &'gcx hir::Expr,
3112                        lvalue_pref: LvaluePreference,
3113                        base: &'gcx hir::Expr,
3114                        idx: codemap::Spanned<usize>) -> Ty<'tcx> {
3115         let expr_t = self.check_expr_with_lvalue_pref(base, lvalue_pref);
3116         let expr_t = self.structurally_resolved_type(expr.span,
3117                                                      expr_t);
3118         let mut private_candidate = None;
3119         let mut tuple_like = false;
3120         let mut autoderef = self.autoderef(expr.span, expr_t);
3121         while let Some((base_t, _)) = autoderef.next() {
3122             let field = match base_t.sty {
3123                 ty::TyAdt(base_def, substs) if base_def.is_struct() => {
3124                     tuple_like = base_def.struct_variant().ctor_kind == CtorKind::Fn;
3125                     if !tuple_like { continue }
3126
3127                     debug!("tuple struct named {:?}",  base_t);
3128                     let ident = ast::Ident {
3129                         name: Symbol::intern(&idx.node.to_string()),
3130                         ctxt: idx.span.ctxt().modern(),
3131                     };
3132                     let (ident, def_scope) =
3133                         self.tcx.adjust_ident(ident, base_def.did, self.body_id);
3134                     let fields = &base_def.struct_variant().fields;
3135                     if let Some(field) = fields.iter().find(|f| f.name.to_ident() == ident) {
3136                         let field_ty = self.field_ty(expr.span, field, substs);
3137                         if field.vis.is_accessible_from(def_scope, self.tcx) {
3138                             self.tcx.check_stability(field.did, expr.id, expr.span);
3139                             Some(field_ty)
3140                         } else {
3141                             private_candidate = Some((base_def.did, field_ty));
3142                             None
3143                         }
3144                     } else {
3145                         None
3146                     }
3147                 }
3148                 ty::TyTuple(ref v, _) => {
3149                     tuple_like = true;
3150                     v.get(idx.node).cloned()
3151                 }
3152                 _ => continue
3153             };
3154
3155             if let Some(field_ty) = field {
3156                 let adjustments = autoderef.adjust_steps(lvalue_pref);
3157                 self.apply_adjustments(base, adjustments);
3158                 autoderef.finalize();
3159                 return field_ty;
3160             }
3161         }
3162         autoderef.unambiguous_final_ty();
3163
3164         if let Some((did, field_ty)) = private_candidate {
3165             let struct_path = self.tcx().item_path_str(did);
3166             struct_span_err!(self.tcx().sess, expr.span, E0611,
3167                              "field `{}` of tuple-struct `{}` is private",
3168                              idx.node, struct_path).emit();
3169             return field_ty;
3170         }
3171
3172         if tuple_like {
3173             type_error_struct!(self.tcx().sess, expr.span, expr_t, E0612,
3174                 "attempted out-of-bounds tuple index `{}` on type `{}`",
3175                 idx.node, expr_t).emit();
3176         } else {
3177             self.no_such_field_err(expr.span, idx.node, expr_t).emit();
3178         }
3179
3180         self.tcx().types.err
3181     }
3182
3183     fn no_such_field_err<T: Display>(&self, span: Span, field: T, expr_t: &ty::TyS)
3184         -> DiagnosticBuilder {
3185         type_error_struct!(self.tcx().sess, span, expr_t, E0609,
3186                            "no field `{}` on type `{}`",
3187                            field, expr_t)
3188     }
3189
3190     fn report_unknown_field(&self,
3191                             ty: Ty<'tcx>,
3192                             variant: &'tcx ty::VariantDef,
3193                             field: &hir::Field,
3194                             skip_fields: &[hir::Field],
3195                             kind_name: &str) {
3196         let mut err = self.type_error_struct_with_diag(
3197             field.name.span,
3198             |actual| match ty.sty {
3199                 ty::TyAdt(adt, ..) if adt.is_enum() => {
3200                     struct_span_err!(self.tcx.sess, field.name.span, E0559,
3201                                     "{} `{}::{}` has no field named `{}`",
3202                                     kind_name, actual, variant.name, field.name.node)
3203                 }
3204                 _ => {
3205                     struct_span_err!(self.tcx.sess, field.name.span, E0560,
3206                                     "{} `{}` has no field named `{}`",
3207                                     kind_name, actual, field.name.node)
3208                 }
3209             },
3210             ty);
3211         // prevent all specified fields from being suggested
3212         let skip_fields = skip_fields.iter().map(|ref x| x.name.node.as_str());
3213         if let Some(field_name) = Self::suggest_field_name(variant,
3214                                                            &field.name,
3215                                                            skip_fields.collect()) {
3216             err.span_label(field.name.span,
3217                            format!("field does not exist - did you mean `{}`?", field_name));
3218         } else {
3219             match ty.sty {
3220                 ty::TyAdt(adt, ..) => {
3221                     if adt.is_enum() {
3222                         err.span_label(field.name.span,
3223                                        format!("`{}::{}` does not have this field",
3224                                                ty, variant.name));
3225                     } else {
3226                         err.span_label(field.name.span,
3227                                        format!("`{}` does not have this field", ty));
3228                     }
3229                     let available_field_names = self.available_field_names(variant);
3230                     if !available_field_names.is_empty() {
3231                         err.note(&format!("available fields are: {}",
3232                                           self.name_series_display(available_field_names)));
3233                     }
3234                 }
3235                 _ => bug!("non-ADT passed to report_unknown_field")
3236             }
3237         };
3238         err.emit();
3239     }
3240
3241     fn check_expr_struct_fields(&self,
3242                                 adt_ty: Ty<'tcx>,
3243                                 expected: Expectation<'tcx>,
3244                                 expr_id: ast::NodeId,
3245                                 span: Span,
3246                                 variant: &'tcx ty::VariantDef,
3247                                 ast_fields: &'gcx [hir::Field],
3248                                 check_completeness: bool) {
3249         let tcx = self.tcx;
3250
3251         let adt_ty_hint =
3252             self.expected_inputs_for_expected_output(span, expected, adt_ty, &[adt_ty])
3253                 .get(0).cloned().unwrap_or(adt_ty);
3254         // re-link the regions that EIfEO can erase.
3255         self.demand_eqtype(span, adt_ty_hint, adt_ty);
3256
3257         let (substs, adt_kind, kind_name) = match &adt_ty.sty{
3258             &ty::TyAdt(adt, substs) => {
3259                 (substs, adt.adt_kind(), adt.variant_descr())
3260             }
3261             _ => span_bug!(span, "non-ADT passed to check_expr_struct_fields")
3262         };
3263
3264         let mut remaining_fields = FxHashMap();
3265         for field in &variant.fields {
3266             remaining_fields.insert(field.name.to_ident(), field);
3267         }
3268
3269         let mut seen_fields = FxHashMap();
3270
3271         let mut error_happened = false;
3272
3273         // Typecheck each field.
3274         for field in ast_fields {
3275             let ident = tcx.adjust(field.name.node, variant.did, self.body_id).0;
3276             let field_type = if let Some(v_field) = remaining_fields.remove(&ident) {
3277                 seen_fields.insert(field.name.node, field.span);
3278
3279                 // we don't look at stability attributes on
3280                 // struct-like enums (yet...), but it's definitely not
3281                 // a bug to have construct one.
3282                 if adt_kind != ty::AdtKind::Enum {
3283                     tcx.check_stability(v_field.did, expr_id, field.span);
3284                 }
3285
3286                 self.field_ty(field.span, v_field, substs)
3287             } else {
3288                 error_happened = true;
3289                 if let Some(_) = variant.find_field_named(field.name.node) {
3290                     let mut err = struct_span_err!(self.tcx.sess,
3291                                                 field.name.span,
3292                                                 E0062,
3293                                                 "field `{}` specified more than once",
3294                                                 field.name.node);
3295
3296                     err.span_label(field.name.span, "used more than once");
3297
3298                     if let Some(prev_span) = seen_fields.get(&field.name.node) {
3299                         err.span_label(*prev_span, format!("first use of `{}`", field.name.node));
3300                     }
3301
3302                     err.emit();
3303                 } else {
3304                     self.report_unknown_field(adt_ty, variant, field, ast_fields, kind_name);
3305                 }
3306
3307                 tcx.types.err
3308             };
3309
3310             // Make sure to give a type to the field even if there's
3311             // an error, so we can continue typechecking
3312             self.check_expr_coercable_to_type(&field.expr, field_type);
3313         }
3314
3315         // Make sure the programmer specified correct number of fields.
