]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/mod.rs
rustc: move autoref and unsize from Adjust::DerefRef to Adjustment.
[rust.git] / src / librustc_typeck / check / mod.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 /*
12
13 # check.rs
14
15 Within the check phase of type check, we check each item one at a time
16 (bodies of function expressions are checked as part of the containing
17 function).  Inference is used to supply types wherever they are
18 unknown.
19
20 By far the most complex case is checking the body of a function. This
21 can be broken down into several distinct phases:
22
23 - gather: creates type variables to represent the type of each local
24   variable and pattern binding.
25
26 - main: the main pass does the lion's share of the work: it
27   determines the types of all expressions, resolves
28   methods, checks for most invalid conditions, and so forth.  In
29   some cases, where a type is unknown, it may create a type or region
30   variable and use that as the type of an expression.
31
32   In the process of checking, various constraints will be placed on
33   these type variables through the subtyping relationships requested
34   through the `demand` module.  The `infer` module is in charge
35   of resolving those constraints.
36
37 - regionck: after main is complete, the regionck pass goes over all
38   types looking for regions and making sure that they did not escape
39   into places they are not in scope.  This may also influence the
40   final assignments of the various region variables if there is some
41   flexibility.
42
43 - vtable: find and records the impls to use for each trait bound that
44   appears on a type parameter.
45
46 - writeback: writes the final types within a function body, replacing
47   type variables with their final inferred types.  These final types
48   are written into the `tcx.node_types` table, which should *never* contain
49   any reference to a type variable.
50
51 ## Intermediate types
52
53 While type checking a function, the intermediate types for the
54 expressions, blocks, and so forth contained within the function are
55 stored in `fcx.node_types` and `fcx.node_substs`.  These types
56 may contain unresolved type variables.  After type checking is
57 complete, the functions in the writeback module are used to take the
58 types from this table, resolve them, and then write them into their
59 permanent home in the type context `tcx`.
60
61 This means that during inferencing you should use `fcx.write_ty()`
62 and `fcx.expr_ty()` / `fcx.node_ty()` to write/obtain the types of
63 nodes within the function.
64
65 The types of top-level items, which never contain unbound type
66 variables, are stored directly into the `tcx` tables.
67
68 n.b.: A type variable is not the same thing as a type parameter.  A
69 type variable is rather an "instance" of a type parameter: that is,
70 given a generic function `fn foo<T>(t: T)`: while checking the
71 function `foo`, the type `ty_param(0)` refers to the type `T`, which
72 is treated in abstract.  When `foo()` is called, however, `T` will be
73 substituted for a fresh type variable `N`.  This variable will
74 eventually be resolved to some concrete type (which might itself be
75 type parameter).
76
77 */
78
79 pub use self::Expectation::*;
80 use self::autoderef::Autoderef;
81 use self::callee::DeferredCallResolution;
82 use self::coercion::{CoerceMany, DynamicCoerceMany};
83 pub use self::compare_method::{compare_impl_method, compare_const_impl};
84 use self::method::MethodCallee;
85 use self::TupleArgumentsFlag::*;
86
87 use astconv::AstConv;
88 use fmt_macros::{Parser, Piece, Position};
89 use hir::def::{Def, CtorKind};
90 use hir::def_id::{CrateNum, DefId, LOCAL_CRATE};
91 use rustc_back::slice::ref_slice;
92 use rustc::infer::{self, InferCtxt, InferOk, RegionVariableOrigin};
93 use rustc::infer::type_variable::{TypeVariableOrigin};
94 use rustc::middle::region::CodeExtent;
95 use rustc::ty::subst::{Kind, Subst, Substs};
96 use rustc::traits::{self, FulfillmentContext, ObligationCause, ObligationCauseCode, Reveal};
97 use rustc::ty::{ParamTy, LvaluePreference, NoPreference, PreferMutLvalue};
98 use rustc::ty::{self, Ty, TyCtxt, Visibility};
99 use rustc::ty::adjustment::{Adjust, Adjustment, AutoBorrow, OverloadedDeref};
100 use rustc::ty::fold::{BottomUpFolder, TypeFoldable};
101 use rustc::ty::maps::Providers;
102 use rustc::ty::util::{Representability, IntTypeExt};
103 use errors::DiagnosticBuilder;
104 use require_c_abi_if_variadic;
105 use session::{Session, CompileResult};
106 use TypeAndSubsts;
107 use lint;
108 use util::common::{ErrorReported, indenter};
109 use util::nodemap::{DefIdMap, FxHashMap, NodeMap};
110
111 use std::cell::{Cell, RefCell};
112 use std::collections::hash_map::Entry;
113 use std::cmp;
114 use std::mem::replace;
115 use std::ops::{self, Deref};
116 use syntax::abi::Abi;
117 use syntax::ast;
118 use syntax::codemap::{self, original_sp, Spanned};
119 use syntax::feature_gate::{GateIssue, emit_feature_err};
120 use syntax::ptr::P;
121 use syntax::symbol::{Symbol, InternedString, keywords};
122 use syntax::util::lev_distance::find_best_match_for_name;
123 use syntax_pos::{self, BytePos, Span, DUMMY_SP};
124
125 use rustc::hir::intravisit::{self, Visitor, NestedVisitorMap};
126 use rustc::hir::itemlikevisit::ItemLikeVisitor;
127 use rustc::hir::{self, PatKind};
128 use rustc::middle::lang_items;
129 use rustc_back::slice;
130 use rustc::middle::const_val::eval_length;
131 use rustc_const_math::ConstInt;
132
133 mod autoderef;
134 pub mod dropck;
135 pub mod _match;
136 pub mod writeback;
137 pub mod regionck;
138 pub mod coercion;
139 pub mod demand;
140 pub mod method;
141 mod upvar;
142 mod wfcheck;
143 mod cast;
144 mod closure;
145 mod callee;
146 mod compare_method;
147 mod intrinsic;
148 mod op;
149
150 /// closures defined within the function.  For example:
151 ///
152 ///     fn foo() {
153 ///         bar(move|| { ... })
154 ///     }
155 ///
156 /// Here, the function `foo()` and the closure passed to
157 /// `bar()` will each have their own `FnCtxt`, but they will
158 /// share the inherited fields.
159 pub struct Inherited<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
160     infcx: InferCtxt<'a, 'gcx, 'tcx>,
161
162     locals: RefCell<NodeMap<Ty<'tcx>>>,
163
164     fulfillment_cx: RefCell<traits::FulfillmentContext<'tcx>>,
165
166     // When we process a call like `c()` where `c` is a closure type,
167     // we may not have decided yet whether `c` is a `Fn`, `FnMut`, or
168     // `FnOnce` closure. In that case, we defer full resolution of the
169     // call until upvar inference can kick in and make the
170     // decision. We keep these deferred resolutions grouped by the
171     // def-id of the closure, so that once we decide, we can easily go
172     // back and process them.
173     deferred_call_resolutions: RefCell<DefIdMap<Vec<DeferredCallResolution<'gcx, 'tcx>>>>,
174
175     deferred_cast_checks: RefCell<Vec<cast::CastCheck<'tcx>>>,
176
177     // Anonymized types found in explicit return types and their
178     // associated fresh inference variable. Writeback resolves these
179     // variables to get the concrete type, which can be used to
180     // deanonymize TyAnon, after typeck is done with all functions.
181     anon_types: RefCell<NodeMap<Ty<'tcx>>>,
182
183     /// Each type parameter has an implicit region bound that
184     /// indicates it must outlive at least the function body (the user
185     /// may specify stronger requirements). This field indicates the
186     /// region of the callee. If it is `None`, then the parameter
187     /// environment is for an item or something where the "callee" is
188     /// not clear.
189     implicit_region_bound: Option<ty::Region<'tcx>>,
190 }
191
192 impl<'a, 'gcx, 'tcx> Deref for Inherited<'a, 'gcx, 'tcx> {
193     type Target = InferCtxt<'a, 'gcx, 'tcx>;
194     fn deref(&self) -> &Self::Target {
195         &self.infcx
196     }
197 }
198
199 /// When type-checking an expression, we propagate downward
200 /// whatever type hint we are able in the form of an `Expectation`.
201 #[derive(Copy, Clone, Debug)]
202 pub enum Expectation<'tcx> {
203     /// We know nothing about what type this expression should have.
204     NoExpectation,
205
206     /// This expression should have the type given (or some subtype)
207     ExpectHasType(Ty<'tcx>),
208
209     /// This expression will be cast to the `Ty`
210     ExpectCastableToType(Ty<'tcx>),
211
212     /// This rvalue expression will be wrapped in `&` or `Box` and coerced
213     /// to `&Ty` or `Box<Ty>`, respectively. `Ty` is `[A]` or `Trait`.
214     ExpectRvalueLikeUnsized(Ty<'tcx>),
215 }
216
217 impl<'a, 'gcx, 'tcx> Expectation<'tcx> {
218     // Disregard "castable to" expectations because they
219     // can lead us astray. Consider for example `if cond
220     // {22} else {c} as u8` -- if we propagate the
221     // "castable to u8" constraint to 22, it will pick the
222     // type 22u8, which is overly constrained (c might not
223     // be a u8). In effect, the problem is that the
224     // "castable to" expectation is not the tightest thing
225     // we can say, so we want to drop it in this case.
226     // The tightest thing we can say is "must unify with
227     // else branch". Note that in the case of a "has type"
228     // constraint, this limitation does not hold.
229
230     // If the expected type is just a type variable, then don't use
231     // an expected type. Otherwise, we might write parts of the type
232     // when checking the 'then' block which are incompatible with the
233     // 'else' branch.
234     fn adjust_for_branches(&self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Expectation<'tcx> {
235         match *self {
236             ExpectHasType(ety) => {
237                 let ety = fcx.shallow_resolve(ety);
238                 if !ety.is_ty_var() {
239                     ExpectHasType(ety)
240                 } else {
241                     NoExpectation
242                 }
243             }
244             ExpectRvalueLikeUnsized(ety) => {
245                 ExpectRvalueLikeUnsized(ety)
246             }
247             _ => NoExpectation
248         }
249     }
250
251     /// Provide an expectation for an rvalue expression given an *optional*
252     /// hint, which is not required for type safety (the resulting type might
253     /// be checked higher up, as is the case with `&expr` and `box expr`), but
254     /// is useful in determining the concrete type.
255     ///
256     /// The primary use case is where the expected type is a fat pointer,
257     /// like `&[isize]`. For example, consider the following statement:
258     ///
259     ///    let x: &[isize] = &[1, 2, 3];
260     ///
261     /// In this case, the expected type for the `&[1, 2, 3]` expression is
262     /// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
263     /// expectation `ExpectHasType([isize])`, that would be too strong --
264     /// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
265     /// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
266     /// to the type `&[isize]`. Therefore, we propagate this more limited hint,
267     /// which still is useful, because it informs integer literals and the like.
268     /// See the test case `test/run-pass/coerce-expect-unsized.rs` and #20169
269     /// for examples of where this comes up,.
270     fn rvalue_hint(fcx: &FnCtxt<'a, 'gcx, 'tcx>, ty: Ty<'tcx>) -> Expectation<'tcx> {
271         match fcx.tcx.struct_tail(ty).sty {
272             ty::TySlice(_) | ty::TyStr | ty::TyDynamic(..) => {
273                 ExpectRvalueLikeUnsized(ty)
274             }
275             _ => ExpectHasType(ty)
276         }
277     }
278
279     // Resolves `expected` by a single level if it is a variable. If
280     // there is no expected type or resolution is not possible (e.g.,
281     // no constraints yet present), just returns `None`.
282     fn resolve(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Expectation<'tcx> {
283         match self {
284             NoExpectation => {
285                 NoExpectation
286             }
287             ExpectCastableToType(t) => {
288                 ExpectCastableToType(fcx.resolve_type_vars_if_possible(&t))
289             }
290             ExpectHasType(t) => {
291                 ExpectHasType(fcx.resolve_type_vars_if_possible(&t))
292             }
293             ExpectRvalueLikeUnsized(t) => {
294                 ExpectRvalueLikeUnsized(fcx.resolve_type_vars_if_possible(&t))
295             }
296         }
297     }
298
299     fn to_option(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Option<Ty<'tcx>> {
300         match self.resolve(fcx) {
301             NoExpectation => None,
302             ExpectCastableToType(ty) |
303             ExpectHasType(ty) |
304             ExpectRvalueLikeUnsized(ty) => Some(ty),
305         }
306     }
307
308     /// It sometimes happens that we want to turn an expectation into
309     /// a **hard constraint** (i.e., something that must be satisfied
310     /// for the program to type-check). `only_has_type` will return
311     /// such a constraint, if it exists.
312     fn only_has_type(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Option<Ty<'tcx>> {
313         match self.resolve(fcx) {
314             ExpectHasType(ty) => Some(ty),
315             _ => None
316         }
317     }
318
319     /// Like `only_has_type`, but instead of returning `None` if no
320     /// hard constraint exists, creates a fresh type variable.
321     fn coercion_target_type(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>, span: Span) -> Ty<'tcx> {
322         self.only_has_type(fcx)
323             .unwrap_or_else(|| fcx.next_ty_var(TypeVariableOrigin::MiscVariable(span)))
324     }
325 }
326
327 #[derive(Copy, Clone)]
328 pub struct UnsafetyState {
329     pub def: ast::NodeId,
330     pub unsafety: hir::Unsafety,
331     pub unsafe_push_count: u32,
332     from_fn: bool
333 }
334
335 impl UnsafetyState {
336     pub fn function(unsafety: hir::Unsafety, def: ast::NodeId) -> UnsafetyState {
337         UnsafetyState { def: def, unsafety: unsafety, unsafe_push_count: 0, from_fn: true }
338     }
339
340     pub fn recurse(&mut self, blk: &hir::Block) -> UnsafetyState {
341         match self.unsafety {
342             // If this unsafe, then if the outer function was already marked as
343             // unsafe we shouldn't attribute the unsafe'ness to the block. This
344             // way the block can be warned about instead of ignoring this
345             // extraneous block (functions are never warned about).
346             hir::Unsafety::Unsafe if self.from_fn => *self,
347
348             unsafety => {
349                 let (unsafety, def, count) = match blk.rules {
350                     hir::PushUnsafeBlock(..) =>
351                         (unsafety, blk.id, self.unsafe_push_count.checked_add(1).unwrap()),
352                     hir::PopUnsafeBlock(..) =>
353                         (unsafety, blk.id, self.unsafe_push_count.checked_sub(1).unwrap()),
354                     hir::UnsafeBlock(..) =>
355                         (hir::Unsafety::Unsafe, blk.id, self.unsafe_push_count),
356                     hir::DefaultBlock =>
357                         (unsafety, self.def, self.unsafe_push_count),
358                 };
359                 UnsafetyState{ def: def,
360                                unsafety: unsafety,
361                                unsafe_push_count: count,
362                                from_fn: false }
363             }
364         }
365     }
366 }
367
368 #[derive(Debug, Copy, Clone)]
369 pub enum LvalueOp {
370     Deref,
371     Index
372 }
373
374 /// Tracks whether executing a node may exit normally (versus
375 /// return/break/panic, which "diverge", leaving dead code in their
376 /// wake). Tracked semi-automatically (through type variables marked
377 /// as diverging), with some manual adjustments for control-flow
378 /// primitives (approximating a CFG).
379 #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
380 pub enum Diverges {
381     /// Potentially unknown, some cases converge,
382     /// others require a CFG to determine them.
383     Maybe,
384
385     /// Definitely known to diverge and therefore
386     /// not reach the next sibling or its parent.
387     Always,
388
389     /// Same as `Always` but with a reachability
390     /// warning already emitted
391     WarnedAlways
392 }
393
394 // Convenience impls for combinig `Diverges`.
395
396 impl ops::BitAnd for Diverges {
397     type Output = Self;
398     fn bitand(self, other: Self) -> Self {
399         cmp::min(self, other)
400     }
401 }
402
403 impl ops::BitOr for Diverges {
404     type Output = Self;
405     fn bitor(self, other: Self) -> Self {
406         cmp::max(self, other)
407     }
408 }
409
410 impl ops::BitAndAssign for Diverges {
411     fn bitand_assign(&mut self, other: Self) {
412         *self = *self & other;
413     }
414 }
415
416 impl ops::BitOrAssign for Diverges {
417     fn bitor_assign(&mut self, other: Self) {
418         *self = *self | other;
419     }
420 }
421
422 impl Diverges {
423     fn always(self) -> bool {
424         self >= Diverges::Always
425     }
426 }
427
428 pub struct BreakableCtxt<'gcx: 'tcx, 'tcx> {
429     may_break: bool,
430
431     // this is `null` for loops where break with a value is illegal,
432     // such as `while`, `for`, and `while let`
433     coerce: Option<DynamicCoerceMany<'gcx, 'tcx>>,
434 }
435
436 pub struct EnclosingBreakables<'gcx: 'tcx, 'tcx> {
437     stack: Vec<BreakableCtxt<'gcx, 'tcx>>,
438     by_id: NodeMap<usize>,
439 }
440
441 impl<'gcx, 'tcx> EnclosingBreakables<'gcx, 'tcx> {
442     fn find_breakable(&mut self, target_id: ast::NodeId) -> &mut BreakableCtxt<'gcx, 'tcx> {
443         let ix = *self.by_id.get(&target_id).unwrap_or_else(|| {
444             bug!("could not find enclosing breakable with id {}", target_id);
445         });
446         &mut self.stack[ix]
447     }
448 }
449
450 pub struct FnCtxt<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
451     body_id: ast::NodeId,
452
453     // Number of errors that had been reported when we started
454     // checking this function. On exit, if we find that *more* errors
455     // have been reported, we will skip regionck and other work that
456     // expects the types within the function to be consistent.
457     err_count_on_creation: usize,
458
459     ret_coercion: Option<RefCell<DynamicCoerceMany<'gcx, 'tcx>>>,
460
461     ps: RefCell<UnsafetyState>,
462
463     /// Whether the last checked node generates a divergence (e.g.,
464     /// `return` will set this to Always). In general, when entering
465     /// an expression or other node in the tree, the initial value
466     /// indicates whether prior parts of the containing expression may
467     /// have diverged. It is then typically set to `Maybe` (and the
468     /// old value remembered) for processing the subparts of the
469     /// current expression. As each subpart is processed, they may set
470     /// the flag to `Always` etc.  Finally, at the end, we take the
471     /// result and "union" it with the original value, so that when we
472     /// return the flag indicates if any subpart of the the parent
473     /// expression (up to and including this part) has diverged.  So,
474     /// if you read it after evaluating a subexpression `X`, the value
475     /// you get indicates whether any subexpression that was
476     /// evaluating up to and including `X` diverged.
477     ///
478     /// We use this flag for two purposes:
479     ///
480     /// - To warn about unreachable code: if, after processing a
481     ///   sub-expression but before we have applied the effects of the
482     ///   current node, we see that the flag is set to `Always`, we
483     ///   can issue a warning. This corresponds to something like
484     ///   `foo(return)`; we warn on the `foo()` expression. (We then
485     ///   update the flag to `WarnedAlways` to suppress duplicate
486     ///   reports.) Similarly, if we traverse to a fresh statement (or
487     ///   tail expression) from a `Always` setting, we will isssue a
488     ///   warning. This corresponds to something like `{return;
489     ///   foo();}` or `{return; 22}`, where we would warn on the
490     ///   `foo()` or `22`.
491     ///
492     /// - To permit assignment into a local variable or other lvalue
493     ///   (including the "return slot") of type `!`.  This is allowed
494     ///   if **either** the type of value being assigned is `!`, which
495     ///   means the current code is dead, **or** the expression's
496     ///   divering flag is true, which means that a divering value was
497     ///   wrapped (e.g., `let x: ! = foo(return)`).
498     ///
499     /// To repeat the last point: an expression represents dead-code
500     /// if, after checking it, **either** its type is `!` OR the
501     /// diverges flag is set to something other than `Maybe`.
502     diverges: Cell<Diverges>,
503
504     /// Whether any child nodes have any type errors.
505     has_errors: Cell<bool>,
506
507     enclosing_breakables: RefCell<EnclosingBreakables<'gcx, 'tcx>>,
508
509     inh: &'a Inherited<'a, 'gcx, 'tcx>,
510 }
511
512 impl<'a, 'gcx, 'tcx> Deref for FnCtxt<'a, 'gcx, 'tcx> {
513     type Target = Inherited<'a, 'gcx, 'tcx>;
514     fn deref(&self) -> &Self::Target {
515         &self.inh
516     }
517 }
518
519 /// Helper type of a temporary returned by Inherited::build(...).
520 /// Necessary because we can't write the following bound:
521 /// F: for<'b, 'tcx> where 'gcx: 'tcx FnOnce(Inherited<'b, 'gcx, 'tcx>).
522 pub struct InheritedBuilder<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
523     infcx: infer::InferCtxtBuilder<'a, 'gcx, 'tcx>,
524     def_id: DefId,
525 }
526
527 impl<'a, 'gcx, 'tcx> Inherited<'a, 'gcx, 'tcx> {
528     pub fn build(tcx: TyCtxt<'a, 'gcx, 'gcx>, def_id: DefId)
529                  -> InheritedBuilder<'a, 'gcx, 'tcx> {
530         let tables = ty::TypeckTables::empty();
531         let param_env = tcx.param_env(def_id);
532         InheritedBuilder {
533             infcx: tcx.infer_ctxt((tables, param_env), Reveal::UserFacing),
534             def_id,
535         }
536     }
537 }
538
539 impl<'a, 'gcx, 'tcx> InheritedBuilder<'a, 'gcx, 'tcx> {
540     fn enter<F, R>(&'tcx mut self, f: F) -> R
541         where F: for<'b> FnOnce(Inherited<'b, 'gcx, 'tcx>) -> R
542     {
543         let def_id = self.def_id;
544         self.infcx.enter(|infcx| f(Inherited::new(infcx, def_id)))
545     }
546 }
547
548 impl<'a, 'gcx, 'tcx> Inherited<'a, 'gcx, 'tcx> {
549     fn new(infcx: InferCtxt<'a, 'gcx, 'tcx>, def_id: DefId) -> Self {
550         let tcx = infcx.tcx;
551         let item_id = tcx.hir.as_local_node_id(def_id);
552         let body_id = item_id.and_then(|id| tcx.hir.maybe_body_owned_by(id));
553         let implicit_region_bound = body_id.map(|body| {
554             tcx.mk_region(ty::ReScope(CodeExtent::CallSiteScope(body)))
555         });
556
557         Inherited {
558             infcx: infcx,
559             fulfillment_cx: RefCell::new(traits::FulfillmentContext::new()),
560             locals: RefCell::new(NodeMap()),
561             deferred_call_resolutions: RefCell::new(DefIdMap()),
562             deferred_cast_checks: RefCell::new(Vec::new()),
563             anon_types: RefCell::new(NodeMap()),
564             implicit_region_bound,
565         }
566     }
567
568     fn register_predicate(&self, obligation: traits::PredicateObligation<'tcx>) {
569         debug!("register_predicate({:?})", obligation);
570         if obligation.has_escaping_regions() {
571             span_bug!(obligation.cause.span, "escaping regions in predicate {:?}",
572                       obligation);
573         }
574         self.fulfillment_cx
575             .borrow_mut()
576             .register_predicate_obligation(self, obligation);
577     }
578
579     fn register_predicates(&self, obligations: Vec<traits::PredicateObligation<'tcx>>) {
580         for obligation in obligations {
581             self.register_predicate(obligation);
582         }
583     }
584
585     fn register_infer_ok_obligations<T>(&self, infer_ok: InferOk<'tcx, T>) -> T {
586         self.register_predicates(infer_ok.obligations);
587         infer_ok.value
588     }
589
590     fn normalize_associated_types_in<T>(&self,
591                                         span: Span,
592                                         body_id: ast::NodeId,
593                                         value: &T) -> T
594         where T : TypeFoldable<'tcx>
595     {
596         let ok = self.normalize_associated_types_in_as_infer_ok(span, body_id, value);
597         self.register_infer_ok_obligations(ok)
598     }
599
600     fn normalize_associated_types_in_as_infer_ok<T>(&self,
601                                                     span: Span,
602                                                     body_id: ast::NodeId,
603                                                     value: &T)
604                                                     -> InferOk<'tcx, T>
605         where T : TypeFoldable<'tcx>
606     {
607         debug!("normalize_associated_types_in(value={:?})", value);
608         let mut selcx = traits::SelectionContext::new(self);
609         let cause = ObligationCause::misc(span, body_id);
610         let traits::Normalized { value, obligations } =
611             traits::normalize(&mut selcx, cause, value);
612         debug!("normalize_associated_types_in: result={:?} predicates={:?}",
613             value,
614             obligations);
615         InferOk { value, obligations }
616     }
617
618     /// Replace any late-bound regions bound in `value` with
619     /// free variants attached to `all_outlive_scope`.
