]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/method/probe.rs
Refactor away `inferred_obligations` from the trait selector
[rust.git] / src / librustc_typeck / check / method / probe.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use super::MethodError;
12 use super::NoMatchData;
13 use super::{CandidateSource, ImplSource, TraitSource};
14 use super::suggest;
15
16 use check::FnCtxt;
17 use hir::def_id::DefId;
18 use hir::def::Def;
19 use namespace::Namespace;
20 use rustc::ty::subst::{Subst, Substs};
21 use rustc::traits::{self, ObligationCause};
22 use rustc::ty::{self, Ty, ToPolyTraitRef, ToPredicate, TraitRef, TypeFoldable};
23 use rustc::infer::type_variable::TypeVariableOrigin;
24 use rustc::util::nodemap::FxHashSet;
25 use rustc::infer::{self, InferOk};
26 use syntax::ast;
27 use syntax::util::lev_distance::{lev_distance, find_best_match_for_name};
28 use syntax_pos::Span;
29 use rustc::hir;
30 use rustc::lint;
31 use std::mem;
32 use std::ops::Deref;
33 use std::rc::Rc;
34 use std::cmp::max;
35
36 use self::CandidateKind::*;
37 pub use self::PickKind::*;
38
39 /// Boolean flag used to indicate if this search is for a suggestion
40 /// or not.  If true, we can allow ambiguity and so forth.
41 pub struct IsSuggestion(pub bool);
42
43 struct ProbeContext<'a, 'gcx: 'a + 'tcx, 'tcx: 'a> {
44     fcx: &'a FnCtxt<'a, 'gcx, 'tcx>,
45     span: Span,
46     mode: Mode,
47     method_name: Option<ast::Name>,
48     return_type: Option<Ty<'tcx>>,
49     steps: Rc<Vec<CandidateStep<'tcx>>>,
50     inherent_candidates: Vec<Candidate<'tcx>>,
51     extension_candidates: Vec<Candidate<'tcx>>,
52     impl_dups: FxHashSet<DefId>,
53
54     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
55     /// used for error reporting
56     static_candidates: Vec<CandidateSource>,
57
58     /// When probing for names, include names that are close to the
59     /// requested name (by Levensthein distance)
60     allow_similar_names: bool,
61
62     /// Some(candidate) if there is a private candidate
63     private_candidate: Option<Def>,
64
65     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
66     /// for error reporting
67     unsatisfied_predicates: Vec<TraitRef<'tcx>>,
68 }
69
70 impl<'a, 'gcx, 'tcx> Deref for ProbeContext<'a, 'gcx, 'tcx> {
71     type Target = FnCtxt<'a, 'gcx, 'tcx>;
72     fn deref(&self) -> &Self::Target {
73         &self.fcx
74     }
75 }
76
77 #[derive(Debug)]
78 struct CandidateStep<'tcx> {
79     self_ty: Ty<'tcx>,
80     autoderefs: usize,
81     // true if the type results from a dereference of a raw pointer.
82     // when assembling candidates, we include these steps, but not when
83     // picking methods. This so that if we have `foo: *const Foo` and `Foo` has methods
84     // `fn by_raw_ptr(self: *const Self)` and `fn by_ref(&self)`, then
85     // `foo.by_raw_ptr()` will work and `foo.by_ref()` won't.
86     from_unsafe_deref: bool,
87     unsize: bool,
88 }
89
90 #[derive(Debug)]
91 struct Candidate<'tcx> {
92     xform_self_ty: Ty<'tcx>,
93     xform_ret_ty: Option<Ty<'tcx>>,
94     item: ty::AssociatedItem,
95     kind: CandidateKind<'tcx>,
96     import_id: Option<ast::NodeId>,
97 }
98
99 #[derive(Debug)]
100 enum CandidateKind<'tcx> {
101     InherentImplCandidate(&'tcx Substs<'tcx>,
102                           // Normalize obligations
103                           Vec<traits::PredicateObligation<'tcx>>),
104     ObjectCandidate,
105     TraitCandidate(ty::TraitRef<'tcx>),
106     WhereClauseCandidate(// Trait
107                          ty::PolyTraitRef<'tcx>),
108 }
109
110 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
111 enum ProbeResult {
112     NoMatch,
113     BadReturnType,
114     Match,
115 }
116
117 #[derive(Debug, PartialEq, Eq, Clone)]
118 pub struct Pick<'tcx> {
119     pub item: ty::AssociatedItem,
120     pub kind: PickKind<'tcx>,
121     pub import_id: Option<ast::NodeId>,
122
123     // Indicates that the source expression should be autoderef'd N times
124     //
125     // A = expr | *expr | **expr | ...
