]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/mod.rs
Auto merge of #27368 - alexcrichton:deprecate-net-methods, r=aturon
[rust.git] / src / librustc_typeck / check / mod.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 /*
12
13 # check.rs
14
15 Within the check phase of type check, we check each item one at a time
16 (bodies of function expressions are checked as part of the containing
17 function).  Inference is used to supply types wherever they are
18 unknown.
19
20 By far the most complex case is checking the body of a function. This
21 can be broken down into several distinct phases:
22
23 - gather: creates type variables to represent the type of each local
24   variable and pattern binding.
25
26 - main: the main pass does the lion's share of the work: it
27   determines the types of all expressions, resolves
28   methods, checks for most invalid conditions, and so forth.  In
29   some cases, where a type is unknown, it may create a type or region
30   variable and use that as the type of an expression.
31
32   In the process of checking, various constraints will be placed on
33   these type variables through the subtyping relationships requested
34   through the `demand` module.  The `infer` module is in charge
35   of resolving those constraints.
36
37 - regionck: after main is complete, the regionck pass goes over all
38   types looking for regions and making sure that they did not escape
39   into places they are not in scope.  This may also influence the
40   final assignments of the various region variables if there is some
41   flexibility.
42
43 - vtable: find and records the impls to use for each trait bound that
44   appears on a type parameter.
45
46 - writeback: writes the final types within a function body, replacing
47   type variables with their final inferred types.  These final types
48   are written into the `tcx.node_types` table, which should *never* contain
49   any reference to a type variable.
50
51 ## Intermediate types
52
53 While type checking a function, the intermediate types for the
54 expressions, blocks, and so forth contained within the function are
55 stored in `fcx.node_types` and `fcx.item_substs`.  These types
56 may contain unresolved type variables.  After type checking is
57 complete, the functions in the writeback module are used to take the
58 types from this table, resolve them, and then write them into their
59 permanent home in the type context `ccx.tcx`.
60
61 This means that during inferencing you should use `fcx.write_ty()`
62 and `fcx.expr_ty()` / `fcx.node_ty()` to write/obtain the types of
63 nodes within the function.
64
65 The types of top-level items, which never contain unbound type
66 variables, are stored directly into the `tcx` tables.
67
68 n.b.: A type variable is not the same thing as a type parameter.  A
69 type variable is rather an "instance" of a type parameter: that is,
70 given a generic function `fn foo<T>(t: T)`: while checking the
71 function `foo`, the type `ty_param(0)` refers to the type `T`, which
72 is treated in abstract.  When `foo()` is called, however, `T` will be
73 substituted for a fresh type variable `N`.  This variable will
74 eventually be resolved to some concrete type (which might itself be
75 type parameter).
76
77 */
78
79 pub use self::LvaluePreference::*;
80 pub use self::Expectation::*;
81 pub use self::compare_method::{compare_impl_method, compare_const_impl};
82 use self::TupleArgumentsFlag::*;
83
84 use astconv::{self, ast_region_to_region, ast_ty_to_ty, AstConv, PathParamMode};
85 use check::_match::pat_ctxt;
86 use fmt_macros::{Parser, Piece, Position};
87 use middle::astconv_util::{check_path_args, NO_TPS, NO_REGIONS};
88 use middle::def;
89 use middle::infer;
90 use middle::infer::type_variable;
91 use middle::pat_util::{self, pat_id_map};
92 use middle::privacy::{AllPublic, LastMod};
93 use middle::region::{self, CodeExtent};
94 use middle::subst::{self, Subst, Substs, VecPerParamSpace, ParamSpace, TypeSpace};
95 use middle::traits::{self, report_fulfillment_errors};
96 use middle::ty::{FnSig, GenericPredicates, TypeScheme};
97 use middle::ty::{Disr, ParamTy, ParameterEnvironment};
98 use middle::ty::{self, HasTypeFlags, RegionEscape, ToPolyTraitRef, Ty};
99 use middle::ty::{MethodCall, MethodCallee};
100 use middle::ty_fold::{TypeFolder, TypeFoldable};
101 use require_c_abi_if_variadic;
102 use rscope::{ElisionFailureInfo, RegionScope};
103 use session::Session;
104 use {CrateCtxt, lookup_full_def, require_same_types};
105 use TypeAndSubsts;
106 use lint;
107 use util::common::{block_query, ErrorReported, indenter, loop_query};
108 use util::nodemap::{DefIdMap, FnvHashMap, NodeMap};
109 use util::lev_distance::lev_distance;
110
111 use std::cell::{Cell, Ref, RefCell};
112 use std::collections::HashSet;
113 use std::mem::replace;
114 use std::slice;
115 use syntax::{self, abi, attr};
116 use syntax::attr::AttrMetaMethods;
117 use syntax::ast::{self, DefId, Visibility};
118 use syntax::ast_util::{self, local_def};
119 use syntax::codemap::{self, Span};
120 use syntax::feature_gate::emit_feature_err;
121 use syntax::owned_slice::OwnedSlice;
122 use syntax::parse::token::{self, InternedString};
123 use syntax::print::pprust;
124 use syntax::ptr::P;
125 use syntax::visit::{self, Visitor};
126
127 mod assoc;
128 pub mod dropck;
129 pub mod _match;
130 pub mod writeback;
131 pub mod regionck;
132 pub mod coercion;
133 pub mod demand;
134 pub mod method;
135 mod upvar;
136 pub mod wf;
137 mod cast;
138 mod closure;
139 mod callee;
140 mod compare_method;
141 mod op;
142
143 /// closures defined within the function.  For example:
144 ///
145 ///     fn foo() {
146 ///         bar(move|| { ... })
147 ///     }
148 ///
149 /// Here, the function `foo()` and the closure passed to
150 /// `bar()` will each have their own `FnCtxt`, but they will
151 /// share the inherited fields.
152 pub struct Inherited<'a, 'tcx: 'a> {
153     infcx: infer::InferCtxt<'a, 'tcx>,
154     locals: RefCell<NodeMap<Ty<'tcx>>>,
155
156     tables: &'a RefCell<ty::Tables<'tcx>>,
157
158     // A mapping from each fn's id to its signature, with all bound
159     // regions replaced with free ones. Unlike the other tables, this
160     // one is never copied into the tcx: it is only used by regionck.
161     fn_sig_map: RefCell<NodeMap<Vec<Ty<'tcx>>>>,
162
163     // When we process a call like `c()` where `c` is a closure type,
164     // we may not have decided yet whether `c` is a `Fn`, `FnMut`, or
165     // `FnOnce` closure. In that case, we defer full resolution of the
166     // call until upvar inference can kick in and make the
167     // decision. We keep these deferred resolutions grouped by the
168     // def-id of the closure, so that once we decide, we can easily go
169     // back and process them.
170     deferred_call_resolutions: RefCell<DefIdMap<Vec<DeferredCallResolutionHandler<'tcx>>>>,
171
172     deferred_cast_checks: RefCell<Vec<cast::CastCheck<'tcx>>>,
173 }
174
175 trait DeferredCallResolution<'tcx> {
176     fn resolve<'a>(&mut self, fcx: &FnCtxt<'a,'tcx>);
177 }
178
179 type DeferredCallResolutionHandler<'tcx> = Box<DeferredCallResolution<'tcx>+'tcx>;
180
181 /// When type-checking an expression, we propagate downward
182 /// whatever type hint we are able in the form of an `Expectation`.
183 #[derive(Copy, Clone, Debug)]
184 pub enum Expectation<'tcx> {
185     /// We know nothing about what type this expression should have.
186     NoExpectation,
187
188     /// This expression should have the type given (or some subtype)
189     ExpectHasType(Ty<'tcx>),
190
191     /// This expression will be cast to the `Ty`
192     ExpectCastableToType(Ty<'tcx>),
193
194     /// This rvalue expression will be wrapped in `&` or `Box` and coerced
195     /// to `&Ty` or `Box<Ty>`, respectively. `Ty` is `[A]` or `Trait`.
196     ExpectRvalueLikeUnsized(Ty<'tcx>),
197 }
198
199 impl<'tcx> Expectation<'tcx> {
200     // Disregard "castable to" expectations because they
201     // can lead us astray. Consider for example `if cond
202     // {22} else {c} as u8` -- if we propagate the
203     // "castable to u8" constraint to 22, it will pick the
204     // type 22u8, which is overly constrained (c might not
205     // be a u8). In effect, the problem is that the
206     // "castable to" expectation is not the tightest thing
207     // we can say, so we want to drop it in this case.
208     // The tightest thing we can say is "must unify with
209     // else branch". Note that in the case of a "has type"
210     // constraint, this limitation does not hold.
211
212     // If the expected type is just a type variable, then don't use
213     // an expected type. Otherwise, we might write parts of the type
214     // when checking the 'then' block which are incompatible with the
215     // 'else' branch.
216     fn adjust_for_branches<'a>(&self, fcx: &FnCtxt<'a, 'tcx>) -> Expectation<'tcx> {
217         match *self {
218             ExpectHasType(ety) => {
219                 let ety = fcx.infcx().shallow_resolve(ety);
220                 if !ety.is_ty_var() {
221                     ExpectHasType(ety)
222                 } else {
223                     NoExpectation
224                 }
225             }
226             ExpectRvalueLikeUnsized(ety) => {
227                 ExpectRvalueLikeUnsized(ety)
228             }
229             _ => NoExpectation
230         }
231     }
232 }
233
234 #[derive(Copy, Clone)]
235 pub struct UnsafetyState {
236     pub def: ast::NodeId,
237     pub unsafety: ast::Unsafety,
238     pub unsafe_push_count: u32,
239     from_fn: bool
240 }
241
242 impl UnsafetyState {
243     pub fn function(unsafety: ast::Unsafety, def: ast::NodeId) -> UnsafetyState {
244         UnsafetyState { def: def, unsafety: unsafety, unsafe_push_count: 0, from_fn: true }
245     }
246
247     pub fn recurse(&mut self, blk: &ast::Block) -> UnsafetyState {
248         match self.unsafety {
249             // If this unsafe, then if the outer function was already marked as
250             // unsafe we shouldn't attribute the unsafe'ness to the block. This
251             // way the block can be warned about instead of ignoring this
252             // extraneous block (functions are never warned about).
253             ast::Unsafety::Unsafe if self.from_fn => *self,
254
255             unsafety => {
256                 let (unsafety, def, count) = match blk.rules {
257                     ast::PushUnsafeBlock(..) =>
258                         (unsafety, blk.id, self.unsafe_push_count.checked_add(1).unwrap()),
259                     ast::PopUnsafeBlock(..) =>
260                         (unsafety, blk.id, self.unsafe_push_count.checked_sub(1).unwrap()),
261                     ast::UnsafeBlock(..) =>
262                         (ast::Unsafety::Unsafe, blk.id, self.unsafe_push_count),
263                     ast::DefaultBlock =>
264                         (unsafety, self.def, self.unsafe_push_count),
265                 };
266                 UnsafetyState{ def: def,
267                                unsafety: unsafety,
268                                unsafe_push_count: count,
269                                from_fn: false }
270             }
271         }
272     }
273 }
274
275 #[derive(Clone)]
276 pub struct FnCtxt<'a, 'tcx: 'a> {
277     body_id: ast::NodeId,
278
279     // This flag is set to true if, during the writeback phase, we encounter
280     // a type error in this function.
281     writeback_errors: Cell<bool>,
282
283     // Number of errors that had been reported when we started
284     // checking this function. On exit, if we find that *more* errors
285     // have been reported, we will skip regionck and other work that
286     // expects the types within the function to be consistent.
287     err_count_on_creation: usize,
288
289     ret_ty: ty::FnOutput<'tcx>,
290
291     ps: RefCell<UnsafetyState>,
292
293     inh: &'a Inherited<'a, 'tcx>,
294
295     ccx: &'a CrateCtxt<'a, 'tcx>,
296 }
297
298 impl<'a, 'tcx> Inherited<'a, 'tcx> {
299     fn new(tcx: &'a ty::ctxt<'tcx>,
300            tables: &'a RefCell<ty::Tables<'tcx>>,
301            param_env: ty::ParameterEnvironment<'a, 'tcx>)
302            -> Inherited<'a, 'tcx> {
303
304         Inherited {
305             infcx: infer::new_infer_ctxt(tcx, tables, Some(param_env), true),
306             locals: RefCell::new(NodeMap()),
307             tables: tables,
308             fn_sig_map: RefCell::new(NodeMap()),
309             deferred_call_resolutions: RefCell::new(DefIdMap()),
310             deferred_cast_checks: RefCell::new(Vec::new()),
311         }
312     }
313
314     fn normalize_associated_types_in<T>(&self,
315                                         span: Span,
316                                         body_id: ast::NodeId,
317                                         value: &T)
318                                         -> T
319         where T : TypeFoldable<'tcx> + HasTypeFlags
320     {
321         let mut fulfillment_cx = self.infcx.fulfillment_cx.borrow_mut();
322         assoc::normalize_associated_types_in(&self.infcx,
323                                              &mut fulfillment_cx,
324                                              span,
325                                              body_id,
326                                              value)
327     }
328
329 }
330
331 // Used by check_const and check_enum_variants
332 pub fn blank_fn_ctxt<'a, 'tcx>(ccx: &'a CrateCtxt<'a, 'tcx>,
333                                inh: &'a Inherited<'a, 'tcx>,
334                                rty: ty::FnOutput<'tcx>,
335                                body_id: ast::NodeId)
336                                -> FnCtxt<'a, 'tcx> {
337     FnCtxt {
338         body_id: body_id,
339         writeback_errors: Cell::new(false),
340         err_count_on_creation: ccx.tcx.sess.err_count(),
341         ret_ty: rty,
342         ps: RefCell::new(UnsafetyState::function(ast::Unsafety::Normal, 0)),
343         inh: inh,
344         ccx: ccx
345     }
346 }
347
348 fn static_inherited_fields<'a, 'tcx>(ccx: &'a CrateCtxt<'a, 'tcx>,
349                                      tables: &'a RefCell<ty::Tables<'tcx>>)
350                                     -> Inherited<'a, 'tcx> {
351     // It's kind of a kludge to manufacture a fake function context
352     // and statement context, but we might as well do write the code only once
353     let param_env = ccx.tcx.empty_parameter_environment();
354     Inherited::new(ccx.tcx, &tables, param_env)
355 }
356
357 struct CheckItemTypesVisitor<'a, 'tcx: 'a> { ccx: &'a CrateCtxt<'a, 'tcx> }
358 struct CheckItemBodiesVisitor<'a, 'tcx: 'a> { ccx: &'a CrateCtxt<'a, 'tcx> }
359
360 impl<'a, 'tcx> Visitor<'tcx> for CheckItemTypesVisitor<'a, 'tcx> {
361     fn visit_item(&mut self, i: &'tcx ast::Item) {
362         check_item_type(self.ccx, i);
363         visit::walk_item(self, i);
364     }
365
366     fn visit_ty(&mut self, t: &'tcx ast::Ty) {
367         match t.node {
368             ast::TyFixedLengthVec(_, ref expr) => {
369                 check_const_in_type(self.ccx, &**expr, self.ccx.tcx.types.usize);
370             }
371             _ => {}
372         }
373
374         visit::walk_ty(self, t);
375     }
376 }
377
378 impl<'a, 'tcx> Visitor<'tcx> for CheckItemBodiesVisitor<'a, 'tcx> {
379     fn visit_item(&mut self, i: &'tcx ast::Item) {
380         check_item_body(self.ccx, i);
381         visit::walk_item(self, i);
382     }
383 }
384
385 pub fn check_item_types(ccx: &CrateCtxt) {
386     let krate = ccx.tcx.map.krate();
387     let mut visit = wf::CheckTypeWellFormedVisitor::new(ccx);
388     visit::walk_crate(&mut visit, krate);
389
390     // If types are not well-formed, it leads to all manner of errors
391     // downstream, so stop reporting errors at this point.
392     ccx.tcx.sess.abort_if_errors();
393
394     let mut visit = CheckItemTypesVisitor { ccx: ccx };
395     visit::walk_crate(&mut visit, krate);
396
397     ccx.tcx.sess.abort_if_errors();
398
399     let mut visit = CheckItemBodiesVisitor { ccx: ccx };
400     visit::walk_crate(&mut visit, krate);
401
402     ccx.tcx.sess.abort_if_errors();
403
404     for drop_method_did in ccx.tcx.destructors.borrow().iter() {
405         if drop_method_did.krate == ast::LOCAL_CRATE {
406             let drop_impl_did = ccx.tcx.map.get_parent_did(drop_method_did.node);
407             match dropck::check_drop_impl(ccx.tcx, drop_impl_did) {
408                 Ok(()) => {}
409                 Err(()) => {
410                     assert!(ccx.tcx.sess.has_errors());
411                 }
412             }
413         }
414     }
415
416     ccx.tcx.sess.abort_if_errors();
417 }
418
419 fn check_bare_fn<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
420                            decl: &'tcx ast::FnDecl,
421                            body: &'tcx ast::Block,
422                            fn_id: ast::NodeId,
423                            fn_span: Span,
424                            raw_fty: Ty<'tcx>,
425                            param_env: ty::ParameterEnvironment<'a, 'tcx>)
426 {
427     match raw_fty.sty {
428         ty::TyBareFn(_, ref fn_ty) => {
429             let tables = RefCell::new(ty::Tables::empty());
430             let inh = Inherited::new(ccx.tcx, &tables, param_env);
431
432             // Compute the fty from point of view of inside fn.
433             let fn_sig =
434                 fn_ty.sig.subst(ccx.tcx, &inh.infcx.parameter_environment.free_substs);
435             let fn_sig =
436                 ccx.tcx.liberate_late_bound_regions(region::DestructionScopeData::new(body.id),
437                                                     &fn_sig);
438             let fn_sig =
439                 inh.normalize_associated_types_in(body.span,
440                                                   body.id,
441                                                   &fn_sig);
442
443             let fcx = check_fn(ccx, fn_ty.unsafety, fn_id, &fn_sig,
444                                decl, fn_id, body, &inh);
445
446             fcx.select_all_obligations_and_apply_defaults();
447             upvar::closure_analyze_fn(&fcx, fn_id, decl, body);
448             fcx.select_all_obligations_or_error();
449             fcx.check_casts();
450
451             fcx.select_all_obligations_or_error(); // Casts can introduce new obligations.
452
453             regionck::regionck_fn(&fcx, fn_id, fn_span, decl, body);
454             writeback::resolve_type_vars_in_fn(&fcx, decl, body);
455         }
456         _ => ccx.tcx.sess.impossible_case(body.span,
457                                  "check_bare_fn: function type expected")
458     }
459 }
460
461 struct GatherLocalsVisitor<'a, 'tcx: 'a> {
462     fcx: &'a FnCtxt<'a, 'tcx>
463 }
464
465 impl<'a, 'tcx> GatherLocalsVisitor<'a, 'tcx> {
466     fn assign(&mut self, _span: Span, nid: ast::NodeId, ty_opt: Option<Ty<'tcx>>) -> Ty<'tcx> {
467         match ty_opt {
468             None => {
469                 // infer the variable's type
470                 let var_ty = self.fcx.infcx().next_ty_var();
471                 self.fcx.inh.locals.borrow_mut().insert(nid, var_ty);
472                 var_ty
473             }
474             Some(typ) => {
475                 // take type that the user specified
476                 self.fcx.inh.locals.borrow_mut().insert(nid, typ);
477                 typ
478             }
479         }
480     }
481 }
482
483 impl<'a, 'tcx> Visitor<'tcx> for GatherLocalsVisitor<'a, 'tcx> {
484     // Add explicitly-declared locals.
485     fn visit_local(&mut self, local: &'tcx ast::Local) {
486         let o_ty = match local.ty {
487             Some(ref ty) => Some(self.fcx.to_ty(&**ty)),
488             None => None
489         };
490         self.assign(local.span, local.id, o_ty);
491         debug!("Local variable {:?} is assigned type {}",
492                local.pat,
493                self.fcx.infcx().ty_to_string(
494                    self.fcx.inh.locals.borrow().get(&local.id).unwrap().clone()));
495         visit::walk_local(self, local);
496     }
497
498     // Add pattern bindings.
499     fn visit_pat(&mut self, p: &'tcx ast::Pat) {
500         if let ast::PatIdent(_, ref path1, _) = p.node {
501             if pat_util::pat_is_binding(&self.fcx.ccx.tcx.def_map, p) {
502                 let var_ty = self.assign(p.span, p.id, None);
503
504                 self.fcx.require_type_is_sized(var_ty, p.span,
505                                                traits::VariableType(p.id));
506
507                 debug!("Pattern binding {} is assigned to {} with type {:?}",
508                        path1.node,
509                        self.fcx.infcx().ty_to_string(
510                            self.fcx.inh.locals.borrow().get(&p.id).unwrap().clone()),
511                        var_ty);
512             }
513         }
514         visit::walk_pat(self, p);
515     }
516
517     fn visit_block(&mut self, b: &'tcx ast::Block) {
518         // non-obvious: the `blk` variable maps to region lb, so
519         // we have to keep this up-to-date.  This
520         // is... unfortunate.  It'd be nice to not need this.
521         visit::walk_block(self, b);
522     }
523
524     // Since an expr occurs as part of the type fixed size arrays we
525     // need to record the type for that node
526     fn visit_ty(&mut self, t: &'tcx ast::Ty) {
527         match t.node {
528             ast::TyFixedLengthVec(ref ty, ref count_expr) => {
529                 self.visit_ty(&**ty);
530                 check_expr_with_hint(self.fcx, &**count_expr, self.fcx.tcx().types.usize);
531             }
532             _ => visit::walk_ty(self, t)
533         }
534     }
535
536     // Don't descend into fns and items
537     fn visit_fn(&mut self, _: visit::FnKind<'tcx>, _: &'tcx ast::FnDecl,
538                 _: &'tcx ast::Block, _: Span, _: ast::NodeId) { }
539     fn visit_item(&mut self, _: &ast::Item) { }
540
541 }
542
543 /// Helper used by check_bare_fn and check_expr_fn. Does the grungy work of checking a function
544 /// body and returns the function context used for that purpose, since in the case of a fn item
545 /// there is still a bit more to do.
546 ///
547 /// * ...
548 /// * inherited: other fields inherited from the enclosing fn (if any)
549 fn check_fn<'a, 'tcx>(ccx: &'a CrateCtxt<'a, 'tcx>,
550                       unsafety: ast::Unsafety,
551                       unsafety_id: ast::NodeId,
552                       fn_sig: &ty::FnSig<'tcx>,
553                       decl: &'tcx ast::FnDecl,
554                       fn_id: ast::NodeId,
555                       body: &'tcx ast::Block,
556                       inherited: &'a Inherited<'a, 'tcx>)
557                       -> FnCtxt<'a, 'tcx>
558 {
559     let tcx = ccx.tcx;
560     let err_count_on_creation = tcx.sess.err_count();
561
562     let arg_tys = &fn_sig.inputs;
563     let ret_ty = fn_sig.output;
564
565     debug!("check_fn(arg_tys={:?}, ret_ty={:?}, fn_id={})",
566            arg_tys,
567            ret_ty,
568            fn_id);
569
570     // Create the function context.  This is either derived from scratch or,
571     // in the case of function expressions, based on the outer context.
572     let fcx = FnCtxt {
573         body_id: body.id,
574         writeback_errors: Cell::new(false),
575         err_count_on_creation: err_count_on_creation,
576         ret_ty: ret_ty,
577         ps: RefCell::new(UnsafetyState::function(unsafety, unsafety_id)),
578         inh: inherited,
579         ccx: ccx
580     };
581
582     // Remember return type so that regionck can access it later.
583     let mut fn_sig_tys: Vec<Ty> =
584         arg_tys.iter()
585         .cloned()
586         .collect();
587
588     if let ty::FnConverging(ret_ty) = ret_ty {
589         fcx.require_type_is_sized(ret_ty, decl.output.span(), traits::ReturnType);
590         fn_sig_tys.push(ret_ty);
591     }
592
593     debug!("fn-sig-map: fn_id={} fn_sig_tys={:?}",
594            fn_id,
595            fn_sig_tys);
596
597     inherited.fn_sig_map.borrow_mut().insert(fn_id, fn_sig_tys);
598
599     {
600         let mut visit = GatherLocalsVisitor { fcx: &fcx, };
601
602         // Add formal parameters.
603         for (arg_ty, input) in arg_tys.iter().zip(&decl.inputs) {
604             // Create type variables for each argument.
605             pat_util::pat_bindings(
606                 &tcx.def_map,
607                 &*input.pat,
608                 |_bm, pat_id, sp, _path| {
609                     let var_ty = visit.assign(sp, pat_id, None);
610                     fcx.require_type_is_sized(var_ty, sp,
611                                               traits::VariableType(pat_id));
612                 });
613
614             // Check the pattern.
615             let pcx = pat_ctxt {
616                 fcx: &fcx,
617                 map: pat_id_map(&tcx.def_map, &*input.pat),
618             };
619             _match::check_pat(&pcx, &*input.pat, *arg_ty);
620         }
621
622         visit.visit_block(body);
623     }
624
625     check_block_with_expected(&fcx, body, match ret_ty {
626         ty::FnConverging(result_type) => ExpectHasType(result_type),
627         ty::FnDiverging => NoExpectation
628     });
629
630     for (input, arg) in decl.inputs.iter().zip(arg_tys) {
631         fcx.write_ty(input.id, arg);
632     }
633
634     fcx
635 }
636
637 pub fn check_struct(ccx: &CrateCtxt, id: ast::NodeId, span: Span) {
638     let tcx = ccx.tcx;
639
640     check_representable(tcx, span, id, "struct");
641     check_instantiable(tcx, span, id);
642
643     if tcx.lookup_simd(local_def(id)) {
644         check_simd(tcx, span, id);
645     }
646 }
647
648 pub fn check_item_type<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>, it: &'tcx ast::Item) {
649     debug!("check_item_type(it.id={}, it.ident={})",
650            it.id,
651            ccx.tcx.item_path_str(local_def(it.id)));
652     let _indenter = indenter();
653     match it.node {
654       // Consts can play a role in type-checking, so they are included here.