3316         if kind_name == "union" {
3317             if ast_fields.len() != 1 {
3318                 tcx.sess.span_err(span, "union expressions should have exactly one field");
3319             }
3320         } else if check_completeness && !error_happened && !remaining_fields.is_empty() {
3321             let len = remaining_fields.len();
3322
3323             let mut displayable_field_names = remaining_fields
3324                                               .keys()
3325                                               .map(|ident| ident.name.as_str())
3326                                               .collect::<Vec<_>>();
3327
3328             displayable_field_names.sort();
3329
3330             let truncated_fields_error = if len <= 3 {
3331                 "".to_string()
3332             } else {
3333                 format!(" and {} other field{}", (len - 3), if len - 3 == 1 {""} else {"s"})
3334             };
3335
3336             let remaining_fields_names = displayable_field_names.iter().take(3)
3337                                         .map(|n| format!("`{}`", n))
3338                                         .collect::<Vec<_>>()
3339                                         .join(", ");
3340
3341             struct_span_err!(tcx.sess, span, E0063,
3342                              "missing field{} {}{} in initializer of `{}`",
3343                              if remaining_fields.len() == 1 { "" } else { "s" },
3344                              remaining_fields_names,
3345                              truncated_fields_error,
3346                              adt_ty)
3347                 .span_label(span, format!("missing {}{}",
3348                                           remaining_fields_names,
3349                                           truncated_fields_error))
3350                 .emit();
3351         }
3352     }
3353
3354     fn check_struct_fields_on_error(&self,
3355                                     fields: &'gcx [hir::Field],
3356                                     base_expr: &'gcx Option<P<hir::Expr>>) {
3357         for field in fields {
3358             self.check_expr(&field.expr);
3359         }
3360         match *base_expr {
3361             Some(ref base) => {
3362                 self.check_expr(&base);
3363             },
3364             None => {}
3365         }
3366     }
3367
3368     pub fn check_struct_path(&self,
3369                              qpath: &hir::QPath,
3370                              node_id: ast::NodeId)
3371                              -> Option<(&'tcx ty::VariantDef,  Ty<'tcx>)> {
3372         let path_span = match *qpath {
3373             hir::QPath::Resolved(_, ref path) => path.span,
3374             hir::QPath::TypeRelative(ref qself, _) => qself.span
3375         };
3376         let (def, ty) = self.finish_resolving_struct_path(qpath, path_span, node_id);
3377         let variant = match def {
3378             Def::Err => {
3379                 self.set_tainted_by_errors();
3380                 return None;
3381             }
3382             Def::Variant(..) => {
3383                 match ty.sty {
3384                     ty::TyAdt(adt, substs) => {
3385                         Some((adt.variant_of_def(def), adt.did, substs))
3386                     }
3387                     _ => bug!("unexpected type: {:?}", ty.sty)
3388                 }
3389             }
3390             Def::Struct(..) | Def::Union(..) | Def::TyAlias(..) |
3391             Def::AssociatedTy(..) | Def::SelfTy(..) => {
3392                 match ty.sty {
3393                     ty::TyAdt(adt, substs) if !adt.is_enum() => {
3394                         Some((adt.struct_variant(), adt.did, substs))
3395                     }
3396                     _ => None,
3397                 }
3398             }
3399             _ => bug!("unexpected definition: {:?}", def)
3400         };
3401
3402         if let Some((variant, did, substs)) = variant {
3403             // Check bounds on type arguments used in the path.
3404             let bounds = self.instantiate_bounds(path_span, did, substs);
3405             let cause = traits::ObligationCause::new(path_span, self.body_id,
3406                                                      traits::ItemObligation(did));
3407             self.add_obligations_for_parameters(cause, &bounds);
3408
3409             Some((variant, ty))
3410         } else {
3411             struct_span_err!(self.tcx.sess, path_span, E0071,
3412                              "expected struct, variant or union type, found {}",
3413                              ty.sort_string(self.tcx))
3414                 .span_label(path_span, "not a struct")
3415                 .emit();
3416             None
3417         }
3418     }
3419
3420     fn check_expr_struct(&self,
3421                          expr: &hir::Expr,
3422                          expected: Expectation<'tcx>,
3423                          qpath: &hir::QPath,
3424                          fields: &'gcx [hir::Field],
3425                          base_expr: &'gcx Option<P<hir::Expr>>) -> Ty<'tcx>
3426     {
3427         // Find the relevant variant
3428         let (variant, struct_ty) =
3429         if let Some(variant_ty) = self.check_struct_path(qpath, expr.id) {
3430             variant_ty
3431         } else {
3432             self.check_struct_fields_on_error(fields, base_expr);
3433             return self.tcx.types.err;
3434         };
3435
3436         let path_span = match *qpath {
3437             hir::QPath::Resolved(_, ref path) => path.span,
3438             hir::QPath::TypeRelative(ref qself, _) => qself.span
3439         };
3440
3441         self.check_expr_struct_fields(struct_ty, expected, expr.id, path_span, variant, fields,
3442                                       base_expr.is_none());
3443         if let &Some(ref base_expr) = base_expr {
3444             self.check_expr_has_type_or_error(base_expr, struct_ty);
3445             match struct_ty.sty {
3446                 ty::TyAdt(adt, substs) if adt.is_struct() => {
3447                     let fru_field_types = adt.struct_variant().fields.iter().map(|f| {
3448                         self.normalize_associated_types_in(expr.span, &f.ty(self.tcx, substs))
3449                     }).collect();
3450
3451                     self.tables
3452                         .borrow_mut()
3453                         .fru_field_types_mut()
3454                         .insert(expr.hir_id, fru_field_types);
3455                 }
3456                 _ => {
3457                     span_err!(self.tcx.sess, base_expr.span, E0436,
3458                               "functional record update syntax requires a struct");
3459                 }
3460             }
3461         }
3462         self.require_type_is_sized(struct_ty, expr.span, traits::StructInitializerSized);
3463         struct_ty
3464     }
3465
3466
3467     /// Invariant:
3468     /// If an expression has any sub-expressions that result in a type error,
3469     /// inspecting that expression's type with `ty.references_error()` will return
3470     /// true. Likewise, if an expression is known to diverge, inspecting its
3471     /// type with `ty::type_is_bot` will return true (n.b.: since Rust is
3472     /// strict, _|_ can appear in the type of an expression that does not,
3473     /// itself, diverge: for example, fn() -> _|_.)
3474     /// Note that inspecting a type's structure *directly* may expose the fact
3475     /// that there are actually multiple representations for `TyError`, so avoid
3476     /// that when err needs to be handled differently.
3477     fn check_expr_with_expectation_and_lvalue_pref(&self,
3478                                                    expr: &'gcx hir::Expr,
3479                                                    expected: Expectation<'tcx>,
3480                                                    lvalue_pref: LvaluePreference) -> Ty<'tcx> {
3481         debug!(">> typechecking: expr={:?} expected={:?}",
3482                expr, expected);
3483
3484         // Warn for expressions after diverging siblings.
3485         self.warn_if_unreachable(expr.id, expr.span, "expression");
3486
3487         // Hide the outer diverging and has_errors flags.
3488         let old_diverges = self.diverges.get();
3489         let old_has_errors = self.has_errors.get();
3490         self.diverges.set(Diverges::Maybe);
3491         self.has_errors.set(false);
3492
3493         let ty = self.check_expr_kind(expr, expected, lvalue_pref);
3494
3495         // Warn for non-block expressions with diverging children.
3496         match expr.node {
3497             hir::ExprBlock(_) |
3498             hir::ExprLoop(..) | hir::ExprWhile(..) |
3499             hir::ExprIf(..) | hir::ExprMatch(..) => {}
3500
3501             _ => self.warn_if_unreachable(expr.id, expr.span, "expression")
3502         }
3503
3504         // Any expression that produces a value of type `!` must have diverged
3505         if ty.is_never() {
3506             self.diverges.set(self.diverges.get() | Diverges::Always);
3507         }
3508
3509         // Record the type, which applies it effects.
3510         // We need to do this after the warning above, so that
3511         // we don't warn for the diverging expression itself.
3512         self.write_ty(expr.hir_id, ty);
3513
3514         // Combine the diverging and has_error flags.
3515         self.diverges.set(self.diverges.get() | old_diverges);
3516         self.has_errors.set(self.has_errors.get() | old_has_errors);
3517
3518         debug!("type of {} is...", self.tcx.hir.node_to_string(expr.id));
3519         debug!("... {:?}, expected is {:?}", ty, expected);
3520
3521         ty
3522     }
3523
3524     fn check_expr_kind(&self,
3525                        expr: &'gcx hir::Expr,
3526                        expected: Expectation<'tcx>,
3527                        lvalue_pref: LvaluePreference) -> Ty<'tcx> {
3528         let tcx = self.tcx;
3529         let id = expr.id;
3530         match expr.node {
3531           hir::ExprBox(ref subexpr) => {
3532             let expected_inner = expected.to_option(self).map_or(NoExpectation, |ty| {
3533                 match ty.sty {
3534                     ty::TyAdt(def, _) if def.is_box()
3535                         => Expectation::rvalue_hint(self, ty.boxed_ty()),
3536                     _ => NoExpectation
3537                 }
3538             });
3539             let referent_ty = self.check_expr_with_expectation(subexpr, expected_inner);
3540             tcx.mk_box(referent_ty)
3541           }
3542
3543           hir::ExprLit(ref lit) => {
3544             self.check_lit(&lit, expected)
3545           }
3546           hir::ExprBinary(op, ref lhs, ref rhs) => {
3547             self.check_binop(expr, op, lhs, rhs)
3548           }
3549           hir::ExprAssignOp(op, ref lhs, ref rhs) => {
3550             self.check_binop_assign(expr, op, lhs, rhs)
3551           }
3552           hir::ExprUnary(unop, ref oprnd) => {
3553             let expected_inner = match unop {
3554                 hir::UnNot | hir::UnNeg => {
3555                     expected
3556                 }
3557                 hir::UnDeref => {
3558                     NoExpectation
3559                 }
3560             };
3561             let lvalue_pref = match unop {
3562                 hir::UnDeref => lvalue_pref,
3563                 _ => NoPreference
3564             };
3565             let mut oprnd_t = self.check_expr_with_expectation_and_lvalue_pref(&oprnd,
3566                                                                                expected_inner,
3567                                                                                lvalue_pref);
3568
3569             if !oprnd_t.references_error() {
3570                 oprnd_t = self.structurally_resolved_type(expr.span, oprnd_t);
3571                 match unop {
3572                     hir::UnDeref => {
3573                         if let Some(mt) = oprnd_t.builtin_deref(true, NoPreference) {
3574                             oprnd_t = mt.ty;
3575                         } else if let Some(ok) = self.try_overloaded_deref(
3576                                 expr.span, oprnd_t, lvalue_pref) {
3577                             let method = self.register_infer_ok_obligations(ok);
3578                             if let ty::TyRef(region, mt) = method.sig.inputs()[0].sty {
3579                                 self.apply_adjustments(oprnd, vec![Adjustment {
3580                                     kind: Adjust::Borrow(AutoBorrow::Ref(region, mt.mutbl)),
3581                                     target: method.sig.inputs()[0]
3582                                 }]);
3583                             }
3584                             oprnd_t = self.make_overloaded_lvalue_return_type(method).ty;
3585                             self.write_method_call(expr.hir_id, method);
3586                         } else {
3587                             type_error_struct!(tcx.sess, expr.span, oprnd_t, E0614,
3588                                                "type `{}` cannot be dereferenced",
3589                                                oprnd_t).emit();
3590                             oprnd_t = tcx.types.err;
3591                         }
3592                     }
3593                     hir::UnNot => {
3594                         let result = self.check_user_unop(expr, oprnd_t, unop);
3595                         // If it's builtin, we can reuse the type, this helps inference.