126     pub autoderefs: usize,
127
128     // Indicates that an autoref is applied after the optional autoderefs
129     //
130     // B = A | &A | &mut A
131     pub autoref: Option<hir::Mutability>,
132
133     // Indicates that the source expression should be "unsized" to a
134     // target type. This should probably eventually go away in favor
135     // of just coercing method receivers.
136     //
137     // C = B | unsize(B)
138     pub unsize: Option<Ty<'tcx>>,
139 }
140
141 #[derive(Clone, Debug, PartialEq, Eq)]
142 pub enum PickKind<'tcx> {
143     InherentImplPick,
144     ObjectPick,
145     TraitPick,
146     WhereClausePick(// Trait
147                     ty::PolyTraitRef<'tcx>),
148 }
149
150 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
151
152 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
153 pub enum Mode {
154     // An expression of the form `receiver.method_name(...)`.
155     // Autoderefs are performed on `receiver`, lookup is done based on the
156     // `self` argument  of the method, and static methods aren't considered.
157     MethodCall,
158     // An expression of the form `Type::item` or `<T>::item`.
159     // No autoderefs are performed, lookup is done based on the type each
160     // implementation is for, and static methods are included.
161     Path,
162 }
163
164 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
165 pub enum ProbeScope {
166     // Assemble candidates coming only from traits in scope.
167     TraitsInScope,
168
169     // Assemble candidates coming from all traits.
170     AllTraits,
171 }
172
173 impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
174     /// This is used to offer suggestions to users. It returns methods
175     /// that could have been called which have the desired return
176     /// type. Some effort is made to rule out methods that, if called,
177     /// would result in an error (basically, the same criteria we
178     /// would use to decide if a method is a plausible fit for
179     /// ambiguity purposes).
180     pub fn probe_for_return_type(&self,
181                                  span: Span,
182                                  mode: Mode,
183                                  return_type: Ty<'tcx>,
184                                  self_ty: Ty<'tcx>,
185                                  scope_expr_id: ast::NodeId)
186                                  -> Vec<ty::AssociatedItem> {
187         debug!("probe(self_ty={:?}, return_type={}, scope_expr_id={})",
188                self_ty,
189                return_type,
190                scope_expr_id);
191         let method_names =
192             self.probe_op(span, mode, None, Some(return_type), IsSuggestion(true),
193                           self_ty, scope_expr_id, ProbeScope::AllTraits,
194                           |probe_cx| Ok(probe_cx.candidate_method_names()))
195                 .unwrap_or(vec![]);
196          method_names
197              .iter()
198              .flat_map(|&method_name| {
199                  self.probe_op(
200                      span, mode, Some(method_name), Some(return_type),
201                      IsSuggestion(true), self_ty, scope_expr_id,
202                      ProbeScope::AllTraits, |probe_cx| probe_cx.pick()
203                  ).ok().map(|pick| pick.item)
204              })
205             .collect()
206     }
207
208     pub fn probe_for_name(&self,
209                           span: Span,
210                           mode: Mode,
211                           item_name: ast::Name,
212                           is_suggestion: IsSuggestion,
213                           self_ty: Ty<'tcx>,
214                           scope_expr_id: ast::NodeId,
215                           scope: ProbeScope)
216                           -> PickResult<'tcx> {
217         debug!("probe(self_ty={:?}, item_name={}, scope_expr_id={})",
218                self_ty,
219                item_name,
220                scope_expr_id);
221         self.probe_op(span,
222                       mode,
223                       Some(item_name),
224                       None,
225                       is_suggestion,
226                       self_ty,
227                       scope_expr_id,
228                       scope,
229                       |probe_cx| probe_cx.pick())
230     }
231
232     fn probe_op<OP,R>(&'a self,
233                       span: Span,
234                       mode: Mode,
235                       method_name: Option<ast::Name>,
236                       return_type: Option<Ty<'tcx>>,
237                       is_suggestion: IsSuggestion,
238                       self_ty: Ty<'tcx>,
239                       scope_expr_id: ast::NodeId,
240                       scope: ProbeScope,
241                       op: OP)
242                       -> Result<R, MethodError<'tcx>>
243         where OP: FnOnce(ProbeContext<'a, 'gcx, 'tcx>) -> Result<R, MethodError<'tcx>>
244     {
245         // FIXME(#18741) -- right now, creating the steps involves evaluating the
246         // `*` operator, which registers obligations that then escape into
247         // the global fulfillment context and thus has global
248         // side-effects. This is a bit of a pain to refactor. So just let
249         // it ride, although it's really not great, and in fact could I
250         // think cause spurious errors. Really though this part should
251         // take place in the `self.probe` below.
