]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/method/probe.rs
Rollup merge of #61084 - blkerby:unreachable_doc, r=KodrAus
[rust.git] / src / librustc_typeck / check / method / probe.rs
1 use super::MethodError;
2 use super::NoMatchData;
3 use super::{CandidateSource, ImplSource, TraitSource};
4 use super::suggest;
5
6 use crate::check::autoderef::{self, Autoderef};
7 use crate::check::FnCtxt;
8 use crate::hir::def_id::DefId;
9 use crate::hir::def::DefKind;
10 use crate::namespace::Namespace;
11
12 use rustc_data_structures::sync::Lrc;
13 use rustc::hir;
14 use rustc::lint;
15 use rustc::session::config::nightly_options;
16 use rustc::ty::subst::{Subst, InternalSubsts, SubstsRef};
17 use rustc::traits::{self, ObligationCause};
18 use rustc::traits::query::{CanonicalTyGoal};
19 use rustc::traits::query::method_autoderef::{CandidateStep, MethodAutoderefStepsResult};
20 use rustc::traits::query::method_autoderef::{MethodAutoderefBadTy};
21 use rustc::ty::{self, ParamEnvAnd, Ty, TyCtxt, ToPolyTraitRef, ToPredicate, TraitRef, TypeFoldable};
22 use rustc::ty::GenericParamDefKind;
23 use rustc::infer::type_variable::TypeVariableOrigin;
24 use rustc::infer::unify_key::ConstVariableOrigin;
25 use rustc::util::nodemap::FxHashSet;
26 use rustc::infer::{self, InferOk};
27 use rustc::infer::canonical::{Canonical, QueryResponse};
28 use rustc::infer::canonical::{OriginalQueryValues};
29 use rustc::middle::stability;
30 use syntax::ast;
31 use syntax::util::lev_distance::{lev_distance, find_best_match_for_name};
32 use syntax_pos::{DUMMY_SP, Span, symbol::Symbol};
33 use std::iter;
34 use std::mem;
35 use std::ops::Deref;
36 use std::cmp::max;
37
38 use smallvec::{smallvec, SmallVec};
39
40 use self::CandidateKind::*;
41 pub use self::PickKind::*;
42
43 /// Boolean flag used to indicate if this search is for a suggestion
44 /// or not. If true, we can allow ambiguity and so forth.
45 #[derive(Clone, Copy)]
46 pub struct IsSuggestion(pub bool);
47
48 struct ProbeContext<'a, 'gcx: 'a + 'tcx, 'tcx: 'a> {
49     fcx: &'a FnCtxt<'a, 'gcx, 'tcx>,
50     span: Span,
51     mode: Mode,
52     method_name: Option<ast::Ident>,
53     return_type: Option<Ty<'tcx>>,
54
55     /// This is the OriginalQueryValues for the steps queries
56     /// that are answered in steps.
57     orig_steps_var_values: OriginalQueryValues<'tcx>,
58     steps: Lrc<Vec<CandidateStep<'gcx>>>,
59
60     inherent_candidates: Vec<Candidate<'tcx>>,
61     extension_candidates: Vec<Candidate<'tcx>>,
62     impl_dups: FxHashSet<DefId>,
63
64     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
65     /// used for error reporting
66     static_candidates: Vec<CandidateSource>,
67
68     /// When probing for names, include names that are close to the
69     /// requested name (by Levensthein distance)
70     allow_similar_names: bool,
71
72     /// Some(candidate) if there is a private candidate
73     private_candidate: Option<(DefKind, DefId)>,
74
75     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
76     /// for error reporting
77     unsatisfied_predicates: Vec<TraitRef<'tcx>>,
78
79     is_suggestion: IsSuggestion,
80 }
81
82 impl<'a, 'gcx, 'tcx> Deref for ProbeContext<'a, 'gcx, 'tcx> {
83     type Target = FnCtxt<'a, 'gcx, 'tcx>;
84     fn deref(&self) -> &Self::Target {
85         &self.fcx
86     }
87 }
88
89 #[derive(Debug)]
90 struct Candidate<'tcx> {
91     // Candidates are (I'm not quite sure, but they are mostly) basically
92     // some metadata on top of a `ty::AssocItem` (without substs).
93     //
94     // However, method probing wants to be able to evaluate the predicates
95     // for a function with the substs applied - for example, if a function
96     // has `where Self: Sized`, we don't want to consider it unless `Self`
97     // is actually `Sized`, and similarly, return-type suggestions want
98     // to consider the "actual" return type.
99     //
100     // The way this is handled is through `xform_self_ty`. It contains
101     // the receiver type of this candidate, but `xform_self_ty`,
102     // `xform_ret_ty` and `kind` (which contains the predicates) have the
103     // generic parameters of this candidate substituted with the *same set*
104     // of inference variables, which acts as some weird sort of "query".
105     //
106     // When we check out a candidate, we require `xform_self_ty` to be
107     // a subtype of the passed-in self-type, and this equates the type
108     // variables in the rest of the fields.
109     //
110     // For example, if we have this candidate:
111     // ```
112     //    trait Foo {
113     //        fn foo(&self) where Self: Sized;
114     //    }
115     // ```
116     //
117     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
118     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
119     // the receiver `&T`, we'll do the subtyping which will make `?X`
120     // get the right value, then when we evaluate the predicate we'll check
121     // if `T: Sized`.
122     xform_self_ty: Ty<'tcx>,
123     xform_ret_ty: Option<Ty<'tcx>>,
124     item: ty::AssocItem,
125     kind: CandidateKind<'tcx>,
126     import_ids: SmallVec<[hir::HirId; 1]>,
127 }
128
129 #[derive(Debug)]
130 enum CandidateKind<'tcx> {
131     InherentImplCandidate(SubstsRef<'tcx>,
132                           // Normalize obligations
133                           Vec<traits::PredicateObligation<'tcx>>),
134     ObjectCandidate,
135     TraitCandidate(ty::TraitRef<'tcx>),
136     WhereClauseCandidate(// Trait
137                          ty::PolyTraitRef<'tcx>),
138 }
139
140 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
141 enum ProbeResult {
142     NoMatch,
143     BadReturnType,
144     Match,
145 }
146
147 #[derive(Debug, PartialEq, Clone)]
148 pub struct Pick<'tcx> {
149     pub item: ty::AssocItem,
150     pub kind: PickKind<'tcx>,
151     pub import_ids: SmallVec<[hir::HirId; 1]>,
152
153     // Indicates that the source expression should be autoderef'd N times
154     //
155     // A = expr | *expr | **expr | ...
156     pub autoderefs: usize,
157
158     // Indicates that an autoref is applied after the optional autoderefs
159     //
160     // B = A | &A | &mut A
161     pub autoref: Option<hir::Mutability>,
162
163     // Indicates that the source expression should be "unsized" to a
164     // target type. This should probably eventually go away in favor
165     // of just coercing method receivers.
166     //
167     // C = B | unsize(B)
168     pub unsize: Option<Ty<'tcx>>,
169 }
170
171 #[derive(Clone, Debug, PartialEq, Eq)]
172 pub enum PickKind<'tcx> {
173     InherentImplPick,
174     ObjectPick,
175     TraitPick,
176     WhereClausePick(// Trait
177                     ty::PolyTraitRef<'tcx>),
178 }
179
180 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
181
182 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
183 pub enum Mode {
184     // An expression of the form `receiver.method_name(...)`.
185     // Autoderefs are performed on `receiver`, lookup is done based on the
186     // `self` argument  of the method, and static methods aren't considered.
187     MethodCall,
188     // An expression of the form `Type::item` or `<T>::item`.
189     // No autoderefs are performed, lookup is done based on the type each
190     // implementation is for, and static methods are included.
191     Path,
192 }
193
194 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
195 pub enum ProbeScope {
196     // Assemble candidates coming only from traits in scope.
