]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/mod.rs
rustc: remove unnecessary ItemSubsts wrapper.
[rust.git] / src / librustc_typeck / check / mod.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 /*
12
13 # check.rs
14
15 Within the check phase of type check, we check each item one at a time
16 (bodies of function expressions are checked as part of the containing
17 function).  Inference is used to supply types wherever they are
18 unknown.
19
20 By far the most complex case is checking the body of a function. This
21 can be broken down into several distinct phases:
22
23 - gather: creates type variables to represent the type of each local
24   variable and pattern binding.
25
26 - main: the main pass does the lion's share of the work: it
27   determines the types of all expressions, resolves
28   methods, checks for most invalid conditions, and so forth.  In
29   some cases, where a type is unknown, it may create a type or region
30   variable and use that as the type of an expression.
31
32   In the process of checking, various constraints will be placed on
33   these type variables through the subtyping relationships requested
34   through the `demand` module.  The `infer` module is in charge
35   of resolving those constraints.
36
37 - regionck: after main is complete, the regionck pass goes over all
38   types looking for regions and making sure that they did not escape
39   into places they are not in scope.  This may also influence the
40   final assignments of the various region variables if there is some
41   flexibility.
42
43 - vtable: find and records the impls to use for each trait bound that
44   appears on a type parameter.
45
46 - writeback: writes the final types within a function body, replacing
47   type variables with their final inferred types.  These final types
48   are written into the `tcx.node_types` table, which should *never* contain
49   any reference to a type variable.
50
51 ## Intermediate types
52
53 While type checking a function, the intermediate types for the
54 expressions, blocks, and so forth contained within the function are
55 stored in `fcx.node_types` and `fcx.node_substs`.  These types
56 may contain unresolved type variables.  After type checking is
57 complete, the functions in the writeback module are used to take the
58 types from this table, resolve them, and then write them into their
59 permanent home in the type context `tcx`.
60
61 This means that during inferencing you should use `fcx.write_ty()`
62 and `fcx.expr_ty()` / `fcx.node_ty()` to write/obtain the types of
63 nodes within the function.
64
65 The types of top-level items, which never contain unbound type
66 variables, are stored directly into the `tcx` tables.
67
68 n.b.: A type variable is not the same thing as a type parameter.  A
69 type variable is rather an "instance" of a type parameter: that is,
70 given a generic function `fn foo<T>(t: T)`: while checking the
71 function `foo`, the type `ty_param(0)` refers to the type `T`, which
72 is treated in abstract.  When `foo()` is called, however, `T` will be
73 substituted for a fresh type variable `N`.  This variable will
74 eventually be resolved to some concrete type (which might itself be
75 type parameter).
76
77 */
78
79 pub use self::Expectation::*;
80 use self::autoderef::Autoderef;
81 use self::callee::DeferredCallResolution;
82 use self::coercion::{CoerceMany, DynamicCoerceMany};
83 pub use self::compare_method::{compare_impl_method, compare_const_impl};
84 use self::TupleArgumentsFlag::*;
85
86 use astconv::AstConv;
87 use fmt_macros::{Parser, Piece, Position};
88 use hir::def::{Def, CtorKind};
89 use hir::def_id::{CrateNum, DefId, LOCAL_CRATE};
90 use rustc_back::slice::ref_slice;
91 use rustc::infer::{self, InferCtxt, InferOk, RegionVariableOrigin};
92 use rustc::infer::type_variable::{TypeVariableOrigin};
93 use rustc::middle::region::CodeExtent;
94 use rustc::ty::subst::{Kind, Subst, Substs};
95 use rustc::traits::{self, FulfillmentContext, ObligationCause, ObligationCauseCode, Reveal};
96 use rustc::ty::{ParamTy, LvaluePreference, NoPreference, PreferMutLvalue};
97 use rustc::ty::{self, Ty, TyCtxt, Visibility};
98 use rustc::ty::{MethodCallee};
99 use rustc::ty::adjustment::{Adjust, Adjustment, AutoBorrow};
100 use rustc::ty::fold::{BottomUpFolder, TypeFoldable};
101 use rustc::ty::maps::Providers;
102 use rustc::ty::util::{Representability, IntTypeExt};
103 use errors::DiagnosticBuilder;
104 use require_c_abi_if_variadic;
105 use session::{Session, CompileResult};
106 use TypeAndSubsts;
107 use lint;
108 use util::common::{ErrorReported, indenter};
109 use util::nodemap::{DefIdMap, FxHashMap, NodeMap};
110
111 use std::cell::{Cell, RefCell};
112 use std::collections::hash_map::Entry;
113 use std::cmp;
114 use std::mem::replace;
115 use std::ops::{self, Deref};
116 use syntax::abi::Abi;
117 use syntax::ast;
118 use syntax::codemap::{self, original_sp, Spanned};
119 use syntax::feature_gate::{GateIssue, emit_feature_err};
120 use syntax::ptr::P;
121 use syntax::symbol::{Symbol, InternedString, keywords};
122 use syntax::util::lev_distance::find_best_match_for_name;
123 use syntax_pos::{self, BytePos, Span, DUMMY_SP};
124
125 use rustc::hir::intravisit::{self, Visitor, NestedVisitorMap};
126 use rustc::hir::itemlikevisit::ItemLikeVisitor;
127 use rustc::hir::{self, PatKind};
128 use rustc::middle::lang_items;
129 use rustc_back::slice;
130 use rustc::middle::const_val::eval_length;
131 use rustc_const_math::ConstInt;
132
133 mod autoderef;
134 pub mod dropck;
135 pub mod _match;
136 pub mod writeback;
137 pub mod regionck;
138 pub mod coercion;
139 pub mod demand;
140 pub mod method;
141 mod upvar;
142 mod wfcheck;
143 mod cast;
144 mod closure;
145 mod callee;
146 mod compare_method;
147 mod intrinsic;
148 mod op;
149
150 /// closures defined within the function.  For example:
151 ///
152 ///     fn foo() {
153 ///         bar(move|| { ... })
154 ///     }
155 ///
156 /// Here, the function `foo()` and the closure passed to
157 /// `bar()` will each have their own `FnCtxt`, but they will
158 /// share the inherited fields.
159 pub struct Inherited<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
160     infcx: InferCtxt<'a, 'gcx, 'tcx>,
161
162     locals: RefCell<NodeMap<Ty<'tcx>>>,
163
164     fulfillment_cx: RefCell<traits::FulfillmentContext<'tcx>>,
165
166     // When we process a call like `c()` where `c` is a closure type,
167     // we may not have decided yet whether `c` is a `Fn`, `FnMut`, or
168     // `FnOnce` closure. In that case, we defer full resolution of the
169     // call until upvar inference can kick in and make the
170     // decision. We keep these deferred resolutions grouped by the
171     // def-id of the closure, so that once we decide, we can easily go
172     // back and process them.
173     deferred_call_resolutions: RefCell<DefIdMap<Vec<DeferredCallResolution<'gcx, 'tcx>>>>,
174
175     deferred_cast_checks: RefCell<Vec<cast::CastCheck<'tcx>>>,
176
177     // Anonymized types found in explicit return types and their
178     // associated fresh inference variable. Writeback resolves these
179     // variables to get the concrete type, which can be used to
180     // deanonymize TyAnon, after typeck is done with all functions.
181     anon_types: RefCell<NodeMap<Ty<'tcx>>>,
182
183     /// Each type parameter has an implicit region bound that
184     /// indicates it must outlive at least the function body (the user
185     /// may specify stronger requirements). This field indicates the
186     /// region of the callee. If it is `None`, then the parameter
187     /// environment is for an item or something where the "callee" is
188     /// not clear.
189     implicit_region_bound: Option<ty::Region<'tcx>>,
190 }
191
192 impl<'a, 'gcx, 'tcx> Deref for Inherited<'a, 'gcx, 'tcx> {
193     type Target = InferCtxt<'a, 'gcx, 'tcx>;
194     fn deref(&self) -> &Self::Target {
195         &self.infcx
196     }
197 }
198
199 /// When type-checking an expression, we propagate downward
200 /// whatever type hint we are able in the form of an `Expectation`.
201 #[derive(Copy, Clone, Debug)]
202 pub enum Expectation<'tcx> {
203     /// We know nothing about what type this expression should have.
204     NoExpectation,
205
206     /// This expression should have the type given (or some subtype)
207     ExpectHasType(Ty<'tcx>),
208
209     /// This expression will be cast to the `Ty`
210     ExpectCastableToType(Ty<'tcx>),
211
212     /// This rvalue expression will be wrapped in `&` or `Box` and coerced
213     /// to `&Ty` or `Box<Ty>`, respectively. `Ty` is `[A]` or `Trait`.
214     ExpectRvalueLikeUnsized(Ty<'tcx>),
215 }
216
217 impl<'a, 'gcx, 'tcx> Expectation<'tcx> {
218     // Disregard "castable to" expectations because they
219     // can lead us astray. Consider for example `if cond
220     // {22} else {c} as u8` -- if we propagate the
221     // "castable to u8" constraint to 22, it will pick the
222     // type 22u8, which is overly constrained (c might not
223     // be a u8). In effect, the problem is that the
224     // "castable to" expectation is not the tightest thing
225     // we can say, so we want to drop it in this case.
226     // The tightest thing we can say is "must unify with
227     // else branch". Note that in the case of a "has type"
228     // constraint, this limitation does not hold.
229
230     // If the expected type is just a type variable, then don't use
231     // an expected type. Otherwise, we might write parts of the type
232     // when checking the 'then' block which are incompatible with the
233     // 'else' branch.
234     fn adjust_for_branches(&self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Expectation<'tcx> {
235         match *self {
236             ExpectHasType(ety) => {
237                 let ety = fcx.shallow_resolve(ety);
238                 if !ety.is_ty_var() {
239                     ExpectHasType(ety)
240                 } else {
241                     NoExpectation
242                 }
243             }
244             ExpectRvalueLikeUnsized(ety) => {
245                 ExpectRvalueLikeUnsized(ety)
246             }
247             _ => NoExpectation
248         }
249     }
250
251     /// Provide an expectation for an rvalue expression given an *optional*
252     /// hint, which is not required for type safety (the resulting type might
253     /// be checked higher up, as is the case with `&expr` and `box expr`), but
254     /// is useful in determining the concrete type.
255     ///
256     /// The primary use case is where the expected type is a fat pointer,
257     /// like `&[isize]`. For example, consider the following statement:
258     ///
259     ///    let x: &[isize] = &[1, 2, 3];
260     ///
261     /// In this case, the expected type for the `&[1, 2, 3]` expression is
262     /// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
263     /// expectation `ExpectHasType([isize])`, that would be too strong --
264     /// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
265     /// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
266     /// to the type `&[isize]`. Therefore, we propagate this more limited hint,
267     /// which still is useful, because it informs integer literals and the like.
268     /// See the test case `test/run-pass/coerce-expect-unsized.rs` and #20169
269     /// for examples of where this comes up,.
270     fn rvalue_hint(fcx: &FnCtxt<'a, 'gcx, 'tcx>, ty: Ty<'tcx>) -> Expectation<'tcx> {
271         match fcx.tcx.struct_tail(ty).sty {
272             ty::TySlice(_) | ty::TyStr | ty::TyDynamic(..) => {
273                 ExpectRvalueLikeUnsized(ty)
274             }
275             _ => ExpectHasType(ty)
276         }
277     }
278
279     // Resolves `expected` by a single level if it is a variable. If
280     // there is no expected type or resolution is not possible (e.g.,
281     // no constraints yet present), just returns `None`.
282     fn resolve(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Expectation<'tcx> {
283         match self {
284             NoExpectation => {
285                 NoExpectation
286             }
287             ExpectCastableToType(t) => {
288                 ExpectCastableToType(fcx.resolve_type_vars_if_possible(&t))
289             }
290             ExpectHasType(t) => {
291                 ExpectHasType(fcx.resolve_type_vars_if_possible(&t))
292             }
293             ExpectRvalueLikeUnsized(t) => {
294                 ExpectRvalueLikeUnsized(fcx.resolve_type_vars_if_possible(&t))
295             }
296         }
297     }
298
299     fn to_option(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Option<Ty<'tcx>> {
300         match self.resolve(fcx) {
301             NoExpectation => None,
302             ExpectCastableToType(ty) |
303             ExpectHasType(ty) |
304             ExpectRvalueLikeUnsized(ty) => Some(ty),
305         }
306     }
307
308     /// It sometimes happens that we want to turn an expectation into
309     /// a **hard constraint** (i.e., something that must be satisfied
310     /// for the program to type-check). `only_has_type` will return
311     /// such a constraint, if it exists.
312     fn only_has_type(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Option<Ty<'tcx>> {
313         match self.resolve(fcx) {
314             ExpectHasType(ty) => Some(ty),
315             _ => None
316         }
317     }
318
319     /// Like `only_has_type`, but instead of returning `None` if no
320     /// hard constraint exists, creates a fresh type variable.
321     fn coercion_target_type(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>, span: Span) -> Ty<'tcx> {
322         self.only_has_type(fcx)
323             .unwrap_or_else(|| fcx.next_ty_var(TypeVariableOrigin::MiscVariable(span)))
324     }
325 }
326
327 #[derive(Copy, Clone)]
328 pub struct UnsafetyState {
329     pub def: ast::NodeId,
330     pub unsafety: hir::Unsafety,
331     pub unsafe_push_count: u32,
332     from_fn: bool
333 }
334
335 impl UnsafetyState {
336     pub fn function(unsafety: hir::Unsafety, def: ast::NodeId) -> UnsafetyState {
337         UnsafetyState { def: def, unsafety: unsafety, unsafe_push_count: 0, from_fn: true }
338     }
339
340     pub fn recurse(&mut self, blk: &hir::Block) -> UnsafetyState {
341         match self.unsafety {
342             // If this unsafe, then if the outer function was already marked as
343             // unsafe we shouldn't attribute the unsafe'ness to the block. This
344             // way the block can be warned about instead of ignoring this
345             // extraneous block (functions are never warned about).
346             hir::Unsafety::Unsafe if self.from_fn => *self,
347
348             unsafety => {
349                 let (unsafety, def, count) = match blk.rules {
350                     hir::PushUnsafeBlock(..) =>
351                         (unsafety, blk.id, self.unsafe_push_count.checked_add(1).unwrap()),
352                     hir::PopUnsafeBlock(..) =>
353                         (unsafety, blk.id, self.unsafe_push_count.checked_sub(1).unwrap()),
354                     hir::UnsafeBlock(..) =>
355                         (hir::Unsafety::Unsafe, blk.id, self.unsafe_push_count),
356                     hir::DefaultBlock =>
357                         (unsafety, self.def, self.unsafe_push_count),
358                 };
359                 UnsafetyState{ def: def,
360                                unsafety: unsafety,
361                                unsafe_push_count: count,
362                                from_fn: false }
363             }
364         }
365     }
366 }
367
368 #[derive(Debug, Copy, Clone)]
369 pub enum LvalueOp {
370     Deref,
371     Index
372 }
373
374 /// Tracks whether executing a node may exit normally (versus
375 /// return/break/panic, which "diverge", leaving dead code in their
376 /// wake). Tracked semi-automatically (through type variables marked
377 /// as diverging), with some manual adjustments for control-flow
378 /// primitives (approximating a CFG).
379 #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
380 pub enum Diverges {
381     /// Potentially unknown, some cases converge,
382     /// others require a CFG to determine them.
383     Maybe,
384
385     /// Definitely known to diverge and therefore
386     /// not reach the next sibling or its parent.
387     Always,
388
389     /// Same as `Always` but with a reachability
390     /// warning already emitted
391     WarnedAlways
392 }
393
394 // Convenience impls for combinig `Diverges`.
395
396 impl ops::BitAnd for Diverges {
397     type Output = Self;
398     fn bitand(self, other: Self) -> Self {
399         cmp::min(self, other)
400     }
401 }
402
403 impl ops::BitOr for Diverges {
404     type Output = Self;
405     fn bitor(self, other: Self) -> Self {
406         cmp::max(self, other)
407     }
408 }
409
410 impl ops::BitAndAssign for Diverges {
411     fn bitand_assign(&mut self, other: Self) {
412         *self = *self & other;
413     }
414 }
415
416 impl ops::BitOrAssign for Diverges {
417     fn bitor_assign(&mut self, other: Self) {
418         *self = *self | other;
419     }
420 }
421
422 impl Diverges {
423     fn always(self) -> bool {
424         self >= Diverges::Always
425     }
426 }
427
428 pub struct BreakableCtxt<'gcx: 'tcx, 'tcx> {
429     may_break: bool,
430
431     // this is `null` for loops where break with a value is illegal,
432     // such as `while`, `for`, and `while let`
433     coerce: Option<DynamicCoerceMany<'gcx, 'tcx>>,
434 }
435
436 pub struct EnclosingBreakables<'gcx: 'tcx, 'tcx> {
437     stack: Vec<BreakableCtxt<'gcx, 'tcx>>,
438     by_id: NodeMap<usize>,
439 }
440
441 impl<'gcx, 'tcx> EnclosingBreakables<'gcx, 'tcx> {
442     fn find_breakable(&mut self, target_id: ast::NodeId) -> &mut BreakableCtxt<'gcx, 'tcx> {
443         let ix = *self.by_id.get(&target_id).unwrap_or_else(|| {
444             bug!("could not find enclosing breakable with id {}", target_id);
445         });
446         &mut self.stack[ix]
447     }
448 }
449
450 pub struct FnCtxt<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
451     body_id: ast::NodeId,
452
453     // Number of errors that had been reported when we started
454     // checking this function. On exit, if we find that *more* errors
455     // have been reported, we will skip regionck and other work that
456     // expects the types within the function to be consistent.
457     err_count_on_creation: usize,
458
459     ret_coercion: Option<RefCell<DynamicCoerceMany<'gcx, 'tcx>>>,
460
461     ps: RefCell<UnsafetyState>,
462
463     /// Whether the last checked node generates a divergence (e.g.,
464     /// `return` will set this to Always). In general, when entering
465     /// an expression or other node in the tree, the initial value
466     /// indicates whether prior parts of the containing expression may
467     /// have diverged. It is then typically set to `Maybe` (and the
468     /// old value remembered) for processing the subparts of the
469     /// current expression. As each subpart is processed, they may set
470     /// the flag to `Always` etc.  Finally, at the end, we take the
471     /// result and "union" it with the original value, so that when we
472     /// return the flag indicates if any subpart of the the parent
473     /// expression (up to and including this part) has diverged.  So,
474     /// if you read it after evaluating a subexpression `X`, the value
475     /// you get indicates whether any subexpression that was
476     /// evaluating up to and including `X` diverged.
477     ///
478     /// We use this flag for two purposes:
479     ///
480     /// - To warn about unreachable code: if, after processing a
481     ///   sub-expression but before we have applied the effects of the
482     ///   current node, we see that the flag is set to `Always`, we
483     ///   can issue a warning. This corresponds to something like
484     ///   `foo(return)`; we warn on the `foo()` expression. (We then
485     ///   update the flag to `WarnedAlways` to suppress duplicate
486     ///   reports.) Similarly, if we traverse to a fresh statement (or
487     ///   tail expression) from a `Always` setting, we will isssue a
488     ///   warning. This corresponds to something like `{return;
489     ///   foo();}` or `{return; 22}`, where we would warn on the
490     ///   `foo()` or `22`.
491     ///
492     /// - To permit assignment into a local variable or other lvalue
493     ///   (including the "return slot") of type `!`.  This is allowed
494     ///   if **either** the type of value being assigned is `!`, which
495     ///   means the current code is dead, **or** the expression's
496     ///   divering flag is true, which means that a divering value was
497     ///   wrapped (e.g., `let x: ! = foo(return)`).
498     ///
499     /// To repeat the last point: an expression represents dead-code
500     /// if, after checking it, **either** its type is `!` OR the
501     /// diverges flag is set to something other than `Maybe`.
502     diverges: Cell<Diverges>,
503
504     /// Whether any child nodes have any type errors.
505     has_errors: Cell<bool>,
506
507     enclosing_breakables: RefCell<EnclosingBreakables<'gcx, 'tcx>>,
508
509     inh: &'a Inherited<'a, 'gcx, 'tcx>,
510 }
511
512 impl<'a, 'gcx, 'tcx> Deref for FnCtxt<'a, 'gcx, 'tcx> {
513     type Target = Inherited<'a, 'gcx, 'tcx>;
514     fn deref(&self) -> &Self::Target {
515         &self.inh
516     }
517 }
518
519 /// Helper type of a temporary returned by Inherited::build(...).
520 /// Necessary because we can't write the following bound:
521 /// F: for<'b, 'tcx> where 'gcx: 'tcx FnOnce(Inherited<'b, 'gcx, 'tcx>).
522 pub struct InheritedBuilder<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
523     infcx: infer::InferCtxtBuilder<'a, 'gcx, 'tcx>,
524     def_id: DefId,
525 }
526
527 impl<'a, 'gcx, 'tcx> Inherited<'a, 'gcx, 'tcx> {
528     pub fn build(tcx: TyCtxt<'a, 'gcx, 'gcx>, def_id: DefId)
529                  -> InheritedBuilder<'a, 'gcx, 'tcx> {
530         let tables = ty::TypeckTables::empty();
531         let param_env = tcx.param_env(def_id);
532         InheritedBuilder {
533             infcx: tcx.infer_ctxt((tables, param_env), Reveal::UserFacing),
534             def_id,
535         }
536     }
537 }
538
539 impl<'a, 'gcx, 'tcx> InheritedBuilder<'a, 'gcx, 'tcx> {
540     fn enter<F, R>(&'tcx mut self, f: F) -> R
541         where F: for<'b> FnOnce(Inherited<'b, 'gcx, 'tcx>) -> R
542     {
543         let def_id = self.def_id;
544         self.infcx.enter(|infcx| f(Inherited::new(infcx, def_id)))
545     }
546 }
547
548 impl<'a, 'gcx, 'tcx> Inherited<'a, 'gcx, 'tcx> {
549     fn new(infcx: InferCtxt<'a, 'gcx, 'tcx>, def_id: DefId) -> Self {
550         let tcx = infcx.tcx;
551         let item_id = tcx.hir.as_local_node_id(def_id);
552         let body_id = item_id.and_then(|id| tcx.hir.maybe_body_owned_by(id));
553         let implicit_region_bound = body_id.map(|body| {
554             tcx.mk_region(ty::ReScope(CodeExtent::CallSiteScope(body)))
555         });
556
557         Inherited {
558             infcx: infcx,
559             fulfillment_cx: RefCell::new(traits::FulfillmentContext::new()),
560             locals: RefCell::new(NodeMap()),
561             deferred_call_resolutions: RefCell::new(DefIdMap()),
562             deferred_cast_checks: RefCell::new(Vec::new()),
563             anon_types: RefCell::new(NodeMap()),
564             implicit_region_bound,
565         }
566     }
567
568     fn register_predicate(&self, obligation: traits::PredicateObligation<'tcx>) {
569         debug!("register_predicate({:?})", obligation);
570         if obligation.has_escaping_regions() {
571             span_bug!(obligation.cause.span, "escaping regions in predicate {:?}",
572                       obligation);
573         }
574         self.fulfillment_cx
575             .borrow_mut()
576             .register_predicate_obligation(self, obligation);
577     }
578
579     fn register_predicates(&self, obligations: Vec<traits::PredicateObligation<'tcx>>) {
580         for obligation in obligations {
581             self.register_predicate(obligation);
582         }
583     }
584
585     fn register_infer_ok_obligations<T>(&self, infer_ok: InferOk<'tcx, T>) -> T {
586         self.register_predicates(infer_ok.obligations);
587         infer_ok.value
588     }
589
590     fn normalize_associated_types_in<T>(&self,
591                                         span: Span,
592                                         body_id: ast::NodeId,
593                                         value: &T) -> T
594         where T : TypeFoldable<'tcx>
595     {
596         let ok = self.normalize_associated_types_in_as_infer_ok(span, body_id, value);
597         self.register_infer_ok_obligations(ok)
598     }
599
600     fn normalize_associated_types_in_as_infer_ok<T>(&self,
601                                                     span: Span,
602                                                     body_id: ast::NodeId,
603                                                     value: &T)
604                                                     -> InferOk<'tcx, T>
605         where T : TypeFoldable<'tcx>
606     {
607         debug!("normalize_associated_types_in(value={:?})", value);
608         let mut selcx = traits::SelectionContext::new(self);
609         let cause = ObligationCause::misc(span, body_id);
610         let traits::Normalized { value, obligations } =
611             traits::normalize(&mut selcx, cause, value);
612         debug!("normalize_associated_types_in: result={:?} predicates={:?}",
613             value,
614             obligations);
615         InferOk { value, obligations }
616     }
617
618     /// Replace any late-bound regions bound in `value` with
619     /// free variants attached to `all_outlive_scope`.