252         let steps = if mode == Mode::MethodCall {
253             match self.create_steps(span, scope_expr_id, self_ty, is_suggestion) {
254                 Some(steps) => steps,
255                 None => {
256                     return Err(MethodError::NoMatch(NoMatchData::new(Vec::new(),
257                                                                      Vec::new(),
258                                                                      Vec::new(),
259                                                                      None,
260                                                                      mode)))
261                 }
262             }
263         } else {
264             vec![CandidateStep {
265                      self_ty,
266                      autoderefs: 0,
267                      from_unsafe_deref: false,
268                      unsize: false,
269                  }]
270         };
271
272         debug!("ProbeContext: steps for self_ty={:?} are {:?}",
273                self_ty,
274                steps);
275
276         // this creates one big transaction so that all type variables etc
277         // that we create during the probe process are removed later
278         self.probe(|_| {
279             let mut probe_cx =
280                 ProbeContext::new(self, span, mode, method_name, return_type, Rc::new(steps));
281
282             probe_cx.assemble_inherent_candidates();
283             match scope {
284                 ProbeScope::TraitsInScope =>
285                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)?,
286                 ProbeScope::AllTraits =>
287                     probe_cx.assemble_extension_candidates_for_all_traits()?,
288             };
289             op(probe_cx)
290         })
291     }
292
293     fn create_steps(&self,
294                     span: Span,
295                     scope_expr_id: ast::NodeId,
296                     self_ty: Ty<'tcx>,
297                     is_suggestion: IsSuggestion)
298                     -> Option<Vec<CandidateStep<'tcx>>> {
299         // FIXME: we don't need to create the entire steps in one pass
300
301         let mut autoderef = self.autoderef(span, self_ty).include_raw_pointers();
302         let mut reached_raw_pointer = false;
303         let mut steps: Vec<_> = autoderef.by_ref()
304             .map(|(ty, d)| {
305                 let step = CandidateStep {
306                     self_ty: ty,
307                     autoderefs: d,
308                     from_unsafe_deref: reached_raw_pointer,
309                     unsize: false,
310                 };
311                 if let ty::TyRawPtr(_) = ty.sty {
312                     // all the subsequent steps will be from_unsafe_deref
313                     reached_raw_pointer = true;
314                 }
315                 step
316             })
317             .collect();
318
319         let final_ty = autoderef.maybe_ambiguous_final_ty();
320         match final_ty.sty {
321             ty::TyInfer(ty::TyVar(_)) => {
322                 // Ended in an inference variable. If we are doing
323                 // a real method lookup, this is a hard error because it's
324                 // possible that there will be multiple applicable methods.
325                 if !is_suggestion.0 {
326                     if reached_raw_pointer
327                     && !self.tcx.sess.features.borrow().arbitrary_self_types {
328                         // this case used to be allowed by the compiler,
329                         // so we do a future-compat lint here for the 2015 epoch
330                         // (see https://github.com/rust-lang/rust/issues/46906)
331                         if self.tcx.sess.rust_2018() {
332                           span_err!(self.tcx.sess, span, E0908,
333                                     "the type of this value must be known \
334                                      to call a method on a raw pointer on it");
335                         } else {
336                             self.tcx.lint_node(
337                                 lint::builtin::TYVAR_BEHIND_RAW_POINTER,
338                                 scope_expr_id,
339                                 span,
340                                 &format!("type annotations needed"));
341                         }
342                     } else {
343                         let t = self.structurally_resolved_type(span, final_ty);
344                         assert_eq!(t, self.tcx.types.err);
345                         return None
346                     }
347                 } else {
348                     // If we're just looking for suggestions,
349                     // though, ambiguity is no big thing, we can
350                     // just ignore it.