620     fn liberate_late_bound_regions<T>(&self,
621         all_outlive_scope: DefId,
622         value: &ty::Binder<T>)
623         -> T
624         where T: TypeFoldable<'tcx>
625     {
626         self.tcx.replace_late_bound_regions(value, |br| {
627             self.tcx.mk_region(ty::ReFree(ty::FreeRegion {
628                 scope: all_outlive_scope,
629                 bound_region: br
630             }))
631         }).0
632     }
633 }
634
635 struct CheckItemTypesVisitor<'a, 'tcx: 'a> { tcx: TyCtxt<'a, 'tcx, 'tcx> }
636
637 impl<'a, 'tcx> ItemLikeVisitor<'tcx> for CheckItemTypesVisitor<'a, 'tcx> {
638     fn visit_item(&mut self, i: &'tcx hir::Item) {
639         check_item_type(self.tcx, i);
640     }
641     fn visit_trait_item(&mut self, _: &'tcx hir::TraitItem) { }
642     fn visit_impl_item(&mut self, _: &'tcx hir::ImplItem) { }
643 }
644
645 pub fn check_wf_new<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> CompileResult {
646     tcx.sess.track_errors(|| {
647         let mut visit = wfcheck::CheckTypeWellFormedVisitor::new(tcx);
648         tcx.hir.krate().visit_all_item_likes(&mut visit.as_deep_visitor());
649     })
650 }
651
652 pub fn check_item_types<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> CompileResult {
653     tcx.sess.track_errors(|| {
654         tcx.hir.krate().visit_all_item_likes(&mut CheckItemTypesVisitor { tcx });
655     })
656 }
657
658 pub fn check_item_bodies<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> CompileResult {
659     tcx.typeck_item_bodies(LOCAL_CRATE)
660 }
661
662 fn typeck_item_bodies<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, crate_num: CrateNum) -> CompileResult {
663     debug_assert!(crate_num == LOCAL_CRATE);
664     tcx.sess.track_errors(|| {
665         for body_owner_def_id in tcx.body_owners() {
666             tcx.typeck_tables_of(body_owner_def_id);
667         }
668     })
669 }
670
671 pub fn provide(providers: &mut Providers) {
672     *providers = Providers {
673         typeck_item_bodies,
674         typeck_tables_of,
675         has_typeck_tables,
676         closure_type,
677         closure_kind,
678         adt_destructor,
679         ..*providers
680     };
681 }
682
683 fn closure_type<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
684                           def_id: DefId)
685                           -> ty::PolyFnSig<'tcx> {
686     let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
687     tcx.typeck_tables_of(def_id).closure_tys[&node_id]
688 }
689
690 fn closure_kind<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
691                           def_id: DefId)
692                           -> ty::ClosureKind {
693     let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
694     tcx.typeck_tables_of(def_id).closure_kinds[&node_id].0
695 }
696
697 fn adt_destructor<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
698                             def_id: DefId)
699                             -> Option<ty::Destructor> {
700     tcx.calculate_dtor(def_id, &mut dropck::check_drop_impl)
701 }
702
703 /// If this def-id is a "primary tables entry", returns `Some((body_id, decl))`
704 /// with information about it's body-id and fn-decl (if any). Otherwise,
705 /// returns `None`.
706 ///
707 /// If this function returns "some", then `typeck_tables(def_id)` will
708 /// succeed; if it returns `None`, then `typeck_tables(def_id)` may or
709 /// may not succeed.  In some cases where this function returns `None`
710 /// (notably closures), `typeck_tables(def_id)` would wind up
711 /// redirecting to the owning function.
712 fn primary_body_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
713                              id: ast::NodeId)
714                              -> Option<(hir::BodyId, Option<&'tcx hir::FnDecl>)>
715 {
716     match tcx.hir.get(id) {
717         hir::map::NodeItem(item) => {
718             match item.node {
719                 hir::ItemConst(_, body) |
720                 hir::ItemStatic(_, _, body) =>
721                     Some((body, None)),
722                 hir::ItemFn(ref decl, .., body) =>
723                     Some((body, Some(decl))),
724                 _ =>
725                     None,
726             }
727         }
728         hir::map::NodeTraitItem(item) => {
729             match item.node {
730                 hir::TraitItemKind::Const(_, Some(body)) =>
731                     Some((body, None)),
732                 hir::TraitItemKind::Method(ref sig, hir::TraitMethod::Provided(body)) =>
733                     Some((body, Some(&sig.decl))),
734                 _ =>
735                     None,
736             }
737         }
738         hir::map::NodeImplItem(item) => {
739             match item.node {
740                 hir::ImplItemKind::Const(_, body) =>
741                     Some((body, None)),
742                 hir::ImplItemKind::Method(ref sig, body) =>
743                     Some((body, Some(&sig.decl))),
744                 _ =>
745                     None,
746             }
747         }
748         hir::map::NodeExpr(expr) => {
749             // FIXME(eddyb) Closures should have separate
750             // function definition IDs and expression IDs.
751             // Type-checking should not let closures get
752             // this far in a constant position.
753             // Assume that everything other than closures
754             // is a constant "initializer" expression.
755             match expr.node {
756                 hir::ExprClosure(..) =>
757                     None,
758                 _ =>
759                     Some((hir::BodyId { node_id: expr.id }, None)),
760             }
761         }
762         _ => None,
763     }
764 }
765
766 fn has_typeck_tables<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
767                                def_id: DefId)
768                                -> bool {
769     // Closures' tables come from their outermost function,
770     // as they are part of the same "inference environment".
771     let outer_def_id = tcx.closure_base_def_id(def_id);
772     if outer_def_id != def_id {
773         return tcx.has_typeck_tables(outer_def_id);
774     }
775
776     let id = tcx.hir.as_local_node_id(def_id).unwrap();
777     primary_body_of(tcx, id).is_some()
778 }
779
780 fn typeck_tables_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
781                               def_id: DefId)
782                               -> &'tcx ty::TypeckTables<'tcx> {
783     // Closures' tables come from their outermost function,
784     // as they are part of the same "inference environment".
785     let outer_def_id = tcx.closure_base_def_id(def_id);
786     if outer_def_id != def_id {
787         return tcx.typeck_tables_of(outer_def_id);
788     }
789
790     let id = tcx.hir.as_local_node_id(def_id).unwrap();
791     let span = tcx.hir.span(id);
792
793     // Figure out what primary body this item has.
794     let (body_id, fn_decl) = primary_body_of(tcx, id).unwrap_or_else(|| {
795         span_bug!(span, "can't type-check body of {:?}", def_id);
796     });
797     let body = tcx.hir.body(body_id);
798
799     Inherited::build(tcx, def_id).enter(|inh| {
800         let fcx = if let Some(decl) = fn_decl {
801             let fn_sig = tcx.type_of(def_id).fn_sig();
802
803             check_abi(tcx, span, fn_sig.abi());
804
805             // Compute the fty from point of view of inside fn.
806             let fn_sig =
807                 inh.liberate_late_bound_regions(def_id, &fn_sig);
808             let fn_sig =
809                 inh.normalize_associated_types_in(body.value.span, body_id.node_id, &fn_sig);
810
811             check_fn(&inh, fn_sig, decl, id, body)
812         } else {
813             let fcx = FnCtxt::new(&inh, body.value.id);
814             let expected_type = tcx.type_of(def_id);
815             let expected_type = fcx.normalize_associated_types_in(body.value.span, &expected_type);
816             fcx.require_type_is_sized(expected_type, body.value.span, traits::ConstSized);
817
818             // Gather locals in statics (because of block expressions).
819             // This is technically unnecessary because locals in static items are forbidden,
820             // but prevents type checking from blowing up before const checking can properly
821             // emit an error.
822             GatherLocalsVisitor { fcx: &fcx }.visit_body(body);
823
824             fcx.check_expr_coercable_to_type(&body.value, expected_type);
825
826             fcx
827         };
828
829         fcx.select_all_obligations_and_apply_defaults();
830         fcx.closure_analyze(body);
831         fcx.select_obligations_where_possible();
832         fcx.check_casts();
833         fcx.select_all_obligations_or_error();
834
835         if fn_decl.is_some() {
836             fcx.regionck_fn(id, body);
837         } else {
838             fcx.regionck_expr(body);
839         }
840
841         fcx.resolve_type_vars_in_body(body)
842     })
843 }
844
845 fn check_abi<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, span: Span, abi: Abi) {
846     if !tcx.sess.target.target.is_abi_supported(abi) {
847         struct_span_err!(tcx.sess, span, E0570,
848             "The ABI `{}` is not supported for the current target", abi).emit()
849     }
850 }
851
852 struct GatherLocalsVisitor<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
853     fcx: &'a FnCtxt<'a, 'gcx, 'tcx>
854 }
855
856 impl<'a, 'gcx, 'tcx> GatherLocalsVisitor<'a, 'gcx, 'tcx> {
857     fn assign(&mut self, span: Span, nid: ast::NodeId, ty_opt: Option<Ty<'tcx>>) -> Ty<'tcx> {
858         match ty_opt {
859             None => {
860                 // infer the variable's type
861                 let var_ty = self.fcx.next_ty_var(TypeVariableOrigin::TypeInference(span));
862                 self.fcx.locals.borrow_mut().insert(nid, var_ty);
863                 var_ty
864             }
865             Some(typ) => {
866                 // take type that the user specified
867                 self.fcx.locals.borrow_mut().insert(nid, typ);
868                 typ
869             }
870         }
871     }
872 }
873
874 impl<'a, 'gcx, 'tcx> Visitor<'gcx> for GatherLocalsVisitor<'a, 'gcx, 'tcx> {
875     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'gcx> {
876         NestedVisitorMap::None
877     }
878
879     // Add explicitly-declared locals.
880     fn visit_local(&mut self, local: &'gcx hir::Local) {
881         let o_ty = match local.ty {
882             Some(ref ty) => Some(self.fcx.to_ty(&ty)),
883             None => None
884         };
885         self.assign(local.span, local.id, o_ty);
886         debug!("Local variable {:?} is assigned type {}",
887                local.pat,
888                self.fcx.ty_to_string(
889                    self.fcx.locals.borrow().get(&local.id).unwrap().clone()));
890         intravisit::walk_local(self, local);
891     }
892
893     // Add pattern bindings.
894     fn visit_pat(&mut self, p: &'gcx hir::Pat) {
895         if let PatKind::Binding(_, _, ref path1, _) = p.node {
896             let var_ty = self.assign(p.span, p.id, None);
897
898             self.fcx.require_type_is_sized(var_ty, p.span,
899                                            traits::VariableType(p.id));
900
901             debug!("Pattern binding {} is assigned to {} with type {:?}",
902                    path1.node,
903                    self.fcx.ty_to_string(
904                        self.fcx.locals.borrow().get(&p.id).unwrap().clone()),
905                    var_ty);
906         }
907         intravisit::walk_pat(self, p);
908     }
909
910     // Don't descend into the bodies of nested closures
911     fn visit_fn(&mut self, _: intravisit::FnKind<'gcx>, _: &'gcx hir::FnDecl,
912                 _: hir::BodyId, _: Span, _: ast::NodeId) { }
913 }
914
915 /// Helper used for fns and closures. Does the grungy work of checking a function
916 /// body and returns the function context used for that purpose, since in the case of a fn item
917 /// there is still a bit more to do.
918 ///
919 /// * ...
920 /// * inherited: other fields inherited from the enclosing fn (if any)
921 fn check_fn<'a, 'gcx, 'tcx>(inherited: &'a Inherited<'a, 'gcx, 'tcx>,
922                             fn_sig: ty::FnSig<'tcx>,
923                             decl: &'gcx hir::FnDecl,
924                             fn_id: ast::NodeId,
925                             body: &'gcx hir::Body)
926                             -> FnCtxt<'a, 'gcx, 'tcx>
927 {
928     let mut fn_sig = fn_sig.clone();
929
930     debug!("check_fn(sig={:?}, fn_id={})", fn_sig, fn_id);
931
932     // Create the function context.  This is either derived from scratch or,
933     // in the case of function expressions, based on the outer context.
934     let mut fcx = FnCtxt::new(inherited, body.value.id);
935     *fcx.ps.borrow_mut() = UnsafetyState::function(fn_sig.unsafety, fn_id);
936
937     let ret_ty = fn_sig.output();
938     fcx.require_type_is_sized(ret_ty, decl.output.span(), traits::ReturnType);
939     let ret_ty = fcx.instantiate_anon_types(&ret_ty);
940     fcx.ret_coercion = Some(RefCell::new(CoerceMany::new(ret_ty)));
941     fn_sig = fcx.tcx.mk_fn_sig(
942         fn_sig.inputs().iter().cloned(),
943         ret_ty,
944         fn_sig.variadic,
945         fn_sig.unsafety,
946         fn_sig.abi
947     );
948
949     GatherLocalsVisitor { fcx: &fcx, }.visit_body(body);
950
951     // Add formal parameters.
952     for (arg_ty, arg) in fn_sig.inputs().iter().zip(&body.arguments) {
953         // The type of the argument must be well-formed.
954         //
955         // NB -- this is now checked in wfcheck, but that
956         // currently only results in warnings, so we issue an
957         // old-style WF obligation here so that we still get the
958         // errors that we used to get.
959         fcx.register_old_wf_obligation(arg_ty, arg.pat.span, traits::MiscObligation);
960
961         // Check the pattern.
962         fcx.check_pat_arg(&arg.pat, arg_ty, true);
963         fcx.write_ty(arg.id, arg_ty);
964     }
965
966     inherited.tables.borrow_mut().liberated_fn_sigs.insert(fn_id, fn_sig);
967
968     fcx.check_return_expr(&body.value);
969
970     // Finalize the return check by taking the LUB of the return types
971     // we saw and assigning it to the expected return type. This isn't
972     // really expected to fail, since the coercions would have failed
973     // earlier when trying to find a LUB.
974     //
975     // However, the behavior around `!` is sort of complex. In the
976     // event that the `actual_return_ty` comes back as `!`, that
977     // indicates that the fn either does not return or "returns" only
978     // values of type `!`. In this case, if there is an expected
979     // return type that is *not* `!`, that should be ok. But if the
980     // return type is being inferred, we want to "fallback" to `!`:
981     //
982     //     let x = move || panic!();
983     //
984     // To allow for that, I am creating a type variable with diverging
985     // fallback. This was deemed ever so slightly better than unifying
986     // the return value with `!` because it allows for the caller to
987     // make more assumptions about the return type (e.g., they could do
988     //
989     //     let y: Option<u32> = Some(x());
990     //
991     // which would then cause this return type to become `u32`, not
992     // `!`).
993     let coercion = fcx.ret_coercion.take().unwrap().into_inner();
994     let mut actual_return_ty = coercion.complete(&fcx);
995     if actual_return_ty.is_never() {
996         actual_return_ty = fcx.next_diverging_ty_var(
997             TypeVariableOrigin::DivergingFn(body.value.span));
998     }
999     fcx.demand_suptype(body.value.span, ret_ty, actual_return_ty);
1000
1001     fcx
1002 }
1003
1004 fn check_struct<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1005                           id: ast::NodeId,
1006                           span: Span) {
1007     let def_id = tcx.hir.local_def_id(id);
1008     let def = tcx.adt_def(def_id);
1009     def.destructor(tcx); // force the destructor to be evaluated
1010     check_representable(tcx, span, def_id);
1011
1012     if def.repr.simd() {
1013         check_simd(tcx, span, def_id);
1014     }
1015
1016     // if struct is packed and not aligned, check fields for alignment.
1017     // Checks for combining packed and align attrs on single struct are done elsewhere.
1018     if tcx.adt_def(def_id).repr.packed() && tcx.adt_def(def_id).repr.align == 0 {
1019         check_packed(tcx, span, def_id);
1020     }
1021 }
1022
1023 fn check_union<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1024                          id: ast::NodeId,
1025                          span: Span) {
1026     let def_id = tcx.hir.local_def_id(id);
1027     let def = tcx.adt_def(def_id);
1028     def.destructor(tcx); // force the destructor to be evaluated
1029     check_representable(tcx, span, def_id);
1030 }
1031
1032 pub fn check_item_type<'a,'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, it: &'tcx hir::Item) {
1033     debug!("check_item_type(it.id={}, it.name={})",
1034            it.id,
1035            tcx.item_path_str(tcx.hir.local_def_id(it.id)));
1036     let _indenter = indenter();
1037     match it.node {
1038       // Consts can play a role in type-checking, so they are included here.
1039       hir::ItemStatic(..) |
1040       hir::ItemConst(..) => {
1041         tcx.typeck_tables_of(tcx.hir.local_def_id(it.id));
1042       }
1043       hir::ItemEnum(ref enum_definition, _) => {
1044         check_enum(tcx,
1045                    it.span,
1046                    &enum_definition.variants,
1047                    it.id);
1048       }
1049       hir::ItemFn(..) => {} // entirely within check_item_body
1050       hir::ItemImpl(.., ref impl_item_refs) => {
1051           debug!("ItemImpl {} with id {}", it.name, it.id);
1052           let impl_def_id = tcx.hir.local_def_id(it.id);
1053           if let Some(impl_trait_ref) = tcx.impl_trait_ref(impl_def_id) {
1054               check_impl_items_against_trait(tcx,
1055                                              it.span,
1056                                              impl_def_id,
1057                                              impl_trait_ref,
1058                                              impl_item_refs);
1059               let trait_def_id = impl_trait_ref.def_id;
1060               check_on_unimplemented(tcx, trait_def_id, it);
1061           }
1062       }
1063       hir::ItemTrait(..) => {
1064         let def_id = tcx.hir.local_def_id(it.id);
1065         check_on_unimplemented(tcx, def_id, it);
1066       }
1067       hir::ItemStruct(..) => {
1068         check_struct(tcx, it.id, it.span);
1069       }
1070       hir::ItemUnion(..) => {
1071         check_union(tcx, it.id, it.span);
1072       }
1073       hir::ItemTy(_, ref generics) => {
1074         let def_id = tcx.hir.local_def_id(it.id);
1075         let pty_ty = tcx.type_of(def_id);
1076         check_bounds_are_used(tcx, generics, pty_ty);
1077       }
1078       hir::ItemForeignMod(ref m) => {
1079         check_abi(tcx, it.span, m.abi);
1080
1081         if m.abi == Abi::RustIntrinsic {
1082             for item in &m.items {
1083                 intrinsic::check_intrinsic_type(tcx, item);
1084             }
1085         } else if m.abi == Abi::PlatformIntrinsic {
1086             for item in &m.items {
1087                 intrinsic::check_platform_intrinsic_type(tcx, item);
1088             }
1089         } else {
1090             for item in &m.items {
1091                 let generics = tcx.generics_of(tcx.hir.local_def_id(item.id));
1092                 if !generics.types.is_empty() {
1093                     let mut err = struct_span_err!(tcx.sess, item.span, E0044,
1094                         "foreign items may not have type parameters");
1095                     span_help!(&mut err, item.span,
1096                         "consider using specialization instead of \
1097                         type parameters");
1098                     err.emit();
1099                 }
1100
1101                 if let hir::ForeignItemFn(ref fn_decl, _, _) = item.node {
1102                     require_c_abi_if_variadic(tcx, fn_decl, m.abi, item.span);
1103                 }
1104             }
1105         }
1106       }
1107       _ => {/* nothing to do */ }
1108     }
1109 }
1110
1111 fn check_on_unimplemented<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1112                                     def_id: DefId,
1113                                     item: &hir::Item) {
1114     let generics = tcx.generics_of(def_id);
1115     if let Some(ref attr) = item.attrs.iter().find(|a| {
1116         a.check_name("rustc_on_unimplemented")
1117     }) {
1118         if let Some(istring) = attr.value_str() {
1119             let istring = istring.as_str();
1120             let parser = Parser::new(&istring);
1121             let types = &generics.types;
1122             for token in parser {
1123                 match token {
1124                     Piece::String(_) => (), // Normal string, no need to check it
1125                     Piece::NextArgument(a) => match a.position {
1126                         // `{Self}` is allowed
1127                         Position::ArgumentNamed(s) if s == "Self" => (),
1128                         // So is `{A}` if A is a type parameter
1129                         Position::ArgumentNamed(s) => match types.iter().find(|t| {
1130                             t.name == s
1131                         }) {
1132                             Some(_) => (),
1133                             None => {
1134                                 let name = tcx.item_name(def_id);
1135                                 span_err!(tcx.sess, attr.span, E0230,
1136                                                  "there is no type parameter \
1137                                                           {} on trait {}",
1138                                                            s, name);
1139                             }
1140                         },
1141                         // `{:1}` and `{}` are not to be used
1142                         Position::ArgumentIs(_) => {
1143                             span_err!(tcx.sess, attr.span, E0231,
1144                                                   "only named substitution \
1145                                                    parameters are allowed");
1146                         }
1147                     }
1148                 }
1149             }
1150         } else {
1151             struct_span_err!(
1152                 tcx.sess, attr.span, E0232,
1153                 "this attribute must have a value")
1154                 .span_label(attr.span, "attribute requires a value")
1155                 .note(&format!("eg `#[rustc_on_unimplemented = \"foo\"]`"))
1156                 .emit();
1157         }
1158     }
1159 }
1160
1161 fn report_forbidden_specialization<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1162                                              impl_item: &hir::ImplItem,
1163                                              parent_impl: DefId)
1164 {
1165     let mut err = struct_span_err!(
1166         tcx.sess, impl_item.span, E0520,
1167         "`{}` specializes an item from a parent `impl`, but \
1168          that item is not marked `default`",
1169         impl_item.name);
1170     err.span_label(impl_item.span, format!("cannot specialize default item `{}`",
1171                                             impl_item.name));
1172
1173     match tcx.span_of_impl(parent_impl) {
1174         Ok(span) => {
1175             err.span_label(span, "parent `impl` is here");
1176             err.note(&format!("to specialize, `{}` in the parent `impl` must be marked `default`",
1177                               impl_item.name));
1178         }
1179         Err(cname) => {
1180             err.note(&format!("parent implementation is in crate `{}`", cname));
1181         }
1182     }
1183
1184     err.emit();
1185 }
1186
1187 fn check_specialization_validity<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1188                                            trait_def: &ty::TraitDef,
1189                                            impl_id: DefId,
1190                                            impl_item: &hir::ImplItem)
1191 {
1192     let ancestors = trait_def.ancestors(tcx, impl_id);
1193
1194     let kind = match impl_item.node {
1195         hir::ImplItemKind::Const(..) => ty::AssociatedKind::Const,
1196         hir::ImplItemKind::Method(..) => ty::AssociatedKind::Method,
1197         hir::ImplItemKind::Type(_) => ty::AssociatedKind::Type
1198     };
1199     let parent = ancestors.defs(tcx, impl_item.name, kind).skip(1).next()
1200         .map(|node_item| node_item.map(|parent| parent.defaultness));
1201
1202     if let Some(parent) = parent {
1203         if tcx.impl_item_is_final(&parent) {
1204             report_forbidden_specialization(tcx, impl_item, parent.node.def_id());
1205         }
1206     }
1207
1208 }
1209
1210 fn check_impl_items_against_trait<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1211                                             impl_span: Span,
1212                                             impl_id: DefId,
1213                                             impl_trait_ref: ty::TraitRef<'tcx>,
1214                                             impl_item_refs: &[hir::ImplItemRef]) {
1215     // If the trait reference itself is erroneous (so the compilation is going
1216     // to fail), skip checking the items here -- the `impl_item` table in `tcx`
1217     // isn't populated for such impls.