620     fn liberate_late_bound_regions<T>(&self,
621         all_outlive_scope: DefId,
622         value: &ty::Binder<T>)
623         -> T
624         where T: TypeFoldable<'tcx>
625     {
626         self.tcx.replace_late_bound_regions(value, |br| {
627             self.tcx.mk_region(ty::ReFree(ty::FreeRegion {
628                 scope: all_outlive_scope,
629                 bound_region: br
630             }))
631         }).0
632     }
633 }
634
635 struct CheckItemTypesVisitor<'a, 'tcx: 'a> { tcx: TyCtxt<'a, 'tcx, 'tcx> }
636
637 impl<'a, 'tcx> ItemLikeVisitor<'tcx> for CheckItemTypesVisitor<'a, 'tcx> {
638     fn visit_item(&mut self, i: &'tcx hir::Item) {
639         check_item_type(self.tcx, i);
640     }
641     fn visit_trait_item(&mut self, _: &'tcx hir::TraitItem) { }
642     fn visit_impl_item(&mut self, _: &'tcx hir::ImplItem) { }
643 }
644
645 pub fn check_wf_new<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> CompileResult {
646     tcx.sess.track_errors(|| {
647         let mut visit = wfcheck::CheckTypeWellFormedVisitor::new(tcx);
648         tcx.hir.krate().visit_all_item_likes(&mut visit.as_deep_visitor());
649     })
650 }
651
652 pub fn check_item_types<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> CompileResult {
653     tcx.sess.track_errors(|| {
654         tcx.hir.krate().visit_all_item_likes(&mut CheckItemTypesVisitor { tcx });
655     })
656 }
657
658 pub fn check_item_bodies<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> CompileResult {
659     tcx.typeck_item_bodies(LOCAL_CRATE)
660 }
661
662 fn typeck_item_bodies<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, crate_num: CrateNum) -> CompileResult {
663     debug_assert!(crate_num == LOCAL_CRATE);
664     tcx.sess.track_errors(|| {
665         for body_owner_def_id in tcx.body_owners() {
666             tcx.typeck_tables_of(body_owner_def_id);
667         }
668     })
669 }
670
671 pub fn provide(providers: &mut Providers) {
672     *providers = Providers {
673         typeck_item_bodies,
674         typeck_tables_of,
675         has_typeck_tables,
676         closure_type,
677         closure_kind,
678         adt_destructor,
679         ..*providers
680     };
681 }
682
683 fn closure_type<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
684                           def_id: DefId)
685                           -> ty::PolyFnSig<'tcx> {
686     let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
687     tcx.typeck_tables_of(def_id).closure_tys[&node_id]
688 }
689
690 fn closure_kind<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
691                           def_id: DefId)
692                           -> ty::ClosureKind {
693     let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
694     tcx.typeck_tables_of(def_id).closure_kinds[&node_id].0
695 }
696
697 fn adt_destructor<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
698                             def_id: DefId)
699                             -> Option<ty::Destructor> {
700     tcx.calculate_dtor(def_id, &mut dropck::check_drop_impl)
701 }
702
703 /// If this def-id is a "primary tables entry", returns `Some((body_id, decl))`
704 /// with information about it's body-id and fn-decl (if any). Otherwise,
705 /// returns `None`.
706 ///
707 /// If this function returns "some", then `typeck_tables(def_id)` will
708 /// succeed; if it returns `None`, then `typeck_tables(def_id)` may or
709 /// may not succeed.  In some cases where this function returns `None`
710 /// (notably closures), `typeck_tables(def_id)` would wind up
711 /// redirecting to the owning function.
712 fn primary_body_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
713                              id: ast::NodeId)
714                              -> Option<(hir::BodyId, Option<&'tcx hir::FnDecl>)>
715 {
716     match tcx.hir.get(id) {
717         hir::map::NodeItem(item) => {
718             match item.node {
719                 hir::ItemConst(_, body) |
720                 hir::ItemStatic(_, _, body) =>
721                     Some((body, None)),
722                 hir::ItemFn(ref decl, .., body) =>
723                     Some((body, Some(decl))),
724                 _ =>
725                     None,
726             }
727         }
728         hir::map::NodeTraitItem(item) => {
729             match item.node {
730                 hir::TraitItemKind::Const(_, Some(body)) =>
731                     Some((body, None)),
732                 hir::TraitItemKind::Method(ref sig, hir::TraitMethod::Provided(body)) =>
733                     Some((body, Some(&sig.decl))),
734                 _ =>
735                     None,
736             }
737         }
738         hir::map::NodeImplItem(item) => {
739             match item.node {
740                 hir::ImplItemKind::Const(_, body) =>
741                     Some((body, None)),
742                 hir::ImplItemKind::Method(ref sig, body) =>
743                     Some((body, Some(&sig.decl))),
744                 _ =>
745                     None,
746             }
747         }
748         hir::map::NodeExpr(expr) => {
749             // FIXME(eddyb) Closures should have separate
750             // function definition IDs and expression IDs.
751             // Type-checking should not let closures get
752             // this far in a constant position.
753             // Assume that everything other than closures
754             // is a constant "initializer" expression.
755             match expr.node {
756                 hir::ExprClosure(..) =>
757                     None,
758                 _ =>
759                     Some((hir::BodyId { node_id: expr.id }, None)),
760             }
761         }
762         _ => None,
763     }
764 }
765
766 fn has_typeck_tables<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
767                                def_id: DefId)
768                                -> bool {
769     // Closures' tables come from their outermost function,
770     // as they are part of the same "inference environment".
771     let outer_def_id = tcx.closure_base_def_id(def_id);
772     if outer_def_id != def_id {
773         return tcx.has_typeck_tables(outer_def_id);
774     }
775
776     let id = tcx.hir.as_local_node_id(def_id).unwrap();
777     primary_body_of(tcx, id).is_some()
778 }
779
780 fn typeck_tables_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
781                               def_id: DefId)
782                               -> &'tcx ty::TypeckTables<'tcx> {
783     // Closures' tables come from their outermost function,
784     // as they are part of the same "inference environment".
785     let outer_def_id = tcx.closure_base_def_id(def_id);
786     if outer_def_id != def_id {
787         return tcx.typeck_tables_of(outer_def_id);
788     }
789
790     let id = tcx.hir.as_local_node_id(def_id).unwrap();
791     let span = tcx.hir.span(id);
792
793     // Figure out what primary body this item has.
794     let (body_id, fn_decl) = primary_body_of(tcx, id).unwrap_or_else(|| {
795         span_bug!(span, "can't type-check body of {:?}", def_id);
796     });
797     let body = tcx.hir.body(body_id);
798
799     Inherited::build(tcx, def_id).enter(|inh| {
800         let fcx = if let Some(decl) = fn_decl {
801             let fn_sig = tcx.type_of(def_id).fn_sig();
802
803             check_abi(tcx, span, fn_sig.abi());
804
805             // Compute the fty from point of view of inside fn.
806             let fn_sig =
807                 inh.liberate_late_bound_regions(def_id, &fn_sig);
808             let fn_sig =
809                 inh.normalize_associated_types_in(body.value.span, body_id.node_id, &fn_sig);
810
811             check_fn(&inh, fn_sig, decl, id, body)
812         } else {
813             let fcx = FnCtxt::new(&inh, body.value.id);
814             let expected_type = tcx.type_of(def_id);
815             let expected_type = fcx.normalize_associated_types_in(body.value.span, &expected_type);
816             fcx.require_type_is_sized(expected_type, body.value.span, traits::ConstSized);
817
818             // Gather locals in statics (because of block expressions).
819             // This is technically unnecessary because locals in static items are forbidden,
820             // but prevents type checking from blowing up before const checking can properly
821             // emit an error.
822             GatherLocalsVisitor { fcx: &fcx }.visit_body(body);
823
824             fcx.check_expr_coercable_to_type(&body.value, expected_type);
825
826             fcx
827         };
828
829         fcx.select_all_obligations_and_apply_defaults();
830         fcx.closure_analyze(body);
831         fcx.select_obligations_where_possible();
832         fcx.check_casts();
833         fcx.select_all_obligations_or_error();
834
835         if fn_decl.is_some() {
836             fcx.regionck_fn(id, body);
837         } else {
838             fcx.regionck_expr(body);
839         }
840
841         fcx.resolve_type_vars_in_body(body)
842     })
843 }
844
845 fn check_abi<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, span: Span, abi: Abi) {
846     if !tcx.sess.target.target.is_abi_supported(abi) {
847         struct_span_err!(tcx.sess, span, E0570,
848             "The ABI `{}` is not supported for the current target", abi).emit()
849     }
850 }
851
852 struct GatherLocalsVisitor<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
853     fcx: &'a FnCtxt<'a, 'gcx, 'tcx>
854 }
855
856 impl<'a, 'gcx, 'tcx> GatherLocalsVisitor<'a, 'gcx, 'tcx> {
857     fn assign(&mut self, span: Span, nid: ast::NodeId, ty_opt: Option<Ty<'tcx>>) -> Ty<'tcx> {
858         match ty_opt {
859             None => {
860                 // infer the variable's type
861                 let var_ty = self.fcx.next_ty_var(TypeVariableOrigin::TypeInference(span));
862                 self.fcx.locals.borrow_mut().insert(nid, var_ty);
863                 var_ty
864             }
865             Some(typ) => {
866                 // take type that the user specified
867                 self.fcx.locals.borrow_mut().insert(nid, typ);
868                 typ
869             }
870         }
871     }
872 }
873
874 impl<'a, 'gcx, 'tcx> Visitor<'gcx> for GatherLocalsVisitor<'a, 'gcx, 'tcx> {
875     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'gcx> {
876         NestedVisitorMap::None
877     }
878
879     // Add explicitly-declared locals.
880     fn visit_local(&mut self, local: &'gcx hir::Local) {
881         let o_ty = match local.ty {
882             Some(ref ty) => Some(self.fcx.to_ty(&ty)),
883             None => None
884         };
885         self.assign(local.span, local.id, o_ty);
886         debug!("Local variable {:?} is assigned type {}",
887                local.pat,
888                self.fcx.ty_to_string(
889                    self.fcx.locals.borrow().get(&local.id).unwrap().clone()));
890         intravisit::walk_local(self, local);
891     }
892
893     // Add pattern bindings.
894     fn visit_pat(&mut self, p: &'gcx hir::Pat) {
895         if let PatKind::Binding(_, _, ref path1, _) = p.node {
896             let var_ty = self.assign(p.span, p.id, None);
897
898             self.fcx.require_type_is_sized(var_ty, p.span,
899                                            traits::VariableType(p.id));
900
901             debug!("Pattern binding {} is assigned to {} with type {:?}",
902                    path1.node,
903                    self.fcx.ty_to_string(
904                        self.fcx.locals.borrow().get(&p.id).unwrap().clone()),
905                    var_ty);
906         }
907         intravisit::walk_pat(self, p);
908     }
909
910     // Don't descend into the bodies of nested closures
911     fn visit_fn(&mut self, _: intravisit::FnKind<'gcx>, _: &'gcx hir::FnDecl,
912                 _: hir::BodyId, _: Span, _: ast::NodeId) { }
913 }
914
915 /// Helper used for fns and closures. Does the grungy work of checking a function
916 /// body and returns the function context used for that purpose, since in the case of a fn item
917 /// there is still a bit more to do.
918 ///
919 /// * ...
920 /// * inherited: other fields inherited from the enclosing fn (if any)
921 fn check_fn<'a, 'gcx, 'tcx>(inherited: &'a Inherited<'a, 'gcx, 'tcx>,
922                             fn_sig: ty::FnSig<'tcx>,
923                             decl: &'gcx hir::FnDecl,
924                             fn_id: ast::NodeId,
925                             body: &'gcx hir::Body)
926                             -> FnCtxt<'a, 'gcx, 'tcx>
927 {
928     let mut fn_sig = fn_sig.clone();
929
930     debug!("check_fn(sig={:?}, fn_id={})", fn_sig, fn_id);
931
932     // Create the function context.  This is either derived from scratch or,
933     // in the case of function expressions, based on the outer context.
934     let mut fcx = FnCtxt::new(inherited, body.value.id);
935     *fcx.ps.borrow_mut() = UnsafetyState::function(fn_sig.unsafety, fn_id);
936
937     let ret_ty = fn_sig.output();
938     fcx.require_type_is_sized(ret_ty, decl.output.span(), traits::ReturnType);
939     let ret_ty = fcx.instantiate_anon_types(&ret_ty);
940     fcx.ret_coercion = Some(RefCell::new(CoerceMany::new(ret_ty)));
941     fn_sig = fcx.tcx.mk_fn_sig(
942         fn_sig.inputs().iter().cloned(),
943         ret_ty,
944         fn_sig.variadic,
945         fn_sig.unsafety,
946         fn_sig.abi
947     );
948
949     GatherLocalsVisitor { fcx: &fcx, }.visit_body(body);
950
951     // Add formal parameters.
952     for (arg_ty, arg) in fn_sig.inputs().iter().zip(&body.arguments) {
953         // The type of the argument must be well-formed.
954         //
955         // NB -- this is now checked in wfcheck, but that
956         // currently only results in warnings, so we issue an
957         // old-style WF obligation here so that we still get the
958         // errors that we used to get.
959         fcx.register_old_wf_obligation(arg_ty, arg.pat.span, traits::MiscObligation);
960
961         // Check the pattern.
962         fcx.check_pat_arg(&arg.pat, arg_ty, true);
963         fcx.write_ty(arg.id, arg_ty);
964     }
965
966     inherited.tables.borrow_mut().liberated_fn_sigs.insert(fn_id, fn_sig);
967
968     fcx.check_return_expr(&body.value);
969
970     // Finalize the return check by taking the LUB of the return types
971     // we saw and assigning it to the expected return type. This isn't
972     // really expected to fail, since the coercions would have failed
973     // earlier when trying to find a LUB.
974     //
975     // However, the behavior around `!` is sort of complex. In the
976     // event that the `actual_return_ty` comes back as `!`, that
977     // indicates that the fn either does not return or "returns" only
978     // values of type `!`. In this case, if there is an expected
979     // return type that is *not* `!`, that should be ok. But if the
980     // return type is being inferred, we want to "fallback" to `!`:
981     //
982     //     let x = move || panic!();
983     //
984     // To allow for that, I am creating a type variable with diverging
985     // fallback. This was deemed ever so slightly better than unifying
986     // the return value with `!` because it allows for the caller to
987     // make more assumptions about the return type (e.g., they could do
988     //
989     //     let y: Option<u32> = Some(x());
990     //
991     // which would then cause this return type to become `u32`, not
992     // `!`).
993     let coercion = fcx.ret_coercion.take().unwrap().into_inner();
994     let mut actual_return_ty = coercion.complete(&fcx);
995     if actual_return_ty.is_never() {
996         actual_return_ty = fcx.next_diverging_ty_var(
997             TypeVariableOrigin::DivergingFn(body.value.span));
998     }
999     fcx.demand_suptype(body.value.span, ret_ty, actual_return_ty);
1000
1001     fcx
1002 }
1003
1004 fn check_struct<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1005                           id: ast::NodeId,
1006                           span: Span) {
1007     let def_id = tcx.hir.local_def_id(id);
1008     let def = tcx.adt_def(def_id);
1009     def.destructor(tcx); // force the destructor to be evaluated
1010     check_representable(tcx, span, def_id);
1011
1012     if def.repr.simd() {
1013         check_simd(tcx, span, def_id);
1014     }
1015
1016     // if struct is packed and not aligned, check fields for alignment.
1017     // Checks for combining packed and align attrs on single struct are done elsewhere.
1018     if tcx.adt_def(def_id).repr.packed() && tcx.adt_def(def_id).repr.align == 0 {
1019         check_packed(tcx, span, def_id);
1020     }
1021 }
1022
1023 fn check_union<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1024                          id: ast::NodeId,
1025                          span: Span) {
1026     let def_id = tcx.hir.local_def_id(id);
1027     let def = tcx.adt_def(def_id);
1028     def.destructor(tcx); // force the destructor to be evaluated
1029     check_representable(tcx, span, def_id);
1030 }
1031
1032 pub fn check_item_type<'a,'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, it: &'tcx hir::Item) {
1033     debug!("check_item_type(it.id={}, it.name={})",
1034            it.id,
1035            tcx.item_path_str(tcx.hir.local_def_id(it.id)));
1036     let _indenter = indenter();
1037     match it.node {
1038       // Consts can play a role in type-checking, so they are included here.
1039       hir::ItemStatic(..) |
1040       hir::ItemConst(..) => {
1041         tcx.typeck_tables_of(tcx.hir.local_def_id(it.id));
1042       }
1043       hir::ItemEnum(ref enum_definition, _) => {
1044         check_enum(tcx,
1045                    it.span,
1046                    &enum_definition.variants,
1047                    it.id);
1048       }
1049       hir::ItemFn(..) => {} // entirely within check_item_body
1050       hir::ItemImpl(.., ref impl_item_refs) => {
1051           debug!("ItemImpl {} with id {}", it.name, it.id);
1052           let impl_def_id = tcx.hir.local_def_id(it.id);
1053           if let Some(impl_trait_ref) = tcx.impl_trait_ref(impl_def_id) {
1054               check_impl_items_against_trait(tcx,
1055                                              it.span,
1056                                              impl_def_id,
1057                                              impl_trait_ref,
1058                                              impl_item_refs);
1059               let trait_def_id = impl_trait_ref.def_id;
1060               check_on_unimplemented(tcx, trait_def_id, it);
1061           }
1062       }
1063       hir::ItemTrait(..) => {
1064         let def_id = tcx.hir.local_def_id(it.id);
1065         check_on_unimplemented(tcx, def_id, it);
1066       }
1067       hir::ItemStruct(..) => {
1068         check_struct(tcx, it.id, it.span);
1069       }
1070       hir::ItemUnion(..) => {
1071         check_union(tcx, it.id, it.span);
1072       }
1073       hir::ItemTy(_, ref generics) => {
1074         let def_id = tcx.hir.local_def_id(it.id);
1075         let pty_ty = tcx.type_of(def_id);
1076         check_bounds_are_used(tcx, generics, pty_ty);
1077       }
1078       hir::ItemForeignMod(ref m) => {
1079         check_abi(tcx, it.span, m.abi);
1080
1081         if m.abi == Abi::RustIntrinsic {
1082             for item in &m.items {
1083                 intrinsic::check_intrinsic_type(tcx, item);
1084             }
1085         } else if m.abi == Abi::PlatformIntrinsic {
1086             for item in &m.items {
1087                 intrinsic::check_platform_intrinsic_type(tcx, item);
1088             }
1089         } else {
1090             for item in &m.items {
1091                 let generics = tcx.generics_of(tcx.hir.local_def_id(item.id));
1092                 if !generics.types.is_empty() {
1093                     let mut err = struct_span_err!(tcx.sess, item.span, E0044,
1094                         "foreign items may not have type parameters");
1095                     span_help!(&mut err, item.span,
1096                         "consider using specialization instead of \
1097                         type parameters");
1098                     err.emit();
1099                 }
1100
1101                 if let hir::ForeignItemFn(ref fn_decl, _, _) = item.node {
1102                     require_c_abi_if_variadic(tcx, fn_decl, m.abi, item.span);
1103                 }
1104             }
1105         }
1106       }
1107       _ => {/* nothing to do */ }
1108     }
1109 }
1110
1111 fn check_on_unimplemented<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1112                                     def_id: DefId,
1113                                     item: &hir::Item) {
1114     let generics = tcx.generics_of(def_id);
1115     if let Some(ref attr) = item.attrs.iter().find(|a| {
1116         a.check_name("rustc_on_unimplemented")
1117     }) {
1118         if let Some(istring) = attr.value_str() {
1119             let istring = istring.as_str();
1120             let parser = Parser::new(&istring);
1121             let types = &generics.types;
1122             for token in parser {
1123                 match token {
1124                     Piece::String(_) => (), // Normal string, no need to check it
1125                     Piece::NextArgument(a) => match a.position {
1126                         // `{Self}` is allowed
1127                         Position::ArgumentNamed(s) if s == "Self" => (),
1128                         // So is `{A}` if A is a type parameter
1129                         Position::ArgumentNamed(s) => match types.iter().find(|t| {
1130                             t.name == s
1131                         }) {
1132                             Some(_) => (),
1133                             None => {
1134                                 let name = tcx.item_name(def_id);
1135                                 span_err!(tcx.sess, attr.span, E0230,
1136                                                  "there is no type parameter \
1137                                                           {} on trait {}",
1138                                                            s, name);
1139                             }
1140                         },
1141                         // `{:1}` and `{}` are not to be used
1142                         Position::ArgumentIs(_) => {
1143                             span_err!(tcx.sess, attr.span, E0231,
1144                                                   "only named substitution \
1145                                                    parameters are allowed");
1146                         }
1147                     }
1148                 }
1149             }
1150         } else {
1151             struct_span_err!(
1152                 tcx.sess, attr.span, E0232,
1153                 "this attribute must have a value")
1154                 .span_label(attr.span, "attribute requires a value")
1155                 .note(&format!("eg `#[rustc_on_unimplemented = \"foo\"]`"))
1156                 .emit();
1157         }
1158     }
1159 }
1160
1161 fn report_forbidden_specialization<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1162                                              impl_item: &hir::ImplItem,
1163                                              parent_impl: DefId)
1164 {
1165     let mut err = struct_span_err!(
1166         tcx.sess, impl_item.span, E0520,
1167         "`{}` specializes an item from a parent `impl`, but \
1168          that item is not marked `default`",
1169         impl_item.name);
1170     err.span_label(impl_item.span, format!("cannot specialize default item `{}`",
1171                                             impl_item.name));
1172
1173     match tcx.span_of_impl(parent_impl) {
1174         Ok(span) => {
1175             err.span_label(span, "parent `impl` is here");
1176             err.note(&format!("to specialize, `{}` in the parent `impl` must be marked `default`",
1177                               impl_item.name));
1178         }
1179         Err(cname) => {
1180             err.note(&format!("parent implementation is in crate `{}`", cname));
1181         }
1182     }
1183
1184     err.emit();
1185 }
1186
1187 fn check_specialization_validity<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1188                                            trait_def: &ty::TraitDef,
1189                                            impl_id: DefId,
1190                                            impl_item: &hir::ImplItem)
1191 {
1192     let ancestors = trait_def.ancestors(tcx, impl_id);
1193
1194     let kind = match impl_item.node {
1195         hir::ImplItemKind::Const(..) => ty::AssociatedKind::Const,
1196         hir::ImplItemKind::Method(..) => ty::AssociatedKind::Method,
1197         hir::ImplItemKind::Type(_) => ty::AssociatedKind::Type
1198     };
1199     let parent = ancestors.defs(tcx, impl_item.name, kind).skip(1).next()
1200         .map(|node_item| node_item.map(|parent| parent.defaultness));
1201
1202     if let Some(parent) = parent {
1203         if tcx.impl_item_is_final(&parent) {
1204             report_forbidden_specialization(tcx, impl_item, parent.node.def_id());
1205         }
1206     }
1207
1208 }
1209
1210 fn check_impl_items_against_trait<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1211                                             impl_span: Span,
1212                                             impl_id: DefId,
1213                                             impl_trait_ref: ty::TraitRef<'tcx>,
1214                                             impl_item_refs: &[hir::ImplItemRef]) {
1215     // If the trait reference itself is erroneous (so the compilation is going
1216     // to fail), skip checking the items here -- the `impl_item` table in `tcx`
1217     // isn't populated for such impls.