351                 }
352             }
353             ty::TyArray(elem_ty, _) => {
354                 let dereferences = steps.len() - 1;
355
356                 steps.push(CandidateStep {
357                     self_ty: self.tcx.mk_slice(elem_ty),
358                     autoderefs: dereferences,
359                     // this could be from an unsafe deref if we had
360                     // a *mut/const [T; N]
361                     from_unsafe_deref: reached_raw_pointer,
362                     unsize: true,
363                 });
364             }
365             ty::TyError => return None,
366             _ => (),
367         }
368
369         debug!("create_steps: steps={:?}", steps);
370
371         Some(steps)
372     }
373 }
374
375 impl<'a, 'gcx, 'tcx> ProbeContext<'a, 'gcx, 'tcx> {
376     fn new(fcx: &'a FnCtxt<'a, 'gcx, 'tcx>,
377            span: Span,
378            mode: Mode,
379            method_name: Option<ast::Name>,
380            return_type: Option<Ty<'tcx>>,
381            steps: Rc<Vec<CandidateStep<'tcx>>>)
382            -> ProbeContext<'a, 'gcx, 'tcx> {
383         ProbeContext {
384             fcx,
385             span,
386             mode,
387             method_name,
388             return_type,
389             inherent_candidates: Vec::new(),
390             extension_candidates: Vec::new(),
391             impl_dups: FxHashSet(),
392             steps: steps,
393             static_candidates: Vec::new(),
394             allow_similar_names: false,
395             private_candidate: None,
396             unsatisfied_predicates: Vec::new(),
397         }
398     }
399
400     fn reset(&mut self) {
401         self.inherent_candidates.clear();
402         self.extension_candidates.clear();
403         self.impl_dups.clear();
404         self.static_candidates.clear();
405         self.private_candidate = None;
406     }
407
408     ///////////////////////////////////////////////////////////////////////////
409     // CANDIDATE ASSEMBLY
410
411     fn push_candidate(&mut self,
412                       candidate: Candidate<'tcx>,
413                       is_inherent: bool)
414     {
415         let is_accessible = if let Some(name) = self.method_name {
416             let item = candidate.item;
417             let def_scope = self.tcx.adjust(name, item.container.id(), self.body_id).1;
418             item.vis.is_accessible_from(def_scope, self.tcx)
419         } else {
420             true
421         };
422         if is_accessible {
423             if is_inherent {
424                 self.inherent_candidates.push(candidate);
425             } else {
426                 self.extension_candidates.push(candidate);
427             }
428         } else if self.private_candidate.is_none() {
429             self.private_candidate = Some(candidate.item.def());
430         }
431     }
432
433     fn assemble_inherent_candidates(&mut self) {
434         let steps = self.steps.clone();
435         for step in steps.iter() {
436             self.assemble_probe(step.self_ty);
437         }
438     }
439
440     fn assemble_probe(&mut self, self_ty: Ty<'tcx>) {
441         debug!("assemble_probe: self_ty={:?}", self_ty);
442         let lang_items = self.tcx.lang_items();
443
444         match self_ty.sty {
445             ty::TyDynamic(ref data, ..) => {
446                 if let Some(p) = data.principal() {
447                     self.assemble_inherent_candidates_from_object(self_ty, p);
448                     self.assemble_inherent_impl_candidates_for_type(p.def_id());
449                 }
450             }
451             ty::TyAdt(def, _) => {
452                 self.assemble_inherent_impl_candidates_for_type(def.did);
453             }
454             ty::TyForeign(did) => {
455                 self.assemble_inherent_impl_candidates_for_type(did);
456             }
457             ty::TyParam(p) => {
458                 self.assemble_inherent_candidates_from_param(self_ty, p);
459             }
460             ty::TyChar => {
461                 let lang_def_id = lang_items.char_impl();
462                 self.assemble_inherent_impl_for_primitive(lang_def_id);
463             }
464             ty::TyStr => {
465                 let lang_def_id = lang_items.str_impl();
466                 self.assemble_inherent_impl_for_primitive(lang_def_id);
467             }
468             ty::TySlice(_) => {
469                 let lang_def_id = lang_items.slice_impl();
470                 self.assemble_inherent_impl_for_primitive(lang_def_id);
471
472                 let lang_def_id = lang_items.slice_u8_impl();
473                 self.assemble_inherent_impl_for_primitive(lang_def_id);
474             }
475             ty::TyRawPtr(ty::TypeAndMut { ty: _, mutbl: hir::MutImmutable }) => {
476                 let lang_def_id = lang_items.const_ptr_impl();
477                 self.assemble_inherent_impl_for_primitive(lang_def_id);
478             }
479             ty::TyRawPtr(ty::TypeAndMut { ty: _, mutbl: hir::MutMutable }) => {
480                 let lang_def_id = lang_items.mut_ptr_impl();
481                 self.assemble_inherent_impl_for_primitive(lang_def_id);
482             }
483             ty::TyInt(ast::IntTy::I8) => {
484                 let lang_def_id = lang_items.i8_impl();
485                 self.assemble_inherent_impl_for_primitive(lang_def_id);
486             }
487             ty::TyInt(ast::IntTy::I16) => {
488                 let lang_def_id = lang_items.i16_impl();
489                 self.assemble_inherent_impl_for_primitive(lang_def_id);
490             }
491             ty::TyInt(ast::IntTy::I32) => {
492                 let lang_def_id = lang_items.i32_impl();
493                 self.assemble_inherent_impl_for_primitive(lang_def_id);
494             }
495             ty::TyInt(ast::IntTy::I64) => {
496                 let lang_def_id = lang_items.i64_impl();
497                 self.assemble_inherent_impl_for_primitive(lang_def_id);
498             }
