]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/method/probe.rs
rustc: use DefKind instead of Def, where possible.
[rust.git] / src / librustc_typeck / check / method / probe.rs
1 use super::MethodError;
2 use super::NoMatchData;
3 use super::{CandidateSource, ImplSource, TraitSource};
4 use super::suggest;
5
6 use crate::check::autoderef::{self, Autoderef};
7 use crate::check::FnCtxt;
8 use crate::hir::def_id::DefId;
9 use crate::hir::def::DefKind;
10 use crate::namespace::Namespace;
11
12 use rustc_data_structures::sync::Lrc;
13 use rustc::hir;
14 use rustc::lint;
15 use rustc::session::config::nightly_options;
16 use rustc::ty::subst::{Subst, InternalSubsts, SubstsRef};
17 use rustc::traits::{self, ObligationCause};
18 use rustc::traits::query::{CanonicalTyGoal};
19 use rustc::traits::query::method_autoderef::{CandidateStep, MethodAutoderefStepsResult};
20 use rustc::traits::query::method_autoderef::{MethodAutoderefBadTy};
21 use rustc::ty::{self, ParamEnvAnd, Ty, TyCtxt, ToPolyTraitRef, ToPredicate, TraitRef, TypeFoldable};
22 use rustc::ty::GenericParamDefKind;
23 use rustc::infer::type_variable::TypeVariableOrigin;
24 use rustc::infer::unify_key::ConstVariableOrigin;
25 use rustc::util::nodemap::FxHashSet;
26 use rustc::infer::{self, InferOk};
27 use rustc::infer::canonical::{Canonical, QueryResponse};
28 use rustc::infer::canonical::{OriginalQueryValues};
29 use rustc::middle::stability;
30 use syntax::ast;
31 use syntax::util::lev_distance::{lev_distance, find_best_match_for_name};
32 use syntax_pos::{DUMMY_SP, Span, symbol::Symbol};
33 use std::iter;
34 use std::mem;
35 use std::ops::Deref;
36 use std::cmp::max;
37
38 use self::CandidateKind::*;
39 pub use self::PickKind::*;
40
41 /// Boolean flag used to indicate if this search is for a suggestion
42 /// or not. If true, we can allow ambiguity and so forth.
43 #[derive(Clone, Copy)]
44 pub struct IsSuggestion(pub bool);
45
46 struct ProbeContext<'a, 'gcx: 'a + 'tcx, 'tcx: 'a> {
47     fcx: &'a FnCtxt<'a, 'gcx, 'tcx>,
48     span: Span,
49     mode: Mode,
50     method_name: Option<ast::Ident>,
51     return_type: Option<Ty<'tcx>>,
52
53     /// This is the OriginalQueryValues for the steps queries
54     /// that are answered in steps.
55     orig_steps_var_values: OriginalQueryValues<'tcx>,
56     steps: Lrc<Vec<CandidateStep<'gcx>>>,
57
58     inherent_candidates: Vec<Candidate<'tcx>>,
59     extension_candidates: Vec<Candidate<'tcx>>,
60     impl_dups: FxHashSet<DefId>,
61
62     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
63     /// used for error reporting
64     static_candidates: Vec<CandidateSource>,
65
66     /// When probing for names, include names that are close to the
67     /// requested name (by Levensthein distance)
68     allow_similar_names: bool,
69
70     /// Some(candidate) if there is a private candidate
71     private_candidate: Option<(DefKind, DefId)>,
72
73     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
74     /// for error reporting
75     unsatisfied_predicates: Vec<TraitRef<'tcx>>,
76
77     is_suggestion: IsSuggestion,
78 }
79
80 impl<'a, 'gcx, 'tcx> Deref for ProbeContext<'a, 'gcx, 'tcx> {
81     type Target = FnCtxt<'a, 'gcx, 'tcx>;
82     fn deref(&self) -> &Self::Target {
83         &self.fcx
84     }
85 }
86
87 #[derive(Debug)]
88 struct Candidate<'tcx> {
89     // Candidates are (I'm not quite sure, but they are mostly) basically
90     // some metadata on top of a `ty::AssociatedItem` (without substs).
91     //
92     // However, method probing wants to be able to evaluate the predicates
93     // for a function with the substs applied - for example, if a function
94     // has `where Self: Sized`, we don't want to consider it unless `Self`
95     // is actually `Sized`, and similarly, return-type suggestions want
96     // to consider the "actual" return type.
97     //
98     // The way this is handled is through `xform_self_ty`. It contains
99     // the receiver type of this candidate, but `xform_self_ty`,
100     // `xform_ret_ty` and `kind` (which contains the predicates) have the
101     // generic parameters of this candidate substituted with the *same set*
102     // of inference variables, which acts as some weird sort of "query".
103     //
104     // When we check out a candidate, we require `xform_self_ty` to be
105     // a subtype of the passed-in self-type, and this equates the type
106     // variables in the rest of the fields.
107     //
108     // For example, if we have this candidate:
109     // ```
110     //    trait Foo {
111     //        fn foo(&self) where Self: Sized;
112     //    }
113     // ```
114     //
115     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
116     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
117     // the receiver `&T`, we'll do the subtyping which will make `?X`
118     // get the right value, then when we evaluate the predicate we'll check
119     // if `T: Sized`.
120     xform_self_ty: Ty<'tcx>,
121     xform_ret_ty: Option<Ty<'tcx>>,
122     item: ty::AssociatedItem,
123     kind: CandidateKind<'tcx>,
124     import_id: Option<hir::HirId>,
125 }
126
127 #[derive(Debug)]
128 enum CandidateKind<'tcx> {
129     InherentImplCandidate(SubstsRef<'tcx>,
130                           // Normalize obligations
131                           Vec<traits::PredicateObligation<'tcx>>),
132     ObjectCandidate,
133     TraitCandidate(ty::TraitRef<'tcx>),
134     WhereClauseCandidate(// Trait
135                          ty::PolyTraitRef<'tcx>),
136 }
137
138 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
139 enum ProbeResult {
140     NoMatch,
141     BadReturnType,
142     Match,
143 }
144
145 #[derive(Debug, PartialEq, Clone)]
146 pub struct Pick<'tcx> {
147     pub item: ty::AssociatedItem,
148     pub kind: PickKind<'tcx>,
149     pub import_id: Option<hir::HirId>,
150
151     // Indicates that the source expression should be autoderef'd N times
152     //
153     // A = expr | *expr | **expr | ...
154     pub autoderefs: usize,
155
156     // Indicates that an autoref is applied after the optional autoderefs
157     //
158     // B = A | &A | &mut A
159     pub autoref: Option<hir::Mutability>,
160
161     // Indicates that the source expression should be "unsized" to a
162     // target type. This should probably eventually go away in favor
163     // of just coercing method receivers.
164     //
165     // C = B | unsize(B)
166     pub unsize: Option<Ty<'tcx>>,
167 }
168
169 #[derive(Clone, Debug, PartialEq, Eq)]
170 pub enum PickKind<'tcx> {
171     InherentImplPick,
172     ObjectPick,
173     TraitPick,
174     WhereClausePick(// Trait
175                     ty::PolyTraitRef<'tcx>),
176 }
177
178 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
179
180 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
181 pub enum Mode {
182     // An expression of the form `receiver.method_name(...)`.
183     // Autoderefs are performed on `receiver`, lookup is done based on the
184     // `self` argument  of the method, and static methods aren't considered.
185     MethodCall,
186     // An expression of the form `Type::item` or `<T>::item`.
187     // No autoderefs are performed, lookup is done based on the type each
188     // implementation is for, and static methods are included.
189     Path,
190 }
191
192 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
193 pub enum ProbeScope {
194     // Assemble candidates coming only from traits in scope.
195     TraitsInScope,
196
197     // Assemble candidates coming from all traits.
