]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/mod.rs
rustc: do not depend on infcx.tables in MemCategorizationContext.
[rust.git] / src / librustc_typeck / check / mod.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 /*
12
13 # check.rs
14
15 Within the check phase of type check, we check each item one at a time
16 (bodies of function expressions are checked as part of the containing
17 function).  Inference is used to supply types wherever they are
18 unknown.
19
20 By far the most complex case is checking the body of a function. This
21 can be broken down into several distinct phases:
22
23 - gather: creates type variables to represent the type of each local
24   variable and pattern binding.
25
26 - main: the main pass does the lion's share of the work: it
27   determines the types of all expressions, resolves
28   methods, checks for most invalid conditions, and so forth.  In
29   some cases, where a type is unknown, it may create a type or region
30   variable and use that as the type of an expression.
31
32   In the process of checking, various constraints will be placed on
33   these type variables through the subtyping relationships requested
34   through the `demand` module.  The `infer` module is in charge
35   of resolving those constraints.
36
37 - regionck: after main is complete, the regionck pass goes over all
38   types looking for regions and making sure that they did not escape
39   into places they are not in scope.  This may also influence the
40   final assignments of the various region variables if there is some
41   flexibility.
42
43 - vtable: find and records the impls to use for each trait bound that
44   appears on a type parameter.
45
46 - writeback: writes the final types within a function body, replacing
47   type variables with their final inferred types.  These final types
48   are written into the `tcx.node_types` table, which should *never* contain
49   any reference to a type variable.
50
51 ## Intermediate types
52
53 While type checking a function, the intermediate types for the
54 expressions, blocks, and so forth contained within the function are
55 stored in `fcx.node_types` and `fcx.node_substs`.  These types
56 may contain unresolved type variables.  After type checking is
57 complete, the functions in the writeback module are used to take the
58 types from this table, resolve them, and then write them into their
59 permanent home in the type context `tcx`.
60
61 This means that during inferencing you should use `fcx.write_ty()`
62 and `fcx.expr_ty()` / `fcx.node_ty()` to write/obtain the types of
63 nodes within the function.
64
65 The types of top-level items, which never contain unbound type
66 variables, are stored directly into the `tcx` tables.
67
68 n.b.: A type variable is not the same thing as a type parameter.  A
69 type variable is rather an "instance" of a type parameter: that is,
70 given a generic function `fn foo<T>(t: T)`: while checking the
71 function `foo`, the type `ty_param(0)` refers to the type `T`, which
72 is treated in abstract.  When `foo()` is called, however, `T` will be
73 substituted for a fresh type variable `N`.  This variable will
74 eventually be resolved to some concrete type (which might itself be
75 type parameter).
76
77 */
78
79 pub use self::Expectation::*;
80 use self::autoderef::Autoderef;
81 use self::callee::DeferredCallResolution;
82 use self::coercion::{CoerceMany, DynamicCoerceMany};
83 pub use self::compare_method::{compare_impl_method, compare_const_impl};
84 use self::method::MethodCallee;
85 use self::TupleArgumentsFlag::*;
86
87 use astconv::AstConv;
88 use fmt_macros::{Parser, Piece, Position};
89 use hir::def::{Def, CtorKind};
90 use hir::def_id::{CrateNum, DefId, LOCAL_CRATE};
91 use rustc_back::slice::ref_slice;
92 use rustc::infer::{self, InferCtxt, InferOk, RegionVariableOrigin};
93 use rustc::infer::type_variable::{TypeVariableOrigin};
94 use rustc::middle::region::CodeExtent;
95 use rustc::ty::subst::{Kind, Subst, Substs};
96 use rustc::traits::{self, FulfillmentContext, ObligationCause, ObligationCauseCode};
97 use rustc::ty::{ParamTy, LvaluePreference, NoPreference, PreferMutLvalue};
98 use rustc::ty::{self, Ty, TyCtxt, Visibility};
99 use rustc::ty::adjustment::{Adjust, Adjustment, AutoBorrow};
100 use rustc::ty::fold::{BottomUpFolder, TypeFoldable};
101 use rustc::ty::maps::Providers;
102 use rustc::ty::util::{Representability, IntTypeExt};
103 use errors::DiagnosticBuilder;
104 use require_c_abi_if_variadic;
105 use session::{Session, CompileResult};
106 use TypeAndSubsts;
107 use lint;
108 use util::common::{ErrorReported, indenter};
109 use util::nodemap::{DefIdMap, FxHashMap, NodeMap};
110
111 use std::cell::{Cell, RefCell};
112 use std::collections::hash_map::Entry;
113 use std::cmp;
114 use std::mem::replace;
115 use std::ops::{self, Deref};
116 use syntax::abi::Abi;
117 use syntax::ast;
118 use syntax::codemap::{self, original_sp, Spanned};
119 use syntax::feature_gate::{GateIssue, emit_feature_err};
120 use syntax::ptr::P;
121 use syntax::symbol::{Symbol, InternedString, keywords};
122 use syntax::util::lev_distance::find_best_match_for_name;
123 use syntax_pos::{self, BytePos, Span};
124
125 use rustc::hir::intravisit::{self, Visitor, NestedVisitorMap};
126 use rustc::hir::itemlikevisit::ItemLikeVisitor;
127 use rustc::hir::{self, PatKind};
128 use rustc::middle::lang_items;
129 use rustc_back::slice;
130 use rustc::middle::const_val::eval_length;
131 use rustc_const_math::ConstInt;
132
133 mod autoderef;
134 pub mod dropck;
135 pub mod _match;
136 pub mod writeback;
137 pub mod regionck;
138 pub mod coercion;
139 pub mod demand;
140 pub mod method;
141 mod upvar;
142 mod wfcheck;
143 mod cast;
144 mod closure;
145 mod callee;
146 mod compare_method;
147 mod intrinsic;
148 mod op;
149
150 /// closures defined within the function.  For example:
151 ///
152 ///     fn foo() {
153 ///         bar(move|| { ... })
154 ///     }
155 ///
156 /// Here, the function `foo()` and the closure passed to
157 /// `bar()` will each have their own `FnCtxt`, but they will
158 /// share the inherited fields.
159 pub struct Inherited<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
160     infcx: InferCtxt<'a, 'gcx, 'tcx>,
161
162     locals: RefCell<NodeMap<Ty<'tcx>>>,
163
164     fulfillment_cx: RefCell<traits::FulfillmentContext<'tcx>>,
165
166     // When we process a call like `c()` where `c` is a closure type,
167     // we may not have decided yet whether `c` is a `Fn`, `FnMut`, or
168     // `FnOnce` closure. In that case, we defer full resolution of the
169     // call until upvar inference can kick in and make the
170     // decision. We keep these deferred resolutions grouped by the
171     // def-id of the closure, so that once we decide, we can easily go
172     // back and process them.
173     deferred_call_resolutions: RefCell<DefIdMap<Vec<DeferredCallResolution<'gcx, 'tcx>>>>,
174
175     deferred_cast_checks: RefCell<Vec<cast::CastCheck<'tcx>>>,
176
177     // Anonymized types found in explicit return types and their
178     // associated fresh inference variable. Writeback resolves these
179     // variables to get the concrete type, which can be used to
180     // deanonymize TyAnon, after typeck is done with all functions.
181     anon_types: RefCell<NodeMap<Ty<'tcx>>>,
182
183     /// Each type parameter has an implicit region bound that
184     /// indicates it must outlive at least the function body (the user
185     /// may specify stronger requirements). This field indicates the
186     /// region of the callee. If it is `None`, then the parameter
187     /// environment is for an item or something where the "callee" is
188     /// not clear.
189     implicit_region_bound: Option<ty::Region<'tcx>>,
190 }
191
192 impl<'a, 'gcx, 'tcx> Deref for Inherited<'a, 'gcx, 'tcx> {
193     type Target = InferCtxt<'a, 'gcx, 'tcx>;
194     fn deref(&self) -> &Self::Target {
195         &self.infcx
196     }
197 }
198
199 /// When type-checking an expression, we propagate downward
200 /// whatever type hint we are able in the form of an `Expectation`.
201 #[derive(Copy, Clone, Debug)]
202 pub enum Expectation<'tcx> {
203     /// We know nothing about what type this expression should have.
204     NoExpectation,
205
206     /// This expression should have the type given (or some subtype)
207     ExpectHasType(Ty<'tcx>),
208
209     /// This expression will be cast to the `Ty`
210     ExpectCastableToType(Ty<'tcx>),
211
212     /// This rvalue expression will be wrapped in `&` or `Box` and coerced
213     /// to `&Ty` or `Box<Ty>`, respectively. `Ty` is `[A]` or `Trait`.
214     ExpectRvalueLikeUnsized(Ty<'tcx>),
215 }
216
217 impl<'a, 'gcx, 'tcx> Expectation<'tcx> {
218     // Disregard "castable to" expectations because they
219     // can lead us astray. Consider for example `if cond
220     // {22} else {c} as u8` -- if we propagate the
221     // "castable to u8" constraint to 22, it will pick the
222     // type 22u8, which is overly constrained (c might not
223     // be a u8). In effect, the problem is that the
224     // "castable to" expectation is not the tightest thing
225     // we can say, so we want to drop it in this case.
226     // The tightest thing we can say is "must unify with
227     // else branch". Note that in the case of a "has type"
228     // constraint, this limitation does not hold.
229
230     // If the expected type is just a type variable, then don't use
231     // an expected type. Otherwise, we might write parts of the type
232     // when checking the 'then' block which are incompatible with the
233     // 'else' branch.
234     fn adjust_for_branches(&self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Expectation<'tcx> {
235         match *self {
236             ExpectHasType(ety) => {
237                 let ety = fcx.shallow_resolve(ety);
238                 if !ety.is_ty_var() {
239                     ExpectHasType(ety)
240                 } else {
241                     NoExpectation
242                 }
243             }
244             ExpectRvalueLikeUnsized(ety) => {
245                 ExpectRvalueLikeUnsized(ety)
246             }
247             _ => NoExpectation
248         }
249     }
250
251     /// Provide an expectation for an rvalue expression given an *optional*
252     /// hint, which is not required for type safety (the resulting type might
253     /// be checked higher up, as is the case with `&expr` and `box expr`), but
254     /// is useful in determining the concrete type.
255     ///
256     /// The primary use case is where the expected type is a fat pointer,
257     /// like `&[isize]`. For example, consider the following statement:
258     ///
259     ///    let x: &[isize] = &[1, 2, 3];
260     ///
261     /// In this case, the expected type for the `&[1, 2, 3]` expression is
262     /// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
263     /// expectation `ExpectHasType([isize])`, that would be too strong --
264     /// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
265     /// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
266     /// to the type `&[isize]`. Therefore, we propagate this more limited hint,
267     /// which still is useful, because it informs integer literals and the like.
268     /// See the test case `test/run-pass/coerce-expect-unsized.rs` and #20169
269     /// for examples of where this comes up,.
270     fn rvalue_hint(fcx: &FnCtxt<'a, 'gcx, 'tcx>, ty: Ty<'tcx>) -> Expectation<'tcx> {
271         match fcx.tcx.struct_tail(ty).sty {
272             ty::TySlice(_) | ty::TyStr | ty::TyDynamic(..) => {
273                 ExpectRvalueLikeUnsized(ty)
274             }
275             _ => ExpectHasType(ty)
276         }
277     }
278
279     // Resolves `expected` by a single level if it is a variable. If
280     // there is no expected type or resolution is not possible (e.g.,
281     // no constraints yet present), just returns `None`.
282     fn resolve(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Expectation<'tcx> {
283         match self {
284             NoExpectation => {
285                 NoExpectation
286             }
287             ExpectCastableToType(t) => {
288                 ExpectCastableToType(fcx.resolve_type_vars_if_possible(&t))
289             }
290             ExpectHasType(t) => {
291                 ExpectHasType(fcx.resolve_type_vars_if_possible(&t))
292             }
293             ExpectRvalueLikeUnsized(t) => {
294                 ExpectRvalueLikeUnsized(fcx.resolve_type_vars_if_possible(&t))
295             }
296         }
297     }
298
299     fn to_option(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Option<Ty<'tcx>> {
300         match self.resolve(fcx) {
301             NoExpectation => None,
302             ExpectCastableToType(ty) |
303             ExpectHasType(ty) |
304             ExpectRvalueLikeUnsized(ty) => Some(ty),
305         }
306     }
307
308     /// It sometimes happens that we want to turn an expectation into
309     /// a **hard constraint** (i.e., something that must be satisfied
310     /// for the program to type-check). `only_has_type` will return
311     /// such a constraint, if it exists.
312     fn only_has_type(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Option<Ty<'tcx>> {
313         match self.resolve(fcx) {
314             ExpectHasType(ty) => Some(ty),
315             _ => None
316         }
317     }
318
319     /// Like `only_has_type`, but instead of returning `None` if no
320     /// hard constraint exists, creates a fresh type variable.
321     fn coercion_target_type(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>, span: Span) -> Ty<'tcx> {
322         self.only_has_type(fcx)
323             .unwrap_or_else(|| fcx.next_ty_var(TypeVariableOrigin::MiscVariable(span)))
324     }
325 }
326
327 #[derive(Copy, Clone)]
328 pub struct UnsafetyState {
329     pub def: ast::NodeId,
330     pub unsafety: hir::Unsafety,
331     pub unsafe_push_count: u32,
332     from_fn: bool
333 }
334
335 impl UnsafetyState {
336     pub fn function(unsafety: hir::Unsafety, def: ast::NodeId) -> UnsafetyState {
337         UnsafetyState { def: def, unsafety: unsafety, unsafe_push_count: 0, from_fn: true }
338     }
339
340     pub fn recurse(&mut self, blk: &hir::Block) -> UnsafetyState {
341         match self.unsafety {
342             // If this unsafe, then if the outer function was already marked as
343             // unsafe we shouldn't attribute the unsafe'ness to the block. This
344             // way the block can be warned about instead of ignoring this
345             // extraneous block (functions are never warned about).
346             hir::Unsafety::Unsafe if self.from_fn => *self,
347
348             unsafety => {
349                 let (unsafety, def, count) = match blk.rules {
350                     hir::PushUnsafeBlock(..) =>
351                         (unsafety, blk.id, self.unsafe_push_count.checked_add(1).unwrap()),
352                     hir::PopUnsafeBlock(..) =>
353                         (unsafety, blk.id, self.unsafe_push_count.checked_sub(1).unwrap()),
354                     hir::UnsafeBlock(..) =>
355                         (hir::Unsafety::Unsafe, blk.id, self.unsafe_push_count),
356                     hir::DefaultBlock =>
357                         (unsafety, self.def, self.unsafe_push_count),
358                 };
359                 UnsafetyState{ def: def,
360                                unsafety: unsafety,
361                                unsafe_push_count: count,
362                                from_fn: false }
363             }
364         }
365     }
366 }
367
368 #[derive(Debug, Copy, Clone)]
369 pub enum LvalueOp {
370     Deref,
371     Index
372 }
373
374 /// Tracks whether executing a node may exit normally (versus
375 /// return/break/panic, which "diverge", leaving dead code in their
376 /// wake). Tracked semi-automatically (through type variables marked
377 /// as diverging), with some manual adjustments for control-flow
378 /// primitives (approximating a CFG).
379 #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
380 pub enum Diverges {
381     /// Potentially unknown, some cases converge,
382     /// others require a CFG to determine them.
383     Maybe,
384
385     /// Definitely known to diverge and therefore
386     /// not reach the next sibling or its parent.
387     Always,
388
389     /// Same as `Always` but with a reachability
390     /// warning already emitted
391     WarnedAlways
392 }
393
394 // Convenience impls for combinig `Diverges`.
395
396 impl ops::BitAnd for Diverges {
397     type Output = Self;
398     fn bitand(self, other: Self) -> Self {
399         cmp::min(self, other)
400     }
401 }
402
403 impl ops::BitOr for Diverges {
404     type Output = Self;
405     fn bitor(self, other: Self) -> Self {
406         cmp::max(self, other)
407     }
408 }
409
410 impl ops::BitAndAssign for Diverges {
411     fn bitand_assign(&mut self, other: Self) {
412         *self = *self & other;
413     }
414 }
415
416 impl ops::BitOrAssign for Diverges {
417     fn bitor_assign(&mut self, other: Self) {
418         *self = *self | other;
419     }
420 }
421
422 impl Diverges {
423     fn always(self) -> bool {
424         self >= Diverges::Always
425     }
426 }
427
428 pub struct BreakableCtxt<'gcx: 'tcx, 'tcx> {
429     may_break: bool,
430
431     // this is `null` for loops where break with a value is illegal,
432     // such as `while`, `for`, and `while let`
433     coerce: Option<DynamicCoerceMany<'gcx, 'tcx>>,
434 }
435
436 pub struct EnclosingBreakables<'gcx: 'tcx, 'tcx> {
437     stack: Vec<BreakableCtxt<'gcx, 'tcx>>,
438     by_id: NodeMap<usize>,
439 }
440
441 impl<'gcx, 'tcx> EnclosingBreakables<'gcx, 'tcx> {
442     fn find_breakable(&mut self, target_id: ast::NodeId) -> &mut BreakableCtxt<'gcx, 'tcx> {
443         let ix = *self.by_id.get(&target_id).unwrap_or_else(|| {
444             bug!("could not find enclosing breakable with id {}", target_id);
445         });
446         &mut self.stack[ix]
447     }
448 }
449
450 pub struct FnCtxt<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
451     body_id: ast::NodeId,
452
453     /// The parameter environment used for proving trait obligations
454     /// in this function. This can change when we descend into
455     /// closures (as they bring new things into scope), hence it is
456     /// not part of `Inherited` (as of the time of this writing,
457     /// closures do not yet change the environment, but they will
458     /// eventually).
459     param_env: ty::ParamEnv<'tcx>,
460
461     // Number of errors that had been reported when we started
462     // checking this function. On exit, if we find that *more* errors
463     // have been reported, we will skip regionck and other work that
464     // expects the types within the function to be consistent.
465     err_count_on_creation: usize,
466
467     ret_coercion: Option<RefCell<DynamicCoerceMany<'gcx, 'tcx>>>,
468
469     ps: RefCell<UnsafetyState>,
470
471     /// Whether the last checked node generates a divergence (e.g.,
472     /// `return` will set this to Always). In general, when entering
473     /// an expression or other node in the tree, the initial value
474     /// indicates whether prior parts of the containing expression may
475     /// have diverged. It is then typically set to `Maybe` (and the
476     /// old value remembered) for processing the subparts of the
477     /// current expression. As each subpart is processed, they may set
478     /// the flag to `Always` etc.  Finally, at the end, we take the
479     /// result and "union" it with the original value, so that when we
480     /// return the flag indicates if any subpart of the the parent
481     /// expression (up to and including this part) has diverged.  So,
482     /// if you read it after evaluating a subexpression `X`, the value
483     /// you get indicates whether any subexpression that was
484     /// evaluating up to and including `X` diverged.
485     ///
486     /// We use this flag for two purposes:
487     ///
488     /// - To warn about unreachable code: if, after processing a
489     ///   sub-expression but before we have applied the effects of the
490     ///   current node, we see that the flag is set to `Always`, we
491     ///   can issue a warning. This corresponds to something like
492     ///   `foo(return)`; we warn on the `foo()` expression. (We then
493     ///   update the flag to `WarnedAlways` to suppress duplicate
494     ///   reports.) Similarly, if we traverse to a fresh statement (or
495     ///   tail expression) from a `Always` setting, we will isssue a
496     ///   warning. This corresponds to something like `{return;
497     ///   foo();}` or `{return; 22}`, where we would warn on the
498     ///   `foo()` or `22`.
499     ///
500     /// - To permit assignment into a local variable or other lvalue
501     ///   (including the "return slot") of type `!`.  This is allowed
502     ///   if **either** the type of value being assigned is `!`, which
503     ///   means the current code is dead, **or** the expression's
504     ///   divering flag is true, which means that a divering value was
505     ///   wrapped (e.g., `let x: ! = foo(return)`).
506     ///
507     /// To repeat the last point: an expression represents dead-code
508     /// if, after checking it, **either** its type is `!` OR the
509     /// diverges flag is set to something other than `Maybe`.
510     diverges: Cell<Diverges>,
511
512     /// Whether any child nodes have any type errors.
513     has_errors: Cell<bool>,
514
515     enclosing_breakables: RefCell<EnclosingBreakables<'gcx, 'tcx>>,
516
517     inh: &'a Inherited<'a, 'gcx, 'tcx>,
518 }
519
520 impl<'a, 'gcx, 'tcx> Deref for FnCtxt<'a, 'gcx, 'tcx> {
521     type Target = Inherited<'a, 'gcx, 'tcx>;
522     fn deref(&self) -> &Self::Target {
523         &self.inh
524     }
525 }
526
527 /// Helper type of a temporary returned by Inherited::build(...).
528 /// Necessary because we can't write the following bound:
529 /// F: for<'b, 'tcx> where 'gcx: 'tcx FnOnce(Inherited<'b, 'gcx, 'tcx>).
530 pub struct InheritedBuilder<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
531     infcx: infer::InferCtxtBuilder<'a, 'gcx, 'tcx>,
532     def_id: DefId,
533 }
534
535 impl<'a, 'gcx, 'tcx> Inherited<'a, 'gcx, 'tcx> {
536     pub fn build(tcx: TyCtxt<'a, 'gcx, 'gcx>, def_id: DefId)
537                  -> InheritedBuilder<'a, 'gcx, 'tcx> {
538         let tables = ty::TypeckTables::empty();
539         InheritedBuilder {
540             infcx: tcx.infer_ctxt(tables),
541             def_id,
542         }
543     }
544 }
545
546 impl<'a, 'gcx, 'tcx> InheritedBuilder<'a, 'gcx, 'tcx> {
547     fn enter<F, R>(&'tcx mut self, f: F) -> R
548         where F: for<'b> FnOnce(Inherited<'b, 'gcx, 'tcx>) -> R
549     {
550         let def_id = self.def_id;
551         self.infcx.enter(|infcx| f(Inherited::new(infcx, def_id)))
552     }
553 }
554
555 impl<'a, 'gcx, 'tcx> Inherited<'a, 'gcx, 'tcx> {
556     fn new(infcx: InferCtxt<'a, 'gcx, 'tcx>, def_id: DefId) -> Self {
557         let tcx = infcx.tcx;
558         let item_id = tcx.hir.as_local_node_id(def_id);
559         let body_id = item_id.and_then(|id| tcx.hir.maybe_body_owned_by(id));
560         let implicit_region_bound = body_id.map(|body| {
561             tcx.mk_region(ty::ReScope(CodeExtent::CallSiteScope(body)))
562         });
563
564         Inherited {
565             infcx: infcx,
566             fulfillment_cx: RefCell::new(traits::FulfillmentContext::new()),
567             locals: RefCell::new(NodeMap()),
568             deferred_call_resolutions: RefCell::new(DefIdMap()),
569             deferred_cast_checks: RefCell::new(Vec::new()),
570             anon_types: RefCell::new(NodeMap()),
571             implicit_region_bound,
572         }
573     }
574
575     fn register_predicate(&self, obligation: traits::PredicateObligation<'tcx>) {
576         debug!("register_predicate({:?})", obligation);
577         if obligation.has_escaping_regions() {
578             span_bug!(obligation.cause.span, "escaping regions in predicate {:?}",
579                       obligation);
580         }
581         self.fulfillment_cx
582             .borrow_mut()
583             .register_predicate_obligation(self, obligation);
584     }
585
586     fn register_predicates(&self, obligations: Vec<traits::PredicateObligation<'tcx>>) {
587         for obligation in obligations {
588             self.register_predicate(obligation);
589         }
590     }
591
592     fn register_infer_ok_obligations<T>(&self, infer_ok: InferOk<'tcx, T>) -> T {
593         self.register_predicates(infer_ok.obligations);
594         infer_ok.value
595     }
596
597     fn normalize_associated_types_in<T>(&self,
598                                         span: Span,
599                                         body_id: ast::NodeId,
600                                         param_env: ty::ParamEnv<'tcx>,
601                                         value: &T) -> T
602         where T : TypeFoldable<'tcx>
603     {
604         let ok = self.normalize_associated_types_in_as_infer_ok(span, body_id, param_env, value);
605         self.register_infer_ok_obligations(ok)
606     }
607
608     fn normalize_associated_types_in_as_infer_ok<T>(&self,
609                                                     span: Span,
610                                                     body_id: ast::NodeId,
611                                                     param_env: ty::ParamEnv<'tcx>,
612                                                     value: &T)
613                                                     -> InferOk<'tcx, T>
614         where T : TypeFoldable<'tcx>
615     {
616         debug!("normalize_associated_types_in(value={:?})", value);
617         let mut selcx = traits::SelectionContext::new(self);
618         let cause = ObligationCause::misc(span, body_id);
619         let traits::Normalized { value, obligations } =
620             traits::normalize(&mut selcx, param_env, cause, value);
621         debug!("normalize_associated_types_in: result={:?} predicates={:?}",
622             value,
623             obligations);
624         InferOk { value, obligations }
625     }
626
627     /// Replace any late-bound regions bound in `value` with
628     /// free variants attached to `all_outlive_scope`.