3596                         if !(oprnd_t.is_integral() || oprnd_t.sty == ty::TyBool) {
3597                             oprnd_t = result;
3598                         }
3599                     }
3600                     hir::UnNeg => {
3601                         let result = self.check_user_unop(expr, oprnd_t, unop);
3602                         // If it's builtin, we can reuse the type, this helps inference.
3603                         if !(oprnd_t.is_integral() || oprnd_t.is_fp()) {
3604                             oprnd_t = result;
3605                         }
3606                     }
3607                 }
3608             }
3609             oprnd_t
3610           }
3611           hir::ExprAddrOf(mutbl, ref oprnd) => {
3612             let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
3613                 match ty.sty {
3614                     ty::TyRef(_, ref mt) | ty::TyRawPtr(ref mt) => {
3615                         if self.tcx.expr_is_lval(&oprnd) {
3616                             // Lvalues may legitimately have unsized types.
3617                             // For example, dereferences of a fat pointer and
3618                             // the last field of a struct can be unsized.
3619                             ExpectHasType(mt.ty)
3620                         } else {
3621                             Expectation::rvalue_hint(self, mt.ty)
3622                         }
3623                     }
3624                     _ => NoExpectation
3625                 }
3626             });
3627             let lvalue_pref = LvaluePreference::from_mutbl(mutbl);
3628             let ty = self.check_expr_with_expectation_and_lvalue_pref(&oprnd, hint, lvalue_pref);
3629
3630             let tm = ty::TypeAndMut { ty: ty, mutbl: mutbl };
3631             if tm.ty.references_error() {
3632                 tcx.types.err
3633             } else {
3634                 // Note: at this point, we cannot say what the best lifetime
3635                 // is to use for resulting pointer.  We want to use the
3636                 // shortest lifetime possible so as to avoid spurious borrowck
3637                 // errors.  Moreover, the longest lifetime will depend on the
3638                 // precise details of the value whose address is being taken
3639                 // (and how long it is valid), which we don't know yet until type
3640                 // inference is complete.
3641                 //
3642                 // Therefore, here we simply generate a region variable.  The
3643                 // region inferencer will then select the ultimate value.
3644                 // Finally, borrowck is charged with guaranteeing that the
3645                 // value whose address was taken can actually be made to live
3646                 // as long as it needs to live.
3647                 let region = self.next_region_var(infer::AddrOfRegion(expr.span));
3648                 tcx.mk_ref(region, tm)
3649             }
3650           }
3651           hir::ExprPath(ref qpath) => {
3652               let (def, opt_ty, segments) = self.resolve_ty_and_def_ufcs(qpath,
3653                                                                          expr.id, expr.span);
3654               let ty = if def != Def::Err {
3655                   self.instantiate_value_path(segments, opt_ty, def, expr.span, id)
3656               } else {
3657                   self.set_tainted_by_errors();
3658                   tcx.types.err
3659               };
3660
3661               // We always require that the type provided as the value for
3662               // a type parameter outlives the moment of instantiation.
3663               let substs = self.tables.borrow().node_substs(expr.hir_id);
3664               self.add_wf_bounds(substs, expr);
3665
3666               ty
3667           }
3668           hir::ExprInlineAsm(_, ref outputs, ref inputs) => {
3669               for output in outputs {
3670                   self.check_expr(output);
3671               }
3672               for input in inputs {
3673                   self.check_expr(input);
3674               }
3675               tcx.mk_nil()
3676           }
3677           hir::ExprBreak(destination, ref expr_opt) => {
3678               if let Some(target_id) = destination.target_id.opt_id() {
3679                   let (e_ty, e_diverges, cause);
3680                   if let Some(ref e) = *expr_opt {
3681                       // If this is a break with a value, we need to type-check
3682                       // the expression. Get an expected type from the loop context.
3683                       let opt_coerce_to = {
3684                           let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
3685                           enclosing_breakables.find_breakable(target_id)
3686                                               .coerce
3687                                               .as_ref()
3688                                               .map(|coerce| coerce.expected_ty())
3689                       };
3690
3691                       // If the loop context is not a `loop { }`, then break with
3692                       // a value is illegal, and `opt_coerce_to` will be `None`.
3693                       // Just set expectation to error in that case.
3694                       let coerce_to = opt_coerce_to.unwrap_or(tcx.types.err);
3695
3696                       // Recurse without `enclosing_breakables` borrowed.
3697                       e_ty = self.check_expr_with_hint(e, coerce_to);
3698                       e_diverges = self.diverges.get();
3699                       cause = self.misc(e.span);
3700                   } else {
3701                       // Otherwise, this is a break *without* a value. That's
3702                       // always legal, and is equivalent to `break ()`.
3703                       e_ty = tcx.mk_nil();
3704                       e_diverges = Diverges::Maybe;
3705                       cause = self.misc(expr.span);
3706                   }
3707
3708                   // Now that we have type-checked `expr_opt`, borrow
3709                   // the `enclosing_loops` field and let's coerce the
3710                   // type of `expr_opt` into what is expected.
3711                   let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
3712                   let ctxt = enclosing_breakables.find_breakable(target_id);
3713                   if let Some(ref mut coerce) = ctxt.coerce {
3714                       if let Some(ref e) = *expr_opt {
3715                           coerce.coerce(self, &cause, e, e_ty, e_diverges);
3716                       } else {
3717                           assert!(e_ty.is_nil());
3718                           coerce.coerce_forced_unit(self, &cause, &mut |_| (), true);
3719                       }
3720                   } else {
3721                       // If `ctxt.coerce` is `None`, we can just ignore
3722                       // the type of the expresison.  This is because
3723                       // either this was a break *without* a value, in
3724                       // which case it is always a legal type (`()`), or
3725                       // else an error would have been flagged by the
3726                       // `loops` pass for using break with an expression
3727                       // where you are not supposed to.
3728                       assert!(expr_opt.is_none() || self.tcx.sess.err_count() > 0);
3729                   }
3730
3731                   ctxt.may_break = true;
3732               } else {
3733                   // Otherwise, we failed to find the enclosing loop;
3734                   // this can only happen if the `break` was not
3735                   // inside a loop at all, which is caught by the
3736                   // loop-checking pass.
3737                   assert!(self.tcx.sess.err_count() > 0);
3738
3739                   // We still need to assign a type to the inner expression to
3740                   // prevent the ICE in #43162.
3741                   if let Some(ref e) = *expr_opt {
3742                       self.check_expr_with_hint(e, tcx.types.err);
3743
3744                       // ... except when we try to 'break rust;'.
3745                       // ICE this expression in particular (see #43162).
3746                       if let hir::ExprPath(hir::QPath::Resolved(_, ref path)) = e.node {
3747                           if path.segments.len() == 1 && path.segments[0].name == "rust" {
3748                               fatally_break_rust(self.tcx.sess);
3749                           }
3750                       }
3751                   }
3752               }
3753
3754               // the type of a `break` is always `!`, since it diverges
3755               tcx.types.never
3756           }
3757           hir::ExprAgain(_) => { tcx.types.never }
3758           hir::ExprRet(ref expr_opt) => {
3759             if self.ret_coercion.is_none() {
3760                 struct_span_err!(self.tcx.sess, expr.span, E0572,
3761                                  "return statement outside of function body").emit();
3762             } else if let Some(ref e) = *expr_opt {
3763                 self.check_return_expr(e);
3764             } else {
3765                 let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
3766                 let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
3767                 coercion.coerce_forced_unit(self, &cause, &mut |_| (), true);
3768             }
3769             tcx.types.never
3770           }
3771           hir::ExprAssign(ref lhs, ref rhs) => {
3772             let lhs_ty = self.check_expr_with_lvalue_pref(&lhs, PreferMutLvalue);
3773
3774             let rhs_ty = self.check_expr_coercable_to_type(&rhs, lhs_ty);
3775
3776             match expected {
3777                 ExpectIfCondition => {
3778                     self.tcx.sess.delay_span_bug(lhs.span, "invalid lhs expression in if;\
3779                                                             expected error elsehwere");
3780                 }
3781                 _ => {
3782                     // Only check this if not in an `if` condition, as the
3783                     // mistyped comparison help is more appropriate.
3784                     if !self.tcx.expr_is_lval(&lhs) {
3785                         struct_span_err!(self.tcx.sess, expr.span, E0070,
3786                                          "invalid left-hand side expression")
3787                             .span_label(expr.span, "left-hand of expression not valid")
3788                             .emit();
3789                     }
3790                 }
3791             }
3792
3793             self.require_type_is_sized(lhs_ty, lhs.span, traits::AssignmentLhsSized);
3794
3795             if lhs_ty.references_error() || rhs_ty.references_error() {
3796                 tcx.types.err
3797             } else {
3798                 tcx.mk_nil()
3799             }
3800           }
3801           hir::ExprIf(ref cond, ref then_expr, ref opt_else_expr) => {
3802               self.check_then_else(&cond, then_expr, opt_else_expr.as_ref().map(|e| &**e),
3803                                    expr.span, expected)
3804           }
3805           hir::ExprWhile(ref cond, ref body, _) => {
3806               let ctxt = BreakableCtxt {
3807                   // cannot use break with a value from a while loop
3808                   coerce: None,
3809                   may_break: true,
3810               };
3811
3812               self.with_breakable_ctxt(expr.id, ctxt, || {
3813                   self.check_expr_has_type_or_error(&cond, tcx.types.bool);
3814                   let cond_diverging = self.diverges.get();
3815                   self.check_block_no_value(&body);
3816
3817                   // We may never reach the body so it diverging means nothing.