1218     if impl_trait_ref.references_error() { return; }
1219
1220     // Locate trait definition and items
1221     let trait_def = tcx.trait_def(impl_trait_ref.def_id);
1222     let mut overridden_associated_type = None;
1223
1224     let impl_items = || impl_item_refs.iter().map(|iiref| tcx.hir.impl_item(iiref.id));
1225
1226     // Check existing impl methods to see if they are both present in trait
1227     // and compatible with trait signature
1228     for impl_item in impl_items() {
1229         let ty_impl_item = tcx.associated_item(tcx.hir.local_def_id(impl_item.id));
1230         let ty_trait_item = tcx.associated_items(impl_trait_ref.def_id)
1231             .find(|ac| ac.name == ty_impl_item.name);
1232
1233         // Check that impl definition matches trait definition
1234         if let Some(ty_trait_item) = ty_trait_item {
1235             match impl_item.node {
1236                 hir::ImplItemKind::Const(..) => {
1237                     // Find associated const definition.
1238                     if ty_trait_item.kind == ty::AssociatedKind::Const {
1239                         compare_const_impl(tcx,
1240                                            &ty_impl_item,
1241                                            impl_item.span,
1242                                            &ty_trait_item,
1243                                            impl_trait_ref);
1244                     } else {
1245                          let mut err = struct_span_err!(tcx.sess, impl_item.span, E0323,
1246                                   "item `{}` is an associated const, \
1247                                   which doesn't match its trait `{}`",
1248                                   ty_impl_item.name,
1249                                   impl_trait_ref);
1250                          err.span_label(impl_item.span, "does not match trait");
1251                          // We can only get the spans from local trait definition
1252                          // Same for E0324 and E0325
1253                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1254                             err.span_label(trait_span, "item in trait");
1255                          }
1256                          err.emit()
1257                     }
1258                 }
1259                 hir::ImplItemKind::Method(..) => {
1260                     let trait_span = tcx.hir.span_if_local(ty_trait_item.def_id);
1261                     if ty_trait_item.kind == ty::AssociatedKind::Method {
1262                         let err_count = tcx.sess.err_count();
1263                         compare_impl_method(tcx,
1264                                             &ty_impl_item,
1265                                             impl_item.span,
1266                                             &ty_trait_item,
1267                                             impl_trait_ref,
1268                                             trait_span,
1269                                             true); // start with old-broken-mode
1270                         if err_count == tcx.sess.err_count() {
1271                             // old broken mode did not report an error. Try with the new mode.
1272                             compare_impl_method(tcx,
1273                                                 &ty_impl_item,
1274                                                 impl_item.span,
1275                                                 &ty_trait_item,
1276                                                 impl_trait_ref,
1277                                                 trait_span,
1278                                                 false); // use the new mode
1279                         }
1280                     } else {
1281                         let mut err = struct_span_err!(tcx.sess, impl_item.span, E0324,
1282                                   "item `{}` is an associated method, \
1283                                   which doesn't match its trait `{}`",
1284                                   ty_impl_item.name,
1285                                   impl_trait_ref);
1286                          err.span_label(impl_item.span, "does not match trait");
1287                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1288                             err.span_label(trait_span, "item in trait");
1289                          }
1290                          err.emit()
1291                     }
1292                 }
1293                 hir::ImplItemKind::Type(_) => {
1294                     if ty_trait_item.kind == ty::AssociatedKind::Type {
1295                         if ty_trait_item.defaultness.has_value() {
1296                             overridden_associated_type = Some(impl_item);
1297                         }
1298                     } else {
1299                         let mut err = struct_span_err!(tcx.sess, impl_item.span, E0325,
1300                                   "item `{}` is an associated type, \
1301                                   which doesn't match its trait `{}`",
1302                                   ty_impl_item.name,
1303                                   impl_trait_ref);
1304                          err.span_label(impl_item.span, "does not match trait");
1305                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1306                             err.span_label(trait_span, "item in trait");
1307                          }
1308                          err.emit()
1309                     }
1310                 }
1311             }
1312         }
1313
1314         check_specialization_validity(tcx, trait_def, impl_id, impl_item);
1315     }
1316
1317     // Check for missing items from trait
1318     let mut missing_items = Vec::new();
1319     let mut invalidated_items = Vec::new();
1320     let associated_type_overridden = overridden_associated_type.is_some();
1321     for trait_item in tcx.associated_items(impl_trait_ref.def_id) {
1322         let is_implemented = trait_def.ancestors(tcx, impl_id)
1323             .defs(tcx, trait_item.name, trait_item.kind)
1324             .next()
1325             .map(|node_item| !node_item.node.is_from_trait())
1326             .unwrap_or(false);
1327
1328         if !is_implemented {
1329             if !trait_item.defaultness.has_value() {
1330                 missing_items.push(trait_item);
1331             } else if associated_type_overridden {
1332                 invalidated_items.push(trait_item.name);
1333             }
1334         }
1335     }
1336
1337     let signature = |item: &ty::AssociatedItem| {
1338         match item.kind {
1339             ty::AssociatedKind::Method => {
1340                 format!("{}", tcx.type_of(item.def_id).fn_sig().0)
1341             }
1342             ty::AssociatedKind::Type => format!("type {};", item.name.to_string()),
1343             ty::AssociatedKind::Const => {
1344                 format!("const {}: {:?};", item.name.to_string(), tcx.type_of(item.def_id))
1345             }
1346         }
1347     };
1348
1349     if !missing_items.is_empty() {
1350         let mut err = struct_span_err!(tcx.sess, impl_span, E0046,
1351             "not all trait items implemented, missing: `{}`",
1352             missing_items.iter()
1353                   .map(|trait_item| trait_item.name.to_string())
1354                   .collect::<Vec<_>>().join("`, `"));
1355         err.span_label(impl_span, format!("missing `{}` in implementation",
1356                 missing_items.iter()
1357                     .map(|trait_item| trait_item.name.to_string())
1358                     .collect::<Vec<_>>().join("`, `")));
1359         for trait_item in missing_items {
1360             if let Some(span) = tcx.hir.span_if_local(trait_item.def_id) {
1361                 err.span_label(span, format!("`{}` from trait", trait_item.name));
1362             } else {
1363                 err.note(&format!("`{}` from trait: `{}`",
1364                                   trait_item.name,
1365                                   signature(&trait_item)));
1366             }
1367         }
1368         err.emit();
1369     }
1370
1371     if !invalidated_items.is_empty() {
1372         let invalidator = overridden_associated_type.unwrap();
1373         span_err!(tcx.sess, invalidator.span, E0399,
1374                   "the following trait items need to be reimplemented \
1375                    as `{}` was overridden: `{}`",
1376                   invalidator.name,
1377                   invalidated_items.iter()
1378                                    .map(|name| name.to_string())
1379                                    .collect::<Vec<_>>().join("`, `"))
1380     }
1381 }
1382
1383 /// Checks whether a type can be represented in memory. In particular, it
1384 /// identifies types that contain themselves without indirection through a
1385 /// pointer, which would mean their size is unbounded.
1386 fn check_representable<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1387                                  sp: Span,
1388                                  item_def_id: DefId)
1389                                  -> bool {
1390     let rty = tcx.type_of(item_def_id);
1391
1392     // Check that it is possible to represent this type. This call identifies
1393     // (1) types that contain themselves and (2) types that contain a different
1394     // recursive type. It is only necessary to throw an error on those that
1395     // contain themselves. For case 2, there must be an inner type that will be
1396     // caught by case 1.
1397     match rty.is_representable(tcx, sp) {
1398         Representability::SelfRecursive(spans) => {
1399             let mut err = tcx.recursive_type_with_infinite_size_error(item_def_id);
1400             for span in spans {
1401                 err.span_label(span, "recursive without indirection");
1402             }
1403             err.emit();
1404             return false
1405         }
1406         Representability::Representable | Representability::ContainsRecursive => (),
1407     }
1408     return true
1409 }
1410
1411 pub fn check_simd<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span, def_id: DefId) {
1412     let t = tcx.type_of(def_id);
1413     match t.sty {
1414         ty::TyAdt(def, substs) if def.is_struct() => {
1415             let fields = &def.struct_variant().fields;
1416             if fields.is_empty() {
1417                 span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty");
1418                 return;
1419             }
1420             let e = fields[0].ty(tcx, substs);
1421             if !fields.iter().all(|f| f.ty(tcx, substs) == e) {
1422                 struct_span_err!(tcx.sess, sp, E0076, "SIMD vector should be homogeneous")
1423                                 .span_label(sp, "SIMD elements must have the same type")
1424                                 .emit();
1425                 return;
1426             }
1427             match e.sty {
1428                 ty::TyParam(_) => { /* struct<T>(T, T, T, T) is ok */ }
1429                 _ if e.is_machine()  => { /* struct(u8, u8, u8, u8) is ok */ }
1430                 _ => {
1431                     span_err!(tcx.sess, sp, E0077,
1432                               "SIMD vector element type should be machine type");
1433                     return;
1434                 }
1435             }
1436         }
1437         _ => ()
1438     }
1439 }
1440
1441 fn check_packed<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span, def_id: DefId) {
1442     if check_packed_inner(tcx, def_id, &mut Vec::new()) {
1443         struct_span_err!(tcx.sess, sp, E0588,
1444             "packed struct cannot transitively contain a `[repr(align)]` struct").emit();
1445     }
1446 }
1447
1448 fn check_packed_inner<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1449                                 def_id: DefId,
1450                                 stack: &mut Vec<DefId>) -> bool {
1451     let t = tcx.type_of(def_id);
1452     if stack.contains(&def_id) {
1453         debug!("check_packed_inner: {:?} is recursive", t);
1454         return false;
1455     }
1456     match t.sty {
1457         ty::TyAdt(def, substs) if def.is_struct() => {
1458             if tcx.adt_def(def.did).repr.align > 0 {
1459                 return true;
1460             }
1461             // push struct def_id before checking fields
1462             stack.push(def_id);
1463             for field in &def.struct_variant().fields {
1464                 let f = field.ty(tcx, substs);
1465                 match f.sty {
1466                     ty::TyAdt(def, _) => {
1467                         if check_packed_inner(tcx, def.did, stack) {
1468                             return true;
1469                         }
1470                     }
1471                     _ => ()
1472                 }
1473             }
1474             // only need to pop if not early out
1475             stack.pop();
1476         }
1477         _ => ()
1478     }
1479     false
1480 }
1481
1482 #[allow(trivial_numeric_casts)]
1483 pub fn check_enum<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1484                             sp: Span,
1485                             vs: &'tcx [hir::Variant],
1486                             id: ast::NodeId) {
1487     let def_id = tcx.hir.local_def_id(id);
1488     let def = tcx.adt_def(def_id);
1489     def.destructor(tcx); // force the destructor to be evaluated
1490
1491     if vs.is_empty() && tcx.has_attr(def_id, "repr") {
1492         struct_span_err!(
1493             tcx.sess, sp, E0084,
1494             "unsupported representation for zero-variant enum")
1495             .span_label(sp, "unsupported enum representation")
1496             .emit();
1497     }
1498
1499     let repr_type_ty = def.repr.discr_type().to_ty(tcx);
1500     if repr_type_ty == tcx.types.i128 || repr_type_ty == tcx.types.u128 {
1501         if !tcx.sess.features.borrow().i128_type {
1502             emit_feature_err(&tcx.sess.parse_sess,
1503                              "i128_type", sp, GateIssue::Language, "128-bit type is unstable");
1504         }
1505     }
1506
1507     for v in vs {
1508         if let Some(e) = v.node.disr_expr {
1509             tcx.typeck_tables_of(tcx.hir.local_def_id(e.node_id));
1510         }
1511     }
1512
1513     let mut disr_vals: Vec<ConstInt> = Vec::new();
1514     for (discr, v) in def.discriminants(tcx).zip(vs) {
1515         // Check for duplicate discriminant values
1516         if let Some(i) = disr_vals.iter().position(|&x| x == discr) {
1517             let variant_i_node_id = tcx.hir.as_local_node_id(def.variants[i].did).unwrap();
1518             let variant_i = tcx.hir.expect_variant(variant_i_node_id);
1519             let i_span = match variant_i.node.disr_expr {
1520                 Some(expr) => tcx.hir.span(expr.node_id),
1521                 None => tcx.hir.span(variant_i_node_id)
1522             };
1523             let span = match v.node.disr_expr {
1524                 Some(expr) => tcx.hir.span(expr.node_id),
1525                 None => v.span
1526             };
1527             struct_span_err!(tcx.sess, span, E0081,
1528                              "discriminant value `{}` already exists", disr_vals[i])
1529                 .span_label(i_span, format!("first use of `{}`", disr_vals[i]))
1530                 .span_label(span , format!("enum already has `{}`", disr_vals[i]))
1531                 .emit();
1532         }
1533         disr_vals.push(discr);
1534     }
1535
1536     check_representable(tcx, sp, def_id);
1537 }
1538
1539 impl<'a, 'gcx, 'tcx> AstConv<'gcx, 'tcx> for FnCtxt<'a, 'gcx, 'tcx> {
1540     fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.tcx }
1541
1542     fn get_type_parameter_bounds(&self, _: Span, def_id: DefId)
1543                                  -> ty::GenericPredicates<'tcx>
1544     {
1545         let tcx = self.tcx;
1546         let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
1547         let item_id = tcx.hir.ty_param_owner(node_id);
1548         let item_def_id = tcx.hir.local_def_id(item_id);
1549         let generics = tcx.generics_of(item_def_id);
1550         let index = generics.type_param_to_index[&def_id.index];
1551         ty::GenericPredicates {
1552             parent: None,
1553             predicates: self.param_env.caller_bounds.iter().filter(|predicate| {
1554                 match **predicate {
1555                     ty::Predicate::Trait(ref data) => {
1556                         data.0.self_ty().is_param(index)
1557                     }
1558                     _ => false
1559                 }
1560             }).cloned().collect()
1561         }
1562     }
1563
1564     fn re_infer(&self, span: Span, def: Option<&ty::RegionParameterDef>)
1565                 -> Option<ty::Region<'tcx>> {
1566         let v = match def {
1567             Some(def) => infer::EarlyBoundRegion(span, def.name, def.issue_32330),
1568             None => infer::MiscVariable(span)
1569         };
1570         Some(self.next_region_var(v))
1571     }
1572
1573     fn ty_infer(&self, span: Span) -> Ty<'tcx> {
1574         self.next_ty_var(TypeVariableOrigin::TypeInference(span))
1575     }
1576
1577     fn ty_infer_for_def(&self,
1578                         ty_param_def: &ty::TypeParameterDef,
1579                         substs: &[Kind<'tcx>],
1580                         span: Span) -> Ty<'tcx> {
1581         self.type_var_for_def(span, ty_param_def, substs)
1582     }
1583
1584     fn projected_ty_from_poly_trait_ref(&self,
1585                                         span: Span,
1586                                         poly_trait_ref: ty::PolyTraitRef<'tcx>,
1587                                         item_name: ast::Name)
1588                                         -> Ty<'tcx>
1589     {
1590         let (trait_ref, _) =
1591             self.replace_late_bound_regions_with_fresh_var(
1592                 span,
1593                 infer::LateBoundRegionConversionTime::AssocTypeProjection(item_name),
1594                 &poly_trait_ref);
1595
1596         self.tcx().mk_projection(trait_ref, item_name)
1597     }
1598
1599     fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
1600         if ty.has_escaping_regions() {
1601             ty // FIXME: normalization and escaping regions
1602         } else {
1603             self.normalize_associated_types_in(span, &ty)
1604         }
1605     }
1606
1607     fn set_tainted_by_errors(&self) {
1608         self.infcx.set_tainted_by_errors()
1609     }
1610 }
1611
1612 /// Controls whether the arguments are tupled. This is used for the call
1613 /// operator.
1614 ///
1615 /// Tupling means that all call-side arguments are packed into a tuple and
1616 /// passed as a single parameter. For example, if tupling is enabled, this
1617 /// function:
1618 ///
1619 ///     fn f(x: (isize, isize))
1620 ///
1621 /// Can be called as:
1622 ///
1623 ///     f(1, 2);
1624 ///
1625 /// Instead of:
1626 ///
1627 ///     f((1, 2));
1628 #[derive(Clone, Eq, PartialEq)]
1629 enum TupleArgumentsFlag {
1630     DontTupleArguments,
1631     TupleArguments,
1632 }
1633
1634 impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
1635     pub fn new(inh: &'a Inherited<'a, 'gcx, 'tcx>,
1636                body_id: ast::NodeId)
1637                -> FnCtxt<'a, 'gcx, 'tcx> {
1638         FnCtxt {
1639             body_id: body_id,
1640             err_count_on_creation: inh.tcx.sess.err_count(),
1641             ret_coercion: None,
1642             ps: RefCell::new(UnsafetyState::function(hir::Unsafety::Normal,
1643                                                      ast::CRATE_NODE_ID)),
1644             diverges: Cell::new(Diverges::Maybe),
1645             has_errors: Cell::new(false),
1646             enclosing_breakables: RefCell::new(EnclosingBreakables {
1647                 stack: Vec::new(),
1648                 by_id: NodeMap(),
1649             }),
1650             inh: inh,
1651         }
1652     }
1653
1654     pub fn sess(&self) -> &Session {
1655         &self.tcx.sess
1656     }
1657
1658     pub fn err_count_since_creation(&self) -> usize {
1659         self.tcx.sess.err_count() - self.err_count_on_creation
1660     }
1661
1662     /// Produce warning on the given node, if the current point in the
1663     /// function is unreachable, and there hasn't been another warning.
1664     fn warn_if_unreachable(&self, id: ast::NodeId, span: Span, kind: &str) {
1665         if self.diverges.get() == Diverges::Always {
1666             self.diverges.set(Diverges::WarnedAlways);
1667
1668             debug!("warn_if_unreachable: id={:?} span={:?} kind={}", id, span, kind);
1669
1670             self.tables.borrow_mut().lints.add_lint(
1671                 lint::builtin::UNREACHABLE_CODE,
1672                 id, span,
1673                 format!("unreachable {}", kind));
1674         }
1675     }
1676
1677     pub fn cause(&self,
1678                  span: Span,
1679                  code: ObligationCauseCode<'tcx>)
1680                  -> ObligationCause<'tcx> {
1681         ObligationCause::new(span, self.body_id, code)
1682     }
1683
1684     pub fn misc(&self, span: Span) -> ObligationCause<'tcx> {
1685         self.cause(span, ObligationCauseCode::MiscObligation)
1686     }
1687
1688     /// Resolves type variables in `ty` if possible. Unlike the infcx
1689     /// version (resolve_type_vars_if_possible), this version will
1690     /// also select obligations if it seems useful, in an effort
1691     /// to get more type information.
1692     fn resolve_type_vars_with_obligations(&self, mut ty: Ty<'tcx>) -> Ty<'tcx> {
1693         debug!("resolve_type_vars_with_obligations(ty={:?})", ty);
1694
1695         // No TyInfer()? Nothing needs doing.
1696         if !ty.has_infer_types() {
1697             debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1698             return ty;
1699         }
1700
1701         // If `ty` is a type variable, see whether we already know what it is.
1702         ty = self.resolve_type_vars_if_possible(&ty);
1703         if !ty.has_infer_types() {
1704             debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1705             return ty;
1706         }
1707
1708         // If not, try resolving pending obligations as much as
1709         // possible. This can help substantially when there are
1710         // indirect dependencies that don't seem worth tracking
1711         // precisely.
1712         self.select_obligations_where_possible();
1713         ty = self.resolve_type_vars_if_possible(&ty);
1714
1715         debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1716         ty
1717     }
1718
1719     fn record_deferred_call_resolution(&self,
1720                                        closure_def_id: DefId,
1721                                        r: DeferredCallResolution<'gcx, 'tcx>) {
1722         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
1723         deferred_call_resolutions.entry(closure_def_id).or_insert(vec![]).push(r);
1724     }
1725
1726     fn remove_deferred_call_resolutions(&self,
1727                                         closure_def_id: DefId)
1728                                         -> Vec<DeferredCallResolution<'gcx, 'tcx>>
1729     {
1730         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
1731         deferred_call_resolutions.remove(&closure_def_id).unwrap_or(vec![])
1732     }
1733
1734     pub fn tag(&self) -> String {
1735         let self_ptr: *const FnCtxt = self;
1736         format!("{:?}", self_ptr)
1737     }
1738
1739     pub fn local_ty(&self, span: Span, nid: ast::NodeId) -> Ty<'tcx> {
1740         match self.locals.borrow().get(&nid) {
1741             Some(&t) => t,
1742             None => {
1743                 span_bug!(span, "no type for local variable {}",
1744                           self.tcx.hir.node_to_string(nid));
1745             }
1746         }
1747     }
1748
1749     #[inline]
1750     pub fn write_ty(&self, node_id: ast::NodeId, ty: Ty<'tcx>) {
1751         debug!("write_ty({}, {:?}) in fcx {}",
1752                node_id, self.resolve_type_vars_if_possible(&ty), self.tag());
1753         self.tables.borrow_mut().node_types.insert(node_id, ty);
1754
1755         if ty.references_error() {
1756             self.has_errors.set(true);
1757             self.set_tainted_by_errors();
1758         }
1759     }
1760
1761     pub fn write_substs(&self, node_id: ast::NodeId, substs: &'tcx Substs<'tcx>) {
1762         if !substs.is_noop() {
1763             debug!("write_substs({}, {:?}) in fcx {}",
1764                    node_id,
1765                    substs,
1766                    self.tag());
1767
1768             self.tables.borrow_mut().node_substs.insert(node_id, substs);
1769         }
1770     }
1771
1772     pub fn apply_autoderef_adjustment(&self,
1773                                       node_id: ast::NodeId,
1774                                       autoderefs: Vec<Option<ty::MethodCallee<'tcx>>>,
1775                                       adjusted_ty: Ty<'tcx>) {
1776         self.apply_adjustment(node_id, Adjustment {
1777             kind: Adjust::DerefRef {
1778                 autoderefs,
1779                 autoref: None,
1780                 unsize: false
1781             },
1782             target: adjusted_ty
1783         });
1784     }
1785
1786     pub fn apply_adjustment(&self, node_id: ast::NodeId, adj: Adjustment<'tcx>) {
1787         debug!("apply_adjustment(node_id={}, adj={:?})", node_id, adj);
1788
1789         if adj.is_identity() {
1790             return;
1791         }
1792
1793         match self.tables.borrow_mut().adjustments.entry(node_id) {
1794             Entry::Vacant(entry) => { entry.insert(adj); },
1795             Entry::Occupied(mut entry) => {
1796                 debug!(" - composing on top of {:?}", entry.get());
1797                 match (&entry.get().kind, &adj.kind) {
1798                     // Applying any adjustment on top of a NeverToAny
1799                     // is a valid NeverToAny adjustment, because it can't
1800                     // be reached.