629     fn liberate_late_bound_regions<T>(&self,
630         all_outlive_scope: DefId,
631         value: &ty::Binder<T>)
632         -> T
633         where T: TypeFoldable<'tcx>
634     {
635         self.tcx.replace_late_bound_regions(value, |br| {
636             self.tcx.mk_region(ty::ReFree(ty::FreeRegion {
637                 scope: all_outlive_scope,
638                 bound_region: br
639             }))
640         }).0
641     }
642 }
643
644 struct CheckItemTypesVisitor<'a, 'tcx: 'a> { tcx: TyCtxt<'a, 'tcx, 'tcx> }
645
646 impl<'a, 'tcx> ItemLikeVisitor<'tcx> for CheckItemTypesVisitor<'a, 'tcx> {
647     fn visit_item(&mut self, i: &'tcx hir::Item) {
648         check_item_type(self.tcx, i);
649     }
650     fn visit_trait_item(&mut self, _: &'tcx hir::TraitItem) { }
651     fn visit_impl_item(&mut self, _: &'tcx hir::ImplItem) { }
652 }
653
654 pub fn check_wf_new<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> CompileResult {
655     tcx.sess.track_errors(|| {
656         let mut visit = wfcheck::CheckTypeWellFormedVisitor::new(tcx);
657         tcx.hir.krate().visit_all_item_likes(&mut visit.as_deep_visitor());
658     })
659 }
660
661 pub fn check_item_types<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> CompileResult {
662     tcx.sess.track_errors(|| {
663         tcx.hir.krate().visit_all_item_likes(&mut CheckItemTypesVisitor { tcx });
664     })
665 }
666
667 pub fn check_item_bodies<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> CompileResult {
668     tcx.typeck_item_bodies(LOCAL_CRATE)
669 }
670
671 fn typeck_item_bodies<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, crate_num: CrateNum) -> CompileResult {
672     debug_assert!(crate_num == LOCAL_CRATE);
673     tcx.sess.track_errors(|| {
674         for body_owner_def_id in tcx.body_owners() {
675             tcx.typeck_tables_of(body_owner_def_id);
676         }
677     })
678 }
679
680 pub fn provide(providers: &mut Providers) {
681     *providers = Providers {
682         typeck_item_bodies,
683         typeck_tables_of,
684         has_typeck_tables,
685         closure_type,
686         closure_kind,
687         adt_destructor,
688         ..*providers
689     };
690 }
691
692 fn closure_type<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
693                           def_id: DefId)
694                           -> ty::PolyFnSig<'tcx> {
695     let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
696     tcx.typeck_tables_of(def_id).closure_tys[&node_id]
697 }
698
699 fn closure_kind<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
700                           def_id: DefId)
701                           -> ty::ClosureKind {
702     let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
703     tcx.typeck_tables_of(def_id).closure_kinds[&node_id].0
704 }
705
706 fn adt_destructor<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
707                             def_id: DefId)
708                             -> Option<ty::Destructor> {
709     tcx.calculate_dtor(def_id, &mut dropck::check_drop_impl)
710 }
711
712 /// If this def-id is a "primary tables entry", returns `Some((body_id, decl))`
713 /// with information about it's body-id and fn-decl (if any). Otherwise,
714 /// returns `None`.
715 ///
716 /// If this function returns "some", then `typeck_tables(def_id)` will
717 /// succeed; if it returns `None`, then `typeck_tables(def_id)` may or
718 /// may not succeed.  In some cases where this function returns `None`
719 /// (notably closures), `typeck_tables(def_id)` would wind up
720 /// redirecting to the owning function.
721 fn primary_body_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
722                              id: ast::NodeId)
723                              -> Option<(hir::BodyId, Option<&'tcx hir::FnDecl>)>
724 {
725     match tcx.hir.get(id) {
726         hir::map::NodeItem(item) => {
727             match item.node {
728                 hir::ItemConst(_, body) |
729                 hir::ItemStatic(_, _, body) =>
730                     Some((body, None)),
731                 hir::ItemFn(ref decl, .., body) =>
732                     Some((body, Some(decl))),
733                 _ =>
734                     None,
735             }
736         }
737         hir::map::NodeTraitItem(item) => {
738             match item.node {
739                 hir::TraitItemKind::Const(_, Some(body)) =>
740                     Some((body, None)),
741                 hir::TraitItemKind::Method(ref sig, hir::TraitMethod::Provided(body)) =>
742                     Some((body, Some(&sig.decl))),
743                 _ =>
744                     None,
745             }
746         }
747         hir::map::NodeImplItem(item) => {
748             match item.node {
749                 hir::ImplItemKind::Const(_, body) =>
750                     Some((body, None)),
751                 hir::ImplItemKind::Method(ref sig, body) =>
752                     Some((body, Some(&sig.decl))),
753                 _ =>
754                     None,
755             }
756         }
757         hir::map::NodeExpr(expr) => {
758             // FIXME(eddyb) Closures should have separate
759             // function definition IDs and expression IDs.
760             // Type-checking should not let closures get
761             // this far in a constant position.
762             // Assume that everything other than closures
763             // is a constant "initializer" expression.
764             match expr.node {
765                 hir::ExprClosure(..) =>
766                     None,
767                 _ =>
768                     Some((hir::BodyId { node_id: expr.id }, None)),
769             }
770         }
771         _ => None,
772     }
773 }
774
775 fn has_typeck_tables<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
776                                def_id: DefId)
777                                -> bool {
778     // Closures' tables come from their outermost function,
779     // as they are part of the same "inference environment".
780     let outer_def_id = tcx.closure_base_def_id(def_id);
781     if outer_def_id != def_id {
782         return tcx.has_typeck_tables(outer_def_id);
783     }
784
785     let id = tcx.hir.as_local_node_id(def_id).unwrap();
786     primary_body_of(tcx, id).is_some()
787 }
788
789 fn typeck_tables_of<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
790                               def_id: DefId)
791                               -> &'tcx ty::TypeckTables<'tcx> {
792     // Closures' tables come from their outermost function,
793     // as they are part of the same "inference environment".
794     let outer_def_id = tcx.closure_base_def_id(def_id);
795     if outer_def_id != def_id {
796         return tcx.typeck_tables_of(outer_def_id);
797     }
798
799     let id = tcx.hir.as_local_node_id(def_id).unwrap();
800     let span = tcx.hir.span(id);
801
802     // Figure out what primary body this item has.
803     let (body_id, fn_decl) = primary_body_of(tcx, id).unwrap_or_else(|| {
804         span_bug!(span, "can't type-check body of {:?}", def_id);
805     });
806     let body = tcx.hir.body(body_id);
807
808     Inherited::build(tcx, def_id).enter(|inh| {
809         let param_env = tcx.param_env(def_id);
810         let fcx = if let Some(decl) = fn_decl {
811             let fn_sig = tcx.type_of(def_id).fn_sig();
812
813             check_abi(tcx, span, fn_sig.abi());
814
815             // Compute the fty from point of view of inside fn.
816             let fn_sig =
817                 inh.liberate_late_bound_regions(def_id, &fn_sig);
818             let fn_sig =
819                 inh.normalize_associated_types_in(body.value.span,
820                                                   body_id.node_id,
821                                                   param_env,
822                                                   &fn_sig);
823
824             check_fn(&inh, param_env, fn_sig, decl, id, body)
825         } else {
826             let fcx = FnCtxt::new(&inh, param_env, body.value.id);
827             let expected_type = tcx.type_of(def_id);
828             let expected_type = fcx.normalize_associated_types_in(body.value.span, &expected_type);
829             fcx.require_type_is_sized(expected_type, body.value.span, traits::ConstSized);
830
831             // Gather locals in statics (because of block expressions).
832             // This is technically unnecessary because locals in static items are forbidden,
833             // but prevents type checking from blowing up before const checking can properly
834             // emit an error.
835             GatherLocalsVisitor { fcx: &fcx }.visit_body(body);
836
837             fcx.check_expr_coercable_to_type(&body.value, expected_type);
838
839             fcx
840         };
841
842         fcx.select_all_obligations_and_apply_defaults();
843         fcx.closure_analyze(body);
844         fcx.select_obligations_where_possible();
845         fcx.check_casts();
846         fcx.select_all_obligations_or_error();
847
848         if fn_decl.is_some() {
849             fcx.regionck_fn(id, body);
850         } else {
851             fcx.regionck_expr(body);
852         }
853
854         fcx.resolve_type_vars_in_body(body)
855     })
856 }
857
858 fn check_abi<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, span: Span, abi: Abi) {
859     if !tcx.sess.target.target.is_abi_supported(abi) {
860         struct_span_err!(tcx.sess, span, E0570,
861             "The ABI `{}` is not supported for the current target", abi).emit()
862     }
863 }
864
865 struct GatherLocalsVisitor<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
866     fcx: &'a FnCtxt<'a, 'gcx, 'tcx>
867 }
868
869 impl<'a, 'gcx, 'tcx> GatherLocalsVisitor<'a, 'gcx, 'tcx> {
870     fn assign(&mut self, span: Span, nid: ast::NodeId, ty_opt: Option<Ty<'tcx>>) -> Ty<'tcx> {
871         match ty_opt {
872             None => {
873                 // infer the variable's type
874                 let var_ty = self.fcx.next_ty_var(TypeVariableOrigin::TypeInference(span));
875                 self.fcx.locals.borrow_mut().insert(nid, var_ty);
876                 var_ty
877             }
878             Some(typ) => {
879                 // take type that the user specified
880                 self.fcx.locals.borrow_mut().insert(nid, typ);
881                 typ
882             }
883         }
884     }
885 }
886
887 impl<'a, 'gcx, 'tcx> Visitor<'gcx> for GatherLocalsVisitor<'a, 'gcx, 'tcx> {
888     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'gcx> {
889         NestedVisitorMap::None
890     }
891
892     // Add explicitly-declared locals.
893     fn visit_local(&mut self, local: &'gcx hir::Local) {
894         let o_ty = match local.ty {
895             Some(ref ty) => Some(self.fcx.to_ty(&ty)),
896             None => None
897         };
898         self.assign(local.span, local.id, o_ty);
899         debug!("Local variable {:?} is assigned type {}",
900                local.pat,
901                self.fcx.ty_to_string(
902                    self.fcx.locals.borrow().get(&local.id).unwrap().clone()));
903         intravisit::walk_local(self, local);
904     }
905
906     // Add pattern bindings.
907     fn visit_pat(&mut self, p: &'gcx hir::Pat) {
908         if let PatKind::Binding(_, _, ref path1, _) = p.node {
909             let var_ty = self.assign(p.span, p.id, None);
910
911             self.fcx.require_type_is_sized(var_ty, p.span,
912                                            traits::VariableType(p.id));
913
914             debug!("Pattern binding {} is assigned to {} with type {:?}",
915                    path1.node,
916                    self.fcx.ty_to_string(
917                        self.fcx.locals.borrow().get(&p.id).unwrap().clone()),
918                    var_ty);
919         }
920         intravisit::walk_pat(self, p);
921     }
922
923     // Don't descend into the bodies of nested closures
924     fn visit_fn(&mut self, _: intravisit::FnKind<'gcx>, _: &'gcx hir::FnDecl,
925                 _: hir::BodyId, _: Span, _: ast::NodeId) { }
926 }
927
928 /// Helper used for fns and closures. Does the grungy work of checking a function
929 /// body and returns the function context used for that purpose, since in the case of a fn item
930 /// there is still a bit more to do.
931 ///
932 /// * ...
933 /// * inherited: other fields inherited from the enclosing fn (if any)
934 fn check_fn<'a, 'gcx, 'tcx>(inherited: &'a Inherited<'a, 'gcx, 'tcx>,
935                             param_env: ty::ParamEnv<'tcx>,
936                             fn_sig: ty::FnSig<'tcx>,
937                             decl: &'gcx hir::FnDecl,
938                             fn_id: ast::NodeId,
939                             body: &'gcx hir::Body)
940                             -> FnCtxt<'a, 'gcx, 'tcx>
941 {
942     let mut fn_sig = fn_sig.clone();
943
944     debug!("check_fn(sig={:?}, fn_id={}, param_env={:?})", fn_sig, fn_id, param_env);
945
946     // Create the function context.  This is either derived from scratch or,
947     // in the case of function expressions, based on the outer context.
948     let mut fcx = FnCtxt::new(inherited, param_env, body.value.id);
949     *fcx.ps.borrow_mut() = UnsafetyState::function(fn_sig.unsafety, fn_id);
950
951     let ret_ty = fn_sig.output();
952     fcx.require_type_is_sized(ret_ty, decl.output.span(), traits::ReturnType);
953     let ret_ty = fcx.instantiate_anon_types(&ret_ty);
954     fcx.ret_coercion = Some(RefCell::new(CoerceMany::new(ret_ty)));
955     fn_sig = fcx.tcx.mk_fn_sig(
956         fn_sig.inputs().iter().cloned(),
957         ret_ty,
958         fn_sig.variadic,
959         fn_sig.unsafety,
960         fn_sig.abi
961     );
962
963     GatherLocalsVisitor { fcx: &fcx, }.visit_body(body);
964
965     // Add formal parameters.
966     for (arg_ty, arg) in fn_sig.inputs().iter().zip(&body.arguments) {
967         // The type of the argument must be well-formed.
968         //
969         // NB -- this is now checked in wfcheck, but that
970         // currently only results in warnings, so we issue an
971         // old-style WF obligation here so that we still get the
972         // errors that we used to get.
973         fcx.register_old_wf_obligation(arg_ty, arg.pat.span, traits::MiscObligation);
974
975         // Check the pattern.
976         fcx.check_pat_arg(&arg.pat, arg_ty, true);
977         fcx.write_ty(arg.id, arg_ty);
978     }
979
980     inherited.tables.borrow_mut().liberated_fn_sigs.insert(fn_id, fn_sig);
981
982     fcx.check_return_expr(&body.value);
983
984     // Finalize the return check by taking the LUB of the return types
985     // we saw and assigning it to the expected return type. This isn't
986     // really expected to fail, since the coercions would have failed
987     // earlier when trying to find a LUB.
988     //
989     // However, the behavior around `!` is sort of complex. In the
990     // event that the `actual_return_ty` comes back as `!`, that
991     // indicates that the fn either does not return or "returns" only
992     // values of type `!`. In this case, if there is an expected
993     // return type that is *not* `!`, that should be ok. But if the
994     // return type is being inferred, we want to "fallback" to `!`:
995     //
996     //     let x = move || panic!();
997     //
998     // To allow for that, I am creating a type variable with diverging
999     // fallback. This was deemed ever so slightly better than unifying
1000     // the return value with `!` because it allows for the caller to
1001     // make more assumptions about the return type (e.g., they could do
1002     //
1003     //     let y: Option<u32> = Some(x());
1004     //
1005     // which would then cause this return type to become `u32`, not
1006     // `!`).
1007     let coercion = fcx.ret_coercion.take().unwrap().into_inner();
1008     let mut actual_return_ty = coercion.complete(&fcx);
1009     if actual_return_ty.is_never() {
1010         actual_return_ty = fcx.next_diverging_ty_var(
1011             TypeVariableOrigin::DivergingFn(body.value.span));
1012     }
1013     fcx.demand_suptype(body.value.span, ret_ty, actual_return_ty);
1014
1015     fcx
1016 }
1017
1018 fn check_struct<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1019                           id: ast::NodeId,
1020                           span: Span) {
1021     let def_id = tcx.hir.local_def_id(id);
1022     let def = tcx.adt_def(def_id);
1023     def.destructor(tcx); // force the destructor to be evaluated
1024     check_representable(tcx, span, def_id);
1025
1026     if def.repr.simd() {
1027         check_simd(tcx, span, def_id);
1028     }
1029
1030     // if struct is packed and not aligned, check fields for alignment.
1031     // Checks for combining packed and align attrs on single struct are done elsewhere.
1032     if tcx.adt_def(def_id).repr.packed() && tcx.adt_def(def_id).repr.align == 0 {
1033         check_packed(tcx, span, def_id);
1034     }
1035 }
1036
1037 fn check_union<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1038                          id: ast::NodeId,
1039                          span: Span) {
1040     let def_id = tcx.hir.local_def_id(id);
1041     let def = tcx.adt_def(def_id);
1042     def.destructor(tcx); // force the destructor to be evaluated
1043     check_representable(tcx, span, def_id);
1044 }
1045
1046 pub fn check_item_type<'a,'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, it: &'tcx hir::Item) {
1047     debug!("check_item_type(it.id={}, it.name={})",
1048            it.id,
1049            tcx.item_path_str(tcx.hir.local_def_id(it.id)));
1050     let _indenter = indenter();
1051     match it.node {
1052       // Consts can play a role in type-checking, so they are included here.
1053       hir::ItemStatic(..) |
1054       hir::ItemConst(..) => {
1055         tcx.typeck_tables_of(tcx.hir.local_def_id(it.id));
1056       }
1057       hir::ItemEnum(ref enum_definition, _) => {
1058         check_enum(tcx,
1059                    it.span,
1060                    &enum_definition.variants,
1061                    it.id);
1062       }
1063       hir::ItemFn(..) => {} // entirely within check_item_body
1064       hir::ItemImpl(.., ref impl_item_refs) => {
1065           debug!("ItemImpl {} with id {}", it.name, it.id);
1066           let impl_def_id = tcx.hir.local_def_id(it.id);
1067           if let Some(impl_trait_ref) = tcx.impl_trait_ref(impl_def_id) {
1068               check_impl_items_against_trait(tcx,
1069                                              it.span,
1070                                              impl_def_id,
1071                                              impl_trait_ref,
1072                                              impl_item_refs);
1073               let trait_def_id = impl_trait_ref.def_id;
1074               check_on_unimplemented(tcx, trait_def_id, it);
1075           }
1076       }
1077       hir::ItemTrait(..) => {
1078         let def_id = tcx.hir.local_def_id(it.id);
1079         check_on_unimplemented(tcx, def_id, it);
1080       }
1081       hir::ItemStruct(..) => {
1082         check_struct(tcx, it.id, it.span);
1083       }
1084       hir::ItemUnion(..) => {
1085         check_union(tcx, it.id, it.span);
1086       }
1087       hir::ItemTy(_, ref generics) => {
1088         let def_id = tcx.hir.local_def_id(it.id);
1089         let pty_ty = tcx.type_of(def_id);
1090         check_bounds_are_used(tcx, generics, pty_ty);
1091       }
1092       hir::ItemForeignMod(ref m) => {
1093         check_abi(tcx, it.span, m.abi);
1094
1095         if m.abi == Abi::RustIntrinsic {
1096             for item in &m.items {
1097                 intrinsic::check_intrinsic_type(tcx, item);
1098             }
1099         } else if m.abi == Abi::PlatformIntrinsic {
1100             for item in &m.items {
1101                 intrinsic::check_platform_intrinsic_type(tcx, item);
1102             }
1103         } else {
1104             for item in &m.items {
1105                 let generics = tcx.generics_of(tcx.hir.local_def_id(item.id));
1106                 if !generics.types.is_empty() {
1107                     let mut err = struct_span_err!(tcx.sess, item.span, E0044,
1108                         "foreign items may not have type parameters");
1109                     span_help!(&mut err, item.span,
1110                         "consider using specialization instead of \
1111                         type parameters");
1112                     err.emit();
1113                 }
1114
1115                 if let hir::ForeignItemFn(ref fn_decl, _, _) = item.node {
1116                     require_c_abi_if_variadic(tcx, fn_decl, m.abi, item.span);
1117                 }
1118             }
1119         }
1120       }
1121       _ => {/* nothing to do */ }
1122     }
1123 }
1124
1125 fn check_on_unimplemented<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1126                                     def_id: DefId,
1127                                     item: &hir::Item) {
1128     let generics = tcx.generics_of(def_id);
1129     if let Some(ref attr) = item.attrs.iter().find(|a| {
1130         a.check_name("rustc_on_unimplemented")
1131     }) {
1132         if let Some(istring) = attr.value_str() {
1133             let istring = istring.as_str();
1134             let parser = Parser::new(&istring);
1135             let types = &generics.types;
1136             for token in parser {
1137                 match token {
1138                     Piece::String(_) => (), // Normal string, no need to check it
1139                     Piece::NextArgument(a) => match a.position {
1140                         // `{Self}` is allowed
1141                         Position::ArgumentNamed(s) if s == "Self" => (),
1142                         // So is `{A}` if A is a type parameter
1143                         Position::ArgumentNamed(s) => match types.iter().find(|t| {
1144                             t.name == s
1145                         }) {
1146                             Some(_) => (),
1147                             None => {
1148                                 let name = tcx.item_name(def_id);
1149                                 span_err!(tcx.sess, attr.span, E0230,
1150                                                  "there is no type parameter \
1151                                                           {} on trait {}",
1152                                                            s, name);
1153                             }
1154                         },
1155                         // `{:1}` and `{}` are not to be used
1156                         Position::ArgumentIs(_) => {
1157                             span_err!(tcx.sess, attr.span, E0231,
1158                                                   "only named substitution \
1159                                                    parameters are allowed");
1160                         }
1161                     }
1162                 }
1163             }
1164         } else {
1165             struct_span_err!(
1166                 tcx.sess, attr.span, E0232,
1167                 "this attribute must have a value")
1168                 .span_label(attr.span, "attribute requires a value")
1169                 .note(&format!("eg `#[rustc_on_unimplemented = \"foo\"]`"))
1170                 .emit();
1171         }
1172     }
1173 }
1174
1175 fn report_forbidden_specialization<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1176                                              impl_item: &hir::ImplItem,
1177                                              parent_impl: DefId)
1178 {
1179     let mut err = struct_span_err!(
1180         tcx.sess, impl_item.span, E0520,
1181         "`{}` specializes an item from a parent `impl`, but \
1182          that item is not marked `default`",
1183         impl_item.name);
1184     err.span_label(impl_item.span, format!("cannot specialize default item `{}`",
1185                                             impl_item.name));
1186
1187     match tcx.span_of_impl(parent_impl) {
1188         Ok(span) => {
1189             err.span_label(span, "parent `impl` is here");
1190             err.note(&format!("to specialize, `{}` in the parent `impl` must be marked `default`",
1191                               impl_item.name));
1192         }
1193         Err(cname) => {
1194             err.note(&format!("parent implementation is in crate `{}`", cname));
1195         }
1196     }
1197
1198     err.emit();
1199 }
1200
1201 fn check_specialization_validity<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1202                                            trait_def: &ty::TraitDef,
1203                                            impl_id: DefId,
1204                                            impl_item: &hir::ImplItem)
1205 {
1206     let ancestors = trait_def.ancestors(tcx, impl_id);
1207
1208     let kind = match impl_item.node {
1209         hir::ImplItemKind::Const(..) => ty::AssociatedKind::Const,
1210         hir::ImplItemKind::Method(..) => ty::AssociatedKind::Method,
1211         hir::ImplItemKind::Type(_) => ty::AssociatedKind::Type
1212     };
1213     let parent = ancestors.defs(tcx, impl_item.name, kind).skip(1).next()
1214         .map(|node_item| node_item.map(|parent| parent.defaultness));
1215
1216     if let Some(parent) = parent {
1217         if tcx.impl_item_is_final(&parent) {
1218             report_forbidden_specialization(tcx, impl_item, parent.node.def_id());
1219         }
1220     }
1221
1222 }
1223
1224 fn check_impl_items_against_trait<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1225                                             impl_span: Span,
1226                                             impl_id: DefId,
1227                                             impl_trait_ref: ty::TraitRef<'tcx>,
1228                                             impl_item_refs: &[hir::ImplItemRef]) {
1229     // If the trait reference itself is erroneous (so the compilation is going
1230     // to fail), skip checking the items here -- the `impl_item` table in `tcx`
1231     // isn't populated for such impls.