198     AllTraits,
199 }
200
201 impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
202     /// This is used to offer suggestions to users. It returns methods
203     /// that could have been called which have the desired return
204     /// type. Some effort is made to rule out methods that, if called,
205     /// would result in an error (basically, the same criteria we
206     /// would use to decide if a method is a plausible fit for
207     /// ambiguity purposes).
208     pub fn probe_for_return_type(&self,
209                                  span: Span,
210                                  mode: Mode,
211                                  return_type: Ty<'tcx>,
212                                  self_ty: Ty<'tcx>,
213                                  scope_expr_id: hir::HirId)
214                                  -> Vec<ty::AssociatedItem> {
215         debug!("probe(self_ty={:?}, return_type={}, scope_expr_id={})",
216                self_ty,
217                return_type,
218                scope_expr_id);
219         let method_names =
220             self.probe_op(span, mode, None, Some(return_type), IsSuggestion(true),
221                           self_ty, scope_expr_id, ProbeScope::AllTraits,
222                           |probe_cx| Ok(probe_cx.candidate_method_names()))
223                 .unwrap_or(vec![]);
224          method_names
225              .iter()
226              .flat_map(|&method_name| {
227                  self.probe_op(
228                      span, mode, Some(method_name), Some(return_type),
229                      IsSuggestion(true), self_ty, scope_expr_id,
230                      ProbeScope::AllTraits, |probe_cx| probe_cx.pick()
231                  ).ok().map(|pick| pick.item)
232              })
233             .collect()
234     }
235
236     pub fn probe_for_name(&self,
237                           span: Span,
238                           mode: Mode,
239                           item_name: ast::Ident,
240                           is_suggestion: IsSuggestion,
241                           self_ty: Ty<'tcx>,
242                           scope_expr_id: hir::HirId,
243                           scope: ProbeScope)
244                           -> PickResult<'tcx> {
245         debug!("probe(self_ty={:?}, item_name={}, scope_expr_id={})",
246                self_ty,
247                item_name,
248                scope_expr_id);
249         self.probe_op(span,
250                       mode,
251                       Some(item_name),
252                       None,
253                       is_suggestion,
254                       self_ty,
255                       scope_expr_id,
256                       scope,
257                       |probe_cx| probe_cx.pick())
258     }
259
260     fn probe_op<OP,R>(&'a self,
261                       span: Span,
262                       mode: Mode,
263                       method_name: Option<ast::Ident>,
264                       return_type: Option<Ty<'tcx>>,
265                       is_suggestion: IsSuggestion,
266                       self_ty: Ty<'tcx>,
267                       scope_expr_id: hir::HirId,
268                       scope: ProbeScope,
269                       op: OP)
270                       -> Result<R, MethodError<'tcx>>
271         where OP: FnOnce(ProbeContext<'a, 'gcx, 'tcx>) -> Result<R, MethodError<'tcx>>
272     {
273         let mut orig_values = OriginalQueryValues::default();
274         let param_env_and_self_ty =
275             self.infcx.canonicalize_query(
276                 &ParamEnvAnd {
277                     param_env: self.param_env,
278                     value: self_ty
279                 }, &mut orig_values);
280
281         let steps = if mode == Mode::MethodCall {
282             self.tcx.method_autoderef_steps(param_env_and_self_ty)
283         } else {
284             self.infcx.probe(|_| {
285                 // Mode::Path - the deref steps is "trivial". This turns
286                 // our CanonicalQuery into a "trivial" QueryResponse. This
287                 // is a bit inefficient, but I don't think that writing
288                 // special handling for this "trivial case" is a good idea.
289
290                 let infcx = &self.infcx;
291                 let (ParamEnvAnd {
292                     param_env: _,
293                     value: self_ty
294                 }, canonical_inference_vars) =
295                     infcx.instantiate_canonical_with_fresh_inference_vars(
296                         span, &param_env_and_self_ty);
297                 debug!("probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
298                        param_env_and_self_ty, self_ty);
299                 MethodAutoderefStepsResult {
300                     steps: Lrc::new(vec![CandidateStep {
301                         self_ty: self.make_query_response_ignoring_pending_obligations(
302                             canonical_inference_vars, self_ty),
303                         autoderefs: 0,
304                         from_unsafe_deref: false,
305                         unsize: false,
306                     }]),
307                     opt_bad_ty: None,
308                     reached_recursion_limit: false
309                 }
310             })
311         };
312
313         // If our autoderef loop had reached the recursion limit,
314         // report an overflow error, but continue going on with
315         // the truncated autoderef list.
316         if steps.reached_recursion_limit {
317             self.probe(|_| {
318                 let ty = &steps.steps.last().unwrap_or_else(|| {
319                     span_bug!(span, "reached the recursion limit in 0 steps?")
320                 }).self_ty;
321                 let ty = self.probe_instantiate_query_response(span, &orig_values, ty)
322                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
323                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span,
324                                                                   ty.value);
325             });
326         }
327
328
329         // If we encountered an `_` type or an error type during autoderef, this is
330         // ambiguous.
331         if let Some(bad_ty) = &steps.opt_bad_ty {
332             if is_suggestion.0 {
333                 // Ambiguity was encountered during a suggestion. Just keep going.
334                 debug!("ProbeContext: encountered ambiguity in suggestion");
335             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
336                 // this case used to be allowed by the compiler,
337                 // so we do a future-compat lint here for the 2015 edition
338                 // (see https://github.com/rust-lang/rust/issues/46906)
339                 if self.tcx.sess.rust_2018() {
340                     span_err!(self.tcx.sess, span, E0699,
341                               "the type of this value must be known \
342                                to call a method on a raw pointer on it");
343                 } else {
344                    self.tcx.lint_hir(
345                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
346                         scope_expr_id,
347                         span,
348                         "type annotations needed");
349                 }
350             } else {
351                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
352                 // an `Err`, report the right "type annotations needed" error pointing
353                 // to it.