3818                   self.diverges.set(cond_diverging);
3819               });
3820
3821               self.tcx.mk_nil()
3822           }
3823           hir::ExprLoop(ref body, _, source) => {
3824               let coerce = match source {
3825                   // you can only use break with a value from a normal `loop { }`
3826                   hir::LoopSource::Loop => {
3827                       let coerce_to = expected.coercion_target_type(self, body.span);
3828                       Some(CoerceMany::new(coerce_to))
3829                   }
3830
3831                   hir::LoopSource::WhileLet |
3832                   hir::LoopSource::ForLoop => {
3833                       None
3834                   }
3835               };
3836
3837               let ctxt = BreakableCtxt {
3838                   coerce,
3839                   may_break: false, // will get updated if/when we find a `break`
3840               };
3841
3842               let (ctxt, ()) = self.with_breakable_ctxt(expr.id, ctxt, || {
3843                   self.check_block_no_value(&body);
3844               });
3845
3846               if ctxt.may_break {
3847                   // No way to know whether it's diverging because
3848                   // of a `break` or an outer `break` or `return.
3849                   self.diverges.set(Diverges::Maybe);
3850               }
3851
3852               // If we permit break with a value, then result type is
3853               // the LUB of the breaks (possibly ! if none); else, it
3854               // is nil. This makes sense because infinite loops
3855               // (which would have type !) are only possible iff we
3856               // permit break with a value [1].
3857               assert!(ctxt.coerce.is_some() || ctxt.may_break); // [1]
3858               ctxt.coerce.map(|c| c.complete(self)).unwrap_or(self.tcx.mk_nil())
3859           }
3860           hir::ExprMatch(ref discrim, ref arms, match_src) => {
3861             self.check_match(expr, &discrim, arms, expected, match_src)
3862           }
3863           hir::ExprClosure(capture, ref decl, body_id, _, _) => {
3864               self.check_expr_closure(expr, capture, &decl, body_id, expected)
3865           }
3866           hir::ExprBlock(ref body) => {
3867             self.check_block_with_expected(&body, expected)
3868           }
3869           hir::ExprCall(ref callee, ref args) => {
3870               self.check_call(expr, &callee, args, expected)
3871           }
3872           hir::ExprMethodCall(ref segment, span, ref args) => {
3873               self.check_method_call(expr, segment, span, args, expected, lvalue_pref)
3874           }
3875           hir::ExprCast(ref e, ref t) => {
3876             // Find the type of `e`. Supply hints based on the type we are casting to,
3877             // if appropriate.
3878             let t_cast = self.to_ty(t);
3879             let t_cast = self.resolve_type_vars_if_possible(&t_cast);
3880             let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
3881             let t_cast = self.resolve_type_vars_if_possible(&t_cast);
3882             let diverges = self.diverges.get();
3883
3884             // Eagerly check for some obvious errors.
3885             if t_expr.references_error() || t_cast.references_error() {
3886                 tcx.types.err
3887             } else {
3888                 // Defer other checks until we're done type checking.
3889                 let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
3890                 match cast::CastCheck::new(self, e, t_expr, diverges, t_cast, t.span, expr.span) {
3891                     Ok(cast_check) => {
3892                         deferred_cast_checks.push(cast_check);
3893                         t_cast
3894                     }
3895                     Err(ErrorReported) => {
3896                         tcx.types.err
3897                     }
3898                 }
3899             }
3900           }
3901           hir::ExprType(ref e, ref t) => {
3902             let typ = self.to_ty(&t);
3903             self.check_expr_eq_type(&e, typ);
3904             typ
3905           }
3906           hir::ExprArray(ref args) => {
3907               let uty = expected.to_option(self).and_then(|uty| {
3908                   match uty.sty {
3909                       ty::TyArray(ty, _) | ty::TySlice(ty) => Some(ty),
3910                       _ => None
3911                   }
3912               });
3913
3914               let element_ty = if !args.is_empty() {
3915                   let coerce_to = uty.unwrap_or_else(
3916                       || self.next_ty_var(TypeVariableOrigin::TypeInference(expr.span)));
3917                   let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
3918                   assert_eq!(self.diverges.get(), Diverges::Maybe);
3919                   for e in args {
3920                       let e_ty = self.check_expr_with_hint(e, coerce_to);
3921                       let cause = self.misc(e.span);
3922                       coerce.coerce(self, &cause, e, e_ty, self.diverges.get());
3923                   }
3924                   coerce.complete(self)
3925               } else {
3926                   self.next_ty_var(TypeVariableOrigin::TypeInference(expr.span))
3927               };
3928               tcx.mk_array(element_ty, args.len() as u64)
3929           }
3930           hir::ExprRepeat(ref element, count) => {
3931             let count_def_id = tcx.hir.body_owner_def_id(count);
3932             let param_env = ty::ParamEnv::empty(traits::Reveal::UserFacing);
3933             let substs = Substs::identity_for_item(tcx.global_tcx(), count_def_id);
3934             let count = tcx.const_eval(param_env.and((count_def_id, substs)));
3935
3936             if let Err(ref err) = count {
3937                err.report(tcx, tcx.def_span(count_def_id), "constant expression");
3938             }
3939
3940             let uty = match expected {
3941                 ExpectHasType(uty) => {
3942                     match uty.sty {
3943                         ty::TyArray(ty, _) | ty::TySlice(ty) => Some(ty),
3944                         _ => None
3945                     }
3946                 }
3947                 _ => None
3948             };
3949
3950             let (element_ty, t) = match uty {
3951                 Some(uty) => {
3952                     self.check_expr_coercable_to_type(&element, uty);
3953                     (uty, uty)
3954                 }
3955                 None => {
3956                     let t: Ty = self.next_ty_var(TypeVariableOrigin::MiscVariable(element.span));
3957                     let element_ty = self.check_expr_has_type_or_error(&element, t);
3958                     (element_ty, t)
3959                 }
3960             };
3961
3962             if let Ok(count) = count {
3963                 let zero_or_one = count.val.to_const_int().and_then(|count| {
3964                     count.to_u64().map(|count| count <= 1)
3965                 }).unwrap_or(false);
3966                 if !zero_or_one {
3967                     // For [foo, ..n] where n > 1, `foo` must have
3968                     // Copy type:
3969                     let lang_item = self.tcx.require_lang_item(lang_items::CopyTraitLangItem);
3970                     self.require_type_meets(t, expr.span, traits::RepeatVec, lang_item);
3971                 }
3972             }
3973
3974             if element_ty.references_error() {
3975                 tcx.types.err
3976             } else if let Ok(count) = count {
3977                 tcx.mk_ty(ty::TyArray(t, count))
3978             } else {
3979                 tcx.types.err
3980             }
3981           }
3982           hir::ExprTup(ref elts) => {
3983             let flds = expected.only_has_type(self).and_then(|ty| {
3984                 let ty = self.resolve_type_vars_with_obligations(ty);
3985                 match ty.sty {
3986                     ty::TyTuple(ref flds, _) => Some(&flds[..]),
3987                     _ => None
3988                 }
3989             });
3990
3991             let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| {
3992                 let t = match flds {
3993                     Some(ref fs) if i < fs.len() => {
3994                         let ety = fs[i];
3995                         self.check_expr_coercable_to_type(&e, ety);
3996                         ety
3997                     }
3998                     _ => {
3999                         self.check_expr_with_expectation(&e, NoExpectation)
4000                     }
4001                 };
4002                 t
4003             });
4004             let tuple = tcx.mk_tup(elt_ts_iter, false);
4005             if tuple.references_error() {
4006                 tcx.types.err
4007             } else {
4008                 self.require_type_is_sized(tuple, expr.span, traits::TupleInitializerSized);
4009                 tuple
4010             }
4011           }
4012           hir::ExprStruct(ref qpath, ref fields, ref base_expr) => {
4013             self.check_expr_struct(expr, expected, qpath, fields, base_expr)
4014           }
4015           hir::ExprField(ref base, ref field) => {
4016             self.check_field(expr, lvalue_pref, &base, field)
4017           }
4018           hir::ExprTupField(ref base, idx) => {
4019             self.check_tup_field(expr, lvalue_pref, &base, idx)
4020           }
4021           hir::ExprIndex(ref base, ref idx) => {
4022               let base_t = self.check_expr_with_lvalue_pref(&base, lvalue_pref);
4023               let idx_t = self.check_expr(&idx);
4024
4025               if base_t.references_error() {
4026                   base_t
4027               } else if idx_t.references_error() {
4028                   idx_t
4029               } else {
4030                   let base_t = self.structurally_resolved_type(expr.span, base_t);
4031                   match self.lookup_indexing(expr, base, base_t, idx_t, lvalue_pref) {
4032                       Some((index_ty, element_ty)) => {
4033                           self.demand_coerce(idx, idx_t, index_ty);
4034                           element_ty
4035                       }
4036                       None => {
4037                           let mut err = type_error_struct!(tcx.sess, expr.span, base_t, E0608,
4038                                                            "cannot index into a value of type `{}`",
4039                                                            base_t);
4040                           // Try to give some advice about indexing tuples.
4041                           if let ty::TyTuple(..) = base_t.sty {
4042                               let mut needs_note = true;
4043                               // If the index is an integer, we can show the actual
4044                               // fixed expression:
4045                               if let hir::ExprLit(ref lit) = idx.node {
4046                                   if let ast::LitKind::Int(i,
4047                                             ast::LitIntType::Unsuffixed) = lit.node {
4048                                       let snip = tcx.sess.codemap().span_to_snippet(base.span);
4049                                       if let Ok(snip) = snip {
4050                                           err.span_suggestion(expr.span,
4051                                                               "to access tuple elements, use",
4052                                                               format!("{}.{}", snip, i));
4053                                           needs_note = false;
4054                                       }
4055                                   }
4056                               }
4057                               if needs_note {
4058                                   err.help("to access tuple elements, use tuple indexing \
4059                                             syntax (e.g. `tuple.0`)");
4060                               }
4061                           }
4062                           err.emit();
4063                           self.tcx.types.err
4064                       }
4065                   }
4066               }
4067            }
4068           hir::ExprYield(ref value) => {
4069             match self.yield_ty {
4070                 Some(ty) => {
4071                     self.check_expr_coercable_to_type(&value, ty);
4072                 }
4073                 None => {
4074                     struct_span_err!(self.tcx.sess, expr.span, E0627,
4075                                  "yield statement outside of generator literal").emit();
4076                 }
4077             }
4078             tcx.mk_nil()
4079           }
4080         }
4081     }
4082
4083     // Finish resolving a path in a struct expression or pattern `S::A { .. }` if necessary.