1218     if impl_trait_ref.references_error() { return; }
1219
1220     // Locate trait definition and items
1221     let trait_def = tcx.trait_def(impl_trait_ref.def_id);
1222     let mut overridden_associated_type = None;
1223
1224     let impl_items = || impl_item_refs.iter().map(|iiref| tcx.hir.impl_item(iiref.id));
1225
1226     // Check existing impl methods to see if they are both present in trait
1227     // and compatible with trait signature
1228     for impl_item in impl_items() {
1229         let ty_impl_item = tcx.associated_item(tcx.hir.local_def_id(impl_item.id));
1230         let ty_trait_item = tcx.associated_items(impl_trait_ref.def_id)
1231             .find(|ac| ac.name == ty_impl_item.name);
1232
1233         // Check that impl definition matches trait definition
1234         if let Some(ty_trait_item) = ty_trait_item {
1235             match impl_item.node {
1236                 hir::ImplItemKind::Const(..) => {
1237                     // Find associated const definition.
1238                     if ty_trait_item.kind == ty::AssociatedKind::Const {
1239                         compare_const_impl(tcx,
1240                                            &ty_impl_item,
1241                                            impl_item.span,
1242                                            &ty_trait_item,
1243                                            impl_trait_ref);
1244                     } else {
1245                          let mut err = struct_span_err!(tcx.sess, impl_item.span, E0323,
1246                                   "item `{}` is an associated const, \
1247                                   which doesn't match its trait `{}`",
1248                                   ty_impl_item.name,
1249                                   impl_trait_ref);
1250                          err.span_label(impl_item.span, "does not match trait");
1251                          // We can only get the spans from local trait definition
1252                          // Same for E0324 and E0325
1253                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1254                             err.span_label(trait_span, "item in trait");
1255                          }
1256                          err.emit()
1257                     }
1258                 }
1259                 hir::ImplItemKind::Method(..) => {
1260                     let trait_span = tcx.hir.span_if_local(ty_trait_item.def_id);
1261                     if ty_trait_item.kind == ty::AssociatedKind::Method {
1262                         let err_count = tcx.sess.err_count();
1263                         compare_impl_method(tcx,
1264                                             &ty_impl_item,
1265                                             impl_item.span,
1266                                             &ty_trait_item,
1267                                             impl_trait_ref,
1268                                             trait_span,
1269                                             true); // start with old-broken-mode
1270                         if err_count == tcx.sess.err_count() {
1271                             // old broken mode did not report an error. Try with the new mode.
1272                             compare_impl_method(tcx,
1273                                                 &ty_impl_item,
1274                                                 impl_item.span,
1275                                                 &ty_trait_item,
1276                                                 impl_trait_ref,
1277                                                 trait_span,
1278                                                 false); // use the new mode
1279                         }
1280                     } else {
1281                         let mut err = struct_span_err!(tcx.sess, impl_item.span, E0324,
1282                                   "item `{}` is an associated method, \
1283                                   which doesn't match its trait `{}`",
1284                                   ty_impl_item.name,
1285                                   impl_trait_ref);
1286                          err.span_label(impl_item.span, "does not match trait");
1287                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1288                             err.span_label(trait_span, "item in trait");
1289                          }
1290                          err.emit()
1291                     }
1292                 }
1293                 hir::ImplItemKind::Type(_) => {
1294                     if ty_trait_item.kind == ty::AssociatedKind::Type {
1295                         if ty_trait_item.defaultness.has_value() {
1296                             overridden_associated_type = Some(impl_item);
1297                         }
1298                     } else {
1299                         let mut err = struct_span_err!(tcx.sess, impl_item.span, E0325,
1300                                   "item `{}` is an associated type, \
1301                                   which doesn't match its trait `{}`",
1302                                   ty_impl_item.name,
1303                                   impl_trait_ref);
1304                          err.span_label(impl_item.span, "does not match trait");
1305                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1306                             err.span_label(trait_span, "item in trait");
1307                          }
1308                          err.emit()
1309                     }
1310                 }
1311             }
1312         }
1313
1314         check_specialization_validity(tcx, trait_def, impl_id, impl_item);
1315     }
1316
1317     // Check for missing items from trait
1318     let mut missing_items = Vec::new();
1319     let mut invalidated_items = Vec::new();
1320     let associated_type_overridden = overridden_associated_type.is_some();
1321     for trait_item in tcx.associated_items(impl_trait_ref.def_id) {
1322         let is_implemented = trait_def.ancestors(tcx, impl_id)
1323             .defs(tcx, trait_item.name, trait_item.kind)
1324             .next()
1325             .map(|node_item| !node_item.node.is_from_trait())
1326             .unwrap_or(false);
1327
1328         if !is_implemented {
1329             if !trait_item.defaultness.has_value() {
1330                 missing_items.push(trait_item);
1331             } else if associated_type_overridden {
1332                 invalidated_items.push(trait_item.name);
1333             }
1334         }
1335     }
1336
1337     let signature = |item: &ty::AssociatedItem| {
1338         match item.kind {
1339             ty::AssociatedKind::Method => {
1340                 format!("{}", tcx.type_of(item.def_id).fn_sig().0)
1341             }
1342             ty::AssociatedKind::Type => format!("type {};", item.name.to_string()),
1343             ty::AssociatedKind::Const => {
1344                 format!("const {}: {:?};", item.name.to_string(), tcx.type_of(item.def_id))
1345             }
1346         }
1347     };
1348
1349     if !missing_items.is_empty() {
1350         let mut err = struct_span_err!(tcx.sess, impl_span, E0046,
1351             "not all trait items implemented, missing: `{}`",
1352             missing_items.iter()
1353                   .map(|trait_item| trait_item.name.to_string())
1354                   .collect::<Vec<_>>().join("`, `"));
1355         err.span_label(impl_span, format!("missing `{}` in implementation",
1356                 missing_items.iter()
1357                     .map(|trait_item| trait_item.name.to_string())
1358                     .collect::<Vec<_>>().join("`, `")));
1359         for trait_item in missing_items {
1360             if let Some(span) = tcx.hir.span_if_local(trait_item.def_id) {
1361                 err.span_label(span, format!("`{}` from trait", trait_item.name));
1362             } else {
1363                 err.note(&format!("`{}` from trait: `{}`",
1364                                   trait_item.name,
1365                                   signature(&trait_item)));
1366             }
1367         }
1368         err.emit();
1369     }
1370
1371     if !invalidated_items.is_empty() {
1372         let invalidator = overridden_associated_type.unwrap();
1373         span_err!(tcx.sess, invalidator.span, E0399,
1374                   "the following trait items need to be reimplemented \
1375                    as `{}` was overridden: `{}`",
1376                   invalidator.name,
1377                   invalidated_items.iter()
1378                                    .map(|name| name.to_string())
1379                                    .collect::<Vec<_>>().join("`, `"))
1380     }
1381 }
1382
1383 /// Checks whether a type can be represented in memory. In particular, it
1384 /// identifies types that contain themselves without indirection through a
1385 /// pointer, which would mean their size is unbounded.
1386 fn check_representable<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1387                                  sp: Span,
1388                                  item_def_id: DefId)
1389                                  -> bool {
1390     let rty = tcx.type_of(item_def_id);
1391
1392     // Check that it is possible to represent this type. This call identifies
1393     // (1) types that contain themselves and (2) types that contain a different
1394     // recursive type. It is only necessary to throw an error on those that
1395     // contain themselves. For case 2, there must be an inner type that will be
1396     // caught by case 1.
1397     match rty.is_representable(tcx, sp) {
1398         Representability::SelfRecursive(spans) => {
1399             let mut err = tcx.recursive_type_with_infinite_size_error(item_def_id);
1400             for span in spans {
1401                 err.span_label(span, "recursive without indirection");
1402             }
1403             err.emit();
1404             return false
1405         }
1406         Representability::Representable | Representability::ContainsRecursive => (),
1407     }
1408     return true
1409 }
1410
1411 pub fn check_simd<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span, def_id: DefId) {
1412     let t = tcx.type_of(def_id);
1413     match t.sty {
1414         ty::TyAdt(def, substs) if def.is_struct() => {
1415             let fields = &def.struct_variant().fields;
1416             if fields.is_empty() {
1417                 span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty");
1418                 return;
1419             }
1420             let e = fields[0].ty(tcx, substs);
1421             if !fields.iter().all(|f| f.ty(tcx, substs) == e) {
1422                 struct_span_err!(tcx.sess, sp, E0076, "SIMD vector should be homogeneous")
1423                                 .span_label(sp, "SIMD elements must have the same type")
1424                                 .emit();
1425                 return;
1426             }
1427             match e.sty {
1428                 ty::TyParam(_) => { /* struct<T>(T, T, T, T) is ok */ }
1429                 _ if e.is_machine()  => { /* struct(u8, u8, u8, u8) is ok */ }
1430                 _ => {
1431                     span_err!(tcx.sess, sp, E0077,
1432                               "SIMD vector element type should be machine type");
1433                     return;
1434                 }
1435             }
1436         }
1437         _ => ()
1438     }
1439 }
1440
1441 fn check_packed<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span, def_id: DefId) {
1442     if check_packed_inner(tcx, def_id, &mut Vec::new()) {
1443         struct_span_err!(tcx.sess, sp, E0588,
1444             "packed struct cannot transitively contain a `[repr(align)]` struct").emit();
1445     }
1446 }
1447
1448 fn check_packed_inner<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1449                                 def_id: DefId,
1450                                 stack: &mut Vec<DefId>) -> bool {
1451     let t = tcx.type_of(def_id);
1452     if stack.contains(&def_id) {
1453         debug!("check_packed_inner: {:?} is recursive", t);
1454         return false;
1455     }
1456     match t.sty {
1457         ty::TyAdt(def, substs) if def.is_struct() => {
1458             if tcx.adt_def(def.did).repr.align > 0 {
1459                 return true;
1460             }
1461             // push struct def_id before checking fields
1462             stack.push(def_id);
1463             for field in &def.struct_variant().fields {
1464                 let f = field.ty(tcx, substs);
1465                 match f.sty {
1466                     ty::TyAdt(def, _) => {
1467                         if check_packed_inner(tcx, def.did, stack) {
1468                             return true;
1469                         }
1470                     }
1471                     _ => ()
1472                 }
1473             }
1474             // only need to pop if not early out
1475             stack.pop();
1476         }
1477         _ => ()
1478     }
1479     false
1480 }
1481
1482 #[allow(trivial_numeric_casts)]
1483 pub fn check_enum<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1484                             sp: Span,
1485                             vs: &'tcx [hir::Variant],
1486                             id: ast::NodeId) {
1487     let def_id = tcx.hir.local_def_id(id);
1488     let def = tcx.adt_def(def_id);
1489     def.destructor(tcx); // force the destructor to be evaluated
1490
1491     if vs.is_empty() && tcx.has_attr(def_id, "repr") {
1492         struct_span_err!(
1493             tcx.sess, sp, E0084,
1494             "unsupported representation for zero-variant enum")
1495             .span_label(sp, "unsupported enum representation")
1496             .emit();
1497     }
1498
1499     let repr_type_ty = def.repr.discr_type().to_ty(tcx);
1500     if repr_type_ty == tcx.types.i128 || repr_type_ty == tcx.types.u128 {
1501         if !tcx.sess.features.borrow().i128_type {
1502             emit_feature_err(&tcx.sess.parse_sess,
1503                              "i128_type", sp, GateIssue::Language, "128-bit type is unstable");
1504         }
1505     }
1506
1507     for v in vs {
1508         if let Some(e) = v.node.disr_expr {
1509             tcx.typeck_tables_of(tcx.hir.local_def_id(e.node_id));
1510         }
1511     }
1512
1513     let mut disr_vals: Vec<ConstInt> = Vec::new();
1514     for (discr, v) in def.discriminants(tcx).zip(vs) {
1515         // Check for duplicate discriminant values
1516         if let Some(i) = disr_vals.iter().position(|&x| x == discr) {
1517             let variant_i_node_id = tcx.hir.as_local_node_id(def.variants[i].did).unwrap();
1518             let variant_i = tcx.hir.expect_variant(variant_i_node_id);
1519             let i_span = match variant_i.node.disr_expr {
1520                 Some(expr) => tcx.hir.span(expr.node_id),
1521                 None => tcx.hir.span(variant_i_node_id)
1522             };
1523             let span = match v.node.disr_expr {
1524                 Some(expr) => tcx.hir.span(expr.node_id),
1525                 None => v.span
1526             };
1527             struct_span_err!(tcx.sess, span, E0081,
1528                              "discriminant value `{}` already exists", disr_vals[i])
1529                 .span_label(i_span, format!("first use of `{}`", disr_vals[i]))
1530                 .span_label(span , format!("enum already has `{}`", disr_vals[i]))
1531                 .emit();
1532         }
1533         disr_vals.push(discr);
1534     }
1535
1536     check_representable(tcx, sp, def_id);
1537 }
1538
1539 impl<'a, 'gcx, 'tcx> AstConv<'gcx, 'tcx> for FnCtxt<'a, 'gcx, 'tcx> {
1540     fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.tcx }
1541
1542     fn get_type_parameter_bounds(&self, _: Span, def_id: DefId)
1543                                  -> ty::GenericPredicates<'tcx>
1544     {
1545         let tcx = self.tcx;
1546         let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
1547         let item_id = tcx.hir.ty_param_owner(node_id);
1548         let item_def_id = tcx.hir.local_def_id(item_id);
1549         let generics = tcx.generics_of(item_def_id);
1550         let index = generics.type_param_to_index[&def_id.index];
1551         ty::GenericPredicates {
1552             parent: None,
1553             predicates: self.param_env.caller_bounds.iter().filter(|predicate| {
1554                 match **predicate {
1555                     ty::Predicate::Trait(ref data) => {
1556                         data.0.self_ty().is_param(index)
1557                     }
1558                     _ => false
1559                 }
1560             }).cloned().collect()
1561         }
1562     }
1563
1564     fn re_infer(&self, span: Span, def: Option<&ty::RegionParameterDef>)
1565                 -> Option<ty::Region<'tcx>> {
1566         let v = match def {
1567             Some(def) => infer::EarlyBoundRegion(span, def.name, def.issue_32330),
1568             None => infer::MiscVariable(span)
1569         };
1570         Some(self.next_region_var(v))
1571     }
1572
1573     fn ty_infer(&self, span: Span) -> Ty<'tcx> {
1574         self.next_ty_var(TypeVariableOrigin::TypeInference(span))
1575     }
1576
1577     fn ty_infer_for_def(&self,
1578                         ty_param_def: &ty::TypeParameterDef,
1579                         substs: &[Kind<'tcx>],
1580                         span: Span) -> Ty<'tcx> {
1581         self.type_var_for_def(span, ty_param_def, substs)
1582     }
1583
1584     fn projected_ty_from_poly_trait_ref(&self,
1585                                         span: Span,
1586                                         poly_trait_ref: ty::PolyTraitRef<'tcx>,
1587                                         item_name: ast::Name)
1588                                         -> Ty<'tcx>
1589     {
1590         let (trait_ref, _) =
1591             self.replace_late_bound_regions_with_fresh_var(
1592                 span,
1593                 infer::LateBoundRegionConversionTime::AssocTypeProjection(item_name),
1594                 &poly_trait_ref);
1595
1596         self.tcx().mk_projection(trait_ref, item_name)
1597     }
1598
1599     fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
1600         if ty.has_escaping_regions() {
1601             ty // FIXME: normalization and escaping regions
1602         } else {
1603             self.normalize_associated_types_in(span, &ty)
1604         }
1605     }
1606
1607     fn set_tainted_by_errors(&self) {
1608         self.infcx.set_tainted_by_errors()
1609     }
1610 }
1611
1612 /// Controls whether the arguments are tupled. This is used for the call
1613 /// operator.
1614 ///
1615 /// Tupling means that all call-side arguments are packed into a tuple and
1616 /// passed as a single parameter. For example, if tupling is enabled, this
1617 /// function:
1618 ///
1619 ///     fn f(x: (isize, isize))
1620 ///
1621 /// Can be called as:
1622 ///
1623 ///     f(1, 2);
1624 ///
1625 /// Instead of:
1626 ///
1627 ///     f((1, 2));
1628 #[derive(Clone, Eq, PartialEq)]
1629 enum TupleArgumentsFlag {
1630     DontTupleArguments,
1631     TupleArguments,
1632 }
1633
1634 impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
1635     pub fn new(inh: &'a Inherited<'a, 'gcx, 'tcx>,
1636                body_id: ast::NodeId)
1637                -> FnCtxt<'a, 'gcx, 'tcx> {
1638         FnCtxt {
1639             body_id: body_id,
1640             err_count_on_creation: inh.tcx.sess.err_count(),
1641             ret_coercion: None,
1642             ps: RefCell::new(UnsafetyState::function(hir::Unsafety::Normal,
1643                                                      ast::CRATE_NODE_ID)),
1644             diverges: Cell::new(Diverges::Maybe),
1645             has_errors: Cell::new(false),
1646             enclosing_breakables: RefCell::new(EnclosingBreakables {
1647                 stack: Vec::new(),
1648                 by_id: NodeMap(),
1649             }),
1650             inh: inh,
1651         }
1652     }
1653
1654     pub fn sess(&self) -> &Session {
1655         &self.tcx.sess
1656     }
1657
1658     pub fn err_count_since_creation(&self) -> usize {
1659         self.tcx.sess.err_count() - self.err_count_on_creation
1660     }
1661
1662     /// Produce warning on the given node, if the current point in the
1663     /// function is unreachable, and there hasn't been another warning.
1664     fn warn_if_unreachable(&self, id: ast::NodeId, span: Span, kind: &str) {
1665         if self.diverges.get() == Diverges::Always {
1666             self.diverges.set(Diverges::WarnedAlways);
1667
1668             debug!("warn_if_unreachable: id={:?} span={:?} kind={}", id, span, kind);
1669
1670             self.tables.borrow_mut().lints.add_lint(
1671                 lint::builtin::UNREACHABLE_CODE,
1672                 id, span,
1673                 format!("unreachable {}", kind));
1674         }
1675     }
1676
1677     pub fn cause(&self,
1678                  span: Span,
1679                  code: ObligationCauseCode<'tcx>)
1680                  -> ObligationCause<'tcx> {
1681         ObligationCause::new(span, self.body_id, code)
1682     }
1683
1684     pub fn misc(&self, span: Span) -> ObligationCause<'tcx> {
1685         self.cause(span, ObligationCauseCode::MiscObligation)
1686     }
1687
1688     /// Resolves type variables in `ty` if possible. Unlike the infcx
1689     /// version (resolve_type_vars_if_possible), this version will
1690     /// also select obligations if it seems useful, in an effort
1691     /// to get more type information.
1692     fn resolve_type_vars_with_obligations(&self, mut ty: Ty<'tcx>) -> Ty<'tcx> {
1693         debug!("resolve_type_vars_with_obligations(ty={:?})", ty);
1694
1695         // No TyInfer()? Nothing needs doing.
1696         if !ty.has_infer_types() {
1697             debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1698             return ty;
1699         }
1700
1701         // If `ty` is a type variable, see whether we already know what it is.
1702         ty = self.resolve_type_vars_if_possible(&ty);
1703         if !ty.has_infer_types() {
1704             debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1705             return ty;
1706         }
1707
1708         // If not, try resolving pending obligations as much as
1709         // possible. This can help substantially when there are
1710         // indirect dependencies that don't seem worth tracking
1711         // precisely.
1712         self.select_obligations_where_possible();
1713         ty = self.resolve_type_vars_if_possible(&ty);
1714
1715         debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1716         ty
1717     }
1718
1719     fn record_deferred_call_resolution(&self,
1720                                        closure_def_id: DefId,
1721                                        r: DeferredCallResolution<'gcx, 'tcx>) {
1722         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
1723         deferred_call_resolutions.entry(closure_def_id).or_insert(vec![]).push(r);
1724     }
1725
1726     fn remove_deferred_call_resolutions(&self,
1727                                         closure_def_id: DefId)
1728                                         -> Vec<DeferredCallResolution<'gcx, 'tcx>>
1729     {
1730         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
1731         deferred_call_resolutions.remove(&closure_def_id).unwrap_or(vec![])
1732     }
1733
1734     pub fn tag(&self) -> String {
1735         let self_ptr: *const FnCtxt = self;
1736         format!("{:?}", self_ptr)
1737     }
1738
1739     pub fn local_ty(&self, span: Span, nid: ast::NodeId) -> Ty<'tcx> {
1740         match self.locals.borrow().get(&nid) {
1741             Some(&t) => t,
1742             None => {
1743                 span_bug!(span, "no type for local variable {}",
1744                           self.tcx.hir.node_to_string(nid));
1745             }
1746         }
1747     }
1748
1749     #[inline]
1750     pub fn write_ty(&self, node_id: ast::NodeId, ty: Ty<'tcx>) {
1751         debug!("write_ty({}, {:?}) in fcx {}",
1752                node_id, self.resolve_type_vars_if_possible(&ty), self.tag());
1753         self.tables.borrow_mut().node_types.insert(node_id, ty);
1754
1755         if ty.references_error() {
1756             self.has_errors.set(true);
1757             self.set_tainted_by_errors();
1758         }
1759     }
1760
1761     pub fn write_method_call(&self, node_id: ast::NodeId, method: MethodCallee<'tcx>) {
1762         self.tables.borrow_mut().type_dependent_defs.insert(node_id, Def::Method(method.def_id));
1763         self.write_substs(node_id, method.substs);
1764     }
1765
1766     pub fn write_substs(&self, node_id: ast::NodeId, substs: &'tcx Substs<'tcx>) {
1767         if !substs.is_noop() {
1768             debug!("write_substs({}, {:?}) in fcx {}",
1769                    node_id,
1770                    substs,
1771                    self.tag());
1772
1773             self.tables.borrow_mut().node_substs.insert(node_id, substs);
1774         }
1775     }
1776
1777     pub fn apply_autoderef_adjustment(&self,
1778                                       node_id: ast::NodeId,
1779                                       autoderefs: Vec<Option<OverloadedDeref<'tcx>>>,
1780                                       adjusted_ty: Ty<'tcx>) {
1781         self.apply_adjustment(node_id, Adjustment {
1782             kind: Adjust::Deref(autoderefs),
1783             autoref: None,
1784             unsize: false,
1785             target: adjusted_ty
1786         });
1787     }
1788
1789     pub fn apply_adjustment(&self, node_id: ast::NodeId, adj: Adjustment<'tcx>) {
1790         debug!("apply_adjustment(node_id={}, adj={:?})", node_id, adj);
1791
1792         if adj.is_identity() {
1793             return;
1794         }
1795
1796         match self.tables.borrow_mut().adjustments.entry(node_id) {
1797             Entry::Vacant(entry) => { entry.insert(adj); },
1798             Entry::Occupied(mut entry) => {
1799                 debug!(" - composing on top of {:?}", entry.get());
1800                 match (entry.get(), &adj) {
1801                     // Applying any adjustment on top of a NeverToAny
1802                     // is a valid NeverToAny adjustment, because it can't
1803                     // be reached.