354                 let ty = &bad_ty.ty;
355                 let ty = self.probe_instantiate_query_response(span, &orig_values, ty)
356                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
357                 let ty = self.structurally_resolved_type(span, ty.value);
358                 assert_eq!(ty, self.tcx.types.err);
359                 return Err(MethodError::NoMatch(NoMatchData::new(Vec::new(),
360                                                                  Vec::new(),
361                                                                  Vec::new(),
362                                                                  None,
363                                                                  mode)));
364             }
365         }
366
367         debug!("ProbeContext: steps for self_ty={:?} are {:?}",
368                self_ty,
369                steps);
370
371
372         // this creates one big transaction so that all type variables etc
373         // that we create during the probe process are removed later
374         self.probe(|_| {
375             let mut probe_cx = ProbeContext::new(
376                 self, span, mode, method_name, return_type, orig_values,
377                 steps.steps, is_suggestion,
378             );
379
380             probe_cx.assemble_inherent_candidates();
381             match scope {
382                 ProbeScope::TraitsInScope =>
383                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)?,
384                 ProbeScope::AllTraits =>
385                     probe_cx.assemble_extension_candidates_for_all_traits()?,
386             };
387             op(probe_cx)
388         })
389     }
390 }
391
392 pub fn provide(providers: &mut ty::query::Providers<'_>) {
393     providers.method_autoderef_steps = method_autoderef_steps;
394 }
395
396 fn method_autoderef_steps<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'gcx>,
397                                           goal: CanonicalTyGoal<'tcx>)
398                                           -> MethodAutoderefStepsResult<'gcx>
399 {
400     debug!("method_autoderef_steps({:?})", goal);
401
402     tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
403         let ParamEnvAnd { param_env, value: self_ty } = goal;
404
405         let mut autoderef = Autoderef::new(infcx, param_env, hir::DUMMY_HIR_ID, DUMMY_SP, self_ty)
406             .include_raw_pointers()
407             .silence_errors();
408         let mut reached_raw_pointer = false;
409         let mut steps: Vec<_> = autoderef.by_ref()
410             .map(|(ty, d)| {
411                 let step = CandidateStep {
412                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
413                         inference_vars.clone(), ty),
414                     autoderefs: d,
415                     from_unsafe_deref: reached_raw_pointer,
416                     unsize: false,
417                 };
418                 if let ty::RawPtr(_) = ty.sty {
419                     // all the subsequent steps will be from_unsafe_deref
420                     reached_raw_pointer = true;
421                 }
422                 step
423             })
424             .collect();
425
426         let final_ty = autoderef.maybe_ambiguous_final_ty();
427         let opt_bad_ty = match final_ty.sty {
428             ty::Infer(ty::TyVar(_)) |
429             ty::Error => {
430                 Some(MethodAutoderefBadTy {
431                     reached_raw_pointer,
432                     ty: infcx.make_query_response_ignoring_pending_obligations(
433                         inference_vars, final_ty)
434                 })
435             }
436             ty::Array(elem_ty, _) => {
437                 let dereferences = steps.len() - 1;
438
439                 steps.push(CandidateStep {
440                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
441                         inference_vars, infcx.tcx.mk_slice(elem_ty)),
442                     autoderefs: dereferences,
443                     // this could be from an unsafe deref if we had
444                     // a *mut/const [T; N]
445                     from_unsafe_deref: reached_raw_pointer,
446                     unsize: true,
447                 });
448
449                 None
450             }
451             _ => None
452         };
453
454         debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
455
456         MethodAutoderefStepsResult {
457             steps: Lrc::new(steps),
458             opt_bad_ty: opt_bad_ty.map(Lrc::new),
459             reached_recursion_limit: autoderef.reached_recursion_limit()
460         }
461     })
462 }
463
464
465 impl<'a, 'gcx, 'tcx> ProbeContext<'a, 'gcx, 'tcx> {
466     fn new(fcx: &'a FnCtxt<'a, 'gcx, 'tcx>,
467            span: Span,
468            mode: Mode,
469            method_name: Option<ast::Ident>,
470            return_type: Option<Ty<'tcx>>,
471            orig_steps_var_values: OriginalQueryValues<'tcx>,
472            steps: Lrc<Vec<CandidateStep<'gcx>>>,
473            is_suggestion: IsSuggestion)
474            -> ProbeContext<'a, 'gcx, 'tcx> {
475         ProbeContext {
476             fcx,
477             span,
478             mode,
479             method_name,
480             return_type,
481             inherent_candidates: Vec::new(),
482             extension_candidates: Vec::new(),
483             impl_dups: FxHashSet::default(),
484             orig_steps_var_values,
485             steps,
486             static_candidates: Vec::new(),
487             allow_similar_names: false,
488             private_candidate: None,
489             unsatisfied_predicates: Vec::new(),
490             is_suggestion,
491         }
492     }
493
494     fn reset(&mut self) {
495         self.inherent_candidates.clear();
496         self.extension_candidates.clear();
497         self.impl_dups.clear();
498         self.static_candidates.clear();
499         self.private_candidate = None;
500     }
501
502     ///////////////////////////////////////////////////////////////////////////
503     // CANDIDATE ASSEMBLY
504
505     fn push_candidate(&mut self,
506                       candidate: Candidate<'tcx>,
507                       is_inherent: bool)
508     {
509         let is_accessible = if let Some(name) = self.method_name {
510             let item = candidate.item;
511             let def_scope = self.tcx.adjust_ident(name, item.container.id(), self.body_id).1;
512             item.vis.is_accessible_from(def_scope, self.tcx)
513         } else {
514             true
515         };
516         if is_accessible {
517             if is_inherent {
518                 self.inherent_candidates.push(candidate);
519             } else {
520                 self.extension_candidates.push(candidate);
521             }
522         } else if self.private_candidate.is_none() {
523             self.private_candidate =
524                 Some((candidate.item.def_kind(), candidate.item.def_id));
525         }
526     }
527
528     fn assemble_inherent_candidates(&mut self) {
529         let steps = self.steps.clone();
530         for step in steps.iter() {
531             self.assemble_probe(&step.self_ty);
532         }
533     }
534
535     fn assemble_probe(&mut self, self_ty: &Canonical<'gcx, QueryResponse<'gcx, Ty<'gcx>>>) {
536         debug!("assemble_probe: self_ty={:?}", self_ty);
537         let lang_items = self.tcx.lang_items();
538
539         match self_ty.value.value.sty {
540             ty::Dynamic(ref data, ..) => {
541                 if let Some(p) = data.principal() {
542                     // Subtle: we can't use `instantiate_query_response` here: using it will
543                     // commit to all of the type equalities assumed by inference going through
544                     // autoderef (see the `method-probe-no-guessing` test).
545                     //
546                     // However, in this code, it is OK if we end up with an object type that is
547                     // "more general" than the object type that we are evaluating. For *every*
548                     // object type `MY_OBJECT`, a function call that goes through a trait-ref
549                     // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
550                     // `ObjectCandidate`, and it should be discoverable "exactly" through one
551                     // of the iterations in the autoderef loop, so there is no problem with it
552                     // being discoverable in another one of these iterations.
553                     //
554                     // Using `instantiate_canonical_with_fresh_inference_vars` on our
555                     // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
556                     // `CanonicalVarValues` will exactly give us such a generalization - it
557                     // will still match the original object type, but it won't pollute our
558                     // type variables in any form, so just do that!
559                     let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
560                         self.fcx.instantiate_canonical_with_fresh_inference_vars(
561                             self.span, &self_ty);
562
563                     self.assemble_inherent_candidates_from_object(generalized_self_ty);
564                     self.assemble_inherent_impl_candidates_for_type(p.def_id());
565                 }
566             }
567             ty::Adt(def, _) => {
568                 self.assemble_inherent_impl_candidates_for_type(def.did);
569             }
570             ty::Foreign(did) => {
571                 self.assemble_inherent_impl_candidates_for_type(did);
572             }
573             ty::Param(p) => {
574                 self.assemble_inherent_candidates_from_param(p);
575             }
576             ty::Char => {
577                 let lang_def_id = lang_items.char_impl();
578                 self.assemble_inherent_impl_for_primitive(lang_def_id);
579             }
580             ty::Str => {
581                 let lang_def_id = lang_items.str_impl();
582                 self.assemble_inherent_impl_for_primitive(lang_def_id);
583
584                 let lang_def_id = lang_items.str_alloc_impl();
585                 self.assemble_inherent_impl_for_primitive(lang_def_id);
586             }
587             ty::Slice(_) => {
588                 let lang_def_id = lang_items.slice_impl();