197     TraitsInScope,
198
199     // Assemble candidates coming from all traits.
200     AllTraits,
201 }
202
203 impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
204     /// This is used to offer suggestions to users. It returns methods
205     /// that could have been called which have the desired return
206     /// type. Some effort is made to rule out methods that, if called,
207     /// would result in an error (basically, the same criteria we
208     /// would use to decide if a method is a plausible fit for
209     /// ambiguity purposes).
210     pub fn probe_for_return_type(&self,
211                                  span: Span,
212                                  mode: Mode,
213                                  return_type: Ty<'tcx>,
214                                  self_ty: Ty<'tcx>,
215                                  scope_expr_id: hir::HirId)
216                                  -> Vec<ty::AssocItem> {
217         debug!("probe(self_ty={:?}, return_type={}, scope_expr_id={})",
218                self_ty,
219                return_type,
220                scope_expr_id);
221         let method_names =
222             self.probe_op(span, mode, None, Some(return_type), IsSuggestion(true),
223                           self_ty, scope_expr_id, ProbeScope::AllTraits,
224                           |probe_cx| Ok(probe_cx.candidate_method_names()))
225                 .unwrap_or(vec![]);
226          method_names
227              .iter()
228              .flat_map(|&method_name| {
229                  self.probe_op(
230                      span, mode, Some(method_name), Some(return_type),
231                      IsSuggestion(true), self_ty, scope_expr_id,
232                      ProbeScope::AllTraits, |probe_cx| probe_cx.pick()
233                  ).ok().map(|pick| pick.item)
234              })
235             .collect()
236     }
237
238     pub fn probe_for_name(&self,
239                           span: Span,
240                           mode: Mode,
241                           item_name: ast::Ident,
242                           is_suggestion: IsSuggestion,
243                           self_ty: Ty<'tcx>,
244                           scope_expr_id: hir::HirId,
245                           scope: ProbeScope)
246                           -> PickResult<'tcx> {
247         debug!("probe(self_ty={:?}, item_name={}, scope_expr_id={})",
248                self_ty,
249                item_name,
250                scope_expr_id);
251         self.probe_op(span,
252                       mode,
253                       Some(item_name),
254                       None,
255                       is_suggestion,
256                       self_ty,
257                       scope_expr_id,
258                       scope,
259                       |probe_cx| probe_cx.pick())
260     }
261
262     fn probe_op<OP,R>(&'a self,
263                       span: Span,
264                       mode: Mode,
265                       method_name: Option<ast::Ident>,
266                       return_type: Option<Ty<'tcx>>,
267                       is_suggestion: IsSuggestion,
268                       self_ty: Ty<'tcx>,
269                       scope_expr_id: hir::HirId,
270                       scope: ProbeScope,
271                       op: OP)
272                       -> Result<R, MethodError<'tcx>>
273         where OP: FnOnce(ProbeContext<'a, 'gcx, 'tcx>) -> Result<R, MethodError<'tcx>>
274     {
275         let mut orig_values = OriginalQueryValues::default();
276         let param_env_and_self_ty =
277             self.infcx.canonicalize_query(
278                 &ParamEnvAnd {
279                     param_env: self.param_env,
280                     value: self_ty
281                 }, &mut orig_values);
282
283         let steps = if mode == Mode::MethodCall {
284             self.tcx.method_autoderef_steps(param_env_and_self_ty)
285         } else {
286             self.infcx.probe(|_| {
287                 // Mode::Path - the deref steps is "trivial". This turns
288                 // our CanonicalQuery into a "trivial" QueryResponse. This
289                 // is a bit inefficient, but I don't think that writing
290                 // special handling for this "trivial case" is a good idea.
291
292                 let infcx = &self.infcx;
293                 let (ParamEnvAnd {
294                     param_env: _,
295                     value: self_ty
296                 }, canonical_inference_vars) =
297                     infcx.instantiate_canonical_with_fresh_inference_vars(
298                         span, &param_env_and_self_ty);
299                 debug!("probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
300                        param_env_and_self_ty, self_ty);
301                 MethodAutoderefStepsResult {
302                     steps: Lrc::new(vec![CandidateStep {
303                         self_ty: self.make_query_response_ignoring_pending_obligations(
304                             canonical_inference_vars, self_ty),
305                         autoderefs: 0,
306                         from_unsafe_deref: false,
307                         unsize: false,
308                     }]),
309                     opt_bad_ty: None,
310                     reached_recursion_limit: false
311                 }
312             })
313         };
314
315         // If our autoderef loop had reached the recursion limit,
316         // report an overflow error, but continue going on with
317         // the truncated autoderef list.
318         if steps.reached_recursion_limit {
319             self.probe(|_| {
320                 let ty = &steps.steps.last().unwrap_or_else(|| {
321                     span_bug!(span, "reached the recursion limit in 0 steps?")
322                 }).self_ty;
323                 let ty = self.probe_instantiate_query_response(span, &orig_values, ty)
324                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
325                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span,
326                                                                   ty.value);
327             });
328         }
329
330
331         // If we encountered an `_` type or an error type during autoderef, this is
332         // ambiguous.
333         if let Some(bad_ty) = &steps.opt_bad_ty {
334             if is_suggestion.0 {
335                 // Ambiguity was encountered during a suggestion. Just keep going.
336                 debug!("ProbeContext: encountered ambiguity in suggestion");
337             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
338                 // this case used to be allowed by the compiler,
339                 // so we do a future-compat lint here for the 2015 edition
340                 // (see https://github.com/rust-lang/rust/issues/46906)
341                 if self.tcx.sess.rust_2018() {
342                     span_err!(self.tcx.sess, span, E0699,
343                               "the type of this value must be known \
344                                to call a method on a raw pointer on it");
345                 } else {
346                    self.tcx.lint_hir(
347                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
348                         scope_expr_id,
349                         span,
350                         "type annotations needed");
351                 }
352             } else {
353                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
354                 // an `Err`, report the right "type annotations needed" error pointing
355                 // to it.