4084     // The newly resolved definition is written into `type_dependent_defs`.
4085     fn finish_resolving_struct_path(&self,
4086                                     qpath: &hir::QPath,
4087                                     path_span: Span,
4088                                     node_id: ast::NodeId)
4089                                     -> (Def, Ty<'tcx>)
4090     {
4091         match *qpath {
4092             hir::QPath::Resolved(ref maybe_qself, ref path) => {
4093                 let opt_self_ty = maybe_qself.as_ref().map(|qself| self.to_ty(qself));
4094                 let ty = AstConv::def_to_ty(self, opt_self_ty, path, true);
4095                 (path.def, ty)
4096             }
4097             hir::QPath::TypeRelative(ref qself, ref segment) => {
4098                 let ty = self.to_ty(qself);
4099
4100                 let def = if let hir::TyPath(hir::QPath::Resolved(_, ref path)) = qself.node {
4101                     path.def
4102                 } else {
4103                     Def::Err
4104                 };
4105                 let (ty, def) = AstConv::associated_path_def_to_ty(self, node_id, path_span,
4106                                                                    ty, def, segment);
4107
4108                 // Write back the new resolution.
4109                 let hir_id = self.tcx.hir.node_to_hir_id(node_id);
4110                 self.tables.borrow_mut().type_dependent_defs_mut().insert(hir_id, def);
4111
4112                 (def, ty)
4113             }
4114         }
4115     }
4116
4117     // Resolve associated value path into a base type and associated constant or method definition.
4118     // The newly resolved definition is written into `type_dependent_defs`.
4119     pub fn resolve_ty_and_def_ufcs<'b>(&self,
4120                                        qpath: &'b hir::QPath,
4121                                        node_id: ast::NodeId,
4122                                        span: Span)
4123                                        -> (Def, Option<Ty<'tcx>>, &'b [hir::PathSegment])
4124     {
4125         let (ty, item_segment) = match *qpath {
4126             hir::QPath::Resolved(ref opt_qself, ref path) => {
4127                 return (path.def,
4128                         opt_qself.as_ref().map(|qself| self.to_ty(qself)),
4129                         &path.segments[..]);
4130             }
4131             hir::QPath::TypeRelative(ref qself, ref segment) => {
4132                 (self.to_ty(qself), segment)
4133             }
4134         };
4135         let hir_id = self.tcx.hir.node_to_hir_id(node_id);
4136         if let Some(cached_def) = self.tables.borrow().type_dependent_defs().get(hir_id) {
4137             // Return directly on cache hit. This is useful to avoid doubly reporting
4138             // errors with default match binding modes. See #44614.
4139             return (*cached_def, Some(ty), slice::ref_slice(&**item_segment))
4140         }
4141         let item_name = item_segment.name;
4142         let def = match self.resolve_ufcs(span, item_name, ty, node_id) {
4143             Ok(def) => def,
4144             Err(error) => {
4145                 let def = match error {
4146                     method::MethodError::PrivateMatch(def, _) => def,
4147                     _ => Def::Err,
4148                 };
4149                 if item_name != keywords::Invalid.name() {
4150                     self.report_method_error(span, ty, item_name, None, error, None);
4151                 }
4152                 def
4153             }
4154         };
4155
4156         // Write back the new resolution.
4157         self.tables.borrow_mut().type_dependent_defs_mut().insert(hir_id, def);
4158         (def, Some(ty), slice::ref_slice(&**item_segment))
4159     }
4160
4161     pub fn check_decl_initializer(&self,
4162                                   local: &'gcx hir::Local,
4163                                   init: &'gcx hir::Expr) -> Ty<'tcx>
4164     {
4165         // FIXME(tschottdorf): contains_explicit_ref_binding() must be removed
4166         // for #42640 (default match binding modes).
4167         //
4168         // See #44848.
4169         let ref_bindings = local.pat.contains_explicit_ref_binding();
4170
4171         let local_ty = self.local_ty(init.span, local.id);
4172         if let Some(m) = ref_bindings {
4173             // Somewhat subtle: if we have a `ref` binding in the pattern,
4174             // we want to avoid introducing coercions for the RHS. This is
4175             // both because it helps preserve sanity and, in the case of
4176             // ref mut, for soundness (issue #23116). In particular, in
4177             // the latter case, we need to be clear that the type of the
4178             // referent for the reference that results is *equal to* the
4179             // type of the lvalue it is referencing, and not some
4180             // supertype thereof.
4181             let init_ty = self.check_expr_with_lvalue_pref(init, LvaluePreference::from_mutbl(m));
4182             self.demand_eqtype(init.span, init_ty, local_ty);
4183             init_ty
4184         } else {
4185             self.check_expr_coercable_to_type(init, local_ty)
4186         }
4187     }
4188
4189     pub fn check_decl_local(&self, local: &'gcx hir::Local)  {
4190         let t = self.local_ty(local.span, local.id);
4191         self.write_ty(local.hir_id, t);
4192
4193         if let Some(ref init) = local.init {
4194             let init_ty = self.check_decl_initializer(local, &init);
4195             if init_ty.references_error() {
4196                 self.write_ty(local.hir_id, init_ty);
4197             }
4198         }
4199
4200         self.check_pat_walk(&local.pat, t,
4201                             ty::BindingMode::BindByValue(hir::Mutability::MutImmutable),
4202                             true);
4203         let pat_ty = self.node_ty(local.pat.hir_id);
4204         if pat_ty.references_error() {
4205             self.write_ty(local.hir_id, pat_ty);
4206         }
4207     }
4208
4209     pub fn check_stmt(&self, stmt: &'gcx hir::Stmt) {
4210         // Don't do all the complex logic below for DeclItem.
4211         match stmt.node {
4212             hir::StmtDecl(ref decl, _) => {
4213                 match decl.node {
4214                     hir::DeclLocal(_) => {}
4215                     hir::DeclItem(_) => {
4216                         return;
4217                     }
4218                 }
4219             }
4220             hir::StmtExpr(..) | hir::StmtSemi(..) => {}
4221         }
4222
4223         self.warn_if_unreachable(stmt.node.id(), stmt.span, "statement");
4224
4225         // Hide the outer diverging and has_errors flags.
4226         let old_diverges = self.diverges.get();
4227         let old_has_errors = self.has_errors.get();
4228         self.diverges.set(Diverges::Maybe);
4229         self.has_errors.set(false);
4230
4231         match stmt.node {
4232             hir::StmtDecl(ref decl, _) => {
4233                 match decl.node {
4234                     hir::DeclLocal(ref l) => {
4235                         self.check_decl_local(&l);
4236                     }
4237                     hir::DeclItem(_) => {/* ignore for now */}
4238                 }
4239             }
4240             hir::StmtExpr(ref expr, _) => {
4241                 // Check with expected type of ()
4242                 self.check_expr_has_type_or_error(&expr, self.tcx.mk_nil());
4243             }
4244             hir::StmtSemi(ref expr, _) => {
4245                 self.check_expr(&expr);
4246             }
4247         }
4248
4249         // Combine the diverging and has_error flags.
4250         self.diverges.set(self.diverges.get() | old_diverges);
4251         self.has_errors.set(self.has_errors.get() | old_has_errors);
4252     }
4253
4254     pub fn check_block_no_value(&self, blk: &'gcx hir::Block)  {
4255         let unit = self.tcx.mk_nil();
4256         let ty = self.check_block_with_expected(blk, ExpectHasType(unit));
4257
4258         // if the block produces a `!` value, that can always be
4259         // (effectively) coerced to unit.
4260         if !ty.is_never() {
4261             self.demand_suptype(blk.span, unit, ty);
4262         }
4263     }
4264
4265     fn check_block_with_expected(&self,
4266                                  blk: &'gcx hir::Block,
4267                                  expected: Expectation<'tcx>) -> Ty<'tcx> {
4268         let prev = {
4269             let mut fcx_ps = self.ps.borrow_mut();
4270             let unsafety_state = fcx_ps.recurse(blk);
4271             replace(&mut *fcx_ps, unsafety_state)
4272         };
4273
4274         // In some cases, blocks have just one exit, but other blocks
4275         // can be targeted by multiple breaks. This cannot happen in
4276         // normal Rust syntax today, but it can happen when we desugar
4277         // a `do catch { ... }` expression.
4278         //
4279         // Example 1:
4280         //
4281         //    'a: { if true { break 'a Err(()); } Ok(()) }
4282         //
4283         // Here we would wind up with two coercions, one from
4284         // `Err(())` and the other from the tail expression
4285         // `Ok(())`. If the tail expression is omitted, that's a
4286         // "forced unit" -- unless the block diverges, in which
4287         // case we can ignore the tail expression (e.g., `'a: {
4288         // break 'a 22; }` would not force the type of the block
4289         // to be `()`).
4290         let tail_expr = blk.expr.as_ref();
4291         let coerce_to_ty = expected.coercion_target_type(self, blk.span);
4292         let coerce = if blk.targeted_by_break {
4293             CoerceMany::new(coerce_to_ty)
4294         } else {
4295             let tail_expr: &[P<hir::Expr>] = match tail_expr {
4296                 Some(e) => ref_slice(e),
4297                 None => &[],
4298             };
4299             CoerceMany::with_coercion_sites(coerce_to_ty, tail_expr)
4300         };
4301
4302         let prev_diverges = self.diverges.get();
4303         let ctxt = BreakableCtxt {
4304             coerce: Some(coerce),
4305             may_break: false,
4306         };
4307
4308         let (ctxt, ()) = self.with_breakable_ctxt(blk.id, ctxt, || {
4309             for s in &blk.stmts {
4310                 self.check_stmt(s);
4311             }
4312
4313             // check the tail expression **without** holding the
4314             // `enclosing_breakables` lock below.