1804                     (&Adjustment { kind: Adjust::NeverToAny, .. }, _) => return,
1805                     (&Adjustment {
1806                         kind: Adjust::Deref(ref old),
1807                         autoref: Some(AutoBorrow::Ref(..)),
1808                         unsize: false, ..
1809                     }, &Adjustment {
1810                         kind: Adjust::Deref(ref new), ..
1811                     }) if old.len() == 1 && new.len() >= 1 => {
1812                         // A reborrow has no effect before a dereference.
1813                     }
1814                     // FIXME: currently we never try to compose autoderefs
1815                     // and ReifyFnPointer/UnsafeFnPointer, but we could.
1816                     _ =>
1817                         bug!("while adjusting {}, can't compose {:?} and {:?}",
1818                              node_id, entry.get(), adj)
1819                 };
1820                 *entry.get_mut() = adj;
1821             }
1822         }
1823     }
1824
1825     /// Basically whenever we are converting from a type scheme into
1826     /// the fn body space, we always want to normalize associated
1827     /// types as well. This function combines the two.
1828     fn instantiate_type_scheme<T>(&self,
1829                                   span: Span,
1830                                   substs: &Substs<'tcx>,
1831                                   value: &T)
1832                                   -> T
1833         where T : TypeFoldable<'tcx>
1834     {
1835         let value = value.subst(self.tcx, substs);
1836         let result = self.normalize_associated_types_in(span, &value);
1837         debug!("instantiate_type_scheme(value={:?}, substs={:?}) = {:?}",
1838                value,
1839                substs,
1840                result);
1841         result
1842     }
1843
1844     /// As `instantiate_type_scheme`, but for the bounds found in a
1845     /// generic type scheme.
1846     fn instantiate_bounds(&self, span: Span, def_id: DefId, substs: &Substs<'tcx>)
1847                           -> ty::InstantiatedPredicates<'tcx> {
1848         let bounds = self.tcx.predicates_of(def_id);
1849         let result = bounds.instantiate(self.tcx, substs);
1850         let result = self.normalize_associated_types_in(span, &result);
1851         debug!("instantiate_bounds(bounds={:?}, substs={:?}) = {:?}",
1852                bounds,
1853                substs,
1854                result);
1855         result
1856     }
1857
1858     /// Replace all anonymized types with fresh inference variables
1859     /// and record them for writeback.
1860     fn instantiate_anon_types<T: TypeFoldable<'tcx>>(&self, value: &T) -> T {
1861         value.fold_with(&mut BottomUpFolder { tcx: self.tcx, fldop: |ty| {
1862             if let ty::TyAnon(def_id, substs) = ty.sty {
1863                 // Use the same type variable if the exact same TyAnon appears more
1864                 // than once in the return type (e.g. if it's pased to a type alias).
1865                 let id = self.tcx.hir.as_local_node_id(def_id).unwrap();
1866                 if let Some(ty_var) = self.anon_types.borrow().get(&id) {
1867                     return ty_var;
1868                 }
1869                 let span = self.tcx.def_span(def_id);
1870                 let ty_var = self.next_ty_var(TypeVariableOrigin::TypeInference(span));
1871                 self.anon_types.borrow_mut().insert(id, ty_var);
1872
1873                 let predicates_of = self.tcx.predicates_of(def_id);
1874                 let bounds = predicates_of.instantiate(self.tcx, substs);
1875
1876                 for predicate in bounds.predicates {
1877                     // Change the predicate to refer to the type variable,
1878                     // which will be the concrete type, instead of the TyAnon.
1879                     // This also instantiates nested `impl Trait`.
1880                     let predicate = self.instantiate_anon_types(&predicate);
1881
1882                     // Require that the predicate holds for the concrete type.
1883                     let cause = traits::ObligationCause::new(span, self.body_id,
1884                                                              traits::ReturnType);
1885                     self.register_predicate(traits::Obligation::new(cause, predicate));
1886                 }
1887
1888                 ty_var
1889             } else {
1890                 ty
1891             }
1892         }})
1893     }
1894
1895     fn normalize_associated_types_in<T>(&self, span: Span, value: &T) -> T
1896         where T : TypeFoldable<'tcx>
1897     {
1898         let ok = self.normalize_associated_types_in_as_infer_ok(span, value);
1899         self.register_infer_ok_obligations(ok)
1900     }
1901
1902     fn normalize_associated_types_in_as_infer_ok<T>(&self, span: Span, value: &T)
1903                                                     -> InferOk<'tcx, T>
1904         where T : TypeFoldable<'tcx>
1905     {
1906         self.inh.normalize_associated_types_in_as_infer_ok(span, self.body_id, value)
1907     }
1908
1909     pub fn write_nil(&self, node_id: ast::NodeId) {
1910         self.write_ty(node_id, self.tcx.mk_nil());
1911     }
1912
1913     pub fn write_error(&self, node_id: ast::NodeId) {
1914         self.write_ty(node_id, self.tcx.types.err);
1915     }
1916
1917     pub fn require_type_meets(&self,
1918                               ty: Ty<'tcx>,
1919                               span: Span,
1920                               code: traits::ObligationCauseCode<'tcx>,
1921                               def_id: DefId)
1922     {
1923         self.register_bound(
1924             ty,
1925             def_id,
1926             traits::ObligationCause::new(span, self.body_id, code));
1927     }
1928
1929     pub fn require_type_is_sized(&self,
1930                                  ty: Ty<'tcx>,
1931                                  span: Span,
1932                                  code: traits::ObligationCauseCode<'tcx>)
1933     {
1934         let lang_item = self.tcx.require_lang_item(lang_items::SizedTraitLangItem);
1935         self.require_type_meets(ty, span, code, lang_item);
1936     }
1937
1938     pub fn register_bound(&self,
1939                           ty: Ty<'tcx>,
1940                           def_id: DefId,
1941                           cause: traits::ObligationCause<'tcx>)
1942     {
1943         self.fulfillment_cx.borrow_mut()
1944             .register_bound(self, ty, def_id, cause);
1945     }
1946
1947     pub fn to_ty(&self, ast_t: &hir::Ty) -> Ty<'tcx> {
1948         let t = AstConv::ast_ty_to_ty(self, ast_t);
1949         self.register_wf_obligation(t, ast_t.span, traits::MiscObligation);
1950         t
1951     }
1952
1953     pub fn node_ty(&self, id: ast::NodeId) -> Ty<'tcx> {
1954         match self.tables.borrow().node_types.get(&id) {
1955             Some(&t) => t,
1956             None if self.err_count_since_creation() != 0 => self.tcx.types.err,
1957             None => {
1958                 bug!("no type for node {}: {} in fcx {}",
1959                      id, self.tcx.hir.node_to_string(id),
1960                      self.tag());
1961             }
1962         }
1963     }
1964
1965     /// Registers an obligation for checking later, during regionck, that the type `ty` must
1966     /// outlive the region `r`.
1967     pub fn register_region_obligation(&self,
1968                                       ty: Ty<'tcx>,
1969                                       region: ty::Region<'tcx>,
1970                                       cause: traits::ObligationCause<'tcx>)
1971     {
1972         let mut fulfillment_cx = self.fulfillment_cx.borrow_mut();
1973         fulfillment_cx.register_region_obligation(ty, region, cause);
1974     }
1975
1976     /// Registers an obligation for checking later, during regionck, that the type `ty` must
1977     /// outlive the region `r`.
1978     pub fn register_wf_obligation(&self,
1979                                   ty: Ty<'tcx>,
1980                                   span: Span,
1981                                   code: traits::ObligationCauseCode<'tcx>)
1982     {
1983         // WF obligations never themselves fail, so no real need to give a detailed cause:
1984         let cause = traits::ObligationCause::new(span, self.body_id, code);
1985         self.register_predicate(traits::Obligation::new(cause, ty::Predicate::WellFormed(ty)));
1986     }
1987
1988     pub fn register_old_wf_obligation(&self,
1989                                       ty: Ty<'tcx>,
1990                                       span: Span,
1991                                       code: traits::ObligationCauseCode<'tcx>)
1992     {
1993         // Registers an "old-style" WF obligation that uses the
1994         // implicator code.  This is basically a buggy version of
1995         // `register_wf_obligation` that is being kept around
1996         // temporarily just to help with phasing in the newer rules.
1997         //
1998         // FIXME(#27579) all uses of this should be migrated to register_wf_obligation eventually
1999         let cause = traits::ObligationCause::new(span, self.body_id, code);
2000         self.register_region_obligation(ty, self.tcx.types.re_empty, cause);
2001     }
2002
2003     /// Registers obligations that all types appearing in `substs` are well-formed.
2004     pub fn add_wf_bounds(&self, substs: &Substs<'tcx>, expr: &hir::Expr)
2005     {
2006         for ty in substs.types() {
2007             self.register_wf_obligation(ty, expr.span, traits::MiscObligation);
2008         }
2009     }
2010
2011     /// Given a fully substituted set of bounds (`generic_bounds`), and the values with which each
2012     /// type/region parameter was instantiated (`substs`), creates and registers suitable
2013     /// trait/region obligations.
2014     ///
2015     /// For example, if there is a function:
2016     ///
2017     /// ```
2018     /// fn foo<'a,T:'a>(...)
2019     /// ```
2020     ///
2021     /// and a reference:
2022     ///
2023     /// ```
2024     /// let f = foo;
2025     /// ```
2026     ///
2027     /// Then we will create a fresh region variable `'$0` and a fresh type variable `$1` for `'a`
2028     /// and `T`. This routine will add a region obligation `$1:'$0` and register it locally.
2029     pub fn add_obligations_for_parameters(&self,
2030                                           cause: traits::ObligationCause<'tcx>,
2031                                           predicates: &ty::InstantiatedPredicates<'tcx>)
2032     {
2033         assert!(!predicates.has_escaping_regions());
2034
2035         debug!("add_obligations_for_parameters(predicates={:?})",
2036                predicates);
2037
2038         for obligation in traits::predicates_for_generics(cause, predicates) {
2039             self.register_predicate(obligation);
2040         }
2041     }
2042
2043     // FIXME(arielb1): use this instead of field.ty everywhere
2044     // Only for fields! Returns <none> for methods>
2045     // Indifferent to privacy flags
2046     pub fn field_ty(&self,
2047                     span: Span,
2048                     field: &'tcx ty::FieldDef,
2049                     substs: &Substs<'tcx>)
2050                     -> Ty<'tcx>
2051     {
2052         self.normalize_associated_types_in(span,
2053                                            &field.ty(self.tcx, substs))
2054     }
2055
2056     fn check_casts(&self) {
2057         let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
2058         for cast in deferred_cast_checks.drain(..) {
2059             cast.check(self);
2060         }
2061     }
2062
2063     /// Apply "fallbacks" to some types
2064     /// unconstrained types get replaced with ! or  () (depending on whether
2065     /// feature(never_type) is enabled), unconstrained ints with i32, and
2066     /// unconstrained floats with f64.
2067     fn default_type_parameters(&self) {
2068         use rustc::ty::error::UnconstrainedNumeric::Neither;
2069         use rustc::ty::error::UnconstrainedNumeric::{UnconstrainedInt, UnconstrainedFloat};
2070
2071         // Defaulting inference variables becomes very dubious if we have
2072         // encountered type-checking errors. Therefore, if we think we saw
2073         // some errors in this function, just resolve all uninstanted type
2074         // varibles to TyError.
2075         if self.is_tainted_by_errors() {
2076             for ty in &self.unsolved_variables() {
2077                 if let ty::TyInfer(_) = self.shallow_resolve(ty).sty {
2078                     debug!("default_type_parameters: defaulting `{:?}` to error", ty);
2079                     self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx().types.err);
2080                 }
2081             }
2082             return;
2083         }
2084
2085         for ty in &self.unsolved_variables() {
2086             let resolved = self.resolve_type_vars_if_possible(ty);
2087             if self.type_var_diverges(resolved) {
2088                 debug!("default_type_parameters: defaulting `{:?}` to `!` because it diverges",
2089                        resolved);
2090                 self.demand_eqtype(syntax_pos::DUMMY_SP, *ty,
2091                                    self.tcx.mk_diverging_default());
2092             } else {
2093                 match self.type_is_unconstrained_numeric(resolved) {
2094                     UnconstrainedInt => {
2095                         debug!("default_type_parameters: defaulting `{:?}` to `i32`",
2096                                resolved);
2097                         self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx.types.i32)
2098                     },
2099                     UnconstrainedFloat => {
2100                         debug!("default_type_parameters: defaulting `{:?}` to `f32`",
2101                                resolved);
2102                         self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx.types.f64)
2103                     }
2104                     Neither => { }
2105                 }
2106             }
2107         }
2108     }
2109
2110     // Implements type inference fallback algorithm
2111     fn select_all_obligations_and_apply_defaults(&self) {
2112         self.select_obligations_where_possible();
2113         self.default_type_parameters();
2114         self.select_obligations_where_possible();
2115     }
2116
2117     fn select_all_obligations_or_error(&self) {
2118         debug!("select_all_obligations_or_error");
2119
2120         // upvar inference should have ensured that all deferred call
2121         // resolutions are handled by now.
2122         assert!(self.deferred_call_resolutions.borrow().is_empty());
2123
2124         self.select_all_obligations_and_apply_defaults();
2125
2126         let mut fulfillment_cx = self.fulfillment_cx.borrow_mut();
2127
2128         match fulfillment_cx.select_all_or_error(self) {
2129             Ok(()) => { }
2130             Err(errors) => { self.report_fulfillment_errors(&errors); }
2131         }
2132     }
2133
2134     /// Select as many obligations as we can at present.
2135     fn select_obligations_where_possible(&self) {
2136         match self.fulfillment_cx.borrow_mut().select_where_possible(self) {
2137             Ok(()) => { }
2138             Err(errors) => { self.report_fulfillment_errors(&errors); }
2139         }
2140     }
2141
2142     /// For the overloaded lvalue expressions (`*x`, `x[3]`), the trait
2143     /// returns a type of `&T`, but the actual type we assign to the
2144     /// *expression* is `T`. So this function just peels off the return
2145     /// type by one layer to yield `T`.
2146     fn make_overloaded_lvalue_return_type(&self,
2147                                           method: MethodCallee<'tcx>)
2148                                           -> ty::TypeAndMut<'tcx>
2149     {
2150         // extract method return type, which will be &T;
2151         // all LB regions should have been instantiated during method lookup
2152         let ret_ty = method.sig.output();
2153
2154         // method returns &T, but the type as visible to user is T, so deref
2155         ret_ty.builtin_deref(true, NoPreference).unwrap()
2156     }
2157
2158     fn lookup_indexing(&self,
2159                        expr: &hir::Expr,
2160                        base_expr: &'gcx hir::Expr,
2161                        base_ty: Ty<'tcx>,
2162                        idx_ty: Ty<'tcx>,
2163                        lvalue_pref: LvaluePreference)
2164                        -> Option<(/*index type*/ Ty<'tcx>, /*element type*/ Ty<'tcx>)>
2165     {
2166         // FIXME(#18741) -- this is almost but not quite the same as the
2167         // autoderef that normal method probing does. They could likely be
2168         // consolidated.
2169
2170         let mut autoderef = self.autoderef(base_expr.span, base_ty);
2171         let mut result = None;
2172         while result.is_none() && autoderef.next().is_some() {
2173             result = self.try_index_step(expr, base_expr, &autoderef, lvalue_pref, idx_ty);
2174         }
2175         autoderef.finalize();
2176         result
2177     }
2178
2179     /// To type-check `base_expr[index_expr]`, we progressively autoderef
2180     /// (and otherwise adjust) `base_expr`, looking for a type which either
2181     /// supports builtin indexing or overloaded indexing.
2182     /// This loop implements one step in that search; the autoderef loop
2183     /// is implemented by `lookup_indexing`.
2184     fn try_index_step(&self,
2185                       expr: &hir::Expr,
2186                       base_expr: &hir::Expr,
2187                       autoderef: &Autoderef<'a, 'gcx, 'tcx>,
2188                       lvalue_pref: LvaluePreference,
2189                       index_ty: Ty<'tcx>)
2190                       -> Option<(/*index type*/ Ty<'tcx>, /*element type*/ Ty<'tcx>)>
2191     {
2192         let mut adjusted_ty = autoderef.unambiguous_final_ty();
2193         debug!("try_index_step(expr={:?}, base_expr={:?}, adjusted_ty={:?}, \
2194                                index_ty={:?})",
2195                expr,
2196                base_expr,
2197                adjusted_ty,
2198                index_ty);
2199
2200
2201         // First, try built-in indexing.
2202         match (adjusted_ty.builtin_index(), &index_ty.sty) {
2203             (Some(ty), &ty::TyUint(ast::UintTy::Us)) | (Some(ty), &ty::TyInfer(ty::IntVar(_))) => {
2204                 debug!("try_index_step: success, using built-in indexing");
2205                 let autoderefs = autoderef.adjust_steps(lvalue_pref);
2206                 self.apply_autoderef_adjustment(
2207                     base_expr.id, autoderefs, adjusted_ty);
2208                 return Some((self.tcx.types.usize, ty));
2209             }
2210             _ => {}
2211         }
2212
2213         for &unsize in &[false, true] {
2214             if unsize {
2215                 // We only unsize arrays here.
2216                 if let ty::TyArray(element_ty, _) = adjusted_ty.sty {
2217                     adjusted_ty = self.tcx.mk_slice(element_ty);
2218                 } else {
2219                     continue;
2220                 }
2221             }
2222
2223             // If some lookup succeeds, write callee into table and extract index/element
2224             // type from the method signature.
2225             // If some lookup succeeded, install method in table
2226             let input_ty = self.next_ty_var(TypeVariableOrigin::AutoDeref(base_expr.span));
2227             let method = self.try_overloaded_lvalue_op(
2228                 expr.span, adjusted_ty, &[input_ty], lvalue_pref, LvalueOp::Index);
2229
2230             let result = method.map(|ok| {
2231                 debug!("try_index_step: success, using overloaded indexing");
2232                 let (autoref, method) = self.register_infer_ok_obligations(ok);
2233
2234                 let autoderefs = autoderef.adjust_steps(lvalue_pref);
2235                 self.apply_adjustment(base_expr.id, Adjustment {
2236                     kind: Adjust::Deref(autoderefs),
2237                     autoref,
2238                     unsize,
2239                     target: method.sig.inputs()[0]
2240                 });
2241
2242                 self.write_method_call(expr.id, method);
2243                 (input_ty, self.make_overloaded_lvalue_return_type(method).ty)
2244             });
2245             if result.is_some() {
2246                 return result;
2247             }
2248         }
2249
2250         None
2251     }
2252
2253     fn resolve_lvalue_op(&self, op: LvalueOp, is_mut: bool) -> (Option<DefId>, Symbol) {
2254         let (tr, name) = match (op, is_mut) {
2255             (LvalueOp::Deref, false) =>
2256                 (self.tcx.lang_items.deref_trait(), "deref"),
2257             (LvalueOp::Deref, true) =>
2258                 (self.tcx.lang_items.deref_mut_trait(), "deref_mut"),
2259             (LvalueOp::Index, false) =>
2260                 (self.tcx.lang_items.index_trait(), "index"),
2261             (LvalueOp::Index, true) =>
2262                 (self.tcx.lang_items.index_mut_trait(), "index_mut"),
2263         };
2264         (tr, Symbol::intern(name))
2265     }
2266
2267     fn try_overloaded_lvalue_op(&self,
2268                                 span: Span,
2269                                 base_ty: Ty<'tcx>,
2270                                 arg_tys: &[Ty<'tcx>],
2271                                 lvalue_pref: LvaluePreference,
2272                                 op: LvalueOp)
2273                                 -> Option<InferOk<'tcx,
2274                                     (Option<AutoBorrow<'tcx>>,
2275                                      MethodCallee<'tcx>)>>
2276     {
2277         debug!("try_overloaded_lvalue_op({:?},{:?},{:?},{:?})",
2278                span,
2279                base_ty,
2280                lvalue_pref,
2281                op);
2282
2283         // Try Mut first, if preferred.
2284         let (mut_tr, mut_op) = self.resolve_lvalue_op(op, true);
2285         let method = match (lvalue_pref, mut_tr) {
2286             (PreferMutLvalue, Some(trait_did)) => {
2287                 self.lookup_method_in_trait_adjusted(span,
2288                                                      mut_op,
2289                                                      trait_did,
2290                                                      base_ty,
2291                                                      Some(arg_tys))
2292             }
2293             _ => None,
2294         };
2295
2296         // Otherwise, fall back to the immutable version.
2297         let (imm_tr, imm_op) = self.resolve_lvalue_op(op, false);
2298         let method = match (method, imm_tr) {
2299             (None, Some(trait_did)) => {
2300                 self.lookup_method_in_trait_adjusted(span,
2301                                                      imm_op,
2302                                                      trait_did,
2303                                                      base_ty,
2304                                                      Some(arg_tys))
2305             }
2306             (method, _) => method,
2307         };
2308
2309         method
2310     }
2311
2312     fn check_method_argument_types(&self,
2313                                    sp: Span,
2314                                    method: Result<MethodCallee<'tcx>, ()>,
2315                                    args_no_rcvr: &'gcx [hir::Expr],
2316                                    tuple_arguments: TupleArgumentsFlag,
2317                                    expected: Expectation<'tcx>)
2318                                    -> Ty<'tcx> {
2319         let has_error = match method {
2320             Ok(method) => {
2321                 method.substs.references_error() || method.sig.references_error()
2322             }
2323             Err(_) => true
2324         };
2325         if has_error {
2326             let err_inputs = self.err_args(args_no_rcvr.len());
2327
2328             let err_inputs = match tuple_arguments {
2329                 DontTupleArguments => err_inputs,
2330                 TupleArguments => vec![self.tcx.intern_tup(&err_inputs[..], false)],
2331             };
2332
2333             self.check_argument_types(sp, &err_inputs[..], &[], args_no_rcvr,
2334                                       false, tuple_arguments, None);
2335             return self.tcx.types.err;
2336         }
2337
2338         let method = method.unwrap();
2339         // HACK(eddyb) ignore self in the definition (see above).
2340         let expected_arg_tys = self.expected_inputs_for_expected_output(
2341             sp,
2342             expected,
2343             method.sig.output(),
2344             &method.sig.inputs()[1..]
2345         );
2346         self.check_argument_types(sp, &method.sig.inputs()[1..], &expected_arg_tys[..],
2347                                   args_no_rcvr, method.sig.variadic, tuple_arguments,
2348                                   self.tcx.hir.span_if_local(method.def_id));
2349         method.sig.output()
2350     }
2351
2352     /// Generic function that factors out common logic from function calls,
2353     /// method calls and overloaded operators.