1801                     (&Adjust::NeverToAny, _) => return,
1802                     (&Adjust::DerefRef {
1803                         autoderefs: ref old,
1804                         autoref: Some(AutoBorrow::Ref(..)),
1805                         unsize: false
1806                     }, &Adjust::DerefRef {
1807                         autoderefs: ref new, ..
1808                     }) if old.len() == 1 && new.len() >= 1 => {
1809                         // A reborrow has no effect before a dereference.
1810                     }
1811                     // FIXME: currently we never try to compose autoderefs
1812                     // and ReifyFnPointer/UnsafeFnPointer, but we could.
1813                     _ =>
1814                         bug!("while adjusting {}, can't compose {:?} and {:?}",
1815                              node_id, entry.get(), adj)
1816                 };
1817                 *entry.get_mut() = adj;
1818             }
1819         }
1820     }
1821
1822     /// Basically whenever we are converting from a type scheme into
1823     /// the fn body space, we always want to normalize associated
1824     /// types as well. This function combines the two.
1825     fn instantiate_type_scheme<T>(&self,
1826                                   span: Span,
1827                                   substs: &Substs<'tcx>,
1828                                   value: &T)
1829                                   -> T
1830         where T : TypeFoldable<'tcx>
1831     {
1832         let value = value.subst(self.tcx, substs);
1833         let result = self.normalize_associated_types_in(span, &value);
1834         debug!("instantiate_type_scheme(value={:?}, substs={:?}) = {:?}",
1835                value,
1836                substs,
1837                result);
1838         result
1839     }
1840
1841     /// As `instantiate_type_scheme`, but for the bounds found in a
1842     /// generic type scheme.
1843     fn instantiate_bounds(&self, span: Span, def_id: DefId, substs: &Substs<'tcx>)
1844                           -> ty::InstantiatedPredicates<'tcx> {
1845         let bounds = self.tcx.predicates_of(def_id);
1846         let result = bounds.instantiate(self.tcx, substs);
1847         let result = self.normalize_associated_types_in(span, &result);
1848         debug!("instantiate_bounds(bounds={:?}, substs={:?}) = {:?}",
1849                bounds,
1850                substs,
1851                result);
1852         result
1853     }
1854
1855     /// Replace all anonymized types with fresh inference variables
1856     /// and record them for writeback.
1857     fn instantiate_anon_types<T: TypeFoldable<'tcx>>(&self, value: &T) -> T {
1858         value.fold_with(&mut BottomUpFolder { tcx: self.tcx, fldop: |ty| {
1859             if let ty::TyAnon(def_id, substs) = ty.sty {
1860                 // Use the same type variable if the exact same TyAnon appears more
1861                 // than once in the return type (e.g. if it's pased to a type alias).
1862                 let id = self.tcx.hir.as_local_node_id(def_id).unwrap();
1863                 if let Some(ty_var) = self.anon_types.borrow().get(&id) {
1864                     return ty_var;
1865                 }
1866                 let span = self.tcx.def_span(def_id);
1867                 let ty_var = self.next_ty_var(TypeVariableOrigin::TypeInference(span));
1868                 self.anon_types.borrow_mut().insert(id, ty_var);
1869
1870                 let predicates_of = self.tcx.predicates_of(def_id);
1871                 let bounds = predicates_of.instantiate(self.tcx, substs);
1872
1873                 for predicate in bounds.predicates {
1874                     // Change the predicate to refer to the type variable,
1875                     // which will be the concrete type, instead of the TyAnon.
1876                     // This also instantiates nested `impl Trait`.
1877                     let predicate = self.instantiate_anon_types(&predicate);
1878
1879                     // Require that the predicate holds for the concrete type.
1880                     let cause = traits::ObligationCause::new(span, self.body_id,
1881                                                              traits::ReturnType);
1882                     self.register_predicate(traits::Obligation::new(cause, predicate));
1883                 }
1884
1885                 ty_var
1886             } else {
1887                 ty
1888             }
1889         }})
1890     }
1891
1892     fn normalize_associated_types_in<T>(&self, span: Span, value: &T) -> T
1893         where T : TypeFoldable<'tcx>
1894     {
1895         let ok = self.normalize_associated_types_in_as_infer_ok(span, value);
1896         self.register_infer_ok_obligations(ok)
1897     }
1898
1899     fn normalize_associated_types_in_as_infer_ok<T>(&self, span: Span, value: &T)
1900                                                     -> InferOk<'tcx, T>
1901         where T : TypeFoldable<'tcx>
1902     {
1903         self.inh.normalize_associated_types_in_as_infer_ok(span, self.body_id, value)
1904     }
1905
1906     pub fn write_nil(&self, node_id: ast::NodeId) {
1907         self.write_ty(node_id, self.tcx.mk_nil());
1908     }
1909
1910     pub fn write_error(&self, node_id: ast::NodeId) {
1911         self.write_ty(node_id, self.tcx.types.err);
1912     }
1913
1914     pub fn require_type_meets(&self,
1915                               ty: Ty<'tcx>,
1916                               span: Span,
1917                               code: traits::ObligationCauseCode<'tcx>,
1918                               def_id: DefId)
1919     {
1920         self.register_bound(
1921             ty,
1922             def_id,
1923             traits::ObligationCause::new(span, self.body_id, code));
1924     }
1925
1926     pub fn require_type_is_sized(&self,
1927                                  ty: Ty<'tcx>,
1928                                  span: Span,
1929                                  code: traits::ObligationCauseCode<'tcx>)
1930     {
1931         let lang_item = self.tcx.require_lang_item(lang_items::SizedTraitLangItem);
1932         self.require_type_meets(ty, span, code, lang_item);
1933     }
1934
1935     pub fn register_bound(&self,
1936                           ty: Ty<'tcx>,
1937                           def_id: DefId,
1938                           cause: traits::ObligationCause<'tcx>)
1939     {
1940         self.fulfillment_cx.borrow_mut()
1941             .register_bound(self, ty, def_id, cause);
1942     }
1943
1944     pub fn to_ty(&self, ast_t: &hir::Ty) -> Ty<'tcx> {
1945         let t = AstConv::ast_ty_to_ty(self, ast_t);
1946         self.register_wf_obligation(t, ast_t.span, traits::MiscObligation);
1947         t
1948     }
1949
1950     pub fn node_ty(&self, id: ast::NodeId) -> Ty<'tcx> {
1951         match self.tables.borrow().node_types.get(&id) {
1952             Some(&t) => t,
1953             None if self.err_count_since_creation() != 0 => self.tcx.types.err,
1954             None => {
1955                 bug!("no type for node {}: {} in fcx {}",
1956                      id, self.tcx.hir.node_to_string(id),
1957                      self.tag());
1958             }
1959         }
1960     }
1961
1962     /// Registers an obligation for checking later, during regionck, that the type `ty` must
1963     /// outlive the region `r`.
1964     pub fn register_region_obligation(&self,
1965                                       ty: Ty<'tcx>,
1966                                       region: ty::Region<'tcx>,
1967                                       cause: traits::ObligationCause<'tcx>)
1968     {
1969         let mut fulfillment_cx = self.fulfillment_cx.borrow_mut();
1970         fulfillment_cx.register_region_obligation(ty, region, cause);
1971     }
1972
1973     /// Registers an obligation for checking later, during regionck, that the type `ty` must
1974     /// outlive the region `r`.
1975     pub fn register_wf_obligation(&self,
1976                                   ty: Ty<'tcx>,
1977                                   span: Span,
1978                                   code: traits::ObligationCauseCode<'tcx>)
1979     {
1980         // WF obligations never themselves fail, so no real need to give a detailed cause:
1981         let cause = traits::ObligationCause::new(span, self.body_id, code);
1982         self.register_predicate(traits::Obligation::new(cause, ty::Predicate::WellFormed(ty)));
1983     }
1984
1985     pub fn register_old_wf_obligation(&self,
1986                                       ty: Ty<'tcx>,
1987                                       span: Span,
1988                                       code: traits::ObligationCauseCode<'tcx>)
1989     {
1990         // Registers an "old-style" WF obligation that uses the
1991         // implicator code.  This is basically a buggy version of
1992         // `register_wf_obligation` that is being kept around
1993         // temporarily just to help with phasing in the newer rules.
1994         //
1995         // FIXME(#27579) all uses of this should be migrated to register_wf_obligation eventually
1996         let cause = traits::ObligationCause::new(span, self.body_id, code);
1997         self.register_region_obligation(ty, self.tcx.types.re_empty, cause);
1998     }
1999
2000     /// Registers obligations that all types appearing in `substs` are well-formed.
2001     pub fn add_wf_bounds(&self, substs: &Substs<'tcx>, expr: &hir::Expr)
2002     {
2003         for ty in substs.types() {
2004             self.register_wf_obligation(ty, expr.span, traits::MiscObligation);
2005         }
2006     }
2007
2008     /// Given a fully substituted set of bounds (`generic_bounds`), and the values with which each
2009     /// type/region parameter was instantiated (`substs`), creates and registers suitable
2010     /// trait/region obligations.
2011     ///
2012     /// For example, if there is a function:
2013     ///
2014     /// ```
2015     /// fn foo<'a,T:'a>(...)
2016     /// ```
2017     ///
2018     /// and a reference:
2019     ///
2020     /// ```
2021     /// let f = foo;
2022     /// ```
2023     ///
2024     /// Then we will create a fresh region variable `'$0` and a fresh type variable `$1` for `'a`
2025     /// and `T`. This routine will add a region obligation `$1:'$0` and register it locally.
2026     pub fn add_obligations_for_parameters(&self,
2027                                           cause: traits::ObligationCause<'tcx>,
2028                                           predicates: &ty::InstantiatedPredicates<'tcx>)
2029     {
2030         assert!(!predicates.has_escaping_regions());
2031
2032         debug!("add_obligations_for_parameters(predicates={:?})",
2033                predicates);
2034
2035         for obligation in traits::predicates_for_generics(cause, predicates) {
2036             self.register_predicate(obligation);
2037         }
2038     }
2039
2040     // FIXME(arielb1): use this instead of field.ty everywhere
2041     // Only for fields! Returns <none> for methods>
2042     // Indifferent to privacy flags
2043     pub fn field_ty(&self,
2044                     span: Span,
2045                     field: &'tcx ty::FieldDef,
2046                     substs: &Substs<'tcx>)
2047                     -> Ty<'tcx>
2048     {
2049         self.normalize_associated_types_in(span,
2050                                            &field.ty(self.tcx, substs))
2051     }
2052
2053     fn check_casts(&self) {
2054         let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
2055         for cast in deferred_cast_checks.drain(..) {
2056             cast.check(self);
2057         }
2058     }
2059
2060     /// Apply "fallbacks" to some types
2061     /// unconstrained types get replaced with ! or  () (depending on whether
2062     /// feature(never_type) is enabled), unconstrained ints with i32, and
2063     /// unconstrained floats with f64.
2064     fn default_type_parameters(&self) {
2065         use rustc::ty::error::UnconstrainedNumeric::Neither;
2066         use rustc::ty::error::UnconstrainedNumeric::{UnconstrainedInt, UnconstrainedFloat};
2067
2068         // Defaulting inference variables becomes very dubious if we have
2069         // encountered type-checking errors. Therefore, if we think we saw
2070         // some errors in this function, just resolve all uninstanted type
2071         // varibles to TyError.
2072         if self.is_tainted_by_errors() {
2073             for ty in &self.unsolved_variables() {
2074                 if let ty::TyInfer(_) = self.shallow_resolve(ty).sty {
2075                     debug!("default_type_parameters: defaulting `{:?}` to error", ty);
2076                     self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx().types.err);
2077                 }
2078             }
2079             return;
2080         }
2081
2082         for ty in &self.unsolved_variables() {
2083             let resolved = self.resolve_type_vars_if_possible(ty);
2084             if self.type_var_diverges(resolved) {
2085                 debug!("default_type_parameters: defaulting `{:?}` to `!` because it diverges",
2086                        resolved);
2087                 self.demand_eqtype(syntax_pos::DUMMY_SP, *ty,
2088                                    self.tcx.mk_diverging_default());
2089             } else {
2090                 match self.type_is_unconstrained_numeric(resolved) {
2091                     UnconstrainedInt => {
2092                         debug!("default_type_parameters: defaulting `{:?}` to `i32`",
2093                                resolved);
2094                         self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx.types.i32)
2095                     },
2096                     UnconstrainedFloat => {
2097                         debug!("default_type_parameters: defaulting `{:?}` to `f32`",
2098                                resolved);
2099                         self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx.types.f64)
2100                     }
2101                     Neither => { }
2102                 }
2103             }
2104         }
2105     }
2106
2107     // Implements type inference fallback algorithm
2108     fn select_all_obligations_and_apply_defaults(&self) {
2109         self.select_obligations_where_possible();
2110         self.default_type_parameters();
2111         self.select_obligations_where_possible();
2112     }
2113
2114     fn select_all_obligations_or_error(&self) {
2115         debug!("select_all_obligations_or_error");
2116
2117         // upvar inference should have ensured that all deferred call
2118         // resolutions are handled by now.
2119         assert!(self.deferred_call_resolutions.borrow().is_empty());
2120
2121         self.select_all_obligations_and_apply_defaults();
2122
2123         let mut fulfillment_cx = self.fulfillment_cx.borrow_mut();
2124
2125         match fulfillment_cx.select_all_or_error(self) {
2126             Ok(()) => { }
2127             Err(errors) => { self.report_fulfillment_errors(&errors); }
2128         }
2129     }
2130
2131     /// Select as many obligations as we can at present.
2132     fn select_obligations_where_possible(&self) {
2133         match self.fulfillment_cx.borrow_mut().select_where_possible(self) {
2134             Ok(()) => { }
2135             Err(errors) => { self.report_fulfillment_errors(&errors); }
2136         }
2137     }
2138
2139     /// For the overloaded lvalue expressions (`*x`, `x[3]`), the trait
2140     /// returns a type of `&T`, but the actual type we assign to the
2141     /// *expression* is `T`. So this function just peels off the return
2142     /// type by one layer to yield `T`.
2143     fn make_overloaded_lvalue_return_type(&self,
2144                                           method: MethodCallee<'tcx>)
2145                                           -> ty::TypeAndMut<'tcx>
2146     {
2147         // extract method return type, which will be &T;
2148         // all LB regions should have been instantiated during method lookup
2149         let ret_ty = method.sig.output();
2150
2151         // method returns &T, but the type as visible to user is T, so deref
2152         ret_ty.builtin_deref(true, NoPreference).unwrap()
2153     }
2154
2155     fn lookup_indexing(&self,
2156                        expr: &hir::Expr,
2157                        base_expr: &'gcx hir::Expr,
2158                        base_ty: Ty<'tcx>,
2159                        idx_ty: Ty<'tcx>,
2160                        lvalue_pref: LvaluePreference)
2161                        -> Option<(/*index type*/ Ty<'tcx>, /*element type*/ Ty<'tcx>)>
2162     {
2163         // FIXME(#18741) -- this is almost but not quite the same as the
2164         // autoderef that normal method probing does. They could likely be
2165         // consolidated.
2166
2167         let mut autoderef = self.autoderef(base_expr.span, base_ty);
2168         let mut result = None;
2169         while result.is_none() && autoderef.next().is_some() {
2170             result = self.try_index_step(expr, base_expr, &autoderef, lvalue_pref, idx_ty);
2171         }
2172         autoderef.finalize();
2173         result
2174     }
2175
2176     /// To type-check `base_expr[index_expr]`, we progressively autoderef
2177     /// (and otherwise adjust) `base_expr`, looking for a type which either
2178     /// supports builtin indexing or overloaded indexing.
2179     /// This loop implements one step in that search; the autoderef loop
2180     /// is implemented by `lookup_indexing`.
2181     fn try_index_step(&self,
2182                       expr: &hir::Expr,
2183                       base_expr: &hir::Expr,
2184                       autoderef: &Autoderef<'a, 'gcx, 'tcx>,
2185                       lvalue_pref: LvaluePreference,
2186                       index_ty: Ty<'tcx>)
2187                       -> Option<(/*index type*/ Ty<'tcx>, /*element type*/ Ty<'tcx>)>
2188     {
2189         let mut adjusted_ty = autoderef.unambiguous_final_ty();
2190         debug!("try_index_step(expr={:?}, base_expr={:?}, adjusted_ty={:?}, \
2191                                index_ty={:?})",
2192                expr,
2193                base_expr,
2194                adjusted_ty,
2195                index_ty);
2196
2197
2198         // First, try built-in indexing.
2199         match (adjusted_ty.builtin_index(), &index_ty.sty) {
2200             (Some(ty), &ty::TyUint(ast::UintTy::Us)) | (Some(ty), &ty::TyInfer(ty::IntVar(_))) => {
2201                 debug!("try_index_step: success, using built-in indexing");
2202                 let autoderefs = autoderef.adjust_steps(lvalue_pref);
2203                 self.apply_autoderef_adjustment(
2204                     base_expr.id, autoderefs, adjusted_ty);
2205                 return Some((self.tcx.types.usize, ty));
2206             }
2207             _ => {}
2208         }
2209
2210         for &unsize in &[false, true] {
2211             if unsize {
2212                 // We only unsize arrays here.
2213                 if let ty::TyArray(element_ty, _) = adjusted_ty.sty {
2214                     adjusted_ty = self.tcx.mk_slice(element_ty);
2215                 } else {
2216                     continue;
2217                 }
2218             }
2219
2220             // If some lookup succeeds, write callee into table and extract index/element
2221             // type from the method signature.
2222             // If some lookup succeeded, install method in table
2223             let input_ty = self.next_ty_var(TypeVariableOrigin::AutoDeref(base_expr.span));
2224             let method = self.try_overloaded_lvalue_op(
2225                 expr.span, adjusted_ty, &[input_ty], lvalue_pref, LvalueOp::Index);
2226
2227             let result = method.map(|ok| {
2228                 debug!("try_index_step: success, using overloaded indexing");
2229                 let (autoref, method) = self.register_infer_ok_obligations(ok);
2230
2231                 let autoderefs = autoderef.adjust_steps(lvalue_pref);
2232                 self.apply_adjustment(base_expr.id, Adjustment {
2233                     kind: Adjust::DerefRef {
2234                         autoderefs,
2235                         autoref,
2236                         unsize
2237                     },
2238                     target: method.sig.inputs()[0]
2239                 });
2240
2241                 self.tables.borrow_mut().method_map.insert(expr.id, method);
2242                 (input_ty, self.make_overloaded_lvalue_return_type(method).ty)
2243             });
2244             if result.is_some() {
2245                 return result;
2246             }
2247         }
2248
2249         None
2250     }
2251
2252     fn resolve_lvalue_op(&self, op: LvalueOp, is_mut: bool) -> (Option<DefId>, Symbol) {
2253         let (tr, name) = match (op, is_mut) {
2254             (LvalueOp::Deref, false) =>
2255                 (self.tcx.lang_items.deref_trait(), "deref"),
2256             (LvalueOp::Deref, true) =>
2257                 (self.tcx.lang_items.deref_mut_trait(), "deref_mut"),
2258             (LvalueOp::Index, false) =>
2259                 (self.tcx.lang_items.index_trait(), "index"),
2260             (LvalueOp::Index, true) =>
2261                 (self.tcx.lang_items.index_mut_trait(), "index_mut"),
2262         };
2263         (tr, Symbol::intern(name))
2264     }
2265
2266     fn try_overloaded_lvalue_op(&self,
2267                                 span: Span,
2268                                 base_ty: Ty<'tcx>,
2269                                 arg_tys: &[Ty<'tcx>],
2270                                 lvalue_pref: LvaluePreference,
2271                                 op: LvalueOp)
2272                                 -> Option<InferOk<'tcx,
2273                                     (Option<AutoBorrow<'tcx>>,
2274                                      ty::MethodCallee<'tcx>)>>
2275     {
2276         debug!("try_overloaded_lvalue_op({:?},{:?},{:?},{:?})",
2277                span,
2278                base_ty,
2279                lvalue_pref,
2280                op);
2281
2282         // Try Mut first, if preferred.
2283         let (mut_tr, mut_op) = self.resolve_lvalue_op(op, true);
2284         let method = match (lvalue_pref, mut_tr) {
2285             (PreferMutLvalue, Some(trait_did)) => {
2286                 self.lookup_method_in_trait_adjusted(span,
2287                                                      mut_op,
2288                                                      trait_did,
2289                                                      base_ty,
2290                                                      Some(arg_tys))
2291             }
2292             _ => None,
2293         };
2294
2295         // Otherwise, fall back to the immutable version.
2296         let (imm_tr, imm_op) = self.resolve_lvalue_op(op, false);
2297         let method = match (method, imm_tr) {
2298             (None, Some(trait_did)) => {
2299                 self.lookup_method_in_trait_adjusted(span,
2300                                                      imm_op,
2301                                                      trait_did,
2302                                                      base_ty,
2303                                                      Some(arg_tys))
2304             }
2305             (method, _) => method,
2306         };
2307
2308         method
2309     }
2310
2311     fn check_method_argument_types(&self,
2312                                    sp: Span,
2313                                    method: Result<ty::MethodCallee<'tcx>, ()>,
2314                                    args_no_rcvr: &'gcx [hir::Expr],
2315                                    tuple_arguments: TupleArgumentsFlag,
2316                                    expected: Expectation<'tcx>)
2317                                    -> Ty<'tcx> {
2318         let has_error = match method {
2319             Ok(method) => {
2320                 method.substs.references_error() || method.sig.references_error()
2321             }
2322             Err(_) => true
2323         };
2324         if has_error {
2325             let err_inputs = self.err_args(args_no_rcvr.len());
2326
2327             let err_inputs = match tuple_arguments {
2328                 DontTupleArguments => err_inputs,
2329                 TupleArguments => vec![self.tcx.intern_tup(&err_inputs[..], false)],
2330             };
2331
2332             self.check_argument_types(sp, &err_inputs[..], &[], args_no_rcvr,
2333                                       false, tuple_arguments, None);
2334             return self.tcx.types.err;
2335         }
2336
2337         let method = method.unwrap();
2338         // HACK(eddyb) ignore self in the definition (see above).
2339         let expected_arg_tys = self.expected_inputs_for_expected_output(
2340             sp,
2341             expected,
2342             method.sig.output(),
2343             &method.sig.inputs()[1..]
2344         );
2345         self.check_argument_types(sp, &method.sig.inputs()[1..], &expected_arg_tys[..],
2346                                   args_no_rcvr, method.sig.variadic, tuple_arguments,
2347                                   self.tcx.hir.span_if_local(method.def_id));
2348         method.sig.output()
2349     }
2350
2351     /// Generic function that factors out common logic from function calls,
2352     /// method calls and overloaded operators.
2353     fn check_argument_types(&self,
2354                             sp: Span,
2355                             fn_inputs: &[Ty<'tcx>],
2356                             expected_arg_tys: &[Ty<'tcx>],
2357                             args: &'gcx [hir::Expr],
2358                             variadic: bool,
2359                             tuple_arguments: TupleArgumentsFlag,
2360                             def_span: Option<Span>) {
2361         let tcx = self.tcx;
2362
2363         // Grab the argument types, supplying fresh type variables
2364         // if the wrong number of arguments were supplied
2365         let supplied_arg_count = if tuple_arguments == DontTupleArguments {
2366             args.len()
2367         } else {
2368             1
2369         };
2370
2371         // All the input types from the fn signature must outlive the call
2372         // so as to validate implied bounds.