4315             let tail_expr_ty = tail_expr.map(|t| self.check_expr_with_expectation(t, expected));
4316
4317             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4318             let ctxt = enclosing_breakables.find_breakable(blk.id);
4319             let coerce = ctxt.coerce.as_mut().unwrap();
4320             if let Some(tail_expr_ty) = tail_expr_ty {
4321                 let tail_expr = tail_expr.unwrap();
4322                 let cause = self.cause(tail_expr.span,
4323                                        ObligationCauseCode::BlockTailExpression(blk.id));
4324                 coerce.coerce(self,
4325                               &cause,
4326                               tail_expr,
4327                               tail_expr_ty,
4328                               self.diverges.get());
4329             } else {
4330                 // Subtle: if there is no explicit tail expression,
4331                 // that is typically equivalent to a tail expression
4332                 // of `()` -- except if the block diverges. In that
4333                 // case, there is no value supplied from the tail
4334                 // expression (assuming there are no other breaks,
4335                 // this implies that the type of the block will be
4336                 // `!`).
4337                 //
4338                 // #41425 -- label the implicit `()` as being the
4339                 // "found type" here, rather than the "expected type".
4340                 if !self.diverges.get().always() {
4341                     coerce.coerce_forced_unit(self, &self.misc(blk.span), &mut |err| {
4342                         if let Some(expected_ty) = expected.only_has_type(self) {
4343                             self.consider_hint_about_removing_semicolon(blk,
4344                                                                         expected_ty,
4345                                                                         err);
4346                         }
4347                     }, false);
4348                 }
4349             }
4350         });
4351
4352         if ctxt.may_break {
4353             // If we can break from the block, then the block's exit is always reachable
4354             // (... as long as the entry is reachable) - regardless of the tail of the block.
4355             self.diverges.set(prev_diverges);
4356         }
4357
4358         let mut ty = ctxt.coerce.unwrap().complete(self);
4359
4360         if self.has_errors.get() || ty.references_error() {
4361             ty = self.tcx.types.err
4362         }
4363
4364         self.write_ty(blk.hir_id, ty);
4365
4366         *self.ps.borrow_mut() = prev;
4367         ty
4368     }
4369
4370     /// Given a `NodeId`, return the `FnDecl` of the method it is enclosed by and whether a
4371     /// suggestion can be made, `None` otherwise.
4372     pub fn get_fn_decl(&self, blk_id: ast::NodeId) -> Option<(hir::FnDecl, bool)> {
4373         // Get enclosing Fn, if it is a function or a trait method, unless there's a `loop` or
4374         // `while` before reaching it, as block tail returns are not available in them.
4375         if let Some(fn_id) = self.tcx.hir.get_return_block(blk_id) {
4376             let parent = self.tcx.hir.get(fn_id);
4377
4378             if let Node::NodeItem(&hir::Item {
4379                 name, node: hir::ItemFn(ref decl, ..), ..
4380             }) = parent {
4381                 decl.clone().and_then(|decl| {
4382                     // This is less than ideal, it will not suggest a return type span on any
4383                     // method called `main`, regardless of whether it is actually the entry point,
4384                     // but it will still present it as the reason for the expected type.
4385                     Some((decl, name != Symbol::intern("main")))
4386                 })
4387             } else if let Node::NodeTraitItem(&hir::TraitItem {
4388                 node: hir::TraitItemKind::Method(hir::MethodSig {
4389                     ref decl, ..
4390                 }, ..), ..
4391             }) = parent {
4392                 decl.clone().and_then(|decl| {
4393                     Some((decl, true))
4394                 })
4395             } else if let Node::NodeImplItem(&hir::ImplItem {
4396                 node: hir::ImplItemKind::Method(hir::MethodSig {
4397                     ref decl, ..
4398                 }, ..), ..
4399             }) = parent {
4400                 decl.clone().and_then(|decl| {
4401                     Some((decl, false))
4402                 })
4403             } else {
4404                 None
4405             }
4406         } else {
4407             None
4408         }
4409     }
4410
4411     /// On implicit return expressions with mismatched types, provide the following suggestions:
4412     ///
4413     ///  - Point out the method's return type as the reason for the expected type
4414     ///  - Possible missing semicolon
4415     ///  - Possible missing return type if the return type is the default, and not `fn main()`
4416     pub fn suggest_mismatched_types_on_tail(&self,
4417                                             err: &mut DiagnosticBuilder<'tcx>,
4418                                             expression: &'gcx hir::Expr,
4419                                             expected: Ty<'tcx>,
4420                                             found: Ty<'tcx>,
4421                                             cause_span: Span,
4422                                             blk_id: ast::NodeId) {
4423         self.suggest_missing_semicolon(err, expression, expected, cause_span);
4424
4425         if let Some((fn_decl, can_suggest)) = self.get_fn_decl(blk_id) {
4426             self.suggest_missing_return_type(err, &fn_decl, expected, found, can_suggest);
4427         }
4428     }
4429
4430     /// A common error is to forget to add a semicolon at the end of a block:
4431     ///
4432     /// ```
4433     /// fn foo() {
4434     ///     bar_that_returns_u32()
4435     /// }
4436     /// ```
4437     ///
4438     /// This routine checks if the return expression in a block would make sense on its own as a
4439     /// statement and the return type has been left as default or has been specified as `()`. If so,
4440     /// it suggests adding a semicolon.
4441     fn suggest_missing_semicolon(&self,
4442                                      err: &mut DiagnosticBuilder<'tcx>,
4443                                      expression: &'gcx hir::Expr,
4444                                      expected: Ty<'tcx>,
4445                                      cause_span: Span) {
4446         if expected.is_nil() {
4447             // `BlockTailExpression` only relevant if the tail expr would be
4448             // useful on its own.
4449             match expression.node {
4450                 hir::ExprCall(..) |
4451                 hir::ExprMethodCall(..) |
4452                 hir::ExprIf(..) |
4453                 hir::ExprWhile(..) |
4454                 hir::ExprLoop(..) |
4455                 hir::ExprMatch(..) |
4456                 hir::ExprBlock(..) => {
4457                     let sp = cause_span.next_point();
4458                     err.span_suggestion(sp,
4459                                         "try adding a semicolon",
4460                                         ";".to_string());
4461                 }
4462                 _ => (),
4463             }
4464         }
4465     }
4466
4467
4468     /// A possible error is to forget to add a return type that is needed:
4469     ///
4470     /// ```
4471     /// fn foo() {
4472     ///     bar_that_returns_u32()
4473     /// }
4474     /// ```
4475     ///
4476     /// This routine checks if the return type is left as default, the method is not part of an
4477     /// `impl` block and that it isn't the `main` method. If so, it suggests setting the return
4478     /// type.
4479     fn suggest_missing_return_type(&self,
4480                                    err: &mut DiagnosticBuilder<'tcx>,
4481                                    fn_decl: &hir::FnDecl,
4482                                    expected: Ty<'tcx>,
4483                                    found: Ty<'tcx>,
4484                                    can_suggest: bool) {
4485         // Only suggest changing the return type for methods that
4486         // haven't set a return type at all (and aren't `fn main()` or an impl).
4487         match (&fn_decl.output, found.is_suggestable(), can_suggest) {
4488             (&hir::FunctionRetTy::DefaultReturn(span), true, true) => {
4489                 err.span_suggestion(span,
4490                                     "try adding a return type",
4491                                     format!("-> {} ", found));
4492             }
4493             (&hir::FunctionRetTy::DefaultReturn(span), false, true) => {
4494                 err.span_label(span, "possibly return type missing here?");
4495             }
4496             (&hir::FunctionRetTy::DefaultReturn(span), _, _) => {
4497                 // `fn main()` must return `()`, do not suggest changing return type
4498                 err.span_label(span, "expected `()` because of default return type");
4499             }
4500             (&hir::FunctionRetTy::Return(ref ty), _, _) => {
4501                 // Only point to return type if the expected type is the return type, as if they
4502                 // are not, the expectation must have been caused by something else.
4503                 debug!("suggest_missing_return_type: return type {:?} node {:?}", ty, ty.node);
4504                 let sp = ty.span;
4505                 let ty = AstConv::ast_ty_to_ty(self, ty);
4506                 debug!("suggest_missing_return_type: return type sty {:?}", ty.sty);
4507                 debug!("suggest_missing_return_type: expected type sty {:?}", ty.sty);
4508                 if ty.sty == expected.sty {
4509                     err.span_label(sp, format!("expected `{}` because of return type",
4510                                                expected));
4511                 }
4512             }
4513         }
4514     }
4515
4516
4517     /// A common error is to add an extra semicolon:
4518     ///
4519     /// ```
4520     /// fn foo() -> usize {
4521     ///     22;
4522     /// }
4523     /// ```
4524     ///
4525     /// This routine checks if the final statement in a block is an
4526     /// expression with an explicit semicolon whose type is compatible
4527     /// with `expected_ty`. If so, it suggests removing the semicolon.
4528     fn consider_hint_about_removing_semicolon(&self,
4529                                               blk: &'gcx hir::Block,
4530                                               expected_ty: Ty<'tcx>,
4531                                               err: &mut DiagnosticBuilder) {
4532         // Be helpful when the user wrote `{... expr;}` and
4533         // taking the `;` off is enough to fix the error.
4534         let last_stmt = match blk.stmts.last() {
4535             Some(s) => s,
4536             None => return,
4537         };
4538         let last_expr = match last_stmt.node {
4539             hir::StmtSemi(ref e, _) => e,
4540             _ => return,
4541         };
4542         let last_expr_ty = self.node_ty(last_expr.hir_id);
4543         if self.can_sub(self.param_env, last_expr_ty, expected_ty).is_err() {
4544             return;
4545         }
4546         let original_span = original_sp(last_stmt.span, blk.span);
4547         let span_semi = original_span.with_lo(original_span.hi() - BytePos(1));
4548         err.span_suggestion(span_semi, "consider removing this semicolon", "".to_string());
4549     }
4550
4551     // Instantiates the given path, which must refer to an item with the given
4552     // number of type parameters and type.
4553     pub fn instantiate_value_path(&self,
4554                                   segments: &[hir::PathSegment],
4555                                   opt_self_ty: Option<Ty<'tcx>>,
4556                                   def: Def,
4557                                   span: Span,
4558                                   node_id: ast::NodeId)
4559                                   -> Ty<'tcx> {
4560         debug!("instantiate_value_path(path={:?}, def={:?}, node_id={})",
4561                segments,
4562                def,
4563                node_id);
4564
4565         // We need to extract the type parameters supplied by the user in
4566         // the path `path`. Due to the current setup, this is a bit of a
4567         // tricky-process; the problem is that resolve only tells us the
4568         // end-point of the path resolution, and not the intermediate steps.