356                 let ty = &bad_ty.ty;
357                 let ty = self.probe_instantiate_query_response(span, &orig_values, ty)
358                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
359                 let ty = self.structurally_resolved_type(span, ty.value);
360                 assert_eq!(ty, self.tcx.types.err);
361                 return Err(MethodError::NoMatch(NoMatchData::new(Vec::new(),
362                                                                  Vec::new(),
363                                                                  Vec::new(),
364                                                                  None,
365                                                                  mode)));
366             }
367         }
368
369         debug!("ProbeContext: steps for self_ty={:?} are {:?}",
370                self_ty,
371                steps);
372
373
374         // this creates one big transaction so that all type variables etc
375         // that we create during the probe process are removed later
376         self.probe(|_| {
377             let mut probe_cx = ProbeContext::new(
378                 self, span, mode, method_name, return_type, orig_values,
379                 steps.steps, is_suggestion,
380             );
381
382             probe_cx.assemble_inherent_candidates();
383             match scope {
384                 ProbeScope::TraitsInScope =>
385                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)?,
386                 ProbeScope::AllTraits =>
387                     probe_cx.assemble_extension_candidates_for_all_traits()?,
388             };
389             op(probe_cx)
390         })
391     }
392 }
393
394 pub fn provide(providers: &mut ty::query::Providers<'_>) {
395     providers.method_autoderef_steps = method_autoderef_steps;
396 }
397
398 fn method_autoderef_steps<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'gcx>,
399                                           goal: CanonicalTyGoal<'tcx>)
400                                           -> MethodAutoderefStepsResult<'gcx>
401 {
402     debug!("method_autoderef_steps({:?})", goal);
403
404     tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
405         let ParamEnvAnd { param_env, value: self_ty } = goal;
406
407         let mut autoderef = Autoderef::new(infcx, param_env, hir::DUMMY_HIR_ID, DUMMY_SP, self_ty)
408             .include_raw_pointers()
409             .silence_errors();
410         let mut reached_raw_pointer = false;
411         let mut steps: Vec<_> = autoderef.by_ref()
412             .map(|(ty, d)| {
413                 let step = CandidateStep {
414                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
415                         inference_vars.clone(), ty),
416                     autoderefs: d,
417                     from_unsafe_deref: reached_raw_pointer,
418                     unsize: false,
419                 };
420                 if let ty::RawPtr(_) = ty.sty {
421                     // all the subsequent steps will be from_unsafe_deref
422                     reached_raw_pointer = true;
423                 }
424                 step
425             })
426             .collect();
427
428         let final_ty = autoderef.maybe_ambiguous_final_ty();
429         let opt_bad_ty = match final_ty.sty {
430             ty::Infer(ty::TyVar(_)) |
431             ty::Error => {
432                 Some(MethodAutoderefBadTy {
433                     reached_raw_pointer,
434                     ty: infcx.make_query_response_ignoring_pending_obligations(
435                         inference_vars, final_ty)
436                 })
437             }
438             ty::Array(elem_ty, _) => {
439                 let dereferences = steps.len() - 1;
440
441                 steps.push(CandidateStep {
442                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
443                         inference_vars, infcx.tcx.mk_slice(elem_ty)),
444                     autoderefs: dereferences,
445                     // this could be from an unsafe deref if we had
446                     // a *mut/const [T; N]
447                     from_unsafe_deref: reached_raw_pointer,
448                     unsize: true,
449                 });
450
451                 None
452             }
453             _ => None
454         };
455
456         debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
457
458         MethodAutoderefStepsResult {
459             steps: Lrc::new(steps),
460             opt_bad_ty: opt_bad_ty.map(Lrc::new),
461             reached_recursion_limit: autoderef.reached_recursion_limit()
462         }
463     })
464 }
465
466
467 impl<'a, 'gcx, 'tcx> ProbeContext<'a, 'gcx, 'tcx> {
468     fn new(fcx: &'a FnCtxt<'a, 'gcx, 'tcx>,
469            span: Span,
470            mode: Mode,
471            method_name: Option<ast::Ident>,
472            return_type: Option<Ty<'tcx>>,
473            orig_steps_var_values: OriginalQueryValues<'tcx>,
474            steps: Lrc<Vec<CandidateStep<'gcx>>>,
475            is_suggestion: IsSuggestion)
476            -> ProbeContext<'a, 'gcx, 'tcx> {
477         ProbeContext {
478             fcx,
479             span,
480             mode,
481             method_name,
482             return_type,
483             inherent_candidates: Vec::new(),
484             extension_candidates: Vec::new(),
485             impl_dups: FxHashSet::default(),
486             orig_steps_var_values,
487             steps,
488             static_candidates: Vec::new(),
489             allow_similar_names: false,
490             private_candidate: None,
491             unsatisfied_predicates: Vec::new(),
492             is_suggestion,
493         }
494     }
495
496     fn reset(&mut self) {
497         self.inherent_candidates.clear();
498         self.extension_candidates.clear();
499         self.impl_dups.clear();
500         self.static_candidates.clear();
501         self.private_candidate = None;
502     }
503
504     ///////////////////////////////////////////////////////////////////////////
505     // CANDIDATE ASSEMBLY
506
507     fn push_candidate(&mut self,
508                       candidate: Candidate<'tcx>,
509                       is_inherent: bool)
510     {
511         let is_accessible = if let Some(name) = self.method_name {
512             let item = candidate.item;
513             let def_scope = self.tcx.adjust_ident(name, item.container.id(), self.body_id).1;
514             item.vis.is_accessible_from(def_scope, self.tcx)
515         } else {
516             true
517         };
518         if is_accessible {
519             if is_inherent {
520                 self.inherent_candidates.push(candidate);
521             } else {
522                 self.extension_candidates.push(candidate);
523             }
524         } else if self.private_candidate.is_none() {
525             self.private_candidate =
526                 Some((candidate.item.def_kind(), candidate.item.def_id));
527         }
528     }
529
530     fn assemble_inherent_candidates(&mut self) {
531         let steps = self.steps.clone();
532         for step in steps.iter() {
533             self.assemble_probe(&step.self_ty);
534         }
535     }
536
537     fn assemble_probe(&mut self, self_ty: &Canonical<'gcx, QueryResponse<'gcx, Ty<'gcx>>>) {
538         debug!("assemble_probe: self_ty={:?}", self_ty);
539         let lang_items = self.tcx.lang_items();
540
541         match self_ty.value.value.sty {
542             ty::Dynamic(ref data, ..) => {
543                 if let Some(p) = data.principal() {
544                     // Subtle: we can't use `instantiate_query_response` here: using it will
545                     // commit to all of the type equalities assumed by inference going through
546                     // autoderef (see the `method-probe-no-guessing` test).
547                     //
548                     // However, in this code, it is OK if we end up with an object type that is
549                     // "more general" than the object type that we are evaluating. For *every*
550                     // object type `MY_OBJECT`, a function call that goes through a trait-ref
551                     // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
552                     // `ObjectCandidate`, and it should be discoverable "exactly" through one
553                     // of the iterations in the autoderef loop, so there is no problem with it
554                     // being discoverable in another one of these iterations.
555                     //
556                     // Using `instantiate_canonical_with_fresh_inference_vars` on our
557                     // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
558                     // `CanonicalVarValues` will exactly give us such a generalization - it
559                     // will still match the original object type, but it won't pollute our
560                     // type variables in any form, so just do that!
561                     let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
562                         self.fcx.instantiate_canonical_with_fresh_inference_vars(
563                             self.span, &self_ty);
564
565                     self.assemble_inherent_candidates_from_object(generalized_self_ty);
566                     self.assemble_inherent_impl_candidates_for_type(p.def_id());
567                 }
568             }
569             ty::Adt(def, _) => {
570                 self.assemble_inherent_impl_candidates_for_type(def.did);
571             }
572             ty::Foreign(did) => {
573                 self.assemble_inherent_impl_candidates_for_type(did);
574             }
575             ty::Param(p) => {
576                 self.assemble_inherent_candidates_from_param(p);
577             }
578             ty::Char => {
579                 let lang_def_id = lang_items.char_impl();
580                 self.assemble_inherent_impl_for_primitive(lang_def_id);
581             }
582             ty::Str => {
583                 let lang_def_id = lang_items.str_impl();
584                 self.assemble_inherent_impl_for_primitive(lang_def_id);
585
586                 let lang_def_id = lang_items.str_alloc_impl();
587                 self.assemble_inherent_impl_for_primitive(lang_def_id);
588             }
589             ty::Slice(_) => {
590                 let lang_def_id = lang_items.slice_impl();