2373         for &fn_input_ty in fn_inputs {
2374             self.register_wf_obligation(fn_input_ty, sp, traits::MiscObligation);
2375         }
2376
2377         let mut expected_arg_tys = expected_arg_tys;
2378         let expected_arg_count = fn_inputs.len();
2379
2380         let sp_args = if args.len() > 0 {
2381             let (first, args) = args.split_at(1);
2382             let mut sp_tmp = first[0].span;
2383             for arg in args {
2384                 let sp_opt = self.sess().codemap().merge_spans(sp_tmp, arg.span);
2385                 if ! sp_opt.is_some() {
2386                     break;
2387                 }
2388                 sp_tmp = sp_opt.unwrap();
2389             };
2390             sp_tmp
2391         } else {
2392             sp
2393         };
2394
2395         fn parameter_count_error<'tcx>(sess: &Session, sp: Span, expected_count: usize,
2396                                        arg_count: usize, error_code: &str, variadic: bool,
2397                                        def_span: Option<Span>) {
2398             let mut err = sess.struct_span_err_with_code(sp,
2399                 &format!("this function takes {}{} parameter{} but {} parameter{} supplied",
2400                     if variadic {"at least "} else {""},
2401                     expected_count,
2402                     if expected_count == 1 {""} else {"s"},
2403                     arg_count,
2404                     if arg_count == 1 {" was"} else {"s were"}),
2405                 error_code);
2406
2407             err.span_label(sp, format!("expected {}{} parameter{}",
2408                                         if variadic {"at least "} else {""},
2409                                         expected_count,
2410                                         if expected_count == 1 {""} else {"s"}));
2411             if let Some(def_s) = def_span {
2412                 err.span_label(def_s, "defined here");
2413             }
2414             err.emit();
2415         }
2416
2417         let formal_tys = if tuple_arguments == TupleArguments {
2418             let tuple_type = self.structurally_resolved_type(sp, fn_inputs[0]);
2419             match tuple_type.sty {
2420                 ty::TyTuple(arg_types, _) if arg_types.len() != args.len() => {
2421                     parameter_count_error(tcx.sess, sp_args, arg_types.len(), args.len(),
2422                                           "E0057", false, def_span);
2423                     expected_arg_tys = &[];
2424                     self.err_args(args.len())
2425                 }
2426                 ty::TyTuple(arg_types, _) => {
2427                     expected_arg_tys = match expected_arg_tys.get(0) {
2428                         Some(&ty) => match ty.sty {
2429                             ty::TyTuple(ref tys, _) => &tys,
2430                             _ => &[]
2431                         },
2432                         None => &[]
2433                     };
2434                     arg_types.to_vec()
2435                 }
2436                 _ => {
2437                     span_err!(tcx.sess, sp, E0059,
2438                         "cannot use call notation; the first type parameter \
2439                          for the function trait is neither a tuple nor unit");
2440                     expected_arg_tys = &[];
2441                     self.err_args(args.len())
2442                 }
2443             }
2444         } else if expected_arg_count == supplied_arg_count {
2445             fn_inputs.to_vec()
2446         } else if variadic {
2447             if supplied_arg_count >= expected_arg_count {
2448                 fn_inputs.to_vec()
2449             } else {
2450                 parameter_count_error(tcx.sess, sp_args, expected_arg_count,
2451                                       supplied_arg_count, "E0060", true, def_span);
2452                 expected_arg_tys = &[];
2453                 self.err_args(supplied_arg_count)
2454             }
2455         } else {
2456             parameter_count_error(tcx.sess, sp_args, expected_arg_count,
2457                                   supplied_arg_count, "E0061", false, def_span);
2458             expected_arg_tys = &[];
2459             self.err_args(supplied_arg_count)
2460         };
2461
2462         debug!("check_argument_types: formal_tys={:?}",
2463                formal_tys.iter().map(|t| self.ty_to_string(*t)).collect::<Vec<String>>());
2464
2465         // Check the arguments.
2466         // We do this in a pretty awful way: first we typecheck any arguments
2467         // that are not closures, then we typecheck the closures. This is so
2468         // that we have more information about the types of arguments when we
2469         // typecheck the functions. This isn't really the right way to do this.
2470         for &check_closures in &[false, true] {
2471             debug!("check_closures={}", check_closures);
2472
2473             // More awful hacks: before we check argument types, try to do
2474             // an "opportunistic" vtable resolution of any trait bounds on
2475             // the call. This helps coercions.
2476             if check_closures {
2477                 self.select_obligations_where_possible();
2478             }
2479
2480             // For variadic functions, we don't have a declared type for all of
2481             // the arguments hence we only do our usual type checking with
2482             // the arguments who's types we do know.
2483             let t = if variadic {
2484                 expected_arg_count
2485             } else if tuple_arguments == TupleArguments {
2486                 args.len()
2487             } else {
2488                 supplied_arg_count
2489             };
2490             for (i, arg) in args.iter().take(t).enumerate() {
2491                 // Warn only for the first loop (the "no closures" one).
2492                 // Closure arguments themselves can't be diverging, but
2493                 // a previous argument can, e.g. `foo(panic!(), || {})`.
2494                 if !check_closures {
2495                     self.warn_if_unreachable(arg.id, arg.span, "expression");
2496                 }
2497
2498                 let is_closure = match arg.node {
2499                     hir::ExprClosure(..) => true,
2500                     _ => false
2501                 };
2502
2503                 if is_closure != check_closures {
2504                     continue;
2505                 }
2506
2507                 debug!("checking the argument");
2508                 let formal_ty = formal_tys[i];
2509
2510                 // The special-cased logic below has three functions:
2511                 // 1. Provide as good of an expected type as possible.
2512                 let expected = expected_arg_tys.get(i).map(|&ty| {
2513                     Expectation::rvalue_hint(self, ty)
2514                 });
2515
2516                 let checked_ty = self.check_expr_with_expectation(
2517                     &arg,
2518                     expected.unwrap_or(ExpectHasType(formal_ty)));
2519
2520                 // 2. Coerce to the most detailed type that could be coerced
2521                 //    to, which is `expected_ty` if `rvalue_hint` returns an
2522                 //    `ExpectHasType(expected_ty)`, or the `formal_ty` otherwise.
2523                 let coerce_ty = expected.and_then(|e| e.only_has_type(self));
2524                 self.demand_coerce(&arg, checked_ty, coerce_ty.unwrap_or(formal_ty));
2525
2526                 // 3. Relate the expected type and the formal one,
2527                 //    if the expected type was used for the coercion.
2528                 coerce_ty.map(|ty| self.demand_suptype(arg.span, formal_ty, ty));
2529             }
2530         }
2531
2532         // We also need to make sure we at least write the ty of the other
2533         // arguments which we skipped above.
2534         if variadic {
2535             for arg in args.iter().skip(expected_arg_count) {
2536                 let arg_ty = self.check_expr(&arg);
2537
2538                 // There are a few types which get autopromoted when passed via varargs
2539                 // in C but we just error out instead and require explicit casts.
2540                 let arg_ty = self.structurally_resolved_type(arg.span,
2541                                                              arg_ty);
2542                 match arg_ty.sty {
2543                     ty::TyFloat(ast::FloatTy::F32) => {
2544                         self.type_error_message(arg.span, |t| {
2545                             format!("can't pass an `{}` to variadic \
2546                                      function, cast to `c_double`", t)
2547                         }, arg_ty);
2548                     }
2549                     ty::TyInt(ast::IntTy::I8) | ty::TyInt(ast::IntTy::I16) | ty::TyBool => {
2550                         self.type_error_message(arg.span, |t| {
2551                             format!("can't pass `{}` to variadic \
2552                                      function, cast to `c_int`",
2553                                            t)
2554                         }, arg_ty);
2555                     }
2556                     ty::TyUint(ast::UintTy::U8) | ty::TyUint(ast::UintTy::U16) => {
2557                         self.type_error_message(arg.span, |t| {
2558                             format!("can't pass `{}` to variadic \
2559                                      function, cast to `c_uint`",
2560                                            t)
2561                         }, arg_ty);
2562                     }
2563                     ty::TyFnDef(.., f) => {
2564                         let ptr_ty = self.tcx.mk_fn_ptr(f);
2565                         let ptr_ty = self.resolve_type_vars_if_possible(&ptr_ty);
2566                         self.type_error_message(arg.span,
2567                                                 |t| {
2568                             format!("can't pass `{}` to variadic \
2569                                      function, cast to `{}`", t, ptr_ty)
2570                         }, arg_ty);
2571                     }
2572                     _ => {}
2573                 }
2574             }
2575         }
2576     }
2577
2578     fn err_args(&self, len: usize) -> Vec<Ty<'tcx>> {
2579         (0..len).map(|_| self.tcx.types.err).collect()
2580     }
2581
2582     // AST fragment checking
2583     fn check_lit(&self,
2584                  lit: &ast::Lit,
2585                  expected: Expectation<'tcx>)
2586                  -> Ty<'tcx>
2587     {
2588         let tcx = self.tcx;
2589
2590         match lit.node {
2591             ast::LitKind::Str(..) => tcx.mk_static_str(),
2592             ast::LitKind::ByteStr(ref v) => {
2593                 tcx.mk_imm_ref(tcx.types.re_static,
2594                                 tcx.mk_array(tcx.types.u8, v.len()))
2595             }
2596             ast::LitKind::Byte(_) => tcx.types.u8,
2597             ast::LitKind::Char(_) => tcx.types.char,
2598             ast::LitKind::Int(_, ast::LitIntType::Signed(t)) => tcx.mk_mach_int(t),
2599             ast::LitKind::Int(_, ast::LitIntType::Unsigned(t)) => tcx.mk_mach_uint(t),
2600             ast::LitKind::Int(_, ast::LitIntType::Unsuffixed) => {
2601                 let opt_ty = expected.to_option(self).and_then(|ty| {
2602                     match ty.sty {
2603                         ty::TyInt(_) | ty::TyUint(_) => Some(ty),
2604                         ty::TyChar => Some(tcx.types.u8),
2605                         ty::TyRawPtr(..) => Some(tcx.types.usize),
2606                         ty::TyFnDef(..) | ty::TyFnPtr(_) => Some(tcx.types.usize),
2607                         _ => None
2608                     }
2609                 });
2610                 opt_ty.unwrap_or_else(
2611                     || tcx.mk_int_var(self.next_int_var_id()))
2612             }
2613             ast::LitKind::Float(_, t) => tcx.mk_mach_float(t),
2614             ast::LitKind::FloatUnsuffixed(_) => {
2615                 let opt_ty = expected.to_option(self).and_then(|ty| {
2616                     match ty.sty {
2617                         ty::TyFloat(_) => Some(ty),
2618                         _ => None
2619                     }
2620                 });
2621                 opt_ty.unwrap_or_else(
2622                     || tcx.mk_float_var(self.next_float_var_id()))
2623             }
2624             ast::LitKind::Bool(_) => tcx.types.bool
2625         }
2626     }
2627
2628     fn check_expr_eq_type(&self,
2629                           expr: &'gcx hir::Expr,
2630                           expected: Ty<'tcx>) {
2631         let ty = self.check_expr_with_hint(expr, expected);
2632         self.demand_eqtype(expr.span, expected, ty);
2633     }
2634
2635     pub fn check_expr_has_type(&self,
2636                                expr: &'gcx hir::Expr,
2637                                expected: Ty<'tcx>) -> Ty<'tcx> {
2638         let mut ty = self.check_expr_with_hint(expr, expected);
2639
2640         // While we don't allow *arbitrary* coercions here, we *do* allow
2641         // coercions from ! to `expected`.
2642         if ty.is_never() {
2643             assert!(!self.tables.borrow().adjustments.contains_key(&expr.id),
2644                     "expression with never type wound up being adjusted");
2645             let adj_ty = self.next_diverging_ty_var(
2646                 TypeVariableOrigin::AdjustmentType(expr.span));
2647             self.apply_adjustment(expr.id, Adjustment {
2648                 kind: Adjust::NeverToAny,
2649                 target: adj_ty
2650             });
2651             ty = adj_ty;
2652         }
2653
2654         self.demand_suptype(expr.span, expected, ty);
2655         ty
2656     }
2657
2658     fn check_expr_coercable_to_type(&self,
2659                                     expr: &'gcx hir::Expr,
2660                                     expected: Ty<'tcx>) -> Ty<'tcx> {
2661         let ty = self.check_expr_with_hint(expr, expected);
2662         self.demand_coerce(expr, ty, expected);
2663         ty
2664     }
2665
2666     fn check_expr_with_hint(&self, expr: &'gcx hir::Expr,
2667                             expected: Ty<'tcx>) -> Ty<'tcx> {
2668         self.check_expr_with_expectation(expr, ExpectHasType(expected))
2669     }
2670
2671     fn check_expr_with_expectation(&self,
2672                                    expr: &'gcx hir::Expr,
2673                                    expected: Expectation<'tcx>) -> Ty<'tcx> {
2674         self.check_expr_with_expectation_and_lvalue_pref(expr, expected, NoPreference)
2675     }
2676
2677     fn check_expr(&self, expr: &'gcx hir::Expr) -> Ty<'tcx> {
2678         self.check_expr_with_expectation(expr, NoExpectation)
2679     }
2680
2681     fn check_expr_with_lvalue_pref(&self, expr: &'gcx hir::Expr,
2682                                    lvalue_pref: LvaluePreference) -> Ty<'tcx> {
2683         self.check_expr_with_expectation_and_lvalue_pref(expr, NoExpectation, lvalue_pref)
2684     }
2685
2686     // determine the `self` type, using fresh variables for all variables
2687     // declared on the impl declaration e.g., `impl<A,B> for Vec<(A,B)>`
2688     // would return ($0, $1) where $0 and $1 are freshly instantiated type
2689     // variables.
2690     pub fn impl_self_ty(&self,
2691                         span: Span, // (potential) receiver for this impl
2692                         did: DefId)
2693                         -> TypeAndSubsts<'tcx> {
2694         let ity = self.tcx.type_of(did);
2695         debug!("impl_self_ty: ity={:?}", ity);
2696
2697         let substs = self.fresh_substs_for_item(span, did);
2698         let substd_ty = self.instantiate_type_scheme(span, &substs, &ity);
2699
2700         TypeAndSubsts { substs: substs, ty: substd_ty }
2701     }
2702
2703     /// Unifies the output type with the expected type early, for more coercions
2704     /// and forward type information on the input expressions.
2705     fn expected_inputs_for_expected_output(&self,
2706                                            call_span: Span,
2707                                            expected_ret: Expectation<'tcx>,
2708                                            formal_ret: Ty<'tcx>,
2709                                            formal_args: &[Ty<'tcx>])
2710                                            -> Vec<Ty<'tcx>> {
2711         let expected_args = expected_ret.only_has_type(self).and_then(|ret_ty| {
2712             self.fudge_regions_if_ok(&RegionVariableOrigin::Coercion(call_span), || {
2713                 // Attempt to apply a subtyping relationship between the formal
2714                 // return type (likely containing type variables if the function
2715                 // is polymorphic) and the expected return type.
2716                 // No argument expectations are produced if unification fails.
2717                 let origin = self.misc(call_span);
2718                 let ures = self.sub_types(false, &origin, formal_ret, ret_ty);
2719
2720                 // FIXME(#15760) can't use try! here, FromError doesn't default
2721                 // to identity so the resulting type is not constrained.
2722                 match ures {
2723                     Ok(ok) => {
2724                         // Process any obligations locally as much as
2725                         // we can.  We don't care if some things turn
2726                         // out unconstrained or ambiguous, as we're
2727                         // just trying to get hints here.
2728                         let result = self.save_and_restore_in_snapshot_flag(|_| {
2729                             let mut fulfill = FulfillmentContext::new();
2730                             let ok = ok; // FIXME(#30046)
2731                             for obligation in ok.obligations {
2732                                 fulfill.register_predicate_obligation(self, obligation);
2733                             }
2734                             fulfill.select_where_possible(self)
2735                         });
2736
2737                         match result {
2738                             Ok(()) => { }
2739                             Err(_) => return Err(()),
2740                         }
2741                     }
2742                     Err(_) => return Err(()),
2743                 }
2744
2745                 // Record all the argument types, with the substitutions
2746                 // produced from the above subtyping unification.
2747                 Ok(formal_args.iter().map(|ty| {
2748                     self.resolve_type_vars_if_possible(ty)
2749                 }).collect())
2750             }).ok()
2751         }).unwrap_or(vec![]);
2752         debug!("expected_inputs_for_expected_output(formal={:?} -> {:?}, expected={:?} -> {:?})",
2753                formal_args, formal_ret,
2754                expected_args, expected_ret);
2755         expected_args
2756     }
2757
2758     // Checks a method call.
2759     fn check_method_call(&self,
2760                          expr: &'gcx hir::Expr,
2761                          method_name: Spanned<ast::Name>,
2762                          args: &'gcx [hir::Expr],
2763                          tps: &[P<hir::Ty>],
2764                          expected: Expectation<'tcx>,
2765                          lvalue_pref: LvaluePreference) -> Ty<'tcx> {
2766         let rcvr = &args[0];
2767         let rcvr_t = self.check_expr_with_lvalue_pref(&rcvr, lvalue_pref);
2768
2769         // no need to check for bot/err -- callee does that
2770         let expr_t = self.structurally_resolved_type(expr.span, rcvr_t);
2771
2772         let tps = tps.iter().map(|ast_ty| self.to_ty(&ast_ty)).collect::<Vec<_>>();
2773         let method = match self.lookup_method(method_name.span,
2774                                               method_name.node,
2775                                               expr_t,
2776                                               tps,
2777                                               expr,
2778                                               rcvr) {
2779             Ok(method) => {
2780                 self.tables.borrow_mut().method_map.insert(expr.id, method);
2781                 Ok(method)
2782             }
2783             Err(error) => {
2784                 if method_name.node != keywords::Invalid.name() {
2785                     self.report_method_error(method_name.span,
2786                                              expr_t,
2787                                              method_name.node,
2788                                              Some(rcvr),
2789                                              error,
2790                                              Some(args));
2791                 }
2792                 Err(())
2793             }
2794         };
2795
2796         // Call the generic checker.
2797         self.check_method_argument_types(method_name.span, method,
2798                                          &args[1..],
2799                                          DontTupleArguments,
2800                                          expected)
2801     }
2802
2803     fn check_return_expr(&self, return_expr: &'gcx hir::Expr) {
2804         let ret_coercion =
2805             self.ret_coercion
2806                 .as_ref()
2807                 .unwrap_or_else(|| span_bug!(return_expr.span,
2808                                              "check_return_expr called outside fn body"));
2809
2810         let ret_ty = ret_coercion.borrow().expected_ty();
2811         let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
2812         ret_coercion.borrow_mut()
2813                     .coerce(self,
2814                             &self.misc(return_expr.span),
2815                             return_expr,
2816                             return_expr_ty,
2817                             self.diverges.get());
2818     }
2819
2820
2821     // A generic function for checking the then and else in an if
2822     // or if-else.
2823     fn check_then_else(&self,
2824                        cond_expr: &'gcx hir::Expr,
2825                        then_expr: &'gcx hir::Expr,
2826                        opt_else_expr: Option<&'gcx hir::Expr>,
2827                        sp: Span,
2828                        expected: Expectation<'tcx>) -> Ty<'tcx> {
2829         let cond_ty = self.check_expr_has_type(cond_expr, self.tcx.types.bool);
2830         let cond_diverges = self.diverges.get();
2831         self.diverges.set(Diverges::Maybe);
2832
2833         let expected = expected.adjust_for_branches(self);
2834         let then_ty = self.check_expr_with_expectation(then_expr, expected);
2835         let then_diverges = self.diverges.get();
2836         self.diverges.set(Diverges::Maybe);
2837
2838         // We've already taken the expected type's preferences
2839         // into account when typing the `then` branch. To figure
2840         // out the initial shot at a LUB, we thus only consider
2841         // `expected` if it represents a *hard* constraint
2842         // (`only_has_type`); otherwise, we just go with a
2843         // fresh type variable.
2844         let coerce_to_ty = expected.coercion_target_type(self, sp);
2845         let mut coerce: DynamicCoerceMany = CoerceMany::new(coerce_to_ty);
2846
2847         let if_cause = self.cause(sp, ObligationCauseCode::IfExpression);
2848         coerce.coerce(self, &if_cause, then_expr, then_ty, then_diverges);
2849
2850         if let Some(else_expr) = opt_else_expr {
2851             let else_ty = self.check_expr_with_expectation(else_expr, expected);
2852             let else_diverges = self.diverges.get();
2853
2854             coerce.coerce(self, &if_cause, else_expr, else_ty, else_diverges);
2855
2856             // We won't diverge unless both branches do (or the condition does).
2857             self.diverges.set(cond_diverges | then_diverges & else_diverges);
2858         } else {
2859             let else_cause = self.cause(sp, ObligationCauseCode::IfExpressionWithNoElse);
2860             coerce.coerce_forced_unit(self, &else_cause, &mut |_| (), true);
2861
2862             // If the condition is false we can't diverge.
2863             self.diverges.set(cond_diverges);
2864         }
2865
2866         let result_ty = coerce.complete(self);
2867         if cond_ty.references_error() {
2868             self.tcx.types.err
2869         } else {
2870             result_ty
2871         }
2872     }
2873
2874     // Check field access expressions
2875     fn check_field(&self,
2876                    expr: &'gcx hir::Expr,
2877                    lvalue_pref: LvaluePreference,
2878                    base: &'gcx hir::Expr,
2879                    field: &Spanned<ast::Name>) -> Ty<'tcx> {
2880         let expr_t = self.check_expr_with_lvalue_pref(base, lvalue_pref);
2881         let expr_t = self.structurally_resolved_type(expr.span,
2882                                                      expr_t);
2883         let mut private_candidate = None;
2884         let mut autoderef = self.autoderef(expr.span, expr_t);
2885         while let Some((base_t, _)) = autoderef.next() {
2886             match base_t.sty {
2887                 ty::TyAdt(base_def, substs) if !base_def.is_enum() => {
2888                     debug!("struct named {:?}",  base_t);
2889                     let (ident, def_scope) =
2890                         self.tcx.adjust(field.node, base_def.did, self.body_id);
2891                     let fields = &base_def.struct_variant().fields;
2892                     if let Some(field) = fields.iter().find(|f| f.name.to_ident() == ident) {
2893                         let field_ty = self.field_ty(expr.span, field, substs);
2894                         if field.vis.is_accessible_from(def_scope, self.tcx) {
2895                             let autoderefs = autoderef.adjust_steps(lvalue_pref);
2896                             self.apply_autoderef_adjustment(base.id, autoderefs, base_t);
2897                             autoderef.finalize();
2898
2899                             self.tcx.check_stability(field.did, expr.id, expr.span);
2900
2901                             return field_ty;
2902                         }
2903                         private_candidate = Some((base_def.did, field_ty));
2904                     }
2905                 }
2906                 _ => {}
2907             }
2908         }
2909         autoderef.unambiguous_final_ty();
2910
2911         if let Some((did, field_ty)) = private_candidate {
2912             let struct_path = self.tcx().item_path_str(did);
2913             let msg = format!("field `{}` of struct `{}` is private", field.node, struct_path);
2914             let mut err = self.tcx().sess.struct_span_err(expr.span, &msg);
2915             // Also check if an accessible method exists, which is often what is meant.