4569         // Luckily, we can (at least for now) deduce the intermediate steps
4570         // just from the end-point.
4571         //
4572         // There are basically four cases to consider:
4573         //
4574         // 1. Reference to a constructor of enum variant or struct:
4575         //
4576         //        struct Foo<T>(...)
4577         //        enum E<T> { Foo(...) }
4578         //
4579         //    In these cases, the parameters are declared in the type
4580         //    space.
4581         //
4582         // 2. Reference to a fn item or a free constant:
4583         //
4584         //        fn foo<T>() { }
4585         //
4586         //    In this case, the path will again always have the form
4587         //    `a::b::foo::<T>` where only the final segment should have
4588         //    type parameters. However, in this case, those parameters are
4589         //    declared on a value, and hence are in the `FnSpace`.
4590         //
4591         // 3. Reference to a method or an associated constant:
4592         //
4593         //        impl<A> SomeStruct<A> {
4594         //            fn foo<B>(...)
4595         //        }
4596         //
4597         //    Here we can have a path like
4598         //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
4599         //    may appear in two places. The penultimate segment,
4600         //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
4601         //    final segment, `foo::<B>` contains parameters in fn space.
4602         //
4603         // 4. Reference to a local variable
4604         //
4605         //    Local variables can't have any type parameters.
4606         //
4607         // The first step then is to categorize the segments appropriately.
4608
4609         assert!(!segments.is_empty());
4610
4611         let mut ufcs_associated = None;
4612         let mut type_segment = None;
4613         let mut fn_segment = None;
4614         match def {
4615             // Case 1. Reference to a struct/variant constructor.
4616             Def::StructCtor(def_id, ..) |
4617             Def::VariantCtor(def_id, ..) => {
4618                 // Everything but the final segment should have no
4619                 // parameters at all.
4620                 let mut generics = self.tcx.generics_of(def_id);
4621                 if let Some(def_id) = generics.parent {
4622                     // Variant and struct constructors use the
4623                     // generics of their parent type definition.
4624                     generics = self.tcx.generics_of(def_id);
4625                 }
4626                 type_segment = Some((segments.last().unwrap(), generics));
4627             }
4628
4629             // Case 2. Reference to a top-level value.
4630             Def::Fn(def_id) |
4631             Def::Const(def_id) |
4632             Def::Static(def_id, _) => {
4633                 fn_segment = Some((segments.last().unwrap(),
4634                                    self.tcx.generics_of(def_id)));
4635             }
4636
4637             // Case 3. Reference to a method or associated const.
4638             Def::Method(def_id) |
4639             Def::AssociatedConst(def_id) => {
4640                 let container = self.tcx.associated_item(def_id).container;
4641                 match container {
4642                     ty::TraitContainer(trait_did) => {
4643                         callee::check_legal_trait_for_method_call(self.tcx, span, trait_did)
4644                     }
4645                     ty::ImplContainer(_) => {}
4646                 }
4647
4648                 let generics = self.tcx.generics_of(def_id);
4649                 if segments.len() >= 2 {
4650                     let parent_generics = self.tcx.generics_of(generics.parent.unwrap());
4651                     type_segment = Some((&segments[segments.len() - 2], parent_generics));
4652                 } else {
4653                     // `<T>::assoc` will end up here, and so can `T::assoc`.
4654                     let self_ty = opt_self_ty.expect("UFCS sugared assoc missing Self");
4655                     ufcs_associated = Some((container, self_ty));
4656                 }
4657                 fn_segment = Some((segments.last().unwrap(), generics));
4658             }
4659
4660             // Case 4. Local variable, no generics.
4661             Def::Local(..) | Def::Upvar(..) => {}
4662
4663             _ => bug!("unexpected definition: {:?}", def),
4664         }
4665
4666         debug!("type_segment={:?} fn_segment={:?}", type_segment, fn_segment);
4667
4668         // Now that we have categorized what space the parameters for each
4669         // segment belong to, let's sort out the parameters that the user
4670         // provided (if any) into their appropriate spaces. We'll also report
4671         // errors if type parameters are provided in an inappropriate place.
4672         let poly_segments = type_segment.is_some() as usize +
4673                             fn_segment.is_some() as usize;
4674         AstConv::prohibit_type_params(self, &segments[..segments.len() - poly_segments]);
4675
4676         match def {
4677             Def::Local(nid) | Def::Upvar(nid, ..) => {
4678                 let ty = self.local_ty(span, nid);
4679                 let ty = self.normalize_associated_types_in(span, &ty);
4680                 self.write_ty(self.tcx.hir.node_to_hir_id(node_id), ty);
4681                 return ty;
4682             }
4683             _ => {}
4684         }
4685
4686         // Now we have to compare the types that the user *actually*
4687         // provided against the types that were *expected*. If the user
4688         // did not provide any types, then we want to substitute inference
4689         // variables. If the user provided some types, we may still need
4690         // to add defaults. If the user provided *too many* types, that's
4691         // a problem.
4692         self.check_path_parameter_count(span, &mut type_segment, false);
4693         self.check_path_parameter_count(span, &mut fn_segment, false);
4694         self.check_impl_trait(span, &mut fn_segment);
4695
4696         let (fn_start, has_self) = match (type_segment, fn_segment) {
4697             (_, Some((_, generics))) => {
4698                 (generics.parent_count(), generics.has_self)
4699             }
4700             (Some((_, generics)), None) => {
4701                 (generics.own_count(), generics.has_self)
4702             }
4703             (None, None) => (0, false)
4704         };
4705         let substs = Substs::for_item(self.tcx, def.def_id(), |def, _| {
4706             let mut i = def.index as usize;
4707
4708             let segment = if i < fn_start {
4709                 i -= has_self as usize;
4710                 type_segment
4711             } else {
4712                 i -= fn_start;
4713                 fn_segment
4714             };
4715             let lifetimes = segment.map_or(&[][..], |(s, _)| {
4716                 s.parameters.as_ref().map_or(&[][..], |p| &p.lifetimes[..])
4717             });
4718
4719             if let Some(lifetime) = lifetimes.get(i) {
4720                 AstConv::ast_region_to_region(self, lifetime, Some(def))
4721             } else {
4722                 self.re_infer(span, Some(def)).unwrap()
4723             }
4724         }, |def, substs| {
4725             let mut i = def.index as usize;
4726
4727             let segment = if i < fn_start {
4728                 // Handle Self first, so we can adjust the index to match the AST.
4729                 if has_self && i == 0 {
4730                     return opt_self_ty.unwrap_or_else(|| {
4731                         self.type_var_for_def(span, def, substs)
4732                     });
4733                 }
4734                 i -= has_self as usize;
4735                 type_segment
4736             } else {
4737                 i -= fn_start;
4738                 fn_segment
4739             };
4740             let (types, infer_types) = segment.map_or((&[][..], true), |(s, _)| {
4741                 (s.parameters.as_ref().map_or(&[][..], |p| &p.types[..]), s.infer_types)
4742             });
4743
4744             // Skip over the lifetimes in the same segment.
4745             if let Some((_, generics)) = segment {
4746                 i -= generics.regions.len();
4747             }
4748
4749             if let Some(ast_ty) = types.get(i) {
4750                 // A provided type parameter.
4751                 self.to_ty(ast_ty)
4752             } else if !infer_types && def.has_default {
4753                 // No type parameter provided, but a default exists.
4754                 let default = self.tcx.type_of(def.def_id);
4755                 self.normalize_ty(
4756                     span,
4757                     default.subst_spanned(self.tcx, substs, Some(span))
4758                 )
4759             } else {
4760                 // No type parameters were provided, we can infer all.
4761                 // This can also be reached in some error cases:
4762                 // We prefer to use inference variables instead of
4763                 // TyError to let type inference recover somewhat.
4764                 self.type_var_for_def(span, def, substs)
4765             }
4766         });
4767
4768         // The things we are substituting into the type should not contain
4769         // escaping late-bound regions, and nor should the base type scheme.
4770         let ty = self.tcx.type_of(def.def_id());
4771         assert!(!substs.has_escaping_regions());
4772         assert!(!ty.has_escaping_regions());
4773
4774         // Add all the obligations that are required, substituting and
4775         // normalized appropriately.
4776         let bounds = self.instantiate_bounds(span, def.def_id(), &substs);
4777         self.add_obligations_for_parameters(
4778             traits::ObligationCause::new(span, self.body_id, traits::ItemObligation(def.def_id())),
4779             &bounds);
4780
4781         // Substitute the values for the type parameters into the type of
4782         // the referenced item.
4783         let ty_substituted = self.instantiate_type_scheme(span, &substs, &ty);
4784
4785         if let Some((ty::ImplContainer(impl_def_id), self_ty)) = ufcs_associated {
4786             // In the case of `Foo<T>::method` and `<Foo<T>>::method`, if `method`
4787             // is inherent, there is no `Self` parameter, instead, the impl needs
4788             // type parameters, which we can infer by unifying the provided `Self`
4789             // with the substituted impl type.
4790             let ty = self.tcx.type_of(impl_def_id);
4791
4792             let impl_ty = self.instantiate_type_scheme(span, &substs, &ty);
4793             match self.at(&self.misc(span), self.param_env).sup(impl_ty, self_ty) {
4794                 Ok(ok) => self.register_infer_ok_obligations(ok),
4795                 Err(_) => {
4796                     span_bug!(span,
4797                         "instantiate_value_path: (UFCS) {:?} was a subtype of {:?} but now is not?",
4798                         self_ty,
4799                         impl_ty);
4800                 }
4801             }
4802         }
4803
4804         debug!("instantiate_value_path: type of {:?} is {:?}",
4805                node_id,
4806                ty_substituted);
4807         self.write_substs(self.tcx.hir.node_to_hir_id(node_id), substs);
4808         ty_substituted
4809     }
4810
4811     /// Report errors if the provided parameters are too few or too many.