655       ast::ItemStatic(_, _, ref e) |
656       ast::ItemConst(_, ref e) => check_const(ccx, it.span, &**e, it.id),
657       ast::ItemEnum(ref enum_definition, _) => {
658         check_enum_variants(ccx,
659                             it.span,
660                             &enum_definition.variants,
661                             it.id);
662       }
663       ast::ItemFn(..) => {} // entirely within check_item_body
664       ast::ItemImpl(_, _, _, _, _, ref impl_items) => {
665           debug!("ItemImpl {} with id {}", it.ident, it.id);
666           match ccx.tcx.impl_trait_ref(local_def(it.id)) {
667               Some(impl_trait_ref) => {
668                 check_impl_items_against_trait(ccx,
669                                                it.span,
670                                                &impl_trait_ref,
671                                                impl_items);
672               }
673               None => { }
674           }
675       }
676       ast::ItemTrait(_, ref generics, _, _) => {
677         check_trait_on_unimplemented(ccx, generics, it);
678       }
679       ast::ItemStruct(..) => {
680         check_struct(ccx, it.id, it.span);
681       }
682       ast::ItemTy(ref t, ref generics) => {
683         let pty_ty = ccx.tcx.node_id_to_type(it.id);
684         check_bounds_are_used(ccx, t.span, &generics.ty_params, pty_ty);
685       }
686       ast::ItemForeignMod(ref m) => {
687         if m.abi == abi::RustIntrinsic {
688             for item in &m.items {
689                 check_intrinsic_type(ccx, &**item);
690             }
691         } else {
692             for item in &m.items {
693                 let pty = ccx.tcx.lookup_item_type(local_def(item.id));
694                 if !pty.generics.types.is_empty() {
695                     span_err!(ccx.tcx.sess, item.span, E0044,
696                         "foreign items may not have type parameters");
697                 }
698
699                 if let ast::ForeignItemFn(ref fn_decl, _) = item.node {
700                     require_c_abi_if_variadic(ccx.tcx, fn_decl, m.abi, item.span);
701                 }
702             }
703         }
704       }
705       _ => {/* nothing to do */ }
706     }
707 }
708
709 pub fn check_item_body<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>, it: &'tcx ast::Item) {
710     debug!("check_item_body(it.id={}, it.ident={})",
711            it.id,
712            ccx.tcx.item_path_str(local_def(it.id)));
713     let _indenter = indenter();
714     match it.node {
715       ast::ItemFn(ref decl, _, _, _, _, ref body) => {
716         let fn_pty = ccx.tcx.lookup_item_type(ast_util::local_def(it.id));
717         let param_env = ParameterEnvironment::for_item(ccx.tcx, it.id);
718         check_bare_fn(ccx, &**decl, &**body, it.id, it.span, fn_pty.ty, param_env);
719       }
720       ast::ItemImpl(_, _, _, _, _, ref impl_items) => {
721         debug!("ItemImpl {} with id {}", it.ident, it.id);
722
723         let impl_pty = ccx.tcx.lookup_item_type(ast_util::local_def(it.id));
724
725         for impl_item in impl_items {
726             match impl_item.node {
727                 ast::ConstImplItem(_, ref expr) => {
728                     check_const(ccx, impl_item.span, &*expr, impl_item.id)
729                 }
730                 ast::MethodImplItem(ref sig, ref body) => {
731                     check_method_body(ccx, &impl_pty.generics, sig, body,
732                                       impl_item.id, impl_item.span);
733                 }
734                 ast::TypeImplItem(_) |
735                 ast::MacImplItem(_) => {
736                     // Nothing to do here.
737                 }
738             }
739         }
740       }
741       ast::ItemTrait(_, _, _, ref trait_items) => {
742         let trait_def = ccx.tcx.lookup_trait_def(local_def(it.id));
743         for trait_item in trait_items {
744             match trait_item.node {
745                 ast::ConstTraitItem(_, Some(ref expr)) => {
746                     check_const(ccx, trait_item.span, &*expr, trait_item.id)
747                 }
748                 ast::MethodTraitItem(ref sig, Some(ref body)) => {
749                     check_trait_fn_not_const(ccx, trait_item.span, sig.constness);
750
751                     check_method_body(ccx, &trait_def.generics, sig, body,
752                                       trait_item.id, trait_item.span);
753                 }
754                 ast::MethodTraitItem(ref sig, None) => {
755                     check_trait_fn_not_const(ccx, trait_item.span, sig.constness);
756                 }
757                 ast::ConstTraitItem(_, None) |
758                 ast::TypeTraitItem(..) => {
759                     // Nothing to do.
760                 }
761             }
762         }
763       }
764       _ => {/* nothing to do */ }
765     }
766 }
767
768 fn check_trait_fn_not_const<'a,'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
769                                      span: Span,
770                                      constness: ast::Constness)
771 {
772     match constness {
773         ast::Constness::NotConst => {
774             // good
775         }
776         ast::Constness::Const => {
777             span_err!(ccx.tcx.sess, span, E0379, "trait fns cannot be declared const");
778         }
779     }
780 }
781
782 fn check_trait_on_unimplemented<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
783                                generics: &ast::Generics,
784                                item: &ast::Item) {
785     if let Some(ref attr) = item.attrs.iter().find(|a| {
786         a.check_name("rustc_on_unimplemented")
787     }) {
788         if let Some(ref istring) = attr.value_str() {
789             let parser = Parser::new(&istring);
790             let types = &*generics.ty_params;
791             for token in parser {
792                 match token {
793                     Piece::String(_) => (), // Normal string, no need to check it
794                     Piece::NextArgument(a) => match a.position {
795                         // `{Self}` is allowed
796                         Position::ArgumentNamed(s) if s == "Self" => (),
797                         // So is `{A}` if A is a type parameter
798                         Position::ArgumentNamed(s) => match types.iter().find(|t| {
799                             t.ident.name == s
800                         }) {
801                             Some(_) => (),
802                             None => {
803                                 span_err!(ccx.tcx.sess, attr.span, E0230,
804                                                  "there is no type parameter \
805                                                           {} on trait {}",
806                                                            s, item.ident);
807                             }
808                         },
809                         // `{:1}` and `{}` are not to be used
810                         Position::ArgumentIs(_) | Position::ArgumentNext => {
811                             span_err!(ccx.tcx.sess, attr.span, E0231,
812                                                   "only named substitution \
813                                                    parameters are allowed");
814                         }
815                     }
816                 }
817             }
818         } else {
819             span_err!(ccx.tcx.sess, attr.span, E0232,
820                                   "this attribute must have a value, \
821                                    eg `#[rustc_on_unimplemented = \"foo\"]`")
822         }
823     }
824 }
825
826 /// Type checks a method body.
827 ///
828 /// # Parameters
829 ///
830 /// * `item_generics`: generics defined on the impl/trait that contains
831 ///   the method
832 /// * `self_bound`: bound for the `Self` type parameter, if any
833 /// * `method`: the method definition
834 fn check_method_body<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
835                                item_generics: &ty::Generics<'tcx>,
836                                sig: &'tcx ast::MethodSig,
837                                body: &'tcx ast::Block,
838                                id: ast::NodeId, span: Span) {
839     debug!("check_method_body(item_generics={:?}, id={})",
840             item_generics, id);
841     let param_env = ParameterEnvironment::for_item(ccx.tcx, id);
842
843     let fty = ccx.tcx.node_id_to_type(id);
844     debug!("check_method_body: fty={:?}", fty);
845
846     check_bare_fn(ccx, &sig.decl, body, id, span, fty, param_env);
847 }
848
849 fn check_impl_items_against_trait<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
850                                             impl_span: Span,
851                                             impl_trait_ref: &ty::TraitRef<'tcx>,
852                                             impl_items: &[P<ast::ImplItem>]) {
853     // Locate trait methods
854     let tcx = ccx.tcx;
855     let trait_items = tcx.trait_items(impl_trait_ref.def_id);
856     let mut overridden_associated_type = None;
857
858     // Check existing impl methods to see if they are both present in trait
859     // and compatible with trait signature
860     for impl_item in impl_items {
861         let ty_impl_item = ccx.tcx.impl_or_trait_item(local_def(impl_item.id));
862         let ty_trait_item = trait_items.iter()
863             .find(|ac| ac.name() == ty_impl_item.name())
864             .unwrap_or_else(|| {
865                 // This is checked by resolve
866                 tcx.sess.span_bug(impl_item.span,
867                                   &format!("impl-item `{}` is not a member of `{:?}`",
868                                            ty_impl_item.name(),
869                                            impl_trait_ref));
870             });
871         match impl_item.node {
872             ast::ConstImplItem(..) => {
873                 let impl_const = match ty_impl_item {
874                     ty::ConstTraitItem(ref cti) => cti,
875                     _ => tcx.sess.span_bug(impl_item.span, "non-const impl-item for const")
876                 };
877
878                 // Find associated const definition.
879                 if let &ty::ConstTraitItem(ref trait_const) = ty_trait_item {
880                     compare_const_impl(ccx.tcx,
881                                        &impl_const,
882                                        impl_item.span,
883                                        trait_const,
884                                        &*impl_trait_ref);
885                 } else {
886                     span_err!(tcx.sess, impl_item.span, E0323,
887                               "item `{}` is an associated const, \
888                               which doesn't match its trait `{:?}`",
889                               impl_const.name,
890                               impl_trait_ref)
891                 }
892             }
893             ast::MethodImplItem(ref sig, ref body) => {
894                 check_trait_fn_not_const(ccx, impl_item.span, sig.constness);
895
896                 let impl_method = match ty_impl_item {
897                     ty::MethodTraitItem(ref mti) => mti,
898                     _ => tcx.sess.span_bug(impl_item.span, "non-method impl-item for method")
899                 };
900
901                 if let &ty::MethodTraitItem(ref trait_method) = ty_trait_item {
902                     compare_impl_method(ccx.tcx,
903                                         &impl_method,
904                                         impl_item.span,
905                                         body.id,
906                                         &trait_method,
907                                         &impl_trait_ref);
908                 } else {
909                     span_err!(tcx.sess, impl_item.span, E0324,
910                               "item `{}` is an associated method, \
911                               which doesn't match its trait `{:?}`",
912                               impl_method.name,
913                               impl_trait_ref)
914                 }
915             }
916             ast::TypeImplItem(_) => {
917                 let impl_type = match ty_impl_item {
918                     ty::TypeTraitItem(ref tti) => tti,
919                     _ => tcx.sess.span_bug(impl_item.span, "non-type impl-item for type")
920                 };
921
922                 if let &ty::TypeTraitItem(ref at) = ty_trait_item {
923                     if let Some(_) = at.ty {
924                         overridden_associated_type = Some(impl_item);
925                     }
926                 } else {
927                     span_err!(tcx.sess, impl_item.span, E0325,
928                               "item `{}` is an associated type, \
929                               which doesn't match its trait `{:?}`",
930                               impl_type.name,
931                               impl_trait_ref)
932                 }
933             }
934             ast::MacImplItem(_) => tcx.sess.span_bug(impl_item.span,
935                                                      "unexpanded macro")
936         }
937     }
938
939     // Check for missing items from trait
940     let provided_methods = tcx.provided_trait_methods(impl_trait_ref.def_id);
941     let associated_consts = tcx.associated_consts(impl_trait_ref.def_id);
942     let mut missing_items = Vec::new();
943     let mut invalidated_items = Vec::new();
944     let associated_type_overridden = overridden_associated_type.is_some();
945     for trait_item in trait_items.iter() {
946         match *trait_item {
947             ty::ConstTraitItem(ref associated_const) => {
948                 let is_implemented = impl_items.iter().any(|ii| {
949                     match ii.node {
950                         ast::ConstImplItem(..) => {
951                             ii.ident.name == associated_const.name
952                         }
953                         _ => false,
954                     }
955                 });
956                 let is_provided =
957                     associated_consts.iter().any(|ac| ac.default.is_some() &&
958                                                  ac.name == associated_const.name);
959                 if !is_implemented {
960                     if !is_provided {
961                         missing_items.push(associated_const.name);
962                     } else if associated_type_overridden {
963                         invalidated_items.push(associated_const.name);
964                     }
965                 }
966             }
967             ty::MethodTraitItem(ref trait_method) => {
968                 let is_implemented =
969                     impl_items.iter().any(|ii| {
970                         match ii.node {
971                             ast::MethodImplItem(..) => {
972                                 ii.ident.name == trait_method.name
973                             }
974                             _ => false,
975                         }
976                     });
977                 let is_provided =
978                     provided_methods.iter().any(|m| m.name == trait_method.name);
979                 if !is_implemented {
980                     if !is_provided {
981                         missing_items.push(trait_method.name);
982                     } else if associated_type_overridden {
983                         invalidated_items.push(trait_method.name);
984                     }
985                 }
986             }
987             ty::TypeTraitItem(ref associated_type) => {
988                 let is_implemented = impl_items.iter().any(|ii| {
989                     match ii.node {
990                         ast::TypeImplItem(_) => {
991                             ii.ident.name == associated_type.name
992                         }
993                         _ => false,
994                     }
995                 });
996                 let is_provided = associated_type.ty.is_some();
997                 if !is_implemented {
998                     if !is_provided {
999                         missing_items.push(associated_type.name);
1000                     } else if associated_type_overridden {
1001                         invalidated_items.push(associated_type.name);
1002                     }
1003                 }
1004             }
1005         }
1006     }
1007
1008     if !missing_items.is_empty() {
1009         span_err!(tcx.sess, impl_span, E0046,
1010             "not all trait items implemented, missing: `{}`",
1011             missing_items.iter()
1012                   .map(|name| name.to_string())
1013                   .collect::<Vec<_>>().join("`, `"))
1014     }
1015
1016     if !invalidated_items.is_empty() {
1017         let invalidator = overridden_associated_type.unwrap();
1018         span_err!(tcx.sess, invalidator.span, E0399,
1019                   "the following trait items need to be reimplemented \
1020                    as `{}` was overridden: `{}`",
1021                   invalidator.ident,
1022                   invalidated_items.iter()
1023                                    .map(|name| name.to_string())
1024                                    .collect::<Vec<_>>().join("`, `"))
1025     }
1026 }
1027
1028 fn report_cast_to_unsized_type<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
1029                                          span: Span,
1030                                          t_span: Span,
1031                                          e_span: Span,
1032                                          t_cast: Ty<'tcx>,
1033                                          t_expr: Ty<'tcx>,
1034                                          id: ast::NodeId) {
1035     let tstr = fcx.infcx().ty_to_string(t_cast);
1036     fcx.type_error_message(span, |actual| {
1037         format!("cast to unsized type: `{}` as `{}`", actual, tstr)
1038     }, t_expr, None);
1039     match t_expr.sty {
1040         ty::TyRef(_, ty::TypeAndMut { mutbl: mt, .. }) => {
1041             let mtstr = match mt {
1042                 ast::MutMutable => "mut ",
1043                 ast::MutImmutable => ""
1044             };
1045             if t_cast.is_trait() {
1046                 match fcx.tcx().sess.codemap().span_to_snippet(t_span) {
1047                     Ok(s) => {
1048                         fcx.tcx().sess.span_suggestion(t_span,
1049                                                        "try casting to a reference instead:",
1050                                                        format!("&{}{}", mtstr, s));
1051                     },
1052                     Err(_) =>
1053                         span_help!(fcx.tcx().sess, t_span,
1054                                    "did you mean `&{}{}`?", mtstr, tstr),
1055                 }
1056             } else {
1057                 span_help!(fcx.tcx().sess, span,
1058                            "consider using an implicit coercion to `&{}{}` instead",
1059                            mtstr, tstr);
1060             }
1061         }
1062         ty::TyBox(..) => {
1063             match fcx.tcx().sess.codemap().span_to_snippet(t_span) {
1064                 Ok(s) => {
1065                     fcx.tcx().sess.span_suggestion(t_span,
1066                                                    "try casting to a `Box` instead:",
1067                                                    format!("Box<{}>", s));
1068                 },
1069                 Err(_) =>
1070                     span_help!(fcx.tcx().sess, t_span, "did you mean `Box<{}>`?", tstr),
1071             }
1072         }
1073         _ => {
1074             span_help!(fcx.tcx().sess, e_span,
1075                        "consider using a box or reference as appropriate");
1076         }
1077     }
1078     fcx.write_error(id);
1079 }
1080
1081
1082 impl<'a, 'tcx> AstConv<'tcx> for FnCtxt<'a, 'tcx> {
1083     fn tcx(&self) -> &ty::ctxt<'tcx> { self.ccx.tcx }
1084
1085     fn get_item_type_scheme(&self, _: Span, id: ast::DefId)
1086                             -> Result<ty::TypeScheme<'tcx>, ErrorReported>
1087     {
1088         Ok(self.tcx().lookup_item_type(id))
1089     }
1090
1091     fn get_trait_def(&self, _: Span, id: ast::DefId)
1092                      -> Result<&'tcx ty::TraitDef<'tcx>, ErrorReported>
1093     {
1094         Ok(self.tcx().lookup_trait_def(id))
1095     }
1096
1097     fn ensure_super_predicates(&self, _: Span, _: ast::DefId) -> Result<(), ErrorReported> {
1098         // all super predicates are ensured during collect pass
1099         Ok(())
1100     }
1101
1102     fn get_free_substs(&self) -> Option<&Substs<'tcx>> {
1103         Some(&self.inh.infcx.parameter_environment.free_substs)
1104     }
1105
1106     fn get_type_parameter_bounds(&self,
1107                                  _: Span,
1108                                  node_id: ast::NodeId)
1109                                  -> Result<Vec<ty::PolyTraitRef<'tcx>>, ErrorReported>
1110     {
1111         let def = self.tcx().type_parameter_def(node_id);
1112         let r = self.inh.infcx.parameter_environment
1113                                   .caller_bounds
1114                                   .iter()
1115                                   .filter_map(|predicate| {
1116                                       match *predicate {
1117                                           ty::Predicate::Trait(ref data) => {
1118                                               if data.0.self_ty().is_param(def.space, def.index) {
1119                                                   Some(data.to_poly_trait_ref())
1120                                               } else {
1121                                                   None
1122                                               }
1123                                           }
1124                                           _ => {
1125                                               None
1126                                           }
1127                                       }
1128                                   })
1129                                   .collect();
1130         Ok(r)
1131     }
1132
1133     fn trait_defines_associated_type_named(&self,
1134                                            trait_def_id: ast::DefId,
1135                                            assoc_name: ast::Name)
1136                                            -> bool
1137     {
1138         let trait_def = self.ccx.tcx.lookup_trait_def(trait_def_id);
1139         trait_def.associated_type_names.contains(&assoc_name)
1140     }
1141
1142     fn ty_infer(&self,
1143                 ty_param_def: Option<ty::TypeParameterDef<'tcx>>,
1144                 substs: Option<&mut subst::Substs<'tcx>>,
1145                 space: Option<subst::ParamSpace>,
1146                 span: Span) -> Ty<'tcx> {
1147         // Grab the default doing subsitution
1148         let default = ty_param_def.and_then(|def| {
1149             def.default.map(|ty| type_variable::Default {
1150                 ty: ty.subst_spanned(self.tcx(), substs.as_ref().unwrap(), Some(span)),
1151                 origin_span: span,
1152                 def_id: def.default_def_id
1153             })
1154         });
1155
1156         let ty_var = self.infcx().next_ty_var_with_default(default);
1157
1158         // Finally we add the type variable to the substs
1159         match substs {
1160             None => ty_var,
1161             Some(substs) => { substs.types.push(space.unwrap(), ty_var); ty_var }
1162         }
1163     }
1164
1165     fn projected_ty_from_poly_trait_ref(&self,
1166                                         span: Span,
1167                                         poly_trait_ref: ty::PolyTraitRef<'tcx>,
1168                                         item_name: ast::Name)
1169                                         -> Ty<'tcx>
1170     {
1171         let (trait_ref, _) =
1172             self.infcx().replace_late_bound_regions_with_fresh_var(
1173                 span,
1174                 infer::LateBoundRegionConversionTime::AssocTypeProjection(item_name),
1175                 &poly_trait_ref);
1176
1177         self.normalize_associated_type(span, trait_ref, item_name)
1178     }
1179
1180     fn projected_ty(&self,
1181                     span: Span,
1182                     trait_ref: ty::TraitRef<'tcx>,
1183                     item_name: ast::Name)
1184                     -> Ty<'tcx>
1185     {
1186         self.normalize_associated_type(span, trait_ref, item_name)
1187     }
1188 }
1189
1190 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
1191     fn tcx(&self) -> &ty::ctxt<'tcx> { self.ccx.tcx }
1192
1193     pub fn infcx(&self) -> &infer::InferCtxt<'a,'tcx> {
1194         &self.inh.infcx
1195     }
1196
1197     pub fn param_env(&self) -> &ty::ParameterEnvironment<'a,'tcx> {
1198         &self.inh.infcx.parameter_environment
1199     }
1200
1201     pub fn sess(&self) -> &Session {
1202         &self.tcx().sess
1203     }
1204
1205     pub fn err_count_since_creation(&self) -> usize {
1206         self.ccx.tcx.sess.err_count() - self.err_count_on_creation
1207     }
1208
1209     /// Resolves type variables in `ty` if possible. Unlike the infcx
1210     /// version, this version will also select obligations if it seems
1211     /// useful, in an effort to get more type information.
1212     fn resolve_type_vars_if_possible(&self, mut ty: Ty<'tcx>) -> Ty<'tcx> {
1213         debug!("resolve_type_vars_if_possible(ty={:?})", ty);
1214
1215         // No TyInfer()? Nothing needs doing.
1216         if !ty.has_infer_types() {
1217             debug!("resolve_type_vars_if_possible: ty={:?}", ty);
1218             return ty;
1219         }
1220
1221         // If `ty` is a type variable, see whether we already know what it is.
1222         ty = self.infcx().resolve_type_vars_if_possible(&ty);
1223         if !ty.has_infer_types() {
1224             debug!("resolve_type_vars_if_possible: ty={:?}", ty);
1225             return ty;
1226         }
1227
1228         // If not, try resolving any new fcx obligations that have cropped up.
1229         self.select_new_obligations();
1230         ty = self.infcx().resolve_type_vars_if_possible(&ty);
1231         if !ty.has_infer_types() {
1232             debug!("resolve_type_vars_if_possible: ty={:?}", ty);
1233             return ty;
1234         }
1235
1236         // If not, try resolving *all* pending obligations as much as
1237         // possible. This can help substantially when there are
1238         // indirect dependencies that don't seem worth tracking
1239         // precisely.
1240         self.select_obligations_where_possible();
1241         ty = self.infcx().resolve_type_vars_if_possible(&ty);
1242
1243         debug!("resolve_type_vars_if_possible: ty={:?}", ty);
1244         ty
1245     }
1246
1247     fn record_deferred_call_resolution(&self,
1248                                        closure_def_id: ast::DefId,
1249                                        r: DeferredCallResolutionHandler<'tcx>) {
1250         let mut deferred_call_resolutions = self.inh.deferred_call_resolutions.borrow_mut();
1251         deferred_call_resolutions.entry(closure_def_id).or_insert(vec![]).push(r);
1252     }
1253
1254     fn remove_deferred_call_resolutions(&self,
1255                                         closure_def_id: ast::DefId)
1256                                         -> Vec<DeferredCallResolutionHandler<'tcx>>
1257     {
1258         let mut deferred_call_resolutions = self.inh.deferred_call_resolutions.borrow_mut();
1259         deferred_call_resolutions.remove(&closure_def_id).unwrap_or(Vec::new())
1260     }
1261
1262     pub fn tag(&self) -> String {
1263         let self_ptr: *const FnCtxt = self;
1264         format!("{:?}", self_ptr)
1265     }
1266
1267     pub fn local_ty(&self, span: Span, nid: ast::NodeId) -> Ty<'tcx> {
1268         match self.inh.locals.borrow().get(&nid) {
1269             Some(&t) => t,
1270             None => {
1271                 self.tcx().sess.span_err(
1272                     span,
1273                     &format!("no type for local variable {}", nid));
1274                 self.tcx().types.err
1275             }
1276         }
1277     }
1278
1279     #[inline]
1280     pub fn write_ty(&self, node_id: ast::NodeId, ty: Ty<'tcx>) {
1281         debug!("write_ty({}, {:?}) in fcx {}",
1282                node_id, ty, self.tag());
1283         self.inh.tables.borrow_mut().node_types.insert(node_id, ty);
1284     }
1285
1286     pub fn write_substs(&self, node_id: ast::NodeId, substs: ty::ItemSubsts<'tcx>) {
1287         if !substs.substs.is_noop() {
1288             debug!("write_substs({}, {:?}) in fcx {}",
1289                    node_id,
1290                    substs,
1291                    self.tag());
1292
1293             self.inh.tables.borrow_mut().item_substs.insert(node_id, substs);
1294         }
1295     }
1296
1297     pub fn write_autoderef_adjustment(&self,
1298                                       node_id: ast::NodeId,
1299                                       derefs: usize) {
1300         self.write_adjustment(
1301             node_id,
1302             ty::AdjustDerefRef(ty::AutoDerefRef {
1303                 autoderefs: derefs,
1304                 autoref: None,
1305                 unsize: None
1306             })
1307         );
1308     }
1309
1310     pub fn write_adjustment(&self,
1311                             node_id: ast::NodeId,
1312                             adj: ty::AutoAdjustment<'tcx>) {
1313         debug!("write_adjustment(node_id={}, adj={:?})", node_id, adj);
1314
1315         if adj.is_identity() {
1316             return;
1317         }
1318
1319         self.inh.tables.borrow_mut().adjustments.insert(node_id, adj);
1320     }
1321
1322     /// Basically whenever we are converting from a type scheme into
1323     /// the fn body space, we always want to normalize associated
1324     /// types as well. This function combines the two.
1325     fn instantiate_type_scheme<T>(&self,
1326                                   span: Span,
1327                                   substs: &Substs<'tcx>,
1328                                   value: &T)
1329                                   -> T
1330         where T : TypeFoldable<'tcx> + HasTypeFlags
1331     {
1332         let value = value.subst(self.tcx(), substs);
1333         let result = self.normalize_associated_types_in(span, &value);
1334         debug!("instantiate_type_scheme(value={:?}, substs={:?}) = {:?}",
1335                value,
1336                substs,
1337                result);
1338         result
1339     }
1340
1341     /// As `instantiate_type_scheme`, but for the bounds found in a
1342     /// generic type scheme.
1343     fn instantiate_bounds(&self,
1344                           span: Span,
1345                           substs: &Substs<'tcx>,
1346                           bounds: &ty::GenericPredicates<'tcx>)
1347                           -> ty::InstantiatedPredicates<'tcx>
1348     {
1349         ty::InstantiatedPredicates {
1350             predicates: self.instantiate_type_scheme(span, substs, &bounds.predicates)
1351         }
1352     }
1353
1354
1355     fn normalize_associated_types_in<T>(&self, span: Span, value: &T) -> T
1356         where T : TypeFoldable<'tcx> + HasTypeFlags
1357     {
1358         self.inh.normalize_associated_types_in(span, self.body_id, value)
1359     }
1360
1361     fn normalize_associated_type(&self,
1362                                  span: Span,
1363                                  trait_ref: ty::TraitRef<'tcx>,
1364                                  item_name: ast::Name)
1365                                  -> Ty<'tcx>
1366     {
1367         let cause = traits::ObligationCause::new(span,
1368                                                  self.body_id,
1369                                                  traits::ObligationCauseCode::MiscObligation);
1370         self.inh
1371             .infcx
1372             .fulfillment_cx
1373             .borrow_mut()
1374             .normalize_projection_type(self.infcx(),
1375                                        ty::ProjectionTy {
1376                                            trait_ref: trait_ref,
1377                                            item_name: item_name,
1378                                        },
1379                                        cause)
1380     }
1381
1382     /// Returns the type of `def_id` with all generics replaced by by fresh type/region variables.
1383     /// Also returns the substitution from the type parameters on `def_id` to the fresh variables.
1384     /// Registers any trait obligations specified on `def_id` at the same time.
1385     ///
1386     /// Note that function is only intended to be used with types (notably, not fns). This is
1387     /// because it doesn't do any instantiation of late-bound regions.
1388     pub fn instantiate_type(&self,
1389                             span: Span,
1390                             def_id: ast::DefId)
1391                             -> TypeAndSubsts<'tcx>
1392     {
1393         let type_scheme =
1394             self.tcx().lookup_item_type(def_id);
1395         let type_predicates =
1396             self.tcx().lookup_predicates(def_id);
1397         let substs =
1398             self.infcx().fresh_substs_for_generics(
1399                 span,
1400                 &type_scheme.generics);
1401         let bounds =
1402             self.instantiate_bounds(span, &substs, &type_predicates);
1403         self.add_obligations_for_parameters(
1404             traits::ObligationCause::new(
1405                 span,
1406                 self.body_id,
1407                 traits::ItemObligation(def_id)),
1408             &bounds);
1409         let monotype =
1410             self.instantiate_type_scheme(span, &substs, &type_scheme.ty);
1411
1412         TypeAndSubsts {
1413             ty: monotype,
1414             substs: substs
1415         }
1416     }
1417
1418     /// Returns the type that this AST path refers to. If the path has no type
1419     /// parameters and the corresponding type has type parameters, fresh type
1420     /// and/or region variables are substituted.