2916             if self.method_exists(field.span, field.node, expr_t, expr.id, false) {
2917                 err.note(&format!("a method `{}` also exists, perhaps you wish to call it",
2918                                   field.node));
2919             }
2920             err.emit();
2921             field_ty
2922         } else if field.node == keywords::Invalid.name() {
2923             self.tcx().types.err
2924         } else if self.method_exists(field.span, field.node, expr_t, expr.id, true) {
2925             self.type_error_struct(field.span, |actual| {
2926                 format!("attempted to take value of method `{}` on type \
2927                          `{}`", field.node, actual)
2928             }, expr_t)
2929                 .help("maybe a `()` to call it is missing? \
2930                        If not, try an anonymous function")
2931                 .emit();
2932             self.tcx().types.err
2933         } else {
2934             let mut err = self.type_error_struct(field.span, |actual| {
2935                 format!("no field `{}` on type `{}`",
2936                         field.node, actual)
2937             }, expr_t);
2938             match expr_t.sty {
2939                 ty::TyAdt(def, _) if !def.is_enum() => {
2940                     if let Some(suggested_field_name) =
2941                         Self::suggest_field_name(def.struct_variant(), field, vec![]) {
2942                             err.span_label(field.span,
2943                                            format!("did you mean `{}`?", suggested_field_name));
2944                         } else {
2945                             err.span_label(field.span,
2946                                            "unknown field");
2947                         };
2948                 }
2949                 ty::TyRawPtr(..) => {
2950                     err.note(&format!("`{0}` is a native pointer; perhaps you need to deref with \
2951                                       `(*{0}).{1}`",
2952                                       self.tcx.hir.node_to_pretty_string(base.id),
2953                                       field.node));
2954                 }
2955                 _ => {}
2956             }
2957             err.emit();
2958             self.tcx().types.err
2959         }
2960     }
2961
2962     // Return an hint about the closest match in field names
2963     fn suggest_field_name(variant: &'tcx ty::VariantDef,
2964                           field: &Spanned<ast::Name>,
2965                           skip : Vec<InternedString>)
2966                           -> Option<Symbol> {
2967         let name = field.node.as_str();
2968         let names = variant.fields.iter().filter_map(|field| {
2969             // ignore already set fields and private fields from non-local crates
2970             if skip.iter().any(|x| *x == field.name.as_str()) ||
2971                (variant.did.krate != LOCAL_CRATE && field.vis != Visibility::Public) {
2972                 None
2973             } else {
2974                 Some(&field.name)
2975             }
2976         });
2977
2978         // only find fits with at least one matching letter
2979         find_best_match_for_name(names, &name, Some(name.len()))
2980     }
2981
2982     // Check tuple index expressions
2983     fn check_tup_field(&self,
2984                        expr: &'gcx hir::Expr,
2985                        lvalue_pref: LvaluePreference,
2986                        base: &'gcx hir::Expr,
2987                        idx: codemap::Spanned<usize>) -> Ty<'tcx> {
2988         let expr_t = self.check_expr_with_lvalue_pref(base, lvalue_pref);
2989         let expr_t = self.structurally_resolved_type(expr.span,
2990                                                      expr_t);
2991         let mut private_candidate = None;
2992         let mut tuple_like = false;
2993         let mut autoderef = self.autoderef(expr.span, expr_t);
2994         while let Some((base_t, _)) = autoderef.next() {
2995             let field = match base_t.sty {
2996                 ty::TyAdt(base_def, substs) if base_def.is_struct() => {
2997                     tuple_like = base_def.struct_variant().ctor_kind == CtorKind::Fn;
2998                     if !tuple_like { continue }
2999
3000                     debug!("tuple struct named {:?}",  base_t);
3001                     let ident = ast::Ident {
3002                         name: Symbol::intern(&idx.node.to_string()),
3003                         ctxt: idx.span.ctxt.modern(),
3004                     };
3005                     let (ident, def_scope) =
3006                         self.tcx.adjust_ident(ident, base_def.did, self.body_id);
3007                     let fields = &base_def.struct_variant().fields;
3008                     if let Some(field) = fields.iter().find(|f| f.name.to_ident() == ident) {
3009                         let field_ty = self.field_ty(expr.span, field, substs);
3010                         if field.vis.is_accessible_from(def_scope, self.tcx) {
3011                             self.tcx.check_stability(field.did, expr.id, expr.span);
3012                             Some(field_ty)
3013                         } else {
3014                             private_candidate = Some((base_def.did, field_ty));
3015                             None
3016                         }
3017                     } else {
3018                         None
3019                     }
3020                 }
3021                 ty::TyTuple(ref v, _) => {
3022                     tuple_like = true;
3023                     v.get(idx.node).cloned()
3024                 }
3025                 _ => continue
3026             };
3027
3028             if let Some(field_ty) = field {
3029                 let autoderefs = autoderef.adjust_steps(lvalue_pref);
3030                 self.apply_autoderef_adjustment(base.id, autoderefs, base_t);
3031                 autoderef.finalize();
3032                 return field_ty;
3033             }
3034         }
3035         autoderef.unambiguous_final_ty();
3036
3037         if let Some((did, field_ty)) = private_candidate {
3038             let struct_path = self.tcx().item_path_str(did);
3039             let msg = format!("field `{}` of struct `{}` is private", idx.node, struct_path);
3040             self.tcx().sess.span_err(expr.span, &msg);
3041             return field_ty;
3042         }
3043
3044         self.type_error_message(
3045             expr.span,
3046             |actual| {
3047                 if tuple_like {
3048                     format!("attempted out-of-bounds tuple index `{}` on \
3049                                     type `{}`",
3050                                    idx.node,
3051                                    actual)
3052                 } else {
3053                     format!("attempted tuple index `{}` on type `{}`, but the \
3054                                      type was not a tuple or tuple struct",
3055                                     idx.node,
3056                                     actual)
3057                 }
3058             },
3059             expr_t);
3060
3061         self.tcx().types.err
3062     }
3063
3064     fn report_unknown_field(&self,
3065                             ty: Ty<'tcx>,
3066                             variant: &'tcx ty::VariantDef,
3067                             field: &hir::Field,
3068                             skip_fields: &[hir::Field],
3069                             kind_name: &str) {
3070         let mut err = self.type_error_struct_with_diag(
3071             field.name.span,
3072             |actual| match ty.sty {
3073                 ty::TyAdt(adt, ..) if adt.is_enum() => {
3074                     struct_span_err!(self.tcx.sess, field.name.span, E0559,
3075                                     "{} `{}::{}` has no field named `{}`",
3076                                     kind_name, actual, variant.name, field.name.node)
3077                 }
3078                 _ => {
3079                     struct_span_err!(self.tcx.sess, field.name.span, E0560,
3080                                     "{} `{}` has no field named `{}`",
3081                                     kind_name, actual, field.name.node)
3082                 }
3083             },
3084             ty);
3085         // prevent all specified fields from being suggested
3086         let skip_fields = skip_fields.iter().map(|ref x| x.name.node.as_str());
3087         if let Some(field_name) = Self::suggest_field_name(variant,
3088                                                            &field.name,
3089                                                            skip_fields.collect()) {
3090             err.span_label(field.name.span,
3091                            format!("field does not exist - did you mean `{}`?", field_name));
3092         } else {
3093             match ty.sty {
3094                 ty::TyAdt(adt, ..) if adt.is_enum() => {
3095                     err.span_label(field.name.span, format!("`{}::{}` does not have this field",
3096                                                              ty, variant.name));
3097                 }
3098                 _ => {
3099                     err.span_label(field.name.span, format!("`{}` does not have this field", ty));
3100                 }
3101             }
3102         };
3103         err.emit();
3104     }
3105
3106     fn check_expr_struct_fields(&self,
3107                                 adt_ty: Ty<'tcx>,
3108                                 expected: Expectation<'tcx>,
3109                                 expr_id: ast::NodeId,
3110                                 span: Span,
3111                                 variant: &'tcx ty::VariantDef,
3112                                 ast_fields: &'gcx [hir::Field],
3113                                 check_completeness: bool) {
3114         let tcx = self.tcx;
3115
3116         let adt_ty_hint =
3117             self.expected_inputs_for_expected_output(span, expected, adt_ty, &[adt_ty])
3118                 .get(0).cloned().unwrap_or(adt_ty);
3119
3120         let (substs, hint_substs, adt_kind, kind_name) = match (&adt_ty.sty, &adt_ty_hint.sty) {
3121             (&ty::TyAdt(adt, substs), &ty::TyAdt(_, hint_substs)) => {
3122                 (substs, hint_substs, adt.adt_kind(), adt.variant_descr())
3123             }
3124             _ => span_bug!(span, "non-ADT passed to check_expr_struct_fields")
3125         };
3126
3127         let mut remaining_fields = FxHashMap();
3128         for field in &variant.fields {
3129             remaining_fields.insert(field.name.to_ident(), field);
3130         }
3131
3132         let mut seen_fields = FxHashMap();
3133
3134         let mut error_happened = false;
3135
3136         // Typecheck each field.
3137         for field in ast_fields {
3138             let final_field_type;
3139             let field_type_hint;
3140
3141             let ident = tcx.adjust(field.name.node, variant.did, self.body_id).0;
3142             if let Some(v_field) = remaining_fields.remove(&ident) {
3143                 final_field_type = self.field_ty(field.span, v_field, substs);
3144                 field_type_hint = self.field_ty(field.span, v_field, hint_substs);
3145
3146                 seen_fields.insert(field.name.node, field.span);
3147
3148                 // we don't look at stability attributes on
3149                 // struct-like enums (yet...), but it's definitely not
3150                 // a bug to have construct one.
3151                 if adt_kind != ty::AdtKind::Enum {
3152                     tcx.check_stability(v_field.did, expr_id, field.span);
3153                 }
3154             } else {
3155                 error_happened = true;
3156                 final_field_type = tcx.types.err;
3157                 field_type_hint = tcx.types.err;
3158                 if let Some(_) = variant.find_field_named(field.name.node) {
3159                     let mut err = struct_span_err!(self.tcx.sess,
3160                                                 field.name.span,
3161                                                 E0062,
3162                                                 "field `{}` specified more than once",
3163                                                 field.name.node);
3164
3165                     err.span_label(field.name.span, "used more than once");
3166
3167                     if let Some(prev_span) = seen_fields.get(&field.name.node) {
3168                         err.span_label(*prev_span, format!("first use of `{}`", field.name.node));
3169                     }
3170
3171                     err.emit();
3172                 } else {
3173                     self.report_unknown_field(adt_ty, variant, field, ast_fields, kind_name);
3174                 }
3175             }
3176
3177             // Make sure to give a type to the field even if there's
3178             // an error, so we can continue typechecking
3179             let ty = self.check_expr_with_hint(&field.expr, field_type_hint);
3180             self.demand_coerce(&field.expr, ty, final_field_type);
3181         }
3182
3183         // Make sure the programmer specified correct number of fields.
3184         if kind_name == "union" {
3185             if ast_fields.len() != 1 {
3186                 tcx.sess.span_err(span, "union expressions should have exactly one field");
3187             }
3188         } else if check_completeness && !error_happened && !remaining_fields.is_empty() {
3189             let len = remaining_fields.len();
3190
3191             let mut displayable_field_names = remaining_fields
3192                                               .keys()
3193                                               .map(|ident| ident.name.as_str())
3194                                               .collect::<Vec<_>>();
3195
3196             displayable_field_names.sort();
3197
3198             let truncated_fields_error = if len <= 3 {
3199                 "".to_string()
3200             } else {
3201                 format!(" and {} other field{}", (len - 3), if len - 3 == 1 {""} else {"s"})
3202             };
3203
3204             let remaining_fields_names = displayable_field_names.iter().take(3)
3205                                         .map(|n| format!("`{}`", n))
3206                                         .collect::<Vec<_>>()
3207                                         .join(", ");
3208
3209             struct_span_err!(tcx.sess, span, E0063,
3210                         "missing field{} {}{} in initializer of `{}`",
3211                         if remaining_fields.len() == 1 {""} else {"s"},
3212                         remaining_fields_names,
3213                         truncated_fields_error,
3214                         adt_ty)
3215                         .span_label(span, format!("missing {}{}",
3216                             remaining_fields_names,
3217                             truncated_fields_error))
3218                         .emit();
3219         }
3220     }
3221
3222     fn check_struct_fields_on_error(&self,
3223                                     fields: &'gcx [hir::Field],
3224                                     base_expr: &'gcx Option<P<hir::Expr>>) {
3225         for field in fields {
3226             self.check_expr(&field.expr);
3227         }
3228         match *base_expr {
3229             Some(ref base) => {
3230                 self.check_expr(&base);
3231             },
3232             None => {}
3233         }
3234     }
3235
3236     pub fn check_struct_path(&self,
3237                              qpath: &hir::QPath,
3238                              node_id: ast::NodeId)
3239                              -> Option<(&'tcx ty::VariantDef,  Ty<'tcx>)> {
3240         let path_span = match *qpath {
3241             hir::QPath::Resolved(_, ref path) => path.span,
3242             hir::QPath::TypeRelative(ref qself, _) => qself.span
3243         };
3244         let (def, ty) = self.finish_resolving_struct_path(qpath, path_span, node_id);
3245         let variant = match def {
3246             Def::Err => {
3247                 self.set_tainted_by_errors();
3248                 return None;
3249             }
3250             Def::Variant(..) => {
3251                 match ty.sty {
3252                     ty::TyAdt(adt, substs) => {
3253                         Some((adt.variant_of_def(def), adt.did, substs))
3254                     }
3255                     _ => bug!("unexpected type: {:?}", ty.sty)
3256                 }
3257             }
3258             Def::Struct(..) | Def::Union(..) | Def::TyAlias(..) |
3259             Def::AssociatedTy(..) | Def::SelfTy(..) => {
3260                 match ty.sty {
3261                     ty::TyAdt(adt, substs) if !adt.is_enum() => {
3262                         Some((adt.struct_variant(), adt.did, substs))
3263                     }
3264                     _ => None,
3265                 }
3266             }
3267             _ => bug!("unexpected definition: {:?}", def)
3268         };
3269
3270         if let Some((variant, did, substs)) = variant {
3271             // Check bounds on type arguments used in the path.
3272             let bounds = self.instantiate_bounds(path_span, did, substs);
3273             let cause = traits::ObligationCause::new(path_span, self.body_id,
3274                                                      traits::ItemObligation(did));
3275             self.add_obligations_for_parameters(cause, &bounds);
3276
3277             Some((variant, ty))
3278         } else {
3279             struct_span_err!(self.tcx.sess, path_span, E0071,
3280                              "expected struct, variant or union type, found {}",
3281                              ty.sort_string(self.tcx))
3282                 .span_label(path_span, "not a struct")
3283                 .emit();
3284             None
3285         }
3286     }
3287
3288     fn check_expr_struct(&self,
3289                          expr: &hir::Expr,
3290                          expected: Expectation<'tcx>,
3291                          qpath: &hir::QPath,
3292                          fields: &'gcx [hir::Field],
3293                          base_expr: &'gcx Option<P<hir::Expr>>) -> Ty<'tcx>
3294     {
3295         // Find the relevant variant
3296         let (variant, struct_ty) =
3297         if let Some(variant_ty) = self.check_struct_path(qpath, expr.id) {
3298             variant_ty
3299         } else {
3300             self.check_struct_fields_on_error(fields, base_expr);
3301             return self.tcx.types.err;
3302         };
3303
3304         let path_span = match *qpath {
3305             hir::QPath::Resolved(_, ref path) => path.span,
3306             hir::QPath::TypeRelative(ref qself, _) => qself.span
3307         };
3308
3309         self.check_expr_struct_fields(struct_ty, expected, expr.id, path_span, variant, fields,
3310                                       base_expr.is_none());
3311         if let &Some(ref base_expr) = base_expr {
3312             self.check_expr_has_type(base_expr, struct_ty);
3313             match struct_ty.sty {
3314                 ty::TyAdt(adt, substs) if adt.is_struct() => {
3315                     self.tables.borrow_mut().fru_field_types.insert(
3316                         expr.id,
3317                         adt.struct_variant().fields.iter().map(|f| {
3318                             self.normalize_associated_types_in(
3319                                 expr.span, &f.ty(self.tcx, substs)
3320                             )
3321                         }).collect()
3322                     );
3323                 }
3324                 _ => {
3325                     span_err!(self.tcx.sess, base_expr.span, E0436,
3326                               "functional record update syntax requires a struct");
3327                 }
3328             }
3329         }
3330         self.require_type_is_sized(struct_ty, expr.span, traits::StructInitializerSized);
3331         struct_ty
3332     }
3333
3334
3335     /// Invariant:
3336     /// If an expression has any sub-expressions that result in a type error,
3337     /// inspecting that expression's type with `ty.references_error()` will return
3338     /// true. Likewise, if an expression is known to diverge, inspecting its
3339     /// type with `ty::type_is_bot` will return true (n.b.: since Rust is
3340     /// strict, _|_ can appear in the type of an expression that does not,
3341     /// itself, diverge: for example, fn() -> _|_.)
3342     /// Note that inspecting a type's structure *directly* may expose the fact
3343     /// that there are actually multiple representations for `TyError`, so avoid
3344     /// that when err needs to be handled differently.
3345     fn check_expr_with_expectation_and_lvalue_pref(&self,
3346                                                    expr: &'gcx hir::Expr,
3347                                                    expected: Expectation<'tcx>,
3348                                                    lvalue_pref: LvaluePreference) -> Ty<'tcx> {
3349         debug!(">> typechecking: expr={:?} expected={:?}",
3350                expr, expected);
3351
3352         // Warn for expressions after diverging siblings.
3353         self.warn_if_unreachable(expr.id, expr.span, "expression");
3354
3355         // Hide the outer diverging and has_errors flags.
3356         let old_diverges = self.diverges.get();
3357         let old_has_errors = self.has_errors.get();
3358         self.diverges.set(Diverges::Maybe);
3359         self.has_errors.set(false);
3360
3361         let ty = self.check_expr_kind(expr, expected, lvalue_pref);
3362
3363         // Warn for non-block expressions with diverging children.
3364         match expr.node {
3365             hir::ExprBlock(_) |
3366             hir::ExprLoop(..) | hir::ExprWhile(..) |
3367             hir::ExprIf(..) | hir::ExprMatch(..) => {}
3368
3369             _ => self.warn_if_unreachable(expr.id, expr.span, "expression")
3370         }
3371
3372         // Any expression that produces a value of type `!` must have diverged
3373         if ty.is_never() {
3374             self.diverges.set(self.diverges.get() | Diverges::Always);
3375         }
3376
3377         // Record the type, which applies it effects.
3378         // We need to do this after the warning above, so that
3379         // we don't warn for the diverging expression itself.
3380         self.write_ty(expr.id, ty);
3381
3382         // Combine the diverging and has_error flags.
3383         self.diverges.set(self.diverges.get() | old_diverges);
3384         self.has_errors.set(self.has_errors.get() | old_has_errors);
3385
3386         debug!("type of {} is...", self.tcx.hir.node_to_string(expr.id));
3387         debug!("... {:?}, expected is {:?}", ty, expected);
3388
3389         ty
3390     }
3391
3392     fn check_expr_kind(&self,
3393                        expr: &'gcx hir::Expr,
3394                        expected: Expectation<'tcx>,
3395                        lvalue_pref: LvaluePreference) -> Ty<'tcx> {
3396         let tcx = self.tcx;
3397         let id = expr.id;
3398         match expr.node {
3399           hir::ExprBox(ref subexpr) => {
3400             let expected_inner = expected.to_option(self).map_or(NoExpectation, |ty| {
3401                 match ty.sty {
3402                     ty::TyAdt(def, _) if def.is_box()
3403                         => Expectation::rvalue_hint(self, ty.boxed_ty()),
3404                     _ => NoExpectation
3405                 }
3406             });
3407             let referent_ty = self.check_expr_with_expectation(subexpr, expected_inner);
3408             tcx.mk_box(referent_ty)
3409           }
3410
3411           hir::ExprLit(ref lit) => {
3412             self.check_lit(&lit, expected)
3413           }
3414           hir::ExprBinary(op, ref lhs, ref rhs) => {
3415             self.check_binop(expr, op, lhs, rhs)
3416           }
3417           hir::ExprAssignOp(op, ref lhs, ref rhs) => {
3418             self.check_binop_assign(expr, op, lhs, rhs)
3419           }
3420           hir::ExprUnary(unop, ref oprnd) => {
3421             let expected_inner = match unop {
3422                 hir::UnNot | hir::UnNeg => {
3423                     expected
3424                 }
3425                 hir::UnDeref => {
3426                     NoExpectation
3427                 }
3428             };
3429             let lvalue_pref = match unop {
3430                 hir::UnDeref => lvalue_pref,
3431                 _ => NoPreference
3432             };
3433             let mut oprnd_t = self.check_expr_with_expectation_and_lvalue_pref(&oprnd,
3434                                                                                expected_inner,
3435                                                                                lvalue_pref);
3436
3437             if !oprnd_t.references_error() {
3438                 match unop {
3439                     hir::UnDeref => {
3440                         oprnd_t = self.structurally_resolved_type(expr.span, oprnd_t);
3441
3442                         if let Some(mt) = oprnd_t.builtin_deref(true, NoPreference) {
3443                             oprnd_t = mt.ty;
3444                         } else if let Some(ok) = self.try_overloaded_deref(
3445                                 expr.span, oprnd_t, lvalue_pref) {
3446                             let (autoref, method) = self.register_infer_ok_obligations(ok);
3447                             self.apply_adjustment(oprnd.id, Adjustment {
3448                                 kind: Adjust::DerefRef {
3449                                     autoderefs: vec![],
3450                                     autoref,
3451                                     unsize: false
3452                                 },
3453                                 target: method.sig.inputs()[0]
3454                             });
3455                             oprnd_t = self.make_overloaded_lvalue_return_type(method).ty;
3456                             self.tables.borrow_mut().method_map.insert(expr.id, method);
3457                         } else {
3458                             self.type_error_message(expr.span, |actual| {
3459                                 format!("type `{}` cannot be \
3460                                         dereferenced", actual)
3461                             }, oprnd_t);
3462                             oprnd_t = tcx.types.err;
3463                         }
3464                     }
3465                     hir::UnNot => {
3466                         oprnd_t = self.structurally_resolved_type(oprnd.span,
3467                                                                   oprnd_t);
3468                         let result = self.check_user_unop("!", "not",
3469                                                           tcx.lang_items.not_trait(),
3470                                                           expr, &oprnd, oprnd_t, unop);
3471                         // If it's builtin, we can reuse the type, this helps inference.
3472                         if !(oprnd_t.is_integral() || oprnd_t.sty == ty::TyBool) {
3473                             oprnd_t = result;
3474                         }
3475                     }
3476                     hir::UnNeg => {
3477                         oprnd_t = self.structurally_resolved_type(oprnd.span,
3478                                                                   oprnd_t);
3479                         let result = self.check_user_unop("-", "neg",
3480                                                           tcx.lang_items.neg_trait(),
3481                                                           expr, &oprnd, oprnd_t, unop);
3482                         // If it's builtin, we can reuse the type, this helps inference.
3483                         if !(oprnd_t.is_integral() || oprnd_t.is_fp()) {
3484                             oprnd_t = result;
3485                         }
3486                     }
3487                 }
3488             }
3489             oprnd_t
3490           }
3491           hir::ExprAddrOf(mutbl, ref oprnd) => {
3492             let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
3493                 match ty.sty {
3494                     ty::TyRef(_, ref mt) | ty::TyRawPtr(ref mt) => {
3495                         if self.tcx.expr_is_lval(&oprnd) {
3496                             // Lvalues may legitimately have unsized types.