589                 self.assemble_inherent_impl_for_primitive(lang_def_id);
590
591                 let lang_def_id = lang_items.slice_u8_impl();
592                 self.assemble_inherent_impl_for_primitive(lang_def_id);
593
594                 let lang_def_id = lang_items.slice_alloc_impl();
595                 self.assemble_inherent_impl_for_primitive(lang_def_id);
596
597                 let lang_def_id = lang_items.slice_u8_alloc_impl();
598                 self.assemble_inherent_impl_for_primitive(lang_def_id);
599             }
600             ty::RawPtr(ty::TypeAndMut { ty: _, mutbl: hir::MutImmutable }) => {
601                 let lang_def_id = lang_items.const_ptr_impl();
602                 self.assemble_inherent_impl_for_primitive(lang_def_id);
603             }
604             ty::RawPtr(ty::TypeAndMut { ty: _, mutbl: hir::MutMutable }) => {
605                 let lang_def_id = lang_items.mut_ptr_impl();
606                 self.assemble_inherent_impl_for_primitive(lang_def_id);
607             }
608             ty::Int(ast::IntTy::I8) => {
609                 let lang_def_id = lang_items.i8_impl();
610                 self.assemble_inherent_impl_for_primitive(lang_def_id);
611             }
612             ty::Int(ast::IntTy::I16) => {
613                 let lang_def_id = lang_items.i16_impl();
614                 self.assemble_inherent_impl_for_primitive(lang_def_id);
615             }
616             ty::Int(ast::IntTy::I32) => {
617                 let lang_def_id = lang_items.i32_impl();
618                 self.assemble_inherent_impl_for_primitive(lang_def_id);
619             }
620             ty::Int(ast::IntTy::I64) => {
621                 let lang_def_id = lang_items.i64_impl();
622                 self.assemble_inherent_impl_for_primitive(lang_def_id);
623             }
624             ty::Int(ast::IntTy::I128) => {
625                 let lang_def_id = lang_items.i128_impl();
626                 self.assemble_inherent_impl_for_primitive(lang_def_id);
627             }
628             ty::Int(ast::IntTy::Isize) => {
629                 let lang_def_id = lang_items.isize_impl();
630                 self.assemble_inherent_impl_for_primitive(lang_def_id);
631             }
632             ty::Uint(ast::UintTy::U8) => {
633                 let lang_def_id = lang_items.u8_impl();
634                 self.assemble_inherent_impl_for_primitive(lang_def_id);
635             }
636             ty::Uint(ast::UintTy::U16) => {
637                 let lang_def_id = lang_items.u16_impl();
638                 self.assemble_inherent_impl_for_primitive(lang_def_id);
639             }
640             ty::Uint(ast::UintTy::U32) => {
641                 let lang_def_id = lang_items.u32_impl();
642                 self.assemble_inherent_impl_for_primitive(lang_def_id);
643             }
644             ty::Uint(ast::UintTy::U64) => {
645                 let lang_def_id = lang_items.u64_impl();
646                 self.assemble_inherent_impl_for_primitive(lang_def_id);
647             }
648             ty::Uint(ast::UintTy::U128) => {
649                 let lang_def_id = lang_items.u128_impl();
650                 self.assemble_inherent_impl_for_primitive(lang_def_id);
651             }
652             ty::Uint(ast::UintTy::Usize) => {
653                 let lang_def_id = lang_items.usize_impl();
654                 self.assemble_inherent_impl_for_primitive(lang_def_id);
655             }
656             ty::Float(ast::FloatTy::F32) => {
657                 let lang_def_id = lang_items.f32_impl();
658                 self.assemble_inherent_impl_for_primitive(lang_def_id);
659
660                 let lang_def_id = lang_items.f32_runtime_impl();
661                 self.assemble_inherent_impl_for_primitive(lang_def_id);
662             }
663             ty::Float(ast::FloatTy::F64) => {
664                 let lang_def_id = lang_items.f64_impl();
665                 self.assemble_inherent_impl_for_primitive(lang_def_id);
666
667                 let lang_def_id = lang_items.f64_runtime_impl();
668                 self.assemble_inherent_impl_for_primitive(lang_def_id);
669             }
670             _ => {}
671         }
672     }
673
674     fn assemble_inherent_impl_for_primitive(&mut self, lang_def_id: Option<DefId>) {
675         if let Some(impl_def_id) = lang_def_id {
676             self.assemble_inherent_impl_probe(impl_def_id);
677         }
678     }
679
680     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
681         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
682         for &impl_def_id in impl_def_ids.iter() {
683             self.assemble_inherent_impl_probe(impl_def_id);
684         }
685     }
686
687     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
688         if !self.impl_dups.insert(impl_def_id) {
689             return; // already visited
690         }
691
692         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
693
694         for item in self.impl_or_trait_item(impl_def_id) {
695             if !self.has_applicable_self(&item) {
696                 // No receiver declared. Not a candidate.
697                 self.record_static_candidate(ImplSource(impl_def_id));
698                 continue
699             }
700
701             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
702             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
703
704             // Determine the receiver type that the method itself expects.
705             let xform_tys = self.xform_self_ty(&item, impl_ty, impl_substs);
706
707             // We can't use normalize_associated_types_in as it will pollute the
708             // fcx's fulfillment context after this probe is over.
709             let cause = traits::ObligationCause::misc(self.span, self.body_id);
710             let selcx = &mut traits::SelectionContext::new(self.fcx);
711             let traits::Normalized { value: (xform_self_ty, xform_ret_ty), obligations } =
712                 traits::normalize(selcx, self.param_env, cause, &xform_tys);
713             debug!("assemble_inherent_impl_probe: xform_self_ty = {:?}/{:?}",
714                    xform_self_ty, xform_ret_ty);
715
716             self.push_candidate(Candidate {
717                 xform_self_ty, xform_ret_ty, item,
718                 kind: InherentImplCandidate(impl_substs, obligations),
719                 import_id: None
720             }, true);
721         }
722     }
723
724     fn assemble_inherent_candidates_from_object(&mut self,
725                                                 self_ty: Ty<'tcx>) {
726         debug!("assemble_inherent_candidates_from_object(self_ty={:?})",
727                self_ty);
728
729         let principal = match self_ty.sty {
730             ty::Dynamic(ref data, ..) => Some(data),
731             _ => None
732         }.and_then(|data| data.principal()).unwrap_or_else(|| {
733             span_bug!(self.span, "non-object {:?} in assemble_inherent_candidates_from_object",
734                       self_ty)
735         });
736
737         // It is illegal to invoke a method on a trait instance that
738         // refers to the `Self` type. An error will be reported by
739         // `enforce_object_limitations()` if the method refers to the
740         // `Self` type anywhere other than the receiver. Here, we use
741         // a substitution that replaces `Self` with the object type
742         // itself. Hence, a `&self` method will wind up with an
743         // argument type like `&Trait`.
744         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
745         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
746             let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
747
748             let (xform_self_ty, xform_ret_ty) =
749                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
750             this.push_candidate(Candidate {
751                 xform_self_ty, xform_ret_ty, item,
752                 kind: ObjectCandidate,
753                 import_id: None
754             }, true);
755         });
756     }
757
758     fn assemble_inherent_candidates_from_param(&mut self,
759                                                param_ty: ty::ParamTy) {
760         // FIXME -- Do we want to commit to this behavior for param bounds?
761
762         let bounds = self.param_env
763             .caller_bounds
764             .iter()
765             .filter_map(|predicate| {
766                 match *predicate {
767                     ty::Predicate::Trait(ref trait_predicate) => {
768                         match trait_predicate.skip_binder().trait_ref.self_ty().sty {
769                             ty::Param(ref p) if *p == param_ty => {
770                                 Some(trait_predicate.to_poly_trait_ref())
771                             }
772                             _ => None,
773                         }
774                     }
775                     ty::Predicate::Subtype(..) |
776                     ty::Predicate::Projection(..) |
777                     ty::Predicate::RegionOutlives(..) |
778                     ty::Predicate::WellFormed(..) |
779                     ty::Predicate::ObjectSafe(..) |
780                     ty::Predicate::ClosureKind(..) |
781                     ty::Predicate::TypeOutlives(..) |
782                     ty::Predicate::ConstEvaluatable(..) => None,
783                 }
784             });
785
786         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
787             let trait_ref = this.erase_late_bound_regions(&poly_trait_ref);
788
789             let (xform_self_ty, xform_ret_ty) =
790                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
791
792             // Because this trait derives from a where-clause, it
793             // should not contain any inference variables or other
794             // artifacts. This means it is safe to put into the
795             // `WhereClauseCandidate` and (eventually) into the
796             // `WhereClausePick`.
797             assert!(!trait_ref.substs.needs_infer());
798
799             this.push_candidate(Candidate {
800                 xform_self_ty, xform_ret_ty, item,
801                 kind: WhereClauseCandidate(poly_trait_ref),
802                 import_id: None
803             }, true);
804         });
805     }
806
807     // Do a search through a list of bounds, using a callback to actually
808     // create the candidates.