2354     fn check_argument_types(&self,
2355                             sp: Span,
2356                             fn_inputs: &[Ty<'tcx>],
2357                             expected_arg_tys: &[Ty<'tcx>],
2358                             args: &'gcx [hir::Expr],
2359                             variadic: bool,
2360                             tuple_arguments: TupleArgumentsFlag,
2361                             def_span: Option<Span>) {
2362         let tcx = self.tcx;
2363
2364         // Grab the argument types, supplying fresh type variables
2365         // if the wrong number of arguments were supplied
2366         let supplied_arg_count = if tuple_arguments == DontTupleArguments {
2367             args.len()
2368         } else {
2369             1
2370         };
2371
2372         // All the input types from the fn signature must outlive the call
2373         // so as to validate implied bounds.
2374         for &fn_input_ty in fn_inputs {
2375             self.register_wf_obligation(fn_input_ty, sp, traits::MiscObligation);
2376         }
2377
2378         let mut expected_arg_tys = expected_arg_tys;
2379         let expected_arg_count = fn_inputs.len();
2380
2381         let sp_args = if args.len() > 0 {
2382             let (first, args) = args.split_at(1);
2383             let mut sp_tmp = first[0].span;
2384             for arg in args {
2385                 let sp_opt = self.sess().codemap().merge_spans(sp_tmp, arg.span);
2386                 if ! sp_opt.is_some() {
2387                     break;
2388                 }
2389                 sp_tmp = sp_opt.unwrap();
2390             };
2391             sp_tmp
2392         } else {
2393             sp
2394         };
2395
2396         fn parameter_count_error<'tcx>(sess: &Session, sp: Span, expected_count: usize,
2397                                        arg_count: usize, error_code: &str, variadic: bool,
2398                                        def_span: Option<Span>) {
2399             let mut err = sess.struct_span_err_with_code(sp,
2400                 &format!("this function takes {}{} parameter{} but {} parameter{} supplied",
2401                     if variadic {"at least "} else {""},
2402                     expected_count,
2403                     if expected_count == 1 {""} else {"s"},
2404                     arg_count,
2405                     if arg_count == 1 {" was"} else {"s were"}),
2406                 error_code);
2407
2408             err.span_label(sp, format!("expected {}{} parameter{}",
2409                                         if variadic {"at least "} else {""},
2410                                         expected_count,
2411                                         if expected_count == 1 {""} else {"s"}));
2412             if let Some(def_s) = def_span {
2413                 err.span_label(def_s, "defined here");
2414             }
2415             err.emit();
2416         }
2417
2418         let formal_tys = if tuple_arguments == TupleArguments {
2419             let tuple_type = self.structurally_resolved_type(sp, fn_inputs[0]);
2420             match tuple_type.sty {
2421                 ty::TyTuple(arg_types, _) if arg_types.len() != args.len() => {
2422                     parameter_count_error(tcx.sess, sp_args, arg_types.len(), args.len(),
2423                                           "E0057", false, def_span);
2424                     expected_arg_tys = &[];
2425                     self.err_args(args.len())
2426                 }
2427                 ty::TyTuple(arg_types, _) => {
2428                     expected_arg_tys = match expected_arg_tys.get(0) {
2429                         Some(&ty) => match ty.sty {
2430                             ty::TyTuple(ref tys, _) => &tys,
2431                             _ => &[]
2432                         },
2433                         None => &[]
2434                     };
2435                     arg_types.to_vec()
2436                 }
2437                 _ => {
2438                     span_err!(tcx.sess, sp, E0059,
2439                         "cannot use call notation; the first type parameter \
2440                          for the function trait is neither a tuple nor unit");
2441                     expected_arg_tys = &[];
2442                     self.err_args(args.len())
2443                 }
2444             }
2445         } else if expected_arg_count == supplied_arg_count {
2446             fn_inputs.to_vec()
2447         } else if variadic {
2448             if supplied_arg_count >= expected_arg_count {
2449                 fn_inputs.to_vec()
2450             } else {
2451                 parameter_count_error(tcx.sess, sp_args, expected_arg_count,
2452                                       supplied_arg_count, "E0060", true, def_span);
2453                 expected_arg_tys = &[];
2454                 self.err_args(supplied_arg_count)
2455             }
2456         } else {
2457             parameter_count_error(tcx.sess, sp_args, expected_arg_count,
2458                                   supplied_arg_count, "E0061", false, def_span);
2459             expected_arg_tys = &[];
2460             self.err_args(supplied_arg_count)
2461         };
2462
2463         debug!("check_argument_types: formal_tys={:?}",
2464                formal_tys.iter().map(|t| self.ty_to_string(*t)).collect::<Vec<String>>());
2465
2466         // Check the arguments.
2467         // We do this in a pretty awful way: first we typecheck any arguments
2468         // that are not closures, then we typecheck the closures. This is so
2469         // that we have more information about the types of arguments when we
2470         // typecheck the functions. This isn't really the right way to do this.
2471         for &check_closures in &[false, true] {
2472             debug!("check_closures={}", check_closures);
2473
2474             // More awful hacks: before we check argument types, try to do
2475             // an "opportunistic" vtable resolution of any trait bounds on
2476             // the call. This helps coercions.
2477             if check_closures {
2478                 self.select_obligations_where_possible();
2479             }
2480
2481             // For variadic functions, we don't have a declared type for all of
2482             // the arguments hence we only do our usual type checking with
2483             // the arguments who's types we do know.
2484             let t = if variadic {
2485                 expected_arg_count
2486             } else if tuple_arguments == TupleArguments {
2487                 args.len()
2488             } else {
2489                 supplied_arg_count
2490             };
2491             for (i, arg) in args.iter().take(t).enumerate() {
2492                 // Warn only for the first loop (the "no closures" one).
2493                 // Closure arguments themselves can't be diverging, but
2494                 // a previous argument can, e.g. `foo(panic!(), || {})`.
2495                 if !check_closures {
2496                     self.warn_if_unreachable(arg.id, arg.span, "expression");
2497                 }
2498
2499                 let is_closure = match arg.node {
2500                     hir::ExprClosure(..) => true,
2501                     _ => false
2502                 };
2503
2504                 if is_closure != check_closures {
2505                     continue;
2506                 }
2507
2508                 debug!("checking the argument");
2509                 let formal_ty = formal_tys[i];
2510
2511                 // The special-cased logic below has three functions:
2512                 // 1. Provide as good of an expected type as possible.
2513                 let expected = expected_arg_tys.get(i).map(|&ty| {
2514                     Expectation::rvalue_hint(self, ty)
2515                 });
2516
2517                 let checked_ty = self.check_expr_with_expectation(
2518                     &arg,
2519                     expected.unwrap_or(ExpectHasType(formal_ty)));
2520
2521                 // 2. Coerce to the most detailed type that could be coerced
2522                 //    to, which is `expected_ty` if `rvalue_hint` returns an
2523                 //    `ExpectHasType(expected_ty)`, or the `formal_ty` otherwise.
2524                 let coerce_ty = expected.and_then(|e| e.only_has_type(self));
2525                 self.demand_coerce(&arg, checked_ty, coerce_ty.unwrap_or(formal_ty));
2526
2527                 // 3. Relate the expected type and the formal one,
2528                 //    if the expected type was used for the coercion.
2529                 coerce_ty.map(|ty| self.demand_suptype(arg.span, formal_ty, ty));
2530             }
2531         }
2532
2533         // We also need to make sure we at least write the ty of the other
2534         // arguments which we skipped above.
2535         if variadic {
2536             for arg in args.iter().skip(expected_arg_count) {
2537                 let arg_ty = self.check_expr(&arg);
2538
2539                 // There are a few types which get autopromoted when passed via varargs
2540                 // in C but we just error out instead and require explicit casts.
2541                 let arg_ty = self.structurally_resolved_type(arg.span,
2542                                                              arg_ty);
2543                 match arg_ty.sty {
2544                     ty::TyFloat(ast::FloatTy::F32) => {
2545                         self.type_error_message(arg.span, |t| {
2546                             format!("can't pass an `{}` to variadic \
2547                                      function, cast to `c_double`", t)
2548                         }, arg_ty);
2549                     }
2550                     ty::TyInt(ast::IntTy::I8) | ty::TyInt(ast::IntTy::I16) | ty::TyBool => {
2551                         self.type_error_message(arg.span, |t| {
2552                             format!("can't pass `{}` to variadic \
2553                                      function, cast to `c_int`",
2554                                            t)
2555                         }, arg_ty);
2556                     }
2557                     ty::TyUint(ast::UintTy::U8) | ty::TyUint(ast::UintTy::U16) => {
2558                         self.type_error_message(arg.span, |t| {
2559                             format!("can't pass `{}` to variadic \
2560                                      function, cast to `c_uint`",
2561                                            t)
2562                         }, arg_ty);
2563                     }
2564                     ty::TyFnDef(.., f) => {
2565                         let ptr_ty = self.tcx.mk_fn_ptr(f);
2566                         let ptr_ty = self.resolve_type_vars_if_possible(&ptr_ty);
2567                         self.type_error_message(arg.span,
2568                                                 |t| {
2569                             format!("can't pass `{}` to variadic \
2570                                      function, cast to `{}`", t, ptr_ty)
2571                         }, arg_ty);
2572                     }
2573                     _ => {}
2574                 }
2575             }
2576         }
2577     }
2578
2579     fn err_args(&self, len: usize) -> Vec<Ty<'tcx>> {
2580         (0..len).map(|_| self.tcx.types.err).collect()
2581     }
2582
2583     // AST fragment checking
2584     fn check_lit(&self,
2585                  lit: &ast::Lit,
2586                  expected: Expectation<'tcx>)
2587                  -> Ty<'tcx>
2588     {
2589         let tcx = self.tcx;
2590
2591         match lit.node {
2592             ast::LitKind::Str(..) => tcx.mk_static_str(),
2593             ast::LitKind::ByteStr(ref v) => {
2594                 tcx.mk_imm_ref(tcx.types.re_static,
2595                                 tcx.mk_array(tcx.types.u8, v.len()))
2596             }
2597             ast::LitKind::Byte(_) => tcx.types.u8,
2598             ast::LitKind::Char(_) => tcx.types.char,
2599             ast::LitKind::Int(_, ast::LitIntType::Signed(t)) => tcx.mk_mach_int(t),
2600             ast::LitKind::Int(_, ast::LitIntType::Unsigned(t)) => tcx.mk_mach_uint(t),
2601             ast::LitKind::Int(_, ast::LitIntType::Unsuffixed) => {
2602                 let opt_ty = expected.to_option(self).and_then(|ty| {
2603                     match ty.sty {
2604                         ty::TyInt(_) | ty::TyUint(_) => Some(ty),
2605                         ty::TyChar => Some(tcx.types.u8),
2606                         ty::TyRawPtr(..) => Some(tcx.types.usize),
2607                         ty::TyFnDef(..) | ty::TyFnPtr(_) => Some(tcx.types.usize),
2608                         _ => None
2609                     }
2610                 });
2611                 opt_ty.unwrap_or_else(
2612                     || tcx.mk_int_var(self.next_int_var_id()))
2613             }
2614             ast::LitKind::Float(_, t) => tcx.mk_mach_float(t),
2615             ast::LitKind::FloatUnsuffixed(_) => {
2616                 let opt_ty = expected.to_option(self).and_then(|ty| {
2617                     match ty.sty {
2618                         ty::TyFloat(_) => Some(ty),
2619                         _ => None
2620                     }
2621                 });
2622                 opt_ty.unwrap_or_else(
2623                     || tcx.mk_float_var(self.next_float_var_id()))
2624             }
2625             ast::LitKind::Bool(_) => tcx.types.bool
2626         }
2627     }
2628
2629     fn check_expr_eq_type(&self,
2630                           expr: &'gcx hir::Expr,
2631                           expected: Ty<'tcx>) {
2632         let ty = self.check_expr_with_hint(expr, expected);
2633         self.demand_eqtype(expr.span, expected, ty);
2634     }
2635
2636     pub fn check_expr_has_type(&self,
2637                                expr: &'gcx hir::Expr,
2638                                expected: Ty<'tcx>) -> Ty<'tcx> {
2639         let mut ty = self.check_expr_with_hint(expr, expected);
2640
2641         // While we don't allow *arbitrary* coercions here, we *do* allow
2642         // coercions from ! to `expected`.
2643         if ty.is_never() {
2644             assert!(!self.tables.borrow().adjustments.contains_key(&expr.id),
2645                     "expression with never type wound up being adjusted");
2646             let adj_ty = self.next_diverging_ty_var(
2647                 TypeVariableOrigin::AdjustmentType(expr.span));
2648             self.apply_adjustment(expr.id, Adjustment {
2649                 kind: Adjust::NeverToAny,
2650                 autoref: None,
2651                 unsize: false,
2652                 target: adj_ty
2653             });
2654             ty = adj_ty;
2655         }
2656
2657         self.demand_suptype(expr.span, expected, ty);
2658         ty
2659     }
2660
2661     fn check_expr_coercable_to_type(&self,
2662                                     expr: &'gcx hir::Expr,
2663                                     expected: Ty<'tcx>) -> Ty<'tcx> {
2664         let ty = self.check_expr_with_hint(expr, expected);
2665         self.demand_coerce(expr, ty, expected);
2666         ty
2667     }
2668
2669     fn check_expr_with_hint(&self, expr: &'gcx hir::Expr,
2670                             expected: Ty<'tcx>) -> Ty<'tcx> {
2671         self.check_expr_with_expectation(expr, ExpectHasType(expected))
2672     }
2673
2674     fn check_expr_with_expectation(&self,
2675                                    expr: &'gcx hir::Expr,
2676                                    expected: Expectation<'tcx>) -> Ty<'tcx> {
2677         self.check_expr_with_expectation_and_lvalue_pref(expr, expected, NoPreference)
2678     }
2679
2680     fn check_expr(&self, expr: &'gcx hir::Expr) -> Ty<'tcx> {
2681         self.check_expr_with_expectation(expr, NoExpectation)
2682     }
2683
2684     fn check_expr_with_lvalue_pref(&self, expr: &'gcx hir::Expr,
2685                                    lvalue_pref: LvaluePreference) -> Ty<'tcx> {
2686         self.check_expr_with_expectation_and_lvalue_pref(expr, NoExpectation, lvalue_pref)
2687     }
2688
2689     // determine the `self` type, using fresh variables for all variables
2690     // declared on the impl declaration e.g., `impl<A,B> for Vec<(A,B)>`
2691     // would return ($0, $1) where $0 and $1 are freshly instantiated type
2692     // variables.
2693     pub fn impl_self_ty(&self,
2694                         span: Span, // (potential) receiver for this impl
2695                         did: DefId)
2696                         -> TypeAndSubsts<'tcx> {
2697         let ity = self.tcx.type_of(did);
2698         debug!("impl_self_ty: ity={:?}", ity);
2699
2700         let substs = self.fresh_substs_for_item(span, did);
2701         let substd_ty = self.instantiate_type_scheme(span, &substs, &ity);
2702
2703         TypeAndSubsts { substs: substs, ty: substd_ty }
2704     }
2705
2706     /// Unifies the output type with the expected type early, for more coercions
2707     /// and forward type information on the input expressions.
2708     fn expected_inputs_for_expected_output(&self,
2709                                            call_span: Span,
2710                                            expected_ret: Expectation<'tcx>,
2711                                            formal_ret: Ty<'tcx>,
2712                                            formal_args: &[Ty<'tcx>])
2713                                            -> Vec<Ty<'tcx>> {
2714         let expected_args = expected_ret.only_has_type(self).and_then(|ret_ty| {
2715             self.fudge_regions_if_ok(&RegionVariableOrigin::Coercion(call_span), || {
2716                 // Attempt to apply a subtyping relationship between the formal
2717                 // return type (likely containing type variables if the function
2718                 // is polymorphic) and the expected return type.
2719                 // No argument expectations are produced if unification fails.
2720                 let origin = self.misc(call_span);
2721                 let ures = self.sub_types(false, &origin, formal_ret, ret_ty);
2722
2723                 // FIXME(#15760) can't use try! here, FromError doesn't default
2724                 // to identity so the resulting type is not constrained.
2725                 match ures {
2726                     Ok(ok) => {
2727                         // Process any obligations locally as much as
2728                         // we can.  We don't care if some things turn
2729                         // out unconstrained or ambiguous, as we're
2730                         // just trying to get hints here.
2731                         let result = self.save_and_restore_in_snapshot_flag(|_| {
2732                             let mut fulfill = FulfillmentContext::new();
2733                             let ok = ok; // FIXME(#30046)
2734                             for obligation in ok.obligations {
2735                                 fulfill.register_predicate_obligation(self, obligation);
2736                             }
2737                             fulfill.select_where_possible(self)
2738                         });
2739
2740                         match result {
2741                             Ok(()) => { }
2742                             Err(_) => return Err(()),
2743                         }
2744                     }
2745                     Err(_) => return Err(()),
2746                 }
2747
2748                 // Record all the argument types, with the substitutions
2749                 // produced from the above subtyping unification.
2750                 Ok(formal_args.iter().map(|ty| {
2751                     self.resolve_type_vars_if_possible(ty)
2752                 }).collect())
2753             }).ok()
2754         }).unwrap_or(vec![]);
2755         debug!("expected_inputs_for_expected_output(formal={:?} -> {:?}, expected={:?} -> {:?})",
2756                formal_args, formal_ret,
2757                expected_args, expected_ret);
2758         expected_args
2759     }
2760
2761     // Checks a method call.
2762     fn check_method_call(&self,
2763                          expr: &'gcx hir::Expr,
2764                          method_name: Spanned<ast::Name>,
2765                          args: &'gcx [hir::Expr],
2766                          tps: &[P<hir::Ty>],
2767                          expected: Expectation<'tcx>,
2768                          lvalue_pref: LvaluePreference) -> Ty<'tcx> {
2769         let rcvr = &args[0];
2770         let rcvr_t = self.check_expr_with_lvalue_pref(&rcvr, lvalue_pref);
2771
2772         // no need to check for bot/err -- callee does that
2773         let expr_t = self.structurally_resolved_type(expr.span, rcvr_t);
2774
2775         let tps = tps.iter().map(|ast_ty| self.to_ty(&ast_ty)).collect::<Vec<_>>();
2776         let method = match self.lookup_method(method_name.span,
2777                                               method_name.node,
2778                                               expr_t,
2779                                               tps,
2780                                               expr,
2781                                               rcvr) {
2782             Ok(method) => {
2783                 self.write_method_call(expr.id, method);
2784                 Ok(method)
2785             }
2786             Err(error) => {
2787                 if method_name.node != keywords::Invalid.name() {
2788                     self.report_method_error(method_name.span,
2789                                              expr_t,
2790                                              method_name.node,
2791                                              Some(rcvr),
2792                                              error,
2793                                              Some(args));
2794                 }
2795                 Err(())
2796             }
2797         };
2798
2799         // Call the generic checker.
2800         self.check_method_argument_types(method_name.span, method,
2801                                          &args[1..],
2802                                          DontTupleArguments,
2803                                          expected)
2804     }
2805
2806     fn check_return_expr(&self, return_expr: &'gcx hir::Expr) {
2807         let ret_coercion =
2808             self.ret_coercion
2809                 .as_ref()
2810                 .unwrap_or_else(|| span_bug!(return_expr.span,
2811                                              "check_return_expr called outside fn body"));
2812
2813         let ret_ty = ret_coercion.borrow().expected_ty();
2814         let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
2815         ret_coercion.borrow_mut()
2816                     .coerce(self,
2817                             &self.misc(return_expr.span),
2818                             return_expr,
2819                             return_expr_ty,
2820                             self.diverges.get());
2821     }
2822
2823
2824     // A generic function for checking the then and else in an if
2825     // or if-else.
2826     fn check_then_else(&self,
2827                        cond_expr: &'gcx hir::Expr,
2828                        then_expr: &'gcx hir::Expr,
2829                        opt_else_expr: Option<&'gcx hir::Expr>,
2830                        sp: Span,
2831                        expected: Expectation<'tcx>) -> Ty<'tcx> {
2832         let cond_ty = self.check_expr_has_type(cond_expr, self.tcx.types.bool);
2833         let cond_diverges = self.diverges.get();
2834         self.diverges.set(Diverges::Maybe);
2835
2836         let expected = expected.adjust_for_branches(self);
2837         let then_ty = self.check_expr_with_expectation(then_expr, expected);
2838         let then_diverges = self.diverges.get();
2839         self.diverges.set(Diverges::Maybe);
2840
2841         // We've already taken the expected type's preferences
2842         // into account when typing the `then` branch. To figure
2843         // out the initial shot at a LUB, we thus only consider
2844         // `expected` if it represents a *hard* constraint
2845         // (`only_has_type`); otherwise, we just go with a
2846         // fresh type variable.
2847         let coerce_to_ty = expected.coercion_target_type(self, sp);
2848         let mut coerce: DynamicCoerceMany = CoerceMany::new(coerce_to_ty);
2849
2850         let if_cause = self.cause(sp, ObligationCauseCode::IfExpression);
2851         coerce.coerce(self, &if_cause, then_expr, then_ty, then_diverges);
2852
2853         if let Some(else_expr) = opt_else_expr {
2854             let else_ty = self.check_expr_with_expectation(else_expr, expected);
2855             let else_diverges = self.diverges.get();
2856
2857             coerce.coerce(self, &if_cause, else_expr, else_ty, else_diverges);
2858
2859             // We won't diverge unless both branches do (or the condition does).
2860             self.diverges.set(cond_diverges | then_diverges & else_diverges);
2861         } else {
2862             let else_cause = self.cause(sp, ObligationCauseCode::IfExpressionWithNoElse);
2863             coerce.coerce_forced_unit(self, &else_cause, &mut |_| (), true);
2864
2865             // If the condition is false we can't diverge.
2866             self.diverges.set(cond_diverges);
2867         }
2868
2869         let result_ty = coerce.complete(self);
2870         if cond_ty.references_error() {
2871             self.tcx.types.err
2872         } else {
2873             result_ty
2874         }
2875     }
2876
2877     // Check field access expressions
2878     fn check_field(&self,
2879                    expr: &'gcx hir::Expr,
2880                    lvalue_pref: LvaluePreference,
2881                    base: &'gcx hir::Expr,
2882                    field: &Spanned<ast::Name>) -> Ty<'tcx> {
2883         let expr_t = self.check_expr_with_lvalue_pref(base, lvalue_pref);
2884         let expr_t = self.structurally_resolved_type(expr.span,
2885                                                      expr_t);
2886         let mut private_candidate = None;
2887         let mut autoderef = self.autoderef(expr.span, expr_t);
2888         while let Some((base_t, _)) = autoderef.next() {
2889             match base_t.sty {
2890                 ty::TyAdt(base_def, substs) if !base_def.is_enum() => {
2891                     debug!("struct named {:?}",  base_t);
2892                     let (ident, def_scope) =
2893                         self.tcx.adjust(field.node, base_def.did, self.body_id);
2894                     let fields = &base_def.struct_variant().fields;
2895                     if let Some(field) = fields.iter().find(|f| f.name.to_ident() == ident) {
2896                         let field_ty = self.field_ty(expr.span, field, substs);
2897                         if field.vis.is_accessible_from(def_scope, self.tcx) {
2898                             let autoderefs = autoderef.adjust_steps(lvalue_pref);
2899                             self.apply_autoderef_adjustment(base.id, autoderefs, base_t);
2900                             autoderef.finalize();
2901
2902                             self.tcx.check_stability(field.did, expr.id, expr.span);
2903
2904                             return field_ty;
2905                         }
2906                         private_candidate = Some((base_def.did, field_ty));
2907                     }
2908                 }
2909                 _ => {}
2910             }
2911         }
2912         autoderef.unambiguous_final_ty();
2913
2914         if let Some((did, field_ty)) = private_candidate {
2915             let struct_path = self.tcx().item_path_str(did);
2916             let msg = format!("field `{}` of struct `{}` is private", field.node, struct_path);
2917             let mut err = self.tcx().sess.struct_span_err(expr.span, &msg);
2918             // Also check if an accessible method exists, which is often what is meant.