591                 self.assemble_inherent_impl_for_primitive(lang_def_id);
592
593                 let lang_def_id = lang_items.slice_u8_impl();
594                 self.assemble_inherent_impl_for_primitive(lang_def_id);
595
596                 let lang_def_id = lang_items.slice_alloc_impl();
597                 self.assemble_inherent_impl_for_primitive(lang_def_id);
598
599                 let lang_def_id = lang_items.slice_u8_alloc_impl();
600                 self.assemble_inherent_impl_for_primitive(lang_def_id);
601             }
602             ty::RawPtr(ty::TypeAndMut { ty: _, mutbl: hir::MutImmutable }) => {
603                 let lang_def_id = lang_items.const_ptr_impl();
604                 self.assemble_inherent_impl_for_primitive(lang_def_id);
605             }
606             ty::RawPtr(ty::TypeAndMut { ty: _, mutbl: hir::MutMutable }) => {
607                 let lang_def_id = lang_items.mut_ptr_impl();
608                 self.assemble_inherent_impl_for_primitive(lang_def_id);
609             }
610             ty::Int(ast::IntTy::I8) => {
611                 let lang_def_id = lang_items.i8_impl();
612                 self.assemble_inherent_impl_for_primitive(lang_def_id);
613             }
614             ty::Int(ast::IntTy::I16) => {
615                 let lang_def_id = lang_items.i16_impl();
616                 self.assemble_inherent_impl_for_primitive(lang_def_id);
617             }
618             ty::Int(ast::IntTy::I32) => {
619                 let lang_def_id = lang_items.i32_impl();
620                 self.assemble_inherent_impl_for_primitive(lang_def_id);
621             }
622             ty::Int(ast::IntTy::I64) => {
623                 let lang_def_id = lang_items.i64_impl();
624                 self.assemble_inherent_impl_for_primitive(lang_def_id);
625             }
626             ty::Int(ast::IntTy::I128) => {
627                 let lang_def_id = lang_items.i128_impl();
628                 self.assemble_inherent_impl_for_primitive(lang_def_id);
629             }
630             ty::Int(ast::IntTy::Isize) => {
631                 let lang_def_id = lang_items.isize_impl();
632                 self.assemble_inherent_impl_for_primitive(lang_def_id);
633             }
634             ty::Uint(ast::UintTy::U8) => {
635                 let lang_def_id = lang_items.u8_impl();
636                 self.assemble_inherent_impl_for_primitive(lang_def_id);
637             }
638             ty::Uint(ast::UintTy::U16) => {
639                 let lang_def_id = lang_items.u16_impl();
640                 self.assemble_inherent_impl_for_primitive(lang_def_id);
641             }
642             ty::Uint(ast::UintTy::U32) => {
643                 let lang_def_id = lang_items.u32_impl();
644                 self.assemble_inherent_impl_for_primitive(lang_def_id);
645             }
646             ty::Uint(ast::UintTy::U64) => {
647                 let lang_def_id = lang_items.u64_impl();
648                 self.assemble_inherent_impl_for_primitive(lang_def_id);
649             }
650             ty::Uint(ast::UintTy::U128) => {
651                 let lang_def_id = lang_items.u128_impl();
652                 self.assemble_inherent_impl_for_primitive(lang_def_id);
653             }
654             ty::Uint(ast::UintTy::Usize) => {
655                 let lang_def_id = lang_items.usize_impl();
656                 self.assemble_inherent_impl_for_primitive(lang_def_id);
657             }
658             ty::Float(ast::FloatTy::F32) => {
659                 let lang_def_id = lang_items.f32_impl();
660                 self.assemble_inherent_impl_for_primitive(lang_def_id);
661
662                 let lang_def_id = lang_items.f32_runtime_impl();
663                 self.assemble_inherent_impl_for_primitive(lang_def_id);
664             }
665             ty::Float(ast::FloatTy::F64) => {
666                 let lang_def_id = lang_items.f64_impl();
667                 self.assemble_inherent_impl_for_primitive(lang_def_id);
668
669                 let lang_def_id = lang_items.f64_runtime_impl();
670                 self.assemble_inherent_impl_for_primitive(lang_def_id);
671             }
672             _ => {}
673         }
674     }
675
676     fn assemble_inherent_impl_for_primitive(&mut self, lang_def_id: Option<DefId>) {
677         if let Some(impl_def_id) = lang_def_id {
678             self.assemble_inherent_impl_probe(impl_def_id);
679         }
680     }
681
682     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
683         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
684         for &impl_def_id in impl_def_ids.iter() {
685             self.assemble_inherent_impl_probe(impl_def_id);
686         }
687     }
688
689     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
690         if !self.impl_dups.insert(impl_def_id) {
691             return; // already visited
692         }
693
694         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
695
696         for item in self.impl_or_trait_item(impl_def_id) {
697             if !self.has_applicable_self(&item) {
698                 // No receiver declared. Not a candidate.
699                 self.record_static_candidate(ImplSource(impl_def_id));
700                 continue
701             }
702
703             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
704             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
705
706             // Determine the receiver type that the method itself expects.
707             let xform_tys = self.xform_self_ty(&item, impl_ty, impl_substs);
708
709             // We can't use normalize_associated_types_in as it will pollute the
710             // fcx's fulfillment context after this probe is over.
711             let cause = traits::ObligationCause::misc(self.span, self.body_id);
712             let selcx = &mut traits::SelectionContext::new(self.fcx);
713             let traits::Normalized { value: (xform_self_ty, xform_ret_ty), obligations } =
714                 traits::normalize(selcx, self.param_env, cause, &xform_tys);
715             debug!("assemble_inherent_impl_probe: xform_self_ty = {:?}/{:?}",
716                    xform_self_ty, xform_ret_ty);
717
718             self.push_candidate(Candidate {
719                 xform_self_ty, xform_ret_ty, item,
720                 kind: InherentImplCandidate(impl_substs, obligations),
721                 import_ids: smallvec![]
722             }, true);
723         }
724     }
725
726     fn assemble_inherent_candidates_from_object(&mut self,
727                                                 self_ty: Ty<'tcx>) {
728         debug!("assemble_inherent_candidates_from_object(self_ty={:?})",
729                self_ty);
730
731         let principal = match self_ty.sty {
732             ty::Dynamic(ref data, ..) => Some(data),
733             _ => None
734         }.and_then(|data| data.principal()).unwrap_or_else(|| {
735             span_bug!(self.span, "non-object {:?} in assemble_inherent_candidates_from_object",
736                       self_ty)
737         });
738
739         // It is illegal to invoke a method on a trait instance that
740         // refers to the `Self` type. An error will be reported by
741         // `enforce_object_limitations()` if the method refers to the
742         // `Self` type anywhere other than the receiver. Here, we use
743         // a substitution that replaces `Self` with the object type
744         // itself. Hence, a `&self` method will wind up with an
745         // argument type like `&Trait`.
746         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
747         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
748             let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
749
750             let (xform_self_ty, xform_ret_ty) =
751                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
752             this.push_candidate(Candidate {
753                 xform_self_ty, xform_ret_ty, item,
754                 kind: ObjectCandidate,
755                 import_ids: smallvec![]
756             }, true);
757         });
758     }
759
760     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
761         // FIXME: do we want to commit to this behavior for param bounds?
762
763         let bounds = self.param_env
764             .caller_bounds
765             .iter()
766             .filter_map(|predicate| {
767                 match *predicate {
768                     ty::Predicate::Trait(ref trait_predicate) => {
769                         match trait_predicate.skip_binder().trait_ref.self_ty().sty {
770                             ty::Param(ref p) if *p == param_ty => {
771                                 Some(trait_predicate.to_poly_trait_ref())
772                             }
773                             _ => None,
774                         }
775                     }
776                     ty::Predicate::Subtype(..) |
777                     ty::Predicate::Projection(..) |
778                     ty::Predicate::RegionOutlives(..) |
779                     ty::Predicate::WellFormed(..) |
780                     ty::Predicate::ObjectSafe(..) |
781                     ty::Predicate::ClosureKind(..) |
782                     ty::Predicate::TypeOutlives(..) |
783                     ty::Predicate::ConstEvaluatable(..) => None,
784                 }
785             });
786
787         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
788             let trait_ref = this.erase_late_bound_regions(&poly_trait_ref);
789
790             let (xform_self_ty, xform_ret_ty) =
791                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
792
793             // Because this trait derives from a where-clause, it
794             // should not contain any inference variables or other
795             // artifacts. This means it is safe to put into the
796             // `WhereClauseCandidate` and (eventually) into the
797             // `WhereClausePick`.
798             assert!(!trait_ref.substs.needs_infer());
799
800             this.push_candidate(Candidate {
801                 xform_self_ty, xform_ret_ty, item,
802                 kind: WhereClauseCandidate(poly_trait_ref),
803                 import_ids: smallvec![]
804             }, true);
805         });
806     }
807
808     // Do a search through a list of bounds, using a callback to actually
809     // create the candidates.