809     fn elaborate_bounds<F>(&mut self,
810                            bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
811                            mut mk_cand: F)
812         where F: for<'b> FnMut(&mut ProbeContext<'b, 'gcx, 'tcx>,
813                                ty::PolyTraitRef<'tcx>,
814                                ty::AssociatedItem)
815     {
816         let tcx = self.tcx;
817         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
818             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
819             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
820                 if !self.has_applicable_self(&item) {
821                     self.record_static_candidate(TraitSource(bound_trait_ref.def_id()));
822                 } else {
823                     mk_cand(self, bound_trait_ref, item);
824                 }
825             }
826         }
827     }
828
829     fn assemble_extension_candidates_for_traits_in_scope(&mut self,
830                                                          expr_hir_id: hir::HirId)
831                                                          -> Result<(), MethodError<'tcx>> {
832         if expr_hir_id == hir::DUMMY_HIR_ID {
833             return Ok(())
834         }
835         let mut duplicates = FxHashSet::default();
836         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
837         if let Some(applicable_traits) = opt_applicable_traits {
838             for trait_candidate in applicable_traits.iter() {
839                 let trait_did = trait_candidate.def_id;
840                 if duplicates.insert(trait_did) {
841                     let import_id = trait_candidate.import_id.map(|node_id|
842                         self.fcx.tcx.hir().node_to_hir_id(node_id));
843                     let result = self.assemble_extension_candidates_for_trait(import_id, trait_did);
844                     result?;
845                 }
846             }
847         }
848         Ok(())
849     }
850
851     fn assemble_extension_candidates_for_all_traits(&mut self) -> Result<(), MethodError<'tcx>> {
852         let mut duplicates = FxHashSet::default();
853         for trait_info in suggest::all_traits(self.tcx) {
854             if duplicates.insert(trait_info.def_id) {
855                 self.assemble_extension_candidates_for_trait(None, trait_info.def_id)?;
856             }
857         }
858         Ok(())
859     }
860
861     pub fn matches_return_type(&self,
862                                method: &ty::AssociatedItem,
863                                self_ty: Option<Ty<'tcx>>,
864                                expected: Ty<'tcx>) -> bool {
865         match method.kind {
866             ty::AssociatedKind::Method => {
867                 let fty = self.tcx.fn_sig(method.def_id);
868                 self.probe(|_| {
869                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
870                     let fty = fty.subst(self.tcx, substs);
871                     let (fty, _) = self.replace_bound_vars_with_fresh_vars(
872                         self.span,
873                         infer::FnCall,
874                         &fty
875                     );
876
877                     if let Some(self_ty) = self_ty {
878                         if self.at(&ObligationCause::dummy(), self.param_env)
879                                .sup(fty.inputs()[0], self_ty)
880                                .is_err()
881                         {
882                             return false
883                         }
884                     }
885                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
886                 })
887             }
888             _ => false,
889         }
890     }
891
892     fn assemble_extension_candidates_for_trait(&mut self,
893                                                import_id: Option<hir::HirId>,
894                                                trait_def_id: DefId)
895                                                -> Result<(), MethodError<'tcx>> {
896         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})",
897                trait_def_id);
898         let trait_substs = self.fresh_item_substs(trait_def_id);
899         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
900
901         if self.tcx.is_trait_alias(trait_def_id) {
902             // For trait aliases, assume all super-traits are relevant.
903             let bounds = iter::once(trait_ref.to_poly_trait_ref());
904             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
905                 let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
906
907                 let (xform_self_ty, xform_ret_ty) =
908                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
909                 this.push_candidate(Candidate {
910                     xform_self_ty, xform_ret_ty, item, import_id,
911                     kind: TraitCandidate(new_trait_ref),
912                 }, true);
913             });
914         } else {
915             debug_assert!(self.tcx.is_trait(trait_def_id));
916             for item in self.impl_or_trait_item(trait_def_id) {
917                 // Check whether `trait_def_id` defines a method with suitable name.
918                 if !self.has_applicable_self(&item) {
919                     debug!("method has inapplicable self");
920                     self.record_static_candidate(TraitSource(trait_def_id));
921                     continue;
922                 }
923
924                 let (xform_self_ty, xform_ret_ty) =
925                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
926                 self.push_candidate(Candidate {
927                     xform_self_ty, xform_ret_ty, item, import_id,
928                     kind: TraitCandidate(trait_ref),
929                 }, false);
930             }
931         }
932         Ok(())
933     }
934
935     fn candidate_method_names(&self) -> Vec<ast::Ident> {
936         let mut set = FxHashSet::default();
937         let mut names: Vec<_> = self.inherent_candidates
938             .iter()
939             .chain(&self.extension_candidates)
940             .filter(|candidate| {
941                 if let Some(return_ty) = self.return_type {
942                     self.matches_return_type(&candidate.item, None, return_ty)
943                 } else {
944                     true
945                 }
946             })
947             .map(|candidate| candidate.item.ident)
948             .filter(|&name| set.insert(name))
949             .collect();
950
951         // Sort them by the name so we have a stable result.
952         names.sort_by_cached_key(|n| n.as_str());
953         names
954     }
955
956     ///////////////////////////////////////////////////////////////////////////
957     // THE ACTUAL SEARCH
958
959     fn pick(mut self) -> PickResult<'tcx> {
960         assert!(self.method_name.is_some());
961
962         if let Some(r) = self.pick_core() {
963             return r;
964         }
965
966         debug!("pick: actual search failed, assemble diagnotics");
967
968         let static_candidates = mem::replace(&mut self.static_candidates, vec![]);
969         let private_candidate = self.private_candidate.take();
970         let unsatisfied_predicates = mem::replace(&mut self.unsatisfied_predicates, vec![]);
971
972         // things failed, so lets look at all traits, for diagnostic purposes now:
973         self.reset();
974
975         let span = self.span;
976         let tcx = self.tcx;
977
978         self.assemble_extension_candidates_for_all_traits()?;
979
980         let out_of_scope_traits = match self.pick_core() {
981             Some(Ok(p)) => vec![p.item.container.id()],
982             //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
983             Some(Err(MethodError::Ambiguity(v))) => {
984                 v.into_iter()
985                     .map(|source| {
986                         match source {
987                             TraitSource(id) => id,
988                             ImplSource(impl_id) => {
989                                 match tcx.trait_id_of_impl(impl_id) {
990                                     Some(id) => id,
991                                     None => {
992                                         span_bug!(span,
993                                                   "found inherent method when looking at traits")
994                                     }
995                                 }
996                             }
997                         }
998                     })
999                     .collect()
1000             }
1001             Some(Err(MethodError::NoMatch(NoMatchData { out_of_scope_traits: others, .. }))) => {
1002                 assert!(others.is_empty());
1003                 vec![]
1004             }
1005             _ => vec![],
1006         };
1007
1008         if let Some((kind, def_id)) = private_candidate {
1009             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1010         }
1011         let lev_candidate = self.probe_for_lev_candidate()?;
1012
1013         Err(MethodError::NoMatch(NoMatchData::new(static_candidates,
1014                                                   unsatisfied_predicates,
1015                                                   out_of_scope_traits,
1016                                                   lev_candidate,
1017                                                   self.mode)))
1018     }
1019
1020     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1021         let steps = self.steps.clone();
1022
1023         // find the first step that works
1024         steps
1025             .iter()
1026             .filter(|step| {
1027                 debug!("pick_core: step={:?}", step);
1028                 // skip types that are from a type error or that would require dereferencing
1029                 // a raw pointer
1030                 !step.self_ty.references_error() && !step.from_unsafe_deref
1031             }).flat_map(|step| {
1032                 let InferOk { value: self_ty, obligations: _ } =
1033                     self.fcx.probe_instantiate_query_response(
1034                         self.span, &self.orig_steps_var_values, &step.self_ty
1035                     ).unwrap_or_else(|_| {
1036                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1037                     });
1038                 self.pick_by_value_method(step, self_ty).or_else(|| {
1039                 self.pick_autorefd_method(step, self_ty, hir::MutImmutable).or_else(|| {
1040                 self.pick_autorefd_method(step, self_ty, hir::MutMutable)
1041             })})})
1042             .next()
1043     }
1044
1045     fn pick_by_value_method(&mut self, step: &CandidateStep<'gcx>, self_ty: Ty<'tcx>)
1046                             -> Option<PickResult<'tcx>>
1047     {
1048         //! For each type `T` in the step list, this attempts to find a
1049         //! method where the (transformed) self type is exactly `T`. We
1050         //! do however do one transformation on the adjustment: if we
1051         //! are passing a region pointer in, we will potentially
1052         //! *reborrow* it to a shorter lifetime. This allows us to
1053         //! transparently pass `&mut` pointers, in particular, without
1054         //! consuming them for their entire lifetime.