1421     ///
1422     /// This is used when checking the constructor in struct literals.
1423     fn instantiate_struct_literal_ty(&self,
1424                                      did: ast::DefId,
1425                                      path: &ast::Path)
1426                                      -> TypeAndSubsts<'tcx>
1427     {
1428         let tcx = self.tcx();
1429
1430         let ty::TypeScheme { generics, ty: decl_ty } =
1431             tcx.lookup_item_type(did);
1432
1433         let substs = astconv::ast_path_substs_for_ty(self, self,
1434                                                      path.span,
1435                                                      PathParamMode::Optional,
1436                                                      &generics,
1437                                                      path.segments.last().unwrap());
1438
1439         let ty = self.instantiate_type_scheme(path.span, &substs, &decl_ty);
1440
1441         TypeAndSubsts { substs: substs, ty: ty }
1442     }
1443
1444     pub fn write_nil(&self, node_id: ast::NodeId) {
1445         self.write_ty(node_id, self.tcx().mk_nil());
1446     }
1447     pub fn write_error(&self, node_id: ast::NodeId) {
1448         self.write_ty(node_id, self.tcx().types.err);
1449     }
1450
1451     pub fn require_type_meets(&self,
1452                               ty: Ty<'tcx>,
1453                               span: Span,
1454                               code: traits::ObligationCauseCode<'tcx>,
1455                               bound: ty::BuiltinBound)
1456     {
1457         self.register_builtin_bound(
1458             ty,
1459             bound,
1460             traits::ObligationCause::new(span, self.body_id, code));
1461     }
1462
1463     pub fn require_type_is_sized(&self,
1464                                  ty: Ty<'tcx>,
1465                                  span: Span,
1466                                  code: traits::ObligationCauseCode<'tcx>)
1467     {
1468         self.require_type_meets(ty, span, code, ty::BoundSized);
1469     }
1470
1471     pub fn require_expr_have_sized_type(&self,
1472                                         expr: &ast::Expr,
1473                                         code: traits::ObligationCauseCode<'tcx>)
1474     {
1475         self.require_type_is_sized(self.expr_ty(expr), expr.span, code);
1476     }
1477
1478     pub fn type_is_known_to_be_sized(&self,
1479                                      ty: Ty<'tcx>,
1480                                      span: Span)
1481                                      -> bool
1482     {
1483         traits::type_known_to_meet_builtin_bound(self.infcx(),
1484                                                  ty,
1485                                                  ty::BoundSized,
1486                                                  span)
1487     }
1488
1489     pub fn register_builtin_bound(&self,
1490                                   ty: Ty<'tcx>,
1491                                   builtin_bound: ty::BuiltinBound,
1492                                   cause: traits::ObligationCause<'tcx>)
1493     {
1494         self.inh.infcx.fulfillment_cx.borrow_mut()
1495             .register_builtin_bound(self.infcx(), ty, builtin_bound, cause);
1496     }
1497
1498     pub fn register_predicate(&self,
1499                               obligation: traits::PredicateObligation<'tcx>)
1500     {
1501         debug!("register_predicate({:?})",
1502                obligation);
1503         self.inh.infcx.fulfillment_cx
1504             .borrow_mut()
1505             .register_predicate_obligation(self.infcx(), obligation);
1506     }
1507
1508     pub fn to_ty(&self, ast_t: &ast::Ty) -> Ty<'tcx> {
1509         let t = ast_ty_to_ty(self, self, ast_t);
1510
1511         let mut bounds_checker = wf::BoundsChecker::new(self,
1512                                                         self.body_id,
1513                                                         None);
1514         bounds_checker.check_ty(t, ast_t.span);
1515
1516         t
1517     }
1518
1519     pub fn expr_ty(&self, ex: &ast::Expr) -> Ty<'tcx> {
1520         match self.inh.tables.borrow().node_types.get(&ex.id) {
1521             Some(&t) => t,
1522             None => {
1523                 self.tcx().sess.bug(&format!("no type for expr in fcx {}",
1524                                             self.tag()));
1525             }
1526         }
1527     }
1528
1529     /// Apply `adjustment` to the type of `expr`
1530     pub fn adjust_expr_ty(&self,
1531                           expr: &ast::Expr,
1532                           adjustment: Option<&ty::AutoAdjustment<'tcx>>)
1533                           -> Ty<'tcx>
1534     {
1535         let raw_ty = self.expr_ty(expr);
1536         let raw_ty = self.infcx().shallow_resolve(raw_ty);
1537         let resolve_ty = |ty: Ty<'tcx>| self.infcx().resolve_type_vars_if_possible(&ty);
1538         raw_ty.adjust(self.tcx(), expr.span, expr.id, adjustment, |method_call| {
1539             self.inh.tables.borrow().method_map.get(&method_call)
1540                                         .map(|method| resolve_ty(method.ty))
1541         })
1542     }
1543
1544     pub fn node_ty(&self, id: ast::NodeId) -> Ty<'tcx> {
1545         match self.inh.tables.borrow().node_types.get(&id) {
1546             Some(&t) => t,
1547             None if self.err_count_since_creation() != 0 => self.tcx().types.err,
1548             None => {
1549                 self.tcx().sess.bug(
1550                     &format!("no type for node {}: {} in fcx {}",
1551                             id, self.tcx().map.node_to_string(id),
1552                             self.tag()));
1553             }
1554         }
1555     }
1556
1557     pub fn item_substs(&self) -> Ref<NodeMap<ty::ItemSubsts<'tcx>>> {
1558         // NOTE: @jroesch this is hack that appears to be fixed on nightly, will monitor if
1559         // it changes when we upgrade the snapshot compiler
1560         fn project_item_susbts<'a, 'tcx>(tables: &'a ty::Tables<'tcx>)
1561                                         -> &'a NodeMap<ty::ItemSubsts<'tcx>> {
1562             &tables.item_substs
1563         }
1564
1565         Ref::map(self.inh.tables.borrow(), project_item_susbts)
1566     }
1567
1568     pub fn opt_node_ty_substs<F>(&self,
1569                                  id: ast::NodeId,
1570                                  f: F) where
1571         F: FnOnce(&ty::ItemSubsts<'tcx>),
1572     {
1573         match self.inh.tables.borrow().item_substs.get(&id) {
1574             Some(s) => { f(s) }
1575             None => { }
1576         }
1577     }
1578
1579     pub fn mk_subty(&self,
1580                     a_is_expected: bool,
1581                     origin: infer::TypeOrigin,
1582                     sub: Ty<'tcx>,
1583                     sup: Ty<'tcx>)
1584                     -> Result<(), ty::TypeError<'tcx>> {
1585         infer::mk_subty(self.infcx(), a_is_expected, origin, sub, sup)
1586     }
1587
1588     pub fn mk_eqty(&self,
1589                    a_is_expected: bool,
1590                    origin: infer::TypeOrigin,
1591                    sub: Ty<'tcx>,
1592                    sup: Ty<'tcx>)
1593                    -> Result<(), ty::TypeError<'tcx>> {
1594         infer::mk_eqty(self.infcx(), a_is_expected, origin, sub, sup)
1595     }
1596
1597     pub fn mk_subr(&self,
1598                    origin: infer::SubregionOrigin<'tcx>,
1599                    sub: ty::Region,
1600                    sup: ty::Region) {
1601         infer::mk_subr(self.infcx(), origin, sub, sup)
1602     }
1603
1604     pub fn type_error_message<M>(&self,
1605                                  sp: Span,
1606                                  mk_msg: M,
1607                                  actual_ty: Ty<'tcx>,
1608                                  err: Option<&ty::TypeError<'tcx>>) where
1609         M: FnOnce(String) -> String,
1610     {
1611         self.infcx().type_error_message(sp, mk_msg, actual_ty, err);
1612     }
1613
1614     pub fn report_mismatched_types(&self,
1615                                    sp: Span,
1616                                    e: Ty<'tcx>,
1617                                    a: Ty<'tcx>,
1618                                    err: &ty::TypeError<'tcx>) {
1619         self.infcx().report_mismatched_types(sp, e, a, err)
1620     }
1621
1622     /// Registers an obligation for checking later, during regionck, that the type `ty` must
1623     /// outlive the region `r`.
1624     pub fn register_region_obligation(&self,
1625                                       ty: Ty<'tcx>,
1626                                       region: ty::Region,
1627                                       cause: traits::ObligationCause<'tcx>)
1628     {
1629         let mut fulfillment_cx = self.inh.infcx.fulfillment_cx.borrow_mut();
1630         fulfillment_cx.register_region_obligation(ty, region, cause);
1631     }
1632
1633     pub fn add_default_region_param_bounds(&self,
1634                                            substs: &Substs<'tcx>,
1635                                            expr: &ast::Expr)
1636     {
1637         for &ty in &substs.types {
1638             let default_bound = ty::ReScope(CodeExtent::from_node_id(expr.id));
1639             let cause = traits::ObligationCause::new(expr.span, self.body_id,
1640                                                      traits::MiscObligation);
1641             self.register_region_obligation(ty, default_bound, cause);
1642         }
1643     }
1644
1645     /// Given a fully substituted set of bounds (`generic_bounds`), and the values with which each
1646     /// type/region parameter was instantiated (`substs`), creates and registers suitable
1647     /// trait/region obligations.
1648     ///
1649     /// For example, if there is a function:
1650     ///
1651     /// ```
1652     /// fn foo<'a,T:'a>(...)
1653     /// ```
1654     ///
1655     /// and a reference:
1656     ///
1657     /// ```
1658     /// let f = foo;
1659     /// ```
1660     ///
1661     /// Then we will create a fresh region variable `'$0` and a fresh type variable `$1` for `'a`
1662     /// and `T`. This routine will add a region obligation `$1:'$0` and register it locally.
1663     pub fn add_obligations_for_parameters(&self,
1664                                           cause: traits::ObligationCause<'tcx>,
1665                                           predicates: &ty::InstantiatedPredicates<'tcx>)
1666     {
1667         assert!(!predicates.has_escaping_regions());
1668
1669         debug!("add_obligations_for_parameters(predicates={:?})",
1670                predicates);
1671
1672         for obligation in traits::predicates_for_generics(cause, predicates) {
1673             self.register_predicate(obligation);
1674         }
1675     }
1676
1677     // Only for fields! Returns <none> for methods>
1678     // Indifferent to privacy flags
1679     pub fn lookup_field_ty(&self,
1680                            span: Span,
1681                            class_id: ast::DefId,
1682                            items: &[ty::FieldTy],
1683                            fieldname: ast::Name,
1684                            substs: &subst::Substs<'tcx>)
1685                            -> Option<Ty<'tcx>>
1686     {
1687         let o_field = items.iter().find(|f| f.name == fieldname);
1688         o_field.map(|f| self.tcx().lookup_field_type(class_id, f.id, substs))
1689                .map(|t| self.normalize_associated_types_in(span, &t))
1690     }
1691
1692     pub fn lookup_tup_field_ty(&self,
1693                                span: Span,
1694                                class_id: ast::DefId,
1695                                items: &[ty::FieldTy],
1696                                idx: usize,
1697                                substs: &subst::Substs<'tcx>)
1698                                -> Option<Ty<'tcx>>
1699     {
1700         let o_field = if idx < items.len() { Some(&items[idx]) } else { None };
1701         o_field.map(|f| self.tcx().lookup_field_type(class_id, f.id, substs))
1702                .map(|t| self.normalize_associated_types_in(span, &t))
1703     }
1704
1705     fn check_casts(&self) {
1706         let mut deferred_cast_checks = self.inh.deferred_cast_checks.borrow_mut();
1707         for cast in deferred_cast_checks.drain(..) {
1708             cast.check(self);
1709         }
1710     }
1711
1712     /// Apply "fallbacks" to some types
1713     /// ! gets replaced with (), unconstrained ints with i32, and unconstrained floats with f64.
1714     fn default_type_parameters(&self) {
1715         use middle::ty::UnconstrainedNumeric::{UnconstrainedInt, UnconstrainedFloat, Neither};
1716         for ty in &self.infcx().unsolved_variables() {
1717             let resolved = self.infcx().resolve_type_vars_if_possible(ty);
1718             if self.infcx().type_var_diverges(resolved) {
1719                 demand::eqtype(self, codemap::DUMMY_SP, *ty, self.tcx().mk_nil());
1720             } else {
1721                 match self.infcx().type_is_unconstrained_numeric(resolved) {
1722                     UnconstrainedInt => {
1723                         demand::eqtype(self, codemap::DUMMY_SP, *ty, self.tcx().types.i32)
1724                     },
1725                     UnconstrainedFloat => {
1726                         demand::eqtype(self, codemap::DUMMY_SP, *ty, self.tcx().types.f64)
1727                     }
1728                     Neither => { }
1729                 }
1730             }
1731         }
1732     }
1733
1734     fn select_all_obligations_and_apply_defaults(&self) {
1735         if self.tcx().sess.features.borrow().default_type_parameter_fallback {
1736             self.new_select_all_obligations_and_apply_defaults();
1737         } else {
1738             self.old_select_all_obligations_and_apply_defaults();
1739         }
1740     }
1741
1742     // Implements old type inference fallback algorithm
1743     fn old_select_all_obligations_and_apply_defaults(&self) {
1744         self.select_obligations_where_possible();
1745         self.default_type_parameters();
1746         self.select_obligations_where_possible();
1747     }
1748
1749     fn new_select_all_obligations_and_apply_defaults(&self) {
1750         use middle::ty::UnconstrainedNumeric::{UnconstrainedInt, UnconstrainedFloat, Neither};
1751
1752             // For the time being this errs on the side of being memory wasteful but provides better
1753         // error reporting.
1754         // let type_variables = self.infcx().type_variables.clone();
1755
1756         // There is a possibility that this algorithm will have to run an arbitrary number of times
1757         // to terminate so we bound it by the compiler's recursion limit.
1758         for _ in (0..self.tcx().sess.recursion_limit.get()) {
1759             // First we try to solve all obligations, it is possible that the last iteration
1760             // has made it possible to make more progress.
1761             self.select_obligations_where_possible();
1762
1763             let mut conflicts = Vec::new();
1764
1765             // Collect all unsolved type, integral and floating point variables.
1766             let unsolved_variables = self.inh.infcx.unsolved_variables();
1767
1768             // We must collect the defaults *before* we do any unification. Because we have
1769             // directly attached defaults to the type variables any unification that occurs
1770             // will erase defaults causing conflicting defaults to be completely ignored.
1771             let default_map: FnvHashMap<_, _> =
1772                 unsolved_variables
1773                     .iter()
1774                     .filter_map(|t| self.infcx().default(t).map(|d| (t, d)))
1775                     .collect();
1776
1777             let mut unbound_tyvars = HashSet::new();
1778
1779             debug!("select_all_obligations_and_apply_defaults: defaults={:?}", default_map);
1780
1781             // We loop over the unsolved variables, resolving them and if they are
1782             // and unconstrainted numberic type we add them to the set of unbound
1783             // variables. We do this so we only apply literal fallback to type
1784             // variables without defaults.
1785             for ty in &unsolved_variables {
1786                 let resolved = self.infcx().resolve_type_vars_if_possible(ty);
1787                 if self.infcx().type_var_diverges(resolved) {
1788                     demand::eqtype(self, codemap::DUMMY_SP, *ty, self.tcx().mk_nil());
1789                 } else {
1790                     match self.infcx().type_is_unconstrained_numeric(resolved) {
1791                         UnconstrainedInt | UnconstrainedFloat => {
1792                             unbound_tyvars.insert(resolved);
1793                         },
1794                         Neither => {}
1795                     }
1796                 }
1797             }
1798
1799             // We now remove any numeric types that also have defaults, and instead insert
1800             // the type variable with a defined fallback.
1801             for ty in &unsolved_variables {
1802                 if let Some(_default) = default_map.get(ty) {
1803                     let resolved = self.infcx().resolve_type_vars_if_possible(ty);
1804
1805                     debug!("select_all_obligations_and_apply_defaults: ty: {:?} with default: {:?}",
1806                              ty, _default);
1807
1808                     match resolved.sty {
1809                         ty::TyInfer(ty::TyVar(_)) => {
1810                             unbound_tyvars.insert(ty);
1811                         }
1812
1813                         ty::TyInfer(ty::IntVar(_)) | ty::TyInfer(ty::FloatVar(_)) => {
1814                             unbound_tyvars.insert(ty);
1815                             if unbound_tyvars.contains(resolved) {
1816                                 unbound_tyvars.remove(resolved);
1817                             }
1818                         }
1819
1820                         _ => {}
1821                     }
1822                 }
1823             }
1824
1825             // If there are no more fallbacks to apply at this point we have applied all possible
1826             // defaults and type inference will procede as normal.
1827             if unbound_tyvars.is_empty() {
1828                 break;
1829             }
1830
1831             // Finally we go through each of the unbound type variables and unify them with
1832             // the proper fallback, reporting a conflicting default error if any of the
1833             // unifications fail. We know it must be a conflicting default because the
1834             // variable would only be in `unbound_tyvars` and have a concrete value if
1835             // it had been solved by previously applying a default.
1836
1837             // We wrap this in a transaction for error reporting, if we detect a conflict
1838             // we will rollback the inference context to its prior state so we can probe
1839             // for conflicts and correctly report them.
1840
1841
1842             let _ = self.infcx().commit_if_ok(|_: &infer::CombinedSnapshot| {
1843                 for ty in &unbound_tyvars {
1844                     if self.infcx().type_var_diverges(ty) {
1845                         demand::eqtype(self, codemap::DUMMY_SP, *ty, self.tcx().mk_nil());
1846                     } else {
1847                         match self.infcx().type_is_unconstrained_numeric(ty) {
1848                             UnconstrainedInt => {
1849                                 demand::eqtype(self, codemap::DUMMY_SP, *ty, self.tcx().types.i32)
1850                             },
1851                             UnconstrainedFloat => {
1852                                 demand::eqtype(self, codemap::DUMMY_SP, *ty, self.tcx().types.f64)
1853                             }
1854                             Neither => {
1855                                 if let Some(default) = default_map.get(ty) {
1856                                     let default = default.clone();
1857                                     match infer::mk_eqty(self.infcx(), false,
1858                                                          infer::Misc(default.origin_span),
1859                                                          ty, default.ty) {
1860                                         Ok(()) => {}
1861                                         Err(_) => {
1862                                             conflicts.push((*ty, default));
1863                                         }
1864                                     }
1865                                 }
1866                             }
1867                         }
1868                     }
1869                 }
1870
1871                 // If there are conflicts we rollback, otherwise commit
1872                 if conflicts.len() > 0 {
1873                     Err(())
1874                 } else {
1875                     Ok(())
1876                 }
1877             });
1878
1879             if conflicts.len() > 0 {
1880                 // Loop through each conflicting default, figuring out the default that caused
1881                 // a unification failure and then report an error for each.
1882                 for (conflict, default) in conflicts {
1883                     let conflicting_default =
1884                         self.find_conflicting_default(&unbound_tyvars, &default_map, conflict)
1885                             .unwrap_or(type_variable::Default {
1886                                 ty: self.infcx().next_ty_var(),
1887                                 origin_span: codemap::DUMMY_SP,
1888                                 def_id: local_def(0) // what do I put here?
1889                             });
1890
1891                     // This is to ensure that we elimnate any non-determinism from the error
1892                     // reporting by fixing an order, it doesn't matter what order we choose
1893                     // just that it is consistent.
1894                     let (first_default, second_default) =
1895                         if default.def_id < conflicting_default.def_id {
1896                             (default, conflicting_default)
1897                         } else {
1898                             (conflicting_default, default)
1899                         };
1900
1901
1902                     self.infcx().report_conflicting_default_types(
1903                         first_default.origin_span,
1904                         first_default,
1905                         second_default)
1906                 }
1907             }
1908         }
1909
1910         self.select_obligations_where_possible();
1911     }
1912
1913     // For use in error handling related to default type parameter fallback. We explicitly
1914     // apply the default that caused conflict first to a local version of the type variable
1915     // table then apply defaults until we find a conflict. That default must be the one
1916     // that caused conflict earlier.
1917     fn find_conflicting_default(&self,
1918                                 unbound_vars: &HashSet<Ty<'tcx>>,
1919                                 default_map: &FnvHashMap<&Ty<'tcx>, type_variable::Default<'tcx>>,
1920                                 conflict: Ty<'tcx>)
1921                                 -> Option<type_variable::Default<'tcx>> {
1922         use middle::ty::UnconstrainedNumeric::{UnconstrainedInt, UnconstrainedFloat, Neither};
1923
1924         // Ensure that we apply the conflicting default first
1925         let mut unbound_tyvars = Vec::with_capacity(unbound_vars.len() + 1);
1926         unbound_tyvars.push(conflict);
1927         unbound_tyvars.extend(unbound_vars.iter());
1928
1929         let mut result = None;
1930         // We run the same code as above applying defaults in order, this time when
1931         // we find the conflict we just return it for error reporting above.
1932
1933         // We also run this inside snapshot that never commits so we can do error
1934         // reporting for more then one conflict.
1935         for ty in &unbound_tyvars {
1936             if self.infcx().type_var_diverges(ty) {
1937                 demand::eqtype(self, codemap::DUMMY_SP, *ty, self.tcx().mk_nil());
1938             } else {
1939                 match self.infcx().type_is_unconstrained_numeric(ty) {
1940                     UnconstrainedInt => {
1941                         demand::eqtype(self, codemap::DUMMY_SP, *ty, self.tcx().types.i32)
1942                     },
1943                     UnconstrainedFloat => {
1944                         demand::eqtype(self, codemap::DUMMY_SP, *ty, self.tcx().types.f64)
1945                     },
1946                     Neither => {
1947                         if let Some(default) = default_map.get(ty) {
1948                             let default = default.clone();
1949                             match infer::mk_eqty(self.infcx(), false,
1950                                                  infer::Misc(default.origin_span),
1951                                                  ty, default.ty) {
1952                                 Ok(()) => {}
1953                                 Err(_) => {
1954                                     result = Some(default);
1955                                 }
1956                             }
1957                         }
1958                     }
1959                 }
1960             }
1961         }
1962
1963         return result;
1964     }
1965
1966     fn select_all_obligations_or_error(&self) {
1967         debug!("select_all_obligations_or_error");
1968
1969         // upvar inference should have ensured that all deferred call
1970         // resolutions are handled by now.
1971         assert!(self.inh.deferred_call_resolutions.borrow().is_empty());
1972
1973         self.select_all_obligations_and_apply_defaults();
1974
1975         let mut fulfillment_cx = self.inh.infcx.fulfillment_cx.borrow_mut();
1976         match fulfillment_cx.select_all_or_error(self.infcx()) {
1977             Ok(()) => { }
1978             Err(errors) => { report_fulfillment_errors(self.infcx(), &errors); }
1979         }
1980     }
1981
1982     /// Select as many obligations as we can at present.
1983     fn select_obligations_where_possible(&self) {
1984         match
1985             self.inh.infcx.fulfillment_cx
1986             .borrow_mut()
1987             .select_where_possible(self.infcx())
1988         {
1989             Ok(()) => { }
1990             Err(errors) => { report_fulfillment_errors(self.infcx(), &errors); }
1991         }
1992     }
1993
1994     /// Try to select any fcx obligation that we haven't tried yet, in an effort
1995     /// to improve inference. You could just call
1996     /// `select_obligations_where_possible` except that it leads to repeated
1997     /// work.
1998     fn select_new_obligations(&self) {
1999         match
2000             self.inh.infcx.fulfillment_cx
2001             .borrow_mut()
2002             .select_new_obligations(self.infcx())
2003         {
2004             Ok(()) => { }
2005             Err(errors) => { report_fulfillment_errors(self.infcx(), &errors); }
2006         }
2007     }
2008
2009 }
2010
2011 impl<'a, 'tcx> RegionScope for FnCtxt<'a, 'tcx> {
2012     fn object_lifetime_default(&self, span: Span) -> Option<ty::Region> {
2013         Some(self.base_object_lifetime_default(span))
2014     }
2015
2016     fn base_object_lifetime_default(&self, span: Span) -> ty::Region {
2017         // RFC #599 specifies that object lifetime defaults take
2018         // precedence over other defaults. But within a fn body we
2019         // don't have a *default* region, rather we use inference to
2020         // find the *correct* region, which is strictly more general
2021         // (and anyway, within a fn body the right region may not even
2022         // be something the user can write explicitly, since it might
2023         // be some expression).
2024         self.infcx().next_region_var(infer::MiscVariable(span))
2025     }
2026
2027     fn anon_regions(&self, span: Span, count: usize)
2028                     -> Result<Vec<ty::Region>, Option<Vec<ElisionFailureInfo>>> {
2029         Ok((0..count).map(|_| {
2030             self.infcx().next_region_var(infer::MiscVariable(span))
2031         }).collect())
2032     }
2033 }
2034
2035 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
2036 pub enum LvaluePreference {
2037     PreferMutLvalue,
2038     NoPreference
2039 }
2040
2041 impl LvaluePreference {
2042     pub fn from_mutbl(m: ast::Mutability) -> Self {
2043         match m {
2044             ast::MutMutable => PreferMutLvalue,
2045             ast::MutImmutable => NoPreference,
2046         }
2047     }
2048 }
2049
2050 /// Whether `autoderef` requires types to resolve.
2051 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
2052 pub enum UnresolvedTypeAction {
2053     /// Produce an error and return `TyError` whenever a type cannot
2054     /// be resolved (i.e. it is `TyInfer`).
2055     Error,
2056     /// Go on without emitting any errors, and return the unresolved
2057     /// type. Useful for probing, e.g. in coercions.
2058     Ignore
2059 }
2060
2061 /// Executes an autoderef loop for the type `t`. At each step, invokes `should_stop` to decide
2062 /// whether to terminate the loop. Returns the final type and number of derefs that it performed.
2063 ///
2064 /// Note: this method does not modify the adjustments table. The caller is responsible for
2065 /// inserting an AutoAdjustment record into the `fcx` using one of the suitable methods.
2066 pub fn autoderef<'a, 'tcx, T, F>(fcx: &FnCtxt<'a, 'tcx>,
2067                                  sp: Span,
2068                                  base_ty: Ty<'tcx>,
2069                                  opt_expr: Option<&ast::Expr>,
2070                                  unresolved_type_action: UnresolvedTypeAction,
2071                                  mut lvalue_pref: LvaluePreference,
2072                                  mut should_stop: F)
2073                                  -> (Ty<'tcx>, usize, Option<T>)
2074     where F: FnMut(Ty<'tcx>, usize) -> Option<T>,
2075 {
2076     debug!("autoderef(base_ty={:?}, opt_expr={:?}, lvalue_pref={:?})",
2077            base_ty,
2078            opt_expr,
2079            lvalue_pref);
2080
2081     let mut t = base_ty;
2082     for autoderefs in 0..fcx.tcx().sess.recursion_limit.get() {
2083         let resolved_t = match unresolved_type_action {
2084             UnresolvedTypeAction::Error => {
2085                 structurally_resolved_type(fcx, sp, t)
2086             }
2087             UnresolvedTypeAction::Ignore => {
2088                 // We can continue even when the type cannot be resolved
2089                 // (i.e. it is an inference variable) because `Ty::builtin_deref`
2090                 // and `try_overloaded_deref` both simply return `None`
2091                 // in such a case without producing spurious errors.