3497                             // For example, dereferences of a fat pointer and
3498                             // the last field of a struct can be unsized.
3499                             ExpectHasType(mt.ty)
3500                         } else {
3501                             Expectation::rvalue_hint(self, mt.ty)
3502                         }
3503                     }
3504                     _ => NoExpectation
3505                 }
3506             });
3507             let lvalue_pref = LvaluePreference::from_mutbl(mutbl);
3508             let ty = self.check_expr_with_expectation_and_lvalue_pref(&oprnd, hint, lvalue_pref);
3509
3510             let tm = ty::TypeAndMut { ty: ty, mutbl: mutbl };
3511             if tm.ty.references_error() {
3512                 tcx.types.err
3513             } else {
3514                 // Note: at this point, we cannot say what the best lifetime
3515                 // is to use for resulting pointer.  We want to use the
3516                 // shortest lifetime possible so as to avoid spurious borrowck
3517                 // errors.  Moreover, the longest lifetime will depend on the
3518                 // precise details of the value whose address is being taken
3519                 // (and how long it is valid), which we don't know yet until type
3520                 // inference is complete.
3521                 //
3522                 // Therefore, here we simply generate a region variable.  The
3523                 // region inferencer will then select the ultimate value.
3524                 // Finally, borrowck is charged with guaranteeing that the
3525                 // value whose address was taken can actually be made to live
3526                 // as long as it needs to live.
3527                 let region = self.next_region_var(infer::AddrOfRegion(expr.span));
3528                 tcx.mk_ref(region, tm)
3529             }
3530           }
3531           hir::ExprPath(ref qpath) => {
3532               let (def, opt_ty, segments) = self.resolve_ty_and_def_ufcs(qpath,
3533                                                                          expr.id, expr.span);
3534               let ty = if def != Def::Err {
3535                   self.instantiate_value_path(segments, opt_ty, def, expr.span, id)
3536               } else {
3537                   self.set_tainted_by_errors();
3538                   tcx.types.err
3539               };
3540
3541               // We always require that the type provided as the value for
3542               // a type parameter outlives the moment of instantiation.
3543               let substs = self.tables.borrow().node_substs(expr.id);
3544               self.add_wf_bounds(substs, expr);
3545
3546               ty
3547           }
3548           hir::ExprInlineAsm(_, ref outputs, ref inputs) => {
3549               for output in outputs {
3550                   self.check_expr(output);
3551               }
3552               for input in inputs {
3553                   self.check_expr(input);
3554               }
3555               tcx.mk_nil()
3556           }
3557           hir::ExprBreak(destination, ref expr_opt) => {
3558               if let Some(target_id) = destination.target_id.opt_id() {
3559                   let (e_ty, e_diverges, cause);
3560                   if let Some(ref e) = *expr_opt {
3561                       // If this is a break with a value, we need to type-check
3562                       // the expression. Get an expected type from the loop context.
3563                       let opt_coerce_to = {
3564                           let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
3565                           enclosing_breakables.find_breakable(target_id)
3566                                               .coerce
3567                                               .as_ref()
3568                                               .map(|coerce| coerce.expected_ty())
3569                       };
3570
3571                       // If the loop context is not a `loop { }`, then break with
3572                       // a value is illegal, and `opt_coerce_to` will be `None`.
3573                       // Just set expectation to error in that case.
3574                       let coerce_to = opt_coerce_to.unwrap_or(tcx.types.err);
3575
3576                       // Recurse without `enclosing_breakables` borrowed.
3577                       e_ty = self.check_expr_with_hint(e, coerce_to);
3578                       e_diverges = self.diverges.get();
3579                       cause = self.misc(e.span);
3580                   } else {
3581                       // Otherwise, this is a break *without* a value. That's
3582                       // always legal, and is equivalent to `break ()`.
3583                       e_ty = tcx.mk_nil();
3584                       e_diverges = Diverges::Maybe;
3585                       cause = self.misc(expr.span);
3586                   }
3587
3588                   // Now that we have type-checked `expr_opt`, borrow
3589                   // the `enclosing_loops` field and let's coerce the
3590                   // type of `expr_opt` into what is expected.
3591                   let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
3592                   let ctxt = enclosing_breakables.find_breakable(target_id);
3593                   if let Some(ref mut coerce) = ctxt.coerce {
3594                       if let Some(ref e) = *expr_opt {
3595                           coerce.coerce(self, &cause, e, e_ty, e_diverges);
3596                       } else {
3597                           assert!(e_ty.is_nil());
3598                           coerce.coerce_forced_unit(self, &cause, &mut |_| (), true);
3599                       }
3600                   } else {
3601                       // If `ctxt.coerce` is `None`, we can just ignore
3602                       // the type of the expresison.  This is because
3603                       // either this was a break *without* a value, in
3604                       // which case it is always a legal type (`()`), or
3605                       // else an error would have been flagged by the
3606                       // `loops` pass for using break with an expression
3607                       // where you are not supposed to.
3608                       assert!(expr_opt.is_none() || self.tcx.sess.err_count() > 0);
3609                   }
3610
3611                   ctxt.may_break = true;
3612               } else {
3613                   // Otherwise, we failed to find the enclosing loop;
3614                   // this can only happen if the `break` was not
3615                   // inside a loop at all, which is caught by the
3616                   // loop-checking pass.
3617                   assert!(self.tcx.sess.err_count() > 0);
3618               }
3619
3620               // the type of a `break` is always `!`, since it diverges
3621               tcx.types.never
3622           }
3623           hir::ExprAgain(_) => { tcx.types.never }
3624           hir::ExprRet(ref expr_opt) => {
3625             if self.ret_coercion.is_none() {
3626                 struct_span_err!(self.tcx.sess, expr.span, E0572,
3627                                  "return statement outside of function body").emit();
3628             } else if let Some(ref e) = *expr_opt {
3629                 self.check_return_expr(e);
3630             } else {
3631                 let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
3632                 let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
3633                 coercion.coerce_forced_unit(self, &cause, &mut |_| (), true);
3634             }
3635             tcx.types.never
3636           }
3637           hir::ExprAssign(ref lhs, ref rhs) => {
3638             let lhs_ty = self.check_expr_with_lvalue_pref(&lhs, PreferMutLvalue);
3639
3640             let tcx = self.tcx;
3641             if !tcx.expr_is_lval(&lhs) {
3642                 struct_span_err!(
3643                     tcx.sess, expr.span, E0070,
3644                     "invalid left-hand side expression")
3645                 .span_label(
3646                     expr.span,
3647                     "left-hand of expression not valid")
3648                 .emit();
3649             }
3650
3651             let rhs_ty = self.check_expr_coercable_to_type(&rhs, lhs_ty);
3652
3653             self.require_type_is_sized(lhs_ty, lhs.span, traits::AssignmentLhsSized);
3654
3655             if lhs_ty.references_error() || rhs_ty.references_error() {
3656                 tcx.types.err
3657             } else {
3658                 tcx.mk_nil()
3659             }
3660           }
3661           hir::ExprIf(ref cond, ref then_expr, ref opt_else_expr) => {
3662               self.check_then_else(&cond, then_expr, opt_else_expr.as_ref().map(|e| &**e),
3663                                    expr.span, expected)
3664           }
3665           hir::ExprWhile(ref cond, ref body, _) => {
3666               let ctxt = BreakableCtxt {
3667                   // cannot use break with a value from a while loop
3668                   coerce: None,
3669                   may_break: true,
3670               };
3671
3672               self.with_breakable_ctxt(expr.id, ctxt, || {
3673                   self.check_expr_has_type(&cond, tcx.types.bool);
3674                   let cond_diverging = self.diverges.get();
3675                   self.check_block_no_value(&body);
3676
3677                   // We may never reach the body so it diverging means nothing.
3678                   self.diverges.set(cond_diverging);
3679               });
3680
3681               self.tcx.mk_nil()
3682           }
3683           hir::ExprLoop(ref body, _, source) => {
3684               let coerce = match source {
3685                   // you can only use break with a value from a normal `loop { }`
3686                   hir::LoopSource::Loop => {
3687                       let coerce_to = expected.coercion_target_type(self, body.span);
3688                       Some(CoerceMany::new(coerce_to))
3689                   }
3690
3691                   hir::LoopSource::WhileLet |
3692                   hir::LoopSource::ForLoop => {
3693                       None
3694                   }
3695               };
3696
3697               let ctxt = BreakableCtxt {
3698                   coerce: coerce,
3699                   may_break: false, // will get updated if/when we find a `break`
3700               };
3701
3702               let (ctxt, ()) = self.with_breakable_ctxt(expr.id, ctxt, || {
3703                   self.check_block_no_value(&body);
3704               });
3705
3706               if ctxt.may_break {
3707                   // No way to know whether it's diverging because
3708                   // of a `break` or an outer `break` or `return.
3709                   self.diverges.set(Diverges::Maybe);
3710               }
3711
3712               // If we permit break with a value, then result type is
3713               // the LUB of the breaks (possibly ! if none); else, it
3714               // is nil. This makes sense because infinite loops
3715               // (which would have type !) are only possible iff we
3716               // permit break with a value [1].
3717               assert!(ctxt.coerce.is_some() || ctxt.may_break); // [1]
3718               ctxt.coerce.map(|c| c.complete(self)).unwrap_or(self.tcx.mk_nil())
3719           }
3720           hir::ExprMatch(ref discrim, ref arms, match_src) => {
3721             self.check_match(expr, &discrim, arms, expected, match_src)
3722           }
3723           hir::ExprClosure(capture, ref decl, body_id, _) => {
3724               self.check_expr_closure(expr, capture, &decl, body_id, expected)
3725           }
3726           hir::ExprBlock(ref body) => {
3727             self.check_block_with_expected(&body, expected)
3728           }
3729           hir::ExprCall(ref callee, ref args) => {
3730               self.check_call(expr, &callee, args, expected)
3731           }
3732           hir::ExprMethodCall(name, ref tps, ref args) => {
3733               self.check_method_call(expr, name, args, &tps[..], expected, lvalue_pref)
3734           }
3735           hir::ExprCast(ref e, ref t) => {
3736             // Find the type of `e`. Supply hints based on the type we are casting to,
3737             // if appropriate.
3738             let t_cast = self.to_ty(t);
3739             let t_cast = self.resolve_type_vars_if_possible(&t_cast);
3740             let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
3741             let t_cast = self.resolve_type_vars_if_possible(&t_cast);
3742             let diverges = self.diverges.get();
3743
3744             // Eagerly check for some obvious errors.
3745             if t_expr.references_error() || t_cast.references_error() {
3746                 tcx.types.err
3747             } else {
3748                 // Defer other checks until we're done type checking.
3749                 let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
3750                 match cast::CastCheck::new(self, e, t_expr, diverges, t_cast, t.span, expr.span) {
3751                     Ok(cast_check) => {
3752                         deferred_cast_checks.push(cast_check);
3753                         t_cast
3754                     }
3755                     Err(ErrorReported) => {
3756                         tcx.types.err
3757                     }
3758                 }
3759             }
3760           }
3761           hir::ExprType(ref e, ref t) => {
3762             let typ = self.to_ty(&t);
3763             self.check_expr_eq_type(&e, typ);
3764             typ
3765           }
3766           hir::ExprArray(ref args) => {
3767               let uty = expected.to_option(self).and_then(|uty| {
3768                   match uty.sty {
3769                       ty::TyArray(ty, _) | ty::TySlice(ty) => Some(ty),
3770                       _ => None
3771                   }
3772               });
3773
3774               let element_ty = if !args.is_empty() {
3775                   let coerce_to = uty.unwrap_or_else(
3776                       || self.next_ty_var(TypeVariableOrigin::TypeInference(expr.span)));
3777                   let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
3778                   assert_eq!(self.diverges.get(), Diverges::Maybe);
3779                   for e in args {
3780                       let e_ty = self.check_expr_with_hint(e, coerce_to);
3781                       let cause = self.misc(e.span);
3782                       coerce.coerce(self, &cause, e, e_ty, self.diverges.get());
3783                   }
3784                   coerce.complete(self)
3785               } else {
3786                   self.next_ty_var(TypeVariableOrigin::TypeInference(expr.span))
3787               };
3788               tcx.mk_array(element_ty, args.len())
3789           }
3790           hir::ExprRepeat(ref element, count) => {
3791             let count = eval_length(self.tcx, count, "repeat count")
3792                   .unwrap_or(0);
3793
3794             let uty = match expected {
3795                 ExpectHasType(uty) => {
3796                     match uty.sty {
3797                         ty::TyArray(ty, _) | ty::TySlice(ty) => Some(ty),
3798                         _ => None
3799                     }
3800                 }
3801                 _ => None
3802             };
3803
3804             let (element_ty, t) = match uty {
3805                 Some(uty) => {
3806                     self.check_expr_coercable_to_type(&element, uty);
3807                     (uty, uty)
3808                 }
3809                 None => {
3810                     let t: Ty = self.next_ty_var(TypeVariableOrigin::MiscVariable(element.span));
3811                     let element_ty = self.check_expr_has_type(&element, t);
3812                     (element_ty, t)
3813                 }
3814             };
3815
3816             if count > 1 {
3817                 // For [foo, ..n] where n > 1, `foo` must have
3818                 // Copy type:
3819                 let lang_item = self.tcx.require_lang_item(lang_items::CopyTraitLangItem);
3820                 self.require_type_meets(t, expr.span, traits::RepeatVec, lang_item);
3821             }
3822
3823             if element_ty.references_error() {
3824                 tcx.types.err
3825             } else {
3826                 tcx.mk_array(t, count)
3827             }
3828           }
3829           hir::ExprTup(ref elts) => {
3830             let flds = expected.only_has_type(self).and_then(|ty| {
3831                 match ty.sty {
3832                     ty::TyTuple(ref flds, _) => Some(&flds[..]),
3833                     _ => None
3834                 }
3835             });
3836
3837             let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| {
3838                 let t = match flds {
3839                     Some(ref fs) if i < fs.len() => {
3840                         let ety = fs[i];
3841                         self.check_expr_coercable_to_type(&e, ety);
3842                         ety
3843                     }
3844                     _ => {
3845                         self.check_expr_with_expectation(&e, NoExpectation)
3846                     }
3847                 };
3848                 t
3849             });
3850             let tuple = tcx.mk_tup(elt_ts_iter, false);
3851             if tuple.references_error() {
3852                 tcx.types.err
3853             } else {
3854                 tuple
3855             }
3856           }
3857           hir::ExprStruct(ref qpath, ref fields, ref base_expr) => {
3858             self.check_expr_struct(expr, expected, qpath, fields, base_expr)
3859           }
3860           hir::ExprField(ref base, ref field) => {
3861             self.check_field(expr, lvalue_pref, &base, field)
3862           }
3863           hir::ExprTupField(ref base, idx) => {
3864             self.check_tup_field(expr, lvalue_pref, &base, idx)
3865           }
3866           hir::ExprIndex(ref base, ref idx) => {
3867               let base_t = self.check_expr_with_lvalue_pref(&base, lvalue_pref);
3868               let idx_t = self.check_expr(&idx);
3869
3870               if base_t.references_error() {
3871                   base_t
3872               } else if idx_t.references_error() {
3873                   idx_t
3874               } else {
3875                   let base_t = self.structurally_resolved_type(expr.span, base_t);
3876                   match self.lookup_indexing(expr, base, base_t, idx_t, lvalue_pref) {
3877                       Some((index_ty, element_ty)) => {
3878                           self.demand_coerce(idx, idx_t, index_ty);
3879                           element_ty
3880                       }
3881                       None => {
3882                           let mut err = self.type_error_struct(
3883                               expr.span,
3884                               |actual| {
3885                                   format!("cannot index a value of type `{}`",
3886                                           actual)
3887                               },
3888                               base_t);
3889                           // Try to give some advice about indexing tuples.
3890                           if let ty::TyTuple(..) = base_t.sty {
3891                               let mut needs_note = true;
3892                               // If the index is an integer, we can show the actual
3893                               // fixed expression:
3894                               if let hir::ExprLit(ref lit) = idx.node {
3895                                   if let ast::LitKind::Int(i,
3896                                             ast::LitIntType::Unsuffixed) = lit.node {
3897                                       let snip = tcx.sess.codemap().span_to_snippet(base.span);
3898                                       if let Ok(snip) = snip {
3899                                           err.span_suggestion(expr.span,
3900                                                               "to access tuple elements, use",
3901                                                               format!("{}.{}", snip, i));
3902                                           needs_note = false;
3903                                       }
3904                                   }
3905                               }
3906                               if needs_note {
3907                                   err.help("to access tuple elements, use tuple indexing \
3908                                             syntax (e.g. `tuple.0`)");
3909                               }
3910                           }
3911                           err.emit();
3912                           self.tcx.types.err
3913                       }
3914                   }
3915               }
3916            }
3917         }
3918     }
3919
3920     // Finish resolving a path in a struct expression or pattern `S::A { .. }` if necessary.
3921     // The newly resolved definition is written into `type_relative_path_defs`.
3922     fn finish_resolving_struct_path(&self,
3923                                     qpath: &hir::QPath,
3924                                     path_span: Span,
3925                                     node_id: ast::NodeId)
3926                                     -> (Def, Ty<'tcx>)
3927     {
3928         match *qpath {
3929             hir::QPath::Resolved(ref maybe_qself, ref path) => {
3930                 let opt_self_ty = maybe_qself.as_ref().map(|qself| self.to_ty(qself));
3931                 let ty = AstConv::def_to_ty(self, opt_self_ty, path, true);
3932                 (path.def, ty)
3933             }
3934             hir::QPath::TypeRelative(ref qself, ref segment) => {
3935                 let ty = self.to_ty(qself);
3936
3937                 let def = if let hir::TyPath(hir::QPath::Resolved(_, ref path)) = qself.node {
3938                     path.def
3939                 } else {
3940                     Def::Err
3941                 };
3942                 let (ty, def) = AstConv::associated_path_def_to_ty(self, node_id, path_span,
3943                                                                    ty, def, segment);
3944
3945                 // Write back the new resolution.
3946                 self.tables.borrow_mut().type_relative_path_defs.insert(node_id, def);
3947
3948                 (def, ty)
3949             }
3950         }
3951     }
3952
3953     // Resolve associated value path into a base type and associated constant or method definition.
3954     // The newly resolved definition is written into `type_relative_path_defs`.
3955     pub fn resolve_ty_and_def_ufcs<'b>(&self,
3956                                        qpath: &'b hir::QPath,
3957                                        node_id: ast::NodeId,
3958                                        span: Span)
3959                                        -> (Def, Option<Ty<'tcx>>, &'b [hir::PathSegment])
3960     {
3961         let (ty, item_segment) = match *qpath {
3962             hir::QPath::Resolved(ref opt_qself, ref path) => {
3963                 return (path.def,
3964                         opt_qself.as_ref().map(|qself| self.to_ty(qself)),
3965                         &path.segments[..]);
3966             }
3967             hir::QPath::TypeRelative(ref qself, ref segment) => {
3968                 (self.to_ty(qself), segment)
3969             }
3970         };
3971         let item_name = item_segment.name;
3972         let def = match self.resolve_ufcs(span, item_name, ty, node_id) {
3973             Ok(def) => def,
3974             Err(error) => {
3975                 let def = match error {
3976                     method::MethodError::PrivateMatch(def) => def,
3977                     _ => Def::Err,
3978                 };
3979                 if item_name != keywords::Invalid.name() {
3980                     self.report_method_error(span, ty, item_name, None, error, None);
3981                 }
3982                 def
3983             }
3984         };
3985
3986         // Write back the new resolution.
3987         self.tables.borrow_mut().type_relative_path_defs.insert(node_id, def);
3988         (def, Some(ty), slice::ref_slice(&**item_segment))
3989     }
3990
3991     pub fn check_decl_initializer(&self,
3992                                   local: &'gcx hir::Local,
3993                                   init: &'gcx hir::Expr) -> Ty<'tcx>
3994     {
3995         let ref_bindings = local.pat.contains_ref_binding();
3996
3997         let local_ty = self.local_ty(init.span, local.id);
3998         if let Some(m) = ref_bindings {
3999             // Somewhat subtle: if we have a `ref` binding in the pattern,
4000             // we want to avoid introducing coercions for the RHS. This is
4001             // both because it helps preserve sanity and, in the case of
4002             // ref mut, for soundness (issue #23116). In particular, in
4003             // the latter case, we need to be clear that the type of the
4004             // referent for the reference that results is *equal to* the
4005             // type of the lvalue it is referencing, and not some
4006             // supertype thereof.
4007             let init_ty = self.check_expr_with_lvalue_pref(init, LvaluePreference::from_mutbl(m));
4008             self.demand_eqtype(init.span, init_ty, local_ty);
4009             init_ty
4010         } else {
4011             self.check_expr_coercable_to_type(init, local_ty)
4012         }
4013     }
4014
4015     pub fn check_decl_local(&self, local: &'gcx hir::Local)  {
4016         let t = self.local_ty(local.span, local.id);
4017         self.write_ty(local.id, t);
4018
4019         if let Some(ref init) = local.init {
4020             let init_ty = self.check_decl_initializer(local, &init);
4021             if init_ty.references_error() {
4022                 self.write_ty(local.id, init_ty);
4023             }
4024         }
4025
4026         self.check_pat(&local.pat, t);
4027         let pat_ty = self.node_ty(local.pat.id);
4028         if pat_ty.references_error() {
4029             self.write_ty(local.id, pat_ty);
4030         }
4031     }
4032
4033     pub fn check_stmt(&self, stmt: &'gcx hir::Stmt) {
4034         // Don't do all the complex logic below for DeclItem.
4035         match stmt.node {
4036             hir::StmtDecl(ref decl, id) => {
4037                 match decl.node {
4038                     hir::DeclLocal(_) => {}
4039                     hir::DeclItem(_) => {
4040                         self.write_nil(id);
4041                         return;
4042                     }
4043                 }
4044             }
4045             hir::StmtExpr(..) | hir::StmtSemi(..) => {}
4046         }
4047
4048         self.warn_if_unreachable(stmt.node.id(), stmt.span, "statement");
4049
4050         // Hide the outer diverging and has_errors flags.
4051         let old_diverges = self.diverges.get();
4052         let old_has_errors = self.has_errors.get();
4053         self.diverges.set(Diverges::Maybe);
4054         self.has_errors.set(false);
4055
4056         let (node_id, _span) = match stmt.node {
4057             hir::StmtDecl(ref decl, id) => {
4058                 let span = match decl.node {
4059                     hir::DeclLocal(ref l) => {
4060                         self.check_decl_local(&l);
4061                         l.span
4062                     }
4063                     hir::DeclItem(_) => {/* ignore for now */
4064                         DUMMY_SP
4065                     }
4066                 };
4067                 (id, span)
4068             }
4069             hir::StmtExpr(ref expr, id) => {
4070                 // Check with expected type of ()
4071                 self.check_expr_has_type(&expr, self.tcx.mk_nil());
4072                 (id, expr.span)
4073             }
4074             hir::StmtSemi(ref expr, id) => {
4075                 self.check_expr(&expr);
4076                 (id, expr.span)
4077             }
4078         };
4079
4080         if self.has_errors.get() {
4081             self.write_error(node_id);
4082         } else {
4083             self.write_nil(node_id);
4084         }
4085
4086         // Combine the diverging and has_error flags.