1055
1056         if step.unsize {
1057             return None;
1058         }
1059
1060         self.pick_method(self_ty).map(|r| {
1061             r.map(|mut pick| {
1062                 pick.autoderefs = step.autoderefs;
1063
1064                 // Insert a `&*` or `&mut *` if this is a reference type:
1065                 if let ty::Ref(_, _, mutbl) = step.self_ty.value.value.sty {
1066                     pick.autoderefs += 1;
1067                     pick.autoref = Some(mutbl);
1068                 }
1069
1070                 pick
1071             })
1072         })
1073     }
1074
1075     fn pick_autorefd_method(&mut self,
1076                             step: &CandidateStep<'gcx>,
1077                             self_ty: Ty<'tcx>,
1078                             mutbl: hir::Mutability)
1079                             -> Option<PickResult<'tcx>> {
1080         let tcx = self.tcx;
1081
1082         // In general, during probing we erase regions. See
1083         // `impl_self_ty()` for an explanation.
1084         let region = tcx.lifetimes.re_erased;
1085
1086         let autoref_ty = tcx.mk_ref(region,
1087                                     ty::TypeAndMut {
1088                                         ty: self_ty, mutbl
1089                                     });
1090         self.pick_method(autoref_ty).map(|r| {
1091             r.map(|mut pick| {
1092                 pick.autoderefs = step.autoderefs;
1093                 pick.autoref = Some(mutbl);
1094                 pick.unsize = if step.unsize {
1095                     Some(self_ty)
1096                 } else {
1097                     None
1098                 };
1099                 pick
1100             })
1101         })
1102     }
1103
1104     fn pick_method(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1105         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1106
1107         let mut possibly_unsatisfied_predicates = Vec::new();
1108         let mut unstable_candidates = Vec::new();
1109
1110         for (kind, candidates) in &[
1111             ("inherent", &self.inherent_candidates),
1112             ("extension", &self.extension_candidates),
1113         ] {
1114             debug!("searching {} candidates", kind);
1115             let res = self.consider_candidates(
1116                 self_ty,
1117                 candidates.iter(),
1118                 &mut possibly_unsatisfied_predicates,
1119                 Some(&mut unstable_candidates),
1120             );
1121             if let Some(pick) = res {
1122                 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1123                     if let Ok(p) = &pick {
1124                         // Emit a lint if there are unstable candidates alongside the stable ones.
1125                         //
1126                         // We suppress warning if we're picking the method only because it is a
1127                         // suggestion.
1128                         self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1129                     }
1130                 }
1131                 return Some(pick);
1132             }
1133         }
1134
1135         debug!("searching unstable candidates");
1136         let res = self.consider_candidates(
1137             self_ty,
1138             unstable_candidates.into_iter().map(|(c, _)| c),
1139             &mut possibly_unsatisfied_predicates,
1140             None,
1141         );
1142         if res.is_none() {
1143             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1144         }
1145         res
1146     }
1147
1148     fn consider_candidates<'b, ProbesIter>(
1149         &self,
1150         self_ty: Ty<'tcx>,
1151         probes: ProbesIter,
1152         possibly_unsatisfied_predicates: &mut Vec<TraitRef<'tcx>>,
1153         unstable_candidates: Option<&mut Vec<(&'b Candidate<'tcx>, Symbol)>>,
1154     ) -> Option<PickResult<'tcx>>
1155     where
1156         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1157     {
1158         let mut applicable_candidates: Vec<_> = probes.clone()
1159             .map(|probe| {
1160                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1161             })
1162             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1163             .collect();
1164
1165         debug!("applicable_candidates: {:?}", applicable_candidates);
1166
1167         if applicable_candidates.len() > 1 {
1168             if let Some(pick) = self.collapse_candidates_to_trait_pick(&applicable_candidates[..]) {
1169                 return Some(Ok(pick));
1170             }
1171         }
1172
1173         if let Some(uc) = unstable_candidates {
1174             applicable_candidates.retain(|&(p, _)| {
1175                 if let stability::EvalResult::Deny { feature, .. } =
1176                     self.tcx.eval_stability(p.item.def_id, None, self.span)
1177                 {
1178                     uc.push((p, feature));
1179                     return false;
1180                 }
1181                 true
1182             });
1183         }
1184
1185         if applicable_candidates.len() > 1 {
1186             let sources = probes
1187                 .map(|p| self.candidate_source(p, self_ty))
1188                 .collect();
1189             return Some(Err(MethodError::Ambiguity(sources)));
1190         }
1191
1192         applicable_candidates.pop().map(|(probe, status)| {
1193             if status == ProbeResult::Match {
1194                 Ok(probe.to_unadjusted_pick())
1195             } else {
1196                 Err(MethodError::BadReturnType)
1197             }
1198         })
1199     }
1200
1201     fn emit_unstable_name_collision_hint(
1202         &self,
1203         stable_pick: &Pick<'_>,
1204         unstable_candidates: &[(&Candidate<'tcx>, Symbol)],
1205     ) {
1206         let mut diag = self.tcx.struct_span_lint_hir(
1207             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1208             self.fcx.body_id,
1209             self.span,
1210             "a method with this name may be added to the standard library in the future",
1211         );
1212
1213         // FIXME: This should be a `span_suggestion` instead of `help`
1214         // However `self.span` only
1215         // highlights the method name, so we can't use it. Also consider reusing the code from
1216         // `report_method_error()`.
1217         diag.help(&format!(
1218             "call with fully qualified syntax `{}(...)` to keep using the current method",
1219             self.tcx.def_path_str(stable_pick.item.def_id),
1220         ));
1221
1222         if nightly_options::is_nightly_build() {
1223             for (candidate, feature) in unstable_candidates {
1224                 diag.help(&format!(
1225                     "add #![feature({})] to the crate attributes to enable `{}`",
1226                     feature,
1227                     self.tcx.def_path_str(candidate.item.def_id),
1228                 ));
1229             }
1230         }
1231
1232         diag.emit();
1233     }
1234
1235     fn select_trait_candidate(&self, trait_ref: ty::TraitRef<'tcx>)
1236                               -> traits::SelectionResult<'tcx, traits::Selection<'tcx>>
1237     {
1238         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1239         let predicate =
1240             trait_ref.to_poly_trait_ref().to_poly_trait_predicate();
1241         let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1242         traits::SelectionContext::new(self).select(&obligation)
1243     }
1244
1245     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>)
1246                         -> CandidateSource
1247     {
1248         match candidate.kind {
1249             InherentImplCandidate(..) => ImplSource(candidate.item.container.id()),
1250             ObjectCandidate |
1251             WhereClauseCandidate(_) => TraitSource(candidate.item.container.id()),
1252             TraitCandidate(trait_ref) => self.probe(|_| {
1253                 let _ = self.at(&ObligationCause::dummy(), self.param_env)
1254                     .sup(candidate.xform_self_ty, self_ty);
1255                 match self.select_trait_candidate(trait_ref) {
1256                     Ok(Some(traits::Vtable::VtableImpl(ref impl_data))) => {
1257                         // If only a single impl matches, make the error message point
1258                         // to that impl.