2092                 fcx.resolve_type_vars_if_possible(t)
2093             }
2094         };
2095         if resolved_t.references_error() {
2096             return (resolved_t, autoderefs, None);
2097         }
2098
2099         match should_stop(resolved_t, autoderefs) {
2100             Some(x) => return (resolved_t, autoderefs, Some(x)),
2101             None => {}
2102         }
2103
2104         // Otherwise, deref if type is derefable:
2105         let mt = match resolved_t.builtin_deref(false) {
2106             Some(mt) => Some(mt),
2107             None => {
2108                 let method_call =
2109                     opt_expr.map(|expr| MethodCall::autoderef(expr.id, autoderefs as u32));
2110
2111                 // Super subtle: it might seem as though we should
2112                 // pass `opt_expr` to `try_overloaded_deref`, so that
2113                 // the (implicit) autoref of using an overloaded deref
2114                 // would get added to the adjustment table. However we
2115                 // do not do that, because it's kind of a
2116                 // "meta-adjustment" -- instead, we just leave it
2117                 // unrecorded and know that there "will be" an
2118                 // autoref. regionck and other bits of the code base,
2119                 // when they encounter an overloaded autoderef, have
2120                 // to do some reconstructive surgery. This is a pretty
2121                 // complex mess that is begging for a proper MIR.
2122                 try_overloaded_deref(fcx, sp, method_call, None, resolved_t, lvalue_pref)
2123             }
2124         };
2125         match mt {
2126             Some(mt) => {
2127                 t = mt.ty;
2128                 if mt.mutbl == ast::MutImmutable {
2129                     lvalue_pref = NoPreference;
2130                 }
2131             }
2132             None => return (resolved_t, autoderefs, None)
2133         }
2134     }
2135
2136     // We've reached the recursion limit, error gracefully.
2137     span_err!(fcx.tcx().sess, sp, E0055,
2138         "reached the recursion limit while auto-dereferencing {:?}",
2139         base_ty);
2140     (fcx.tcx().types.err, 0, None)
2141 }
2142
2143 fn try_overloaded_deref<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2144                                   span: Span,
2145                                   method_call: Option<MethodCall>,
2146                                   base_expr: Option<&ast::Expr>,
2147                                   base_ty: Ty<'tcx>,
2148                                   lvalue_pref: LvaluePreference)
2149                                   -> Option<ty::TypeAndMut<'tcx>>
2150 {
2151     // Try DerefMut first, if preferred.
2152     let method = match (lvalue_pref, fcx.tcx().lang_items.deref_mut_trait()) {
2153         (PreferMutLvalue, Some(trait_did)) => {
2154             method::lookup_in_trait(fcx, span, base_expr,
2155                                     token::intern("deref_mut"), trait_did,
2156                                     base_ty, None)
2157         }
2158         _ => None
2159     };
2160
2161     // Otherwise, fall back to Deref.
2162     let method = match (method, fcx.tcx().lang_items.deref_trait()) {
2163         (None, Some(trait_did)) => {
2164             method::lookup_in_trait(fcx, span, base_expr,
2165                                     token::intern("deref"), trait_did,
2166                                     base_ty, None)
2167         }
2168         (method, _) => method
2169     };
2170
2171     make_overloaded_lvalue_return_type(fcx, method_call, method)
2172 }
2173
2174 /// For the overloaded lvalue expressions (`*x`, `x[3]`), the trait returns a type of `&T`, but the
2175 /// actual type we assign to the *expression* is `T`. So this function just peels off the return
2176 /// type by one layer to yield `T`. It also inserts the `method-callee` into the method map.
2177 fn make_overloaded_lvalue_return_type<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2178                                                 method_call: Option<MethodCall>,
2179                                                 method: Option<MethodCallee<'tcx>>)
2180                                                 -> Option<ty::TypeAndMut<'tcx>>
2181 {
2182     match method {
2183         Some(method) => {
2184             // extract method method return type, which will be &T;
2185             // all LB regions should have been instantiated during method lookup
2186             let ret_ty = method.ty.fn_ret();
2187             let ret_ty = fcx.tcx().no_late_bound_regions(&ret_ty).unwrap().unwrap();
2188
2189             if let Some(method_call) = method_call {
2190                 fcx.inh.tables.borrow_mut().method_map.insert(method_call, method);
2191             }
2192
2193             // method returns &T, but the type as visible to user is T, so deref
2194             ret_ty.builtin_deref(true)
2195         }
2196         None => None,
2197     }
2198 }
2199
2200 fn lookup_indexing<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2201                              expr: &ast::Expr,
2202                              base_expr: &'tcx ast::Expr,
2203                              base_ty: Ty<'tcx>,
2204                              idx_ty: Ty<'tcx>,
2205                              lvalue_pref: LvaluePreference)
2206                              -> Option<(/*index type*/ Ty<'tcx>, /*element type*/ Ty<'tcx>)>
2207 {
2208     // FIXME(#18741) -- this is almost but not quite the same as the
2209     // autoderef that normal method probing does. They could likely be
2210     // consolidated.
2211
2212     let (ty, autoderefs, final_mt) = autoderef(fcx,
2213                                                base_expr.span,
2214                                                base_ty,
2215                                                Some(base_expr),
2216                                                UnresolvedTypeAction::Error,
2217                                                lvalue_pref,
2218                                                |adj_ty, idx| {
2219         try_index_step(fcx, MethodCall::expr(expr.id), expr, base_expr,
2220                        adj_ty, idx, false, lvalue_pref, idx_ty)
2221     });
2222
2223     if final_mt.is_some() {
2224         return final_mt;
2225     }
2226
2227     // After we have fully autoderef'd, if the resulting type is [T; n], then
2228     // do a final unsized coercion to yield [T].
2229     if let ty::TyArray(element_ty, _) = ty.sty {
2230         let adjusted_ty = fcx.tcx().mk_slice(element_ty);
2231         try_index_step(fcx, MethodCall::expr(expr.id), expr, base_expr,
2232                        adjusted_ty, autoderefs, true, lvalue_pref, idx_ty)
2233     } else {
2234         None
2235     }
2236 }
2237
2238 /// To type-check `base_expr[index_expr]`, we progressively autoderef (and otherwise adjust)
2239 /// `base_expr`, looking for a type which either supports builtin indexing or overloaded indexing.
2240 /// This loop implements one step in that search; the autoderef loop is implemented by
2241 /// `lookup_indexing`.
2242 fn try_index_step<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2243                             method_call: MethodCall,
2244                             expr: &ast::Expr,
2245                             base_expr: &'tcx ast::Expr,
2246                             adjusted_ty: Ty<'tcx>,
2247                             autoderefs: usize,
2248                             unsize: bool,
2249                             lvalue_pref: LvaluePreference,
2250                             index_ty: Ty<'tcx>)
2251                             -> Option<(/*index type*/ Ty<'tcx>, /*element type*/ Ty<'tcx>)>
2252 {
2253     let tcx = fcx.tcx();
2254     debug!("try_index_step(expr={:?}, base_expr.id={:?}, adjusted_ty={:?}, \
2255                            autoderefs={}, unsize={}, index_ty={:?})",
2256            expr,
2257            base_expr,
2258            adjusted_ty,
2259            autoderefs,
2260            unsize,
2261            index_ty);
2262
2263     let input_ty = fcx.infcx().next_ty_var();
2264
2265     // First, try built-in indexing.
2266     match (adjusted_ty.builtin_index(), &index_ty.sty) {
2267         (Some(ty), &ty::TyUint(ast::TyUs)) | (Some(ty), &ty::TyInfer(ty::IntVar(_))) => {
2268             debug!("try_index_step: success, using built-in indexing");
2269             // If we had `[T; N]`, we should've caught it before unsizing to `[T]`.
2270             assert!(!unsize);
2271             fcx.write_autoderef_adjustment(base_expr.id, autoderefs);
2272             return Some((tcx.types.usize, ty));
2273         }
2274         _ => {}
2275     }
2276
2277     // Try `IndexMut` first, if preferred.
2278     let method = match (lvalue_pref, tcx.lang_items.index_mut_trait()) {
2279         (PreferMutLvalue, Some(trait_did)) => {
2280             method::lookup_in_trait_adjusted(fcx,
2281                                              expr.span,
2282                                              Some(&*base_expr),
2283                                              token::intern("index_mut"),
2284                                              trait_did,
2285                                              autoderefs,
2286                                              unsize,
2287                                              adjusted_ty,
2288                                              Some(vec![input_ty]))
2289         }
2290         _ => None,
2291     };
2292
2293     // Otherwise, fall back to `Index`.
2294     let method = match (method, tcx.lang_items.index_trait()) {
2295         (None, Some(trait_did)) => {
2296             method::lookup_in_trait_adjusted(fcx,
2297                                              expr.span,
2298                                              Some(&*base_expr),
2299                                              token::intern("index"),
2300                                              trait_did,
2301                                              autoderefs,
2302                                              unsize,
2303                                              adjusted_ty,
2304                                              Some(vec![input_ty]))
2305         }
2306         (method, _) => method,
2307     };
2308
2309     // If some lookup succeeds, write callee into table and extract index/element
2310     // type from the method signature.
2311     // If some lookup succeeded, install method in table
2312     method.and_then(|method| {
2313         debug!("try_index_step: success, using overloaded indexing");
2314         make_overloaded_lvalue_return_type(fcx, Some(method_call), Some(method)).
2315             map(|ret| (input_ty, ret.ty))
2316     })
2317 }
2318
2319 fn check_method_argument_types<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2320                                          sp: Span,
2321                                          method_fn_ty: Ty<'tcx>,
2322                                          callee_expr: &'tcx ast::Expr,
2323                                          args_no_rcvr: &'tcx [P<ast::Expr>],
2324                                          tuple_arguments: TupleArgumentsFlag,
2325                                          expected: Expectation<'tcx>)
2326                                          -> ty::FnOutput<'tcx> {
2327     if method_fn_ty.references_error() {
2328         let err_inputs = err_args(fcx.tcx(), args_no_rcvr.len());
2329
2330         let err_inputs = match tuple_arguments {
2331             DontTupleArguments => err_inputs,
2332             TupleArguments => vec![fcx.tcx().mk_tup(err_inputs)],
2333         };
2334
2335         check_argument_types(fcx,
2336                              sp,
2337                              &err_inputs[..],
2338                              &[],
2339                              args_no_rcvr,
2340                              false,
2341                              tuple_arguments);
2342         ty::FnConverging(fcx.tcx().types.err)
2343     } else {
2344         match method_fn_ty.sty {
2345             ty::TyBareFn(_, ref fty) => {
2346                 // HACK(eddyb) ignore self in the definition (see above).
2347                 let expected_arg_tys = expected_types_for_fn_args(fcx,
2348                                                                   sp,
2349                                                                   expected,
2350                                                                   fty.sig.0.output,
2351                                                                   &fty.sig.0.inputs[1..]);
2352                 check_argument_types(fcx,
2353                                      sp,
2354                                      &fty.sig.0.inputs[1..],
2355                                      &expected_arg_tys[..],
2356                                      args_no_rcvr,
2357                                      fty.sig.0.variadic,
2358                                      tuple_arguments);
2359                 fty.sig.0.output
2360             }
2361             _ => {
2362                 fcx.tcx().sess.span_bug(callee_expr.span,
2363                                         "method without bare fn type");
2364             }
2365         }
2366     }
2367 }
2368
2369 /// Generic function that factors out common logic from function calls, method calls and overloaded
2370 /// operators.
2371 fn check_argument_types<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2372                                   sp: Span,
2373                                   fn_inputs: &[Ty<'tcx>],
2374                                   expected_arg_tys: &[Ty<'tcx>],
2375                                   args: &'tcx [P<ast::Expr>],
2376                                   variadic: bool,
2377                                   tuple_arguments: TupleArgumentsFlag) {
2378     let tcx = fcx.ccx.tcx;
2379
2380     // Grab the argument types, supplying fresh type variables
2381     // if the wrong number of arguments were supplied
2382     let supplied_arg_count = if tuple_arguments == DontTupleArguments {
2383         args.len()
2384     } else {
2385         1
2386     };
2387
2388     let mut expected_arg_tys = expected_arg_tys;
2389     let expected_arg_count = fn_inputs.len();
2390     let formal_tys = if tuple_arguments == TupleArguments {
2391         let tuple_type = structurally_resolved_type(fcx, sp, fn_inputs[0]);
2392         match tuple_type.sty {
2393             ty::TyTuple(ref arg_types) => {
2394                 if arg_types.len() != args.len() {
2395                     span_err!(tcx.sess, sp, E0057,
2396                         "this function takes {} parameter{} but {} parameter{} supplied",
2397                         arg_types.len(),
2398                         if arg_types.len() == 1 {""} else {"s"},
2399                         args.len(),
2400                         if args.len() == 1 {" was"} else {"s were"});
2401                     expected_arg_tys = &[];
2402                     err_args(fcx.tcx(), args.len())
2403                 } else {
2404                     expected_arg_tys = match expected_arg_tys.get(0) {
2405                         Some(&ty) => match ty.sty {
2406                             ty::TyTuple(ref tys) => &**tys,
2407                             _ => &[]
2408                         },
2409                         None => &[]
2410                     };
2411                     (*arg_types).clone()
2412                 }
2413             }
2414             _ => {
2415                 span_err!(tcx.sess, sp, E0059,
2416                     "cannot use call notation; the first type parameter \
2417                      for the function trait is neither a tuple nor unit");
2418                 expected_arg_tys = &[];
2419                 err_args(fcx.tcx(), args.len())
2420             }
2421         }
2422     } else if expected_arg_count == supplied_arg_count {
2423         fn_inputs.to_vec()
2424     } else if variadic {
2425         if supplied_arg_count >= expected_arg_count {
2426             fn_inputs.to_vec()
2427         } else {
2428             span_err!(tcx.sess, sp, E0060,
2429                 "this function takes at least {} parameter{} \
2430                  but {} parameter{} supplied",
2431                 expected_arg_count,
2432                 if expected_arg_count == 1 {""} else {"s"},
2433                 supplied_arg_count,
2434                 if supplied_arg_count == 1 {" was"} else {"s were"});
2435             expected_arg_tys = &[];
2436             err_args(fcx.tcx(), supplied_arg_count)
2437         }
2438     } else {
2439         span_err!(tcx.sess, sp, E0061,
2440             "this function takes {} parameter{} but {} parameter{} supplied",
2441             expected_arg_count,
2442             if expected_arg_count == 1 {""} else {"s"},
2443             supplied_arg_count,
2444             if supplied_arg_count == 1 {" was"} else {"s were"});
2445         expected_arg_tys = &[];
2446         err_args(fcx.tcx(), supplied_arg_count)
2447     };
2448
2449     debug!("check_argument_types: formal_tys={:?}",
2450            formal_tys.iter().map(|t| fcx.infcx().ty_to_string(*t)).collect::<Vec<String>>());
2451
2452     // Check the arguments.
2453     // We do this in a pretty awful way: first we typecheck any arguments
2454     // that are not anonymous functions, then we typecheck the anonymous
2455     // functions. This is so that we have more information about the types
2456     // of arguments when we typecheck the functions. This isn't really the
2457     // right way to do this.
2458     let xs = [false, true];
2459     for check_blocks in &xs {
2460         let check_blocks = *check_blocks;
2461         debug!("check_blocks={}", check_blocks);
2462
2463         // More awful hacks: before we check argument types, try to do
2464         // an "opportunistic" vtable resolution of any trait bounds on
2465         // the call. This helps coercions.
2466         if check_blocks {
2467             fcx.select_new_obligations();
2468         }
2469
2470         // For variadic functions, we don't have a declared type for all of
2471         // the arguments hence we only do our usual type checking with
2472         // the arguments who's types we do know.
2473         let t = if variadic {
2474             expected_arg_count
2475         } else if tuple_arguments == TupleArguments {
2476             args.len()
2477         } else {
2478             supplied_arg_count
2479         };
2480         for (i, arg) in args.iter().take(t).enumerate() {
2481             let is_block = match arg.node {
2482                 ast::ExprClosure(..) => true,
2483                 _ => false
2484             };
2485
2486             if is_block == check_blocks {
2487                 debug!("checking the argument");
2488                 let formal_ty = formal_tys[i];
2489
2490                 // The special-cased logic below has three functions:
2491                 // 1. Provide as good of an expected type as possible.
2492                 let expected = expected_arg_tys.get(i).map(|&ty| {
2493                     Expectation::rvalue_hint(fcx.tcx(), ty)
2494                 });
2495
2496                 check_expr_with_unifier(fcx, &**arg,
2497                                         expected.unwrap_or(ExpectHasType(formal_ty)),
2498                                         NoPreference, || {
2499                     // 2. Coerce to the most detailed type that could be coerced
2500                     //    to, which is `expected_ty` if `rvalue_hint` returns an
2501                     //    `ExprHasType(expected_ty)`, or the `formal_ty` otherwise.
2502                     let coerce_ty = expected.and_then(|e| e.only_has_type(fcx));
2503                     demand::coerce(fcx, arg.span, coerce_ty.unwrap_or(formal_ty), &**arg);
2504
2505                     // 3. Relate the expected type and the formal one,
2506                     //    if the expected type was used for the coercion.
2507                     coerce_ty.map(|ty| demand::suptype(fcx, arg.span, formal_ty, ty));
2508                 });
2509             }
2510         }
2511     }
2512
2513     // We also need to make sure we at least write the ty of the other
2514     // arguments which we skipped above.
2515     if variadic {
2516         for arg in args.iter().skip(expected_arg_count) {
2517             check_expr(fcx, &**arg);
2518
2519             // There are a few types which get autopromoted when passed via varargs
2520             // in C but we just error out instead and require explicit casts.
2521             let arg_ty = structurally_resolved_type(fcx, arg.span,
2522                                                     fcx.expr_ty(&**arg));
2523             match arg_ty.sty {
2524                 ty::TyFloat(ast::TyF32) => {
2525                     fcx.type_error_message(arg.span,
2526                                            |t| {
2527                         format!("can't pass an {} to variadic \
2528                                  function, cast to c_double", t)
2529                     }, arg_ty, None);
2530                 }
2531                 ty::TyInt(ast::TyI8) | ty::TyInt(ast::TyI16) | ty::TyBool => {
2532                     fcx.type_error_message(arg.span, |t| {
2533                         format!("can't pass {} to variadic \
2534                                  function, cast to c_int",
2535                                        t)
2536                     }, arg_ty, None);
2537                 }
2538                 ty::TyUint(ast::TyU8) | ty::TyUint(ast::TyU16) => {
2539                     fcx.type_error_message(arg.span, |t| {
2540                         format!("can't pass {} to variadic \
2541                                  function, cast to c_uint",
2542                                        t)
2543                     }, arg_ty, None);
2544                 }
2545                 _ => {}
2546             }
2547         }
2548     }
2549 }
2550
2551 // FIXME(#17596) Ty<'tcx> is incorrectly invariant w.r.t 'tcx.
2552 fn err_args<'tcx>(tcx: &ty::ctxt<'tcx>, len: usize) -> Vec<Ty<'tcx>> {
2553     (0..len).map(|_| tcx.types.err).collect()
2554 }
2555
2556 fn write_call<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2557                         call_expr: &ast::Expr,
2558                         output: ty::FnOutput<'tcx>) {
2559     fcx.write_ty(call_expr.id, match output {
2560         ty::FnConverging(output_ty) => output_ty,
2561         ty::FnDiverging => fcx.infcx().next_diverging_ty_var()
2562     });
2563 }
2564
2565 // AST fragment checking
2566 fn check_lit<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2567                        lit: &ast::Lit,
2568                        expected: Expectation<'tcx>)
2569                        -> Ty<'tcx>
2570 {
2571     let tcx = fcx.ccx.tcx;
2572
2573     match lit.node {
2574         ast::LitStr(..) => tcx.mk_static_str(),
2575         ast::LitBinary(ref v) => {
2576             tcx.mk_imm_ref(tcx.mk_region(ty::ReStatic),
2577                             tcx.mk_array(tcx.types.u8, v.len()))
2578         }
2579         ast::LitByte(_) => tcx.types.u8,
2580         ast::LitChar(_) => tcx.types.char,
2581         ast::LitInt(_, ast::SignedIntLit(t, _)) => tcx.mk_mach_int(t),
2582         ast::LitInt(_, ast::UnsignedIntLit(t)) => tcx.mk_mach_uint(t),
2583         ast::LitInt(_, ast::UnsuffixedIntLit(_)) => {
2584             let opt_ty = expected.to_option(fcx).and_then(|ty| {
2585                 match ty.sty {
2586                     ty::TyInt(_) | ty::TyUint(_) => Some(ty),
2587                     ty::TyChar => Some(tcx.types.u8),
2588                     ty::TyRawPtr(..) => Some(tcx.types.usize),
2589                     ty::TyBareFn(..) => Some(tcx.types.usize),
2590                     _ => None
2591                 }
2592             });
2593             opt_ty.unwrap_or_else(
2594                 || tcx.mk_int_var(fcx.infcx().next_int_var_id()))
2595         }
2596         ast::LitFloat(_, t) => tcx.mk_mach_float(t),
2597         ast::LitFloatUnsuffixed(_) => {
2598             let opt_ty = expected.to_option(fcx).and_then(|ty| {
2599                 match ty.sty {
2600                     ty::TyFloat(_) => Some(ty),
2601                     _ => None
2602                 }
2603             });
2604             opt_ty.unwrap_or_else(
2605                 || tcx.mk_float_var(fcx.infcx().next_float_var_id()))
2606         }
2607         ast::LitBool(_) => tcx.types.bool
2608     }
2609 }
2610
2611 pub fn check_expr_has_type<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2612                                      expr: &'tcx ast::Expr,
2613                                      expected: Ty<'tcx>) {
2614     check_expr_with_unifier(
2615         fcx, expr, ExpectHasType(expected), NoPreference,
2616         || demand::suptype(fcx, expr.span, expected, fcx.expr_ty(expr)));
2617 }
2618
2619 fn check_expr_coercable_to_type<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2620                                           expr: &'tcx ast::Expr,
2621                                           expected: Ty<'tcx>) {
2622     check_expr_with_unifier(
2623         fcx, expr, ExpectHasType(expected), NoPreference,
2624         || demand::coerce(fcx, expr.span, expected, expr));
2625 }
2626
2627 fn check_expr_with_hint<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>, expr: &'tcx ast::Expr,
2628                                   expected: Ty<'tcx>) {
2629     check_expr_with_unifier(
2630         fcx, expr, ExpectHasType(expected), NoPreference,
2631         || ())
2632 }
2633
2634 fn check_expr_with_expectation<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2635                                          expr: &'tcx ast::Expr,
2636                                          expected: Expectation<'tcx>) {
2637     check_expr_with_unifier(
2638         fcx, expr, expected, NoPreference,
2639         || ())
2640 }
2641
2642 fn check_expr_with_expectation_and_lvalue_pref<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2643                                                          expr: &'tcx ast::Expr,
2644                                                          expected: Expectation<'tcx>,
2645                                                          lvalue_pref: LvaluePreference)
2646 {
2647     check_expr_with_unifier(fcx, expr, expected, lvalue_pref, || ())
2648 }
2649
2650 fn check_expr<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>, expr: &'tcx ast::Expr)  {
2651     check_expr_with_unifier(fcx, expr, NoExpectation, NoPreference, || ())
2652 }
2653
2654 fn check_expr_with_lvalue_pref<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>, expr: &'tcx ast::Expr,
2655                                         lvalue_pref: LvaluePreference)  {
2656     check_expr_with_unifier(fcx, expr, NoExpectation, lvalue_pref, || ())
2657 }
2658
2659 // determine the `self` type, using fresh variables for all variables
2660 // declared on the impl declaration e.g., `impl<A,B> for Vec<(A,B)>`
2661 // would return ($0, $1) where $0 and $1 are freshly instantiated type
2662 // variables.
2663 pub fn impl_self_ty<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2664                               span: Span, // (potential) receiver for this impl
2665                               did: ast::DefId)
2666                               -> TypeAndSubsts<'tcx> {
2667     let tcx = fcx.tcx();
2668
2669     let ity = tcx.lookup_item_type(did);
2670     let (tps, rps, raw_ty) =
2671         (ity.generics.types.get_slice(subst::TypeSpace),
2672          ity.generics.regions.get_slice(subst::TypeSpace),
2673          ity.ty);
2674
2675     debug!("impl_self_ty: tps={:?} rps={:?} raw_ty={:?}", tps, rps, raw_ty);
2676
2677     let rps = fcx.inh.infcx.region_vars_for_defs(span, rps);
2678     let mut substs = subst::Substs::new(
2679         VecPerParamSpace::empty(),
2680         VecPerParamSpace::new(rps, Vec::new(), Vec::new()));
2681     fcx.inh.infcx.type_vars_for_defs(span, ParamSpace::TypeSpace, &mut substs, tps);
2682     let substd_ty = fcx.instantiate_type_scheme(span, &substs, &raw_ty);
2683
2684     TypeAndSubsts { substs: substs, ty: substd_ty }
2685 }
2686
2687 /// Controls whether the arguments are tupled. This is used for the call
2688 /// operator.
2689 ///
2690 /// Tupling means that all call-side arguments are packed into a tuple and
2691 /// passed as a single parameter. For example, if tupling is enabled, this
2692 /// function:
2693 ///
2694 ///     fn f(x: (isize, isize))
2695 ///
2696 /// Can be called as:
2697 ///
2698 ///     f(1, 2);
2699 ///
2700 /// Instead of:
2701 ///
2702 ///     f((1, 2));
2703 #[derive(Clone, Eq, PartialEq)]
2704 enum TupleArgumentsFlag {
2705     DontTupleArguments,
2706     TupleArguments,
2707 }
2708
2709 /// Unifies the return type with the expected type early, for more coercions
2710 /// and forward type information on the argument expressions.
2711 fn expected_types_for_fn_args<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2712                                         call_span: Span,
2713                                         expected_ret: Expectation<'tcx>,
2714                                         formal_ret: ty::FnOutput<'tcx>,
2715                                         formal_args: &[Ty<'tcx>])
2716                                         -> Vec<Ty<'tcx>> {
2717     let expected_args = expected_ret.only_has_type(fcx).and_then(|ret_ty| {
2718         if let ty::FnConverging(formal_ret_ty) = formal_ret {
2719             fcx.infcx().commit_regions_if_ok(|| {
2720                 // Attempt to apply a subtyping relationship between the formal
2721                 // return type (likely containing type variables if the function
2722                 // is polymorphic) and the expected return type.
2723                 // No argument expectations are produced if unification fails.
2724                 let origin = infer::Misc(call_span);
2725                 let ures = fcx.infcx().sub_types(false, origin, formal_ret_ty, ret_ty);
2726                 // FIXME(#15760) can't use try! here, FromError doesn't default
2727                 // to identity so the resulting type is not constrained.
2728                 if let Err(e) = ures {
2729                     return Err(e);
2730                 }
2731
2732                 // Record all the argument types, with the substitutions
2733                 // produced from the above subtyping unification.