810     fn elaborate_bounds<F>(&mut self,
811                            bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
812                            mut mk_cand: F)
813         where F: for<'b> FnMut(&mut ProbeContext<'b, 'gcx, 'tcx>,
814                                ty::PolyTraitRef<'tcx>,
815                                ty::AssocItem)
816     {
817         let tcx = self.tcx;
818         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
819             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
820             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
821                 if !self.has_applicable_self(&item) {
822                     self.record_static_candidate(TraitSource(bound_trait_ref.def_id()));
823                 } else {
824                     mk_cand(self, bound_trait_ref, item);
825                 }
826             }
827         }
828     }
829
830     fn assemble_extension_candidates_for_traits_in_scope(&mut self,
831                                                          expr_hir_id: hir::HirId)
832                                                          -> Result<(), MethodError<'tcx>> {
833         if expr_hir_id == hir::DUMMY_HIR_ID {
834             return Ok(())
835         }
836         let mut duplicates = FxHashSet::default();
837         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
838         if let Some(applicable_traits) = opt_applicable_traits {
839             for trait_candidate in applicable_traits.iter() {
840                 let trait_did = trait_candidate.def_id;
841                 if duplicates.insert(trait_did) {
842                     let import_ids = trait_candidate.import_ids.iter().map(|node_id|
843                         self.fcx.tcx.hir().node_to_hir_id(*node_id)).collect();
844                     let result = self.assemble_extension_candidates_for_trait(import_ids,
845                                                                               trait_did);
846                     result?;
847                 }
848             }
849         }
850         Ok(())
851     }
852
853     fn assemble_extension_candidates_for_all_traits(&mut self) -> Result<(), MethodError<'tcx>> {
854         let mut duplicates = FxHashSet::default();
855         for trait_info in suggest::all_traits(self.tcx) {
856             if duplicates.insert(trait_info.def_id) {
857                 self.assemble_extension_candidates_for_trait(smallvec![], trait_info.def_id)?;
858             }
859         }
860         Ok(())
861     }
862
863     pub fn matches_return_type(&self,
864                                method: &ty::AssocItem,
865                                self_ty: Option<Ty<'tcx>>,
866                                expected: Ty<'tcx>) -> bool {
867         match method.kind {
868             ty::AssocKind::Method => {
869                 let fty = self.tcx.fn_sig(method.def_id);
870                 self.probe(|_| {
871                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
872                     let fty = fty.subst(self.tcx, substs);
873                     let (fty, _) = self.replace_bound_vars_with_fresh_vars(
874                         self.span,
875                         infer::FnCall,
876                         &fty
877                     );
878
879                     if let Some(self_ty) = self_ty {
880                         if self.at(&ObligationCause::dummy(), self.param_env)
881                                .sup(fty.inputs()[0], self_ty)
882                                .is_err()
883                         {
884                             return false
885                         }
886                     }
887                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
888                 })
889             }
890             _ => false,
891         }
892     }
893
894     fn assemble_extension_candidates_for_trait(&mut self,
895                                                import_ids: SmallVec<[hir::HirId; 1]>,
896                                                trait_def_id: DefId)
897                                                -> Result<(), MethodError<'tcx>> {
898         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})",
899                trait_def_id);
900         let trait_substs = self.fresh_item_substs(trait_def_id);
901         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
902
903         if self.tcx.is_trait_alias(trait_def_id) {
904             // For trait aliases, assume all super-traits are relevant.
905             let bounds = iter::once(trait_ref.to_poly_trait_ref());
906             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
907                 let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
908
909                 let (xform_self_ty, xform_ret_ty) =
910                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
911                 this.push_candidate(Candidate {
912                     xform_self_ty, xform_ret_ty, item, import_ids: import_ids.clone(),
913                     kind: TraitCandidate(new_trait_ref),
914                 }, true);
915             });
916         } else {
917             debug_assert!(self.tcx.is_trait(trait_def_id));
918             for item in self.impl_or_trait_item(trait_def_id) {
919                 // Check whether `trait_def_id` defines a method with suitable name.
920                 if !self.has_applicable_self(&item) {
921                     debug!("method has inapplicable self");
922                     self.record_static_candidate(TraitSource(trait_def_id));
923                     continue;
924                 }
925
926                 let (xform_self_ty, xform_ret_ty) =
927                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
928                 self.push_candidate(Candidate {
929                     xform_self_ty, xform_ret_ty, item, import_ids: import_ids.clone(),
930                     kind: TraitCandidate(trait_ref),
931                 }, false);
932             }
933         }
934         Ok(())
935     }
936
937     fn candidate_method_names(&self) -> Vec<ast::Ident> {
938         let mut set = FxHashSet::default();
939         let mut names: Vec<_> = self.inherent_candidates
940             .iter()
941             .chain(&self.extension_candidates)
942             .filter(|candidate| {
943                 if let Some(return_ty) = self.return_type {
944                     self.matches_return_type(&candidate.item, None, return_ty)
945                 } else {
946                     true
947                 }
948             })
949             .map(|candidate| candidate.item.ident)
950             .filter(|&name| set.insert(name))
951             .collect();
952
953         // Sort them by the name so we have a stable result.
954         names.sort_by_cached_key(|n| n.as_str());
955         names
956     }
957
958     ///////////////////////////////////////////////////////////////////////////
959     // THE ACTUAL SEARCH
960
961     fn pick(mut self) -> PickResult<'tcx> {
962         assert!(self.method_name.is_some());
963
964         if let Some(r) = self.pick_core() {
965             return r;
966         }
967
968         debug!("pick: actual search failed, assemble diagnotics");
969
970         let static_candidates = mem::replace(&mut self.static_candidates, vec![]);
971         let private_candidate = self.private_candidate.take();
972         let unsatisfied_predicates = mem::replace(&mut self.unsatisfied_predicates, vec![]);
973
974         // things failed, so lets look at all traits, for diagnostic purposes now:
975         self.reset();
976
977         let span = self.span;
978         let tcx = self.tcx;
979
980         self.assemble_extension_candidates_for_all_traits()?;
981
982         let out_of_scope_traits = match self.pick_core() {
983             Some(Ok(p)) => vec![p.item.container.id()],
984             //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
985             Some(Err(MethodError::Ambiguity(v))) => {
986                 v.into_iter()
987                     .map(|source| {
988                         match source {
989                             TraitSource(id) => id,
990                             ImplSource(impl_id) => {
991                                 match tcx.trait_id_of_impl(impl_id) {
992                                     Some(id) => id,
993                                     None => {
994                                         span_bug!(span,
995                                                   "found inherent method when looking at traits")
996                                     }
997                                 }
998                             }
999                         }
1000                     })
1001                     .collect()
1002             }
1003             Some(Err(MethodError::NoMatch(NoMatchData { out_of_scope_traits: others, .. }))) => {
1004                 assert!(others.is_empty());
1005                 vec![]
1006             }
1007             _ => vec![],
1008         };
1009
1010         if let Some((kind, def_id)) = private_candidate {
1011             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1012         }
1013         let lev_candidate = self.probe_for_lev_candidate()?;
1014
1015         Err(MethodError::NoMatch(NoMatchData::new(static_candidates,
1016                                                   unsatisfied_predicates,
1017                                                   out_of_scope_traits,
1018                                                   lev_candidate,
1019                                                   self.mode)))
1020     }
1021
1022     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1023         let steps = self.steps.clone();
1024
1025         // find the first step that works
1026         steps
1027             .iter()
1028             .filter(|step| {
1029                 debug!("pick_core: step={:?}", step);
1030                 // skip types that are from a type error or that would require dereferencing
1031                 // a raw pointer
1032                 !step.self_ty.references_error() && !step.from_unsafe_deref
1033             }).flat_map(|step| {
1034                 let InferOk { value: self_ty, obligations: _ } =
1035                     self.fcx.probe_instantiate_query_response(
1036                         self.span, &self.orig_steps_var_values, &step.self_ty
1037                     ).unwrap_or_else(|_| {
1038                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1039                     });
1040                 self.pick_by_value_method(step, self_ty).or_else(|| {
1041                 self.pick_autorefd_method(step, self_ty, hir::MutImmutable).or_else(|| {
1042                 self.pick_autorefd_method(step, self_ty, hir::MutMutable)
1043             })})})
1044             .next()
1045     }
1046
1047     fn pick_by_value_method(&mut self, step: &CandidateStep<'gcx>, self_ty: Ty<'tcx>)
1048                             -> Option<PickResult<'tcx>>
1049     {
1050         //! For each type `T` in the step list, this attempts to find a
1051         //! method where the (transformed) self type is exactly `T`. We
1052         //! do however do one transformation on the adjustment: if we
1053         //! are passing a region pointer in, we will potentially
1054         //! *reborrow* it to a shorter lifetime. This allows us to
1055         //! transparently pass `&mut` pointers, in particular, without
1056         //! consuming them for their entire lifetime.