1259                         ImplSource(impl_data.impl_def_id)
1260                     }
1261                     _ => {
1262                         TraitSource(candidate.item.container.id())
1263                     }
1264                 }
1265             })
1266         }
1267     }
1268
1269     fn consider_probe(&self,
1270                       self_ty: Ty<'tcx>,
1271                       probe: &Candidate<'tcx>,
1272                       possibly_unsatisfied_predicates: &mut Vec<TraitRef<'tcx>>)
1273                       -> ProbeResult {
1274         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1275
1276         self.probe(|_| {
1277             // First check that the self type can be related.
1278             let sub_obligations = match self.at(&ObligationCause::dummy(), self.param_env)
1279                                             .sup(probe.xform_self_ty, self_ty) {
1280                 Ok(InferOk { obligations, value: () }) => obligations,
1281                 Err(_) => {
1282                     debug!("--> cannot relate self-types");
1283                     return ProbeResult::NoMatch;
1284                 }
1285             };
1286
1287             let mut result = ProbeResult::Match;
1288             let selcx = &mut traits::SelectionContext::new(self);
1289             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1290
1291             // If so, impls may carry other conditions (e.g., where
1292             // clauses) that must be considered. Make sure that those
1293             // match as well (or at least may match, sometimes we
1294             // don't have enough information to fully evaluate).
1295             let candidate_obligations : Vec<_> = match probe.kind {
1296                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1297                     // Check whether the impl imposes obligations we have to worry about.
1298                     let impl_def_id = probe.item.container.id();
1299                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1300                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1301                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1302                         traits::normalize(selcx, self.param_env, cause.clone(), &impl_bounds);
1303
1304                     // Convert the bounds into obligations.
1305                     let impl_obligations = traits::predicates_for_generics(
1306                         cause, self.param_env, &impl_bounds);
1307
1308                     debug!("impl_obligations={:?}", impl_obligations);
1309                     impl_obligations.into_iter()
1310                         .chain(norm_obligations.into_iter())
1311                         .chain(ref_obligations.iter().cloned())
1312                         .collect()
1313                 }
1314
1315                 ObjectCandidate |
1316                 WhereClauseCandidate(..) => {
1317                     // These have no additional conditions to check.
1318                     vec![]
1319                 }
1320
1321                 TraitCandidate(trait_ref) => {
1322                     let predicate = trait_ref.to_predicate();
1323                     let obligation =
1324                         traits::Obligation::new(cause, self.param_env, predicate);
1325                     if !self.predicate_may_hold(&obligation) {
1326                         if self.probe(|_| self.select_trait_candidate(trait_ref).is_err()) {
1327                             // This candidate's primary obligation doesn't even
1328                             // select - don't bother registering anything in
1329                             // `potentially_unsatisfied_predicates`.
1330                             return ProbeResult::NoMatch;
1331                         } else {
1332                             // Some nested subobligation of this predicate
1333                             // failed.
1334                             //
1335                             // FIXME: try to find the exact nested subobligation
1336                             // and point at it rather than reporting the entire
1337                             // trait-ref?
1338                             result = ProbeResult::NoMatch;
1339                             let trait_ref = self.resolve_type_vars_if_possible(&trait_ref);
1340                             possibly_unsatisfied_predicates.push(trait_ref);
1341                         }
1342                     }
1343                     vec![]
1344                 }
1345             };
1346
1347             debug!("consider_probe - candidate_obligations={:?} sub_obligations={:?}",
1348                    candidate_obligations, sub_obligations);
1349
1350             // Evaluate those obligations to see if they might possibly hold.
1351             for o in candidate_obligations.into_iter().chain(sub_obligations) {
1352                 let o = self.resolve_type_vars_if_possible(&o);
1353                 if !self.predicate_may_hold(&o) {
1354                     result = ProbeResult::NoMatch;
1355                     if let &ty::Predicate::Trait(ref pred) = &o.predicate {
1356                         possibly_unsatisfied_predicates.push(pred.skip_binder().trait_ref);
1357                     }
1358                 }
1359             }
1360
1361             if let ProbeResult::Match = result {
1362                 if let (Some(return_ty), Some(xform_ret_ty)) =
1363                     (self.return_type, probe.xform_ret_ty)
1364                 {
1365                     let xform_ret_ty = self.resolve_type_vars_if_possible(&xform_ret_ty);
1366                     debug!("comparing return_ty {:?} with xform ret ty {:?}",
1367                            return_ty,
1368                            probe.xform_ret_ty);
1369                     if self.at(&ObligationCause::dummy(), self.param_env)
1370                         .sup(return_ty, xform_ret_ty)
1371                         .is_err()
1372                     {
1373                         return ProbeResult::BadReturnType;
1374                     }
1375                 }
1376             }
1377
1378             result
1379         })
1380     }
1381
1382     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1383     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1384     /// external interface of the method can be determined from the trait, it's ok not to decide.
1385     /// We can basically just collapse all of the probes for various impls into one where-clause
1386     /// probe. This will result in a pending obligation so when more type-info is available we can
1387     /// make the final decision.
1388     ///
1389     /// Example (`src/test/run-pass/method-two-trait-defer-resolution-1.rs`):
1390     ///
1391     /// ```
1392     /// trait Foo { ... }
1393     /// impl Foo for Vec<int> { ... }
1394     /// impl Foo for Vec<usize> { ... }
1395     /// ```
1396     ///
1397     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1398     /// use, so it's ok to just commit to "using the method from the trait Foo".
1399     fn collapse_candidates_to_trait_pick(&self, probes: &[(&Candidate<'tcx>, ProbeResult)])
1400                                          -> Option<Pick<'tcx>>
1401     {
1402         // Do all probes correspond to the same trait?
1403         let container = probes[0].0.item.container;
1404         if let ty::ImplContainer(_) = container {
1405             return None
1406         }
1407         if probes[1..].iter().any(|&(p, _)| p.item.container != container) {
1408             return None;
1409         }
1410
1411         // FIXME: check the return type here somehow.
1412         // If so, just use this trait and call it a day.
1413         Some(Pick {
1414             item: probes[0].0.item.clone(),
1415             kind: TraitPick,
1416             import_id: probes[0].0.import_id,
1417             autoderefs: 0,
1418             autoref: None,
1419             unsize: None,
1420         })
1421     }
1422
1423     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1424     /// candidate method where the method name may have been misspelt. Similarly to other
1425     /// Levenshtein based suggestions, we provide at most one such suggestion.
1426     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssociatedItem>, MethodError<'tcx>> {
1427         debug!("Probing for method names similar to {:?}",
1428                self.method_name);
1429
1430         let steps = self.steps.clone();
1431         self.probe(|_| {
1432             let mut pcx = ProbeContext::new(self.fcx, self.span, self.mode, self.method_name,
1433                                             self.return_type,
1434                                             self.orig_steps_var_values.clone(),
1435                                             steps, IsSuggestion(true));
1436             pcx.allow_similar_names = true;
1437             pcx.assemble_inherent_candidates();
1438             pcx.assemble_extension_candidates_for_traits_in_scope(hir::DUMMY_HIR_ID)?;
1439
1440             let method_names = pcx.candidate_method_names();
1441             pcx.allow_similar_names = false;
1442             let applicable_close_candidates: Vec<ty::AssociatedItem> = method_names
1443                 .iter()
1444                 .filter_map(|&method_name| {
1445                     pcx.reset();
1446                     pcx.method_name = Some(method_name);
1447                     pcx.assemble_inherent_candidates();
1448                     pcx.assemble_extension_candidates_for_traits_in_scope(hir::DUMMY_HIR_ID)
1449                         .ok().map_or(None, |_| {
1450                             pcx.pick_core()
1451                                 .and_then(|pick| pick.ok())
1452                                 .and_then(|pick| Some(pick.item))
1453                         })
1454                 })
1455                .collect();
1456
1457             if applicable_close_candidates.is_empty() {
1458                 Ok(None)
1459             } else {
1460                 let best_name = {
1461                     let names = applicable_close_candidates.iter().map(|cand| &cand.ident.name);
1462                     find_best_match_for_name(names,
1463                                              &self.method_name.unwrap().as_str(),
1464                                              None)
1465                 }.unwrap();
1466                 Ok(applicable_close_candidates
1467                    .into_iter()
1468                    .find(|method| method.ident.name == best_name))
1469             }
1470         })
1471     }
1472
1473     ///////////////////////////////////////////////////////////////////////////
1474     // MISCELLANY
1475     fn has_applicable_self(&self, item: &ty::AssociatedItem) -> bool {
1476         // "Fast track" -- check for usage of sugar when in method call
1477         // mode.