2734                 Ok(formal_args.iter().map(|ty| {
2735                     fcx.infcx().resolve_type_vars_if_possible(ty)
2736                 }).collect())
2737             }).ok()
2738         } else {
2739             None
2740         }
2741     }).unwrap_or(vec![]);
2742     debug!("expected_types_for_fn_args(formal={:?} -> {:?}, expected={:?} -> {:?})",
2743            formal_args, formal_ret,
2744            expected_args, expected_ret);
2745     expected_args
2746 }
2747
2748 /// Invariant:
2749 /// If an expression has any sub-expressions that result in a type error,
2750 /// inspecting that expression's type with `ty.references_error()` will return
2751 /// true. Likewise, if an expression is known to diverge, inspecting its
2752 /// type with `ty::type_is_bot` will return true (n.b.: since Rust is
2753 /// strict, _|_ can appear in the type of an expression that does not,
2754 /// itself, diverge: for example, fn() -> _|_.)
2755 /// Note that inspecting a type's structure *directly* may expose the fact
2756 /// that there are actually multiple representations for `TyError`, so avoid
2757 /// that when err needs to be handled differently.
2758 fn check_expr_with_unifier<'a, 'tcx, F>(fcx: &FnCtxt<'a, 'tcx>,
2759                                         expr: &'tcx ast::Expr,
2760                                         expected: Expectation<'tcx>,
2761                                         lvalue_pref: LvaluePreference,
2762                                         unifier: F) where
2763     F: FnOnce(),
2764 {
2765     debug!(">> typechecking: expr={:?} expected={:?}",
2766            expr, expected);
2767
2768     // Checks a method call.
2769     fn check_method_call<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2770                                    expr: &'tcx ast::Expr,
2771                                    method_name: ast::SpannedIdent,
2772                                    args: &'tcx [P<ast::Expr>],
2773                                    tps: &[P<ast::Ty>],
2774                                    expected: Expectation<'tcx>,
2775                                    lvalue_pref: LvaluePreference) {
2776         let rcvr = &*args[0];
2777         check_expr_with_lvalue_pref(fcx, &*rcvr, lvalue_pref);
2778
2779         // no need to check for bot/err -- callee does that
2780         let expr_t = structurally_resolved_type(fcx,
2781                                                 expr.span,
2782                                                 fcx.expr_ty(&*rcvr));
2783
2784         let tps = tps.iter().map(|ast_ty| fcx.to_ty(&**ast_ty)).collect::<Vec<_>>();
2785         let fn_ty = match method::lookup(fcx,
2786                                          method_name.span,
2787                                          method_name.node.name,
2788                                          expr_t,
2789                                          tps,
2790                                          expr,
2791                                          rcvr) {
2792             Ok(method) => {
2793                 let method_ty = method.ty;
2794                 let method_call = MethodCall::expr(expr.id);
2795                 fcx.inh.tables.borrow_mut().method_map.insert(method_call, method);
2796                 method_ty
2797             }
2798             Err(error) => {
2799                 method::report_error(fcx, method_name.span, expr_t,
2800                                      method_name.node.name, Some(rcvr), error);
2801                 fcx.write_error(expr.id);
2802                 fcx.tcx().types.err
2803             }
2804         };
2805
2806         // Call the generic checker.
2807         let ret_ty = check_method_argument_types(fcx,
2808                                                  method_name.span,
2809                                                  fn_ty,
2810                                                  expr,
2811                                                  &args[1..],
2812                                                  DontTupleArguments,
2813                                                  expected);
2814
2815         write_call(fcx, expr, ret_ty);
2816     }
2817
2818     // A generic function for checking the then and else in an if
2819     // or if-else.
2820     fn check_then_else<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
2821                                  cond_expr: &'tcx ast::Expr,
2822                                  then_blk: &'tcx ast::Block,
2823                                  opt_else_expr: Option<&'tcx ast::Expr>,
2824                                  id: ast::NodeId,
2825                                  sp: Span,
2826                                  expected: Expectation<'tcx>) {
2827         check_expr_has_type(fcx, cond_expr, fcx.tcx().types.bool);
2828
2829         let expected = expected.adjust_for_branches(fcx);
2830         check_block_with_expected(fcx, then_blk, expected);
2831         let then_ty = fcx.node_ty(then_blk.id);
2832
2833         let branches_ty = match opt_else_expr {
2834             Some(ref else_expr) => {
2835                 check_expr_with_expectation(fcx, &**else_expr, expected);
2836                 let else_ty = fcx.expr_ty(&**else_expr);
2837                 infer::common_supertype(fcx.infcx(),
2838                                         infer::IfExpression(sp),
2839                                         true,
2840                                         then_ty,
2841                                         else_ty)
2842             }
2843             None => {
2844                 infer::common_supertype(fcx.infcx(),
2845                                         infer::IfExpressionWithNoElse(sp),
2846                                         false,
2847                                         then_ty,
2848                                         fcx.tcx().mk_nil())
2849             }
2850         };
2851
2852         let cond_ty = fcx.expr_ty(cond_expr);
2853         let if_ty = if cond_ty.references_error() {
2854             fcx.tcx().types.err
2855         } else {
2856             branches_ty
2857         };
2858
2859         fcx.write_ty(id, if_ty);
2860     }
2861
2862     // Check field access expressions
2863     fn check_field<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>,
2864                             expr: &'tcx ast::Expr,
2865                             lvalue_pref: LvaluePreference,
2866                             base: &'tcx ast::Expr,
2867                             field: &ast::SpannedIdent) {
2868         let tcx = fcx.ccx.tcx;
2869         check_expr_with_lvalue_pref(fcx, base, lvalue_pref);
2870         let expr_t = structurally_resolved_type(fcx, expr.span,
2871                                                 fcx.expr_ty(base));
2872         // FIXME(eddyb) #12808 Integrate privacy into this auto-deref loop.
2873         let (_, autoderefs, field_ty) = autoderef(fcx,
2874                                                   expr.span,
2875                                                   expr_t,
2876                                                   Some(base),
2877                                                   UnresolvedTypeAction::Error,
2878                                                   lvalue_pref,
2879                                                   |base_t, _| {
2880                 match base_t.sty {
2881                     ty::TyStruct(base_id, substs) => {
2882                         debug!("struct named {:?}",  base_t);
2883                         let fields = tcx.lookup_struct_fields(base_id);
2884                         fcx.lookup_field_ty(expr.span, base_id, &fields[..],
2885                                             field.node.name, &(*substs))
2886                     }
2887                     _ => None
2888                 }
2889             });
2890         match field_ty {
2891             Some(field_ty) => {
2892                 fcx.write_ty(expr.id, field_ty);
2893                 fcx.write_autoderef_adjustment(base.id, autoderefs);
2894                 return;
2895             }
2896             None => {}
2897         }
2898
2899         if method::exists(fcx, field.span, field.node.name, expr_t, expr.id) {
2900             fcx.type_error_message(
2901                 field.span,
2902                 |actual| {
2903                     format!("attempted to take value of method `{}` on type \
2904                             `{}`", field.node, actual)
2905                 },
2906                 expr_t, None);
2907
2908             tcx.sess.fileline_help(field.span,
2909                                "maybe a `()` to call it is missing? \
2910                                If not, try an anonymous function");
2911         } else {
2912             fcx.type_error_message(
2913                 expr.span,
2914                 |actual| {
2915                     format!("attempted access of field `{}` on \
2916                             type `{}`, but no field with that \
2917                             name was found",
2918                             field.node,
2919                             actual)
2920                 },
2921                 expr_t, None);
2922             if let ty::TyStruct(did, _) = expr_t.sty {
2923                 suggest_field_names(did, field, tcx, vec![]);
2924             }
2925         }
2926
2927         fcx.write_error(expr.id);
2928     }
2929
2930     // displays hints about the closest matches in field names
2931     fn suggest_field_names<'tcx>(id : DefId,
2932                                  field : &ast::SpannedIdent,
2933                                  tcx : &ty::ctxt<'tcx>,
2934                                  skip : Vec<InternedString>) {
2935         let name = field.node.name.as_str();
2936         // only find fits with at least one matching letter
2937         let mut best_dist = name.len();
2938         let fields = tcx.lookup_struct_fields(id);
2939         let mut best = None;
2940         for elem in &fields {
2941             let n = elem.name.as_str();
2942             // ignore already set fields
2943             if skip.iter().any(|x| *x == n) {
2944                 continue;
2945             }
2946             // ignore private fields from non-local crates
2947             if id.krate != ast::LOCAL_CRATE && elem.vis != Visibility::Public {
2948                 continue;
2949             }
2950             let dist = lev_distance(&n, &name);
2951             if dist < best_dist {
2952                 best = Some(n);
2953                 best_dist = dist;
2954             }
2955         }
2956         if let Some(n) = best {
2957             tcx.sess.span_help(field.span,
2958                 &format!("did you mean `{}`?", n));
2959         }
2960     }
2961
2962     // Check tuple index expressions
2963     fn check_tup_field<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>,
2964                                 expr: &'tcx ast::Expr,
2965                                 lvalue_pref: LvaluePreference,
2966                                 base: &'tcx ast::Expr,
2967                                 idx: codemap::Spanned<usize>) {
2968         let tcx = fcx.ccx.tcx;
2969         check_expr_with_lvalue_pref(fcx, base, lvalue_pref);
2970         let expr_t = structurally_resolved_type(fcx, expr.span,
2971                                                 fcx.expr_ty(base));
2972         let mut tuple_like = false;
2973         // FIXME(eddyb) #12808 Integrate privacy into this auto-deref loop.
2974         let (_, autoderefs, field_ty) = autoderef(fcx,
2975                                                   expr.span,
2976                                                   expr_t,
2977                                                   Some(base),
2978                                                   UnresolvedTypeAction::Error,
2979                                                   lvalue_pref,
2980                                                   |base_t, _| {
2981                 match base_t.sty {
2982                     ty::TyStruct(base_id, substs) => {
2983                         tuple_like = tcx.is_tuple_struct(base_id);
2984                         if tuple_like {
2985                             debug!("tuple struct named {:?}",  base_t);
2986                             let fields = tcx.lookup_struct_fields(base_id);
2987                             fcx.lookup_tup_field_ty(expr.span, base_id, &fields[..],
2988                                                     idx.node, &(*substs))
2989                         } else {
2990                             None
2991                         }
2992                     }
2993                     ty::TyTuple(ref v) => {
2994                         tuple_like = true;
2995                         if idx.node < v.len() { Some(v[idx.node]) } else { None }
2996                     }
2997                     _ => None
2998                 }
2999             });
3000         match field_ty {
3001             Some(field_ty) => {
3002                 fcx.write_ty(expr.id, field_ty);
3003                 fcx.write_autoderef_adjustment(base.id, autoderefs);
3004                 return;
3005             }
3006             None => {}
3007         }
3008         fcx.type_error_message(
3009             expr.span,
3010             |actual| {
3011                 if tuple_like {
3012                     format!("attempted out-of-bounds tuple index `{}` on \
3013                                     type `{}`",
3014                                    idx.node,
3015                                    actual)
3016                 } else {
3017                     format!("attempted tuple index `{}` on type `{}`, but the \
3018                                      type was not a tuple or tuple struct",
3019                                     idx.node,
3020                                     actual)
3021                 }
3022             },
3023             expr_t, None);
3024
3025         fcx.write_error(expr.id);
3026     }
3027
3028     fn check_struct_or_variant_fields<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
3029                                                 struct_ty: Ty<'tcx>,
3030                                                 span: Span,
3031                                                 class_id: ast::DefId,
3032                                                 node_id: ast::NodeId,
3033                                                 substitutions: &'tcx subst::Substs<'tcx>,
3034                                                 field_types: &[ty::FieldTy],
3035                                                 ast_fields: &'tcx [ast::Field],
3036                                                 check_completeness: bool,
3037                                                 enum_id_opt: Option<ast::DefId>)  {
3038         let tcx = fcx.ccx.tcx;
3039
3040         let mut class_field_map = FnvHashMap();
3041         let mut fields_found = 0;
3042         for field in field_types {
3043             class_field_map.insert(field.name, (field.id, false));
3044         }
3045
3046         let mut error_happened = false;
3047
3048         // Typecheck each field.
3049         for field in ast_fields {
3050             let mut expected_field_type = tcx.types.err;
3051
3052             let pair = class_field_map.get(&field.ident.node.name).cloned();
3053             match pair {
3054                 None => {
3055                     fcx.type_error_message(
3056                         field.ident.span,
3057                         |actual| match enum_id_opt {
3058                             Some(enum_id) => {
3059                                 let variant_type = tcx.enum_variant_with_id(enum_id,
3060                                                                             class_id);
3061                                 format!("struct variant `{}::{}` has no field named `{}`",
3062                                         actual, variant_type.name.as_str(),
3063                                         field.ident.node)
3064                             }
3065                             None => {
3066                                 format!("structure `{}` has no field named `{}`",
3067                                         actual,
3068                                         field.ident.node)
3069                             }
3070                         },
3071                         struct_ty,
3072                         None);
3073                     // prevent all specified fields from being suggested
3074                     let skip_fields = ast_fields.iter().map(|ref x| x.ident.node.name.as_str());
3075                     let actual_id = match enum_id_opt {
3076                         Some(_) => class_id,
3077                         None => struct_ty.ty_to_def_id().unwrap()
3078                     };
3079                     suggest_field_names(actual_id, &field.ident, tcx, skip_fields.collect());
3080                     error_happened = true;
3081                 }
3082                 Some((_, true)) => {
3083                     span_err!(fcx.tcx().sess, field.ident.span, E0062,
3084                         "field `{}` specified more than once",
3085                         field.ident.node);
3086                     error_happened = true;
3087                 }
3088                 Some((field_id, false)) => {
3089                     expected_field_type =
3090                         tcx.lookup_field_type(class_id, field_id, substitutions);
3091                     expected_field_type =
3092                         fcx.normalize_associated_types_in(
3093                             field.span, &expected_field_type);
3094                     class_field_map.insert(
3095                         field.ident.node.name, (field_id, true));
3096                     fields_found += 1;
3097                 }
3098             }
3099
3100             // Make sure to give a type to the field even if there's
3101             // an error, so we can continue typechecking
3102             check_expr_coercable_to_type(fcx, &*field.expr, expected_field_type);
3103         }
3104
3105         if error_happened {
3106             fcx.write_error(node_id);
3107         }
3108
3109         if check_completeness && !error_happened {
3110             // Make sure the programmer specified all the fields.
3111             assert!(fields_found <= field_types.len());
3112             if fields_found < field_types.len() {
3113                 let mut missing_fields = Vec::new();
3114                 for class_field in field_types {
3115                     let name = class_field.name;
3116                     let (_, seen) = *class_field_map.get(&name).unwrap();
3117                     if !seen {
3118                         missing_fields.push(
3119                             format!("`{}`", name))
3120                     }
3121                 }
3122
3123                 span_err!(tcx.sess, span, E0063,
3124                     "missing field{}: {}",
3125                     if missing_fields.len() == 1 {""} else {"s"},
3126                     missing_fields.join(", "));
3127              }
3128         }
3129
3130         if !error_happened {
3131             fcx.write_ty(node_id, fcx.ccx.tcx.mk_struct(class_id, substitutions));
3132         }
3133     }
3134
3135     fn check_struct_constructor<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>,
3136                                          id: ast::NodeId,
3137                                          span: codemap::Span,
3138                                          class_id: ast::DefId,
3139                                          fields: &'tcx [ast::Field],
3140                                          base_expr: Option<&'tcx ast::Expr>) {
3141         let tcx = fcx.ccx.tcx;
3142
3143         // Generate the struct type.
3144         let TypeAndSubsts {
3145             ty: mut struct_type,
3146             substs: struct_substs
3147         } = fcx.instantiate_type(span, class_id);
3148
3149         // Look up and check the fields.
3150         let class_fields = tcx.lookup_struct_fields(class_id);
3151         check_struct_or_variant_fields(fcx,
3152                                        struct_type,
3153                                        span,
3154                                        class_id,
3155                                        id,
3156                                        fcx.ccx.tcx.mk_substs(struct_substs),
3157                                        &class_fields[..],
3158                                        fields,
3159                                        base_expr.is_none(),
3160                                        None);
3161         if fcx.node_ty(id).references_error() {
3162             struct_type = tcx.types.err;
3163         }
3164
3165         // Check the base expression if necessary.
3166         match base_expr {
3167             None => {}
3168             Some(base_expr) => {
3169                 check_expr_has_type(fcx, &*base_expr, struct_type);
3170             }
3171         }
3172
3173         // Write in the resulting type.
3174         fcx.write_ty(id, struct_type);
3175     }
3176
3177     fn check_struct_enum_variant<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>,
3178                                           id: ast::NodeId,
3179                                           span: codemap::Span,
3180                                           enum_id: ast::DefId,
3181                                           variant_id: ast::DefId,
3182                                           fields: &'tcx [ast::Field]) {
3183         let tcx = fcx.ccx.tcx;
3184
3185         // Look up the number of type parameters and the raw type, and
3186         // determine whether the enum is region-parameterized.
3187         let TypeAndSubsts {
3188             ty: enum_type,
3189             substs: substitutions
3190         } = fcx.instantiate_type(span, enum_id);
3191
3192         // Look up and check the enum variant fields.
3193         let variant_fields = tcx.lookup_struct_fields(variant_id);
3194         check_struct_or_variant_fields(fcx,
3195                                        enum_type,
3196                                        span,
3197                                        variant_id,
3198                                        id,
3199                                        fcx.ccx.tcx.mk_substs(substitutions),
3200                                        &variant_fields[..],
3201                                        fields,
3202                                        true,
3203                                        Some(enum_id));
3204         fcx.write_ty(id, enum_type);
3205     }
3206
3207     fn check_struct_fields_on_error<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>,
3208                                              id: ast::NodeId,
3209                                              fields: &'tcx [ast::Field],
3210                                              base_expr: &'tcx Option<P<ast::Expr>>) {
3211         // Make sure to still write the types
3212         // otherwise we might ICE
3213         fcx.write_error(id);
3214         for field in fields {
3215             check_expr(fcx, &*field.expr);
3216         }
3217         match *base_expr {
3218             Some(ref base) => check_expr(fcx, &**base),
3219             None => {}
3220         }
3221     }
3222
3223     type ExprCheckerWithTy = fn(&FnCtxt, &ast::Expr, Ty);
3224
3225     let tcx = fcx.ccx.tcx;
3226     let id = expr.id;
3227     match expr.node {
3228       ast::ExprBox(ref opt_place, ref subexpr) => {
3229           opt_place.as_ref().map(|place|check_expr(fcx, &**place));
3230           check_expr(fcx, &**subexpr);
3231
3232           let mut checked = false;
3233           opt_place.as_ref().map(|place| match place.node {
3234               ast::ExprPath(None, ref path) => {
3235                   // FIXME(pcwalton): For now we hardcode the only permissible
3236                   // place: the exchange heap.
3237                   let definition = lookup_full_def(tcx, path.span, place.id);
3238                   let def_id = definition.def_id();
3239                   let referent_ty = fcx.expr_ty(&**subexpr);
3240                   if tcx.lang_items.exchange_heap() == Some(def_id) {
3241                       fcx.write_ty(id, tcx.mk_box(referent_ty));
3242                       checked = true
3243                   }
3244               }
3245               _ => {}
3246           });
3247
3248           if !checked {
3249               span_err!(tcx.sess, expr.span, E0066,
3250                   "only the exchange heap is currently supported");
3251               fcx.write_ty(id, tcx.types.err);
3252           }
3253       }
3254
3255       ast::ExprLit(ref lit) => {
3256         let typ = check_lit(fcx, &**lit, expected);
3257         fcx.write_ty(id, typ);
3258       }
3259       ast::ExprBinary(op, ref lhs, ref rhs) => {
3260         op::check_binop(fcx, expr, op, lhs, rhs);
3261       }
3262       ast::ExprAssignOp(op, ref lhs, ref rhs) => {
3263         op::check_binop_assign(fcx, expr, op, lhs, rhs);
3264       }
3265       ast::ExprUnary(unop, ref oprnd) => {
3266         let expected_inner = expected.to_option(fcx).map_or(NoExpectation, |ty| {
3267             match unop {
3268                 ast::UnUniq => match ty.sty {
3269                     ty::TyBox(ty) => {
3270                         Expectation::rvalue_hint(tcx, ty)
3271                     }
3272                     _ => {
3273                         NoExpectation
3274                     }
3275                 },
3276                 ast::UnNot | ast::UnNeg => {
3277                     expected
3278                 }
3279                 ast::UnDeref => {
3280                     NoExpectation
3281                 }
3282             }
3283         });
3284         let lvalue_pref = match unop {
3285             ast::UnDeref => lvalue_pref,
3286             _ => NoPreference
3287         };
3288         check_expr_with_expectation_and_lvalue_pref(
3289             fcx, &**oprnd, expected_inner, lvalue_pref);
3290         let mut oprnd_t = fcx.expr_ty(&**oprnd);
3291
3292         if !oprnd_t.references_error() {
3293             match unop {
3294                 ast::UnUniq => {
3295                     oprnd_t = tcx.mk_box(oprnd_t);
3296                 }
3297                 ast::UnDeref => {
3298                     oprnd_t = structurally_resolved_type(fcx, expr.span, oprnd_t);
3299                     oprnd_t = match oprnd_t.builtin_deref(true) {
3300                         Some(mt) => mt.ty,
3301                         None => match try_overloaded_deref(fcx, expr.span,
3302                                                            Some(MethodCall::expr(expr.id)),
3303                                                            Some(&**oprnd), oprnd_t, lvalue_pref) {
3304                             Some(mt) => mt.ty,
3305                             None => {
3306                                 fcx.type_error_message(expr.span, |actual| {
3307                                     format!("type `{}` cannot be \
3308                                             dereferenced", actual)
3309                                 }, oprnd_t, None);
3310                                 tcx.types.err
3311                             }
3312                         }
3313                     };
3314                 }
3315                 ast::UnNot => {
3316                     oprnd_t = structurally_resolved_type(fcx, oprnd.span,
3317                                                          oprnd_t);
3318                     if !(oprnd_t.is_integral() || oprnd_t.sty == ty::TyBool) {
3319                         oprnd_t = op::check_user_unop(fcx, "!", "not",
3320                                                       tcx.lang_items.not_trait(),
3321                                                       expr, &**oprnd, oprnd_t, unop);
3322                     }
3323                 }
3324                 ast::UnNeg => {
3325                     oprnd_t = structurally_resolved_type(fcx, oprnd.span,
3326                                                          oprnd_t);
3327                     if !(oprnd_t.is_integral() || oprnd_t.is_fp()) {
3328                         oprnd_t = op::check_user_unop(fcx, "-", "neg",
3329                                                       tcx.lang_items.neg_trait(),
3330                                                       expr, &**oprnd, oprnd_t, unop);
3331                     }
3332                 }
3333             }
3334         }
3335         fcx.write_ty(id, oprnd_t);
3336       }
3337       ast::ExprAddrOf(mutbl, ref oprnd) => {
3338         let hint = expected.only_has_type(fcx).map_or(NoExpectation, |ty| {
3339             match ty.sty {
3340                 ty::TyRef(_, ref mt) | ty::TyRawPtr(ref mt) => {
3341                     if fcx.tcx().expr_is_lval(&**oprnd) {
3342                         // Lvalues may legitimately have unsized types.
3343                         // For example, dereferences of a fat pointer and
3344                         // the last field of a struct can be unsized.
3345                         ExpectHasType(mt.ty)
3346                     } else {
3347                         Expectation::rvalue_hint(tcx, mt.ty)
3348                     }
3349                 }
3350                 _ => NoExpectation
3351             }
3352         });
3353         let lvalue_pref = LvaluePreference::from_mutbl(mutbl);
3354         check_expr_with_expectation_and_lvalue_pref(fcx,
3355                                                     &**oprnd,
3356                                                     hint,
3357                                                     lvalue_pref);
3358
3359         let tm = ty::TypeAndMut { ty: fcx.expr_ty(&**oprnd), mutbl: mutbl };
3360         let oprnd_t = if tm.ty.references_error() {
3361             tcx.types.err
3362         } else {
3363             // Note: at this point, we cannot say what the best lifetime
3364             // is to use for resulting pointer.  We want to use the
3365             // shortest lifetime possible so as to avoid spurious borrowck
3366             // errors.  Moreover, the longest lifetime will depend on the
3367             // precise details of the value whose address is being taken
3368             // (and how long it is valid), which we don't know yet until type
3369             // inference is complete.
3370             //
3371             // Therefore, here we simply generate a region variable.  The
3372             // region inferencer will then select the ultimate value.
3373             // Finally, borrowck is charged with guaranteeing that the
3374             // value whose address was taken can actually be made to live
3375             // as long as it needs to live.
3376             let region = fcx.infcx().next_region_var(infer::AddrOfRegion(expr.span));
3377             tcx.mk_ref(tcx.mk_region(region), tm)
3378         };
3379         fcx.write_ty(id, oprnd_t);
3380       }
3381       ast::ExprPath(ref maybe_qself, ref path) => {
3382           let opt_self_ty = maybe_qself.as_ref().map(|qself| {
3383               fcx.to_ty(&qself.ty)
3384           });
3385
3386           let path_res = if let Some(&d) = tcx.def_map.borrow().get(&id) {
3387               d
3388           } else if let Some(ast::QSelf { position: 0, .. }) = *maybe_qself {
3389                 // Create some fake resolution that can't possibly be a type.
3390                 def::PathResolution {
3391                     base_def: def::DefMod(local_def(ast::CRATE_NODE_ID)),
3392                     last_private: LastMod(AllPublic),
3393                     depth: path.segments.len()
3394                 }
3395             } else {
3396               tcx.sess.span_bug(expr.span,
3397                                 &format!("unbound path {:?}", expr))
3398           };
3399
3400           if let Some((opt_ty, segments, def)) =
3401                   resolve_ty_and_def_ufcs(fcx, path_res, opt_self_ty, path,
3402                                           expr.span, expr.id) {
3403               let (scheme, predicates) = type_scheme_and_predicates_for_def(fcx,
3404                                                                             expr.span,
3405                                                                             def);
3406               instantiate_path(fcx,
3407                                segments,
3408                                scheme,
3409                                &predicates,
3410                                opt_ty,
3411                                def,
3412                                expr.span,
3413                                id);
3414           }
3415
3416           // We always require that the type provided as the value for
3417           // a type parameter outlives the moment of instantiation.