1057
1058         if step.unsize {
1059             return None;
1060         }
1061
1062         self.pick_method(self_ty).map(|r| {
1063             r.map(|mut pick| {
1064                 pick.autoderefs = step.autoderefs;
1065
1066                 // Insert a `&*` or `&mut *` if this is a reference type:
1067                 if let ty::Ref(_, _, mutbl) = step.self_ty.value.value.sty {
1068                     pick.autoderefs += 1;
1069                     pick.autoref = Some(mutbl);
1070                 }
1071
1072                 pick
1073             })
1074         })
1075     }
1076
1077     fn pick_autorefd_method(&mut self,
1078                             step: &CandidateStep<'gcx>,
1079                             self_ty: Ty<'tcx>,
1080                             mutbl: hir::Mutability)
1081                             -> Option<PickResult<'tcx>> {
1082         let tcx = self.tcx;
1083
1084         // In general, during probing we erase regions. See
1085         // `impl_self_ty()` for an explanation.
1086         let region = tcx.lifetimes.re_erased;
1087
1088         let autoref_ty = tcx.mk_ref(region,
1089                                     ty::TypeAndMut {
1090                                         ty: self_ty, mutbl
1091                                     });
1092         self.pick_method(autoref_ty).map(|r| {
1093             r.map(|mut pick| {
1094                 pick.autoderefs = step.autoderefs;
1095                 pick.autoref = Some(mutbl);
1096                 pick.unsize = if step.unsize {
1097                     Some(self_ty)
1098                 } else {
1099                     None
1100                 };
1101                 pick
1102             })
1103         })
1104     }
1105
1106     fn pick_method(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1107         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1108
1109         let mut possibly_unsatisfied_predicates = Vec::new();
1110         let mut unstable_candidates = Vec::new();
1111
1112         for (kind, candidates) in &[
1113             ("inherent", &self.inherent_candidates),
1114             ("extension", &self.extension_candidates),
1115         ] {
1116             debug!("searching {} candidates", kind);
1117             let res = self.consider_candidates(
1118                 self_ty,
1119                 candidates.iter(),
1120                 &mut possibly_unsatisfied_predicates,
1121                 Some(&mut unstable_candidates),
1122             );
1123             if let Some(pick) = res {
1124                 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1125                     if let Ok(p) = &pick {
1126                         // Emit a lint if there are unstable candidates alongside the stable ones.
1127                         //
1128                         // We suppress warning if we're picking the method only because it is a
1129                         // suggestion.
1130                         self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1131                     }
1132                 }
1133                 return Some(pick);
1134             }
1135         }
1136
1137         debug!("searching unstable candidates");
1138         let res = self.consider_candidates(
1139             self_ty,
1140             unstable_candidates.into_iter().map(|(c, _)| c),
1141             &mut possibly_unsatisfied_predicates,
1142             None,
1143         );
1144         if res.is_none() {
1145             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1146         }
1147         res
1148     }
1149
1150     fn consider_candidates<'b, ProbesIter>(
1151         &self,
1152         self_ty: Ty<'tcx>,
1153         probes: ProbesIter,
1154         possibly_unsatisfied_predicates: &mut Vec<TraitRef<'tcx>>,
1155         unstable_candidates: Option<&mut Vec<(&'b Candidate<'tcx>, Symbol)>>,
1156     ) -> Option<PickResult<'tcx>>
1157     where
1158         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1159     {
1160         let mut applicable_candidates: Vec<_> = probes.clone()
1161             .map(|probe| {
1162                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1163             })
1164             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1165             .collect();
1166
1167         debug!("applicable_candidates: {:?}", applicable_candidates);
1168
1169         if applicable_candidates.len() > 1 {
1170             if let Some(pick) = self.collapse_candidates_to_trait_pick(&applicable_candidates[..]) {
1171                 return Some(Ok(pick));
1172             }
1173         }
1174
1175         if let Some(uc) = unstable_candidates {
1176             applicable_candidates.retain(|&(p, _)| {
1177                 if let stability::EvalResult::Deny { feature, .. } =
1178                     self.tcx.eval_stability(p.item.def_id, None, self.span)
1179                 {
1180                     uc.push((p, feature));
1181                     return false;
1182                 }
1183                 true
1184             });
1185         }
1186
1187         if applicable_candidates.len() > 1 {
1188             let sources = probes
1189                 .map(|p| self.candidate_source(p, self_ty))
1190                 .collect();
1191             return Some(Err(MethodError::Ambiguity(sources)));
1192         }
1193
1194         applicable_candidates.pop().map(|(probe, status)| {
1195             if status == ProbeResult::Match {
1196                 Ok(probe.to_unadjusted_pick())
1197             } else {
1198                 Err(MethodError::BadReturnType)
1199             }
1200         })
1201     }
1202
1203     fn emit_unstable_name_collision_hint(
1204         &self,
1205         stable_pick: &Pick<'_>,
1206         unstable_candidates: &[(&Candidate<'tcx>, Symbol)],
1207     ) {
1208         let mut diag = self.tcx.struct_span_lint_hir(
1209             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1210             self.fcx.body_id,
1211             self.span,
1212             "a method with this name may be added to the standard library in the future",
1213         );
1214
1215         // FIXME: This should be a `span_suggestion` instead of `help`
1216         // However `self.span` only
1217         // highlights the method name, so we can't use it. Also consider reusing the code from
1218         // `report_method_error()`.
1219         diag.help(&format!(
1220             "call with fully qualified syntax `{}(...)` to keep using the current method",
1221             self.tcx.def_path_str(stable_pick.item.def_id),
1222         ));
1223
1224         if nightly_options::is_nightly_build() {
1225             for (candidate, feature) in unstable_candidates {
1226                 diag.help(&format!(
1227                     "add #![feature({})] to the crate attributes to enable `{}`",
1228                     feature,
1229                     self.tcx.def_path_str(candidate.item.def_id),
1230                 ));
1231             }
1232         }
1233
1234         diag.emit();
1235     }
1236
1237     fn select_trait_candidate(&self, trait_ref: ty::TraitRef<'tcx>)
1238                               -> traits::SelectionResult<'tcx, traits::Selection<'tcx>>
1239     {
1240         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1241         let predicate =
1242             trait_ref.to_poly_trait_ref().to_poly_trait_predicate();
1243         let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1244         traits::SelectionContext::new(self).select(&obligation)
1245     }
1246
1247     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>)
1248                         -> CandidateSource
1249     {
1250         match candidate.kind {
1251             InherentImplCandidate(..) => ImplSource(candidate.item.container.id()),
1252             ObjectCandidate |
1253             WhereClauseCandidate(_) => TraitSource(candidate.item.container.id()),
1254             TraitCandidate(trait_ref) => self.probe(|_| {
1255                 let _ = self.at(&ObligationCause::dummy(), self.param_env)
1256                     .sup(candidate.xform_self_ty, self_ty);
1257                 match self.select_trait_candidate(trait_ref) {
1258                     Ok(Some(traits::Vtable::VtableImpl(ref impl_data))) => {
1259                         // If only a single impl matches, make the error message point
1260                         // to that impl.