1478         //
1479         // In Path mode (i.e., resolving a value like `T::next`), consider any
1480         // associated value (i.e., methods, constants) but not types.
1481         match self.mode {
1482             Mode::MethodCall => item.method_has_self_argument,
1483             Mode::Path => match item.kind {
1484                 ty::AssociatedKind::Existential |
1485                 ty::AssociatedKind::Type => false,
1486                 ty::AssociatedKind::Method | ty::AssociatedKind::Const => true
1487             },
1488         }
1489         // FIXME -- check for types that deref to `Self`,
1490         // like `Rc<Self>` and so on.
1491         //
1492         // Note also that the current code will break if this type
1493         // includes any of the type parameters defined on the method
1494         // -- but this could be overcome.
1495     }
1496
1497     fn record_static_candidate(&mut self, source: CandidateSource) {
1498         self.static_candidates.push(source);
1499     }
1500
1501     fn xform_self_ty(&self,
1502                      item: &ty::AssociatedItem,
1503                      impl_ty: Ty<'tcx>,
1504                      substs: SubstsRef<'tcx>)
1505                      -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1506         if item.kind == ty::AssociatedKind::Method && self.mode == Mode::MethodCall {
1507             let sig = self.xform_method_sig(item.def_id, substs);
1508             (sig.inputs()[0], Some(sig.output()))
1509         } else {
1510             (impl_ty, None)
1511         }
1512     }
1513
1514     fn xform_method_sig(&self,
1515                         method: DefId,
1516                         substs: SubstsRef<'tcx>)
1517                         -> ty::FnSig<'tcx>
1518     {
1519         let fn_sig = self.tcx.fn_sig(method);
1520         debug!("xform_self_ty(fn_sig={:?}, substs={:?})",
1521                fn_sig,
1522                substs);
1523
1524         assert!(!substs.has_escaping_bound_vars());
1525
1526         // It is possible for type parameters or early-bound lifetimes
1527         // to appear in the signature of `self`. The substitutions we
1528         // are given do not include type/lifetime parameters for the
1529         // method yet. So create fresh variables here for those too,
1530         // if there are any.
1531         let generics = self.tcx.generics_of(method);
1532         assert_eq!(substs.len(), generics.parent_count as usize);
1533
1534         // Erase any late-bound regions from the method and substitute
1535         // in the values from the substitution.
1536         let xform_fn_sig = self.erase_late_bound_regions(&fn_sig);
1537
1538         if generics.params.is_empty() {
1539             xform_fn_sig.subst(self.tcx, substs)
1540         } else {
1541             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1542                 let i = param.index as usize;
1543                 if i < substs.len() {
1544                     substs[i]
1545                 } else {
1546                     match param.kind {
1547                         GenericParamDefKind::Lifetime => {
1548                             // In general, during probe we erase regions. See
1549                             // `impl_self_ty()` for an explanation.
1550                             self.tcx.lifetimes.re_erased.into()
1551                         }
1552                         GenericParamDefKind::Type { .. }
1553                         | GenericParamDefKind::Const => {
1554                             self.var_for_def(self.span, param)
1555                         }
1556                     }
1557                 }
1558             });
1559             xform_fn_sig.subst(self.tcx, substs)
1560         }
1561     }
1562
1563     /// Gets the type of an impl and generate substitutions with placeholders.
1564     fn impl_ty_and_substs(&self, impl_def_id: DefId) -> (Ty<'tcx>, SubstsRef<'tcx>) {
1565         (self.tcx.type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1566     }
1567
1568     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1569         InternalSubsts::for_item(self.tcx, def_id, |param, _| {
1570             match param.kind {
1571                 GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1572                 GenericParamDefKind::Type { .. } => {
1573                     self.next_ty_var(TypeVariableOrigin::SubstitutionPlaceholder(
1574                         self.tcx.def_span(def_id))).into()
1575                 }
1576                 GenericParamDefKind::Const { .. } => {
1577                     let span = self.tcx.def_span(def_id);
1578                     let origin = ConstVariableOrigin::SubstitutionPlaceholder(span);
1579                     self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1580                 }
1581             }
1582         })
1583     }
1584
1585     /// Replaces late-bound-regions bound by `value` with `'static` using
1586     /// `ty::erase_late_bound_regions`.
1587     ///
1588     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1589     /// method matching. It is reasonable during the probe phase because we don't consider region
1590     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1591     /// rather than creating fresh region variables. This is nice for two reasons:
1592     ///
1593     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1594     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1595     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1596     ///
1597     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1598     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1599     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1600     ///    region got replaced with the same variable, which requires a bit more coordination
1601     ///    and/or tracking the substitution and
1602     ///    so forth.
1603     fn erase_late_bound_regions<T>(&self, value: &ty::Binder<T>) -> T
1604         where T: TypeFoldable<'tcx>
1605     {
1606         self.tcx.erase_late_bound_regions(value)
1607     }
1608
1609     /// Finds the method with the appropriate name (or return type, as the case may be). If
1610     /// `allow_similar_names` is set, find methods with close-matching names.
1611     fn impl_or_trait_item(&self, def_id: DefId) -> Vec<ty::AssociatedItem> {
1612         if let Some(name) = self.method_name {
1613             if self.allow_similar_names {
1614                 let max_dist = max(name.as_str().len(), 3) / 3;
1615                 self.tcx.associated_items(def_id)
1616                     .filter(|x| {
1617                         let dist = lev_distance(&*name.as_str(), &x.ident.as_str());
1618                         Namespace::from(x.kind) == Namespace::Value && dist > 0
1619                             && dist <= max_dist
1620                     })
1621                     .collect()
1622             } else {
1623                 self.fcx
1624                     .associated_item(def_id, name, Namespace::Value)
1625                     .map_or(Vec::new(), |x| vec![x])
1626             }
1627         } else {
1628             self.tcx.associated_items(def_id).collect()
1629         }
1630     }
1631 }
1632
1633 impl<'tcx> Candidate<'tcx> {
1634     fn to_unadjusted_pick(&self) -> Pick<'tcx> {
1635         Pick {
1636             item: self.item.clone(),
1637             kind: match self.kind {
1638                 InherentImplCandidate(..) => InherentImplPick,
1639                 ObjectCandidate => ObjectPick,
1640                 TraitCandidate(_) => TraitPick,
1641                 WhereClauseCandidate(ref trait_ref) => {
1642                     // Only trait derived from where-clauses should
1643                     // appear here, so they should not contain any
1644                     // inference variables or other artifacts. This
1645                     // means they are safe to put into the
1646                     // `WhereClausePick`.
1647                     assert!(
1648                         !trait_ref.skip_binder().substs.needs_infer()
1649                             && !trait_ref.skip_binder().substs.has_placeholders()
1650                     );
1651
1652                     WhereClausePick(trait_ref.clone())
1653                 }
1654             },
1655             import_id: self.import_id,
1656             autoderefs: 0,
1657             autoref: None,
1658             unsize: None,
1659         }
1660     }
1661 }