4812     fn check_path_parameter_count(&self,
4813                                   span: Span,
4814                                   segment: &mut Option<(&hir::PathSegment, &ty::Generics)>,
4815                                   is_method_call: bool) {
4816         let (lifetimes, types, infer_types, bindings) = segment.map_or(
4817             (&[][..], &[][..], true, &[][..]),
4818             |(s, _)| s.parameters.as_ref().map_or(
4819                 (&[][..], &[][..], s.infer_types, &[][..]),
4820                 |p| (&p.lifetimes[..], &p.types[..],
4821                      s.infer_types, &p.bindings[..])));
4822         let infer_lifetimes = lifetimes.len() == 0;
4823
4824         let count_lifetime_params = |n| {
4825             format!("{} lifetime parameter{}", n, if n == 1 { "" } else { "s" })
4826         };
4827         let count_type_params = |n| {
4828             format!("{} type parameter{}", n, if n == 1 { "" } else { "s" })
4829         };
4830
4831         // Check provided type parameters.
4832         let type_defs = segment.map_or(&[][..], |(_, generics)| {
4833             if generics.parent.is_none() {
4834                 &generics.types[generics.has_self as usize..]
4835             } else {
4836                 &generics.types
4837             }
4838         });
4839         let required_len = type_defs.iter().take_while(|d| !d.has_default).count();
4840         if types.len() > type_defs.len() {
4841             let span = types[type_defs.len()].span;
4842             let expected_text = count_type_params(type_defs.len());
4843             let actual_text = count_type_params(types.len());
4844             struct_span_err!(self.tcx.sess, span, E0087,
4845                              "too many type parameters provided: \
4846                               expected at most {}, found {}",
4847                              expected_text, actual_text)
4848                 .span_label(span, format!("expected {}", expected_text))
4849                 .emit();
4850
4851             // To prevent derived errors to accumulate due to extra
4852             // type parameters, we force instantiate_value_path to
4853             // use inference variables instead of the provided types.
4854             *segment = None;
4855         } else if types.len() < required_len && !infer_types {
4856             let expected_text = count_type_params(required_len);
4857             let actual_text = count_type_params(types.len());
4858             struct_span_err!(self.tcx.sess, span, E0089,
4859                              "too few type parameters provided: \
4860                               expected {}, found {}",
4861                              expected_text, actual_text)
4862                 .span_label(span, format!("expected {}", expected_text))
4863                 .emit();
4864         }
4865
4866         if !bindings.is_empty() {
4867             AstConv::prohibit_projection(self, bindings[0].span);
4868         }
4869
4870         // Check provided lifetime parameters.
4871         let lifetime_defs = segment.map_or(&[][..], |(_, generics)| &generics.regions);
4872         let required_len = lifetime_defs.len();
4873
4874         // Prohibit explicit lifetime arguments if late bound lifetime parameters are present.
4875         let has_late_bound_lifetime_defs =
4876             segment.map_or(None, |(_, generics)| generics.has_late_bound_regions);
4877         if let (Some(span_late), false) = (has_late_bound_lifetime_defs, lifetimes.is_empty()) {
4878             // Report this as a lint only if no error was reported previously.
4879             let primary_msg = "cannot specify lifetime arguments explicitly \
4880                                if late bound lifetime parameters are present";
4881             let note_msg = "the late bound lifetime parameter is introduced here";
4882             if !is_method_call && (lifetimes.len() > lifetime_defs.len() ||
4883                                    lifetimes.len() < required_len && !infer_lifetimes) {
4884                 let mut err = self.tcx.sess.struct_span_err(lifetimes[0].span, primary_msg);
4885                 err.span_note(span_late, note_msg);
4886                 err.emit();
4887                 *segment = None;
4888             } else {
4889                 let mut multispan = MultiSpan::from_span(lifetimes[0].span);
4890                 multispan.push_span_label(span_late, note_msg.to_string());
4891                 self.tcx.lint_node(lint::builtin::LATE_BOUND_LIFETIME_ARGUMENTS,
4892                                    lifetimes[0].id, multispan, primary_msg);
4893             }
4894             return;
4895         }
4896
4897         if lifetimes.len() > lifetime_defs.len() {
4898             let span = lifetimes[lifetime_defs.len()].span;
4899             let expected_text = count_lifetime_params(lifetime_defs.len());
4900             let actual_text = count_lifetime_params(lifetimes.len());
4901             struct_span_err!(self.tcx.sess, span, E0088,
4902                              "too many lifetime parameters provided: \
4903                               expected at most {}, found {}",
4904                              expected_text, actual_text)
4905                 .span_label(span, format!("expected {}", expected_text))
4906                 .emit();
4907         } else if lifetimes.len() < required_len && !infer_lifetimes {
4908             let expected_text = count_lifetime_params(lifetime_defs.len());
4909             let actual_text = count_lifetime_params(lifetimes.len());
4910             struct_span_err!(self.tcx.sess, span, E0090,
4911                              "too few lifetime parameters provided: \
4912                               expected {}, found {}",
4913                              expected_text, actual_text)
4914                 .span_label(span, format!("expected {}", expected_text))
4915                 .emit();
4916         }
4917     }
4918
4919     /// Report error if there is an explicit type parameter when using `impl Trait`.
4920     fn check_impl_trait(&self,
4921                         span: Span,
4922                         segment: &mut Option<(&hir::PathSegment, &ty::Generics)>) {
4923         use hir::SyntheticTyParamKind::*;
4924
4925         segment.map(|(path_segment, generics)| {
4926             let explicit = !path_segment.infer_types;
4927             let impl_trait = generics.types.iter()
4928                                            .any(|ty_param| {
4929                                                match ty_param.synthetic {
4930                                                    Some(ImplTrait) => true,
4931                                                    _ => false,
4932                                                }
4933                                            });
4934
4935             if explicit && impl_trait {
4936                 let mut err = struct_span_err! {
4937                     self.tcx.sess,
4938                     span,
4939                     E0632,
4940                     "cannot provide explicit type parameters when `impl Trait` is \
4941                     used in argument position."
4942                 };
4943
4944                 err.emit();
4945             }
4946         });
4947     }
4948
4949     fn structurally_resolve_type_or_else<F>(&self, sp: Span, ty: Ty<'tcx>, f: F)
4950                                             -> Ty<'tcx>
4951         where F: Fn() -> Ty<'tcx>
4952     {
4953         let mut ty = self.resolve_type_vars_with_obligations(ty);
4954
4955         if ty.is_ty_var() {
4956             let alternative = f();
4957
4958             // If not, error.
4959             if alternative.is_ty_var() || alternative.references_error() {
4960                 if !self.is_tainted_by_errors() {
4961                     type_error_struct!(self.tcx.sess, sp, ty, E0619,
4962                                        "the type of this value must be known in this context")
4963                         .emit();
4964                 }
4965                 self.demand_suptype(sp, self.tcx.types.err, ty);
4966                 ty = self.tcx.types.err;
4967             } else {
4968                 self.demand_suptype(sp, alternative, ty);
4969                 ty = alternative;
4970             }
4971         }
4972
4973         ty
4974     }
4975
4976     // Resolves `typ` by a single level if `typ` is a type variable.  If no
4977     // resolution is possible, then an error is reported.
4978     pub fn structurally_resolved_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
4979         self.structurally_resolve_type_or_else(sp, ty, || {
4980             self.tcx.types.err
4981         })
4982     }
4983
4984     fn with_breakable_ctxt<F: FnOnce() -> R, R>(&self, id: ast::NodeId,
4985                                         ctxt: BreakableCtxt<'gcx, 'tcx>, f: F)
4986                                    -> (BreakableCtxt<'gcx, 'tcx>, R) {
4987         let index;
4988         {
4989             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4990             index = enclosing_breakables.stack.len();
4991             enclosing_breakables.by_id.insert(id, index);
4992             enclosing_breakables.stack.push(ctxt);
4993         }
4994         let result = f();
4995         let ctxt = {
4996             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4997             debug_assert!(enclosing_breakables.stack.len() == index + 1);
4998             enclosing_breakables.by_id.remove(&id).expect("missing breakable context");
4999             enclosing_breakables.stack.pop().expect("missing breakable context")
5000         };
5001         (ctxt, result)
5002     }
5003 }
5004
5005 pub fn check_bounds_are_used<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
5006                                        generics: &hir::Generics,
5007                                        ty: Ty<'tcx>) {
5008     debug!("check_bounds_are_used(n_tps={}, ty={:?})",
5009            generics.ty_params.len(),  ty);
5010
5011     // make a vector of booleans initially false, set to true when used
5012     if generics.ty_params.is_empty() { return; }
5013     let mut tps_used = vec![false; generics.ty_params.len()];
5014
5015     for leaf_ty in ty.walk() {
5016         if let ty::TyParam(ParamTy {idx, ..}) = leaf_ty.sty {
5017             debug!("Found use of ty param num {}", idx);
5018             tps_used[idx as usize - generics.lifetimes.len()] = true;
5019         }
5020     }
5021
5022     for (&used, param) in tps_used.iter().zip(&generics.ty_params) {
5023         if !used {
5024             struct_span_err!(tcx.sess, param.span, E0091,
5025                 "type parameter `{}` is unused",
5026                 param.name)
5027                 .span_label(param.span, "unused type parameter")
5028                 .emit();
5029         }
5030     }
5031 }
5032
5033 fn fatally_break_rust(sess: &Session) {
5034     let handler = sess.diagnostic();
5035     handler.span_bug_no_panic(
5036         MultiSpan::new(),
5037         "It looks like you're trying to break rust; would you like some ICE?",
5038     );
5039     handler.note_without_error("the compiler expectedly panicked. this is a feature.");
5040     handler.note_without_error(
5041         "we would appreciate a joke overview: \
5042         https://github.com/rust-lang/rust/issues/43162#issuecomment-320764675"
5043     );
5044     handler.note_without_error(&format!("rustc {} running on {}",
5045         option_env!("CFG_VERSION").unwrap_or("unknown_version"),
5046         ::session::config::host_triple(),
5047     ));
5048 }