2919             if self.method_exists(field.span, field.node, expr_t, expr.id, false) {
2920                 err.note(&format!("a method `{}` also exists, perhaps you wish to call it",
2921                                   field.node));
2922             }
2923             err.emit();
2924             field_ty
2925         } else if field.node == keywords::Invalid.name() {
2926             self.tcx().types.err
2927         } else if self.method_exists(field.span, field.node, expr_t, expr.id, true) {
2928             self.type_error_struct(field.span, |actual| {
2929                 format!("attempted to take value of method `{}` on type \
2930                          `{}`", field.node, actual)
2931             }, expr_t)
2932                 .help("maybe a `()` to call it is missing? \
2933                        If not, try an anonymous function")
2934                 .emit();
2935             self.tcx().types.err
2936         } else {
2937             let mut err = self.type_error_struct(field.span, |actual| {
2938                 format!("no field `{}` on type `{}`",
2939                         field.node, actual)
2940             }, expr_t);
2941             match expr_t.sty {
2942                 ty::TyAdt(def, _) if !def.is_enum() => {
2943                     if let Some(suggested_field_name) =
2944                         Self::suggest_field_name(def.struct_variant(), field, vec![]) {
2945                             err.span_label(field.span,
2946                                            format!("did you mean `{}`?", suggested_field_name));
2947                         } else {
2948                             err.span_label(field.span,
2949                                            "unknown field");
2950                         };
2951                 }
2952                 ty::TyRawPtr(..) => {
2953                     err.note(&format!("`{0}` is a native pointer; perhaps you need to deref with \
2954                                       `(*{0}).{1}`",
2955                                       self.tcx.hir.node_to_pretty_string(base.id),
2956                                       field.node));
2957                 }
2958                 _ => {}
2959             }
2960             err.emit();
2961             self.tcx().types.err
2962         }
2963     }
2964
2965     // Return an hint about the closest match in field names
2966     fn suggest_field_name(variant: &'tcx ty::VariantDef,
2967                           field: &Spanned<ast::Name>,
2968                           skip : Vec<InternedString>)
2969                           -> Option<Symbol> {
2970         let name = field.node.as_str();
2971         let names = variant.fields.iter().filter_map(|field| {
2972             // ignore already set fields and private fields from non-local crates
2973             if skip.iter().any(|x| *x == field.name.as_str()) ||
2974                (variant.did.krate != LOCAL_CRATE && field.vis != Visibility::Public) {
2975                 None
2976             } else {
2977                 Some(&field.name)
2978             }
2979         });
2980
2981         // only find fits with at least one matching letter
2982         find_best_match_for_name(names, &name, Some(name.len()))
2983     }
2984
2985     // Check tuple index expressions
2986     fn check_tup_field(&self,
2987                        expr: &'gcx hir::Expr,
2988                        lvalue_pref: LvaluePreference,
2989                        base: &'gcx hir::Expr,
2990                        idx: codemap::Spanned<usize>) -> Ty<'tcx> {
2991         let expr_t = self.check_expr_with_lvalue_pref(base, lvalue_pref);
2992         let expr_t = self.structurally_resolved_type(expr.span,
2993                                                      expr_t);
2994         let mut private_candidate = None;
2995         let mut tuple_like = false;
2996         let mut autoderef = self.autoderef(expr.span, expr_t);
2997         while let Some((base_t, _)) = autoderef.next() {
2998             let field = match base_t.sty {
2999                 ty::TyAdt(base_def, substs) if base_def.is_struct() => {
3000                     tuple_like = base_def.struct_variant().ctor_kind == CtorKind::Fn;
3001                     if !tuple_like { continue }
3002
3003                     debug!("tuple struct named {:?}",  base_t);
3004                     let ident = ast::Ident {
3005                         name: Symbol::intern(&idx.node.to_string()),
3006                         ctxt: idx.span.ctxt.modern(),
3007                     };
3008                     let (ident, def_scope) =
3009                         self.tcx.adjust_ident(ident, base_def.did, self.body_id);
3010                     let fields = &base_def.struct_variant().fields;
3011                     if let Some(field) = fields.iter().find(|f| f.name.to_ident() == ident) {
3012                         let field_ty = self.field_ty(expr.span, field, substs);
3013                         if field.vis.is_accessible_from(def_scope, self.tcx) {
3014                             self.tcx.check_stability(field.did, expr.id, expr.span);
3015                             Some(field_ty)
3016                         } else {
3017                             private_candidate = Some((base_def.did, field_ty));
3018                             None
3019                         }
3020                     } else {
3021                         None
3022                     }
3023                 }
3024                 ty::TyTuple(ref v, _) => {
3025                     tuple_like = true;
3026                     v.get(idx.node).cloned()
3027                 }
3028                 _ => continue
3029             };
3030
3031             if let Some(field_ty) = field {
3032                 let autoderefs = autoderef.adjust_steps(lvalue_pref);
3033                 self.apply_autoderef_adjustment(base.id, autoderefs, base_t);
3034                 autoderef.finalize();
3035                 return field_ty;
3036             }
3037         }
3038         autoderef.unambiguous_final_ty();
3039
3040         if let Some((did, field_ty)) = private_candidate {
3041             let struct_path = self.tcx().item_path_str(did);
3042             let msg = format!("field `{}` of struct `{}` is private", idx.node, struct_path);
3043             self.tcx().sess.span_err(expr.span, &msg);
3044             return field_ty;
3045         }
3046
3047         self.type_error_message(
3048             expr.span,
3049             |actual| {
3050                 if tuple_like {
3051                     format!("attempted out-of-bounds tuple index `{}` on \
3052                                     type `{}`",
3053                                    idx.node,
3054                                    actual)
3055                 } else {
3056                     format!("attempted tuple index `{}` on type `{}`, but the \
3057                                      type was not a tuple or tuple struct",
3058                                     idx.node,
3059                                     actual)
3060                 }
3061             },
3062             expr_t);
3063
3064         self.tcx().types.err
3065     }
3066
3067     fn report_unknown_field(&self,
3068                             ty: Ty<'tcx>,
3069                             variant: &'tcx ty::VariantDef,
3070                             field: &hir::Field,
3071                             skip_fields: &[hir::Field],
3072                             kind_name: &str) {
3073         let mut err = self.type_error_struct_with_diag(
3074             field.name.span,
3075             |actual| match ty.sty {
3076                 ty::TyAdt(adt, ..) if adt.is_enum() => {
3077                     struct_span_err!(self.tcx.sess, field.name.span, E0559,
3078                                     "{} `{}::{}` has no field named `{}`",
3079                                     kind_name, actual, variant.name, field.name.node)
3080                 }
3081                 _ => {
3082                     struct_span_err!(self.tcx.sess, field.name.span, E0560,
3083                                     "{} `{}` has no field named `{}`",
3084                                     kind_name, actual, field.name.node)
3085                 }
3086             },
3087             ty);
3088         // prevent all specified fields from being suggested
3089         let skip_fields = skip_fields.iter().map(|ref x| x.name.node.as_str());
3090         if let Some(field_name) = Self::suggest_field_name(variant,
3091                                                            &field.name,
3092                                                            skip_fields.collect()) {
3093             err.span_label(field.name.span,
3094                            format!("field does not exist - did you mean `{}`?", field_name));
3095         } else {
3096             match ty.sty {
3097                 ty::TyAdt(adt, ..) if adt.is_enum() => {
3098                     err.span_label(field.name.span, format!("`{}::{}` does not have this field",
3099                                                              ty, variant.name));
3100                 }
3101                 _ => {
3102                     err.span_label(field.name.span, format!("`{}` does not have this field", ty));
3103                 }
3104             }
3105         };
3106         err.emit();
3107     }
3108
3109     fn check_expr_struct_fields(&self,
3110                                 adt_ty: Ty<'tcx>,
3111                                 expected: Expectation<'tcx>,
3112                                 expr_id: ast::NodeId,
3113                                 span: Span,
3114                                 variant: &'tcx ty::VariantDef,
3115                                 ast_fields: &'gcx [hir::Field],
3116                                 check_completeness: bool) {
3117         let tcx = self.tcx;
3118
3119         let adt_ty_hint =
3120             self.expected_inputs_for_expected_output(span, expected, adt_ty, &[adt_ty])
3121                 .get(0).cloned().unwrap_or(adt_ty);
3122
3123         let (substs, hint_substs, adt_kind, kind_name) = match (&adt_ty.sty, &adt_ty_hint.sty) {
3124             (&ty::TyAdt(adt, substs), &ty::TyAdt(_, hint_substs)) => {
3125                 (substs, hint_substs, adt.adt_kind(), adt.variant_descr())
3126             }
3127             _ => span_bug!(span, "non-ADT passed to check_expr_struct_fields")
3128         };
3129
3130         let mut remaining_fields = FxHashMap();
3131         for field in &variant.fields {
3132             remaining_fields.insert(field.name.to_ident(), field);
3133         }
3134
3135         let mut seen_fields = FxHashMap();
3136
3137         let mut error_happened = false;
3138
3139         // Typecheck each field.
3140         for field in ast_fields {
3141             let final_field_type;
3142             let field_type_hint;
3143
3144             let ident = tcx.adjust(field.name.node, variant.did, self.body_id).0;
3145             if let Some(v_field) = remaining_fields.remove(&ident) {
3146                 final_field_type = self.field_ty(field.span, v_field, substs);
3147                 field_type_hint = self.field_ty(field.span, v_field, hint_substs);
3148
3149                 seen_fields.insert(field.name.node, field.span);
3150
3151                 // we don't look at stability attributes on
3152                 // struct-like enums (yet...), but it's definitely not
3153                 // a bug to have construct one.
3154                 if adt_kind != ty::AdtKind::Enum {
3155                     tcx.check_stability(v_field.did, expr_id, field.span);
3156                 }
3157             } else {
3158                 error_happened = true;
3159                 final_field_type = tcx.types.err;
3160                 field_type_hint = tcx.types.err;
3161                 if let Some(_) = variant.find_field_named(field.name.node) {
3162                     let mut err = struct_span_err!(self.tcx.sess,
3163                                                 field.name.span,
3164                                                 E0062,
3165                                                 "field `{}` specified more than once",
3166                                                 field.name.node);
3167
3168                     err.span_label(field.name.span, "used more than once");
3169
3170                     if let Some(prev_span) = seen_fields.get(&field.name.node) {
3171                         err.span_label(*prev_span, format!("first use of `{}`", field.name.node));
3172                     }
3173
3174                     err.emit();
3175                 } else {
3176                     self.report_unknown_field(adt_ty, variant, field, ast_fields, kind_name);
3177                 }
3178             }
3179
3180             // Make sure to give a type to the field even if there's
3181             // an error, so we can continue typechecking
3182             let ty = self.check_expr_with_hint(&field.expr, field_type_hint);
3183             self.demand_coerce(&field.expr, ty, final_field_type);
3184         }
3185
3186         // Make sure the programmer specified correct number of fields.
3187         if kind_name == "union" {
3188             if ast_fields.len() != 1 {
3189                 tcx.sess.span_err(span, "union expressions should have exactly one field");
3190             }
3191         } else if check_completeness && !error_happened && !remaining_fields.is_empty() {
3192             let len = remaining_fields.len();
3193
3194             let mut displayable_field_names = remaining_fields
3195                                               .keys()
3196                                               .map(|ident| ident.name.as_str())
3197                                               .collect::<Vec<_>>();
3198
3199             displayable_field_names.sort();
3200
3201             let truncated_fields_error = if len <= 3 {
3202                 "".to_string()
3203             } else {
3204                 format!(" and {} other field{}", (len - 3), if len - 3 == 1 {""} else {"s"})
3205             };
3206
3207             let remaining_fields_names = displayable_field_names.iter().take(3)
3208                                         .map(|n| format!("`{}`", n))
3209                                         .collect::<Vec<_>>()
3210                                         .join(", ");
3211
3212             struct_span_err!(tcx.sess, span, E0063,
3213                         "missing field{} {}{} in initializer of `{}`",
3214                         if remaining_fields.len() == 1 {""} else {"s"},
3215                         remaining_fields_names,
3216                         truncated_fields_error,
3217                         adt_ty)
3218                         .span_label(span, format!("missing {}{}",
3219                             remaining_fields_names,
3220                             truncated_fields_error))
3221                         .emit();
3222         }
3223     }
3224
3225     fn check_struct_fields_on_error(&self,
3226                                     fields: &'gcx [hir::Field],
3227                                     base_expr: &'gcx Option<P<hir::Expr>>) {
3228         for field in fields {
3229             self.check_expr(&field.expr);
3230         }
3231         match *base_expr {
3232             Some(ref base) => {
3233                 self.check_expr(&base);
3234             },
3235             None => {}
3236         }
3237     }
3238
3239     pub fn check_struct_path(&self,
3240                              qpath: &hir::QPath,
3241                              node_id: ast::NodeId)
3242                              -> Option<(&'tcx ty::VariantDef,  Ty<'tcx>)> {
3243         let path_span = match *qpath {
3244             hir::QPath::Resolved(_, ref path) => path.span,
3245             hir::QPath::TypeRelative(ref qself, _) => qself.span
3246         };
3247         let (def, ty) = self.finish_resolving_struct_path(qpath, path_span, node_id);
3248         let variant = match def {
3249             Def::Err => {
3250                 self.set_tainted_by_errors();
3251                 return None;
3252             }
3253             Def::Variant(..) => {
3254                 match ty.sty {
3255                     ty::TyAdt(adt, substs) => {
3256                         Some((adt.variant_of_def(def), adt.did, substs))
3257                     }
3258                     _ => bug!("unexpected type: {:?}", ty.sty)
3259                 }
3260             }
3261             Def::Struct(..) | Def::Union(..) | Def::TyAlias(..) |
3262             Def::AssociatedTy(..) | Def::SelfTy(..) => {
3263                 match ty.sty {
3264                     ty::TyAdt(adt, substs) if !adt.is_enum() => {
3265                         Some((adt.struct_variant(), adt.did, substs))
3266                     }
3267                     _ => None,
3268                 }
3269             }
3270             _ => bug!("unexpected definition: {:?}", def)
3271         };
3272
3273         if let Some((variant, did, substs)) = variant {
3274             // Check bounds on type arguments used in the path.
3275             let bounds = self.instantiate_bounds(path_span, did, substs);
3276             let cause = traits::ObligationCause::new(path_span, self.body_id,
3277                                                      traits::ItemObligation(did));
3278             self.add_obligations_for_parameters(cause, &bounds);
3279
3280             Some((variant, ty))
3281         } else {
3282             struct_span_err!(self.tcx.sess, path_span, E0071,
3283                              "expected struct, variant or union type, found {}",
3284                              ty.sort_string(self.tcx))
3285                 .span_label(path_span, "not a struct")
3286                 .emit();
3287             None
3288         }
3289     }
3290
3291     fn check_expr_struct(&self,
3292                          expr: &hir::Expr,
3293                          expected: Expectation<'tcx>,
3294                          qpath: &hir::QPath,
3295                          fields: &'gcx [hir::Field],
3296                          base_expr: &'gcx Option<P<hir::Expr>>) -> Ty<'tcx>
3297     {
3298         // Find the relevant variant
3299         let (variant, struct_ty) =
3300         if let Some(variant_ty) = self.check_struct_path(qpath, expr.id) {
3301             variant_ty
3302         } else {
3303             self.check_struct_fields_on_error(fields, base_expr);
3304             return self.tcx.types.err;
3305         };
3306
3307         let path_span = match *qpath {
3308             hir::QPath::Resolved(_, ref path) => path.span,
3309             hir::QPath::TypeRelative(ref qself, _) => qself.span
3310         };
3311
3312         self.check_expr_struct_fields(struct_ty, expected, expr.id, path_span, variant, fields,
3313                                       base_expr.is_none());
3314         if let &Some(ref base_expr) = base_expr {
3315             self.check_expr_has_type(base_expr, struct_ty);
3316             match struct_ty.sty {
3317                 ty::TyAdt(adt, substs) if adt.is_struct() => {
3318                     self.tables.borrow_mut().fru_field_types.insert(
3319                         expr.id,
3320                         adt.struct_variant().fields.iter().map(|f| {
3321                             self.normalize_associated_types_in(
3322                                 expr.span, &f.ty(self.tcx, substs)
3323                             )
3324                         }).collect()
3325                     );
3326                 }
3327                 _ => {
3328                     span_err!(self.tcx.sess, base_expr.span, E0436,
3329                               "functional record update syntax requires a struct");
3330                 }
3331             }
3332         }
3333         self.require_type_is_sized(struct_ty, expr.span, traits::StructInitializerSized);
3334         struct_ty
3335     }
3336
3337
3338     /// Invariant:
3339     /// If an expression has any sub-expressions that result in a type error,
3340     /// inspecting that expression's type with `ty.references_error()` will return
3341     /// true. Likewise, if an expression is known to diverge, inspecting its
3342     /// type with `ty::type_is_bot` will return true (n.b.: since Rust is
3343     /// strict, _|_ can appear in the type of an expression that does not,
3344     /// itself, diverge: for example, fn() -> _|_.)
3345     /// Note that inspecting a type's structure *directly* may expose the fact
3346     /// that there are actually multiple representations for `TyError`, so avoid
3347     /// that when err needs to be handled differently.
3348     fn check_expr_with_expectation_and_lvalue_pref(&self,
3349                                                    expr: &'gcx hir::Expr,
3350                                                    expected: Expectation<'tcx>,
3351                                                    lvalue_pref: LvaluePreference) -> Ty<'tcx> {
3352         debug!(">> typechecking: expr={:?} expected={:?}",
3353                expr, expected);
3354
3355         // Warn for expressions after diverging siblings.
3356         self.warn_if_unreachable(expr.id, expr.span, "expression");
3357
3358         // Hide the outer diverging and has_errors flags.
3359         let old_diverges = self.diverges.get();
3360         let old_has_errors = self.has_errors.get();
3361         self.diverges.set(Diverges::Maybe);
3362         self.has_errors.set(false);
3363
3364         let ty = self.check_expr_kind(expr, expected, lvalue_pref);
3365
3366         // Warn for non-block expressions with diverging children.
3367         match expr.node {
3368             hir::ExprBlock(_) |
3369             hir::ExprLoop(..) | hir::ExprWhile(..) |
3370             hir::ExprIf(..) | hir::ExprMatch(..) => {}
3371
3372             _ => self.warn_if_unreachable(expr.id, expr.span, "expression")
3373         }
3374
3375         // Any expression that produces a value of type `!` must have diverged
3376         if ty.is_never() {
3377             self.diverges.set(self.diverges.get() | Diverges::Always);
3378         }
3379
3380         // Record the type, which applies it effects.
3381         // We need to do this after the warning above, so that
3382         // we don't warn for the diverging expression itself.
3383         self.write_ty(expr.id, ty);
3384
3385         // Combine the diverging and has_error flags.
3386         self.diverges.set(self.diverges.get() | old_diverges);
3387         self.has_errors.set(self.has_errors.get() | old_has_errors);
3388
3389         debug!("type of {} is...", self.tcx.hir.node_to_string(expr.id));
3390         debug!("... {:?}, expected is {:?}", ty, expected);
3391
3392         ty
3393     }
3394
3395     fn check_expr_kind(&self,
3396                        expr: &'gcx hir::Expr,
3397                        expected: Expectation<'tcx>,
3398                        lvalue_pref: LvaluePreference) -> Ty<'tcx> {
3399         let tcx = self.tcx;
3400         let id = expr.id;
3401         match expr.node {
3402           hir::ExprBox(ref subexpr) => {
3403             let expected_inner = expected.to_option(self).map_or(NoExpectation, |ty| {
3404                 match ty.sty {
3405                     ty::TyAdt(def, _) if def.is_box()
3406                         => Expectation::rvalue_hint(self, ty.boxed_ty()),
3407                     _ => NoExpectation
3408                 }
3409             });
3410             let referent_ty = self.check_expr_with_expectation(subexpr, expected_inner);
3411             tcx.mk_box(referent_ty)
3412           }
3413
3414           hir::ExprLit(ref lit) => {
3415             self.check_lit(&lit, expected)
3416           }
3417           hir::ExprBinary(op, ref lhs, ref rhs) => {
3418             self.check_binop(expr, op, lhs, rhs)
3419           }
3420           hir::ExprAssignOp(op, ref lhs, ref rhs) => {
3421             self.check_binop_assign(expr, op, lhs, rhs)
3422           }
3423           hir::ExprUnary(unop, ref oprnd) => {
3424             let expected_inner = match unop {
3425                 hir::UnNot | hir::UnNeg => {
3426                     expected
3427                 }
3428                 hir::UnDeref => {
3429                     NoExpectation
3430                 }
3431             };
3432             let lvalue_pref = match unop {
3433                 hir::UnDeref => lvalue_pref,
3434                 _ => NoPreference
3435             };
3436             let mut oprnd_t = self.check_expr_with_expectation_and_lvalue_pref(&oprnd,
3437                                                                                expected_inner,
3438                                                                                lvalue_pref);
3439
3440             if !oprnd_t.references_error() {
3441                 match unop {
3442                     hir::UnDeref => {
3443                         oprnd_t = self.structurally_resolved_type(expr.span, oprnd_t);
3444
3445                         if let Some(mt) = oprnd_t.builtin_deref(true, NoPreference) {
3446                             oprnd_t = mt.ty;
3447                         } else if let Some(ok) = self.try_overloaded_deref(
3448                                 expr.span, oprnd_t, lvalue_pref) {
3449                             let (autoref, method) = self.register_infer_ok_obligations(ok);
3450                             self.apply_adjustment(oprnd.id, Adjustment {
3451                                 kind: Adjust::Deref(vec![]),
3452                                 autoref,
3453                                 unsize: false,
3454                                 target: method.sig.inputs()[0]
3455                             });
3456                             oprnd_t = self.make_overloaded_lvalue_return_type(method).ty;
3457                             self.write_method_call(expr.id, method);
3458                         } else {
3459                             self.type_error_message(expr.span, |actual| {
3460                                 format!("type `{}` cannot be \
3461                                         dereferenced", actual)
3462                             }, oprnd_t);
3463                             oprnd_t = tcx.types.err;
3464                         }
3465                     }
3466                     hir::UnNot => {
3467                         oprnd_t = self.structurally_resolved_type(oprnd.span,
3468                                                                   oprnd_t);
3469                         let result = self.check_user_unop("!", "not",
3470                                                           tcx.lang_items.not_trait(),
3471                                                           expr, &oprnd, oprnd_t, unop);
3472                         // If it's builtin, we can reuse the type, this helps inference.
3473                         if !(oprnd_t.is_integral() || oprnd_t.sty == ty::TyBool) {
3474                             oprnd_t = result;
3475                         }
3476                     }
3477                     hir::UnNeg => {
3478                         oprnd_t = self.structurally_resolved_type(oprnd.span,
3479                                                                   oprnd_t);
3480                         let result = self.check_user_unop("-", "neg",
3481                                                           tcx.lang_items.neg_trait(),
3482                                                           expr, &oprnd, oprnd_t, unop);
3483                         // If it's builtin, we can reuse the type, this helps inference.
3484                         if !(oprnd_t.is_integral() || oprnd_t.is_fp()) {
3485                             oprnd_t = result;
3486                         }
3487                     }
3488                 }
3489             }
3490             oprnd_t
3491           }
3492           hir::ExprAddrOf(mutbl, ref oprnd) => {
3493             let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
3494                 match ty.sty {
3495                     ty::TyRef(_, ref mt) | ty::TyRawPtr(ref mt) => {
3496                         if self.tcx.expr_is_lval(&oprnd) {
3497                             // Lvalues may legitimately have unsized types.