3418           constrain_path_type_parameters(fcx, expr);
3419       }
3420       ast::ExprInlineAsm(ref ia) => {
3421           for &(_, ref input) in &ia.inputs {
3422               check_expr(fcx, &**input);
3423           }
3424           for &(_, ref out, _) in &ia.outputs {
3425               check_expr(fcx, &**out);
3426           }
3427           fcx.write_nil(id);
3428       }
3429       ast::ExprMac(_) => tcx.sess.bug("unexpanded macro"),
3430       ast::ExprBreak(_) => { fcx.write_ty(id, fcx.infcx().next_diverging_ty_var()); }
3431       ast::ExprAgain(_) => { fcx.write_ty(id, fcx.infcx().next_diverging_ty_var()); }
3432       ast::ExprRet(ref expr_opt) => {
3433         match fcx.ret_ty {
3434             ty::FnConverging(result_type) => {
3435                 match *expr_opt {
3436                     None =>
3437                         if let Err(_) = fcx.mk_eqty(false, infer::Misc(expr.span),
3438                                                     result_type, fcx.tcx().mk_nil()) {
3439                             span_err!(tcx.sess, expr.span, E0069,
3440                                 "`return;` in a function whose return type is \
3441                                  not `()`");
3442                         },
3443                     Some(ref e) => {
3444                         check_expr_coercable_to_type(fcx, &**e, result_type);
3445                     }
3446                 }
3447             }
3448             ty::FnDiverging => {
3449                 if let Some(ref e) = *expr_opt {
3450                     check_expr(fcx, &**e);
3451                 }
3452                 span_err!(tcx.sess, expr.span, E0166,
3453                     "`return` in a function declared as diverging");
3454             }
3455         }
3456         fcx.write_ty(id, fcx.infcx().next_diverging_ty_var());
3457       }
3458       ast::ExprParen(ref a) => {
3459         check_expr_with_expectation_and_lvalue_pref(fcx,
3460                                                     &**a,
3461                                                     expected,
3462                                                     lvalue_pref);
3463         fcx.write_ty(id, fcx.expr_ty(&**a));
3464       }
3465       ast::ExprAssign(ref lhs, ref rhs) => {
3466         check_expr_with_lvalue_pref(fcx, &**lhs, PreferMutLvalue);
3467
3468         let tcx = fcx.tcx();
3469         if !tcx.expr_is_lval(&**lhs) {
3470             span_err!(tcx.sess, expr.span, E0070,
3471                 "invalid left-hand side expression");
3472         }
3473
3474         let lhs_ty = fcx.expr_ty(&**lhs);
3475         check_expr_coercable_to_type(fcx, &**rhs, lhs_ty);
3476         let rhs_ty = fcx.expr_ty(&**rhs);
3477
3478         fcx.require_expr_have_sized_type(&**lhs, traits::AssignmentLhsSized);
3479
3480         if lhs_ty.references_error() || rhs_ty.references_error() {
3481             fcx.write_error(id);
3482         } else {
3483             fcx.write_nil(id);
3484         }
3485       }
3486       ast::ExprIf(ref cond, ref then_blk, ref opt_else_expr) => {
3487         check_then_else(fcx, &**cond, &**then_blk, opt_else_expr.as_ref().map(|e| &**e),
3488                         id, expr.span, expected);
3489       }
3490       ast::ExprIfLet(..) => {
3491         tcx.sess.span_bug(expr.span, "non-desugared ExprIfLet");
3492       }
3493       ast::ExprWhile(ref cond, ref body, _) => {
3494         check_expr_has_type(fcx, &**cond, tcx.types.bool);
3495         check_block_no_value(fcx, &**body);
3496         let cond_ty = fcx.expr_ty(&**cond);
3497         let body_ty = fcx.node_ty(body.id);
3498         if cond_ty.references_error() || body_ty.references_error() {
3499             fcx.write_error(id);
3500         }
3501         else {
3502             fcx.write_nil(id);
3503         }
3504       }
3505       ast::ExprWhileLet(..) => {
3506         tcx.sess.span_bug(expr.span, "non-desugared ExprWhileLet");
3507       }
3508       ast::ExprForLoop(..) => {
3509         tcx.sess.span_bug(expr.span, "non-desugared ExprForLoop");
3510       }
3511       ast::ExprLoop(ref body, _) => {
3512         check_block_no_value(fcx, &**body);
3513         if !may_break(tcx, expr.id, &**body) {
3514             fcx.write_ty(id, fcx.infcx().next_diverging_ty_var());
3515         } else {
3516             fcx.write_nil(id);
3517         }
3518       }
3519       ast::ExprMatch(ref discrim, ref arms, match_src) => {
3520         _match::check_match(fcx, expr, &**discrim, arms, expected, match_src);
3521       }
3522       ast::ExprClosure(capture, ref decl, ref body) => {
3523           closure::check_expr_closure(fcx, expr, capture, &**decl, &**body, expected);
3524       }
3525       ast::ExprBlock(ref b) => {
3526         check_block_with_expected(fcx, &**b, expected);
3527         fcx.write_ty(id, fcx.node_ty(b.id));
3528       }
3529       ast::ExprCall(ref callee, ref args) => {
3530           callee::check_call(fcx, expr, &**callee, &args[..], expected);
3531       }
3532       ast::ExprMethodCall(ident, ref tps, ref args) => {
3533         check_method_call(fcx, expr, ident, &args[..], &tps[..], expected, lvalue_pref);
3534         let arg_tys = args.iter().map(|a| fcx.expr_ty(&**a));
3535         let  args_err = arg_tys.fold(false,
3536              |rest_err, a| {
3537               rest_err || a.references_error()});
3538         if args_err {
3539             fcx.write_error(id);
3540         }
3541       }
3542       ast::ExprCast(ref e, ref t) => {
3543         if let ast::TyFixedLengthVec(_, ref count_expr) = t.node {
3544             check_expr_with_hint(fcx, &**count_expr, tcx.types.usize);
3545         }
3546
3547         // Find the type of `e`. Supply hints based on the type we are casting to,
3548         // if appropriate.
3549         let t_cast = fcx.to_ty(t);
3550         let t_cast = structurally_resolved_type(fcx, expr.span, t_cast);
3551         check_expr_with_expectation(fcx, e, ExpectCastableToType(t_cast));
3552         let t_expr = fcx.expr_ty(e);
3553
3554         // Eagerly check for some obvious errors.
3555         if t_expr.references_error() {
3556             fcx.write_error(id);
3557         } else if !fcx.type_is_known_to_be_sized(t_cast, expr.span) {
3558             report_cast_to_unsized_type(fcx, expr.span, t.span, e.span, t_cast, t_expr, id);
3559         } else {
3560             // Write a type for the whole expression, assuming everything is going
3561             // to work out Ok.
3562             fcx.write_ty(id, t_cast);
3563
3564             // Defer other checks until we're done type checking.
3565             let mut deferred_cast_checks = fcx.inh.deferred_cast_checks.borrow_mut();
3566             let cast_check = cast::CastCheck::new((**e).clone(), t_expr, t_cast, expr.span);
3567             deferred_cast_checks.push(cast_check);
3568         }
3569       }
3570       ast::ExprVec(ref args) => {
3571         let uty = expected.to_option(fcx).and_then(|uty| {
3572             match uty.sty {
3573                 ty::TyArray(ty, _) | ty::TySlice(ty) => Some(ty),
3574                 _ => None
3575             }
3576         });
3577
3578         let typ = match uty {
3579             Some(uty) => {
3580                 for e in args {
3581                     check_expr_coercable_to_type(fcx, &**e, uty);
3582                 }
3583                 uty
3584             }
3585             None => {
3586                 let t: Ty = fcx.infcx().next_ty_var();
3587                 for e in args {
3588                     check_expr_has_type(fcx, &**e, t);
3589                 }
3590                 t
3591             }
3592         };
3593         let typ = tcx.mk_array(typ, args.len());
3594         fcx.write_ty(id, typ);
3595       }
3596       ast::ExprRepeat(ref element, ref count_expr) => {
3597         check_expr_has_type(fcx, &**count_expr, tcx.types.usize);
3598         let count = fcx.tcx().eval_repeat_count(&**count_expr);
3599
3600         let uty = match expected {
3601             ExpectHasType(uty) => {
3602                 match uty.sty {
3603                     ty::TyArray(ty, _) | ty::TySlice(ty) => Some(ty),
3604                     _ => None
3605                 }
3606             }
3607             _ => None
3608         };
3609
3610         let (element_ty, t) = match uty {
3611             Some(uty) => {
3612                 check_expr_coercable_to_type(fcx, &**element, uty);
3613                 (uty, uty)
3614             }
3615             None => {
3616                 let t: Ty = fcx.infcx().next_ty_var();
3617                 check_expr_has_type(fcx, &**element, t);
3618                 (fcx.expr_ty(&**element), t)
3619             }
3620         };
3621
3622         if count > 1 {
3623             // For [foo, ..n] where n > 1, `foo` must have
3624             // Copy type:
3625             fcx.require_type_meets(
3626                 t,
3627                 expr.span,
3628                 traits::RepeatVec,
3629                 ty::BoundCopy);
3630         }
3631
3632         if element_ty.references_error() {
3633             fcx.write_error(id);
3634         } else {
3635             let t = tcx.mk_array(t, count);
3636             fcx.write_ty(id, t);
3637         }
3638       }
3639       ast::ExprTup(ref elts) => {
3640         let flds = expected.only_has_type(fcx).and_then(|ty| {
3641             match ty.sty {
3642                 ty::TyTuple(ref flds) => Some(&flds[..]),
3643                 _ => None
3644             }
3645         });
3646         let mut err_field = false;
3647
3648         let elt_ts = elts.iter().enumerate().map(|(i, e)| {
3649             let t = match flds {
3650                 Some(ref fs) if i < fs.len() => {
3651                     let ety = fs[i];
3652                     check_expr_coercable_to_type(fcx, &**e, ety);
3653                     ety
3654                 }
3655                 _ => {
3656                     check_expr_with_expectation(fcx, &**e, NoExpectation);
3657                     fcx.expr_ty(&**e)
3658                 }
3659             };
3660             err_field = err_field || t.references_error();
3661             t
3662         }).collect();
3663         if err_field {
3664             fcx.write_error(id);
3665         } else {
3666             let typ = tcx.mk_tup(elt_ts);
3667             fcx.write_ty(id, typ);
3668         }
3669       }
3670       ast::ExprStruct(ref path, ref fields, ref base_expr) => {
3671         // Resolve the path.
3672         let def = lookup_full_def(tcx, path.span, id);
3673         let struct_id = match def {
3674             def::DefVariant(enum_id, variant_id, true) => {
3675                 if let &Some(ref base_expr) = base_expr {
3676                     span_err!(tcx.sess, base_expr.span, E0436,
3677                               "functional record update syntax requires a struct");
3678                     fcx.write_error(base_expr.id);
3679                 }
3680                 check_struct_enum_variant(fcx, id, expr.span, enum_id,
3681                                           variant_id, &fields[..]);
3682                 enum_id
3683             }
3684             def::DefTrait(def_id) => {
3685                 span_err!(tcx.sess, path.span, E0159,
3686                     "use of trait `{}` as a struct constructor",
3687                     pprust::path_to_string(path));
3688                 check_struct_fields_on_error(fcx,
3689                                              id,
3690                                              &fields[..],
3691                                              base_expr);
3692                 def_id
3693             },
3694             def => {
3695                 // Verify that this was actually a struct.
3696                 let typ = fcx.ccx.tcx.lookup_item_type(def.def_id());
3697                 match typ.ty.sty {
3698                     ty::TyStruct(struct_did, _) => {
3699                         check_struct_constructor(fcx,
3700                                                  id,
3701                                                  expr.span,
3702                                                  struct_did,
3703                                                  &fields[..],
3704                                                  base_expr.as_ref().map(|e| &**e));
3705                     }
3706                     _ => {
3707                         span_err!(tcx.sess, path.span, E0071,
3708                             "`{}` does not name a structure",
3709                             pprust::path_to_string(path));
3710                         check_struct_fields_on_error(fcx,
3711                                                      id,
3712                                                      &fields[..],
3713                                                      base_expr);
3714                     }
3715                 }
3716
3717                 def.def_id()
3718             }
3719         };
3720
3721         // Turn the path into a type and verify that that type unifies with
3722         // the resulting structure type. This is needed to handle type
3723         // parameters correctly.
3724         let actual_structure_type = fcx.expr_ty(&*expr);
3725         if !actual_structure_type.references_error() {
3726             let type_and_substs = fcx.instantiate_struct_literal_ty(struct_id, path);
3727             match fcx.mk_subty(false,
3728                                infer::Misc(path.span),
3729                                actual_structure_type,
3730                                type_and_substs.ty) {
3731                 Ok(()) => {}
3732                 Err(type_error) => {
3733                     span_err!(fcx.tcx().sess, path.span, E0235,
3734                                  "structure constructor specifies a \
3735                                          structure of type `{}`, but this \
3736                                          structure has type `{}`: {}",
3737                                          fcx.infcx()
3738                                             .ty_to_string(type_and_substs.ty),
3739                                          fcx.infcx()
3740                                             .ty_to_string(
3741                                                 actual_structure_type),
3742                                          type_error);
3743                     tcx.note_and_explain_type_err(&type_error, path.span);
3744                 }
3745             }
3746         }
3747
3748         fcx.require_expr_have_sized_type(expr, traits::StructInitializerSized);
3749       }
3750       ast::ExprField(ref base, ref field) => {
3751         check_field(fcx, expr, lvalue_pref, &**base, field);
3752       }
3753       ast::ExprTupField(ref base, idx) => {
3754         check_tup_field(fcx, expr, lvalue_pref, &**base, idx);
3755       }
3756       ast::ExprIndex(ref base, ref idx) => {
3757           check_expr_with_lvalue_pref(fcx, &**base, lvalue_pref);
3758           check_expr(fcx, &**idx);
3759
3760           let base_t = fcx.expr_ty(&**base);
3761           let idx_t = fcx.expr_ty(&**idx);
3762
3763           if base_t.references_error() {
3764               fcx.write_ty(id, base_t);
3765           } else if idx_t.references_error() {
3766               fcx.write_ty(id, idx_t);
3767           } else {
3768               let base_t = structurally_resolved_type(fcx, expr.span, base_t);
3769               match lookup_indexing(fcx, expr, base, base_t, idx_t, lvalue_pref) {
3770                   Some((index_ty, element_ty)) => {
3771                       let idx_expr_ty = fcx.expr_ty(idx);
3772                       demand::eqtype(fcx, expr.span, index_ty, idx_expr_ty);
3773                       fcx.write_ty(id, element_ty);
3774                   }
3775                   None => {
3776                       check_expr_has_type(fcx, &**idx, fcx.tcx().types.err);
3777                       fcx.type_error_message(
3778                           expr.span,
3779                           |actual| {
3780                               format!("cannot index a value of type `{}`",
3781                                       actual)
3782                           },
3783                           base_t,
3784                           None);
3785                       fcx.write_ty(id, fcx.tcx().types.err);
3786                   }
3787               }
3788           }
3789        }
3790        ast::ExprRange(ref start, ref end) => {
3791           let t_start = start.as_ref().map(|e| {
3792             check_expr(fcx, &**e);
3793             fcx.expr_ty(&**e)
3794           });
3795           let t_end = end.as_ref().map(|e| {
3796             check_expr(fcx, &**e);
3797             fcx.expr_ty(&**e)
3798           });
3799
3800           let idx_type = match (t_start, t_end) {
3801               (Some(ty), None) | (None, Some(ty)) => {
3802                   Some(ty)
3803               }
3804               (Some(t_start), Some(t_end)) if (t_start.references_error() ||
3805                                                t_end.references_error()) => {
3806                   Some(fcx.tcx().types.err)
3807               }
3808               (Some(t_start), Some(t_end)) => {
3809                   Some(infer::common_supertype(fcx.infcx(),
3810                                                infer::RangeExpression(expr.span),
3811                                                true,
3812                                                t_start,
3813                                                t_end))
3814               }
3815               _ => None
3816           };
3817
3818           // Note that we don't check the type of start/end satisfy any
3819           // bounds because right now the range structs do not have any. If we add
3820           // some bounds, then we'll need to check `t_start` against them here.
3821
3822           let range_type = match idx_type {
3823             Some(idx_type) if idx_type.references_error() => {
3824                 fcx.tcx().types.err
3825             }
3826             Some(idx_type) => {
3827                 // Find the did from the appropriate lang item.
3828                 let did = match (start, end) {
3829                     (&Some(_), &Some(_)) => tcx.lang_items.range_struct(),
3830                     (&Some(_), &None) => tcx.lang_items.range_from_struct(),
3831                     (&None, &Some(_)) => tcx.lang_items.range_to_struct(),
3832                     (&None, &None) => {
3833                         tcx.sess.span_bug(expr.span, "full range should be dealt with above")
3834                     }
3835                 };
3836
3837                 if let Some(did) = did {
3838                     let predicates = tcx.lookup_predicates(did);
3839                     let substs = Substs::new_type(vec![idx_type], vec![]);
3840                     let bounds = fcx.instantiate_bounds(expr.span, &substs, &predicates);
3841                     fcx.add_obligations_for_parameters(
3842                         traits::ObligationCause::new(expr.span,
3843                                                      fcx.body_id,
3844                                                      traits::ItemObligation(did)),
3845                         &bounds);
3846
3847                     tcx.mk_struct(did, tcx.mk_substs(substs))
3848                 } else {
3849                     span_err!(tcx.sess, expr.span, E0236, "no lang item for range syntax");
3850                     fcx.tcx().types.err
3851                 }
3852             }
3853             None => {
3854                 // Neither start nor end => RangeFull
3855                 if let Some(did) = tcx.lang_items.range_full_struct() {
3856                     let substs = Substs::new_type(vec![], vec![]);
3857                     tcx.mk_struct(did, tcx.mk_substs(substs))
3858                 } else {
3859                     span_err!(tcx.sess, expr.span, E0237, "no lang item for range syntax");
3860                     fcx.tcx().types.err
3861                 }
3862             }
3863           };
3864
3865           fcx.write_ty(id, range_type);
3866        }
3867
3868     }
3869
3870     debug!("type of expr({}) {} is...", expr.id,
3871            syntax::print::pprust::expr_to_string(expr));
3872     debug!("... {:?}, expected is {:?}",
3873            fcx.expr_ty(expr),
3874            expected);
3875
3876     unifier();
3877 }
3878
3879 pub fn resolve_ty_and_def_ufcs<'a, 'b, 'tcx>(fcx: &FnCtxt<'b, 'tcx>,
3880                                              path_res: def::PathResolution,
3881                                              opt_self_ty: Option<Ty<'tcx>>,
3882                                              path: &'a ast::Path,
3883                                              span: Span,
3884                                              node_id: ast::NodeId)
3885                                              -> Option<(Option<Ty<'tcx>>,
3886                                                         &'a [ast::PathSegment],
3887                                                         def::Def)>
3888 {
3889
3890     // Associated constants can't depend on generic types.
3891     fn have_disallowed_generic_consts<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
3892                                                 def: def::Def,
3893                                                 ty: Ty<'tcx>,
3894                                                 span: Span,
3895                                                 node_id: ast::NodeId) -> bool {
3896         match def {
3897             def::DefAssociatedConst(..) => {
3898                 if ty.has_param_types() || ty.has_self_ty() {
3899                     span_err!(fcx.sess(), span, E0329,
3900                               "Associated consts cannot depend \
3901                                on type parameters or Self.");
3902                     fcx.write_error(node_id);
3903                     return true;
3904                 }
3905             }
3906             _ => {}
3907         }
3908         false
3909     }
3910
3911     // If fully resolved already, we don't have to do anything.
3912     if path_res.depth == 0 {
3913         if let Some(ty) = opt_self_ty {
3914             if have_disallowed_generic_consts(fcx, path_res.full_def(), ty,
3915                                               span, node_id) {
3916                 return None;
3917             }
3918         }
3919         Some((opt_self_ty, &path.segments, path_res.base_def))
3920     } else {
3921         let mut def = path_res.base_def;
3922         let ty_segments = path.segments.split_last().unwrap().1;
3923         let base_ty_end = path.segments.len() - path_res.depth;
3924         let ty = astconv::finish_resolving_def_to_ty(fcx, fcx, span,
3925                                                      PathParamMode::Optional,
3926                                                      &mut def,
3927                                                      opt_self_ty,
3928                                                      &ty_segments[..base_ty_end],
3929                                                      &ty_segments[base_ty_end..]);
3930         let item_segment = path.segments.last().unwrap();
3931         let item_name = item_segment.identifier.name;
3932         match method::resolve_ufcs(fcx, span, item_name, ty, node_id) {
3933             Ok((def, lp)) => {
3934                 if have_disallowed_generic_consts(fcx, def, ty, span, node_id) {
3935                     return None;
3936                 }
3937                 // Write back the new resolution.
3938                 fcx.ccx.tcx.def_map.borrow_mut()
3939                        .insert(node_id, def::PathResolution {
3940                    base_def: def,
3941                    last_private: path_res.last_private.or(lp),
3942                    depth: 0
3943                 });
3944                 Some((Some(ty), slice::ref_slice(item_segment), def))
3945             }
3946             Err(error) => {
3947                 method::report_error(fcx, span, ty,
3948                                      item_name, None, error);
3949                 fcx.write_error(node_id);
3950                 None
3951             }
3952         }
3953     }
3954 }
3955
3956 fn constrain_path_type_parameters(fcx: &FnCtxt,
3957                                   expr: &ast::Expr)
3958 {
3959     fcx.opt_node_ty_substs(expr.id, |item_substs| {
3960         fcx.add_default_region_param_bounds(&item_substs.substs, expr);
3961     });
3962 }
3963
3964 impl<'tcx> Expectation<'tcx> {
3965     /// Provide an expectation for an rvalue expression given an *optional*
3966     /// hint, which is not required for type safety (the resulting type might
3967     /// be checked higher up, as is the case with `&expr` and `box expr`), but
3968     /// is useful in determining the concrete type.
3969     ///
3970     /// The primary use case is where the expected type is a fat pointer,
3971     /// like `&[isize]`. For example, consider the following statement:
3972     ///
3973     ///    let x: &[isize] = &[1, 2, 3];
3974     ///
3975     /// In this case, the expected type for the `&[1, 2, 3]` expression is
3976     /// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
3977     /// expectation `ExpectHasType([isize])`, that would be too strong --
3978     /// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
3979     /// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
3980     /// to the type `&[isize]`. Therefore, we propagate this more limited hint,
3981     /// which still is useful, because it informs integer literals and the like.
3982     /// See the test case `test/run-pass/coerce-expect-unsized.rs` and #20169
3983     /// for examples of where this comes up,.
3984     fn rvalue_hint(tcx: &ty::ctxt<'tcx>, ty: Ty<'tcx>) -> Expectation<'tcx> {
3985         match tcx.struct_tail(ty).sty {
3986             ty::TySlice(_) | ty::TyTrait(..) => {
3987                 ExpectRvalueLikeUnsized(ty)
3988             }
3989             _ => ExpectHasType(ty)
3990         }
3991     }
3992
3993     // Resolves `expected` by a single level if it is a variable. If
3994     // there is no expected type or resolution is not possible (e.g.,
3995     // no constraints yet present), just returns `None`.
3996     fn resolve<'a>(self, fcx: &FnCtxt<'a, 'tcx>) -> Expectation<'tcx> {
3997         match self {
3998             NoExpectation => {
3999                 NoExpectation
4000             }
4001             ExpectCastableToType(t) => {
4002                 ExpectCastableToType(
4003                     fcx.infcx().resolve_type_vars_if_possible(&t))
4004             }
4005             ExpectHasType(t) => {
4006                 ExpectHasType(
4007                     fcx.infcx().resolve_type_vars_if_possible(&t))
4008             }
4009             ExpectRvalueLikeUnsized(t) => {
4010                 ExpectRvalueLikeUnsized(
4011                     fcx.infcx().resolve_type_vars_if_possible(&t))
4012             }
4013         }
4014     }
4015
4016     fn to_option<'a>(self, fcx: &FnCtxt<'a, 'tcx>) -> Option<Ty<'tcx>> {
4017         match self.resolve(fcx) {
4018             NoExpectation => None,
4019             ExpectCastableToType(ty) |
4020             ExpectHasType(ty) |
4021             ExpectRvalueLikeUnsized(ty) => Some(ty),
4022         }
4023     }
4024
4025     fn only_has_type<'a>(self, fcx: &FnCtxt<'a, 'tcx>) -> Option<Ty<'tcx>> {
4026         match self.resolve(fcx) {
4027             ExpectHasType(ty) => Some(ty),
4028             _ => None
4029         }
4030     }
4031 }
4032
4033 pub fn check_decl_initializer<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>,
4034                                        local: &'tcx ast::Local,
4035                                        init: &'tcx ast::Expr)
4036 {
4037     let ref_bindings = fcx.tcx().pat_contains_ref_binding(&local.pat);
4038
4039     let local_ty = fcx.local_ty(init.span, local.id);
4040     if let Some(m) = ref_bindings {
4041         // Somewhat subtle: if we have a `ref` binding in the pattern,
4042         // we want to avoid introducing coercions for the RHS. This is
4043         // both because it helps preserve sanity and, in the case of
4044         // ref mut, for soundness (issue #23116). In particular, in
4045         // the latter case, we need to be clear that the type of the
4046         // referent for the reference that results is *equal to* the
4047         // type of the lvalue it is referencing, and not some
4048         // supertype thereof.
4049         check_expr_with_lvalue_pref(fcx, init, LvaluePreference::from_mutbl(m));
4050         let init_ty = fcx.expr_ty(init);
4051         demand::eqtype(fcx, init.span, init_ty, local_ty);
4052     } else {
4053         check_expr_coercable_to_type(fcx, init, local_ty)
4054     };
4055 }
4056
4057 pub fn check_decl_local<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>, local: &'tcx ast::Local)  {
4058     let tcx = fcx.ccx.tcx;
4059
4060     let t = fcx.local_ty(local.span, local.id);
4061     fcx.write_ty(local.id, t);
4062
4063     if let Some(ref init) = local.init {
4064         check_decl_initializer(fcx, local, &**init);
4065         let init_ty = fcx.expr_ty(&**init);
4066         if init_ty.references_error() {
4067             fcx.write_ty(local.id, init_ty);
4068         }
4069     }
4070
4071     let pcx = pat_ctxt {
4072         fcx: fcx,
4073         map: pat_id_map(&tcx.def_map, &*local.pat),
4074     };
4075     _match::check_pat(&pcx, &*local.pat, t);
4076     let pat_ty = fcx.node_ty(local.pat.id);
4077     if pat_ty.references_error() {
4078         fcx.write_ty(local.id, pat_ty);
4079     }
4080 }
4081
4082 pub fn check_stmt<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>, stmt: &'tcx ast::Stmt)  {
4083     let node_id;
4084     let mut saw_bot = false;
4085     let mut saw_err = false;
4086     match stmt.node {
4087       ast::StmtDecl(ref decl, id) => {
4088         node_id = id;
4089         match decl.node {
4090           ast::DeclLocal(ref l) => {
4091               check_decl_local(fcx, &**l);
4092               let l_t = fcx.node_ty(l.id);
4093               saw_bot = saw_bot || fcx.infcx().type_var_diverges(l_t);
4094               saw_err = saw_err || l_t.references_error();
4095           }
4096           ast::DeclItem(_) => {/* ignore for now */ }
4097         }
4098       }
4099       ast::StmtExpr(ref expr, id) => {
4100         node_id = id;
4101         // Check with expected type of ()
4102         check_expr_has_type(fcx, &**expr, fcx.tcx().mk_nil());
4103         let expr_ty = fcx.expr_ty(&**expr);
4104         saw_bot = saw_bot || fcx.infcx().type_var_diverges(expr_ty);
4105         saw_err = saw_err || expr_ty.references_error();
4106       }
4107       ast::StmtSemi(ref expr, id) => {
4108         node_id = id;
4109         check_expr(fcx, &**expr);
4110         let expr_ty = fcx.expr_ty(&**expr);
4111         saw_bot |= fcx.infcx().type_var_diverges(expr_ty);
4112         saw_err |= expr_ty.references_error();
4113       }
4114       ast::StmtMac(..) => fcx.ccx.tcx.sess.bug("unexpanded macro")
4115     }
4116     if saw_bot {
4117         fcx.write_ty(node_id, fcx.infcx().next_diverging_ty_var());
4118     }
4119     else if saw_err {
4120         fcx.write_error(node_id);
4121     }
4122     else {
4123         fcx.write_nil(node_id)
4124     }
4125 }
4126
4127 pub fn check_block_no_value<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>, blk: &'tcx ast::Block)  {
4128     check_block_with_expected(fcx, blk, ExpectHasType(fcx.tcx().mk_nil()));
4129     let blkty = fcx.node_ty(blk.id);
4130     if blkty.references_error() {
4131         fcx.write_error(blk.id);
4132     } else {
4133         let nilty = fcx.tcx().mk_nil();
4134         demand::suptype(fcx, blk.span, nilty, blkty);
4135     }
4136 }
4137
4138 fn check_block_with_expected<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
4139                                        blk: &'tcx ast::Block,
4140                                        expected: Expectation<'tcx>) {
4141     let prev = {
4142         let mut fcx_ps = fcx.ps.borrow_mut();
4143         let unsafety_state = fcx_ps.recurse(blk);
4144         replace(&mut *fcx_ps, unsafety_state)
4145     };
4146
4147     let mut warned = false;
4148     let mut any_diverges = false;
4149     let mut any_err = false;
4150     for s in &blk.stmts {
4151         check_stmt(fcx, &**s);
4152         let s_id = ast_util::stmt_id(&**s);
4153         let s_ty = fcx.node_ty(s_id);
4154         if any_diverges && !warned && match s.node {
4155             ast::StmtDecl(ref decl, _) => {
4156                 match decl.node {
4157                     ast::DeclLocal(_) => true,
4158                     _ => false,
4159                 }
4160             }
4161             ast::StmtExpr(_, _) | ast::StmtSemi(_, _) => true,
4162             _ => false
4163         } {
4164             fcx.ccx
4165                 .tcx
4166                 .sess
4167                 .add_lint(lint::builtin::UNREACHABLE_CODE,
4168                           s_id,
4169                           s.span,
4170                           "unreachable statement".to_string());
4171             warned = true;
4172         }
4173         any_diverges = any_diverges || fcx.infcx().type_var_diverges(s_ty);
4174         any_err = any_err || s_ty.references_error();
4175     }
4176     match blk.expr {
4177         None => if any_err {
4178             fcx.write_error(blk.id);
4179         } else if any_diverges {
4180             fcx.write_ty(blk.id, fcx.infcx().next_diverging_ty_var());
4181         } else {
4182             fcx.write_nil(blk.id);
4183         },
4184         Some(ref e) => {
4185             if any_diverges && !warned {
4186                 fcx.ccx
4187                     .tcx
4188                     .sess
4189                     .add_lint(lint::builtin::UNREACHABLE_CODE,
4190                               e.id,
4191                               e.span,
4192                               "unreachable expression".to_string());
4193             }
4194             let ety = match expected {
4195                 ExpectHasType(ety) => {
4196                     check_expr_coercable_to_type(fcx, &**e, ety);
4197                     ety
4198                 }
4199                 _ => {
4200                     check_expr_with_expectation(fcx, &**e, expected);
4201                     fcx.expr_ty(&**e)
4202                 }
4203             };
4204
4205             if any_err {
4206                 fcx.write_error(blk.id);
4207             } else if any_diverges {
4208                 fcx.write_ty(blk.id, fcx.infcx().next_diverging_ty_var());
4209             } else {
4210                 fcx.write_ty(blk.id, ety);
4211             }
4212         }
4213     };
4214
4215     *fcx.ps.borrow_mut() = prev;
4216 }
4217
4218 /// Checks a constant appearing in a type. At the moment this is just the
4219 /// length expression in a fixed-length vector, but someday it might be
4220 /// extended to type-level numeric literals.