1232     if impl_trait_ref.references_error() { return; }
1233
1234     // Locate trait definition and items
1235     let trait_def = tcx.trait_def(impl_trait_ref.def_id);
1236     let mut overridden_associated_type = None;
1237
1238     let impl_items = || impl_item_refs.iter().map(|iiref| tcx.hir.impl_item(iiref.id));
1239
1240     // Check existing impl methods to see if they are both present in trait
1241     // and compatible with trait signature
1242     for impl_item in impl_items() {
1243         let ty_impl_item = tcx.associated_item(tcx.hir.local_def_id(impl_item.id));
1244         let ty_trait_item = tcx.associated_items(impl_trait_ref.def_id)
1245             .find(|ac| ac.name == ty_impl_item.name);
1246
1247         // Check that impl definition matches trait definition
1248         if let Some(ty_trait_item) = ty_trait_item {
1249             match impl_item.node {
1250                 hir::ImplItemKind::Const(..) => {
1251                     // Find associated const definition.
1252                     if ty_trait_item.kind == ty::AssociatedKind::Const {
1253                         compare_const_impl(tcx,
1254                                            &ty_impl_item,
1255                                            impl_item.span,
1256                                            &ty_trait_item,
1257                                            impl_trait_ref);
1258                     } else {
1259                          let mut err = struct_span_err!(tcx.sess, impl_item.span, E0323,
1260                                   "item `{}` is an associated const, \
1261                                   which doesn't match its trait `{}`",
1262                                   ty_impl_item.name,
1263                                   impl_trait_ref);
1264                          err.span_label(impl_item.span, "does not match trait");
1265                          // We can only get the spans from local trait definition
1266                          // Same for E0324 and E0325
1267                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1268                             err.span_label(trait_span, "item in trait");
1269                          }
1270                          err.emit()
1271                     }
1272                 }
1273                 hir::ImplItemKind::Method(..) => {
1274                     let trait_span = tcx.hir.span_if_local(ty_trait_item.def_id);
1275                     if ty_trait_item.kind == ty::AssociatedKind::Method {
1276                         let err_count = tcx.sess.err_count();
1277                         compare_impl_method(tcx,
1278                                             &ty_impl_item,
1279                                             impl_item.span,
1280                                             &ty_trait_item,
1281                                             impl_trait_ref,
1282                                             trait_span,
1283                                             true); // start with old-broken-mode
1284                         if err_count == tcx.sess.err_count() {
1285                             // old broken mode did not report an error. Try with the new mode.
1286                             compare_impl_method(tcx,
1287                                                 &ty_impl_item,
1288                                                 impl_item.span,
1289                                                 &ty_trait_item,
1290                                                 impl_trait_ref,
1291                                                 trait_span,
1292                                                 false); // use the new mode
1293                         }
1294                     } else {
1295                         let mut err = struct_span_err!(tcx.sess, impl_item.span, E0324,
1296                                   "item `{}` is an associated method, \
1297                                   which doesn't match its trait `{}`",
1298                                   ty_impl_item.name,
1299                                   impl_trait_ref);
1300                          err.span_label(impl_item.span, "does not match trait");
1301                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1302                             err.span_label(trait_span, "item in trait");
1303                          }
1304                          err.emit()
1305                     }
1306                 }
1307                 hir::ImplItemKind::Type(_) => {
1308                     if ty_trait_item.kind == ty::AssociatedKind::Type {
1309                         if ty_trait_item.defaultness.has_value() {
1310                             overridden_associated_type = Some(impl_item);
1311                         }
1312                     } else {
1313                         let mut err = struct_span_err!(tcx.sess, impl_item.span, E0325,
1314                                   "item `{}` is an associated type, \
1315                                   which doesn't match its trait `{}`",
1316                                   ty_impl_item.name,
1317                                   impl_trait_ref);
1318                          err.span_label(impl_item.span, "does not match trait");
1319                          if let Some(trait_span) = tcx.hir.span_if_local(ty_trait_item.def_id) {
1320                             err.span_label(trait_span, "item in trait");
1321                          }
1322                          err.emit()
1323                     }
1324                 }
1325             }
1326         }
1327
1328         check_specialization_validity(tcx, trait_def, impl_id, impl_item);
1329     }
1330
1331     // Check for missing items from trait
1332     let mut missing_items = Vec::new();
1333     let mut invalidated_items = Vec::new();
1334     let associated_type_overridden = overridden_associated_type.is_some();
1335     for trait_item in tcx.associated_items(impl_trait_ref.def_id) {
1336         let is_implemented = trait_def.ancestors(tcx, impl_id)
1337             .defs(tcx, trait_item.name, trait_item.kind)
1338             .next()
1339             .map(|node_item| !node_item.node.is_from_trait())
1340             .unwrap_or(false);
1341
1342         if !is_implemented {
1343             if !trait_item.defaultness.has_value() {
1344                 missing_items.push(trait_item);
1345             } else if associated_type_overridden {
1346                 invalidated_items.push(trait_item.name);
1347             }
1348         }
1349     }
1350
1351     if !missing_items.is_empty() {
1352         let mut err = struct_span_err!(tcx.sess, impl_span, E0046,
1353             "not all trait items implemented, missing: `{}`",
1354             missing_items.iter()
1355                   .map(|trait_item| trait_item.name.to_string())
1356                   .collect::<Vec<_>>().join("`, `"));
1357         err.span_label(impl_span, format!("missing `{}` in implementation",
1358                 missing_items.iter()
1359                     .map(|trait_item| trait_item.name.to_string())
1360                     .collect::<Vec<_>>().join("`, `")));
1361         for trait_item in missing_items {
1362             if let Some(span) = tcx.hir.span_if_local(trait_item.def_id) {
1363                 err.span_label(span, format!("`{}` from trait", trait_item.name));
1364             } else {
1365                 err.note_trait_signature(trait_item.name.to_string(),
1366                                          trait_item.signature(&tcx));
1367             }
1368         }
1369         err.emit();
1370     }
1371
1372     if !invalidated_items.is_empty() {
1373         let invalidator = overridden_associated_type.unwrap();
1374         span_err!(tcx.sess, invalidator.span, E0399,
1375                   "the following trait items need to be reimplemented \
1376                    as `{}` was overridden: `{}`",
1377                   invalidator.name,
1378                   invalidated_items.iter()
1379                                    .map(|name| name.to_string())
1380                                    .collect::<Vec<_>>().join("`, `"))
1381     }
1382 }
1383
1384 /// Checks whether a type can be represented in memory. In particular, it
1385 /// identifies types that contain themselves without indirection through a
1386 /// pointer, which would mean their size is unbounded.
1387 fn check_representable<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1388                                  sp: Span,
1389                                  item_def_id: DefId)
1390                                  -> bool {
1391     let rty = tcx.type_of(item_def_id);
1392
1393     // Check that it is possible to represent this type. This call identifies
1394     // (1) types that contain themselves and (2) types that contain a different
1395     // recursive type. It is only necessary to throw an error on those that
1396     // contain themselves. For case 2, there must be an inner type that will be
1397     // caught by case 1.
1398     match rty.is_representable(tcx, sp) {
1399         Representability::SelfRecursive(spans) => {
1400             let mut err = tcx.recursive_type_with_infinite_size_error(item_def_id);
1401             for span in spans {
1402                 err.span_label(span, "recursive without indirection");
1403             }
1404             err.emit();
1405             return false
1406         }
1407         Representability::Representable | Representability::ContainsRecursive => (),
1408     }
1409     return true
1410 }
1411
1412 pub fn check_simd<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span, def_id: DefId) {
1413     let t = tcx.type_of(def_id);
1414     match t.sty {
1415         ty::TyAdt(def, substs) if def.is_struct() => {
1416             let fields = &def.struct_variant().fields;
1417             if fields.is_empty() {
1418                 span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty");
1419                 return;
1420             }
1421             let e = fields[0].ty(tcx, substs);
1422             if !fields.iter().all(|f| f.ty(tcx, substs) == e) {
1423                 struct_span_err!(tcx.sess, sp, E0076, "SIMD vector should be homogeneous")
1424                                 .span_label(sp, "SIMD elements must have the same type")
1425                                 .emit();
1426                 return;
1427             }
1428             match e.sty {
1429                 ty::TyParam(_) => { /* struct<T>(T, T, T, T) is ok */ }
1430                 _ if e.is_machine()  => { /* struct(u8, u8, u8, u8) is ok */ }
1431                 _ => {
1432                     span_err!(tcx.sess, sp, E0077,
1433                               "SIMD vector element type should be machine type");
1434                     return;
1435                 }
1436             }
1437         }
1438         _ => ()
1439     }
1440 }
1441
1442 fn check_packed<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span, def_id: DefId) {
1443     if check_packed_inner(tcx, def_id, &mut Vec::new()) {
1444         struct_span_err!(tcx.sess, sp, E0588,
1445             "packed struct cannot transitively contain a `[repr(align)]` struct").emit();
1446     }
1447 }
1448
1449 fn check_packed_inner<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1450                                 def_id: DefId,
1451                                 stack: &mut Vec<DefId>) -> bool {
1452     let t = tcx.type_of(def_id);
1453     if stack.contains(&def_id) {
1454         debug!("check_packed_inner: {:?} is recursive", t);
1455         return false;
1456     }
1457     match t.sty {
1458         ty::TyAdt(def, substs) if def.is_struct() => {
1459             if tcx.adt_def(def.did).repr.align > 0 {
1460                 return true;
1461             }
1462             // push struct def_id before checking fields
1463             stack.push(def_id);
1464             for field in &def.struct_variant().fields {
1465                 let f = field.ty(tcx, substs);
1466                 match f.sty {
1467                     ty::TyAdt(def, _) => {
1468                         if check_packed_inner(tcx, def.did, stack) {
1469                             return true;
1470                         }
1471                     }
1472                     _ => ()
1473                 }
1474             }
1475             // only need to pop if not early out
1476             stack.pop();
1477         }
1478         _ => ()
1479     }
1480     false
1481 }
1482
1483 #[allow(trivial_numeric_casts)]
1484 pub fn check_enum<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1485                             sp: Span,
1486                             vs: &'tcx [hir::Variant],
1487                             id: ast::NodeId) {
1488     let def_id = tcx.hir.local_def_id(id);
1489     let def = tcx.adt_def(def_id);
1490     def.destructor(tcx); // force the destructor to be evaluated
1491
1492     if vs.is_empty() && tcx.has_attr(def_id, "repr") {
1493         struct_span_err!(
1494             tcx.sess, sp, E0084,
1495             "unsupported representation for zero-variant enum")
1496             .span_label(sp, "unsupported enum representation")
1497             .emit();
1498     }
1499
1500     let repr_type_ty = def.repr.discr_type().to_ty(tcx);
1501     if repr_type_ty == tcx.types.i128 || repr_type_ty == tcx.types.u128 {
1502         if !tcx.sess.features.borrow().i128_type {
1503             emit_feature_err(&tcx.sess.parse_sess,
1504                              "i128_type", sp, GateIssue::Language, "128-bit type is unstable");
1505         }
1506     }
1507
1508     for v in vs {
1509         if let Some(e) = v.node.disr_expr {
1510             tcx.typeck_tables_of(tcx.hir.local_def_id(e.node_id));
1511         }
1512     }
1513
1514     let mut disr_vals: Vec<ConstInt> = Vec::new();
1515     for (discr, v) in def.discriminants(tcx).zip(vs) {
1516         // Check for duplicate discriminant values
1517         if let Some(i) = disr_vals.iter().position(|&x| x == discr) {
1518             let variant_i_node_id = tcx.hir.as_local_node_id(def.variants[i].did).unwrap();
1519             let variant_i = tcx.hir.expect_variant(variant_i_node_id);
1520             let i_span = match variant_i.node.disr_expr {
1521                 Some(expr) => tcx.hir.span(expr.node_id),
1522                 None => tcx.hir.span(variant_i_node_id)
1523             };
1524             let span = match v.node.disr_expr {
1525                 Some(expr) => tcx.hir.span(expr.node_id),
1526                 None => v.span
1527             };
1528             struct_span_err!(tcx.sess, span, E0081,
1529                              "discriminant value `{}` already exists", disr_vals[i])
1530                 .span_label(i_span, format!("first use of `{}`", disr_vals[i]))
1531                 .span_label(span , format!("enum already has `{}`", disr_vals[i]))
1532                 .emit();
1533         }
1534         disr_vals.push(discr);
1535     }
1536
1537     check_representable(tcx, sp, def_id);
1538 }
1539
1540 impl<'a, 'gcx, 'tcx> AstConv<'gcx, 'tcx> for FnCtxt<'a, 'gcx, 'tcx> {
1541     fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.tcx }
1542
1543     fn get_type_parameter_bounds(&self, _: Span, def_id: DefId)
1544                                  -> ty::GenericPredicates<'tcx>
1545     {
1546         let tcx = self.tcx;
1547         let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
1548         let item_id = tcx.hir.ty_param_owner(node_id);
1549         let item_def_id = tcx.hir.local_def_id(item_id);
1550         let generics = tcx.generics_of(item_def_id);
1551         let index = generics.type_param_to_index[&def_id.index];
1552         ty::GenericPredicates {
1553             parent: None,
1554             predicates: self.param_env.caller_bounds.iter().filter(|predicate| {
1555                 match **predicate {
1556                     ty::Predicate::Trait(ref data) => {
1557                         data.0.self_ty().is_param(index)
1558                     }
1559                     _ => false
1560                 }
1561             }).cloned().collect()
1562         }
1563     }
1564
1565     fn re_infer(&self, span: Span, def: Option<&ty::RegionParameterDef>)
1566                 -> Option<ty::Region<'tcx>> {
1567         let v = match def {
1568             Some(def) => infer::EarlyBoundRegion(span, def.name, def.issue_32330),
1569             None => infer::MiscVariable(span)
1570         };
1571         Some(self.next_region_var(v))
1572     }
1573
1574     fn ty_infer(&self, span: Span) -> Ty<'tcx> {
1575         self.next_ty_var(TypeVariableOrigin::TypeInference(span))
1576     }
1577
1578     fn ty_infer_for_def(&self,
1579                         ty_param_def: &ty::TypeParameterDef,
1580                         substs: &[Kind<'tcx>],
1581                         span: Span) -> Ty<'tcx> {
1582         self.type_var_for_def(span, ty_param_def, substs)
1583     }
1584
1585     fn projected_ty_from_poly_trait_ref(&self,
1586                                         span: Span,
1587                                         poly_trait_ref: ty::PolyTraitRef<'tcx>,
1588                                         item_name: ast::Name)
1589                                         -> Ty<'tcx>
1590     {
1591         let (trait_ref, _) =
1592             self.replace_late_bound_regions_with_fresh_var(
1593                 span,
1594                 infer::LateBoundRegionConversionTime::AssocTypeProjection(item_name),
1595                 &poly_trait_ref);
1596
1597         self.tcx().mk_projection(trait_ref, item_name)
1598     }
1599
1600     fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
1601         if ty.has_escaping_regions() {
1602             ty // FIXME: normalization and escaping regions
1603         } else {
1604             self.normalize_associated_types_in(span, &ty)
1605         }
1606     }
1607
1608     fn set_tainted_by_errors(&self) {
1609         self.infcx.set_tainted_by_errors()
1610     }
1611 }
1612
1613 /// Controls whether the arguments are tupled. This is used for the call
1614 /// operator.
1615 ///
1616 /// Tupling means that all call-side arguments are packed into a tuple and
1617 /// passed as a single parameter. For example, if tupling is enabled, this
1618 /// function:
1619 ///
1620 ///     fn f(x: (isize, isize))
1621 ///
1622 /// Can be called as:
1623 ///
1624 ///     f(1, 2);
1625 ///
1626 /// Instead of:
1627 ///
1628 ///     f((1, 2));
1629 #[derive(Clone, Eq, PartialEq)]
1630 enum TupleArgumentsFlag {
1631     DontTupleArguments,
1632     TupleArguments,
1633 }
1634
1635 impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
1636     pub fn new(inh: &'a Inherited<'a, 'gcx, 'tcx>,
1637                param_env: ty::ParamEnv<'tcx>,
1638                body_id: ast::NodeId)
1639                -> FnCtxt<'a, 'gcx, 'tcx> {
1640         FnCtxt {
1641             body_id: body_id,
1642             param_env,
1643             err_count_on_creation: inh.tcx.sess.err_count(),
1644             ret_coercion: None,
1645             ps: RefCell::new(UnsafetyState::function(hir::Unsafety::Normal,
1646                                                      ast::CRATE_NODE_ID)),
1647             diverges: Cell::new(Diverges::Maybe),
1648             has_errors: Cell::new(false),
1649             enclosing_breakables: RefCell::new(EnclosingBreakables {
1650                 stack: Vec::new(),
1651                 by_id: NodeMap(),
1652             }),
1653             inh: inh,
1654         }
1655     }
1656
1657     pub fn sess(&self) -> &Session {
1658         &self.tcx.sess
1659     }
1660
1661     pub fn err_count_since_creation(&self) -> usize {
1662         self.tcx.sess.err_count() - self.err_count_on_creation
1663     }
1664
1665     /// Produce warning on the given node, if the current point in the
1666     /// function is unreachable, and there hasn't been another warning.
1667     fn warn_if_unreachable(&self, id: ast::NodeId, span: Span, kind: &str) {
1668         if self.diverges.get() == Diverges::Always {
1669             self.diverges.set(Diverges::WarnedAlways);
1670
1671             debug!("warn_if_unreachable: id={:?} span={:?} kind={}", id, span, kind);
1672
1673             self.tables.borrow_mut().lints.add_lint(
1674                 lint::builtin::UNREACHABLE_CODE,
1675                 id, span,
1676                 format!("unreachable {}", kind));
1677         }
1678     }
1679
1680     pub fn cause(&self,
1681                  span: Span,
1682                  code: ObligationCauseCode<'tcx>)
1683                  -> ObligationCause<'tcx> {
1684         ObligationCause::new(span, self.body_id, code)
1685     }
1686
1687     pub fn misc(&self, span: Span) -> ObligationCause<'tcx> {
1688         self.cause(span, ObligationCauseCode::MiscObligation)
1689     }
1690
1691     /// Resolves type variables in `ty` if possible. Unlike the infcx
1692     /// version (resolve_type_vars_if_possible), this version will
1693     /// also select obligations if it seems useful, in an effort
1694     /// to get more type information.
1695     fn resolve_type_vars_with_obligations(&self, mut ty: Ty<'tcx>) -> Ty<'tcx> {
1696         debug!("resolve_type_vars_with_obligations(ty={:?})", ty);
1697
1698         // No TyInfer()? Nothing needs doing.
1699         if !ty.has_infer_types() {
1700             debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1701             return ty;
1702         }
1703
1704         // If `ty` is a type variable, see whether we already know what it is.
1705         ty = self.resolve_type_vars_if_possible(&ty);
1706         if !ty.has_infer_types() {
1707             debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1708             return ty;
1709         }
1710
1711         // If not, try resolving pending obligations as much as
1712         // possible. This can help substantially when there are
1713         // indirect dependencies that don't seem worth tracking
1714         // precisely.
1715         self.select_obligations_where_possible();
1716         ty = self.resolve_type_vars_if_possible(&ty);
1717
1718         debug!("resolve_type_vars_with_obligations: ty={:?}", ty);
1719         ty
1720     }
1721
1722     fn record_deferred_call_resolution(&self,
1723                                        closure_def_id: DefId,
1724                                        r: DeferredCallResolution<'gcx, 'tcx>) {
1725         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
1726         deferred_call_resolutions.entry(closure_def_id).or_insert(vec![]).push(r);
1727     }
1728
1729     fn remove_deferred_call_resolutions(&self,
1730                                         closure_def_id: DefId)
1731                                         -> Vec<DeferredCallResolution<'gcx, 'tcx>>
1732     {
1733         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
1734         deferred_call_resolutions.remove(&closure_def_id).unwrap_or(vec![])
1735     }
1736
1737     pub fn tag(&self) -> String {
1738         let self_ptr: *const FnCtxt = self;
1739         format!("{:?}", self_ptr)
1740     }
1741
1742     pub fn local_ty(&self, span: Span, nid: ast::NodeId) -> Ty<'tcx> {
1743         match self.locals.borrow().get(&nid) {
1744             Some(&t) => t,
1745             None => {
1746                 span_bug!(span, "no type for local variable {}",
1747                           self.tcx.hir.node_to_string(nid));
1748             }
1749         }
1750     }
1751
1752     #[inline]
1753     pub fn write_ty(&self, node_id: ast::NodeId, ty: Ty<'tcx>) {
1754         debug!("write_ty({}, {:?}) in fcx {}",
1755                node_id, self.resolve_type_vars_if_possible(&ty), self.tag());
1756         self.tables.borrow_mut().node_types.insert(node_id, ty);
1757
1758         if ty.references_error() {
1759             self.has_errors.set(true);
1760             self.set_tainted_by_errors();
1761         }
1762     }
1763
1764     pub fn write_method_call(&self, node_id: ast::NodeId, method: MethodCallee<'tcx>) {
1765         self.tables.borrow_mut().type_dependent_defs.insert(node_id, Def::Method(method.def_id));
1766         self.write_substs(node_id, method.substs);
1767     }
1768
1769     pub fn write_substs(&self, node_id: ast::NodeId, substs: &'tcx Substs<'tcx>) {
1770         if !substs.is_noop() {
1771             debug!("write_substs({}, {:?}) in fcx {}",
1772                    node_id,
1773                    substs,
1774                    self.tag());
1775
1776             self.tables.borrow_mut().node_substs.insert(node_id, substs);
1777         }
1778     }
1779
1780     pub fn apply_adjustments(&self, expr: &hir::Expr, adj: Vec<Adjustment<'tcx>>) {
1781         debug!("apply_adjustments(expr={:?}, adj={:?})", expr, adj);
1782
1783         if adj.is_empty() {
1784             return;
1785         }
1786
1787         match self.tables.borrow_mut().adjustments.entry(expr.id) {
1788             Entry::Vacant(entry) => { entry.insert(adj); },
1789             Entry::Occupied(mut entry) => {
1790                 debug!(" - composing on top of {:?}", entry.get());
1791                 match (&entry.get()[..], &adj[..]) {
1792                     // Applying any adjustment on top of a NeverToAny
1793                     // is a valid NeverToAny adjustment, because it can't
1794                     // be reached.