499             ty::TyInt(ast::IntTy::I128) => {
500                 let lang_def_id = lang_items.i128_impl();
501                 self.assemble_inherent_impl_for_primitive(lang_def_id);
502             }
503             ty::TyInt(ast::IntTy::Isize) => {
504                 let lang_def_id = lang_items.isize_impl();
505                 self.assemble_inherent_impl_for_primitive(lang_def_id);
506             }
507             ty::TyUint(ast::UintTy::U8) => {
508                 let lang_def_id = lang_items.u8_impl();
509                 self.assemble_inherent_impl_for_primitive(lang_def_id);
510             }
511             ty::TyUint(ast::UintTy::U16) => {
512                 let lang_def_id = lang_items.u16_impl();
513                 self.assemble_inherent_impl_for_primitive(lang_def_id);
514             }
515             ty::TyUint(ast::UintTy::U32) => {
516                 let lang_def_id = lang_items.u32_impl();
517                 self.assemble_inherent_impl_for_primitive(lang_def_id);
518             }
519             ty::TyUint(ast::UintTy::U64) => {
520                 let lang_def_id = lang_items.u64_impl();
521                 self.assemble_inherent_impl_for_primitive(lang_def_id);
522             }
523             ty::TyUint(ast::UintTy::U128) => {
524                 let lang_def_id = lang_items.u128_impl();
525                 self.assemble_inherent_impl_for_primitive(lang_def_id);
526             }
527             ty::TyUint(ast::UintTy::Usize) => {
528                 let lang_def_id = lang_items.usize_impl();
529                 self.assemble_inherent_impl_for_primitive(lang_def_id);
530             }
531             ty::TyFloat(ast::FloatTy::F32) => {
532                 let lang_def_id = lang_items.f32_impl();
533                 self.assemble_inherent_impl_for_primitive(lang_def_id);
534             }
535             ty::TyFloat(ast::FloatTy::F64) => {
536                 let lang_def_id = lang_items.f64_impl();
537                 self.assemble_inherent_impl_for_primitive(lang_def_id);
538             }
539             _ => {}
540         }
541     }
542
543     fn assemble_inherent_impl_for_primitive(&mut self, lang_def_id: Option<DefId>) {
544         if let Some(impl_def_id) = lang_def_id {
545             self.assemble_inherent_impl_probe(impl_def_id);
546         }
547     }
548
549     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
550         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
551         for &impl_def_id in impl_def_ids.iter() {
552             self.assemble_inherent_impl_probe(impl_def_id);
553         }
554     }
555
556     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
557         if !self.impl_dups.insert(impl_def_id) {
558             return; // already visited
559         }
560
561         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
562
563         for item in self.impl_or_trait_item(impl_def_id) {
564             if !self.has_applicable_self(&item) {
565                 // No receiver declared. Not a candidate.
566                 self.record_static_candidate(ImplSource(impl_def_id));
567                 continue
568             }
569
570             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
571             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
572
573             // Determine the receiver type that the method itself expects.
574             let xform_tys = self.xform_self_ty(&item, impl_ty, impl_substs);
575
576             // We can't use normalize_associated_types_in as it will pollute the
577             // fcx's fulfillment context after this probe is over.
578             let cause = traits::ObligationCause::misc(self.span, self.body_id);
579             let selcx = &mut traits::SelectionContext::new(self.fcx);
580             let traits::Normalized { value: (xform_self_ty, xform_ret_ty), obligations } =
581                 traits::normalize(selcx, self.param_env, cause, &xform_tys);
582             debug!("assemble_inherent_impl_probe: xform_self_ty = {:?}/{:?}",
583                    xform_self_ty, xform_ret_ty);
584
585             self.push_candidate(Candidate {
586                 xform_self_ty, xform_ret_ty, item,
587                 kind: InherentImplCandidate(impl_substs, obligations),
588                 import_id: None
589             }, true);
590         }
591     }
592
593     fn assemble_inherent_candidates_from_object(&mut self,
594                                                 self_ty: Ty<'tcx>,
595                                                 principal: ty::PolyExistentialTraitRef<'tcx>) {
596         debug!("assemble_inherent_candidates_from_object(self_ty={:?})",
597                self_ty);
598
599         // It is illegal to invoke a method on a trait instance that
600         // refers to the `Self` type. An error will be reported by
601         // `enforce_object_limitations()` if the method refers to the
602         // `Self` type anywhere other than the receiver. Here, we use
603         // a substitution that replaces `Self` with the object type
604         // itself. Hence, a `&self` method will wind up with an
605         // argument type like `&Trait`.
606         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
607         self.elaborate_bounds(&[trait_ref], |this, new_trait_ref, item| {
608             let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
609
610             let (xform_self_ty, xform_ret_ty) =
611                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
612             this.push_candidate(Candidate {
613                 xform_self_ty, xform_ret_ty, item,
614                 kind: ObjectCandidate,
615                 import_id: None
616             }, true);
617         });
618     }
619
620     fn assemble_inherent_candidates_from_param(&mut self,
621                                                _rcvr_ty: Ty<'tcx>,
622                                                param_ty: ty::ParamTy) {
623         // FIXME -- Do we want to commit to this behavior for param bounds?