1261                         ImplSource(impl_data.impl_def_id)
1262                     }
1263                     _ => {
1264                         TraitSource(candidate.item.container.id())
1265                     }
1266                 }
1267             })
1268         }
1269     }
1270
1271     fn consider_probe(&self,
1272                       self_ty: Ty<'tcx>,
1273                       probe: &Candidate<'tcx>,
1274                       possibly_unsatisfied_predicates: &mut Vec<TraitRef<'tcx>>)
1275                       -> ProbeResult {
1276         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1277
1278         self.probe(|_| {
1279             // First check that the self type can be related.
1280             let sub_obligations = match self.at(&ObligationCause::dummy(), self.param_env)
1281                                             .sup(probe.xform_self_ty, self_ty) {
1282                 Ok(InferOk { obligations, value: () }) => obligations,
1283                 Err(_) => {
1284                     debug!("--> cannot relate self-types");
1285                     return ProbeResult::NoMatch;
1286                 }
1287             };
1288
1289             let mut result = ProbeResult::Match;
1290             let selcx = &mut traits::SelectionContext::new(self);
1291             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1292
1293             // If so, impls may carry other conditions (e.g., where
1294             // clauses) that must be considered. Make sure that those
1295             // match as well (or at least may match, sometimes we
1296             // don't have enough information to fully evaluate).
1297             let candidate_obligations : Vec<_> = match probe.kind {
1298                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1299                     // Check whether the impl imposes obligations we have to worry about.
1300                     let impl_def_id = probe.item.container.id();
1301                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1302                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1303                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1304                         traits::normalize(selcx, self.param_env, cause.clone(), &impl_bounds);
1305
1306                     // Convert the bounds into obligations.
1307                     let impl_obligations = traits::predicates_for_generics(
1308                         cause, self.param_env, &impl_bounds);
1309
1310                     debug!("impl_obligations={:?}", impl_obligations);
1311                     impl_obligations.into_iter()
1312                         .chain(norm_obligations.into_iter())
1313                         .chain(ref_obligations.iter().cloned())
1314                         .collect()
1315                 }
1316
1317                 ObjectCandidate |
1318                 WhereClauseCandidate(..) => {
1319                     // These have no additional conditions to check.
1320                     vec![]
1321                 }
1322
1323                 TraitCandidate(trait_ref) => {
1324                     let predicate = trait_ref.to_predicate();
1325                     let obligation =
1326                         traits::Obligation::new(cause, self.param_env, predicate);
1327                     if !self.predicate_may_hold(&obligation) {
1328                         if self.probe(|_| self.select_trait_candidate(trait_ref).is_err()) {
1329                             // This candidate's primary obligation doesn't even
1330                             // select - don't bother registering anything in
1331                             // `potentially_unsatisfied_predicates`.
1332                             return ProbeResult::NoMatch;
1333                         } else {
1334                             // Some nested subobligation of this predicate
1335                             // failed.
1336                             //
1337                             // FIXME: try to find the exact nested subobligation
1338                             // and point at it rather than reporting the entire
1339                             // trait-ref?
1340                             result = ProbeResult::NoMatch;
1341                             let trait_ref = self.resolve_type_vars_if_possible(&trait_ref);
1342                             possibly_unsatisfied_predicates.push(trait_ref);
1343                         }
1344                     }
1345                     vec![]
1346                 }
1347             };
1348
1349             debug!("consider_probe - candidate_obligations={:?} sub_obligations={:?}",
1350                    candidate_obligations, sub_obligations);
1351
1352             // Evaluate those obligations to see if they might possibly hold.
1353             for o in candidate_obligations.into_iter().chain(sub_obligations) {
1354                 let o = self.resolve_type_vars_if_possible(&o);
1355                 if !self.predicate_may_hold(&o) {
1356                     result = ProbeResult::NoMatch;
1357                     if let &ty::Predicate::Trait(ref pred) = &o.predicate {
1358                         possibly_unsatisfied_predicates.push(pred.skip_binder().trait_ref);
1359                     }
1360                 }
1361             }
1362
1363             if let ProbeResult::Match = result {
1364                 if let (Some(return_ty), Some(xform_ret_ty)) =
1365                     (self.return_type, probe.xform_ret_ty)
1366                 {
1367                     let xform_ret_ty = self.resolve_type_vars_if_possible(&xform_ret_ty);
1368                     debug!("comparing return_ty {:?} with xform ret ty {:?}",
1369                            return_ty,
1370                            probe.xform_ret_ty);
1371                     if self.at(&ObligationCause::dummy(), self.param_env)
1372                         .sup(return_ty, xform_ret_ty)
1373                         .is_err()
1374                     {
1375                         return ProbeResult::BadReturnType;
1376                     }
1377                 }
1378             }
1379
1380             result
1381         })
1382     }
1383
1384     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1385     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1386     /// external interface of the method can be determined from the trait, it's ok not to decide.
1387     /// We can basically just collapse all of the probes for various impls into one where-clause
1388     /// probe. This will result in a pending obligation so when more type-info is available we can
1389     /// make the final decision.
1390     ///
1391     /// Example (`src/test/run-pass/method-two-trait-defer-resolution-1.rs`):
1392     ///
1393     /// ```
1394     /// trait Foo { ... }
1395     /// impl Foo for Vec<int> { ... }
1396     /// impl Foo for Vec<usize> { ... }
1397     /// ```
1398     ///
1399     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1400     /// use, so it's ok to just commit to "using the method from the trait Foo".
1401     fn collapse_candidates_to_trait_pick(&self, probes: &[(&Candidate<'tcx>, ProbeResult)])
1402                                          -> Option<Pick<'tcx>>
1403     {
1404         // Do all probes correspond to the same trait?
1405         let container = probes[0].0.item.container;
1406         if let ty::ImplContainer(_) = container {
1407             return None
1408         }
1409         if probes[1..].iter().any(|&(p, _)| p.item.container != container) {
1410             return None;
1411         }
1412
1413         // FIXME: check the return type here somehow.
1414         // If so, just use this trait and call it a day.
1415         Some(Pick {
1416             item: probes[0].0.item.clone(),
1417             kind: TraitPick,
1418             import_ids: probes[0].0.import_ids.clone(),
1419             autoderefs: 0,
1420             autoref: None,
1421             unsize: None,
1422         })
1423     }
1424
1425     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1426     /// candidate method where the method name may have been misspelt. Similarly to other
1427     /// Levenshtein based suggestions, we provide at most one such suggestion.
1428     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1429         debug!("Probing for method names similar to {:?}",
1430                self.method_name);
1431
1432         let steps = self.steps.clone();
1433         self.probe(|_| {
1434             let mut pcx = ProbeContext::new(self.fcx, self.span, self.mode, self.method_name,
1435                                             self.return_type,
1436                                             self.orig_steps_var_values.clone(),
1437                                             steps, IsSuggestion(true));
1438             pcx.allow_similar_names = true;
1439             pcx.assemble_inherent_candidates();
1440             pcx.assemble_extension_candidates_for_traits_in_scope(hir::DUMMY_HIR_ID)?;
1441
1442             let method_names = pcx.candidate_method_names();
1443             pcx.allow_similar_names = false;
1444             let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1445                 .iter()
1446                 .filter_map(|&method_name| {
1447                     pcx.reset();
1448                     pcx.method_name = Some(method_name);
1449                     pcx.assemble_inherent_candidates();
1450                     pcx.assemble_extension_candidates_for_traits_in_scope(hir::DUMMY_HIR_ID)
1451                         .ok().map_or(None, |_| {
1452                             pcx.pick_core()
1453                                 .and_then(|pick| pick.ok())
1454                                 .and_then(|pick| Some(pick.item))
1455                         })
1456                 })
1457                .collect();
1458
1459             if applicable_close_candidates.is_empty() {
1460                 Ok(None)
1461             } else {
1462                 let best_name = {
1463                     let names = applicable_close_candidates.iter().map(|cand| &cand.ident.name);
1464                     find_best_match_for_name(names,
1465                                              &self.method_name.unwrap().as_str(),
1466                                              None)
1467                 }.unwrap();
1468                 Ok(applicable_close_candidates
1469                    .into_iter()
1470                    .find(|method| method.ident.name == best_name))
1471             }
1472         })
1473     }
1474
1475     ///////////////////////////////////////////////////////////////////////////
1476     // MISCELLANY
1477     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1478         // "Fast track" -- check for usage of sugar when in method call
1479         // mode.