4221 fn check_const_in_type<'a,'tcx>(ccx: &'a CrateCtxt<'a,'tcx>,
4222                                 expr: &'tcx ast::Expr,
4223                                 expected_type: Ty<'tcx>) {
4224     let tables = RefCell::new(ty::Tables::empty());
4225     let inh = static_inherited_fields(ccx, &tables);
4226     let fcx = blank_fn_ctxt(ccx, &inh, ty::FnConverging(expected_type), expr.id);
4227     check_const_with_ty(&fcx, expr.span, expr, expected_type);
4228 }
4229
4230 fn check_const<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
4231                         sp: Span,
4232                         e: &'tcx ast::Expr,
4233                         id: ast::NodeId) {
4234     let tables = RefCell::new(ty::Tables::empty());
4235     let inh = static_inherited_fields(ccx, &tables);
4236     let rty = ccx.tcx.node_id_to_type(id);
4237     let fcx = blank_fn_ctxt(ccx, &inh, ty::FnConverging(rty), e.id);
4238     let declty = fcx.ccx.tcx.lookup_item_type(local_def(id)).ty;
4239     check_const_with_ty(&fcx, sp, e, declty);
4240 }
4241
4242 fn check_const_with_ty<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
4243                                  _: Span,
4244                                  e: &'tcx ast::Expr,
4245                                  declty: Ty<'tcx>) {
4246     // Gather locals in statics (because of block expressions).
4247     // This is technically unnecessary because locals in static items are forbidden,
4248     // but prevents type checking from blowing up before const checking can properly
4249     // emit a error.
4250     GatherLocalsVisitor { fcx: fcx }.visit_expr(e);
4251
4252     check_expr_with_hint(fcx, e, declty);
4253     demand::coerce(fcx, e.span, declty, e);
4254     fcx.select_all_obligations_or_error();
4255     fcx.check_casts();
4256     regionck::regionck_expr(fcx, e);
4257     writeback::resolve_type_vars_in_expr(fcx, e);
4258 }
4259
4260 /// Checks whether a type can be represented in memory. In particular, it
4261 /// identifies types that contain themselves without indirection through a
4262 /// pointer, which would mean their size is unbounded.
4263 pub fn check_representable(tcx: &ty::ctxt,
4264                            sp: Span,
4265                            item_id: ast::NodeId,
4266                            designation: &str) -> bool {
4267     let rty = tcx.node_id_to_type(item_id);
4268
4269     // Check that it is possible to represent this type. This call identifies
4270     // (1) types that contain themselves and (2) types that contain a different
4271     // recursive type. It is only necessary to throw an error on those that
4272     // contain themselves. For case 2, there must be an inner type that will be
4273     // caught by case 1.
4274     match rty.is_representable(tcx, sp) {
4275       ty::SelfRecursive => {
4276         span_err!(tcx.sess, sp, E0072, "invalid recursive {} type", designation);
4277         tcx.sess.fileline_help(sp, "wrap the inner value in a box to make it representable");
4278         return false
4279       }
4280       ty::Representable | ty::ContainsRecursive => (),
4281     }
4282     return true
4283 }
4284
4285 /// Checks whether a type can be constructed at runtime without
4286 /// an existing instance of that type.
4287 pub fn check_instantiable(tcx: &ty::ctxt,
4288                           sp: Span,
4289                           item_id: ast::NodeId) {
4290     let item_ty = tcx.node_id_to_type(item_id);
4291     if !item_ty.is_instantiable(tcx) &&
4292             !tcx.sess.features.borrow().static_recursion {
4293         emit_feature_err(&tcx.sess.parse_sess.span_diagnostic,
4294                          "static_recursion",
4295                          sp,
4296                          "this type cannot be instantiated at runtime \
4297                           without an instance of itself");
4298     }
4299 }
4300
4301 pub fn check_simd(tcx: &ty::ctxt, sp: Span, id: ast::NodeId) {
4302     let t = tcx.node_id_to_type(id);
4303     if t.needs_subst() {
4304         span_err!(tcx.sess, sp, E0074, "SIMD vector cannot be generic");
4305         return;
4306     }
4307     match t.sty {
4308         ty::TyStruct(did, substs) => {
4309             let fields = tcx.lookup_struct_fields(did);
4310             if fields.is_empty() {
4311                 span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty");
4312                 return;
4313             }
4314             let e = tcx.lookup_field_type(did, fields[0].id, substs);
4315             if !fields.iter().all(
4316                          |f| tcx.lookup_field_type(did, f.id, substs) == e) {
4317                 span_err!(tcx.sess, sp, E0076, "SIMD vector should be homogeneous");
4318                 return;
4319             }
4320             if !e.is_machine() {
4321                 span_err!(tcx.sess, sp, E0077,
4322                     "SIMD vector element type should be machine type");
4323                 return;
4324             }
4325         }
4326         _ => ()
4327     }
4328 }
4329
4330 pub fn check_enum_variants<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
4331                                     sp: Span,
4332                                     vs: &'tcx [P<ast::Variant>],
4333                                     id: ast::NodeId) {
4334
4335     fn disr_in_range(ccx: &CrateCtxt,
4336                      ty: attr::IntType,
4337                      disr: ty::Disr) -> bool {
4338         fn uint_in_range(ccx: &CrateCtxt, ty: ast::UintTy, disr: ty::Disr) -> bool {
4339             match ty {
4340                 ast::TyU8 => disr as u8 as Disr == disr,
4341                 ast::TyU16 => disr as u16 as Disr == disr,
4342                 ast::TyU32 => disr as u32 as Disr == disr,
4343                 ast::TyU64 => disr as u64 as Disr == disr,
4344                 ast::TyUs => uint_in_range(ccx, ccx.tcx.sess.target.uint_type, disr)
4345             }
4346         }
4347         fn int_in_range(ccx: &CrateCtxt, ty: ast::IntTy, disr: ty::Disr) -> bool {
4348             match ty {
4349                 ast::TyI8 => disr as i8 as Disr == disr,
4350                 ast::TyI16 => disr as i16 as Disr == disr,
4351                 ast::TyI32 => disr as i32 as Disr == disr,
4352                 ast::TyI64 => disr as i64 as Disr == disr,
4353                 ast::TyIs => int_in_range(ccx, ccx.tcx.sess.target.int_type, disr)
4354             }
4355         }
4356         match ty {
4357             attr::UnsignedInt(ty) => uint_in_range(ccx, ty, disr),
4358             attr::SignedInt(ty) => int_in_range(ccx, ty, disr)
4359         }
4360     }
4361
4362     fn do_check<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
4363                           vs: &'tcx [P<ast::Variant>],
4364                           id: ast::NodeId,
4365                           hint: attr::ReprAttr) {
4366         #![allow(trivial_numeric_casts)]
4367
4368         let rty = ccx.tcx.node_id_to_type(id);
4369         let mut disr_vals: Vec<ty::Disr> = Vec::new();
4370
4371         let tables = RefCell::new(ty::Tables::empty());
4372         let inh = static_inherited_fields(ccx, &tables);
4373         let fcx = blank_fn_ctxt(ccx, &inh, ty::FnConverging(rty), id);
4374
4375         let (_, repr_type_ty) = ccx.tcx.enum_repr_type(Some(&hint));
4376         for v in vs {
4377             if let Some(ref e) = v.node.disr_expr {
4378                 check_const_with_ty(&fcx, e.span, e, repr_type_ty);
4379             }
4380         }
4381
4382         let def_id = local_def(id);
4383
4384         // ty::enum_variants guards against discriminant overflows, so
4385         // we need not check for that.
4386         let variants = ccx.tcx.enum_variants(def_id);
4387
4388         for (v, variant) in vs.iter().zip(variants.iter()) {
4389             let current_disr_val = variant.disr_val;
4390
4391             // Check for duplicate discriminant values
4392             match disr_vals.iter().position(|&x| x == current_disr_val) {
4393                 Some(i) => {
4394                     span_err!(ccx.tcx.sess, v.span, E0081,
4395                         "discriminant value `{}` already exists", disr_vals[i]);
4396                     span_note!(ccx.tcx.sess, ccx.tcx.map.span(variants[i].id.node),
4397                         "conflicting discriminant here")
4398                 }
4399                 None => {}
4400             }
4401             // Check for unrepresentable discriminant values
4402             match hint {
4403                 attr::ReprAny | attr::ReprExtern => (),
4404                 attr::ReprInt(sp, ity) => {
4405                     if !disr_in_range(ccx, ity, current_disr_val) {
4406                         span_err!(ccx.tcx.sess, v.span, E0082,
4407                             "discriminant value outside specified type");
4408                         span_note!(ccx.tcx.sess, sp,
4409                             "discriminant type specified here");
4410                     }
4411                 }
4412                 attr::ReprPacked => {
4413                     ccx.tcx.sess.bug("range_to_inttype: found ReprPacked on an enum");
4414                 }
4415             }
4416             disr_vals.push(current_disr_val);
4417         }
4418     }
4419
4420     let hint = *ccx.tcx.lookup_repr_hints(ast::DefId { krate: ast::LOCAL_CRATE, node: id })
4421         .get(0).unwrap_or(&attr::ReprAny);
4422
4423     if hint != attr::ReprAny && vs.len() <= 1 {
4424         if vs.len() == 1 {
4425             span_err!(ccx.tcx.sess, sp, E0083,
4426                 "unsupported representation for univariant enum");
4427         } else {
4428             span_err!(ccx.tcx.sess, sp, E0084,
4429                 "unsupported representation for zero-variant enum");
4430         };
4431     }
4432
4433     do_check(ccx, vs, id, hint);
4434
4435     check_representable(ccx.tcx, sp, id, "enum");
4436     check_instantiable(ccx.tcx, sp, id);
4437 }
4438
4439 // Returns the type parameter count and the type for the given definition.
4440 fn type_scheme_and_predicates_for_def<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
4441                                                 sp: Span,
4442                                                 defn: def::Def)
4443                                                 -> (TypeScheme<'tcx>, GenericPredicates<'tcx>) {
4444     match defn {
4445         def::DefLocal(nid) | def::DefUpvar(nid, _) => {
4446             let typ = fcx.local_ty(sp, nid);
4447             (ty::TypeScheme { generics: ty::Generics::empty(), ty: typ },
4448              ty::GenericPredicates::empty())
4449         }
4450         def::DefFn(id, _) | def::DefMethod(id, _) |
4451         def::DefStatic(id, _) | def::DefVariant(_, id, _) |
4452         def::DefStruct(id) | def::DefConst(id) | def::DefAssociatedConst(id, _) => {
4453             (fcx.tcx().lookup_item_type(id), fcx.tcx().lookup_predicates(id))
4454         }
4455         def::DefTrait(_) |
4456         def::DefTy(..) |
4457         def::DefAssociatedTy(..) |
4458         def::DefPrimTy(_) |
4459         def::DefTyParam(..) |
4460         def::DefMod(..) |
4461         def::DefForeignMod(..) |
4462         def::DefUse(..) |
4463         def::DefRegion(..) |
4464         def::DefLabel(..) |
4465         def::DefSelfTy(..) => {
4466             fcx.ccx.tcx.sess.span_bug(sp, &format!("expected value, found {:?}", defn));
4467         }
4468     }
4469 }
4470
4471 // Instantiates the given path, which must refer to an item with the given
4472 // number of type parameters and type.
4473 pub fn instantiate_path<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
4474                                   segments: &[ast::PathSegment],
4475                                   type_scheme: TypeScheme<'tcx>,
4476                                   type_predicates: &ty::GenericPredicates<'tcx>,
4477                                   opt_self_ty: Option<Ty<'tcx>>,
4478                                   def: def::Def,
4479                                   span: Span,
4480                                   node_id: ast::NodeId) {
4481     debug!("instantiate_path(path={:?}, def={:?}, node_id={}, type_scheme={:?})",
4482            segments,
4483            def,
4484            node_id,
4485            type_scheme);
4486
4487     // We need to extract the type parameters supplied by the user in
4488     // the path `path`. Due to the current setup, this is a bit of a
4489     // tricky-process; the problem is that resolve only tells us the
4490     // end-point of the path resolution, and not the intermediate steps.
4491     // Luckily, we can (at least for now) deduce the intermediate steps
4492     // just from the end-point.
4493     //
4494     // There are basically four cases to consider:
4495     //
4496     // 1. Reference to a *type*, such as a struct or enum:
4497     //
4498     //        mod a { struct Foo<T> { ... } }
4499     //
4500     //    Because we don't allow types to be declared within one
4501     //    another, a path that leads to a type will always look like
4502     //    `a::b::Foo<T>` where `a` and `b` are modules. This implies
4503     //    that only the final segment can have type parameters, and
4504     //    they are located in the TypeSpace.
4505     //
4506     //    *Note:* Generally speaking, references to types don't
4507     //    actually pass through this function, but rather the
4508     //    `ast_ty_to_ty` function in `astconv`. However, in the case
4509     //    of struct patterns (and maybe literals) we do invoke
4510     //    `instantiate_path` to get the general type of an instance of
4511     //    a struct. (In these cases, there are actually no type
4512     //    parameters permitted at present, but perhaps we will allow
4513     //    them in the future.)
4514     //
4515     // 1b. Reference to a enum variant or tuple-like struct:
4516     //
4517     //        struct foo<T>(...)
4518     //        enum E<T> { foo(...) }
4519     //
4520     //    In these cases, the parameters are declared in the type
4521     //    space.
4522     //
4523     // 2. Reference to a *fn item*:
4524     //
4525     //        fn foo<T>() { }
4526     //
4527     //    In this case, the path will again always have the form
4528     //    `a::b::foo::<T>` where only the final segment should have
4529     //    type parameters. However, in this case, those parameters are
4530     //    declared on a value, and hence are in the `FnSpace`.
4531     //
4532     // 3. Reference to a *method*:
4533     //
4534     //        impl<A> SomeStruct<A> {
4535     //            fn foo<B>(...)
4536     //        }
4537     //
4538     //    Here we can have a path like
4539     //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
4540     //    may appear in two places. The penultimate segment,
4541     //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
4542     //    final segment, `foo::<B>` contains parameters in fn space.
4543     //
4544     // 4. Reference to an *associated const*:
4545     //
4546     // impl<A> AnotherStruct<A> {
4547     // const FOO: B = BAR;
4548     // }
4549     //
4550     // The path in this case will look like
4551     // `a::b::AnotherStruct::<A>::FOO`, so the penultimate segment
4552     // only will have parameters in TypeSpace.
4553     //
4554     // The first step then is to categorize the segments appropriately.
4555
4556     assert!(!segments.is_empty());
4557
4558     let mut ufcs_method = None;
4559     let mut segment_spaces: Vec<_>;
4560     match def {
4561         // Case 1 and 1b. Reference to a *type* or *enum variant*.
4562         def::DefSelfTy(..) |
4563         def::DefStruct(..) |
4564         def::DefVariant(..) |
4565         def::DefTy(..) |
4566         def::DefAssociatedTy(..) |
4567         def::DefTrait(..) |
4568         def::DefPrimTy(..) |
4569         def::DefTyParam(..) => {
4570             // Everything but the final segment should have no
4571             // parameters at all.
4572             segment_spaces = vec![None; segments.len() - 1];
4573             segment_spaces.push(Some(subst::TypeSpace));
4574         }
4575
4576         // Case 2. Reference to a top-level value.
4577         def::DefFn(..) |
4578         def::DefConst(..) |
4579         def::DefStatic(..) => {
4580             segment_spaces = vec![None; segments.len() - 1];
4581             segment_spaces.push(Some(subst::FnSpace));
4582         }
4583
4584         // Case 3. Reference to a method.
4585         def::DefMethod(_, provenance) => {
4586             match provenance {
4587                 def::FromTrait(trait_did) => {
4588                     callee::check_legal_trait_for_method_call(fcx.ccx, span, trait_did)
4589                 }
4590                 def::FromImpl(_) => {}
4591             }
4592
4593             if segments.len() >= 2 {
4594                 segment_spaces = vec![None; segments.len() - 2];
4595                 segment_spaces.push(Some(subst::TypeSpace));
4596                 segment_spaces.push(Some(subst::FnSpace));
4597             } else {
4598                 // `<T>::method` will end up here, and so can `T::method`.
4599                 let self_ty = opt_self_ty.expect("UFCS sugared method missing Self");
4600                 segment_spaces = vec![Some(subst::FnSpace)];
4601                 ufcs_method = Some((provenance, self_ty));
4602             }
4603         }
4604
4605         def::DefAssociatedConst(_, provenance) => {
4606             match provenance {
4607                 def::FromTrait(trait_did) => {
4608                     callee::check_legal_trait_for_method_call(fcx.ccx, span, trait_did)
4609                 }
4610                 def::FromImpl(_) => {}
4611             }
4612
4613             if segments.len() >= 2 {
4614                 segment_spaces = vec![None; segments.len() - 2];
4615                 segment_spaces.push(Some(subst::TypeSpace));
4616                 segment_spaces.push(None);
4617             } else {
4618                 segment_spaces = vec![None];
4619             }
4620         }
4621
4622         // Other cases. Various nonsense that really shouldn't show up
4623         // here. If they do, an error will have been reported
4624         // elsewhere. (I hope)
4625         def::DefMod(..) |
4626         def::DefForeignMod(..) |
4627         def::DefLocal(..) |
4628         def::DefUse(..) |
4629         def::DefRegion(..) |
4630         def::DefLabel(..) |
4631         def::DefUpvar(..) => {
4632             segment_spaces = vec![None; segments.len()];
4633         }
4634     }
4635     assert_eq!(segment_spaces.len(), segments.len());
4636
4637     // In `<T as Trait<A, B>>::method`, `A` and `B` are mandatory, but
4638     // `opt_self_ty` can also be Some for `Foo::method`, where Foo's
4639     // type parameters are not mandatory.
4640     let require_type_space = opt_self_ty.is_some() && ufcs_method.is_none();
4641
4642     debug!("segment_spaces={:?}", segment_spaces);
4643
4644     // Next, examine the definition, and determine how many type
4645     // parameters we expect from each space.
4646     let type_defs = &type_scheme.generics.types;
4647     let region_defs = &type_scheme.generics.regions;
4648
4649     // Now that we have categorized what space the parameters for each
4650     // segment belong to, let's sort out the parameters that the user
4651     // provided (if any) into their appropriate spaces. We'll also report
4652     // errors if type parameters are provided in an inappropriate place.
4653     let mut substs = Substs::empty();
4654     for (opt_space, segment) in segment_spaces.iter().zip(segments) {
4655         match *opt_space {
4656             None => {
4657                 check_path_args(fcx.tcx(), slice::ref_slice(segment),
4658                                 NO_TPS | NO_REGIONS);
4659             }
4660
4661             Some(space) => {
4662                 push_explicit_parameters_from_segment_to_substs(fcx,
4663                                                                 space,
4664                                                                 span,
4665                                                                 type_defs,
4666                                                                 region_defs,
4667                                                                 segment,
4668                                                                 &mut substs);
4669             }
4670         }
4671     }
4672     if let Some(self_ty) = opt_self_ty {
4673         if type_defs.len(subst::SelfSpace) == 1 {
4674             substs.types.push(subst::SelfSpace, self_ty);
4675         }
4676     }
4677
4678     // Now we have to compare the types that the user *actually*
4679     // provided against the types that were *expected*. If the user
4680     // did not provide any types, then we want to substitute inference
4681     // variables. If the user provided some types, we may still need
4682     // to add defaults. If the user provided *too many* types, that's
4683     // a problem.
4684     for &space in &[subst::SelfSpace, subst::TypeSpace, subst::FnSpace] {
4685         adjust_type_parameters(fcx, span, space, type_defs,
4686                                require_type_space, &mut substs);
4687         assert_eq!(substs.types.len(space), type_defs.len(space));
4688
4689         adjust_region_parameters(fcx, span, space, region_defs, &mut substs);
4690         assert_eq!(substs.regions().len(space), region_defs.len(space));
4691     }
4692
4693     // The things we are substituting into the type should not contain
4694     // escaping late-bound regions, and nor should the base type scheme.
4695     assert!(!substs.has_regions_escaping_depth(0));
4696     assert!(!type_scheme.has_escaping_regions());
4697
4698     // Add all the obligations that are required, substituting and
4699     // normalized appropriately.
4700     let bounds = fcx.instantiate_bounds(span, &substs, &type_predicates);
4701     fcx.add_obligations_for_parameters(
4702         traits::ObligationCause::new(span, fcx.body_id, traits::ItemObligation(def.def_id())),
4703         &bounds);
4704
4705     // Substitute the values for the type parameters into the type of
4706     // the referenced item.
4707     let ty_substituted = fcx.instantiate_type_scheme(span, &substs, &type_scheme.ty);
4708
4709
4710     if let Some((def::FromImpl(impl_def_id), self_ty)) = ufcs_method {
4711         // In the case of `Foo<T>::method` and `<Foo<T>>::method`, if `method`
4712         // is inherent, there is no `Self` parameter, instead, the impl needs
4713         // type parameters, which we can infer by unifying the provided `Self`
4714         // with the substituted impl type.
4715         let impl_scheme = fcx.tcx().lookup_item_type(impl_def_id);
4716         assert_eq!(substs.types.len(subst::TypeSpace),
4717                    impl_scheme.generics.types.len(subst::TypeSpace));
4718         assert_eq!(substs.regions().len(subst::TypeSpace),
4719                    impl_scheme.generics.regions.len(subst::TypeSpace));
4720
4721         let impl_ty = fcx.instantiate_type_scheme(span, &substs, &impl_scheme.ty);
4722         if fcx.mk_subty(false, infer::Misc(span), self_ty, impl_ty).is_err() {
4723             fcx.tcx().sess.span_bug(span,
4724             &format!(
4725                 "instantiate_path: (UFCS) {:?} was a subtype of {:?} but now is not?",
4726                 self_ty,
4727                 impl_ty));
4728         }
4729     }
4730
4731     fcx.write_ty(node_id, ty_substituted);
4732     fcx.write_substs(node_id, ty::ItemSubsts { substs: substs });
4733     return;
4734
4735     /// Finds the parameters that the user provided and adds them to `substs`. If too many
4736     /// parameters are provided, then reports an error and clears the output vector.
4737     ///
4738     /// We clear the output vector because that will cause the `adjust_XXX_parameters()` later to
4739     /// use inference variables. This seems less likely to lead to derived errors.
4740     ///
4741     /// Note that we *do not* check for *too few* parameters here. Due to the presence of defaults
4742     /// etc that is more complicated. I wanted however to do the reporting of *too many* parameters
4743     /// here because we can easily use the precise span of the N+1'th parameter.