3498                             // For example, dereferences of a fat pointer and
3499                             // the last field of a struct can be unsized.
3500                             ExpectHasType(mt.ty)
3501                         } else {
3502                             Expectation::rvalue_hint(self, mt.ty)
3503                         }
3504                     }
3505                     _ => NoExpectation
3506                 }
3507             });
3508             let lvalue_pref = LvaluePreference::from_mutbl(mutbl);
3509             let ty = self.check_expr_with_expectation_and_lvalue_pref(&oprnd, hint, lvalue_pref);
3510
3511             let tm = ty::TypeAndMut { ty: ty, mutbl: mutbl };
3512             if tm.ty.references_error() {
3513                 tcx.types.err
3514             } else {
3515                 // Note: at this point, we cannot say what the best lifetime
3516                 // is to use for resulting pointer.  We want to use the
3517                 // shortest lifetime possible so as to avoid spurious borrowck
3518                 // errors.  Moreover, the longest lifetime will depend on the
3519                 // precise details of the value whose address is being taken
3520                 // (and how long it is valid), which we don't know yet until type
3521                 // inference is complete.
3522                 //
3523                 // Therefore, here we simply generate a region variable.  The
3524                 // region inferencer will then select the ultimate value.
3525                 // Finally, borrowck is charged with guaranteeing that the
3526                 // value whose address was taken can actually be made to live
3527                 // as long as it needs to live.
3528                 let region = self.next_region_var(infer::AddrOfRegion(expr.span));
3529                 tcx.mk_ref(region, tm)
3530             }
3531           }
3532           hir::ExprPath(ref qpath) => {
3533               let (def, opt_ty, segments) = self.resolve_ty_and_def_ufcs(qpath,
3534                                                                          expr.id, expr.span);
3535               let ty = if def != Def::Err {
3536                   self.instantiate_value_path(segments, opt_ty, def, expr.span, id)
3537               } else {
3538                   self.set_tainted_by_errors();
3539                   tcx.types.err
3540               };
3541
3542               // We always require that the type provided as the value for
3543               // a type parameter outlives the moment of instantiation.
3544               let substs = self.tables.borrow().node_substs(expr.id);
3545               self.add_wf_bounds(substs, expr);
3546
3547               ty
3548           }
3549           hir::ExprInlineAsm(_, ref outputs, ref inputs) => {
3550               for output in outputs {
3551                   self.check_expr(output);
3552               }
3553               for input in inputs {
3554                   self.check_expr(input);
3555               }
3556               tcx.mk_nil()
3557           }
3558           hir::ExprBreak(destination, ref expr_opt) => {
3559               if let Some(target_id) = destination.target_id.opt_id() {
3560                   let (e_ty, e_diverges, cause);
3561                   if let Some(ref e) = *expr_opt {
3562                       // If this is a break with a value, we need to type-check
3563                       // the expression. Get an expected type from the loop context.
3564                       let opt_coerce_to = {
3565                           let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
3566                           enclosing_breakables.find_breakable(target_id)
3567                                               .coerce
3568                                               .as_ref()
3569                                               .map(|coerce| coerce.expected_ty())
3570                       };
3571
3572                       // If the loop context is not a `loop { }`, then break with
3573                       // a value is illegal, and `opt_coerce_to` will be `None`.
3574                       // Just set expectation to error in that case.
3575                       let coerce_to = opt_coerce_to.unwrap_or(tcx.types.err);
3576
3577                       // Recurse without `enclosing_breakables` borrowed.
3578                       e_ty = self.check_expr_with_hint(e, coerce_to);
3579                       e_diverges = self.diverges.get();
3580                       cause = self.misc(e.span);
3581                   } else {
3582                       // Otherwise, this is a break *without* a value. That's
3583                       // always legal, and is equivalent to `break ()`.
3584                       e_ty = tcx.mk_nil();
3585                       e_diverges = Diverges::Maybe;
3586                       cause = self.misc(expr.span);
3587                   }
3588
3589                   // Now that we have type-checked `expr_opt`, borrow
3590                   // the `enclosing_loops` field and let's coerce the
3591                   // type of `expr_opt` into what is expected.
3592                   let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
3593                   let ctxt = enclosing_breakables.find_breakable(target_id);
3594                   if let Some(ref mut coerce) = ctxt.coerce {
3595                       if let Some(ref e) = *expr_opt {
3596                           coerce.coerce(self, &cause, e, e_ty, e_diverges);
3597                       } else {
3598                           assert!(e_ty.is_nil());
3599                           coerce.coerce_forced_unit(self, &cause, &mut |_| (), true);
3600                       }
3601                   } else {
3602                       // If `ctxt.coerce` is `None`, we can just ignore
3603                       // the type of the expresison.  This is because
3604                       // either this was a break *without* a value, in
3605                       // which case it is always a legal type (`()`), or
3606                       // else an error would have been flagged by the
3607                       // `loops` pass for using break with an expression
3608                       // where you are not supposed to.
3609                       assert!(expr_opt.is_none() || self.tcx.sess.err_count() > 0);
3610                   }
3611
3612                   ctxt.may_break = true;
3613               } else {
3614                   // Otherwise, we failed to find the enclosing loop;
3615                   // this can only happen if the `break` was not
3616                   // inside a loop at all, which is caught by the
3617                   // loop-checking pass.
3618                   assert!(self.tcx.sess.err_count() > 0);
3619               }
3620
3621               // the type of a `break` is always `!`, since it diverges
3622               tcx.types.never
3623           }
3624           hir::ExprAgain(_) => { tcx.types.never }
3625           hir::ExprRet(ref expr_opt) => {
3626             if self.ret_coercion.is_none() {
3627                 struct_span_err!(self.tcx.sess, expr.span, E0572,
3628                                  "return statement outside of function body").emit();
3629             } else if let Some(ref e) = *expr_opt {
3630                 self.check_return_expr(e);
3631             } else {
3632                 let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
3633                 let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
3634                 coercion.coerce_forced_unit(self, &cause, &mut |_| (), true);
3635             }
3636             tcx.types.never
3637           }
3638           hir::ExprAssign(ref lhs, ref rhs) => {
3639             let lhs_ty = self.check_expr_with_lvalue_pref(&lhs, PreferMutLvalue);
3640
3641             let tcx = self.tcx;
3642             if !tcx.expr_is_lval(&lhs) {
3643                 struct_span_err!(
3644                     tcx.sess, expr.span, E0070,
3645                     "invalid left-hand side expression")
3646                 .span_label(
3647                     expr.span,
3648                     "left-hand of expression not valid")
3649                 .emit();
3650             }
3651
3652             let rhs_ty = self.check_expr_coercable_to_type(&rhs, lhs_ty);
3653
3654             self.require_type_is_sized(lhs_ty, lhs.span, traits::AssignmentLhsSized);
3655
3656             if lhs_ty.references_error() || rhs_ty.references_error() {
3657                 tcx.types.err
3658             } else {
3659                 tcx.mk_nil()
3660             }
3661           }
3662           hir::ExprIf(ref cond, ref then_expr, ref opt_else_expr) => {
3663               self.check_then_else(&cond, then_expr, opt_else_expr.as_ref().map(|e| &**e),
3664                                    expr.span, expected)
3665           }
3666           hir::ExprWhile(ref cond, ref body, _) => {
3667               let ctxt = BreakableCtxt {
3668                   // cannot use break with a value from a while loop
3669                   coerce: None,
3670                   may_break: true,
3671               };
3672
3673               self.with_breakable_ctxt(expr.id, ctxt, || {
3674                   self.check_expr_has_type(&cond, tcx.types.bool);
3675                   let cond_diverging = self.diverges.get();
3676                   self.check_block_no_value(&body);
3677
3678                   // We may never reach the body so it diverging means nothing.
3679                   self.diverges.set(cond_diverging);
3680               });
3681
3682               self.tcx.mk_nil()
3683           }
3684           hir::ExprLoop(ref body, _, source) => {
3685               let coerce = match source {
3686                   // you can only use break with a value from a normal `loop { }`
3687                   hir::LoopSource::Loop => {
3688                       let coerce_to = expected.coercion_target_type(self, body.span);
3689                       Some(CoerceMany::new(coerce_to))
3690                   }
3691
3692                   hir::LoopSource::WhileLet |
3693                   hir::LoopSource::ForLoop => {
3694                       None
3695                   }
3696               };
3697
3698               let ctxt = BreakableCtxt {
3699                   coerce: coerce,
3700                   may_break: false, // will get updated if/when we find a `break`
3701               };
3702
3703               let (ctxt, ()) = self.with_breakable_ctxt(expr.id, ctxt, || {
3704                   self.check_block_no_value(&body);
3705               });
3706
3707               if ctxt.may_break {
3708                   // No way to know whether it's diverging because
3709                   // of a `break` or an outer `break` or `return.
3710                   self.diverges.set(Diverges::Maybe);
3711               }
3712
3713               // If we permit break with a value, then result type is
3714               // the LUB of the breaks (possibly ! if none); else, it
3715               // is nil. This makes sense because infinite loops
3716               // (which would have type !) are only possible iff we
3717               // permit break with a value [1].
3718               assert!(ctxt.coerce.is_some() || ctxt.may_break); // [1]
3719               ctxt.coerce.map(|c| c.complete(self)).unwrap_or(self.tcx.mk_nil())
3720           }
3721           hir::ExprMatch(ref discrim, ref arms, match_src) => {
3722             self.check_match(expr, &discrim, arms, expected, match_src)
3723           }
3724           hir::ExprClosure(capture, ref decl, body_id, _) => {
3725               self.check_expr_closure(expr, capture, &decl, body_id, expected)
3726           }
3727           hir::ExprBlock(ref body) => {
3728             self.check_block_with_expected(&body, expected)
3729           }
3730           hir::ExprCall(ref callee, ref args) => {
3731               self.check_call(expr, &callee, args, expected)
3732           }
3733           hir::ExprMethodCall(name, ref tps, ref args) => {
3734               self.check_method_call(expr, name, args, &tps[..], expected, lvalue_pref)
3735           }
3736           hir::ExprCast(ref e, ref t) => {
3737             // Find the type of `e`. Supply hints based on the type we are casting to,
3738             // if appropriate.
3739             let t_cast = self.to_ty(t);
3740             let t_cast = self.resolve_type_vars_if_possible(&t_cast);
3741             let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
3742             let t_cast = self.resolve_type_vars_if_possible(&t_cast);
3743             let diverges = self.diverges.get();
3744
3745             // Eagerly check for some obvious errors.
3746             if t_expr.references_error() || t_cast.references_error() {
3747                 tcx.types.err
3748             } else {
3749                 // Defer other checks until we're done type checking.
3750                 let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
3751                 match cast::CastCheck::new(self, e, t_expr, diverges, t_cast, t.span, expr.span) {
3752                     Ok(cast_check) => {
3753                         deferred_cast_checks.push(cast_check);
3754                         t_cast
3755                     }
3756                     Err(ErrorReported) => {
3757                         tcx.types.err
3758                     }
3759                 }
3760             }
3761           }
3762           hir::ExprType(ref e, ref t) => {
3763             let typ = self.to_ty(&t);
3764             self.check_expr_eq_type(&e, typ);
3765             typ
3766           }
3767           hir::ExprArray(ref args) => {
3768               let uty = expected.to_option(self).and_then(|uty| {
3769                   match uty.sty {
3770                       ty::TyArray(ty, _) | ty::TySlice(ty) => Some(ty),
3771                       _ => None
3772                   }
3773               });
3774
3775               let element_ty = if !args.is_empty() {
3776                   let coerce_to = uty.unwrap_or_else(
3777                       || self.next_ty_var(TypeVariableOrigin::TypeInference(expr.span)));
3778                   let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
3779                   assert_eq!(self.diverges.get(), Diverges::Maybe);
3780                   for e in args {
3781                       let e_ty = self.check_expr_with_hint(e, coerce_to);
3782                       let cause = self.misc(e.span);
3783                       coerce.coerce(self, &cause, e, e_ty, self.diverges.get());
3784                   }
3785                   coerce.complete(self)
3786               } else {
3787                   self.next_ty_var(TypeVariableOrigin::TypeInference(expr.span))
3788               };
3789               tcx.mk_array(element_ty, args.len())
3790           }
3791           hir::ExprRepeat(ref element, count) => {
3792             let count = eval_length(self.tcx, count, "repeat count")
3793                   .unwrap_or(0);
3794
3795             let uty = match expected {
3796                 ExpectHasType(uty) => {
3797                     match uty.sty {
3798                         ty::TyArray(ty, _) | ty::TySlice(ty) => Some(ty),
3799                         _ => None
3800                     }
3801                 }
3802                 _ => None
3803             };
3804
3805             let (element_ty, t) = match uty {
3806                 Some(uty) => {
3807                     self.check_expr_coercable_to_type(&element, uty);
3808                     (uty, uty)
3809                 }
3810                 None => {
3811                     let t: Ty = self.next_ty_var(TypeVariableOrigin::MiscVariable(element.span));
3812                     let element_ty = self.check_expr_has_type(&element, t);
3813                     (element_ty, t)
3814                 }
3815             };
3816
3817             if count > 1 {
3818                 // For [foo, ..n] where n > 1, `foo` must have
3819                 // Copy type:
3820                 let lang_item = self.tcx.require_lang_item(lang_items::CopyTraitLangItem);
3821                 self.require_type_meets(t, expr.span, traits::RepeatVec, lang_item);
3822             }
3823
3824             if element_ty.references_error() {
3825                 tcx.types.err
3826             } else {
3827                 tcx.mk_array(t, count)
3828             }
3829           }
3830           hir::ExprTup(ref elts) => {
3831             let flds = expected.only_has_type(self).and_then(|ty| {
3832                 match ty.sty {
3833                     ty::TyTuple(ref flds, _) => Some(&flds[..]),
3834                     _ => None
3835                 }
3836             });
3837
3838             let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| {
3839                 let t = match flds {
3840                     Some(ref fs) if i < fs.len() => {
3841                         let ety = fs[i];
3842                         self.check_expr_coercable_to_type(&e, ety);
3843                         ety
3844                     }
3845                     _ => {
3846                         self.check_expr_with_expectation(&e, NoExpectation)
3847                     }
3848                 };
3849                 t
3850             });
3851             let tuple = tcx.mk_tup(elt_ts_iter, false);
3852             if tuple.references_error() {
3853                 tcx.types.err
3854             } else {
3855                 tuple
3856             }
3857           }
3858           hir::ExprStruct(ref qpath, ref fields, ref base_expr) => {
3859             self.check_expr_struct(expr, expected, qpath, fields, base_expr)
3860           }
3861           hir::ExprField(ref base, ref field) => {
3862             self.check_field(expr, lvalue_pref, &base, field)
3863           }
3864           hir::ExprTupField(ref base, idx) => {
3865             self.check_tup_field(expr, lvalue_pref, &base, idx)
3866           }
3867           hir::ExprIndex(ref base, ref idx) => {
3868               let base_t = self.check_expr_with_lvalue_pref(&base, lvalue_pref);
3869               let idx_t = self.check_expr(&idx);
3870
3871               if base_t.references_error() {
3872                   base_t
3873               } else if idx_t.references_error() {
3874                   idx_t
3875               } else {
3876                   let base_t = self.structurally_resolved_type(expr.span, base_t);
3877                   match self.lookup_indexing(expr, base, base_t, idx_t, lvalue_pref) {
3878                       Some((index_ty, element_ty)) => {
3879                           self.demand_coerce(idx, idx_t, index_ty);
3880                           element_ty
3881                       }
3882                       None => {
3883                           let mut err = self.type_error_struct(
3884                               expr.span,
3885                               |actual| {
3886                                   format!("cannot index a value of type `{}`",
3887                                           actual)
3888                               },
3889                               base_t);
3890                           // Try to give some advice about indexing tuples.
3891                           if let ty::TyTuple(..) = base_t.sty {
3892                               let mut needs_note = true;
3893                               // If the index is an integer, we can show the actual
3894                               // fixed expression:
3895                               if let hir::ExprLit(ref lit) = idx.node {
3896                                   if let ast::LitKind::Int(i,
3897                                             ast::LitIntType::Unsuffixed) = lit.node {
3898                                       let snip = tcx.sess.codemap().span_to_snippet(base.span);
3899                                       if let Ok(snip) = snip {
3900                                           err.span_suggestion(expr.span,
3901                                                               "to access tuple elements, use",
3902                                                               format!("{}.{}", snip, i));
3903                                           needs_note = false;
3904                                       }
3905                                   }
3906                               }
3907                               if needs_note {
3908                                   err.help("to access tuple elements, use tuple indexing \
3909                                             syntax (e.g. `tuple.0`)");
3910                               }
3911                           }
3912                           err.emit();
3913                           self.tcx.types.err
3914                       }
3915                   }
3916               }
3917            }
3918         }
3919     }
3920
3921     // Finish resolving a path in a struct expression or pattern `S::A { .. }` if necessary.
3922     // The newly resolved definition is written into `type_dependent_defs`.
3923     fn finish_resolving_struct_path(&self,
3924                                     qpath: &hir::QPath,
3925                                     path_span: Span,
3926                                     node_id: ast::NodeId)
3927                                     -> (Def, Ty<'tcx>)
3928     {
3929         match *qpath {
3930             hir::QPath::Resolved(ref maybe_qself, ref path) => {
3931                 let opt_self_ty = maybe_qself.as_ref().map(|qself| self.to_ty(qself));
3932                 let ty = AstConv::def_to_ty(self, opt_self_ty, path, true);
3933                 (path.def, ty)
3934             }
3935             hir::QPath::TypeRelative(ref qself, ref segment) => {
3936                 let ty = self.to_ty(qself);
3937
3938                 let def = if let hir::TyPath(hir::QPath::Resolved(_, ref path)) = qself.node {
3939                     path.def
3940                 } else {
3941                     Def::Err
3942                 };
3943                 let (ty, def) = AstConv::associated_path_def_to_ty(self, node_id, path_span,
3944                                                                    ty, def, segment);
3945
3946                 // Write back the new resolution.
3947                 self.tables.borrow_mut().type_dependent_defs.insert(node_id, def);
3948
3949                 (def, ty)
3950             }
3951         }
3952     }
3953
3954     // Resolve associated value path into a base type and associated constant or method definition.
3955     // The newly resolved definition is written into `type_dependent_defs`.
3956     pub fn resolve_ty_and_def_ufcs<'b>(&self,
3957                                        qpath: &'b hir::QPath,
3958                                        node_id: ast::NodeId,
3959                                        span: Span)
3960                                        -> (Def, Option<Ty<'tcx>>, &'b [hir::PathSegment])
3961     {
3962         let (ty, item_segment) = match *qpath {
3963             hir::QPath::Resolved(ref opt_qself, ref path) => {
3964                 return (path.def,
3965                         opt_qself.as_ref().map(|qself| self.to_ty(qself)),
3966                         &path.segments[..]);
3967             }
3968             hir::QPath::TypeRelative(ref qself, ref segment) => {
3969                 (self.to_ty(qself), segment)
3970             }
3971         };
3972         let item_name = item_segment.name;
3973         let def = match self.resolve_ufcs(span, item_name, ty, node_id) {
3974             Ok(def) => def,
3975             Err(error) => {
3976                 let def = match error {
3977                     method::MethodError::PrivateMatch(def) => def,
3978                     _ => Def::Err,
3979                 };
3980                 if item_name != keywords::Invalid.name() {
3981                     self.report_method_error(span, ty, item_name, None, error, None);
3982                 }
3983                 def
3984             }
3985         };
3986
3987         // Write back the new resolution.
3988         self.tables.borrow_mut().type_dependent_defs.insert(node_id, def);
3989         (def, Some(ty), slice::ref_slice(&**item_segment))
3990     }
3991
3992     pub fn check_decl_initializer(&self,
3993                                   local: &'gcx hir::Local,
3994                                   init: &'gcx hir::Expr) -> Ty<'tcx>
3995     {
3996         let ref_bindings = local.pat.contains_ref_binding();
3997
3998         let local_ty = self.local_ty(init.span, local.id);
3999         if let Some(m) = ref_bindings {
4000             // Somewhat subtle: if we have a `ref` binding in the pattern,
4001             // we want to avoid introducing coercions for the RHS. This is
4002             // both because it helps preserve sanity and, in the case of
4003             // ref mut, for soundness (issue #23116). In particular, in
4004             // the latter case, we need to be clear that the type of the
4005             // referent for the reference that results is *equal to* the
4006             // type of the lvalue it is referencing, and not some
4007             // supertype thereof.
4008             let init_ty = self.check_expr_with_lvalue_pref(init, LvaluePreference::from_mutbl(m));
4009             self.demand_eqtype(init.span, init_ty, local_ty);
4010             init_ty
4011         } else {
4012             self.check_expr_coercable_to_type(init, local_ty)
4013         }
4014     }
4015
4016     pub fn check_decl_local(&self, local: &'gcx hir::Local)  {
4017         let t = self.local_ty(local.span, local.id);
4018         self.write_ty(local.id, t);
4019
4020         if let Some(ref init) = local.init {
4021             let init_ty = self.check_decl_initializer(local, &init);
4022             if init_ty.references_error() {
4023                 self.write_ty(local.id, init_ty);
4024             }
4025         }
4026
4027         self.check_pat(&local.pat, t);
4028         let pat_ty = self.node_ty(local.pat.id);
4029         if pat_ty.references_error() {
4030             self.write_ty(local.id, pat_ty);
4031         }
4032     }
4033
4034     pub fn check_stmt(&self, stmt: &'gcx hir::Stmt) {
4035         // Don't do all the complex logic below for DeclItem.
4036         match stmt.node {
4037             hir::StmtDecl(ref decl, id) => {
4038                 match decl.node {
4039                     hir::DeclLocal(_) => {}
4040                     hir::DeclItem(_) => {
4041                         self.write_nil(id);
4042                         return;
4043                     }
4044                 }
4045             }
4046             hir::StmtExpr(..) | hir::StmtSemi(..) => {}
4047         }
4048
4049         self.warn_if_unreachable(stmt.node.id(), stmt.span, "statement");
4050
4051         // Hide the outer diverging and has_errors flags.
4052         let old_diverges = self.diverges.get();
4053         let old_has_errors = self.has_errors.get();
4054         self.diverges.set(Diverges::Maybe);
4055         self.has_errors.set(false);
4056
4057         let (node_id, _span) = match stmt.node {
4058             hir::StmtDecl(ref decl, id) => {
4059                 let span = match decl.node {
4060                     hir::DeclLocal(ref l) => {
4061                         self.check_decl_local(&l);
4062                         l.span
4063                     }
4064                     hir::DeclItem(_) => {/* ignore for now */
4065                         DUMMY_SP
4066                     }
4067                 };
4068                 (id, span)
4069             }
4070             hir::StmtExpr(ref expr, id) => {
4071                 // Check with expected type of ()
4072                 self.check_expr_has_type(&expr, self.tcx.mk_nil());
4073                 (id, expr.span)
4074             }
4075             hir::StmtSemi(ref expr, id) => {
4076                 self.check_expr(&expr);
4077                 (id, expr.span)
4078             }
4079         };
4080
4081         if self.has_errors.get() {
4082             self.write_error(node_id);
4083         } else {
4084             self.write_nil(node_id);
4085         }
4086
4087         // Combine the diverging and has_error flags.