1795                     (&[Adjustment { kind: Adjust::NeverToAny, .. }], _) => return,
1796                     (&[
1797                         Adjustment { kind: Adjust::Deref(_), .. },
1798                         Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(..)), .. },
1799                     ], &[
1800                         Adjustment { kind: Adjust::Deref(_), .. },
1801                         .. // Any following adjustments are allowed.
1802                     ]) => {
1803                         // A reborrow has no effect before a dereference.
1804                     }
1805                     // FIXME: currently we never try to compose autoderefs
1806                     // and ReifyFnPointer/UnsafeFnPointer, but we could.
1807                     _ =>
1808                         bug!("while adjusting {:?}, can't compose {:?} and {:?}",
1809                              expr, entry.get(), adj)
1810                 };
1811                 *entry.get_mut() = adj;
1812             }
1813         }
1814     }
1815
1816     /// Basically whenever we are converting from a type scheme into
1817     /// the fn body space, we always want to normalize associated
1818     /// types as well. This function combines the two.
1819     fn instantiate_type_scheme<T>(&self,
1820                                   span: Span,
1821                                   substs: &Substs<'tcx>,
1822                                   value: &T)
1823                                   -> T
1824         where T : TypeFoldable<'tcx>
1825     {
1826         let value = value.subst(self.tcx, substs);
1827         let result = self.normalize_associated_types_in(span, &value);
1828         debug!("instantiate_type_scheme(value={:?}, substs={:?}) = {:?}",
1829                value,
1830                substs,
1831                result);
1832         result
1833     }
1834
1835     /// As `instantiate_type_scheme`, but for the bounds found in a
1836     /// generic type scheme.
1837     fn instantiate_bounds(&self, span: Span, def_id: DefId, substs: &Substs<'tcx>)
1838                           -> ty::InstantiatedPredicates<'tcx> {
1839         let bounds = self.tcx.predicates_of(def_id);
1840         let result = bounds.instantiate(self.tcx, substs);
1841         let result = self.normalize_associated_types_in(span, &result);
1842         debug!("instantiate_bounds(bounds={:?}, substs={:?}) = {:?}",
1843                bounds,
1844                substs,
1845                result);
1846         result
1847     }
1848
1849     /// Replace all anonymized types with fresh inference variables
1850     /// and record them for writeback.
1851     fn instantiate_anon_types<T: TypeFoldable<'tcx>>(&self, value: &T) -> T {
1852         value.fold_with(&mut BottomUpFolder { tcx: self.tcx, fldop: |ty| {
1853             if let ty::TyAnon(def_id, substs) = ty.sty {
1854                 // Use the same type variable if the exact same TyAnon appears more
1855                 // than once in the return type (e.g. if it's pased to a type alias).
1856                 let id = self.tcx.hir.as_local_node_id(def_id).unwrap();
1857                 if let Some(ty_var) = self.anon_types.borrow().get(&id) {
1858                     return ty_var;
1859                 }
1860                 let span = self.tcx.def_span(def_id);
1861                 let ty_var = self.next_ty_var(TypeVariableOrigin::TypeInference(span));
1862                 self.anon_types.borrow_mut().insert(id, ty_var);
1863
1864                 let predicates_of = self.tcx.predicates_of(def_id);
1865                 let bounds = predicates_of.instantiate(self.tcx, substs);
1866
1867                 for predicate in bounds.predicates {
1868                     // Change the predicate to refer to the type variable,
1869                     // which will be the concrete type, instead of the TyAnon.
1870                     // This also instantiates nested `impl Trait`.
1871                     let predicate = self.instantiate_anon_types(&predicate);
1872
1873                     // Require that the predicate holds for the concrete type.
1874                     let cause = traits::ObligationCause::new(span, self.body_id,
1875                                                              traits::ReturnType);
1876                     self.register_predicate(traits::Obligation::new(cause,
1877                                                                     self.param_env,
1878                                                                     predicate));
1879                 }
1880
1881                 ty_var
1882             } else {
1883                 ty
1884             }
1885         }})
1886     }
1887
1888     fn normalize_associated_types_in<T>(&self, span: Span, value: &T) -> T
1889         where T : TypeFoldable<'tcx>
1890     {
1891         self.inh.normalize_associated_types_in(span, self.body_id, self.param_env, value)
1892     }
1893
1894     fn normalize_associated_types_in_as_infer_ok<T>(&self, span: Span, value: &T)
1895                                                     -> InferOk<'tcx, T>
1896         where T : TypeFoldable<'tcx>
1897     {
1898         self.inh.normalize_associated_types_in_as_infer_ok(span,
1899                                                            self.body_id,
1900                                                            self.param_env,
1901                                                            value)
1902     }
1903
1904     pub fn require_type_meets(&self,
1905                               ty: Ty<'tcx>,
1906                               span: Span,
1907                               code: traits::ObligationCauseCode<'tcx>,
1908                               def_id: DefId)
1909     {
1910         self.register_bound(
1911             ty,
1912             def_id,
1913             traits::ObligationCause::new(span, self.body_id, code));
1914     }
1915
1916     pub fn require_type_is_sized(&self,
1917                                  ty: Ty<'tcx>,
1918                                  span: Span,
1919                                  code: traits::ObligationCauseCode<'tcx>)
1920     {
1921         let lang_item = self.tcx.require_lang_item(lang_items::SizedTraitLangItem);
1922         self.require_type_meets(ty, span, code, lang_item);
1923     }
1924
1925     pub fn register_bound(&self,
1926                           ty: Ty<'tcx>,
1927                           def_id: DefId,
1928                           cause: traits::ObligationCause<'tcx>)
1929     {
1930         self.fulfillment_cx.borrow_mut()
1931                            .register_bound(self, self.param_env, ty, def_id, cause);
1932     }
1933
1934     pub fn to_ty(&self, ast_t: &hir::Ty) -> Ty<'tcx> {
1935         let t = AstConv::ast_ty_to_ty(self, ast_t);
1936         self.register_wf_obligation(t, ast_t.span, traits::MiscObligation);
1937         t
1938     }
1939
1940     pub fn node_ty(&self, id: ast::NodeId) -> Ty<'tcx> {
1941         match self.tables.borrow().node_types.get(&id) {
1942             Some(&t) => t,
1943             None if self.err_count_since_creation() != 0 => self.tcx.types.err,
1944             None => {
1945                 bug!("no type for node {}: {} in fcx {}",
1946                      id, self.tcx.hir.node_to_string(id),
1947                      self.tag());
1948             }
1949         }
1950     }
1951
1952     /// Registers an obligation for checking later, during regionck, that the type `ty` must
1953     /// outlive the region `r`.
1954     pub fn register_region_obligation(&self,
1955                                       ty: Ty<'tcx>,
1956                                       region: ty::Region<'tcx>,
1957                                       cause: traits::ObligationCause<'tcx>)
1958     {
1959         let mut fulfillment_cx = self.fulfillment_cx.borrow_mut();
1960         fulfillment_cx.register_region_obligation(ty, region, cause);
1961     }
1962
1963     /// Registers an obligation for checking later, during regionck, that the type `ty` must
1964     /// outlive the region `r`.
1965     pub fn register_wf_obligation(&self,
1966                                   ty: Ty<'tcx>,
1967                                   span: Span,
1968                                   code: traits::ObligationCauseCode<'tcx>)
1969     {
1970         // WF obligations never themselves fail, so no real need to give a detailed cause:
1971         let cause = traits::ObligationCause::new(span, self.body_id, code);
1972         self.register_predicate(traits::Obligation::new(cause,
1973                                                         self.param_env,
1974                                                         ty::Predicate::WellFormed(ty)));
1975     }
1976
1977     pub fn register_old_wf_obligation(&self,
1978                                       ty: Ty<'tcx>,
1979                                       span: Span,
1980                                       code: traits::ObligationCauseCode<'tcx>)
1981     {
1982         // Registers an "old-style" WF obligation that uses the
1983         // implicator code.  This is basically a buggy version of
1984         // `register_wf_obligation` that is being kept around
1985         // temporarily just to help with phasing in the newer rules.
1986         //
1987         // FIXME(#27579) all uses of this should be migrated to register_wf_obligation eventually
1988         let cause = traits::ObligationCause::new(span, self.body_id, code);
1989         self.register_region_obligation(ty, self.tcx.types.re_empty, cause);
1990     }
1991
1992     /// Registers obligations that all types appearing in `substs` are well-formed.
1993     pub fn add_wf_bounds(&self, substs: &Substs<'tcx>, expr: &hir::Expr)
1994     {
1995         for ty in substs.types() {
1996             self.register_wf_obligation(ty, expr.span, traits::MiscObligation);
1997         }
1998     }
1999
2000     /// Given a fully substituted set of bounds (`generic_bounds`), and the values with which each
2001     /// type/region parameter was instantiated (`substs`), creates and registers suitable
2002     /// trait/region obligations.
2003     ///
2004     /// For example, if there is a function:
2005     ///
2006     /// ```
2007     /// fn foo<'a,T:'a>(...)
2008     /// ```
2009     ///
2010     /// and a reference:
2011     ///
2012     /// ```
2013     /// let f = foo;
2014     /// ```
2015     ///
2016     /// Then we will create a fresh region variable `'$0` and a fresh type variable `$1` for `'a`
2017     /// and `T`. This routine will add a region obligation `$1:'$0` and register it locally.
2018     pub fn add_obligations_for_parameters(&self,
2019                                           cause: traits::ObligationCause<'tcx>,
2020                                           predicates: &ty::InstantiatedPredicates<'tcx>)
2021     {
2022         assert!(!predicates.has_escaping_regions());
2023
2024         debug!("add_obligations_for_parameters(predicates={:?})",
2025                predicates);
2026
2027         for obligation in traits::predicates_for_generics(cause, self.param_env, predicates) {
2028             self.register_predicate(obligation);
2029         }
2030     }
2031
2032     // FIXME(arielb1): use this instead of field.ty everywhere
2033     // Only for fields! Returns <none> for methods>
2034     // Indifferent to privacy flags
2035     pub fn field_ty(&self,
2036                     span: Span,
2037                     field: &'tcx ty::FieldDef,
2038                     substs: &Substs<'tcx>)
2039                     -> Ty<'tcx>
2040     {
2041         self.normalize_associated_types_in(span,
2042                                            &field.ty(self.tcx, substs))
2043     }
2044
2045     fn check_casts(&self) {
2046         let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
2047         for cast in deferred_cast_checks.drain(..) {
2048             cast.check(self);
2049         }
2050     }
2051
2052     /// Apply "fallbacks" to some types
2053     /// unconstrained types get replaced with ! or  () (depending on whether
2054     /// feature(never_type) is enabled), unconstrained ints with i32, and
2055     /// unconstrained floats with f64.
2056     fn default_type_parameters(&self) {
2057         use rustc::ty::error::UnconstrainedNumeric::Neither;
2058         use rustc::ty::error::UnconstrainedNumeric::{UnconstrainedInt, UnconstrainedFloat};
2059
2060         // Defaulting inference variables becomes very dubious if we have
2061         // encountered type-checking errors. Therefore, if we think we saw
2062         // some errors in this function, just resolve all uninstanted type
2063         // varibles to TyError.
2064         if self.is_tainted_by_errors() {
2065             for ty in &self.unsolved_variables() {
2066                 if let ty::TyInfer(_) = self.shallow_resolve(ty).sty {
2067                     debug!("default_type_parameters: defaulting `{:?}` to error", ty);
2068                     self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx().types.err);
2069                 }
2070             }
2071             return;
2072         }
2073
2074         for ty in &self.unsolved_variables() {
2075             let resolved = self.resolve_type_vars_if_possible(ty);
2076             if self.type_var_diverges(resolved) {
2077                 debug!("default_type_parameters: defaulting `{:?}` to `!` because it diverges",
2078                        resolved);
2079                 self.demand_eqtype(syntax_pos::DUMMY_SP, *ty,
2080                                    self.tcx.mk_diverging_default());
2081             } else {
2082                 match self.type_is_unconstrained_numeric(resolved) {
2083                     UnconstrainedInt => {
2084                         debug!("default_type_parameters: defaulting `{:?}` to `i32`",
2085                                resolved);
2086                         self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx.types.i32)
2087                     },
2088                     UnconstrainedFloat => {
2089                         debug!("default_type_parameters: defaulting `{:?}` to `f32`",
2090                                resolved);
2091                         self.demand_eqtype(syntax_pos::DUMMY_SP, *ty, self.tcx.types.f64)
2092                     }
2093                     Neither => { }
2094                 }
2095             }
2096         }
2097     }
2098
2099     // Implements type inference fallback algorithm
2100     fn select_all_obligations_and_apply_defaults(&self) {
2101         self.select_obligations_where_possible();
2102         self.default_type_parameters();
2103         self.select_obligations_where_possible();
2104     }
2105
2106     fn select_all_obligations_or_error(&self) {
2107         debug!("select_all_obligations_or_error");
2108
2109         // upvar inference should have ensured that all deferred call
2110         // resolutions are handled by now.
2111         assert!(self.deferred_call_resolutions.borrow().is_empty());
2112
2113         self.select_all_obligations_and_apply_defaults();
2114
2115         let mut fulfillment_cx = self.fulfillment_cx.borrow_mut();
2116
2117         match fulfillment_cx.select_all_or_error(self) {
2118             Ok(()) => { }
2119             Err(errors) => { self.report_fulfillment_errors(&errors); }
2120         }
2121     }
2122
2123     /// Select as many obligations as we can at present.
2124     fn select_obligations_where_possible(&self) {
2125         match self.fulfillment_cx.borrow_mut().select_where_possible(self) {
2126             Ok(()) => { }
2127             Err(errors) => { self.report_fulfillment_errors(&errors); }
2128         }
2129     }
2130
2131     /// For the overloaded lvalue expressions (`*x`, `x[3]`), the trait
2132     /// returns a type of `&T`, but the actual type we assign to the
2133     /// *expression* is `T`. So this function just peels off the return
2134     /// type by one layer to yield `T`.
2135     fn make_overloaded_lvalue_return_type(&self,
2136                                           method: MethodCallee<'tcx>)
2137                                           -> ty::TypeAndMut<'tcx>
2138     {
2139         // extract method return type, which will be &T;
2140         // all LB regions should have been instantiated during method lookup
2141         let ret_ty = method.sig.output();
2142
2143         // method returns &T, but the type as visible to user is T, so deref
2144         ret_ty.builtin_deref(true, NoPreference).unwrap()
2145     }
2146
2147     fn lookup_indexing(&self,
2148                        expr: &hir::Expr,
2149                        base_expr: &'gcx hir::Expr,
2150                        base_ty: Ty<'tcx>,
2151                        idx_ty: Ty<'tcx>,
2152                        lvalue_pref: LvaluePreference)
2153                        -> Option<(/*index type*/ Ty<'tcx>, /*element type*/ Ty<'tcx>)>
2154     {
2155         // FIXME(#18741) -- this is almost but not quite the same as the
2156         // autoderef that normal method probing does. They could likely be
2157         // consolidated.
2158
2159         let mut autoderef = self.autoderef(base_expr.span, base_ty);
2160         let mut result = None;
2161         while result.is_none() && autoderef.next().is_some() {
2162             result = self.try_index_step(expr, base_expr, &autoderef, lvalue_pref, idx_ty);
2163         }
2164         autoderef.finalize();
2165         result
2166     }
2167
2168     /// To type-check `base_expr[index_expr]`, we progressively autoderef
2169     /// (and otherwise adjust) `base_expr`, looking for a type which either
2170     /// supports builtin indexing or overloaded indexing.
2171     /// This loop implements one step in that search; the autoderef loop
2172     /// is implemented by `lookup_indexing`.
2173     fn try_index_step(&self,
2174                       expr: &hir::Expr,
2175                       base_expr: &hir::Expr,
2176                       autoderef: &Autoderef<'a, 'gcx, 'tcx>,
2177                       lvalue_pref: LvaluePreference,
2178                       index_ty: Ty<'tcx>)
2179                       -> Option<(/*index type*/ Ty<'tcx>, /*element type*/ Ty<'tcx>)>
2180     {
2181         let adjusted_ty = autoderef.unambiguous_final_ty();
2182         debug!("try_index_step(expr={:?}, base_expr={:?}, adjusted_ty={:?}, \
2183                                index_ty={:?})",
2184                expr,
2185                base_expr,
2186                adjusted_ty,
2187                index_ty);
2188
2189
2190         // First, try built-in indexing.
2191         match (adjusted_ty.builtin_index(), &index_ty.sty) {
2192             (Some(ty), &ty::TyUint(ast::UintTy::Us)) | (Some(ty), &ty::TyInfer(ty::IntVar(_))) => {
2193                 debug!("try_index_step: success, using built-in indexing");
2194                 let adjustments = autoderef.adjust_steps(lvalue_pref);
2195                 self.apply_adjustments(base_expr, adjustments);
2196                 return Some((self.tcx.types.usize, ty));
2197             }
2198             _ => {}
2199         }
2200
2201         for &unsize in &[false, true] {
2202             let mut self_ty = adjusted_ty;
2203             if unsize {
2204                 // We only unsize arrays here.
2205                 if let ty::TyArray(element_ty, _) = adjusted_ty.sty {
2206                     self_ty = self.tcx.mk_slice(element_ty);
2207                 } else {
2208                     continue;
2209                 }
2210             }
2211
2212             // If some lookup succeeds, write callee into table and extract index/element
2213             // type from the method signature.
2214             // If some lookup succeeded, install method in table
2215             let input_ty = self.next_ty_var(TypeVariableOrigin::AutoDeref(base_expr.span));
2216             let method = self.try_overloaded_lvalue_op(
2217                 expr.span, self_ty, &[input_ty], lvalue_pref, LvalueOp::Index);
2218
2219             let result = method.map(|ok| {
2220                 debug!("try_index_step: success, using overloaded indexing");
2221                 let method = self.register_infer_ok_obligations(ok);
2222
2223                 let mut adjustments = autoderef.adjust_steps(lvalue_pref);
2224                 if let ty::TyRef(region, mt) = method.sig.inputs()[0].sty {
2225                     adjustments.push(Adjustment {
2226                         kind: Adjust::Borrow(AutoBorrow::Ref(region, mt.mutbl)),
2227                         target: self.tcx.mk_ref(region, ty::TypeAndMut {
2228                             mutbl: mt.mutbl,
2229                             ty: adjusted_ty
2230                         })
2231                     });
2232                 }
2233                 if unsize {
2234                     adjustments.push(Adjustment {
2235                         kind: Adjust::Unsize,
2236                         target: method.sig.inputs()[0]
2237                     });
2238                 }
2239                 self.apply_adjustments(base_expr, adjustments);
2240
2241                 self.write_method_call(expr.id, method);
2242                 (input_ty, self.make_overloaded_lvalue_return_type(method).ty)
2243             });
2244             if result.is_some() {
2245                 return result;
2246             }
2247         }
2248
2249         None
2250     }
2251
2252     fn resolve_lvalue_op(&self, op: LvalueOp, is_mut: bool) -> (Option<DefId>, Symbol) {
2253         let (tr, name) = match (op, is_mut) {
2254             (LvalueOp::Deref, false) =>
2255                 (self.tcx.lang_items.deref_trait(), "deref"),
2256             (LvalueOp::Deref, true) =>
2257                 (self.tcx.lang_items.deref_mut_trait(), "deref_mut"),
2258             (LvalueOp::Index, false) =>
2259                 (self.tcx.lang_items.index_trait(), "index"),
2260             (LvalueOp::Index, true) =>
2261                 (self.tcx.lang_items.index_mut_trait(), "index_mut"),
2262         };
2263         (tr, Symbol::intern(name))
2264     }
2265
2266     fn try_overloaded_lvalue_op(&self,
2267                                 span: Span,
2268                                 base_ty: Ty<'tcx>,
2269                                 arg_tys: &[Ty<'tcx>],
2270                                 lvalue_pref: LvaluePreference,
2271                                 op: LvalueOp)
2272                                 -> Option<InferOk<'tcx, MethodCallee<'tcx>>>
2273     {
2274         debug!("try_overloaded_lvalue_op({:?},{:?},{:?},{:?})",
2275                span,
2276                base_ty,
2277                lvalue_pref,
2278                op);
2279
2280         // Try Mut first, if preferred.
2281         let (mut_tr, mut_op) = self.resolve_lvalue_op(op, true);
2282         let method = match (lvalue_pref, mut_tr) {
2283             (PreferMutLvalue, Some(trait_did)) => {
2284                 self.lookup_method_in_trait(span, mut_op, trait_did, base_ty, Some(arg_tys))
2285             }
2286             _ => None,
2287         };
2288
2289         // Otherwise, fall back to the immutable version.
2290         let (imm_tr, imm_op) = self.resolve_lvalue_op(op, false);
2291         let method = match (method, imm_tr) {
2292             (None, Some(trait_did)) => {
2293                 self.lookup_method_in_trait(span, imm_op, trait_did, base_ty, Some(arg_tys))
2294             }
2295             (method, _) => method,
2296         };
2297
2298         method
2299     }
2300
2301     fn check_method_argument_types(&self,
2302                                    sp: Span,
2303                                    method: Result<MethodCallee<'tcx>, ()>,
2304                                    args_no_rcvr: &'gcx [hir::Expr],
2305                                    tuple_arguments: TupleArgumentsFlag,
2306                                    expected: Expectation<'tcx>)
2307                                    -> Ty<'tcx> {
2308         let has_error = match method {
2309             Ok(method) => {
2310                 method.substs.references_error() || method.sig.references_error()
2311             }
2312             Err(_) => true
2313         };
2314         if has_error {
2315             let err_inputs = self.err_args(args_no_rcvr.len());
2316
2317             let err_inputs = match tuple_arguments {
2318                 DontTupleArguments => err_inputs,
2319                 TupleArguments => vec![self.tcx.intern_tup(&err_inputs[..], false)],
2320             };
2321
2322             self.check_argument_types(sp, &err_inputs[..], &[], args_no_rcvr,
2323                                       false, tuple_arguments, None);
2324             return self.tcx.types.err;
2325         }
2326
2327         let method = method.unwrap();
2328         // HACK(eddyb) ignore self in the definition (see above).
2329         let expected_arg_tys = self.expected_inputs_for_expected_output(
2330             sp,
2331             expected,
2332             method.sig.output(),
2333             &method.sig.inputs()[1..]
2334         );
2335         self.check_argument_types(sp, &method.sig.inputs()[1..], &expected_arg_tys[..],
2336                                   args_no_rcvr, method.sig.variadic, tuple_arguments,
2337                                   self.tcx.hir.span_if_local(method.def_id));
2338         method.sig.output()
2339     }
2340
2341     /// Generic function that factors out common logic from function calls,
2342     /// method calls and overloaded operators.