1480         //
1481         // In Path mode (i.e., resolving a value like `T::next`), consider any
1482         // associated value (i.e., methods, constants) but not types.
1483         match self.mode {
1484             Mode::MethodCall => item.method_has_self_argument,
1485             Mode::Path => match item.kind {
1486                 ty::AssocKind::Existential |
1487                 ty::AssocKind::Type => false,
1488                 ty::AssocKind::Method | ty::AssocKind::Const => true
1489             },
1490         }
1491         // FIXME -- check for types that deref to `Self`,
1492         // like `Rc<Self>` and so on.
1493         //
1494         // Note also that the current code will break if this type
1495         // includes any of the type parameters defined on the method
1496         // -- but this could be overcome.
1497     }
1498
1499     fn record_static_candidate(&mut self, source: CandidateSource) {
1500         self.static_candidates.push(source);
1501     }
1502
1503     fn xform_self_ty(&self,
1504                      item: &ty::AssocItem,
1505                      impl_ty: Ty<'tcx>,
1506                      substs: SubstsRef<'tcx>)
1507                      -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1508         if item.kind == ty::AssocKind::Method && self.mode == Mode::MethodCall {
1509             let sig = self.xform_method_sig(item.def_id, substs);
1510             (sig.inputs()[0], Some(sig.output()))
1511         } else {
1512             (impl_ty, None)
1513         }
1514     }
1515
1516     fn xform_method_sig(&self,
1517                         method: DefId,
1518                         substs: SubstsRef<'tcx>)
1519                         -> ty::FnSig<'tcx>
1520     {
1521         let fn_sig = self.tcx.fn_sig(method);
1522         debug!("xform_self_ty(fn_sig={:?}, substs={:?})",
1523                fn_sig,
1524                substs);
1525
1526         assert!(!substs.has_escaping_bound_vars());
1527
1528         // It is possible for type parameters or early-bound lifetimes
1529         // to appear in the signature of `self`. The substitutions we
1530         // are given do not include type/lifetime parameters for the
1531         // method yet. So create fresh variables here for those too,
1532         // if there are any.
1533         let generics = self.tcx.generics_of(method);
1534         assert_eq!(substs.len(), generics.parent_count as usize);
1535
1536         // Erase any late-bound regions from the method and substitute
1537         // in the values from the substitution.
1538         let xform_fn_sig = self.erase_late_bound_regions(&fn_sig);
1539
1540         if generics.params.is_empty() {
1541             xform_fn_sig.subst(self.tcx, substs)
1542         } else {
1543             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1544                 let i = param.index as usize;
1545                 if i < substs.len() {
1546                     substs[i]
1547                 } else {
1548                     match param.kind {
1549                         GenericParamDefKind::Lifetime => {
1550                             // In general, during probe we erase regions. See
1551                             // `impl_self_ty()` for an explanation.
1552                             self.tcx.lifetimes.re_erased.into()
1553                         }
1554                         GenericParamDefKind::Type { .. }
1555                         | GenericParamDefKind::Const => {
1556                             self.var_for_def(self.span, param)
1557                         }
1558                     }
1559                 }
1560             });
1561             xform_fn_sig.subst(self.tcx, substs)
1562         }
1563     }
1564
1565     /// Gets the type of an impl and generate substitutions with placeholders.
1566     fn impl_ty_and_substs(&self, impl_def_id: DefId) -> (Ty<'tcx>, SubstsRef<'tcx>) {
1567         (self.tcx.type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1568     }
1569
1570     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1571         InternalSubsts::for_item(self.tcx, def_id, |param, _| {
1572             match param.kind {
1573                 GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1574                 GenericParamDefKind::Type { .. } => {
1575                     self.next_ty_var(TypeVariableOrigin::SubstitutionPlaceholder(
1576                         self.tcx.def_span(def_id))).into()
1577                 }
1578                 GenericParamDefKind::Const { .. } => {
1579                     let span = self.tcx.def_span(def_id);
1580                     let origin = ConstVariableOrigin::SubstitutionPlaceholder(span);
1581                     self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1582                 }
1583             }
1584         })
1585     }
1586
1587     /// Replaces late-bound-regions bound by `value` with `'static` using
1588     /// `ty::erase_late_bound_regions`.
1589     ///
1590     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1591     /// method matching. It is reasonable during the probe phase because we don't consider region
1592     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1593     /// rather than creating fresh region variables. This is nice for two reasons:
1594     ///
1595     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1596     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1597     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1598     ///
1599     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1600     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1601     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1602     ///    region got replaced with the same variable, which requires a bit more coordination
1603     ///    and/or tracking the substitution and
1604     ///    so forth.
1605     fn erase_late_bound_regions<T>(&self, value: &ty::Binder<T>) -> T
1606         where T: TypeFoldable<'tcx>
1607     {
1608         self.tcx.erase_late_bound_regions(value)
1609     }
1610
1611     /// Finds the method with the appropriate name (or return type, as the case may be). If
1612     /// `allow_similar_names` is set, find methods with close-matching names.
1613     fn impl_or_trait_item(&self, def_id: DefId) -> Vec<ty::AssocItem> {
1614         if let Some(name) = self.method_name {
1615             if self.allow_similar_names {
1616                 let max_dist = max(name.as_str().len(), 3) / 3;
1617                 self.tcx.associated_items(def_id)
1618                     .filter(|x| {
1619                         let dist = lev_distance(&*name.as_str(), &x.ident.as_str());
1620                         Namespace::from(x.kind) == Namespace::Value && dist > 0
1621                             && dist <= max_dist
1622                     })
1623                     .collect()
1624             } else {
1625                 self.fcx
1626                     .associated_item(def_id, name, Namespace::Value)
1627                     .map_or(Vec::new(), |x| vec![x])
1628             }
1629         } else {
1630             self.tcx.associated_items(def_id).collect()
1631         }
1632     }
1633 }
1634
1635 impl<'tcx> Candidate<'tcx> {
1636     fn to_unadjusted_pick(&self) -> Pick<'tcx> {
1637         Pick {
1638             item: self.item.clone(),
1639             kind: match self.kind {
1640                 InherentImplCandidate(..) => InherentImplPick,
1641                 ObjectCandidate => ObjectPick,
1642                 TraitCandidate(_) => TraitPick,
1643                 WhereClauseCandidate(ref trait_ref) => {
1644                     // Only trait derived from where-clauses should
1645                     // appear here, so they should not contain any
1646                     // inference variables or other artifacts. This
1647                     // means they are safe to put into the
1648                     // `WhereClausePick`.
1649                     assert!(
1650                         !trait_ref.skip_binder().substs.needs_infer()
1651                             && !trait_ref.skip_binder().substs.has_placeholders()
1652                     );
1653
1654                     WhereClausePick(trait_ref.clone())
1655                 }
1656             },
1657             import_ids: self.import_ids.clone(),
1658             autoderefs: 0,
1659             autoref: None,
1660             unsize: None,
1661         }
1662     }
1663 }