4088         self.diverges.set(self.diverges.get() | old_diverges);
4089         self.has_errors.set(self.has_errors.get() | old_has_errors);
4090     }
4091
4092     pub fn check_block_no_value(&self, blk: &'gcx hir::Block)  {
4093         let unit = self.tcx.mk_nil();
4094         let ty = self.check_block_with_expected(blk, ExpectHasType(unit));
4095
4096         // if the block produces a `!` value, that can always be
4097         // (effectively) coerced to unit.
4098         if !ty.is_never() {
4099             self.demand_suptype(blk.span, unit, ty);
4100         }
4101     }
4102
4103     fn check_block_with_expected(&self,
4104                                  blk: &'gcx hir::Block,
4105                                  expected: Expectation<'tcx>) -> Ty<'tcx> {
4106         let prev = {
4107             let mut fcx_ps = self.ps.borrow_mut();
4108             let unsafety_state = fcx_ps.recurse(blk);
4109             replace(&mut *fcx_ps, unsafety_state)
4110         };
4111
4112         // In some cases, blocks have just one exit, but other blocks
4113         // can be targeted by multiple breaks. This cannot happen in
4114         // normal Rust syntax today, but it can happen when we desugar
4115         // a `do catch { ... }` expression.
4116         //
4117         // Example 1:
4118         //
4119         //    'a: { if true { break 'a Err(()); } Ok(()) }
4120         //
4121         // Here we would wind up with two coercions, one from
4122         // `Err(())` and the other from the tail expression
4123         // `Ok(())`. If the tail expression is omitted, that's a
4124         // "forced unit" -- unless the block diverges, in which
4125         // case we can ignore the tail expression (e.g., `'a: {
4126         // break 'a 22; }` would not force the type of the block
4127         // to be `()`).
4128         let tail_expr = blk.expr.as_ref();
4129         let coerce_to_ty = expected.coercion_target_type(self, blk.span);
4130         let coerce = if blk.targeted_by_break {
4131             CoerceMany::new(coerce_to_ty)
4132         } else {
4133             let tail_expr: &[P<hir::Expr>] = match tail_expr {
4134                 Some(e) => ref_slice(e),
4135                 None => &[],
4136             };
4137             CoerceMany::with_coercion_sites(coerce_to_ty, tail_expr)
4138         };
4139
4140         let ctxt = BreakableCtxt {
4141             coerce: Some(coerce),
4142             may_break: false,
4143         };
4144
4145         let (ctxt, ()) = self.with_breakable_ctxt(blk.id, ctxt, || {
4146             for s in &blk.stmts {
4147                 self.check_stmt(s);
4148             }
4149
4150             // check the tail expression **without** holding the
4151             // `enclosing_breakables` lock below.
4152             let tail_expr_ty = tail_expr.map(|t| self.check_expr_with_expectation(t, expected));
4153
4154             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4155             let mut ctxt = enclosing_breakables.find_breakable(blk.id);
4156             let mut coerce = ctxt.coerce.as_mut().unwrap();
4157             if let Some(tail_expr_ty) = tail_expr_ty {
4158                 let tail_expr = tail_expr.unwrap();
4159                 coerce.coerce(self,
4160                               &self.misc(tail_expr.span),
4161                               tail_expr,
4162                               tail_expr_ty,
4163                               self.diverges.get());
4164             } else {
4165                 // Subtle: if there is no explicit tail expression,
4166                 // that is typically equivalent to a tail expression
4167                 // of `()` -- except if the block diverges. In that
4168                 // case, there is no value supplied from the tail
4169                 // expression (assuming there are no other breaks,
4170                 // this implies that the type of the block will be
4171                 // `!`).
4172                 //
4173                 // #41425 -- label the implicit `()` as being the
4174                 // "found type" here, rather than the "expected type".
4175                 if !self.diverges.get().always() {
4176                     coerce.coerce_forced_unit(self, &self.misc(blk.span), &mut |err| {
4177                         if let Some(expected_ty) = expected.only_has_type(self) {
4178                             self.consider_hint_about_removing_semicolon(blk,
4179                                                                         expected_ty,
4180                                                                         err);
4181                         }
4182                     }, false);
4183                 }
4184             }
4185         });
4186
4187         let mut ty = ctxt.coerce.unwrap().complete(self);
4188
4189         if self.has_errors.get() || ty.references_error() {
4190             ty = self.tcx.types.err
4191         }
4192
4193         self.write_ty(blk.id, ty);
4194
4195         *self.ps.borrow_mut() = prev;
4196         ty
4197     }
4198
4199     /// A common error is to add an extra semicolon:
4200     ///
4201     /// ```
4202     /// fn foo() -> usize {
4203     ///     22;
4204     /// }
4205     /// ```
4206     ///
4207     /// This routine checks if the final statement in a block is an
4208     /// expression with an explicit semicolon whose type is compatible
4209     /// with `expected_ty`. If so, it suggests removing the semicolon.
4210     fn consider_hint_about_removing_semicolon(&self,
4211                                               blk: &'gcx hir::Block,
4212                                               expected_ty: Ty<'tcx>,
4213                                               err: &mut DiagnosticBuilder) {
4214         // Be helpful when the user wrote `{... expr;}` and
4215         // taking the `;` off is enough to fix the error.
4216         let last_stmt = match blk.stmts.last() {
4217             Some(s) => s,
4218             None => return,
4219         };
4220         let last_expr = match last_stmt.node {
4221             hir::StmtSemi(ref e, _) => e,
4222             _ => return,
4223         };
4224         let last_expr_ty = self.expr_ty(last_expr);
4225         if self.can_sub_types(last_expr_ty, expected_ty).is_err() {
4226             return;
4227         }
4228         let original_span = original_sp(last_stmt.span, blk.span);
4229         let span_semi = Span {
4230             lo: original_span.hi - BytePos(1),
4231             hi: original_span.hi,
4232             ctxt: original_span.ctxt,
4233         };
4234         err.span_help(span_semi, "consider removing this semicolon:");
4235     }
4236
4237     // Instantiates the given path, which must refer to an item with the given
4238     // number of type parameters and type.
4239     pub fn instantiate_value_path(&self,
4240                                   segments: &[hir::PathSegment],
4241                                   opt_self_ty: Option<Ty<'tcx>>,
4242                                   def: Def,
4243                                   span: Span,
4244                                   node_id: ast::NodeId)
4245                                   -> Ty<'tcx> {
4246         debug!("instantiate_value_path(path={:?}, def={:?}, node_id={})",
4247                segments,
4248                def,
4249                node_id);
4250
4251         // We need to extract the type parameters supplied by the user in
4252         // the path `path`. Due to the current setup, this is a bit of a
4253         // tricky-process; the problem is that resolve only tells us the
4254         // end-point of the path resolution, and not the intermediate steps.
4255         // Luckily, we can (at least for now) deduce the intermediate steps
4256         // just from the end-point.
4257         //
4258         // There are basically four cases to consider:
4259         //
4260         // 1. Reference to a constructor of enum variant or struct:
4261         //
4262         //        struct Foo<T>(...)
4263         //        enum E<T> { Foo(...) }
4264         //
4265         //    In these cases, the parameters are declared in the type
4266         //    space.
4267         //
4268         // 2. Reference to a fn item or a free constant:
4269         //
4270         //        fn foo<T>() { }
4271         //
4272         //    In this case, the path will again always have the form
4273         //    `a::b::foo::<T>` where only the final segment should have
4274         //    type parameters. However, in this case, those parameters are
4275         //    declared on a value, and hence are in the `FnSpace`.
4276         //
4277         // 3. Reference to a method or an associated constant:
4278         //
4279         //        impl<A> SomeStruct<A> {
4280         //            fn foo<B>(...)
4281         //        }
4282         //
4283         //    Here we can have a path like
4284         //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
4285         //    may appear in two places. The penultimate segment,
4286         //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
4287         //    final segment, `foo::<B>` contains parameters in fn space.
4288         //
4289         // 4. Reference to a local variable
4290         //
4291         //    Local variables can't have any type parameters.
4292         //
4293         // The first step then is to categorize the segments appropriately.
4294
4295         assert!(!segments.is_empty());
4296
4297         let mut ufcs_associated = None;
4298         let mut type_segment = None;
4299         let mut fn_segment = None;
4300         match def {
4301             // Case 1. Reference to a struct/variant constructor.
4302             Def::StructCtor(def_id, ..) |
4303             Def::VariantCtor(def_id, ..) => {
4304                 // Everything but the final segment should have no
4305                 // parameters at all.
4306                 let mut generics = self.tcx.generics_of(def_id);
4307                 if let Some(def_id) = generics.parent {
4308                     // Variant and struct constructors use the
4309                     // generics of their parent type definition.
4310                     generics = self.tcx.generics_of(def_id);
4311                 }
4312                 type_segment = Some((segments.last().unwrap(), generics));
4313             }
4314
4315             // Case 2. Reference to a top-level value.
4316             Def::Fn(def_id) |
4317             Def::Const(def_id) |
4318             Def::Static(def_id, _) => {
4319                 fn_segment = Some((segments.last().unwrap(),
4320                                    self.tcx.generics_of(def_id)));
4321             }
4322
4323             // Case 3. Reference to a method or associated const.
4324             Def::Method(def_id) |
4325             Def::AssociatedConst(def_id) => {
4326                 let container = self.tcx.associated_item(def_id).container;
4327                 match container {
4328                     ty::TraitContainer(trait_did) => {
4329                         callee::check_legal_trait_for_method_call(self.tcx, span, trait_did)
4330                     }
4331                     ty::ImplContainer(_) => {}
4332                 }
4333
4334                 let generics = self.tcx.generics_of(def_id);
4335                 if segments.len() >= 2 {
4336                     let parent_generics = self.tcx.generics_of(generics.parent.unwrap());
4337                     type_segment = Some((&segments[segments.len() - 2], parent_generics));
4338                 } else {
4339                     // `<T>::assoc` will end up here, and so can `T::assoc`.
4340                     let self_ty = opt_self_ty.expect("UFCS sugared assoc missing Self");
4341                     ufcs_associated = Some((container, self_ty));
4342                 }
4343                 fn_segment = Some((segments.last().unwrap(), generics));
4344             }
4345
4346             // Case 4. Local variable, no generics.
4347             Def::Local(..) | Def::Upvar(..) => {}
4348
4349             _ => bug!("unexpected definition: {:?}", def),
4350         }
4351
4352         debug!("type_segment={:?} fn_segment={:?}", type_segment, fn_segment);
4353
4354         // Now that we have categorized what space the parameters for each
4355         // segment belong to, let's sort out the parameters that the user
4356         // provided (if any) into their appropriate spaces. We'll also report
4357         // errors if type parameters are provided in an inappropriate place.
4358         let poly_segments = type_segment.is_some() as usize +
4359                             fn_segment.is_some() as usize;
4360         AstConv::prohibit_type_params(self, &segments[..segments.len() - poly_segments]);
4361
4362         match def {
4363             Def::Local(def_id) | Def::Upvar(def_id, ..) => {
4364                 let nid = self.tcx.hir.as_local_node_id(def_id).unwrap();
4365                 let ty = self.local_ty(span, nid);
4366                 let ty = self.normalize_associated_types_in(span, &ty);
4367                 self.write_ty(node_id, ty);
4368                 return ty;
4369             }
4370             _ => {}
4371         }
4372
4373         // Now we have to compare the types that the user *actually*
4374         // provided against the types that were *expected*. If the user
4375         // did not provide any types, then we want to substitute inference
4376         // variables. If the user provided some types, we may still need
4377         // to add defaults. If the user provided *too many* types, that's
4378         // a problem.
4379         self.check_path_parameter_count(span, &mut type_segment);
4380         self.check_path_parameter_count(span, &mut fn_segment);
4381
4382         let (fn_start, has_self) = match (type_segment, fn_segment) {
4383             (_, Some((_, generics))) => {
4384                 (generics.parent_count(), generics.has_self)
4385             }
4386             (Some((_, generics)), None) => {
4387                 (generics.own_count(), generics.has_self)
4388             }
4389             (None, None) => (0, false)
4390         };
4391         let substs = Substs::for_item(self.tcx, def.def_id(), |def, _| {
4392             let mut i = def.index as usize;
4393
4394             let segment = if i < fn_start {
4395                 i -= has_self as usize;
4396                 type_segment
4397             } else {
4398                 i -= fn_start;
4399                 fn_segment
4400             };
4401             let lifetimes = match segment.map(|(s, _)| &s.parameters) {
4402                 Some(&hir::AngleBracketedParameters(ref data)) => &data.lifetimes[..],
4403                 Some(&hir::ParenthesizedParameters(_)) => bug!(),
4404                 None => &[]
4405             };
4406
4407             if let Some(lifetime) = lifetimes.get(i) {
4408                 AstConv::ast_region_to_region(self, lifetime, Some(def))
4409             } else {
4410                 self.re_infer(span, Some(def)).unwrap()
4411             }
4412         }, |def, substs| {
4413             let mut i = def.index as usize;
4414
4415             let segment = if i < fn_start {
4416                 // Handle Self first, so we can adjust the index to match the AST.
4417                 if has_self && i == 0 {
4418                     return opt_self_ty.unwrap_or_else(|| {
4419                         self.type_var_for_def(span, def, substs)
4420                     });
4421                 }
4422                 i -= has_self as usize;
4423                 type_segment
4424             } else {
4425                 i -= fn_start;
4426                 fn_segment
4427             };
4428             let (types, infer_types) = match segment.map(|(s, _)| &s.parameters) {
4429                 Some(&hir::AngleBracketedParameters(ref data)) => {
4430                     (&data.types[..], data.infer_types)
4431                 }
4432                 Some(&hir::ParenthesizedParameters(_)) => bug!(),
4433                 None => (&[][..], true)
4434             };
4435
4436             // Skip over the lifetimes in the same segment.
4437             if let Some((_, generics)) = segment {
4438                 i -= generics.regions.len();
4439             }
4440
4441             if let Some(ast_ty) = types.get(i) {
4442                 // A provided type parameter.
4443                 self.to_ty(ast_ty)
4444             } else if !infer_types && def.has_default {
4445                 // No type parameter provided, but a default exists.
4446                 let default = self.tcx.type_of(def.def_id);
4447                 self.normalize_ty(
4448                     span,
4449                     default.subst_spanned(self.tcx, substs, Some(span))
4450                 )
4451             } else {
4452                 // No type parameters were provided, we can infer all.
4453                 // This can also be reached in some error cases:
4454                 // We prefer to use inference variables instead of
4455                 // TyError to let type inference recover somewhat.
4456                 self.type_var_for_def(span, def, substs)
4457             }
4458         });
4459
4460         // The things we are substituting into the type should not contain
4461         // escaping late-bound regions, and nor should the base type scheme.
4462         let ty = self.tcx.type_of(def.def_id());
4463         assert!(!substs.has_escaping_regions());
4464         assert!(!ty.has_escaping_regions());
4465
4466         // Add all the obligations that are required, substituting and
4467         // normalized appropriately.
4468         let bounds = self.instantiate_bounds(span, def.def_id(), &substs);
4469         self.add_obligations_for_parameters(
4470             traits::ObligationCause::new(span, self.body_id, traits::ItemObligation(def.def_id())),
4471             &bounds);
4472
4473         // Substitute the values for the type parameters into the type of
4474         // the referenced item.
4475         let ty_substituted = self.instantiate_type_scheme(span, &substs, &ty);
4476
4477         if let Some((ty::ImplContainer(impl_def_id), self_ty)) = ufcs_associated {
4478             // In the case of `Foo<T>::method` and `<Foo<T>>::method`, if `method`
4479             // is inherent, there is no `Self` parameter, instead, the impl needs
4480             // type parameters, which we can infer by unifying the provided `Self`
4481             // with the substituted impl type.
4482             let ty = self.tcx.type_of(impl_def_id);
4483
4484             let impl_ty = self.instantiate_type_scheme(span, &substs, &ty);
4485             match self.sub_types(false, &self.misc(span), self_ty, impl_ty) {
4486                 Ok(ok) => self.register_infer_ok_obligations(ok),
4487                 Err(_) => {
4488                     span_bug!(span,
4489                         "instantiate_value_path: (UFCS) {:?} was a subtype of {:?} but now is not?",
4490                         self_ty,
4491                         impl_ty);
4492                 }
4493             }
4494         }
4495
4496         debug!("instantiate_value_path: type of {:?} is {:?}",
4497                node_id,
4498                ty_substituted);
4499         self.write_substs(node_id, substs);
4500         ty_substituted
4501     }
4502
4503     /// Report errors if the provided parameters are too few or too many.
4504     fn check_path_parameter_count(&self,
4505                                   span: Span,
4506                                   segment: &mut Option<(&hir::PathSegment, &ty::Generics)>) {
4507         let (lifetimes, types, infer_types, bindings) = {
4508             match segment.map(|(s, _)| &s.parameters) {
4509                 Some(&hir::AngleBracketedParameters(ref data)) => {
4510                     (&data.lifetimes[..], &data.types[..], data.infer_types, &data.bindings[..])
4511                 }
4512                 Some(&hir::ParenthesizedParameters(_)) => {
4513                     AstConv::prohibit_parenthesized_params(self, &segment.as_ref().unwrap().0,
4514                                                            false);
4515                     (&[][..], &[][..], true, &[][..])
4516                 }
4517                 None => (&[][..], &[][..], true, &[][..])
4518             }
4519         };
4520
4521         let count_lifetime_params = |n| {
4522             format!("{} lifetime parameter{}", n, if n == 1 { "" } else { "s" })
4523         };
4524         let count_type_params = |n| {
4525             format!("{} type parameter{}", n, if n == 1 { "" } else { "s" })
4526         };
4527
4528         // Check provided lifetime parameters.
4529         let lifetime_defs = segment.map_or(&[][..], |(_, generics)| &generics.regions);
4530         if lifetimes.len() > lifetime_defs.len() {
4531             let expected_text = count_lifetime_params(lifetime_defs.len());
4532             let actual_text = count_lifetime_params(lifetimes.len());
4533             struct_span_err!(self.tcx.sess, span, E0088,
4534                              "too many lifetime parameters provided: \
4535                               expected at most {}, found {}",
4536                              expected_text, actual_text)
4537                 .span_label(span, format!("expected {}", expected_text))
4538                 .emit();
4539         } else if lifetimes.len() > 0 && lifetimes.len() < lifetime_defs.len() {
4540             let expected_text = count_lifetime_params(lifetime_defs.len());
4541             let actual_text = count_lifetime_params(lifetimes.len());
4542             struct_span_err!(self.tcx.sess, span, E0090,
4543                              "too few lifetime parameters provided: \
4544                               expected {}, found {}",
4545                              expected_text, actual_text)
4546                 .span_label(span, format!("expected {}", expected_text))
4547                 .emit();
4548         }
4549
4550         // The case where there is not enough lifetime parameters is not checked,
4551         // because this is not possible - a function never takes lifetime parameters.
4552         // See discussion for Pull Request 36208.
4553
4554         // Check provided type parameters.
4555         let type_defs = segment.map_or(&[][..], |(_, generics)| {
4556             if generics.parent.is_none() {
4557                 &generics.types[generics.has_self as usize..]
4558             } else {
4559                 &generics.types
4560             }
4561         });
4562         let required_len = type_defs.iter().take_while(|d| !d.has_default).count();
4563         if types.len() > type_defs.len() {
4564             let span = types[type_defs.len()].span;
4565             let expected_text = count_type_params(type_defs.len());
4566             let actual_text = count_type_params(types.len());
4567             struct_span_err!(self.tcx.sess, span, E0087,
4568                              "too many type parameters provided: \
4569                               expected at most {}, found {}",
4570                              expected_text, actual_text)
4571                 .span_label(span, format!("expected {}", expected_text))
4572                 .emit();
4573
4574             // To prevent derived errors to accumulate due to extra
4575             // type parameters, we force instantiate_value_path to
4576             // use inference variables instead of the provided types.
4577             *segment = None;
4578         } else if !infer_types && types.len() < required_len {
4579             let expected_text = count_type_params(required_len);
4580             let actual_text = count_type_params(types.len());
4581             struct_span_err!(self.tcx.sess, span, E0089,
4582                              "too few type parameters provided: \
4583                               expected {}, found {}",
4584                              expected_text, actual_text)
4585                 .span_label(span, format!("expected {}", expected_text))
4586                 .emit();
4587         }
4588
4589         if !bindings.is_empty() {
4590             span_err!(self.tcx.sess, bindings[0].span, E0182,
4591                       "unexpected binding of associated item in expression path \
4592                        (only allowed in type paths)");
4593         }
4594     }
4595
4596     fn structurally_resolve_type_or_else<F>(&self, sp: Span, ty: Ty<'tcx>, f: F)
4597                                             -> Ty<'tcx>
4598         where F: Fn() -> Ty<'tcx>
4599     {
4600         let mut ty = self.resolve_type_vars_with_obligations(ty);
4601
4602         if ty.is_ty_var() {
4603             let alternative = f();
4604
4605             // If not, error.
4606             if alternative.is_ty_var() || alternative.references_error() {
4607                 if !self.is_tainted_by_errors() {
4608                     self.type_error_message(sp, |_actual| {
4609                         "the type of this value must be known in this context".to_string()
4610                     }, ty);
4611                 }
4612                 self.demand_suptype(sp, self.tcx.types.err, ty);
4613                 ty = self.tcx.types.err;
4614             } else {
4615                 self.demand_suptype(sp, alternative, ty);
4616                 ty = alternative;
4617             }
4618         }
4619
4620         ty
4621     }
4622
4623     // Resolves `typ` by a single level if `typ` is a type variable.  If no
4624     // resolution is possible, then an error is reported.
4625     pub fn structurally_resolved_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
4626         self.structurally_resolve_type_or_else(sp, ty, || {
4627             self.tcx.types.err
4628         })
4629     }
4630
4631     fn with_breakable_ctxt<F: FnOnce() -> R, R>(&self, id: ast::NodeId,
4632                                         ctxt: BreakableCtxt<'gcx, 'tcx>, f: F)
4633                                    -> (BreakableCtxt<'gcx, 'tcx>, R) {
4634         let index;
4635         {
4636             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4637             index = enclosing_breakables.stack.len();
4638             enclosing_breakables.by_id.insert(id, index);
4639             enclosing_breakables.stack.push(ctxt);
4640         }
4641         let result = f();
4642         let ctxt = {
4643             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4644             debug_assert!(enclosing_breakables.stack.len() == index + 1);
4645             enclosing_breakables.by_id.remove(&id).expect("missing breakable context");
4646             enclosing_breakables.stack.pop().expect("missing breakable context")
4647         };
4648         (ctxt, result)
4649     }
4650 }
4651
4652 pub fn check_bounds_are_used<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
4653                                        generics: &hir::Generics,
4654                                        ty: Ty<'tcx>) {
4655     debug!("check_bounds_are_used(n_tps={}, ty={:?})",
4656            generics.ty_params.len(),  ty);
4657
4658     // make a vector of booleans initially false, set to true when used
4659     if generics.ty_params.is_empty() { return; }
4660     let mut tps_used = vec![false; generics.ty_params.len()];
4661
4662     for leaf_ty in ty.walk() {
4663         if let ty::TyParam(ParamTy {idx, ..}) = leaf_ty.sty {
4664             debug!("Found use of ty param num {}", idx);
4665             tps_used[idx as usize - generics.lifetimes.len()] = true;
4666         }
4667     }
4668
4669     for (&used, param) in tps_used.iter().zip(&generics.ty_params) {
4670         if !used {
4671             struct_span_err!(tcx.sess, param.span, E0091,
4672                 "type parameter `{}` is unused",
4673                 param.name)
4674                 .span_label(param.span, "unused type parameter")
4675                 .emit();
4676         }
4677     }
4678 }