4744     fn push_explicit_parameters_from_segment_to_substs<'a, 'tcx>(
4745         fcx: &FnCtxt<'a, 'tcx>,
4746         space: subst::ParamSpace,
4747         span: Span,
4748         type_defs: &VecPerParamSpace<ty::TypeParameterDef<'tcx>>,
4749         region_defs: &VecPerParamSpace<ty::RegionParameterDef>,
4750         segment: &ast::PathSegment,
4751         substs: &mut Substs<'tcx>)
4752     {
4753         match segment.parameters {
4754             ast::AngleBracketedParameters(ref data) => {
4755                 push_explicit_angle_bracketed_parameters_from_segment_to_substs(
4756                     fcx, space, type_defs, region_defs, data, substs);
4757             }
4758
4759             ast::ParenthesizedParameters(ref data) => {
4760                 span_err!(fcx.tcx().sess, span, E0238,
4761                     "parenthesized parameters may only be used with a trait");
4762                 push_explicit_parenthesized_parameters_from_segment_to_substs(
4763                     fcx, space, span, type_defs, data, substs);
4764             }
4765         }
4766     }
4767
4768     fn push_explicit_angle_bracketed_parameters_from_segment_to_substs<'a, 'tcx>(
4769         fcx: &FnCtxt<'a, 'tcx>,
4770         space: subst::ParamSpace,
4771         type_defs: &VecPerParamSpace<ty::TypeParameterDef<'tcx>>,
4772         region_defs: &VecPerParamSpace<ty::RegionParameterDef>,
4773         data: &ast::AngleBracketedParameterData,
4774         substs: &mut Substs<'tcx>)
4775     {
4776         {
4777             let type_count = type_defs.len(space);
4778             assert_eq!(substs.types.len(space), 0);
4779             for (i, typ) in data.types.iter().enumerate() {
4780                 let t = fcx.to_ty(&**typ);
4781                 if i < type_count {
4782                     substs.types.push(space, t);
4783                 } else if i == type_count {
4784                     span_err!(fcx.tcx().sess, typ.span, E0087,
4785                         "too many type parameters provided: \
4786                          expected at most {} parameter{}, \
4787                          found {} parameter{}",
4788                          type_count,
4789                          if type_count == 1 {""} else {"s"},
4790                          data.types.len(),
4791                          if data.types.len() == 1 {""} else {"s"});
4792                     substs.types.truncate(space, 0);
4793                     break;
4794                 }
4795             }
4796         }
4797
4798         if !data.bindings.is_empty() {
4799             span_err!(fcx.tcx().sess, data.bindings[0].span, E0182,
4800                       "unexpected binding of associated item in expression path \
4801                        (only allowed in type paths)");
4802         }
4803
4804         {
4805             let region_count = region_defs.len(space);
4806             assert_eq!(substs.regions().len(space), 0);
4807             for (i, lifetime) in data.lifetimes.iter().enumerate() {
4808                 let r = ast_region_to_region(fcx.tcx(), lifetime);
4809                 if i < region_count {
4810                     substs.mut_regions().push(space, r);
4811                 } else if i == region_count {
4812                     span_err!(fcx.tcx().sess, lifetime.span, E0088,
4813                         "too many lifetime parameters provided: \
4814                          expected {} parameter{}, found {} parameter{}",
4815                         region_count,
4816                         if region_count == 1 {""} else {"s"},
4817                         data.lifetimes.len(),
4818                         if data.lifetimes.len() == 1 {""} else {"s"});
4819                     substs.mut_regions().truncate(space, 0);
4820                     break;
4821                 }
4822             }
4823         }
4824     }
4825
4826     /// As with
4827     /// `push_explicit_angle_bracketed_parameters_from_segment_to_substs`,
4828     /// but intended for `Foo(A,B) -> C` form. This expands to
4829     /// roughly the same thing as `Foo<(A,B),C>`. One important
4830     /// difference has to do with the treatment of anonymous
4831     /// regions, which are translated into bound regions (NYI).
4832     fn push_explicit_parenthesized_parameters_from_segment_to_substs<'a, 'tcx>(
4833         fcx: &FnCtxt<'a, 'tcx>,
4834         space: subst::ParamSpace,
4835         span: Span,
4836         type_defs: &VecPerParamSpace<ty::TypeParameterDef<'tcx>>,
4837         data: &ast::ParenthesizedParameterData,
4838         substs: &mut Substs<'tcx>)
4839     {
4840         let type_count = type_defs.len(space);
4841         if type_count < 2 {
4842             span_err!(fcx.tcx().sess, span, E0167,
4843                       "parenthesized form always supplies 2 type parameters, \
4844                       but only {} parameter(s) were expected",
4845                       type_count);
4846         }
4847
4848         let input_tys: Vec<Ty> =
4849             data.inputs.iter().map(|ty| fcx.to_ty(&**ty)).collect();
4850
4851         let tuple_ty = fcx.tcx().mk_tup(input_tys);
4852
4853         if type_count >= 1 {
4854             substs.types.push(space, tuple_ty);
4855         }
4856
4857         let output_ty: Option<Ty> =
4858             data.output.as_ref().map(|ty| fcx.to_ty(&**ty));
4859
4860         let output_ty =
4861             output_ty.unwrap_or(fcx.tcx().mk_nil());
4862
4863         if type_count >= 2 {
4864             substs.types.push(space, output_ty);
4865         }
4866     }
4867
4868     fn adjust_type_parameters<'a, 'tcx>(
4869         fcx: &FnCtxt<'a, 'tcx>,
4870         span: Span,
4871         space: ParamSpace,
4872         defs: &VecPerParamSpace<ty::TypeParameterDef<'tcx>>,
4873         require_type_space: bool,
4874         substs: &mut Substs<'tcx>)
4875     {
4876         let provided_len = substs.types.len(space);
4877         let desired = defs.get_slice(space);
4878         let required_len = desired.iter()
4879                               .take_while(|d| d.default.is_none())
4880                               .count();
4881
4882         debug!("adjust_type_parameters(space={:?}, \
4883                provided_len={}, \
4884                desired_len={}, \
4885                required_len={})",
4886                space,
4887                provided_len,
4888                desired.len(),
4889                required_len);
4890
4891         // Enforced by `push_explicit_parameters_from_segment_to_substs()`.
4892         assert!(provided_len <= desired.len());
4893
4894         // Nothing specified at all: supply inference variables for
4895         // everything.
4896         if provided_len == 0 && !(require_type_space && space == subst::TypeSpace) {
4897             substs.types.replace(space, Vec::new());
4898             fcx.infcx().type_vars_for_defs(span, space, substs, &desired[..]);
4899             return;
4900         }
4901
4902         // Too few parameters specified: report an error and use Err
4903         // for everything.
4904         if provided_len < required_len {
4905             let qualifier =
4906                 if desired.len() != required_len { "at least " } else { "" };
4907             span_err!(fcx.tcx().sess, span, E0089,
4908                 "too few type parameters provided: expected {}{} parameter{}, \
4909                  found {} parameter{}",
4910                 qualifier, required_len,
4911                 if required_len == 1 {""} else {"s"},
4912                 provided_len,
4913                 if provided_len == 1 {""} else {"s"});
4914             substs.types.replace(space, vec![fcx.tcx().types.err; desired.len()]);
4915             return;
4916         }
4917
4918         // Otherwise, add in any optional parameters that the user
4919         // omitted. The case of *too many* parameters is handled
4920         // already by
4921         // push_explicit_parameters_from_segment_to_substs(). Note
4922         // that the *default* type are expressed in terms of all prior
4923         // parameters, so we have to substitute as we go with the
4924         // partial substitution that we have built up.
4925         for i in provided_len..desired.len() {
4926             let default = desired[i].default.unwrap();
4927             let default = default.subst_spanned(fcx.tcx(), substs, Some(span));
4928             substs.types.push(space, default);
4929         }
4930         assert_eq!(substs.types.len(space), desired.len());
4931
4932         debug!("Final substs: {:?}", substs);
4933     }
4934
4935     fn adjust_region_parameters(
4936         fcx: &FnCtxt,
4937         span: Span,
4938         space: ParamSpace,
4939         defs: &VecPerParamSpace<ty::RegionParameterDef>,
4940         substs: &mut Substs)
4941     {
4942         let provided_len = substs.mut_regions().len(space);
4943         let desired = defs.get_slice(space);
4944
4945         // Enforced by `push_explicit_parameters_from_segment_to_substs()`.
4946         assert!(provided_len <= desired.len());
4947
4948         // If nothing was provided, just use inference variables.
4949         if provided_len == 0 {
4950             substs.mut_regions().replace(
4951                 space,
4952                 fcx.infcx().region_vars_for_defs(span, desired));
4953             return;
4954         }
4955
4956         // If just the right number were provided, everybody is happy.
4957         if provided_len == desired.len() {
4958             return;
4959         }
4960
4961         // Otherwise, too few were provided. Report an error and then
4962         // use inference variables.
4963         span_err!(fcx.tcx().sess, span, E0090,
4964             "too few lifetime parameters provided: expected {} parameter{}, \
4965              found {} parameter{}",
4966             desired.len(),
4967             if desired.len() == 1 {""} else {"s"},
4968             provided_len,
4969             if provided_len == 1 {""} else {"s"});
4970
4971         substs.mut_regions().replace(
4972             space,
4973             fcx.infcx().region_vars_for_defs(span, desired));
4974     }
4975 }
4976
4977 fn structurally_resolve_type_or_else<'a, 'tcx, F>(fcx: &FnCtxt<'a, 'tcx>,
4978                                                   sp: Span,
4979                                                   ty: Ty<'tcx>,
4980                                                   f: F) -> Ty<'tcx>
4981     where F: Fn() -> Ty<'tcx>
4982 {
4983     let mut ty = fcx.resolve_type_vars_if_possible(ty);
4984
4985     if ty.is_ty_var() {
4986         let alternative = f();
4987
4988         // If not, error.
4989         if alternative.is_ty_var() || alternative.references_error() {
4990             fcx.type_error_message(sp, |_actual| {
4991                 "the type of this value must be known in this context".to_string()
4992             }, ty, None);
4993             demand::suptype(fcx, sp, fcx.tcx().types.err, ty);
4994             ty = fcx.tcx().types.err;
4995         } else {
4996             demand::suptype(fcx, sp, alternative, ty);
4997             ty = alternative;
4998         }
4999     }
5000
5001     ty
5002 }
5003
5004 // Resolves `typ` by a single level if `typ` is a type variable.  If no
5005 // resolution is possible, then an error is reported.
5006 pub fn structurally_resolved_type<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
5007                                             sp: Span,
5008                                             ty: Ty<'tcx>)
5009                                             -> Ty<'tcx>
5010 {
5011     structurally_resolve_type_or_else(fcx, sp, ty, || {
5012         fcx.tcx().types.err
5013     })
5014 }
5015
5016 // Returns true if b contains a break that can exit from b
5017 pub fn may_break(cx: &ty::ctxt, id: ast::NodeId, b: &ast::Block) -> bool {
5018     // First: is there an unlabeled break immediately
5019     // inside the loop?
5020     (loop_query(&*b, |e| {
5021         match *e {
5022             ast::ExprBreak(None) => true,
5023             _ => false
5024         }
5025     })) ||
5026     // Second: is there a labeled break with label
5027     // <id> nested anywhere inside the loop?
5028     (block_query(b, |e| {
5029         if let ast::ExprBreak(Some(_)) = e.node {
5030             lookup_full_def(cx, e.span, e.id) == def::DefLabel(id)
5031         } else {
5032             false
5033         }
5034     }))
5035 }
5036
5037 pub fn check_bounds_are_used<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
5038                                        span: Span,
5039                                        tps: &OwnedSlice<ast::TyParam>,
5040                                        ty: Ty<'tcx>) {
5041     debug!("check_bounds_are_used(n_tps={}, ty={:?})",
5042            tps.len(),  ty);
5043
5044     // make a vector of booleans initially false, set to true when used
5045     if tps.is_empty() { return; }
5046     let mut tps_used = vec![false; tps.len()];
5047
5048     for leaf_ty in ty.walk() {
5049         if let ty::TyParam(ParamTy {idx, ..}) = leaf_ty.sty {
5050             debug!("Found use of ty param num {}", idx);
5051             tps_used[idx as usize] = true;
5052         }
5053     }
5054
5055     for (i, b) in tps_used.iter().enumerate() {
5056         if !*b {
5057             span_err!(ccx.tcx.sess, span, E0091,
5058                 "type parameter `{}` is unused",
5059                 tps[i].ident);
5060         }
5061     }
5062 }
5063
5064 /// Remember to add all intrinsics here, in librustc_trans/trans/intrinsic.rs,
5065 /// and in libcore/intrinsics.rs
5066 pub fn check_intrinsic_type(ccx: &CrateCtxt, it: &ast::ForeignItem) {
5067     fn param<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>, n: u32) -> Ty<'tcx> {
5068         let name = token::intern(&format!("P{}", n));
5069         ccx.tcx.mk_param(subst::FnSpace, n, name)
5070     }
5071
5072     let tcx = ccx.tcx;
5073     let name = it.ident.name.as_str();
5074     let (n_tps, inputs, output) = if name.starts_with("atomic_") {
5075         let split : Vec<&str> = name.split('_').collect();
5076         assert!(split.len() >= 2, "Atomic intrinsic not correct format");
5077
5078         //We only care about the operation here
5079         let (n_tps, inputs, output) = match split[1] {
5080             "cxchg" => (1, vec!(tcx.mk_mut_ptr(param(ccx, 0)),
5081                                 param(ccx, 0),
5082                                 param(ccx, 0)),
5083                         param(ccx, 0)),
5084             "load" => (1, vec!(tcx.mk_imm_ptr(param(ccx, 0))),
5085                        param(ccx, 0)),
5086             "store" => (1, vec!(tcx.mk_mut_ptr(param(ccx, 0)), param(ccx, 0)),
5087                         tcx.mk_nil()),
5088
5089             "xchg" | "xadd" | "xsub" | "and"  | "nand" | "or" | "xor" | "max" |
5090             "min"  | "umax" | "umin" => {
5091                 (1, vec!(tcx.mk_mut_ptr(param(ccx, 0)), param(ccx, 0)),
5092                  param(ccx, 0))
5093             }
5094             "fence" | "singlethreadfence" => {
5095                 (0, Vec::new(), tcx.mk_nil())
5096             }
5097             op => {
5098                 span_err!(tcx.sess, it.span, E0092,
5099                     "unrecognized atomic operation function: `{}`", op);
5100                 return;
5101             }
5102         };
5103         (n_tps, inputs, ty::FnConverging(output))
5104     } else if &name[..] == "abort" || &name[..] == "unreachable" {
5105         (0, Vec::new(), ty::FnDiverging)
5106     } else {
5107         let (n_tps, inputs, output) = match &name[..] {
5108             "breakpoint" => (0, Vec::new(), tcx.mk_nil()),
5109             "size_of" |
5110             "pref_align_of" | "min_align_of" => (1, Vec::new(), ccx.tcx.types.usize),
5111             "size_of_val" |  "min_align_of_val" => {
5112                 (1, vec![
5113                     tcx.mk_imm_ref(tcx.mk_region(ty::ReLateBound(ty::DebruijnIndex::new(1),
5114                                                                   ty::BrAnon(0))),
5115                                     param(ccx, 0))
5116                  ], ccx.tcx.types.usize)
5117             }
5118             "init" | "init_dropped" => (1, Vec::new(), param(ccx, 0)),
5119             "uninit" => (1, Vec::new(), param(ccx, 0)),
5120             "forget" => (1, vec!( param(ccx, 0) ), tcx.mk_nil()),
5121             "transmute" => (2, vec!( param(ccx, 0) ), param(ccx, 1)),
5122             "move_val_init" => {
5123                 (1,
5124                  vec!(
5125                     tcx.mk_mut_ptr(param(ccx, 0)),
5126                     param(ccx, 0)
5127                   ),
5128                tcx.mk_nil())
5129             }
5130             "drop_in_place" => {
5131                 (1, vec![tcx.mk_mut_ptr(param(ccx, 0))], tcx.mk_nil())
5132             }
5133             "needs_drop" => (1, Vec::new(), ccx.tcx.types.bool),
5134
5135             "type_name" => (1, Vec::new(), tcx.mk_static_str()),
5136             "type_id" => (1, Vec::new(), ccx.tcx.types.u64),
5137             "offset" | "arith_offset" => {
5138               (1,
5139                vec!(
5140                   tcx.mk_ptr(ty::TypeAndMut {
5141                       ty: param(ccx, 0),
5142                       mutbl: ast::MutImmutable
5143                   }),
5144                   ccx.tcx.types.isize
5145                ),
5146                tcx.mk_ptr(ty::TypeAndMut {
5147                    ty: param(ccx, 0),
5148                    mutbl: ast::MutImmutable
5149                }))
5150             }
5151             "copy" | "copy_nonoverlapping" => {
5152               (1,
5153                vec!(
5154                   tcx.mk_ptr(ty::TypeAndMut {
5155                       ty: param(ccx, 0),
5156                       mutbl: ast::MutImmutable
5157                   }),
5158                   tcx.mk_ptr(ty::TypeAndMut {
5159                       ty: param(ccx, 0),
5160                       mutbl: ast::MutMutable
5161                   }),
5162                   tcx.types.usize,
5163                ),
5164                tcx.mk_nil())
5165             }
5166             "volatile_copy_memory" | "volatile_copy_nonoverlapping_memory" => {
5167               (1,
5168                vec!(
5169                   tcx.mk_ptr(ty::TypeAndMut {
5170                       ty: param(ccx, 0),
5171                       mutbl: ast::MutMutable
5172                   }),
5173                   tcx.mk_ptr(ty::TypeAndMut {
5174                       ty: param(ccx, 0),
5175                       mutbl: ast::MutImmutable
5176                   }),
5177                   tcx.types.usize,
5178                ),
5179                tcx.mk_nil())
5180             }
5181             "write_bytes" | "volatile_set_memory" => {
5182               (1,
5183                vec!(
5184                   tcx.mk_ptr(ty::TypeAndMut {
5185                       ty: param(ccx, 0),
5186                       mutbl: ast::MutMutable
5187                   }),
5188                   tcx.types.u8,
5189                   tcx.types.usize,
5190                ),
5191                tcx.mk_nil())
5192             }
5193             "sqrtf32" => (0, vec!( tcx.types.f32 ), tcx.types.f32),
5194             "sqrtf64" => (0, vec!( tcx.types.f64 ), tcx.types.f64),
5195             "powif32" => {
5196                (0,
5197                 vec!( tcx.types.f32, tcx.types.i32 ),
5198                 tcx.types.f32)
5199             }
5200             "powif64" => {
5201                (0,
5202                 vec!( tcx.types.f64, tcx.types.i32 ),
5203                 tcx.types.f64)
5204             }
5205             "sinf32" => (0, vec!( tcx.types.f32 ), tcx.types.f32),
5206             "sinf64" => (0, vec!( tcx.types.f64 ), tcx.types.f64),
5207             "cosf32" => (0, vec!( tcx.types.f32 ), tcx.types.f32),
5208             "cosf64" => (0, vec!( tcx.types.f64 ), tcx.types.f64),
5209             "powf32" => {
5210                (0,
5211                 vec!( tcx.types.f32, tcx.types.f32 ),
5212                 tcx.types.f32)
5213             }
5214             "powf64" => {
5215                (0,
5216                 vec!( tcx.types.f64, tcx.types.f64 ),
5217                 tcx.types.f64)
5218             }
5219             "expf32"   => (0, vec!( tcx.types.f32 ), tcx.types.f32),
5220             "expf64"   => (0, vec!( tcx.types.f64 ), tcx.types.f64),
5221             "exp2f32"  => (0, vec!( tcx.types.f32 ), tcx.types.f32),
5222             "exp2f64"  => (0, vec!( tcx.types.f64 ), tcx.types.f64),
5223             "logf32"   => (0, vec!( tcx.types.f32 ), tcx.types.f32),
5224             "logf64"   => (0, vec!( tcx.types.f64 ), tcx.types.f64),
5225             "log10f32" => (0, vec!( tcx.types.f32 ), tcx.types.f32),
5226             "log10f64" => (0, vec!( tcx.types.f64 ), tcx.types.f64),
5227             "log2f32"  => (0, vec!( tcx.types.f32 ), tcx.types.f32),
5228             "log2f64"  => (0, vec!( tcx.types.f64 ), tcx.types.f64),
5229             "fmaf32" => {
5230                 (0,
5231                  vec!( tcx.types.f32, tcx.types.f32, tcx.types.f32 ),
5232                  tcx.types.f32)
5233             }
5234             "fmaf64" => {
5235                 (0,
5236                  vec!( tcx.types.f64, tcx.types.f64, tcx.types.f64 ),
5237                  tcx.types.f64)
5238             }
5239             "fabsf32"      => (0, vec!( tcx.types.f32 ), tcx.types.f32),
5240             "fabsf64"      => (0, vec!( tcx.types.f64 ), tcx.types.f64),
5241             "copysignf32"  => (0, vec!( tcx.types.f32, tcx.types.f32 ), tcx.types.f32),
5242             "copysignf64"  => (0, vec!( tcx.types.f64, tcx.types.f64 ), tcx.types.f64),
5243             "floorf32"     => (0, vec!( tcx.types.f32 ), tcx.types.f32),
5244             "floorf64"     => (0, vec!( tcx.types.f64 ), tcx.types.f64),
5245             "ceilf32"      => (0, vec!( tcx.types.f32 ), tcx.types.f32),
5246             "ceilf64"      => (0, vec!( tcx.types.f64 ), tcx.types.f64),
5247             "truncf32"     => (0, vec!( tcx.types.f32 ), tcx.types.f32),
5248             "truncf64"     => (0, vec!( tcx.types.f64 ), tcx.types.f64),
5249             "rintf32"      => (0, vec!( tcx.types.f32 ), tcx.types.f32),
5250             "rintf64"      => (0, vec!( tcx.types.f64 ), tcx.types.f64),
5251             "nearbyintf32" => (0, vec!( tcx.types.f32 ), tcx.types.f32),
5252             "nearbyintf64" => (0, vec!( tcx.types.f64 ), tcx.types.f64),
5253             "roundf32"     => (0, vec!( tcx.types.f32 ), tcx.types.f32),
5254             "roundf64"     => (0, vec!( tcx.types.f64 ), tcx.types.f64),
5255             "ctpop8"       => (0, vec!( tcx.types.u8  ), tcx.types.u8),
5256             "ctpop16"      => (0, vec!( tcx.types.u16 ), tcx.types.u16),
5257             "ctpop32"      => (0, vec!( tcx.types.u32 ), tcx.types.u32),
5258             "ctpop64"      => (0, vec!( tcx.types.u64 ), tcx.types.u64),
5259             "ctlz8"        => (0, vec!( tcx.types.u8  ), tcx.types.u8),
5260             "ctlz16"       => (0, vec!( tcx.types.u16 ), tcx.types.u16),
5261             "ctlz32"       => (0, vec!( tcx.types.u32 ), tcx.types.u32),
5262             "ctlz64"       => (0, vec!( tcx.types.u64 ), tcx.types.u64),
5263             "cttz8"        => (0, vec!( tcx.types.u8  ), tcx.types.u8),
5264             "cttz16"       => (0, vec!( tcx.types.u16 ), tcx.types.u16),
5265             "cttz32"       => (0, vec!( tcx.types.u32 ), tcx.types.u32),
5266             "cttz64"       => (0, vec!( tcx.types.u64 ), tcx.types.u64),
5267             "bswap16"      => (0, vec!( tcx.types.u16 ), tcx.types.u16),
5268             "bswap32"      => (0, vec!( tcx.types.u32 ), tcx.types.u32),
5269             "bswap64"      => (0, vec!( tcx.types.u64 ), tcx.types.u64),
5270
5271             "volatile_load" =>
5272                 (1, vec!( tcx.mk_imm_ptr(param(ccx, 0)) ), param(ccx, 0)),
5273             "volatile_store" =>
5274                 (1, vec!( tcx.mk_mut_ptr(param(ccx, 0)), param(ccx, 0) ), tcx.mk_nil()),
5275
5276             "i8_add_with_overflow" | "i8_sub_with_overflow" | "i8_mul_with_overflow" =>
5277                 (0, vec!(tcx.types.i8, tcx.types.i8),
5278                 tcx.mk_tup(vec!(tcx.types.i8, tcx.types.bool))),
5279
5280             "i16_add_with_overflow" | "i16_sub_with_overflow" | "i16_mul_with_overflow" =>
5281                 (0, vec!(tcx.types.i16, tcx.types.i16),
5282                 tcx.mk_tup(vec!(tcx.types.i16, tcx.types.bool))),
5283
5284             "i32_add_with_overflow" | "i32_sub_with_overflow" | "i32_mul_with_overflow" =>
5285                 (0, vec!(tcx.types.i32, tcx.types.i32),
5286                 tcx.mk_tup(vec!(tcx.types.i32, tcx.types.bool))),
5287
5288             "i64_add_with_overflow" | "i64_sub_with_overflow" | "i64_mul_with_overflow" =>
5289                 (0, vec!(tcx.types.i64, tcx.types.i64),
5290                 tcx.mk_tup(vec!(tcx.types.i64, tcx.types.bool))),
5291
5292             "u8_add_with_overflow" | "u8_sub_with_overflow" | "u8_mul_with_overflow" =>
5293                 (0, vec!(tcx.types.u8, tcx.types.u8),
5294                 tcx.mk_tup(vec!(tcx.types.u8, tcx.types.bool))),
5295
5296             "u16_add_with_overflow" | "u16_sub_with_overflow" | "u16_mul_with_overflow" =>
5297                 (0, vec!(tcx.types.u16, tcx.types.u16),
5298                 tcx.mk_tup(vec!(tcx.types.u16, tcx.types.bool))),
5299
5300             "u32_add_with_overflow" | "u32_sub_with_overflow" | "u32_mul_with_overflow"=>
5301                 (0, vec!(tcx.types.u32, tcx.types.u32),
5302                 tcx.mk_tup(vec!(tcx.types.u32, tcx.types.bool))),
5303
5304             "u64_add_with_overflow" | "u64_sub_with_overflow"  | "u64_mul_with_overflow" =>
5305                 (0, vec!(tcx.types.u64, tcx.types.u64),
5306                 tcx.mk_tup(vec!(tcx.types.u64, tcx.types.bool))),
5307
5308             "unchecked_udiv" | "unchecked_sdiv" | "unchecked_urem" | "unchecked_srem" =>
5309                 (1, vec![param(ccx, 0), param(ccx, 0)], param(ccx, 0)),
5310
5311             "overflowing_add" | "overflowing_sub" | "overflowing_mul" =>
5312                 (1, vec![param(ccx, 0), param(ccx, 0)], param(ccx, 0)),
5313
5314             "return_address" => (0, vec![], tcx.mk_imm_ptr(tcx.types.u8)),
5315
5316             "assume" => (0, vec![tcx.types.bool], tcx.mk_nil()),
5317
5318             "discriminant_value" => (1, vec![
5319                     tcx.mk_imm_ref(tcx.mk_region(ty::ReLateBound(ty::DebruijnIndex::new(1),
5320                                                                   ty::BrAnon(0))),
5321                                     param(ccx, 0))], tcx.types.u64),
5322
5323             "try" => {
5324                 let mut_u8 = tcx.mk_mut_ptr(tcx.types.u8);
5325                 let fn_ty = ty::BareFnTy {
5326                     unsafety: ast::Unsafety::Normal,
5327                     abi: abi::Rust,
5328                     sig: ty::Binder(FnSig {
5329                         inputs: vec![mut_u8],
5330                         output: ty::FnOutput::FnConverging(tcx.mk_nil()),
5331                         variadic: false,
5332                     }),
5333                 };
5334                 let fn_ty = tcx.mk_bare_fn(fn_ty);
5335                 (0, vec![tcx.mk_fn(None, fn_ty), mut_u8], mut_u8)
5336             }
5337
5338             ref other => {
5339                 span_err!(tcx.sess, it.span, E0093,
5340                     "unrecognized intrinsic function: `{}`", *other);
5341                 return;
5342             }
5343         };
5344         (n_tps, inputs, ty::FnConverging(output))
5345     };
5346     let fty = tcx.mk_fn(None, tcx.mk_bare_fn(ty::BareFnTy {
5347         unsafety: ast::Unsafety::Unsafe,
5348         abi: abi::RustIntrinsic,
5349         sig: ty::Binder(FnSig {
5350             inputs: inputs,
5351             output: output,
5352             variadic: false,
5353         }),
5354     }));
5355     let i_ty = ccx.tcx.lookup_item_type(local_def(it.id));
5356     let i_n_tps = i_ty.generics.types.len(subst::FnSpace);
5357     if i_n_tps != n_tps {
5358         span_err!(tcx.sess, it.span, E0094,
5359             "intrinsic has wrong number of type \
5360              parameters: found {}, expected {}",
5361              i_n_tps, n_tps);
5362     } else {
5363         require_same_types(tcx,
5364                            None,
5365                            false,
5366                            it.span,
5367                            i_ty.ty,
5368                            fty,
5369                            || {
5370                 format!("intrinsic has wrong type: expected `{}`",
5371                          fty)
5372             });
5373     }
5374 }