624
625         let bounds: Vec<_> = self.param_env
626             .caller_bounds
627             .iter()
628             .filter_map(|predicate| {
629                 match *predicate {
630                     ty::Predicate::Trait(ref trait_predicate) => {
631                         match trait_predicate.0.trait_ref.self_ty().sty {
632                             ty::TyParam(ref p) if *p == param_ty => {
633                                 Some(trait_predicate.to_poly_trait_ref())
634                             }
635                             _ => None,
636                         }
637                     }
638                     ty::Predicate::Equate(..) |
639                     ty::Predicate::Subtype(..) |
640                     ty::Predicate::Projection(..) |
641                     ty::Predicate::RegionOutlives(..) |
642                     ty::Predicate::WellFormed(..) |
643                     ty::Predicate::ObjectSafe(..) |
644                     ty::Predicate::ClosureKind(..) |
645                     ty::Predicate::TypeOutlives(..) |
646                     ty::Predicate::ConstEvaluatable(..) => None,
647                 }
648             })
649             .collect();
650
651         self.elaborate_bounds(&bounds, |this, poly_trait_ref, item| {
652             let trait_ref = this.erase_late_bound_regions(&poly_trait_ref);
653
654             let (xform_self_ty, xform_ret_ty) =
655                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
656
657             // Because this trait derives from a where-clause, it
658             // should not contain any inference variables or other
659             // artifacts. This means it is safe to put into the
660             // `WhereClauseCandidate` and (eventually) into the
661             // `WhereClausePick`.
662             assert!(!trait_ref.substs.needs_infer());
663
664             this.push_candidate(Candidate {
665                 xform_self_ty, xform_ret_ty, item,
666                 kind: WhereClauseCandidate(poly_trait_ref),
667                 import_id: None
668             }, true);
669         });
670     }
671
672     // Do a search through a list of bounds, using a callback to actually
673     // create the candidates.
674     fn elaborate_bounds<F>(&mut self, bounds: &[ty::PolyTraitRef<'tcx>], mut mk_cand: F)
675         where F: for<'b> FnMut(&mut ProbeContext<'b, 'gcx, 'tcx>,
676                                ty::PolyTraitRef<'tcx>,
677                                ty::AssociatedItem)
678     {
679         debug!("elaborate_bounds(bounds={:?})", bounds);
680
681         let tcx = self.tcx;
682         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
683             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
684                 if !self.has_applicable_self(&item) {
685                     self.record_static_candidate(TraitSource(bound_trait_ref.def_id()));
686                 } else {
687                     mk_cand(self, bound_trait_ref, item);
688                 }
689             }
690         }
691     }
692
693     fn assemble_extension_candidates_for_traits_in_scope(&mut self,
694                                                          expr_id: ast::NodeId)
695                                                          -> Result<(), MethodError<'tcx>> {
696         if expr_id == ast::DUMMY_NODE_ID {
697             return Ok(())
698         }
699         let mut duplicates = FxHashSet();
700         let expr_hir_id = self.tcx.hir.node_to_hir_id(expr_id);
701         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
702         if let Some(applicable_traits) = opt_applicable_traits {
703             for trait_candidate in applicable_traits.iter() {
704                 let trait_did = trait_candidate.def_id;
705                 if duplicates.insert(trait_did) {
706                     let import_id = trait_candidate.import_id;
707                     let result = self.assemble_extension_candidates_for_trait(import_id, trait_did);
708                     result?;
709                 }
710             }
711         }
712         Ok(())
713     }
714
715     fn assemble_extension_candidates_for_all_traits(&mut self) -> Result<(), MethodError<'tcx>> {
716         let mut duplicates = FxHashSet();
717         for trait_info in suggest::all_traits(self.tcx) {
718             if duplicates.insert(trait_info.def_id) {
719                 self.assemble_extension_candidates_for_trait(None, trait_info.def_id)?;
720             }
721         }
722         Ok(())
723     }
724
725     pub fn matches_return_type(&self,
726                                method: &ty::AssociatedItem,
727                                self_ty: Option<Ty<'tcx>>,
728                                expected: Ty<'tcx>) -> bool {
729         match method.def() {
730             Def::Method(def_id) => {
731                 let fty = self.tcx.fn_sig(def_id);
732                 self.probe(|_| {
733                     let substs = self.fresh_substs_for_item(ty::UniverseIndex::ROOT,
734                                                             self.span,
735                                                             method.def_id);
736                     let fty = fty.subst(self.tcx, substs);
737                     let (fty, _) = self.replace_late_bound_regions_with_fresh_var(
738                         self.span, infer::FnCall, &fty);
739
740                     if let Some(self_ty) = self_ty {
741                         if let Err(_) = self.at(&ObligationCause::dummy(), self.param_env)
742                             .sup(fty.inputs()[0], self_ty)
743                         {
744                             return false
745                         }
746                     }
747                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
748                 })
749             }
750             _ => false,
751         }
752     }
753
754     fn assemble_extension_candidates_for_trait(&mut self,
755                                                import_id: Option<ast::NodeId>,