2343     fn check_argument_types(&self,
2344                             sp: Span,
2345                             fn_inputs: &[Ty<'tcx>],
2346                             expected_arg_tys: &[Ty<'tcx>],
2347                             args: &'gcx [hir::Expr],
2348                             variadic: bool,
2349                             tuple_arguments: TupleArgumentsFlag,
2350                             def_span: Option<Span>) {
2351         let tcx = self.tcx;
2352
2353         // Grab the argument types, supplying fresh type variables
2354         // if the wrong number of arguments were supplied
2355         let supplied_arg_count = if tuple_arguments == DontTupleArguments {
2356             args.len()
2357         } else {
2358             1
2359         };
2360
2361         // All the input types from the fn signature must outlive the call
2362         // so as to validate implied bounds.
2363         for &fn_input_ty in fn_inputs {
2364             self.register_wf_obligation(fn_input_ty, sp, traits::MiscObligation);
2365         }
2366
2367         let mut expected_arg_tys = expected_arg_tys;
2368         let expected_arg_count = fn_inputs.len();
2369
2370         let sp_args = if args.len() > 0 {
2371             let (first, args) = args.split_at(1);
2372             let mut sp_tmp = first[0].span;
2373             for arg in args {
2374                 let sp_opt = self.sess().codemap().merge_spans(sp_tmp, arg.span);
2375                 if ! sp_opt.is_some() {
2376                     break;
2377                 }
2378                 sp_tmp = sp_opt.unwrap();
2379             };
2380             sp_tmp
2381         } else {
2382             sp
2383         };
2384
2385         fn parameter_count_error<'tcx>(sess: &Session, sp: Span, expected_count: usize,
2386                                        arg_count: usize, error_code: &str, variadic: bool,
2387                                        def_span: Option<Span>) {
2388             let mut err = sess.struct_span_err_with_code(sp,
2389                 &format!("this function takes {}{} parameter{} but {} parameter{} supplied",
2390                     if variadic {"at least "} else {""},
2391                     expected_count,
2392                     if expected_count == 1 {""} else {"s"},
2393                     arg_count,
2394                     if arg_count == 1 {" was"} else {"s were"}),
2395                 error_code);
2396
2397             err.span_label(sp, format!("expected {}{} parameter{}",
2398                                         if variadic {"at least "} else {""},
2399                                         expected_count,
2400                                         if expected_count == 1 {""} else {"s"}));
2401             if let Some(def_s) = def_span {
2402                 err.span_label(def_s, "defined here");
2403             }
2404             err.emit();
2405         }
2406
2407         let formal_tys = if tuple_arguments == TupleArguments {
2408             let tuple_type = self.structurally_resolved_type(sp, fn_inputs[0]);
2409             match tuple_type.sty {
2410                 ty::TyTuple(arg_types, _) if arg_types.len() != args.len() => {
2411                     parameter_count_error(tcx.sess, sp_args, arg_types.len(), args.len(),
2412                                           "E0057", false, def_span);
2413                     expected_arg_tys = &[];
2414                     self.err_args(args.len())
2415                 }
2416                 ty::TyTuple(arg_types, _) => {
2417                     expected_arg_tys = match expected_arg_tys.get(0) {
2418                         Some(&ty) => match ty.sty {
2419                             ty::TyTuple(ref tys, _) => &tys,
2420                             _ => &[]
2421                         },
2422                         None => &[]
2423                     };
2424                     arg_types.to_vec()
2425                 }
2426                 _ => {
2427                     span_err!(tcx.sess, sp, E0059,
2428                         "cannot use call notation; the first type parameter \
2429                          for the function trait is neither a tuple nor unit");
2430                     expected_arg_tys = &[];
2431                     self.err_args(args.len())
2432                 }
2433             }
2434         } else if expected_arg_count == supplied_arg_count {
2435             fn_inputs.to_vec()
2436         } else if variadic {
2437             if supplied_arg_count >= expected_arg_count {
2438                 fn_inputs.to_vec()
2439             } else {
2440                 parameter_count_error(tcx.sess, sp_args, expected_arg_count,
2441                                       supplied_arg_count, "E0060", true, def_span);
2442                 expected_arg_tys = &[];
2443                 self.err_args(supplied_arg_count)
2444             }
2445         } else {
2446             parameter_count_error(tcx.sess, sp_args, expected_arg_count,
2447                                   supplied_arg_count, "E0061", false, def_span);
2448             expected_arg_tys = &[];
2449             self.err_args(supplied_arg_count)
2450         };
2451
2452         debug!("check_argument_types: formal_tys={:?}",
2453                formal_tys.iter().map(|t| self.ty_to_string(*t)).collect::<Vec<String>>());
2454
2455         // Check the arguments.
2456         // We do this in a pretty awful way: first we typecheck any arguments
2457         // that are not closures, then we typecheck the closures. This is so
2458         // that we have more information about the types of arguments when we
2459         // typecheck the functions. This isn't really the right way to do this.
2460         for &check_closures in &[false, true] {
2461             debug!("check_closures={}", check_closures);
2462
2463             // More awful hacks: before we check argument types, try to do
2464             // an "opportunistic" vtable resolution of any trait bounds on
2465             // the call. This helps coercions.
2466             if check_closures {
2467                 self.select_obligations_where_possible();
2468             }
2469
2470             // For variadic functions, we don't have a declared type for all of
2471             // the arguments hence we only do our usual type checking with
2472             // the arguments who's types we do know.
2473             let t = if variadic {
2474                 expected_arg_count
2475             } else if tuple_arguments == TupleArguments {
2476                 args.len()
2477             } else {
2478                 supplied_arg_count
2479             };
2480             for (i, arg) in args.iter().take(t).enumerate() {
2481                 // Warn only for the first loop (the "no closures" one).
2482                 // Closure arguments themselves can't be diverging, but
2483                 // a previous argument can, e.g. `foo(panic!(), || {})`.
2484                 if !check_closures {
2485                     self.warn_if_unreachable(arg.id, arg.span, "expression");
2486                 }
2487
2488                 let is_closure = match arg.node {
2489                     hir::ExprClosure(..) => true,
2490                     _ => false
2491                 };
2492
2493                 if is_closure != check_closures {
2494                     continue;
2495                 }
2496
2497                 debug!("checking the argument");
2498                 let formal_ty = formal_tys[i];
2499
2500                 // The special-cased logic below has three functions:
2501                 // 1. Provide as good of an expected type as possible.
2502                 let expected = expected_arg_tys.get(i).map(|&ty| {
2503                     Expectation::rvalue_hint(self, ty)
2504                 });
2505
2506                 let checked_ty = self.check_expr_with_expectation(
2507                     &arg,
2508                     expected.unwrap_or(ExpectHasType(formal_ty)));
2509
2510                 // 2. Coerce to the most detailed type that could be coerced
2511                 //    to, which is `expected_ty` if `rvalue_hint` returns an
2512                 //    `ExpectHasType(expected_ty)`, or the `formal_ty` otherwise.
2513                 let coerce_ty = expected.and_then(|e| e.only_has_type(self));
2514                 self.demand_coerce(&arg, checked_ty, coerce_ty.unwrap_or(formal_ty));
2515
2516                 // 3. Relate the expected type and the formal one,
2517                 //    if the expected type was used for the coercion.
2518                 coerce_ty.map(|ty| self.demand_suptype(arg.span, formal_ty, ty));
2519             }
2520         }
2521
2522         // We also need to make sure we at least write the ty of the other
2523         // arguments which we skipped above.
2524         if variadic {
2525             for arg in args.iter().skip(expected_arg_count) {
2526                 let arg_ty = self.check_expr(&arg);
2527
2528                 // There are a few types which get autopromoted when passed via varargs
2529                 // in C but we just error out instead and require explicit casts.
2530                 let arg_ty = self.structurally_resolved_type(arg.span,
2531                                                              arg_ty);
2532                 match arg_ty.sty {
2533                     ty::TyFloat(ast::FloatTy::F32) => {
2534                         self.type_error_message(arg.span, |t| {
2535                             format!("can't pass an `{}` to variadic \
2536                                      function, cast to `c_double`", t)
2537                         }, arg_ty);
2538                     }
2539                     ty::TyInt(ast::IntTy::I8) | ty::TyInt(ast::IntTy::I16) | ty::TyBool => {
2540                         self.type_error_message(arg.span, |t| {
2541                             format!("can't pass `{}` to variadic \
2542                                      function, cast to `c_int`",
2543                                            t)
2544                         }, arg_ty);
2545                     }
2546                     ty::TyUint(ast::UintTy::U8) | ty::TyUint(ast::UintTy::U16) => {
2547                         self.type_error_message(arg.span, |t| {
2548                             format!("can't pass `{}` to variadic \
2549                                      function, cast to `c_uint`",
2550                                            t)
2551                         }, arg_ty);
2552                     }
2553                     ty::TyFnDef(.., f) => {
2554                         let ptr_ty = self.tcx.mk_fn_ptr(f);
2555                         let ptr_ty = self.resolve_type_vars_if_possible(&ptr_ty);
2556                         self.type_error_message(arg.span,
2557                                                 |t| {
2558                             format!("can't pass `{}` to variadic \
2559                                      function, cast to `{}`", t, ptr_ty)
2560                         }, arg_ty);
2561                     }
2562                     _ => {}
2563                 }
2564             }
2565         }
2566     }
2567
2568     fn err_args(&self, len: usize) -> Vec<Ty<'tcx>> {
2569         (0..len).map(|_| self.tcx.types.err).collect()
2570     }
2571
2572     // AST fragment checking
2573     fn check_lit(&self,
2574                  lit: &ast::Lit,
2575                  expected: Expectation<'tcx>)
2576                  -> Ty<'tcx>
2577     {
2578         let tcx = self.tcx;
2579
2580         match lit.node {
2581             ast::LitKind::Str(..) => tcx.mk_static_str(),
2582             ast::LitKind::ByteStr(ref v) => {
2583                 tcx.mk_imm_ref(tcx.types.re_static,
2584                                 tcx.mk_array(tcx.types.u8, v.len()))
2585             }
2586             ast::LitKind::Byte(_) => tcx.types.u8,
2587             ast::LitKind::Char(_) => tcx.types.char,
2588             ast::LitKind::Int(_, ast::LitIntType::Signed(t)) => tcx.mk_mach_int(t),
2589             ast::LitKind::Int(_, ast::LitIntType::Unsigned(t)) => tcx.mk_mach_uint(t),
2590             ast::LitKind::Int(_, ast::LitIntType::Unsuffixed) => {
2591                 let opt_ty = expected.to_option(self).and_then(|ty| {
2592                     match ty.sty {
2593                         ty::TyInt(_) | ty::TyUint(_) => Some(ty),
2594                         ty::TyChar => Some(tcx.types.u8),
2595                         ty::TyRawPtr(..) => Some(tcx.types.usize),
2596                         ty::TyFnDef(..) | ty::TyFnPtr(_) => Some(tcx.types.usize),
2597                         _ => None
2598                     }
2599                 });
2600                 opt_ty.unwrap_or_else(
2601                     || tcx.mk_int_var(self.next_int_var_id()))
2602             }
2603             ast::LitKind::Float(_, t) => tcx.mk_mach_float(t),
2604             ast::LitKind::FloatUnsuffixed(_) => {
2605                 let opt_ty = expected.to_option(self).and_then(|ty| {
2606                     match ty.sty {
2607                         ty::TyFloat(_) => Some(ty),
2608                         _ => None
2609                     }
2610                 });
2611                 opt_ty.unwrap_or_else(
2612                     || tcx.mk_float_var(self.next_float_var_id()))
2613             }
2614             ast::LitKind::Bool(_) => tcx.types.bool
2615         }
2616     }
2617
2618     fn check_expr_eq_type(&self,
2619                           expr: &'gcx hir::Expr,
2620                           expected: Ty<'tcx>) {
2621         let ty = self.check_expr_with_hint(expr, expected);
2622         self.demand_eqtype(expr.span, expected, ty);
2623     }
2624
2625     pub fn check_expr_has_type(&self,
2626                                expr: &'gcx hir::Expr,
2627                                expected: Ty<'tcx>) -> Ty<'tcx> {
2628         let mut ty = self.check_expr_with_hint(expr, expected);
2629
2630         // While we don't allow *arbitrary* coercions here, we *do* allow
2631         // coercions from ! to `expected`.
2632         if ty.is_never() {
2633             assert!(!self.tables.borrow().adjustments.contains_key(&expr.id),
2634                     "expression with never type wound up being adjusted");
2635             let adj_ty = self.next_diverging_ty_var(
2636                 TypeVariableOrigin::AdjustmentType(expr.span));
2637             self.apply_adjustments(expr, vec![Adjustment {
2638                 kind: Adjust::NeverToAny,
2639                 target: adj_ty
2640             }]);
2641             ty = adj_ty;
2642         }
2643
2644         self.demand_suptype(expr.span, expected, ty);
2645         ty
2646     }
2647
2648     fn check_expr_coercable_to_type(&self,
2649                                     expr: &'gcx hir::Expr,
2650                                     expected: Ty<'tcx>) -> Ty<'tcx> {
2651         let ty = self.check_expr_with_hint(expr, expected);
2652         self.demand_coerce(expr, ty, expected);
2653         ty
2654     }
2655
2656     fn check_expr_with_hint(&self, expr: &'gcx hir::Expr,
2657                             expected: Ty<'tcx>) -> Ty<'tcx> {
2658         self.check_expr_with_expectation(expr, ExpectHasType(expected))
2659     }
2660
2661     fn check_expr_with_expectation(&self,
2662                                    expr: &'gcx hir::Expr,
2663                                    expected: Expectation<'tcx>) -> Ty<'tcx> {
2664         self.check_expr_with_expectation_and_lvalue_pref(expr, expected, NoPreference)
2665     }
2666
2667     fn check_expr(&self, expr: &'gcx hir::Expr) -> Ty<'tcx> {
2668         self.check_expr_with_expectation(expr, NoExpectation)
2669     }
2670
2671     fn check_expr_with_lvalue_pref(&self, expr: &'gcx hir::Expr,
2672                                    lvalue_pref: LvaluePreference) -> Ty<'tcx> {
2673         self.check_expr_with_expectation_and_lvalue_pref(expr, NoExpectation, lvalue_pref)
2674     }
2675
2676     // determine the `self` type, using fresh variables for all variables
2677     // declared on the impl declaration e.g., `impl<A,B> for Vec<(A,B)>`
2678     // would return ($0, $1) where $0 and $1 are freshly instantiated type
2679     // variables.
2680     pub fn impl_self_ty(&self,
2681                         span: Span, // (potential) receiver for this impl
2682                         did: DefId)
2683                         -> TypeAndSubsts<'tcx> {
2684         let ity = self.tcx.type_of(did);
2685         debug!("impl_self_ty: ity={:?}", ity);
2686
2687         let substs = self.fresh_substs_for_item(span, did);
2688         let substd_ty = self.instantiate_type_scheme(span, &substs, &ity);
2689
2690         TypeAndSubsts { substs: substs, ty: substd_ty }
2691     }
2692
2693     /// Unifies the output type with the expected type early, for more coercions
2694     /// and forward type information on the input expressions.
2695     fn expected_inputs_for_expected_output(&self,
2696                                            call_span: Span,
2697                                            expected_ret: Expectation<'tcx>,
2698                                            formal_ret: Ty<'tcx>,
2699                                            formal_args: &[Ty<'tcx>])
2700                                            -> Vec<Ty<'tcx>> {
2701         let expected_args = expected_ret.only_has_type(self).and_then(|ret_ty| {
2702             self.fudge_regions_if_ok(&RegionVariableOrigin::Coercion(call_span), || {
2703                 // Attempt to apply a subtyping relationship between the formal
2704                 // return type (likely containing type variables if the function
2705                 // is polymorphic) and the expected return type.
2706                 // No argument expectations are produced if unification fails.
2707                 let origin = self.misc(call_span);
2708                 let ures = self.at(&origin, self.param_env).sup(ret_ty, formal_ret);
2709
2710                 // FIXME(#15760) can't use try! here, FromError doesn't default
2711                 // to identity so the resulting type is not constrained.
2712                 match ures {
2713                     Ok(ok) => {
2714                         // Process any obligations locally as much as
2715                         // we can.  We don't care if some things turn
2716                         // out unconstrained or ambiguous, as we're
2717                         // just trying to get hints here.
2718                         let result = self.save_and_restore_in_snapshot_flag(|_| {
2719                             let mut fulfill = FulfillmentContext::new();
2720                             let ok = ok; // FIXME(#30046)
2721                             for obligation in ok.obligations {
2722                                 fulfill.register_predicate_obligation(self, obligation);
2723                             }
2724                             fulfill.select_where_possible(self)
2725                         });
2726
2727                         match result {
2728                             Ok(()) => { }
2729                             Err(_) => return Err(()),
2730                         }
2731                     }
2732                     Err(_) => return Err(()),
2733                 }
2734
2735                 // Record all the argument types, with the substitutions
2736                 // produced from the above subtyping unification.
2737                 Ok(formal_args.iter().map(|ty| {
2738                     self.resolve_type_vars_if_possible(ty)
2739                 }).collect())
2740             }).ok()
2741         }).unwrap_or(vec![]);
2742         debug!("expected_inputs_for_expected_output(formal={:?} -> {:?}, expected={:?} -> {:?})",
2743                formal_args, formal_ret,
2744                expected_args, expected_ret);
2745         expected_args
2746     }
2747
2748     // Checks a method call.
2749     fn check_method_call(&self,
2750                          expr: &'gcx hir::Expr,
2751                          method_name: Spanned<ast::Name>,
2752                          args: &'gcx [hir::Expr],
2753                          tps: &[P<hir::Ty>],
2754                          expected: Expectation<'tcx>,
2755                          lvalue_pref: LvaluePreference) -> Ty<'tcx> {
2756         let rcvr = &args[0];
2757         let rcvr_t = self.check_expr_with_lvalue_pref(&rcvr, lvalue_pref);
2758
2759         // no need to check for bot/err -- callee does that
2760         let expr_t = self.structurally_resolved_type(expr.span, rcvr_t);
2761
2762         let tps = tps.iter().map(|ast_ty| self.to_ty(&ast_ty)).collect::<Vec<_>>();
2763         let method = match self.lookup_method(method_name.span,
2764                                               method_name.node,
2765                                               expr_t,
2766                                               tps,
2767                                               expr,
2768                                               rcvr) {
2769             Ok(method) => {
2770                 self.write_method_call(expr.id, method);
2771                 Ok(method)
2772             }
2773             Err(error) => {
2774                 if method_name.node != keywords::Invalid.name() {
2775                     self.report_method_error(method_name.span,
2776                                              expr_t,
2777                                              method_name.node,
2778                                              Some(rcvr),
2779                                              error,
2780                                              Some(args));
2781                 }
2782                 Err(())
2783             }
2784         };
2785
2786         // Call the generic checker.
2787         self.check_method_argument_types(method_name.span, method,
2788                                          &args[1..],
2789                                          DontTupleArguments,
2790                                          expected)
2791     }
2792
2793     fn check_return_expr(&self, return_expr: &'gcx hir::Expr) {
2794         let ret_coercion =
2795             self.ret_coercion
2796                 .as_ref()
2797                 .unwrap_or_else(|| span_bug!(return_expr.span,
2798                                              "check_return_expr called outside fn body"));
2799
2800         let ret_ty = ret_coercion.borrow().expected_ty();
2801         let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
2802         ret_coercion.borrow_mut()
2803                     .coerce(self,
2804                             &self.misc(return_expr.span),
2805                             return_expr,
2806                             return_expr_ty,
2807                             self.diverges.get());
2808     }
2809
2810
2811     // A generic function for checking the then and else in an if
2812     // or if-else.
2813     fn check_then_else(&self,
2814                        cond_expr: &'gcx hir::Expr,
2815                        then_expr: &'gcx hir::Expr,
2816                        opt_else_expr: Option<&'gcx hir::Expr>,
2817                        sp: Span,
2818                        expected: Expectation<'tcx>) -> Ty<'tcx> {
2819         let cond_ty = self.check_expr_has_type(cond_expr, self.tcx.types.bool);
2820         let cond_diverges = self.diverges.get();
2821         self.diverges.set(Diverges::Maybe);
2822
2823         let expected = expected.adjust_for_branches(self);
2824         let then_ty = self.check_expr_with_expectation(then_expr, expected);
2825         let then_diverges = self.diverges.get();
2826         self.diverges.set(Diverges::Maybe);
2827
2828         // We've already taken the expected type's preferences
2829         // into account when typing the `then` branch. To figure
2830         // out the initial shot at a LUB, we thus only consider
2831         // `expected` if it represents a *hard* constraint
2832         // (`only_has_type`); otherwise, we just go with a
2833         // fresh type variable.
2834         let coerce_to_ty = expected.coercion_target_type(self, sp);
2835         let mut coerce: DynamicCoerceMany = CoerceMany::new(coerce_to_ty);
2836
2837         let if_cause = self.cause(sp, ObligationCauseCode::IfExpression);
2838         coerce.coerce(self, &if_cause, then_expr, then_ty, then_diverges);
2839
2840         if let Some(else_expr) = opt_else_expr {
2841             let else_ty = self.check_expr_with_expectation(else_expr, expected);
2842             let else_diverges = self.diverges.get();
2843
2844             coerce.coerce(self, &if_cause, else_expr, else_ty, else_diverges);
2845
2846             // We won't diverge unless both branches do (or the condition does).
2847             self.diverges.set(cond_diverges | then_diverges & else_diverges);
2848         } else {
2849             let else_cause = self.cause(sp, ObligationCauseCode::IfExpressionWithNoElse);
2850             coerce.coerce_forced_unit(self, &else_cause, &mut |_| (), true);
2851
2852             // If the condition is false we can't diverge.
2853             self.diverges.set(cond_diverges);
2854         }
2855
2856         let result_ty = coerce.complete(self);
2857         if cond_ty.references_error() {
2858             self.tcx.types.err
2859         } else {
2860             result_ty
2861         }
2862     }
2863
2864     // Check field access expressions
2865     fn check_field(&self,
2866                    expr: &'gcx hir::Expr,
2867                    lvalue_pref: LvaluePreference,
2868                    base: &'gcx hir::Expr,
2869                    field: &Spanned<ast::Name>) -> Ty<'tcx> {
2870         let expr_t = self.check_expr_with_lvalue_pref(base, lvalue_pref);
2871         let expr_t = self.structurally_resolved_type(expr.span,
2872                                                      expr_t);
2873         let mut private_candidate = None;
2874         let mut autoderef = self.autoderef(expr.span, expr_t);
2875         while let Some((base_t, _)) = autoderef.next() {
2876             match base_t.sty {
2877                 ty::TyAdt(base_def, substs) if !base_def.is_enum() => {
2878                     debug!("struct named {:?}",  base_t);
2879                     let (ident, def_scope) =
2880                         self.tcx.adjust(field.node, base_def.did, self.body_id);
2881                     let fields = &base_def.struct_variant().fields;
2882                     if let Some(field) = fields.iter().find(|f| f.name.to_ident() == ident) {
2883                         let field_ty = self.field_ty(expr.span, field, substs);
2884                         if field.vis.is_accessible_from(def_scope, self.tcx) {
2885                             let adjustments = autoderef.adjust_steps(lvalue_pref);
2886                             self.apply_adjustments(base, adjustments);
2887                             autoderef.finalize();
2888
2889                             self.tcx.check_stability(field.did, expr.id, expr.span);
2890
2891                             return field_ty;
2892                         }
2893                         private_candidate = Some((base_def.did, field_ty));
2894                     }
2895                 }
2896                 _ => {}
2897             }
2898         }
2899         autoderef.unambiguous_final_ty();
2900
2901         if let Some((did, field_ty)) = private_candidate {
2902             let struct_path = self.tcx().item_path_str(did);
2903             let msg = format!("field `{}` of struct `{}` is private", field.node, struct_path);
2904             let mut err = self.tcx().sess.struct_span_err(expr.span, &msg);
2905             // Also check if an accessible method exists, which is often what is meant.