4087         self.diverges.set(self.diverges.get() | old_diverges);
4088         self.has_errors.set(self.has_errors.get() | old_has_errors);
4089     }
4090
4091     pub fn check_block_no_value(&self, blk: &'gcx hir::Block)  {
4092         let unit = self.tcx.mk_nil();
4093         let ty = self.check_block_with_expected(blk, ExpectHasType(unit));
4094
4095         // if the block produces a `!` value, that can always be
4096         // (effectively) coerced to unit.
4097         if !ty.is_never() {
4098             self.demand_suptype(blk.span, unit, ty);
4099         }
4100     }
4101
4102     fn check_block_with_expected(&self,
4103                                  blk: &'gcx hir::Block,
4104                                  expected: Expectation<'tcx>) -> Ty<'tcx> {
4105         let prev = {
4106             let mut fcx_ps = self.ps.borrow_mut();
4107             let unsafety_state = fcx_ps.recurse(blk);
4108             replace(&mut *fcx_ps, unsafety_state)
4109         };
4110
4111         // In some cases, blocks have just one exit, but other blocks
4112         // can be targeted by multiple breaks. This cannot happen in
4113         // normal Rust syntax today, but it can happen when we desugar
4114         // a `do catch { ... }` expression.
4115         //
4116         // Example 1:
4117         //
4118         //    'a: { if true { break 'a Err(()); } Ok(()) }
4119         //
4120         // Here we would wind up with two coercions, one from
4121         // `Err(())` and the other from the tail expression
4122         // `Ok(())`. If the tail expression is omitted, that's a
4123         // "forced unit" -- unless the block diverges, in which
4124         // case we can ignore the tail expression (e.g., `'a: {
4125         // break 'a 22; }` would not force the type of the block
4126         // to be `()`).
4127         let tail_expr = blk.expr.as_ref();
4128         let coerce_to_ty = expected.coercion_target_type(self, blk.span);
4129         let coerce = if blk.targeted_by_break {
4130             CoerceMany::new(coerce_to_ty)
4131         } else {
4132             let tail_expr: &[P<hir::Expr>] = match tail_expr {
4133                 Some(e) => ref_slice(e),
4134                 None => &[],
4135             };
4136             CoerceMany::with_coercion_sites(coerce_to_ty, tail_expr)
4137         };
4138
4139         let ctxt = BreakableCtxt {
4140             coerce: Some(coerce),
4141             may_break: false,
4142         };
4143
4144         let (ctxt, ()) = self.with_breakable_ctxt(blk.id, ctxt, || {
4145             for s in &blk.stmts {
4146                 self.check_stmt(s);
4147             }
4148
4149             // check the tail expression **without** holding the
4150             // `enclosing_breakables` lock below.
4151             let tail_expr_ty = tail_expr.map(|t| self.check_expr_with_expectation(t, expected));
4152
4153             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4154             let mut ctxt = enclosing_breakables.find_breakable(blk.id);
4155             let mut coerce = ctxt.coerce.as_mut().unwrap();
4156             if let Some(tail_expr_ty) = tail_expr_ty {
4157                 let tail_expr = tail_expr.unwrap();
4158                 coerce.coerce(self,
4159                               &self.misc(tail_expr.span),
4160                               tail_expr,
4161                               tail_expr_ty,
4162                               self.diverges.get());
4163             } else {
4164                 // Subtle: if there is no explicit tail expression,
4165                 // that is typically equivalent to a tail expression
4166                 // of `()` -- except if the block diverges. In that
4167                 // case, there is no value supplied from the tail
4168                 // expression (assuming there are no other breaks,
4169                 // this implies that the type of the block will be
4170                 // `!`).
4171                 //
4172                 // #41425 -- label the implicit `()` as being the
4173                 // "found type" here, rather than the "expected type".
4174                 if !self.diverges.get().always() {
4175                     coerce.coerce_forced_unit(self, &self.misc(blk.span), &mut |err| {
4176                         if let Some(expected_ty) = expected.only_has_type(self) {
4177                             self.consider_hint_about_removing_semicolon(blk,
4178                                                                         expected_ty,
4179                                                                         err);
4180                         }
4181                     }, false);
4182                 }
4183             }
4184         });
4185
4186         let mut ty = ctxt.coerce.unwrap().complete(self);
4187
4188         if self.has_errors.get() || ty.references_error() {
4189             ty = self.tcx.types.err
4190         }
4191
4192         self.write_ty(blk.id, ty);
4193
4194         *self.ps.borrow_mut() = prev;
4195         ty
4196     }
4197
4198     /// A common error is to add an extra semicolon:
4199     ///
4200     /// ```
4201     /// fn foo() -> usize {
4202     ///     22;
4203     /// }
4204     /// ```
4205     ///
4206     /// This routine checks if the final statement in a block is an
4207     /// expression with an explicit semicolon whose type is compatible
4208     /// with `expected_ty`. If so, it suggests removing the semicolon.
4209     fn consider_hint_about_removing_semicolon(&self,
4210                                               blk: &'gcx hir::Block,
4211                                               expected_ty: Ty<'tcx>,
4212                                               err: &mut DiagnosticBuilder) {
4213         // Be helpful when the user wrote `{... expr;}` and
4214         // taking the `;` off is enough to fix the error.
4215         let last_stmt = match blk.stmts.last() {
4216             Some(s) => s,
4217             None => return,
4218         };
4219         let last_expr = match last_stmt.node {
4220             hir::StmtSemi(ref e, _) => e,
4221             _ => return,
4222         };
4223         let last_expr_ty = self.expr_ty(last_expr);
4224         if self.can_sub_types(last_expr_ty, expected_ty).is_err() {
4225             return;
4226         }
4227         let original_span = original_sp(last_stmt.span, blk.span);
4228         let span_semi = Span {
4229             lo: original_span.hi - BytePos(1),
4230             hi: original_span.hi,
4231             ctxt: original_span.ctxt,
4232         };
4233         err.span_help(span_semi, "consider removing this semicolon:");
4234     }
4235
4236     // Instantiates the given path, which must refer to an item with the given
4237     // number of type parameters and type.
4238     pub fn instantiate_value_path(&self,
4239                                   segments: &[hir::PathSegment],
4240                                   opt_self_ty: Option<Ty<'tcx>>,
4241                                   def: Def,
4242                                   span: Span,
4243                                   node_id: ast::NodeId)
4244                                   -> Ty<'tcx> {
4245         debug!("instantiate_value_path(path={:?}, def={:?}, node_id={})",
4246                segments,
4247                def,
4248                node_id);
4249
4250         // We need to extract the type parameters supplied by the user in
4251         // the path `path`. Due to the current setup, this is a bit of a
4252         // tricky-process; the problem is that resolve only tells us the
4253         // end-point of the path resolution, and not the intermediate steps.
4254         // Luckily, we can (at least for now) deduce the intermediate steps
4255         // just from the end-point.
4256         //
4257         // There are basically four cases to consider:
4258         //
4259         // 1. Reference to a constructor of enum variant or struct:
4260         //
4261         //        struct Foo<T>(...)
4262         //        enum E<T> { Foo(...) }
4263         //
4264         //    In these cases, the parameters are declared in the type
4265         //    space.
4266         //
4267         // 2. Reference to a fn item or a free constant:
4268         //
4269         //        fn foo<T>() { }
4270         //
4271         //    In this case, the path will again always have the form
4272         //    `a::b::foo::<T>` where only the final segment should have
4273         //    type parameters. However, in this case, those parameters are
4274         //    declared on a value, and hence are in the `FnSpace`.
4275         //
4276         // 3. Reference to a method or an associated constant:
4277         //
4278         //        impl<A> SomeStruct<A> {
4279         //            fn foo<B>(...)
4280         //        }
4281         //
4282         //    Here we can have a path like
4283         //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
4284         //    may appear in two places. The penultimate segment,
4285         //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
4286         //    final segment, `foo::<B>` contains parameters in fn space.
4287         //
4288         // 4. Reference to a local variable
4289         //
4290         //    Local variables can't have any type parameters.
4291         //
4292         // The first step then is to categorize the segments appropriately.
4293
4294         assert!(!segments.is_empty());
4295
4296         let mut ufcs_associated = None;
4297         let mut type_segment = None;
4298         let mut fn_segment = None;
4299         match def {
4300             // Case 1. Reference to a struct/variant constructor.
4301             Def::StructCtor(def_id, ..) |
4302             Def::VariantCtor(def_id, ..) => {
4303                 // Everything but the final segment should have no
4304                 // parameters at all.
4305                 let mut generics = self.tcx.generics_of(def_id);
4306                 if let Some(def_id) = generics.parent {
4307                     // Variant and struct constructors use the
4308                     // generics of their parent type definition.
4309                     generics = self.tcx.generics_of(def_id);
4310                 }
4311                 type_segment = Some((segments.last().unwrap(), generics));
4312             }
4313
4314             // Case 2. Reference to a top-level value.
4315             Def::Fn(def_id) |
4316             Def::Const(def_id) |
4317             Def::Static(def_id, _) => {
4318                 fn_segment = Some((segments.last().unwrap(),
4319                                    self.tcx.generics_of(def_id)));
4320             }
4321
4322             // Case 3. Reference to a method or associated const.
4323             Def::Method(def_id) |
4324             Def::AssociatedConst(def_id) => {
4325                 let container = self.tcx.associated_item(def_id).container;
4326                 match container {
4327                     ty::TraitContainer(trait_did) => {
4328                         callee::check_legal_trait_for_method_call(self.tcx, span, trait_did)
4329                     }
4330                     ty::ImplContainer(_) => {}
4331                 }
4332
4333                 let generics = self.tcx.generics_of(def_id);
4334                 if segments.len() >= 2 {
4335                     let parent_generics = self.tcx.generics_of(generics.parent.unwrap());
4336                     type_segment = Some((&segments[segments.len() - 2], parent_generics));
4337                 } else {
4338                     // `<T>::assoc` will end up here, and so can `T::assoc`.
4339                     let self_ty = opt_self_ty.expect("UFCS sugared assoc missing Self");
4340                     ufcs_associated = Some((container, self_ty));
4341                 }
4342                 fn_segment = Some((segments.last().unwrap(), generics));
4343             }
4344
4345             // Case 4. Local variable, no generics.
4346             Def::Local(..) | Def::Upvar(..) => {}
4347
4348             _ => bug!("unexpected definition: {:?}", def),
4349         }
4350
4351         debug!("type_segment={:?} fn_segment={:?}", type_segment, fn_segment);
4352
4353         // Now that we have categorized what space the parameters for each
4354         // segment belong to, let's sort out the parameters that the user
4355         // provided (if any) into their appropriate spaces. We'll also report
4356         // errors if type parameters are provided in an inappropriate place.
4357         let poly_segments = type_segment.is_some() as usize +
4358                             fn_segment.is_some() as usize;
4359         AstConv::prohibit_type_params(self, &segments[..segments.len() - poly_segments]);
4360
4361         match def {
4362             Def::Local(def_id) | Def::Upvar(def_id, ..) => {
4363                 let nid = self.tcx.hir.as_local_node_id(def_id).unwrap();
4364                 let ty = self.local_ty(span, nid);
4365                 let ty = self.normalize_associated_types_in(span, &ty);
4366                 self.write_ty(node_id, ty);
4367                 return ty;
4368             }
4369             _ => {}
4370         }
4371
4372         // Now we have to compare the types that the user *actually*
4373         // provided against the types that were *expected*. If the user
4374         // did not provide any types, then we want to substitute inference
4375         // variables. If the user provided some types, we may still need
4376         // to add defaults. If the user provided *too many* types, that's
4377         // a problem.
4378         self.check_path_parameter_count(span, &mut type_segment);
4379         self.check_path_parameter_count(span, &mut fn_segment);
4380
4381         let (fn_start, has_self) = match (type_segment, fn_segment) {
4382             (_, Some((_, generics))) => {
4383                 (generics.parent_count(), generics.has_self)
4384             }
4385             (Some((_, generics)), None) => {
4386                 (generics.own_count(), generics.has_self)
4387             }
4388             (None, None) => (0, false)
4389         };
4390         let substs = Substs::for_item(self.tcx, def.def_id(), |def, _| {
4391             let mut i = def.index as usize;
4392
4393             let segment = if i < fn_start {
4394                 i -= has_self as usize;
4395                 type_segment
4396             } else {
4397                 i -= fn_start;
4398                 fn_segment
4399             };
4400             let lifetimes = match segment.map(|(s, _)| &s.parameters) {
4401                 Some(&hir::AngleBracketedParameters(ref data)) => &data.lifetimes[..],
4402                 Some(&hir::ParenthesizedParameters(_)) => bug!(),
4403                 None => &[]
4404             };
4405
4406             if let Some(lifetime) = lifetimes.get(i) {
4407                 AstConv::ast_region_to_region(self, lifetime, Some(def))
4408             } else {
4409                 self.re_infer(span, Some(def)).unwrap()
4410             }
4411         }, |def, substs| {
4412             let mut i = def.index as usize;
4413
4414             let segment = if i < fn_start {
4415                 // Handle Self first, so we can adjust the index to match the AST.
4416                 if has_self && i == 0 {
4417                     return opt_self_ty.unwrap_or_else(|| {
4418                         self.type_var_for_def(span, def, substs)
4419                     });
4420                 }
4421                 i -= has_self as usize;
4422                 type_segment
4423             } else {
4424                 i -= fn_start;
4425                 fn_segment
4426             };
4427             let (types, infer_types) = match segment.map(|(s, _)| &s.parameters) {
4428                 Some(&hir::AngleBracketedParameters(ref data)) => {
4429                     (&data.types[..], data.infer_types)
4430                 }
4431                 Some(&hir::ParenthesizedParameters(_)) => bug!(),
4432                 None => (&[][..], true)
4433             };
4434
4435             // Skip over the lifetimes in the same segment.
4436             if let Some((_, generics)) = segment {
4437                 i -= generics.regions.len();
4438             }
4439
4440             if let Some(ast_ty) = types.get(i) {
4441                 // A provided type parameter.
4442                 self.to_ty(ast_ty)
4443             } else if !infer_types && def.has_default {
4444                 // No type parameter provided, but a default exists.
4445                 let default = self.tcx.type_of(def.def_id);
4446                 self.normalize_ty(
4447                     span,
4448                     default.subst_spanned(self.tcx, substs, Some(span))
4449                 )
4450             } else {
4451                 // No type parameters were provided, we can infer all.
4452                 // This can also be reached in some error cases:
4453                 // We prefer to use inference variables instead of
4454                 // TyError to let type inference recover somewhat.
4455                 self.type_var_for_def(span, def, substs)
4456             }
4457         });
4458
4459         // The things we are substituting into the type should not contain
4460         // escaping late-bound regions, and nor should the base type scheme.
4461         let ty = self.tcx.type_of(def.def_id());
4462         assert!(!substs.has_escaping_regions());
4463         assert!(!ty.has_escaping_regions());
4464
4465         // Add all the obligations that are required, substituting and
4466         // normalized appropriately.
4467         let bounds = self.instantiate_bounds(span, def.def_id(), &substs);
4468         self.add_obligations_for_parameters(
4469             traits::ObligationCause::new(span, self.body_id, traits::ItemObligation(def.def_id())),
4470             &bounds);
4471
4472         // Substitute the values for the type parameters into the type of
4473         // the referenced item.
4474         let ty_substituted = self.instantiate_type_scheme(span, &substs, &ty);
4475
4476         if let Some((ty::ImplContainer(impl_def_id), self_ty)) = ufcs_associated {
4477             // In the case of `Foo<T>::method` and `<Foo<T>>::method`, if `method`
4478             // is inherent, there is no `Self` parameter, instead, the impl needs
4479             // type parameters, which we can infer by unifying the provided `Self`
4480             // with the substituted impl type.
4481             let ty = self.tcx.type_of(impl_def_id);
4482
4483             let impl_ty = self.instantiate_type_scheme(span, &substs, &ty);
4484             match self.sub_types(false, &self.misc(span), self_ty, impl_ty) {
4485                 Ok(ok) => self.register_infer_ok_obligations(ok),
4486                 Err(_) => {
4487                     span_bug!(span,
4488                         "instantiate_value_path: (UFCS) {:?} was a subtype of {:?} but now is not?",
4489                         self_ty,
4490                         impl_ty);
4491                 }
4492             }
4493         }
4494
4495         debug!("instantiate_value_path: type of {:?} is {:?}",
4496                node_id,
4497                ty_substituted);
4498         self.write_substs(node_id, substs);
4499         ty_substituted
4500     }
4501
4502     /// Report errors if the provided parameters are too few or too many.
4503     fn check_path_parameter_count(&self,
4504                                   span: Span,
4505                                   segment: &mut Option<(&hir::PathSegment, &ty::Generics)>) {
4506         let (lifetimes, types, infer_types, bindings) = {
4507             match segment.map(|(s, _)| &s.parameters) {
4508                 Some(&hir::AngleBracketedParameters(ref data)) => {
4509                     (&data.lifetimes[..], &data.types[..], data.infer_types, &data.bindings[..])
4510                 }
4511                 Some(&hir::ParenthesizedParameters(_)) => {
4512                     AstConv::prohibit_parenthesized_params(self, &segment.as_ref().unwrap().0,
4513                                                            false);
4514                     (&[][..], &[][..], true, &[][..])
4515                 }
4516                 None => (&[][..], &[][..], true, &[][..])
4517             }
4518         };
4519
4520         let count_lifetime_params = |n| {
4521             format!("{} lifetime parameter{}", n, if n == 1 { "" } else { "s" })
4522         };
4523         let count_type_params = |n| {
4524             format!("{} type parameter{}", n, if n == 1 { "" } else { "s" })
4525         };
4526
4527         // Check provided lifetime parameters.
4528         let lifetime_defs = segment.map_or(&[][..], |(_, generics)| &generics.regions);
4529         if lifetimes.len() > lifetime_defs.len() {
4530             let expected_text = count_lifetime_params(lifetime_defs.len());
4531             let actual_text = count_lifetime_params(lifetimes.len());
4532             struct_span_err!(self.tcx.sess, span, E0088,
4533                              "too many lifetime parameters provided: \
4534                               expected at most {}, found {}",
4535                              expected_text, actual_text)
4536                 .span_label(span, format!("expected {}", expected_text))
4537                 .emit();
4538         } else if lifetimes.len() > 0 && lifetimes.len() < lifetime_defs.len() {
4539             let expected_text = count_lifetime_params(lifetime_defs.len());
4540             let actual_text = count_lifetime_params(lifetimes.len());
4541             struct_span_err!(self.tcx.sess, span, E0090,
4542                              "too few lifetime parameters provided: \
4543                               expected {}, found {}",
4544                              expected_text, actual_text)
4545                 .span_label(span, format!("expected {}", expected_text))
4546                 .emit();
4547         }
4548
4549         // The case where there is not enough lifetime parameters is not checked,
4550         // because this is not possible - a function never takes lifetime parameters.
4551         // See discussion for Pull Request 36208.
4552
4553         // Check provided type parameters.
4554         let type_defs = segment.map_or(&[][..], |(_, generics)| {
4555             if generics.parent.is_none() {
4556                 &generics.types[generics.has_self as usize..]
4557             } else {
4558                 &generics.types
4559             }
4560         });
4561         let required_len = type_defs.iter().take_while(|d| !d.has_default).count();
4562         if types.len() > type_defs.len() {
4563             let span = types[type_defs.len()].span;
4564             let expected_text = count_type_params(type_defs.len());
4565             let actual_text = count_type_params(types.len());
4566             struct_span_err!(self.tcx.sess, span, E0087,
4567                              "too many type parameters provided: \
4568                               expected at most {}, found {}",
4569                              expected_text, actual_text)
4570                 .span_label(span, format!("expected {}", expected_text))
4571                 .emit();
4572
4573             // To prevent derived errors to accumulate due to extra
4574             // type parameters, we force instantiate_value_path to
4575             // use inference variables instead of the provided types.
4576             *segment = None;
4577         } else if !infer_types && types.len() < required_len {
4578             let expected_text = count_type_params(required_len);
4579             let actual_text = count_type_params(types.len());
4580             struct_span_err!(self.tcx.sess, span, E0089,
4581                              "too few type parameters provided: \
4582                               expected {}, found {}",
4583                              expected_text, actual_text)
4584                 .span_label(span, format!("expected {}", expected_text))
4585                 .emit();
4586         }
4587
4588         if !bindings.is_empty() {
4589             span_err!(self.tcx.sess, bindings[0].span, E0182,
4590                       "unexpected binding of associated item in expression path \
4591                        (only allowed in type paths)");
4592         }
4593     }
4594
4595     fn structurally_resolve_type_or_else<F>(&self, sp: Span, ty: Ty<'tcx>, f: F)
4596                                             -> Ty<'tcx>
4597         where F: Fn() -> Ty<'tcx>
4598     {
4599         let mut ty = self.resolve_type_vars_with_obligations(ty);
4600
4601         if ty.is_ty_var() {
4602             let alternative = f();
4603
4604             // If not, error.
4605             if alternative.is_ty_var() || alternative.references_error() {
4606                 if !self.is_tainted_by_errors() {
4607                     self.type_error_message(sp, |_actual| {
4608                         "the type of this value must be known in this context".to_string()
4609                     }, ty);
4610                 }
4611                 self.demand_suptype(sp, self.tcx.types.err, ty);
4612                 ty = self.tcx.types.err;
4613             } else {
4614                 self.demand_suptype(sp, alternative, ty);
4615                 ty = alternative;
4616             }
4617         }
4618
4619         ty
4620     }
4621
4622     // Resolves `typ` by a single level if `typ` is a type variable.  If no
4623     // resolution is possible, then an error is reported.
4624     pub fn structurally_resolved_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
4625         self.structurally_resolve_type_or_else(sp, ty, || {
4626             self.tcx.types.err
4627         })
4628     }
4629
4630     fn with_breakable_ctxt<F: FnOnce() -> R, R>(&self, id: ast::NodeId,
4631                                         ctxt: BreakableCtxt<'gcx, 'tcx>, f: F)
4632                                    -> (BreakableCtxt<'gcx, 'tcx>, R) {
4633         let index;
4634         {
4635             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4636             index = enclosing_breakables.stack.len();
4637             enclosing_breakables.by_id.insert(id, index);
4638             enclosing_breakables.stack.push(ctxt);
4639         }
4640         let result = f();
4641         let ctxt = {
4642             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4643             debug_assert!(enclosing_breakables.stack.len() == index + 1);
4644             enclosing_breakables.by_id.remove(&id).expect("missing breakable context");
4645             enclosing_breakables.stack.pop().expect("missing breakable context")
4646         };
4647         (ctxt, result)
4648     }
4649 }
4650
4651 pub fn check_bounds_are_used<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
4652                                        generics: &hir::Generics,
4653                                        ty: Ty<'tcx>) {
4654     debug!("check_bounds_are_used(n_tps={}, ty={:?})",
4655            generics.ty_params.len(),  ty);
4656
4657     // make a vector of booleans initially false, set to true when used
4658     if generics.ty_params.is_empty() { return; }
4659     let mut tps_used = vec![false; generics.ty_params.len()];
4660
4661     for leaf_ty in ty.walk() {
4662         if let ty::TyParam(ParamTy {idx, ..}) = leaf_ty.sty {
4663             debug!("Found use of ty param num {}", idx);
4664             tps_used[idx as usize - generics.lifetimes.len()] = true;
4665         }
4666     }
4667
4668     for (&used, param) in tps_used.iter().zip(&generics.ty_params) {
4669         if !used {
4670             struct_span_err!(tcx.sess, param.span, E0091,
4671                 "type parameter `{}` is unused",
4672                 param.name)
4673                 .span_label(param.span, "unused type parameter")
4674                 .emit();
4675         }
4676     }
4677 }