756                                                trait_def_id: DefId)
757                                                -> Result<(), MethodError<'tcx>> {
758         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})",
759                trait_def_id);
760         let trait_substs = self.fresh_item_substs(trait_def_id);
761         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
762
763         for item in self.impl_or_trait_item(trait_def_id) {
764             // Check whether `trait_def_id` defines a method with suitable name:
765             if !self.has_applicable_self(&item) {
766                 debug!("method has inapplicable self");
767                 self.record_static_candidate(TraitSource(trait_def_id));
768                 continue;
769             }
770
771             let (xform_self_ty, xform_ret_ty) =
772                 self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
773             self.push_candidate(Candidate {
774                 xform_self_ty, xform_ret_ty, item, import_id,
775                 kind: TraitCandidate(trait_ref),
776             }, false);
777         }
778         Ok(())
779     }
780
781     fn candidate_method_names(&self) -> Vec<ast::Name> {
782         let mut set = FxHashSet();
783         let mut names: Vec<_> = self.inherent_candidates
784             .iter()
785             .chain(&self.extension_candidates)
786             .filter(|candidate| {
787                 if let Some(return_ty) = self.return_type {
788                     self.matches_return_type(&candidate.item, None, return_ty)
789                 } else {
790                     true
791                 }
792             })
793             .map(|candidate| candidate.item.name)
794             .filter(|&name| set.insert(name))
795             .collect();
796
797         // sort them by the name so we have a stable result
798         names.sort_by_key(|n| n.as_str());
799         names
800     }
801
802     ///////////////////////////////////////////////////////////////////////////
803     // THE ACTUAL SEARCH
804
805     fn pick(mut self) -> PickResult<'tcx> {
806         assert!(self.method_name.is_some());
807
808         if let Some(r) = self.pick_core() {
809             return r;
810         }
811
812         let static_candidates = mem::replace(&mut self.static_candidates, vec![]);
813         let private_candidate = mem::replace(&mut self.private_candidate, None);
814         let unsatisfied_predicates = mem::replace(&mut self.unsatisfied_predicates, vec![]);
815
816         // things failed, so lets look at all traits, for diagnostic purposes now:
817         self.reset();
818
819         let span = self.span;
820         let tcx = self.tcx;
821
822         self.assemble_extension_candidates_for_all_traits()?;
823
824         let out_of_scope_traits = match self.pick_core() {
825             Some(Ok(p)) => vec![p.item.container.id()],
826             //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
827             Some(Err(MethodError::Ambiguity(v))) => {
828                 v.into_iter()
829                     .map(|source| {
830                         match source {
831                             TraitSource(id) => id,
832                             ImplSource(impl_id) => {
833                                 match tcx.trait_id_of_impl(impl_id) {
834                                     Some(id) => id,
835                                     None => {
836                                         span_bug!(span,
837                                                   "found inherent method when looking at traits")
838                                     }
839                                 }
840                             }
841                         }
842                     })
843                     .collect()
844             }
845             Some(Err(MethodError::NoMatch(NoMatchData { out_of_scope_traits: others, .. }))) => {
846                 assert!(others.is_empty());
847                 vec![]
848             }
849             _ => vec![],
850         };
851
852         if let Some(def) = private_candidate {
853             return Err(MethodError::PrivateMatch(def, out_of_scope_traits));
854         }
855         let lev_candidate = self.probe_for_lev_candidate()?;
856
857         Err(MethodError::NoMatch(NoMatchData::new(static_candidates,
858                                                   unsatisfied_predicates,
859                                                   out_of_scope_traits,
860                                                   lev_candidate,
861                                                   self.mode)))
862     }
863
864     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
865         let steps = self.steps.clone();
866
867         // find the first step that works
868         steps
869             .iter()
870             .filter(|step| {
871                 debug!("pick_core: step={:?}", step);
872                 // skip types that are from a type error or that would require dereferencing
873                 // a raw pointer
874                 !step.self_ty.references_error() && !step.from_unsafe_deref
875             }).flat_map(|step| {
876                 self.pick_by_value_method(step).or_else(|| {
877                 self.pick_autorefd_method(step, hir::MutImmutable).or_else(|| {
878                 self.pick_autorefd_method(step, hir::MutMutable)
879             })})})
880             .next()
881     }
882
883     fn pick_by_value_method(&mut self, step: &CandidateStep<'tcx>) -> Option<PickResult<'tcx>> {
884         //! For each type `T` in the step list, this attempts to find a
885         //! method where the (transformed) self type is exactly `T`. We
886         //! do however do one transformation on the adjustment: if we
887         //! are passing a region pointer in, we will potentially
888         //! *reborrow* it to a shorter lifetime. This allows us to
889         //! transparently pass `&mut` pointers, in particular, without
890         //! consuming them for their entire lifetime.