2906             if self.method_exists(field.span, field.node, expr_t, expr.id, false) {
2907                 err.note(&format!("a method `{}` also exists, perhaps you wish to call it",
2908                                   field.node));
2909             }
2910             err.emit();
2911             field_ty
2912         } else if field.node == keywords::Invalid.name() {
2913             self.tcx().types.err
2914         } else if self.method_exists(field.span, field.node, expr_t, expr.id, true) {
2915             self.type_error_struct(field.span, |actual| {
2916                 format!("attempted to take value of method `{}` on type \
2917                          `{}`", field.node, actual)
2918             }, expr_t)
2919                 .help("maybe a `()` to call it is missing? \
2920                        If not, try an anonymous function")
2921                 .emit();
2922             self.tcx().types.err
2923         } else {
2924             let mut err = self.type_error_struct(field.span, |actual| {
2925                 format!("no field `{}` on type `{}`",
2926                         field.node, actual)
2927             }, expr_t);
2928             match expr_t.sty {
2929                 ty::TyAdt(def, _) if !def.is_enum() => {
2930                     if let Some(suggested_field_name) =
2931                         Self::suggest_field_name(def.struct_variant(), field, vec![]) {
2932                             err.span_label(field.span,
2933                                            format!("did you mean `{}`?", suggested_field_name));
2934                         } else {
2935                             err.span_label(field.span,
2936                                            "unknown field");
2937                         };
2938                 }
2939                 ty::TyRawPtr(..) => {
2940                     err.note(&format!("`{0}` is a native pointer; perhaps you need to deref with \
2941                                       `(*{0}).{1}`",
2942                                       self.tcx.hir.node_to_pretty_string(base.id),
2943                                       field.node));
2944                 }
2945                 _ => {}
2946             }
2947             err.emit();
2948             self.tcx().types.err
2949         }
2950     }
2951
2952     // Return an hint about the closest match in field names
2953     fn suggest_field_name(variant: &'tcx ty::VariantDef,
2954                           field: &Spanned<ast::Name>,
2955                           skip : Vec<InternedString>)
2956                           -> Option<Symbol> {
2957         let name = field.node.as_str();
2958         let names = variant.fields.iter().filter_map(|field| {
2959             // ignore already set fields and private fields from non-local crates
2960             if skip.iter().any(|x| *x == field.name.as_str()) ||
2961                (variant.did.krate != LOCAL_CRATE && field.vis != Visibility::Public) {
2962                 None
2963             } else {
2964                 Some(&field.name)
2965             }
2966         });
2967
2968         // only find fits with at least one matching letter
2969         find_best_match_for_name(names, &name, Some(name.len()))
2970     }
2971
2972     // Check tuple index expressions
2973     fn check_tup_field(&self,
2974                        expr: &'gcx hir::Expr,
2975                        lvalue_pref: LvaluePreference,
2976                        base: &'gcx hir::Expr,
2977                        idx: codemap::Spanned<usize>) -> Ty<'tcx> {
2978         let expr_t = self.check_expr_with_lvalue_pref(base, lvalue_pref);
2979         let expr_t = self.structurally_resolved_type(expr.span,
2980                                                      expr_t);
2981         let mut private_candidate = None;
2982         let mut tuple_like = false;
2983         let mut autoderef = self.autoderef(expr.span, expr_t);
2984         while let Some((base_t, _)) = autoderef.next() {
2985             let field = match base_t.sty {
2986                 ty::TyAdt(base_def, substs) if base_def.is_struct() => {
2987                     tuple_like = base_def.struct_variant().ctor_kind == CtorKind::Fn;
2988                     if !tuple_like { continue }
2989
2990                     debug!("tuple struct named {:?}",  base_t);
2991                     let ident = ast::Ident {
2992                         name: Symbol::intern(&idx.node.to_string()),
2993                         ctxt: idx.span.ctxt.modern(),
2994                     };
2995                     let (ident, def_scope) =
2996                         self.tcx.adjust_ident(ident, base_def.did, self.body_id);
2997                     let fields = &base_def.struct_variant().fields;
2998                     if let Some(field) = fields.iter().find(|f| f.name.to_ident() == ident) {
2999                         let field_ty = self.field_ty(expr.span, field, substs);
3000                         if field.vis.is_accessible_from(def_scope, self.tcx) {
3001                             self.tcx.check_stability(field.did, expr.id, expr.span);
3002                             Some(field_ty)
3003                         } else {
3004                             private_candidate = Some((base_def.did, field_ty));
3005                             None
3006                         }
3007                     } else {
3008                         None
3009                     }
3010                 }
3011                 ty::TyTuple(ref v, _) => {
3012                     tuple_like = true;
3013                     v.get(idx.node).cloned()
3014                 }
3015                 _ => continue
3016             };
3017
3018             if let Some(field_ty) = field {
3019                 let adjustments = autoderef.adjust_steps(lvalue_pref);
3020                 self.apply_adjustments(base, adjustments);
3021                 autoderef.finalize();
3022                 return field_ty;
3023             }
3024         }
3025         autoderef.unambiguous_final_ty();
3026
3027         if let Some((did, field_ty)) = private_candidate {
3028             let struct_path = self.tcx().item_path_str(did);
3029             let msg = format!("field `{}` of struct `{}` is private", idx.node, struct_path);
3030             self.tcx().sess.span_err(expr.span, &msg);
3031             return field_ty;
3032         }
3033
3034         self.type_error_message(
3035             expr.span,
3036             |actual| {
3037                 if tuple_like {
3038                     format!("attempted out-of-bounds tuple index `{}` on \
3039                                     type `{}`",
3040                                    idx.node,
3041                                    actual)
3042                 } else {
3043                     format!("attempted tuple index `{}` on type `{}`, but the \
3044                                      type was not a tuple or tuple struct",
3045                                     idx.node,
3046                                     actual)
3047                 }
3048             },
3049             expr_t);
3050
3051         self.tcx().types.err
3052     }
3053
3054     fn report_unknown_field(&self,
3055                             ty: Ty<'tcx>,
3056                             variant: &'tcx ty::VariantDef,
3057                             field: &hir::Field,
3058                             skip_fields: &[hir::Field],
3059                             kind_name: &str) {
3060         let mut err = self.type_error_struct_with_diag(
3061             field.name.span,
3062             |actual| match ty.sty {
3063                 ty::TyAdt(adt, ..) if adt.is_enum() => {
3064                     struct_span_err!(self.tcx.sess, field.name.span, E0559,
3065                                     "{} `{}::{}` has no field named `{}`",
3066                                     kind_name, actual, variant.name, field.name.node)
3067                 }
3068                 _ => {
3069                     struct_span_err!(self.tcx.sess, field.name.span, E0560,
3070                                     "{} `{}` has no field named `{}`",
3071                                     kind_name, actual, field.name.node)
3072                 }
3073             },
3074             ty);
3075         // prevent all specified fields from being suggested
3076         let skip_fields = skip_fields.iter().map(|ref x| x.name.node.as_str());
3077         if let Some(field_name) = Self::suggest_field_name(variant,
3078                                                            &field.name,
3079                                                            skip_fields.collect()) {
3080             err.span_label(field.name.span,
3081                            format!("field does not exist - did you mean `{}`?", field_name));
3082         } else {
3083             match ty.sty {
3084                 ty::TyAdt(adt, ..) if adt.is_enum() => {
3085                     err.span_label(field.name.span, format!("`{}::{}` does not have this field",
3086                                                              ty, variant.name));
3087                 }
3088                 _ => {
3089                     err.span_label(field.name.span, format!("`{}` does not have this field", ty));
3090                 }
3091             }
3092         };
3093         err.emit();
3094     }
3095
3096     fn check_expr_struct_fields(&self,
3097                                 adt_ty: Ty<'tcx>,
3098                                 expected: Expectation<'tcx>,
3099                                 expr_id: ast::NodeId,
3100                                 span: Span,
3101                                 variant: &'tcx ty::VariantDef,
3102                                 ast_fields: &'gcx [hir::Field],
3103                                 check_completeness: bool) {
3104         let tcx = self.tcx;
3105
3106         let adt_ty_hint =
3107             self.expected_inputs_for_expected_output(span, expected, adt_ty, &[adt_ty])
3108                 .get(0).cloned().unwrap_or(adt_ty);
3109
3110         let (substs, hint_substs, adt_kind, kind_name) = match (&adt_ty.sty, &adt_ty_hint.sty) {
3111             (&ty::TyAdt(adt, substs), &ty::TyAdt(_, hint_substs)) => {
3112                 (substs, hint_substs, adt.adt_kind(), adt.variant_descr())
3113             }
3114             _ => span_bug!(span, "non-ADT passed to check_expr_struct_fields")
3115         };
3116
3117         let mut remaining_fields = FxHashMap();
3118         for field in &variant.fields {
3119             remaining_fields.insert(field.name.to_ident(), field);
3120         }
3121
3122         let mut seen_fields = FxHashMap();
3123
3124         let mut error_happened = false;
3125
3126         // Typecheck each field.
3127         for field in ast_fields {
3128             let final_field_type;
3129             let field_type_hint;
3130
3131             let ident = tcx.adjust(field.name.node, variant.did, self.body_id).0;
3132             if let Some(v_field) = remaining_fields.remove(&ident) {
3133                 final_field_type = self.field_ty(field.span, v_field, substs);
3134                 field_type_hint = self.field_ty(field.span, v_field, hint_substs);
3135
3136                 seen_fields.insert(field.name.node, field.span);
3137
3138                 // we don't look at stability attributes on
3139                 // struct-like enums (yet...), but it's definitely not
3140                 // a bug to have construct one.
3141                 if adt_kind != ty::AdtKind::Enum {
3142                     tcx.check_stability(v_field.did, expr_id, field.span);
3143                 }
3144             } else {
3145                 error_happened = true;
3146                 final_field_type = tcx.types.err;
3147                 field_type_hint = tcx.types.err;
3148                 if let Some(_) = variant.find_field_named(field.name.node) {
3149                     let mut err = struct_span_err!(self.tcx.sess,
3150                                                 field.name.span,
3151                                                 E0062,
3152                                                 "field `{}` specified more than once",
3153                                                 field.name.node);
3154
3155                     err.span_label(field.name.span, "used more than once");
3156
3157                     if let Some(prev_span) = seen_fields.get(&field.name.node) {
3158                         err.span_label(*prev_span, format!("first use of `{}`", field.name.node));
3159                     }
3160
3161                     err.emit();
3162                 } else {
3163                     self.report_unknown_field(adt_ty, variant, field, ast_fields, kind_name);
3164                 }
3165             }
3166
3167             // Make sure to give a type to the field even if there's
3168             // an error, so we can continue typechecking
3169             let ty = self.check_expr_with_hint(&field.expr, field_type_hint);
3170             self.demand_coerce(&field.expr, ty, final_field_type);
3171         }
3172
3173         // Make sure the programmer specified correct number of fields.
3174         if kind_name == "union" {
3175             if ast_fields.len() != 1 {
3176                 tcx.sess.span_err(span, "union expressions should have exactly one field");
3177             }
3178         } else if check_completeness && !error_happened && !remaining_fields.is_empty() {
3179             let len = remaining_fields.len();
3180
3181             let mut displayable_field_names = remaining_fields
3182                                               .keys()
3183                                               .map(|ident| ident.name.as_str())
3184                                               .collect::<Vec<_>>();
3185
3186             displayable_field_names.sort();
3187
3188             let truncated_fields_error = if len <= 3 {
3189                 "".to_string()
3190             } else {
3191                 format!(" and {} other field{}", (len - 3), if len - 3 == 1 {""} else {"s"})
3192             };
3193
3194             let remaining_fields_names = displayable_field_names.iter().take(3)
3195                                         .map(|n| format!("`{}`", n))
3196                                         .collect::<Vec<_>>()
3197                                         .join(", ");
3198
3199             struct_span_err!(tcx.sess, span, E0063,
3200                         "missing field{} {}{} in initializer of `{}`",
3201                         if remaining_fields.len() == 1 {""} else {"s"},
3202                         remaining_fields_names,
3203                         truncated_fields_error,
3204                         adt_ty)
3205                         .span_label(span, format!("missing {}{}",
3206                             remaining_fields_names,
3207                             truncated_fields_error))
3208                         .emit();
3209         }
3210     }
3211
3212     fn check_struct_fields_on_error(&self,
3213                                     fields: &'gcx [hir::Field],
3214                                     base_expr: &'gcx Option<P<hir::Expr>>) {
3215         for field in fields {
3216             self.check_expr(&field.expr);
3217         }
3218         match *base_expr {
3219             Some(ref base) => {
3220                 self.check_expr(&base);
3221             },
3222             None => {}
3223         }
3224     }
3225
3226     pub fn check_struct_path(&self,
3227                              qpath: &hir::QPath,
3228                              node_id: ast::NodeId)
3229                              -> Option<(&'tcx ty::VariantDef,  Ty<'tcx>)> {
3230         let path_span = match *qpath {
3231             hir::QPath::Resolved(_, ref path) => path.span,
3232             hir::QPath::TypeRelative(ref qself, _) => qself.span
3233         };
3234         let (def, ty) = self.finish_resolving_struct_path(qpath, path_span, node_id);
3235         let variant = match def {
3236             Def::Err => {
3237                 self.set_tainted_by_errors();
3238                 return None;
3239             }
3240             Def::Variant(..) => {
3241                 match ty.sty {
3242                     ty::TyAdt(adt, substs) => {
3243                         Some((adt.variant_of_def(def), adt.did, substs))
3244                     }
3245                     _ => bug!("unexpected type: {:?}", ty.sty)
3246                 }
3247             }
3248             Def::Struct(..) | Def::Union(..) | Def::TyAlias(..) |
3249             Def::AssociatedTy(..) | Def::SelfTy(..) => {
3250                 match ty.sty {
3251                     ty::TyAdt(adt, substs) if !adt.is_enum() => {
3252                         Some((adt.struct_variant(), adt.did, substs))
3253                     }
3254                     _ => None,
3255                 }
3256             }
3257             _ => bug!("unexpected definition: {:?}", def)
3258         };
3259
3260         if let Some((variant, did, substs)) = variant {
3261             // Check bounds on type arguments used in the path.
3262             let bounds = self.instantiate_bounds(path_span, did, substs);
3263             let cause = traits::ObligationCause::new(path_span, self.body_id,
3264                                                      traits::ItemObligation(did));
3265             self.add_obligations_for_parameters(cause, &bounds);
3266
3267             Some((variant, ty))
3268         } else {
3269             struct_span_err!(self.tcx.sess, path_span, E0071,
3270                              "expected struct, variant or union type, found {}",
3271                              ty.sort_string(self.tcx))
3272                 .span_label(path_span, "not a struct")
3273                 .emit();
3274             None
3275         }
3276     }
3277
3278     fn check_expr_struct(&self,
3279                          expr: &hir::Expr,
3280                          expected: Expectation<'tcx>,
3281                          qpath: &hir::QPath,
3282                          fields: &'gcx [hir::Field],
3283                          base_expr: &'gcx Option<P<hir::Expr>>) -> Ty<'tcx>
3284     {
3285         // Find the relevant variant
3286         let (variant, struct_ty) =
3287         if let Some(variant_ty) = self.check_struct_path(qpath, expr.id) {
3288             variant_ty
3289         } else {
3290             self.check_struct_fields_on_error(fields, base_expr);
3291             return self.tcx.types.err;
3292         };
3293
3294         let path_span = match *qpath {
3295             hir::QPath::Resolved(_, ref path) => path.span,
3296             hir::QPath::TypeRelative(ref qself, _) => qself.span
3297         };
3298
3299         self.check_expr_struct_fields(struct_ty, expected, expr.id, path_span, variant, fields,
3300                                       base_expr.is_none());
3301         if let &Some(ref base_expr) = base_expr {
3302             self.check_expr_has_type(base_expr, struct_ty);
3303             match struct_ty.sty {
3304                 ty::TyAdt(adt, substs) if adt.is_struct() => {
3305                     self.tables.borrow_mut().fru_field_types.insert(
3306                         expr.id,
3307                         adt.struct_variant().fields.iter().map(|f| {
3308                             self.normalize_associated_types_in(
3309                                 expr.span, &f.ty(self.tcx, substs)
3310                             )
3311                         }).collect()
3312                     );
3313                 }
3314                 _ => {
3315                     span_err!(self.tcx.sess, base_expr.span, E0436,
3316                               "functional record update syntax requires a struct");
3317                 }
3318             }
3319         }
3320         self.require_type_is_sized(struct_ty, expr.span, traits::StructInitializerSized);
3321         struct_ty
3322     }
3323
3324
3325     /// Invariant:
3326     /// If an expression has any sub-expressions that result in a type error,
3327     /// inspecting that expression's type with `ty.references_error()` will return
3328     /// true. Likewise, if an expression is known to diverge, inspecting its
3329     /// type with `ty::type_is_bot` will return true (n.b.: since Rust is
3330     /// strict, _|_ can appear in the type of an expression that does not,
3331     /// itself, diverge: for example, fn() -> _|_.)
3332     /// Note that inspecting a type's structure *directly* may expose the fact
3333     /// that there are actually multiple representations for `TyError`, so avoid
3334     /// that when err needs to be handled differently.
3335     fn check_expr_with_expectation_and_lvalue_pref(&self,
3336                                                    expr: &'gcx hir::Expr,
3337                                                    expected: Expectation<'tcx>,
3338                                                    lvalue_pref: LvaluePreference) -> Ty<'tcx> {
3339         debug!(">> typechecking: expr={:?} expected={:?}",
3340                expr, expected);
3341
3342         // Warn for expressions after diverging siblings.
3343         self.warn_if_unreachable(expr.id, expr.span, "expression");
3344
3345         // Hide the outer diverging and has_errors flags.
3346         let old_diverges = self.diverges.get();
3347         let old_has_errors = self.has_errors.get();
3348         self.diverges.set(Diverges::Maybe);
3349         self.has_errors.set(false);
3350
3351         let ty = self.check_expr_kind(expr, expected, lvalue_pref);
3352
3353         // Warn for non-block expressions with diverging children.
3354         match expr.node {
3355             hir::ExprBlock(_) |
3356             hir::ExprLoop(..) | hir::ExprWhile(..) |
3357             hir::ExprIf(..) | hir::ExprMatch(..) => {}
3358
3359             _ => self.warn_if_unreachable(expr.id, expr.span, "expression")
3360         }
3361
3362         // Any expression that produces a value of type `!` must have diverged
3363         if ty.is_never() {
3364             self.diverges.set(self.diverges.get() | Diverges::Always);
3365         }
3366
3367         // Record the type, which applies it effects.
3368         // We need to do this after the warning above, so that
3369         // we don't warn for the diverging expression itself.
3370         self.write_ty(expr.id, ty);
3371
3372         // Combine the diverging and has_error flags.
3373         self.diverges.set(self.diverges.get() | old_diverges);
3374         self.has_errors.set(self.has_errors.get() | old_has_errors);
3375
3376         debug!("type of {} is...", self.tcx.hir.node_to_string(expr.id));
3377         debug!("... {:?}, expected is {:?}", ty, expected);
3378
3379         ty
3380     }
3381
3382     fn check_expr_kind(&self,
3383                        expr: &'gcx hir::Expr,
3384                        expected: Expectation<'tcx>,
3385                        lvalue_pref: LvaluePreference) -> Ty<'tcx> {
3386         let tcx = self.tcx;
3387         let id = expr.id;
3388         match expr.node {
3389           hir::ExprBox(ref subexpr) => {
3390             let expected_inner = expected.to_option(self).map_or(NoExpectation, |ty| {
3391                 match ty.sty {
3392                     ty::TyAdt(def, _) if def.is_box()
3393                         => Expectation::rvalue_hint(self, ty.boxed_ty()),
3394                     _ => NoExpectation
3395                 }
3396             });
3397             let referent_ty = self.check_expr_with_expectation(subexpr, expected_inner);
3398             tcx.mk_box(referent_ty)
3399           }
3400
3401           hir::ExprLit(ref lit) => {
3402             self.check_lit(&lit, expected)
3403           }
3404           hir::ExprBinary(op, ref lhs, ref rhs) => {
3405             self.check_binop(expr, op, lhs, rhs)
3406           }
3407           hir::ExprAssignOp(op, ref lhs, ref rhs) => {
3408             self.check_binop_assign(expr, op, lhs, rhs)
3409           }
3410           hir::ExprUnary(unop, ref oprnd) => {
3411             let expected_inner = match unop {
3412                 hir::UnNot | hir::UnNeg => {
3413                     expected
3414                 }
3415                 hir::UnDeref => {
3416                     NoExpectation
3417                 }
3418             };
3419             let lvalue_pref = match unop {
3420                 hir::UnDeref => lvalue_pref,
3421                 _ => NoPreference
3422             };
3423             let mut oprnd_t = self.check_expr_with_expectation_and_lvalue_pref(&oprnd,
3424                                                                                expected_inner,
3425                                                                                lvalue_pref);
3426
3427             if !oprnd_t.references_error() {
3428                 oprnd_t = self.structurally_resolved_type(expr.span, oprnd_t);
3429                 match unop {
3430                     hir::UnDeref => {
3431                         if let Some(mt) = oprnd_t.builtin_deref(true, NoPreference) {
3432                             oprnd_t = mt.ty;
3433                         } else if let Some(ok) = self.try_overloaded_deref(
3434                                 expr.span, oprnd_t, lvalue_pref) {
3435                             let method = self.register_infer_ok_obligations(ok);
3436                             if let ty::TyRef(region, mt) = method.sig.inputs()[0].sty {
3437                                 self.apply_adjustments(oprnd, vec![Adjustment {
3438                                     kind: Adjust::Borrow(AutoBorrow::Ref(region, mt.mutbl)),
3439                                     target: method.sig.inputs()[0]
3440                                 }]);
3441                             }
3442                             oprnd_t = self.make_overloaded_lvalue_return_type(method).ty;
3443                             self.write_method_call(expr.id, method);
3444                         } else {
3445                             self.type_error_message(expr.span, |actual| {
3446                                 format!("type `{}` cannot be \
3447                                         dereferenced", actual)
3448                             }, oprnd_t);
3449                             oprnd_t = tcx.types.err;
3450                         }
3451                     }
3452                     hir::UnNot => {
3453                         let result = self.check_user_unop(expr, oprnd_t, unop);
3454                         // If it's builtin, we can reuse the type, this helps inference.
3455                         if !(oprnd_t.is_integral() || oprnd_t.sty == ty::TyBool) {
3456                             oprnd_t = result;
3457                         }
3458                     }
3459                     hir::UnNeg => {
3460                         let result = self.check_user_unop(expr, oprnd_t, unop);
3461                         // If it's builtin, we can reuse the type, this helps inference.
3462                         if !(oprnd_t.is_integral() || oprnd_t.is_fp()) {
3463                             oprnd_t = result;
3464                         }
3465                     }
3466                 }
3467             }
3468             oprnd_t
3469           }
3470           hir::ExprAddrOf(mutbl, ref oprnd) => {
3471             let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
3472                 match ty.sty {
3473                     ty::TyRef(_, ref mt) | ty::TyRawPtr(ref mt) => {
3474                         if self.tcx.expr_is_lval(&oprnd) {
3475                             // Lvalues may legitimately have unsized types.
3476                             // For example, dereferences of a fat pointer and
3477                             // the last field of a struct can be unsized.
3478                             ExpectHasType(mt.ty)
3479                         } else {
3480                             Expectation::rvalue_hint(self, mt.ty)
3481                         }
3482                     }
3483                     _ => NoExpectation
3484                 }
3485             });
3486             let lvalue_pref = LvaluePreference::from_mutbl(mutbl);
3487             let ty = self.check_expr_with_expectation_and_lvalue_pref(&oprnd, hint, lvalue_pref);
3488
3489             let tm = ty::TypeAndMut { ty: ty, mutbl: mutbl };
3490             if tm.ty.references_error() {
3491                 tcx.types.err
3492             } else {
3493                 // Note: at this point, we cannot say what the best lifetime
3494                 // is to use for resulting pointer.  We want to use the
3495                 // shortest lifetime possible so as to avoid spurious borrowck
3496                 // errors.  Moreover, the longest lifetime will depend on the
3497                 // precise details of the value whose address is being taken
3498                 // (and how long it is valid), which we don't know yet until type
3499                 // inference is complete.
3500                 //
3501                 // Therefore, here we simply generate a region variable.  The
3502                 // region inferencer will then select the ultimate value.
3503                 // Finally, borrowck is charged with guaranteeing that the
3504                 // value whose address was taken can actually be made to live
3505                 // as long as it needs to live.
3506                 let region = self.next_region_var(infer::AddrOfRegion(expr.span));
3507                 tcx.mk_ref(region, tm)
3508             }
3509           }
3510           hir::ExprPath(ref qpath) => {
3511               let (def, opt_ty, segments) = self.resolve_ty_and_def_ufcs(qpath,
3512                                                                          expr.id, expr.span);
3513               let ty = if def != Def::Err {
3514                   self.instantiate_value_path(segments, opt_ty, def, expr.span, id)
3515               } else {
3516                   self.set_tainted_by_errors();
3517                   tcx.types.err
3518               };
3519
3520               // We always require that the type provided as the value for
3521               // a type parameter outlives the moment of instantiation.
3522               let substs = self.tables.borrow().node_substs(expr.id);
3523               self.add_wf_bounds(substs, expr);
3524
3525               ty
3526           }
3527           hir::ExprInlineAsm(_, ref outputs, ref inputs) => {
3528               for output in outputs {
3529                   self.check_expr(output);
3530               }
3531               for input in inputs {
3532                   self.check_expr(input);
3533               }
3534               tcx.mk_nil()
3535           }
3536           hir::ExprBreak(destination, ref expr_opt) => {
3537               if let Some(target_id) = destination.target_id.opt_id() {
3538                   let (e_ty, e_diverges, cause);
3539                   if let Some(ref e) = *expr_opt {
3540                       // If this is a break with a value, we need to type-check
3541                       // the expression. Get an expected type from the loop context.
3542                       let opt_coerce_to = {
3543                           let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
3544                           enclosing_breakables.find_breakable(target_id)
3545                                               .coerce
3546                                               .as_ref()
3547                                               .map(|coerce| coerce.expected_ty())
3548                       };
3549
3550                       // If the loop context is not a `loop { }`, then break with
3551                       // a value is illegal, and `opt_coerce_to` will be `None`.
3552                       // Just set expectation to error in that case.
3553                       let coerce_to = opt_coerce_to.unwrap_or(tcx.types.err);
3554
3555                       // Recurse without `enclosing_breakables` borrowed.
3556                       e_ty = self.check_expr_with_hint(e, coerce_to);
3557                       e_diverges = self.diverges.get();
3558                       cause = self.misc(e.span);
3559                   } else {
3560                       // Otherwise, this is a break *without* a value. That's
3561                       // always legal, and is equivalent to `break ()`.
3562                       e_ty = tcx.mk_nil();
3563                       e_diverges = Diverges::Maybe;
3564                       cause = self.misc(expr.span);
3565                   }
3566
3567                   // Now that we have type-checked `expr_opt`, borrow
3568                   // the `enclosing_loops` field and let's coerce the
3569                   // type of `expr_opt` into what is expected.
3570                   let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
3571                   let ctxt = enclosing_breakables.find_breakable(target_id);
3572                   if let Some(ref mut coerce) = ctxt.coerce {
3573                       if let Some(ref e) = *expr_opt {
3574                           coerce.coerce(self, &cause, e, e_ty, e_diverges);
3575                       } else {
3576                           assert!(e_ty.is_nil());
3577                           coerce.coerce_forced_unit(self, &cause, &mut |_| (), true);
3578                       }
3579                   } else {
3580                       // If `ctxt.coerce` is `None`, we can just ignore
3581                       // the type of the expresison.  This is because
3582                       // either this was a break *without* a value, in
3583                       // which case it is always a legal type (`()`), or
3584                       // else an error would have been flagged by the
3585                       // `loops` pass for using break with an expression
3586                       // where you are not supposed to.
3587                       assert!(expr_opt.is_none() || self.tcx.sess.err_count() > 0);
3588                   }
3589
3590                   ctxt.may_break = true;
3591               } else {
3592                   // Otherwise, we failed to find the enclosing loop;
3593                   // this can only happen if the `break` was not
3594                   // inside a loop at all, which is caught by the
3595                   // loop-checking pass.
3596                   assert!(self.tcx.sess.err_count() > 0);
3597               }
3598
3599               // the type of a `break` is always `!`, since it diverges
3600               tcx.types.never
3601           }
3602           hir::ExprAgain(_) => { tcx.types.never }
3603           hir::ExprRet(ref expr_opt) => {
3604             if self.ret_coercion.is_none() {
3605                 struct_span_err!(self.tcx.sess, expr.span, E0572,
3606                                  "return statement outside of function body").emit();
3607             } else if let Some(ref e) = *expr_opt {
3608                 self.check_return_expr(e);
3609             } else {
3610                 let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
3611                 let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
3612                 coercion.coerce_forced_unit(self, &cause, &mut |_| (), true);
3613             }
3614             tcx.types.never
3615           }
3616           hir::ExprAssign(ref lhs, ref rhs) => {
3617             let lhs_ty = self.check_expr_with_lvalue_pref(&lhs, PreferMutLvalue);
3618
3619             let tcx = self.tcx;
3620             if !tcx.expr_is_lval(&lhs) {
3621                 struct_span_err!(
3622                     tcx.sess, expr.span, E0070,
3623                     "invalid left-hand side expression")
3624                 .span_label(
3625                     expr.span,
3626                     "left-hand of expression not valid")
3627                 .emit();
3628             }
3629
3630             let rhs_ty = self.check_expr_coercable_to_type(&rhs, lhs_ty);
3631
3632             self.require_type_is_sized(lhs_ty, lhs.span, traits::AssignmentLhsSized);
3633
3634             if lhs_ty.references_error() || rhs_ty.references_error() {
3635                 tcx.types.err
3636             } else {
3637                 tcx.mk_nil()
3638             }
3639           }
3640           hir::ExprIf(ref cond, ref then_expr, ref opt_else_expr) => {
3641               self.check_then_else(&cond, then_expr, opt_else_expr.as_ref().map(|e| &**e),
3642                                    expr.span, expected)
3643           }
3644           hir::ExprWhile(ref cond, ref body, _) => {
3645               let ctxt = BreakableCtxt {
3646                   // cannot use break with a value from a while loop
3647                   coerce: None,
3648                   may_break: true,
3649               };
3650
3651               self.with_breakable_ctxt(expr.id, ctxt, || {
3652                   self.check_expr_has_type(&cond, tcx.types.bool);
3653                   let cond_diverging = self.diverges.get();
3654                   self.check_block_no_value(&body);
3655
3656                   // We may never reach the body so it diverging means nothing.
3657                   self.diverges.set(cond_diverging);
3658               });
3659
3660               self.tcx.mk_nil()
3661           }
3662           hir::ExprLoop(ref body, _, source) => {
3663               let coerce = match source {
3664                   // you can only use break with a value from a normal `loop { }`
3665                   hir::LoopSource::Loop => {
3666                       let coerce_to = expected.coercion_target_type(self, body.span);
3667                       Some(CoerceMany::new(coerce_to))
3668                   }
3669
3670                   hir::LoopSource::WhileLet |
3671                   hir::LoopSource::ForLoop => {
3672                       None
3673                   }
3674               };
3675
3676               let ctxt = BreakableCtxt {
3677                   coerce: coerce,
3678                   may_break: false, // will get updated if/when we find a `break`
3679               };
3680
3681               let (ctxt, ()) = self.with_breakable_ctxt(expr.id, ctxt, || {
3682                   self.check_block_no_value(&body);
3683               });
3684
3685               if ctxt.may_break {
3686                   // No way to know whether it's diverging because
3687                   // of a `break` or an outer `break` or `return.
3688                   self.diverges.set(Diverges::Maybe);
3689               }
3690
3691               // If we permit break with a value, then result type is
3692               // the LUB of the breaks (possibly ! if none); else, it
3693               // is nil. This makes sense because infinite loops
3694               // (which would have type !) are only possible iff we
3695               // permit break with a value [1].
3696               assert!(ctxt.coerce.is_some() || ctxt.may_break); // [1]
3697               ctxt.coerce.map(|c| c.complete(self)).unwrap_or(self.tcx.mk_nil())
3698           }
3699           hir::ExprMatch(ref discrim, ref arms, match_src) => {
3700             self.check_match(expr, &discrim, arms, expected, match_src)
3701           }
3702           hir::ExprClosure(capture, ref decl, body_id, _) => {
3703               self.check_expr_closure(expr, capture, &decl, body_id, expected)
3704           }
3705           hir::ExprBlock(ref body) => {
3706             self.check_block_with_expected(&body, expected)
3707           }
3708           hir::ExprCall(ref callee, ref args) => {
3709               self.check_call(expr, &callee, args, expected)
3710           }
3711           hir::ExprMethodCall(name, ref tps, ref args) => {
3712               self.check_method_call(expr, name, args, &tps[..], expected, lvalue_pref)
3713           }
3714           hir::ExprCast(ref e, ref t) => {
3715             // Find the type of `e`. Supply hints based on the type we are casting to,
3716             // if appropriate.
3717             let t_cast = self.to_ty(t);
3718             let t_cast = self.resolve_type_vars_if_possible(&t_cast);
3719             let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
3720             let t_cast = self.resolve_type_vars_if_possible(&t_cast);
3721             let diverges = self.diverges.get();
3722
3723             // Eagerly check for some obvious errors.
3724             if t_expr.references_error() || t_cast.references_error() {
3725                 tcx.types.err
3726             } else {
3727                 // Defer other checks until we're done type checking.
3728                 let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
3729                 match cast::CastCheck::new(self, e, t_expr, diverges, t_cast, t.span, expr.span) {
3730                     Ok(cast_check) => {
3731                         deferred_cast_checks.push(cast_check);
3732                         t_cast
3733                     }
3734                     Err(ErrorReported) => {
3735                         tcx.types.err
3736                     }
3737                 }
3738             }
3739           }
3740           hir::ExprType(ref e, ref t) => {
3741             let typ = self.to_ty(&t);
3742             self.check_expr_eq_type(&e, typ);
3743             typ
3744           }
3745           hir::ExprArray(ref args) => {
3746               let uty = expected.to_option(self).and_then(|uty| {
3747                   match uty.sty {
3748                       ty::TyArray(ty, _) | ty::TySlice(ty) => Some(ty),
3749                       _ => None
3750                   }
3751               });
3752
3753               let element_ty = if !args.is_empty() {
3754                   let coerce_to = uty.unwrap_or_else(
3755                       || self.next_ty_var(TypeVariableOrigin::TypeInference(expr.span)));
3756                   let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
3757                   assert_eq!(self.diverges.get(), Diverges::Maybe);
3758                   for e in args {
3759                       let e_ty = self.check_expr_with_hint(e, coerce_to);
3760                       let cause = self.misc(e.span);
3761                       coerce.coerce(self, &cause, e, e_ty, self.diverges.get());
3762                   }
3763                   coerce.complete(self)
3764               } else {
3765                   self.next_ty_var(TypeVariableOrigin::TypeInference(expr.span))
3766               };
3767               tcx.mk_array(element_ty, args.len())
3768           }
3769           hir::ExprRepeat(ref element, count) => {
3770             let count = eval_length(self.tcx, count, "repeat count")
3771                   .unwrap_or(0);
3772
3773             let uty = match expected {
3774                 ExpectHasType(uty) => {
3775                     match uty.sty {
3776                         ty::TyArray(ty, _) | ty::TySlice(ty) => Some(ty),
3777                         _ => None
3778                     }
3779                 }
3780                 _ => None
3781             };
3782
3783             let (element_ty, t) = match uty {
3784                 Some(uty) => {
3785                     self.check_expr_coercable_to_type(&element, uty);
3786                     (uty, uty)
3787                 }
3788                 None => {
3789                     let t: Ty = self.next_ty_var(TypeVariableOrigin::MiscVariable(element.span));
3790                     let element_ty = self.check_expr_has_type(&element, t);
3791                     (element_ty, t)
3792                 }
3793             };
3794
3795             if count > 1 {
3796                 // For [foo, ..n] where n > 1, `foo` must have
3797                 // Copy type:
3798                 let lang_item = self.tcx.require_lang_item(lang_items::CopyTraitLangItem);
3799                 self.require_type_meets(t, expr.span, traits::RepeatVec, lang_item);
3800             }
3801
3802             if element_ty.references_error() {
3803                 tcx.types.err
3804             } else {
3805                 tcx.mk_array(t, count)
3806             }
3807           }
3808           hir::ExprTup(ref elts) => {
3809             let flds = expected.only_has_type(self).and_then(|ty| {
3810                 match ty.sty {
3811                     ty::TyTuple(ref flds, _) => Some(&flds[..]),
3812                     _ => None
3813                 }
3814             });
3815
3816             let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| {
3817                 let t = match flds {
3818                     Some(ref fs) if i < fs.len() => {
3819                         let ety = fs[i];
3820                         self.check_expr_coercable_to_type(&e, ety);
3821                         ety
3822                     }
3823                     _ => {
3824                         self.check_expr_with_expectation(&e, NoExpectation)
3825                     }
3826                 };
3827                 t
3828             });
3829             let tuple = tcx.mk_tup(elt_ts_iter, false);
3830             if tuple.references_error() {
3831                 tcx.types.err
3832             } else {
3833                 tuple
3834             }
3835           }
3836           hir::ExprStruct(ref qpath, ref fields, ref base_expr) => {
3837             self.check_expr_struct(expr, expected, qpath, fields, base_expr)
3838           }
3839           hir::ExprField(ref base, ref field) => {
3840             self.check_field(expr, lvalue_pref, &base, field)
3841           }
3842           hir::ExprTupField(ref base, idx) => {
3843             self.check_tup_field(expr, lvalue_pref, &base, idx)
3844           }
3845           hir::ExprIndex(ref base, ref idx) => {
3846               let base_t = self.check_expr_with_lvalue_pref(&base, lvalue_pref);
3847               let idx_t = self.check_expr(&idx);
3848
3849               if base_t.references_error() {
3850                   base_t
3851               } else if idx_t.references_error() {
3852                   idx_t
3853               } else {
3854                   let base_t = self.structurally_resolved_type(expr.span, base_t);
3855                   match self.lookup_indexing(expr, base, base_t, idx_t, lvalue_pref) {
3856                       Some((index_ty, element_ty)) => {
3857                           self.demand_coerce(idx, idx_t, index_ty);
3858                           element_ty
3859                       }
3860                       None => {
3861                           let mut err = self.type_error_struct(
3862                               expr.span,
3863                               |actual| {
3864                                   format!("cannot index a value of type `{}`",
3865                                           actual)
3866                               },
3867                               base_t);
3868                           // Try to give some advice about indexing tuples.
3869                           if let ty::TyTuple(..) = base_t.sty {
3870                               let mut needs_note = true;
3871                               // If the index is an integer, we can show the actual
3872                               // fixed expression:
3873                               if let hir::ExprLit(ref lit) = idx.node {
3874                                   if let ast::LitKind::Int(i,
3875                                             ast::LitIntType::Unsuffixed) = lit.node {
3876                                       let snip = tcx.sess.codemap().span_to_snippet(base.span);
3877                                       if let Ok(snip) = snip {
3878                                           err.span_suggestion(expr.span,
3879                                                               "to access tuple elements, use",
3880                                                               format!("{}.{}", snip, i));
3881                                           needs_note = false;
3882                                       }
3883                                   }
3884                               }
3885                               if needs_note {
3886                                   err.help("to access tuple elements, use tuple indexing \
3887                                             syntax (e.g. `tuple.0`)");
3888                               }
3889                           }
3890                           err.emit();
3891                           self.tcx.types.err
3892                       }
3893                   }
3894               }
3895            }
3896         }
3897     }
3898
3899     // Finish resolving a path in a struct expression or pattern `S::A { .. }` if necessary.
3900     // The newly resolved definition is written into `type_dependent_defs`.
3901     fn finish_resolving_struct_path(&self,
3902                                     qpath: &hir::QPath,
3903                                     path_span: Span,
3904                                     node_id: ast::NodeId)
3905                                     -> (Def, Ty<'tcx>)
3906     {
3907         match *qpath {
3908             hir::QPath::Resolved(ref maybe_qself, ref path) => {
3909                 let opt_self_ty = maybe_qself.as_ref().map(|qself| self.to_ty(qself));
3910                 let ty = AstConv::def_to_ty(self, opt_self_ty, path, true);
3911                 (path.def, ty)
3912             }
3913             hir::QPath::TypeRelative(ref qself, ref segment) => {
3914                 let ty = self.to_ty(qself);
3915
3916                 let def = if let hir::TyPath(hir::QPath::Resolved(_, ref path)) = qself.node {
3917                     path.def
3918                 } else {
3919                     Def::Err
3920                 };
3921                 let (ty, def) = AstConv::associated_path_def_to_ty(self, node_id, path_span,
3922                                                                    ty, def, segment);
3923
3924                 // Write back the new resolution.
3925                 self.tables.borrow_mut().type_dependent_defs.insert(node_id, def);
3926
3927                 (def, ty)
3928             }
3929         }
3930     }
3931
3932     // Resolve associated value path into a base type and associated constant or method definition.
3933     // The newly resolved definition is written into `type_dependent_defs`.
3934     pub fn resolve_ty_and_def_ufcs<'b>(&self,
3935                                        qpath: &'b hir::QPath,
3936                                        node_id: ast::NodeId,
3937                                        span: Span)
3938                                        -> (Def, Option<Ty<'tcx>>, &'b [hir::PathSegment])
3939     {
3940         let (ty, item_segment) = match *qpath {
3941             hir::QPath::Resolved(ref opt_qself, ref path) => {
3942                 return (path.def,
3943                         opt_qself.as_ref().map(|qself| self.to_ty(qself)),
3944                         &path.segments[..]);
3945             }
3946             hir::QPath::TypeRelative(ref qself, ref segment) => {
3947                 (self.to_ty(qself), segment)
3948             }
3949         };
3950         let item_name = item_segment.name;
3951         let def = match self.resolve_ufcs(span, item_name, ty, node_id) {
3952             Ok(def) => def,
3953             Err(error) => {
3954                 let def = match error {
3955                     method::MethodError::PrivateMatch(def) => def,
3956                     _ => Def::Err,
3957                 };
3958                 if item_name != keywords::Invalid.name() {
3959                     self.report_method_error(span, ty, item_name, None, error, None);
3960                 }
3961                 def
3962             }
3963         };
3964
3965         // Write back the new resolution.
3966         self.tables.borrow_mut().type_dependent_defs.insert(node_id, def);
3967         (def, Some(ty), slice::ref_slice(&**item_segment))
3968     }
3969
3970     pub fn check_decl_initializer(&self,
3971                                   local: &'gcx hir::Local,
3972                                   init: &'gcx hir::Expr) -> Ty<'tcx>
3973     {
3974         let ref_bindings = local.pat.contains_ref_binding();
3975
3976         let local_ty = self.local_ty(init.span, local.id);
3977         if let Some(m) = ref_bindings {
3978             // Somewhat subtle: if we have a `ref` binding in the pattern,
3979             // we want to avoid introducing coercions for the RHS. This is
3980             // both because it helps preserve sanity and, in the case of
3981             // ref mut, for soundness (issue #23116). In particular, in
3982             // the latter case, we need to be clear that the type of the
3983             // referent for the reference that results is *equal to* the
3984             // type of the lvalue it is referencing, and not some
3985             // supertype thereof.
3986             let init_ty = self.check_expr_with_lvalue_pref(init, LvaluePreference::from_mutbl(m));
3987             self.demand_eqtype(init.span, init_ty, local_ty);
3988             init_ty
3989         } else {
3990             self.check_expr_coercable_to_type(init, local_ty)
3991         }
3992     }
3993
3994     pub fn check_decl_local(&self, local: &'gcx hir::Local)  {
3995         let t = self.local_ty(local.span, local.id);
3996         self.write_ty(local.id, t);
3997
3998         if let Some(ref init) = local.init {
3999             let init_ty = self.check_decl_initializer(local, &init);
4000             if init_ty.references_error() {
4001                 self.write_ty(local.id, init_ty);
4002             }
4003         }
4004
4005         self.check_pat(&local.pat, t);
4006         let pat_ty = self.node_ty(local.pat.id);
4007         if pat_ty.references_error() {
4008             self.write_ty(local.id, pat_ty);
4009         }
4010     }
4011
4012     pub fn check_stmt(&self, stmt: &'gcx hir::Stmt) {
4013         // Don't do all the complex logic below for DeclItem.
4014         match stmt.node {
4015             hir::StmtDecl(ref decl, _) => {
4016                 match decl.node {
4017                     hir::DeclLocal(_) => {}
4018                     hir::DeclItem(_) => {
4019                         return;
4020                     }
4021                 }
4022             }
4023             hir::StmtExpr(..) | hir::StmtSemi(..) => {}
4024         }
4025
4026         self.warn_if_unreachable(stmt.node.id(), stmt.span, "statement");
4027
4028         // Hide the outer diverging and has_errors flags.
4029         let old_diverges = self.diverges.get();
4030         let old_has_errors = self.has_errors.get();
4031         self.diverges.set(Diverges::Maybe);
4032         self.has_errors.set(false);
4033
4034         match stmt.node {
4035             hir::StmtDecl(ref decl, _) => {
4036                 match decl.node {
4037                     hir::DeclLocal(ref l) => {
4038                         self.check_decl_local(&l);
4039                     }
4040                     hir::DeclItem(_) => {/* ignore for now */}
4041                 }
4042             }
4043             hir::StmtExpr(ref expr, _) => {
4044                 // Check with expected type of ()
4045                 self.check_expr_has_type(&expr, self.tcx.mk_nil());
4046             }
4047             hir::StmtSemi(ref expr, _) => {
4048                 self.check_expr(&expr);
4049             }
4050         }
4051
4052         // Combine the diverging and has_error flags.
4053         self.diverges.set(self.diverges.get() | old_diverges);
4054         self.has_errors.set(self.has_errors.get() | old_has_errors);
4055     }
4056
4057     pub fn check_block_no_value(&self, blk: &'gcx hir::Block)  {
4058         let unit = self.tcx.mk_nil();
4059         let ty = self.check_block_with_expected(blk, ExpectHasType(unit));
4060
4061         // if the block produces a `!` value, that can always be
4062         // (effectively) coerced to unit.
4063         if !ty.is_never() {
4064             self.demand_suptype(blk.span, unit, ty);
4065         }
4066     }
4067
4068     fn check_block_with_expected(&self,
4069                                  blk: &'gcx hir::Block,
4070                                  expected: Expectation<'tcx>) -> Ty<'tcx> {
4071         let prev = {
4072             let mut fcx_ps = self.ps.borrow_mut();
4073             let unsafety_state = fcx_ps.recurse(blk);
4074             replace(&mut *fcx_ps, unsafety_state)
4075         };
4076
4077         // In some cases, blocks have just one exit, but other blocks
4078         // can be targeted by multiple breaks. This cannot happen in
4079         // normal Rust syntax today, but it can happen when we desugar
4080         // a `do catch { ... }` expression.
4081         //
4082         // Example 1:
4083         //
4084         //    'a: { if true { break 'a Err(()); } Ok(()) }
4085         //
4086         // Here we would wind up with two coercions, one from
4087         // `Err(())` and the other from the tail expression
4088         // `Ok(())`. If the tail expression is omitted, that's a
4089         // "forced unit" -- unless the block diverges, in which
4090         // case we can ignore the tail expression (e.g., `'a: {
4091         // break 'a 22; }` would not force the type of the block
4092         // to be `()`).
4093         let tail_expr = blk.expr.as_ref();
4094         let coerce_to_ty = expected.coercion_target_type(self, blk.span);
4095         let coerce = if blk.targeted_by_break {
4096             CoerceMany::new(coerce_to_ty)
4097         } else {
4098             let tail_expr: &[P<hir::Expr>] = match tail_expr {
4099                 Some(e) => ref_slice(e),
4100                 None => &[],
4101             };
4102             CoerceMany::with_coercion_sites(coerce_to_ty, tail_expr)
4103         };
4104
4105         let ctxt = BreakableCtxt {
4106             coerce: Some(coerce),
4107             may_break: false,
4108         };
4109
4110         let (ctxt, ()) = self.with_breakable_ctxt(blk.id, ctxt, || {
4111             for s in &blk.stmts {
4112                 self.check_stmt(s);
4113             }
4114
4115             // check the tail expression **without** holding the
4116             // `enclosing_breakables` lock below.
4117             let tail_expr_ty = tail_expr.map(|t| self.check_expr_with_expectation(t, expected));
4118
4119             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4120             let mut ctxt = enclosing_breakables.find_breakable(blk.id);
4121             let mut coerce = ctxt.coerce.as_mut().unwrap();
4122             if let Some(tail_expr_ty) = tail_expr_ty {
4123                 let tail_expr = tail_expr.unwrap();
4124                 coerce.coerce(self,
4125                               &self.misc(tail_expr.span),
4126                               tail_expr,
4127                               tail_expr_ty,
4128                               self.diverges.get());
4129             } else {
4130                 // Subtle: if there is no explicit tail expression,
4131                 // that is typically equivalent to a tail expression
4132                 // of `()` -- except if the block diverges. In that
4133                 // case, there is no value supplied from the tail
4134                 // expression (assuming there are no other breaks,
4135                 // this implies that the type of the block will be
4136                 // `!`).
4137                 //
4138                 // #41425 -- label the implicit `()` as being the
4139                 // "found type" here, rather than the "expected type".
4140                 if !self.diverges.get().always() {
4141                     coerce.coerce_forced_unit(self, &self.misc(blk.span), &mut |err| {
4142                         if let Some(expected_ty) = expected.only_has_type(self) {
4143                             self.consider_hint_about_removing_semicolon(blk,
4144                                                                         expected_ty,
4145                                                                         err);
4146                         }
4147                     }, false);
4148                 }
4149             }
4150         });
4151
4152         let mut ty = ctxt.coerce.unwrap().complete(self);
4153
4154         if self.has_errors.get() || ty.references_error() {
4155             ty = self.tcx.types.err
4156         }
4157
4158         self.write_ty(blk.id, ty);
4159
4160         *self.ps.borrow_mut() = prev;
4161         ty
4162     }
4163
4164     /// A common error is to add an extra semicolon:
4165     ///
4166     /// ```
4167     /// fn foo() -> usize {
4168     ///     22;
4169     /// }
4170     /// ```
4171     ///
4172     /// This routine checks if the final statement in a block is an
4173     /// expression with an explicit semicolon whose type is compatible
4174     /// with `expected_ty`. If so, it suggests removing the semicolon.
4175     fn consider_hint_about_removing_semicolon(&self,
4176                                               blk: &'gcx hir::Block,
4177                                               expected_ty: Ty<'tcx>,
4178                                               err: &mut DiagnosticBuilder) {
4179         // Be helpful when the user wrote `{... expr;}` and
4180         // taking the `;` off is enough to fix the error.
4181         let last_stmt = match blk.stmts.last() {
4182             Some(s) => s,
4183             None => return,
4184         };
4185         let last_expr = match last_stmt.node {
4186             hir::StmtSemi(ref e, _) => e,
4187             _ => return,
4188         };
4189         let last_expr_ty = self.node_ty(last_expr.id);
4190         if self.can_sub(self.param_env, last_expr_ty, expected_ty).is_err() {
4191             return;
4192         }
4193         let original_span = original_sp(last_stmt.span, blk.span);
4194         let span_semi = Span {
4195             lo: original_span.hi - BytePos(1),
4196             hi: original_span.hi,
4197             ctxt: original_span.ctxt,
4198         };
4199         err.span_help(span_semi, "consider removing this semicolon:");
4200     }
4201
4202     // Instantiates the given path, which must refer to an item with the given
4203     // number of type parameters and type.
4204     pub fn instantiate_value_path(&self,
4205                                   segments: &[hir::PathSegment],
4206                                   opt_self_ty: Option<Ty<'tcx>>,
4207                                   def: Def,
4208                                   span: Span,
4209                                   node_id: ast::NodeId)
4210                                   -> Ty<'tcx> {
4211         debug!("instantiate_value_path(path={:?}, def={:?}, node_id={})",
4212                segments,
4213                def,
4214                node_id);
4215
4216         // We need to extract the type parameters supplied by the user in
4217         // the path `path`. Due to the current setup, this is a bit of a
4218         // tricky-process; the problem is that resolve only tells us the
4219         // end-point of the path resolution, and not the intermediate steps.
4220         // Luckily, we can (at least for now) deduce the intermediate steps
4221         // just from the end-point.
4222         //
4223         // There are basically four cases to consider:
4224         //
4225         // 1. Reference to a constructor of enum variant or struct:
4226         //
4227         //        struct Foo<T>(...)
4228         //        enum E<T> { Foo(...) }
4229         //
4230         //    In these cases, the parameters are declared in the type
4231         //    space.
4232         //
4233         // 2. Reference to a fn item or a free constant:
4234         //
4235         //        fn foo<T>() { }
4236         //
4237         //    In this case, the path will again always have the form
4238         //    `a::b::foo::<T>` where only the final segment should have
4239         //    type parameters. However, in this case, those parameters are
4240         //    declared on a value, and hence are in the `FnSpace`.
4241         //
4242         // 3. Reference to a method or an associated constant:
4243         //
4244         //        impl<A> SomeStruct<A> {
4245         //            fn foo<B>(...)
4246         //        }
4247         //
4248         //    Here we can have a path like
4249         //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
4250         //    may appear in two places. The penultimate segment,
4251         //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
4252         //    final segment, `foo::<B>` contains parameters in fn space.
4253         //
4254         // 4. Reference to a local variable
4255         //
4256         //    Local variables can't have any type parameters.
4257         //
4258         // The first step then is to categorize the segments appropriately.
4259
4260         assert!(!segments.is_empty());
4261
4262         let mut ufcs_associated = None;
4263         let mut type_segment = None;
4264         let mut fn_segment = None;
4265         match def {
4266             // Case 1. Reference to a struct/variant constructor.
4267             Def::StructCtor(def_id, ..) |
4268             Def::VariantCtor(def_id, ..) => {
4269                 // Everything but the final segment should have no
4270                 // parameters at all.
4271                 let mut generics = self.tcx.generics_of(def_id);
4272                 if let Some(def_id) = generics.parent {
4273                     // Variant and struct constructors use the
4274                     // generics of their parent type definition.
4275                     generics = self.tcx.generics_of(def_id);
4276                 }
4277                 type_segment = Some((segments.last().unwrap(), generics));
4278             }
4279
4280             // Case 2. Reference to a top-level value.
4281             Def::Fn(def_id) |
4282             Def::Const(def_id) |
4283             Def::Static(def_id, _) => {
4284                 fn_segment = Some((segments.last().unwrap(),
4285                                    self.tcx.generics_of(def_id)));
4286             }
4287
4288             // Case 3. Reference to a method or associated const.
4289             Def::Method(def_id) |
4290             Def::AssociatedConst(def_id) => {
4291                 let container = self.tcx.associated_item(def_id).container;
4292                 match container {
4293                     ty::TraitContainer(trait_did) => {
4294                         callee::check_legal_trait_for_method_call(self.tcx, span, trait_did)
4295                     }
4296                     ty::ImplContainer(_) => {}
4297                 }
4298
4299                 let generics = self.tcx.generics_of(def_id);
4300                 if segments.len() >= 2 {
4301                     let parent_generics = self.tcx.generics_of(generics.parent.unwrap());
4302                     type_segment = Some((&segments[segments.len() - 2], parent_generics));
4303                 } else {
4304                     // `<T>::assoc` will end up here, and so can `T::assoc`.
4305                     let self_ty = opt_self_ty.expect("UFCS sugared assoc missing Self");
4306                     ufcs_associated = Some((container, self_ty));
4307                 }
4308                 fn_segment = Some((segments.last().unwrap(), generics));
4309             }
4310
4311             // Case 4. Local variable, no generics.
4312             Def::Local(..) | Def::Upvar(..) => {}
4313
4314             _ => bug!("unexpected definition: {:?}", def),
4315         }
4316
4317         debug!("type_segment={:?} fn_segment={:?}", type_segment, fn_segment);
4318
4319         // Now that we have categorized what space the parameters for each
4320         // segment belong to, let's sort out the parameters that the user
4321         // provided (if any) into their appropriate spaces. We'll also report
4322         // errors if type parameters are provided in an inappropriate place.
4323         let poly_segments = type_segment.is_some() as usize +
4324                             fn_segment.is_some() as usize;
4325         AstConv::prohibit_type_params(self, &segments[..segments.len() - poly_segments]);
4326
4327         match def {
4328             Def::Local(def_id) | Def::Upvar(def_id, ..) => {
4329                 let nid = self.tcx.hir.as_local_node_id(def_id).unwrap();
4330                 let ty = self.local_ty(span, nid);
4331                 let ty = self.normalize_associated_types_in(span, &ty);
4332                 self.write_ty(node_id, ty);
4333                 return ty;
4334             }
4335             _ => {}
4336         }
4337
4338         // Now we have to compare the types that the user *actually*
4339         // provided against the types that were *expected*. If the user
4340         // did not provide any types, then we want to substitute inference
4341         // variables. If the user provided some types, we may still need
4342         // to add defaults. If the user provided *too many* types, that's
4343         // a problem.
4344         self.check_path_parameter_count(span, &mut type_segment);
4345         self.check_path_parameter_count(span, &mut fn_segment);
4346
4347         let (fn_start, has_self) = match (type_segment, fn_segment) {
4348             (_, Some((_, generics))) => {
4349                 (generics.parent_count(), generics.has_self)
4350             }
4351             (Some((_, generics)), None) => {
4352                 (generics.own_count(), generics.has_self)
4353             }
4354             (None, None) => (0, false)
4355         };
4356         let substs = Substs::for_item(self.tcx, def.def_id(), |def, _| {
4357             let mut i = def.index as usize;
4358
4359             let segment = if i < fn_start {
4360                 i -= has_self as usize;
4361                 type_segment
4362             } else {
4363                 i -= fn_start;
4364                 fn_segment
4365             };
4366             let lifetimes = match segment.map(|(s, _)| &s.parameters) {
4367                 Some(&hir::AngleBracketedParameters(ref data)) => &data.lifetimes[..],
4368                 Some(&hir::ParenthesizedParameters(_)) => bug!(),
4369                 None => &[]
4370             };
4371
4372             if let Some(lifetime) = lifetimes.get(i) {
4373                 AstConv::ast_region_to_region(self, lifetime, Some(def))
4374             } else {
4375                 self.re_infer(span, Some(def)).unwrap()
4376             }
4377         }, |def, substs| {
4378             let mut i = def.index as usize;
4379
4380             let segment = if i < fn_start {
4381                 // Handle Self first, so we can adjust the index to match the AST.
4382                 if has_self && i == 0 {
4383                     return opt_self_ty.unwrap_or_else(|| {
4384                         self.type_var_for_def(span, def, substs)
4385                     });
4386                 }
4387                 i -= has_self as usize;
4388                 type_segment
4389             } else {
4390                 i -= fn_start;
4391                 fn_segment
4392             };
4393             let (types, infer_types) = match segment.map(|(s, _)| &s.parameters) {
4394                 Some(&hir::AngleBracketedParameters(ref data)) => {
4395                     (&data.types[..], data.infer_types)
4396                 }
4397                 Some(&hir::ParenthesizedParameters(_)) => bug!(),
4398                 None => (&[][..], true)
4399             };
4400
4401             // Skip over the lifetimes in the same segment.
4402             if let Some((_, generics)) = segment {
4403                 i -= generics.regions.len();
4404             }
4405
4406             if let Some(ast_ty) = types.get(i) {
4407                 // A provided type parameter.
4408                 self.to_ty(ast_ty)
4409             } else if !infer_types && def.has_default {
4410                 // No type parameter provided, but a default exists.
4411                 let default = self.tcx.type_of(def.def_id);
4412                 self.normalize_ty(
4413                     span,
4414                     default.subst_spanned(self.tcx, substs, Some(span))
4415                 )
4416             } else {
4417                 // No type parameters were provided, we can infer all.
4418                 // This can also be reached in some error cases:
4419                 // We prefer to use inference variables instead of
4420                 // TyError to let type inference recover somewhat.
4421                 self.type_var_for_def(span, def, substs)
4422             }
4423         });
4424
4425         // The things we are substituting into the type should not contain
4426         // escaping late-bound regions, and nor should the base type scheme.
4427         let ty = self.tcx.type_of(def.def_id());
4428         assert!(!substs.has_escaping_regions());
4429         assert!(!ty.has_escaping_regions());
4430
4431         // Add all the obligations that are required, substituting and
4432         // normalized appropriately.
4433         let bounds = self.instantiate_bounds(span, def.def_id(), &substs);
4434         self.add_obligations_for_parameters(
4435             traits::ObligationCause::new(span, self.body_id, traits::ItemObligation(def.def_id())),
4436             &bounds);
4437
4438         // Substitute the values for the type parameters into the type of
4439         // the referenced item.
4440         let ty_substituted = self.instantiate_type_scheme(span, &substs, &ty);
4441
4442         if let Some((ty::ImplContainer(impl_def_id), self_ty)) = ufcs_associated {
4443             // In the case of `Foo<T>::method` and `<Foo<T>>::method`, if `method`
4444             // is inherent, there is no `Self` parameter, instead, the impl needs
4445             // type parameters, which we can infer by unifying the provided `Self`
4446             // with the substituted impl type.
4447             let ty = self.tcx.type_of(impl_def_id);
4448
4449             let impl_ty = self.instantiate_type_scheme(span, &substs, &ty);
4450             match self.at(&self.misc(span), self.param_env).sup(impl_ty, self_ty) {
4451                 Ok(ok) => self.register_infer_ok_obligations(ok),
4452                 Err(_) => {
4453                     span_bug!(span,
4454                         "instantiate_value_path: (UFCS) {:?} was a subtype of {:?} but now is not?",
4455                         self_ty,
4456                         impl_ty);
4457                 }
4458             }
4459         }
4460
4461         debug!("instantiate_value_path: type of {:?} is {:?}",
4462                node_id,
4463                ty_substituted);
4464         self.write_substs(node_id, substs);
4465         ty_substituted
4466     }
4467
4468     /// Report errors if the provided parameters are too few or too many.
4469     fn check_path_parameter_count(&self,
4470                                   span: Span,
4471                                   segment: &mut Option<(&hir::PathSegment, &ty::Generics)>) {
4472         let (lifetimes, types, infer_types, bindings) = {
4473             match segment.map(|(s, _)| &s.parameters) {
4474                 Some(&hir::AngleBracketedParameters(ref data)) => {
4475                     (&data.lifetimes[..], &data.types[..], data.infer_types, &data.bindings[..])
4476                 }
4477                 Some(&hir::ParenthesizedParameters(_)) => {
4478                     AstConv::prohibit_parenthesized_params(self, &segment.as_ref().unwrap().0,
4479                                                            false);
4480                     (&[][..], &[][..], true, &[][..])
4481                 }
4482                 None => (&[][..], &[][..], true, &[][..])
4483             }
4484         };
4485
4486         let count_lifetime_params = |n| {
4487             format!("{} lifetime parameter{}", n, if n == 1 { "" } else { "s" })
4488         };
4489         let count_type_params = |n| {
4490             format!("{} type parameter{}", n, if n == 1 { "" } else { "s" })
4491         };
4492
4493         // Check provided lifetime parameters.
4494         let lifetime_defs = segment.map_or(&[][..], |(_, generics)| &generics.regions);
4495         if lifetimes.len() > lifetime_defs.len() {
4496             let expected_text = count_lifetime_params(lifetime_defs.len());
4497             let actual_text = count_lifetime_params(lifetimes.len());
4498             struct_span_err!(self.tcx.sess, span, E0088,
4499                              "too many lifetime parameters provided: \
4500                               expected at most {}, found {}",
4501                              expected_text, actual_text)
4502                 .span_label(span, format!("expected {}", expected_text))
4503                 .emit();
4504         } else if lifetimes.len() > 0 && lifetimes.len() < lifetime_defs.len() {
4505             let expected_text = count_lifetime_params(lifetime_defs.len());
4506             let actual_text = count_lifetime_params(lifetimes.len());
4507             struct_span_err!(self.tcx.sess, span, E0090,
4508                              "too few lifetime parameters provided: \
4509                               expected {}, found {}",
4510                              expected_text, actual_text)
4511                 .span_label(span, format!("expected {}", expected_text))
4512                 .emit();
4513         }
4514
4515         // The case where there is not enough lifetime parameters is not checked,
4516         // because this is not possible - a function never takes lifetime parameters.
4517         // See discussion for Pull Request 36208.
4518
4519         // Check provided type parameters.
4520         let type_defs = segment.map_or(&[][..], |(_, generics)| {
4521             if generics.parent.is_none() {
4522                 &generics.types[generics.has_self as usize..]
4523             } else {
4524                 &generics.types
4525             }
4526         });
4527         let required_len = type_defs.iter().take_while(|d| !d.has_default).count();
4528         if types.len() > type_defs.len() {
4529             let span = types[type_defs.len()].span;
4530             let expected_text = count_type_params(type_defs.len());
4531             let actual_text = count_type_params(types.len());
4532             struct_span_err!(self.tcx.sess, span, E0087,
4533                              "too many type parameters provided: \
4534                               expected at most {}, found {}",
4535                              expected_text, actual_text)
4536                 .span_label(span, format!("expected {}", expected_text))
4537                 .emit();
4538
4539             // To prevent derived errors to accumulate due to extra
4540             // type parameters, we force instantiate_value_path to
4541             // use inference variables instead of the provided types.
4542             *segment = None;
4543         } else if !infer_types && types.len() < required_len {
4544             let expected_text = count_type_params(required_len);
4545             let actual_text = count_type_params(types.len());
4546             struct_span_err!(self.tcx.sess, span, E0089,
4547                              "too few type parameters provided: \
4548                               expected {}, found {}",
4549                              expected_text, actual_text)
4550                 .span_label(span, format!("expected {}", expected_text))
4551                 .emit();
4552         }
4553
4554         if !bindings.is_empty() {
4555             span_err!(self.tcx.sess, bindings[0].span, E0182,
4556                       "unexpected binding of associated item in expression path \
4557                        (only allowed in type paths)");
4558         }
4559     }
4560
4561     fn structurally_resolve_type_or_else<F>(&self, sp: Span, ty: Ty<'tcx>, f: F)
4562                                             -> Ty<'tcx>
4563         where F: Fn() -> Ty<'tcx>
4564     {
4565         let mut ty = self.resolve_type_vars_with_obligations(ty);
4566
4567         if ty.is_ty_var() {
4568             let alternative = f();
4569
4570             // If not, error.
4571             if alternative.is_ty_var() || alternative.references_error() {
4572                 if !self.is_tainted_by_errors() {
4573                     self.type_error_message(sp, |_actual| {
4574                         "the type of this value must be known in this context".to_string()
4575                     }, ty);
4576                 }
4577                 self.demand_suptype(sp, self.tcx.types.err, ty);
4578                 ty = self.tcx.types.err;
4579             } else {
4580                 self.demand_suptype(sp, alternative, ty);
4581                 ty = alternative;
4582             }
4583         }
4584
4585         ty
4586     }
4587
4588     // Resolves `typ` by a single level if `typ` is a type variable.  If no
4589     // resolution is possible, then an error is reported.
4590     pub fn structurally_resolved_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
4591         self.structurally_resolve_type_or_else(sp, ty, || {
4592             self.tcx.types.err
4593         })
4594     }
4595
4596     fn with_breakable_ctxt<F: FnOnce() -> R, R>(&self, id: ast::NodeId,
4597                                         ctxt: BreakableCtxt<'gcx, 'tcx>, f: F)
4598                                    -> (BreakableCtxt<'gcx, 'tcx>, R) {
4599         let index;
4600         {
4601             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4602             index = enclosing_breakables.stack.len();
4603             enclosing_breakables.by_id.insert(id, index);
4604             enclosing_breakables.stack.push(ctxt);
4605         }
4606         let result = f();
4607         let ctxt = {
4608             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
4609             debug_assert!(enclosing_breakables.stack.len() == index + 1);
4610             enclosing_breakables.by_id.remove(&id).expect("missing breakable context");
4611             enclosing_breakables.stack.pop().expect("missing breakable context")
4612         };
4613         (ctxt, result)
4614     }
4615 }
4616
4617 pub fn check_bounds_are_used<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
4618                                        generics: &hir::Generics,
4619                                        ty: Ty<'tcx>) {
4620     debug!("check_bounds_are_used(n_tps={}, ty={:?})",
4621            generics.ty_params.len(),  ty);
4622
4623     // make a vector of booleans initially false, set to true when used
4624     if generics.ty_params.is_empty() { return; }
4625     let mut tps_used = vec![false; generics.ty_params.len()];
4626
4627     for leaf_ty in ty.walk() {
4628         if let ty::TyParam(ParamTy {idx, ..}) = leaf_ty.sty {
4629             debug!("Found use of ty param num {}", idx);
4630             tps_used[idx as usize - generics.lifetimes.len()] = true;
4631         }
4632     }
4633
4634     for (&used, param) in tps_used.iter().zip(&generics.ty_params) {
4635         if !used {
4636             struct_span_err!(tcx.sess, param.span, E0091,
4637                 "type parameter `{}` is unused",
4638                 param.name)
4639                 .span_label(param.span, "unused type parameter")
4640                 .emit();
4641         }
4642     }
4643 }