891
892         if step.unsize {
893             return None;
894         }
895
896         self.pick_method(step.self_ty).map(|r| {
897             r.map(|mut pick| {
898                 pick.autoderefs = step.autoderefs;
899
900                 // Insert a `&*` or `&mut *` if this is a reference type:
901                 if let ty::TyRef(_, mt) = step.self_ty.sty {
902                     pick.autoderefs += 1;
903                     pick.autoref = Some(mt.mutbl);
904                 }
905
906                 pick
907             })
908         })
909     }
910
911     fn pick_autorefd_method(&mut self, step: &CandidateStep<'tcx>, mutbl: hir::Mutability)
912                             -> Option<PickResult<'tcx>> {
913         let tcx = self.tcx;
914
915         // In general, during probing we erase regions. See
916         // `impl_self_ty()` for an explanation.
917         let region = tcx.types.re_erased;
918
919         let autoref_ty = tcx.mk_ref(region,
920                                     ty::TypeAndMut {
921                                         ty: step.self_ty, mutbl
922                                     });
923         self.pick_method(autoref_ty).map(|r| {
924             r.map(|mut pick| {
925                 pick.autoderefs = step.autoderefs;
926                 pick.autoref = Some(mutbl);
927                 pick.unsize = if step.unsize {
928                     Some(step.self_ty)
929                 } else {
930                     None
931                 };
932                 pick
933             })
934         })
935     }
936
937     fn pick_method(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
938         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
939
940         let mut possibly_unsatisfied_predicates = Vec::new();
941
942         debug!("searching inherent candidates");
943         if let Some(pick) = self.consider_candidates(self_ty,
944                                                      &self.inherent_candidates,
945                                                      &mut possibly_unsatisfied_predicates) {
946             return Some(pick);
947         }
948
949         debug!("searching extension candidates");
950         let res = self.consider_candidates(self_ty,
951                                            &self.extension_candidates,
952                                            &mut possibly_unsatisfied_predicates);
953         if let None = res {
954             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
955         }
956         res
957     }
958
959     fn consider_candidates(&self,
960                            self_ty: Ty<'tcx>,
961                            probes: &[Candidate<'tcx>],
962                            possibly_unsatisfied_predicates: &mut Vec<TraitRef<'tcx>>)
963                            -> Option<PickResult<'tcx>> {
964         let mut applicable_candidates: Vec<_> = probes.iter()
965             .map(|probe| {
966                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
967             })
968             .filter(|&(_, status)| status != ProbeResult::NoMatch)
969             .collect();
970
971         debug!("applicable_candidates: {:?}", applicable_candidates);
972
973         if applicable_candidates.len() > 1 {
974             if let Some(pick) = self.collapse_candidates_to_trait_pick(&applicable_candidates[..]) {
975                 return Some(Ok(pick));
976             }
977         }
978
979         if applicable_candidates.len() > 1 {
980             let sources = probes.iter()
981                 .map(|p| self.candidate_source(p, self_ty))
982                 .collect();
983             return Some(Err(MethodError::Ambiguity(sources)));
984         }
985
986         applicable_candidates.pop().map(|(probe, status)| {
987             if status == ProbeResult::Match {
988                 Ok(probe.to_unadjusted_pick())
989             } else {
990                 Err(MethodError::BadReturnType)
991             }
992         })
993     }
994
995     fn select_trait_candidate(&self, trait_ref: ty::TraitRef<'tcx>)
996                               -> traits::SelectionResult<'tcx, traits::Selection<'tcx>>
997     {
998         let cause = traits::ObligationCause::misc(self.span, self.body_id);
999         let predicate =
1000             trait_ref.to_poly_trait_ref().to_poly_trait_predicate();
1001         let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1002         traits::SelectionContext::new(self).select(&obligation)
1003     }
1004
1005     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>)
1006                         -> CandidateSource
1007     {
1008         match candidate.kind {
1009             InherentImplCandidate(..) => ImplSource(candidate.item.container.id()),
1010             ObjectCandidate |
1011             WhereClauseCandidate(_) => TraitSource(candidate.item.container.id()),
1012             TraitCandidate(trait_ref) => self.probe(|_| {
1013                 let _ = self.at(&ObligationCause::dummy(), self.param_env)
1014                     .sup(candidate.xform_self_ty, self_ty);
1015                 match self.select_trait_candidate(trait_ref) {
1016                     Ok(Some(traits::Vtable::VtableImpl(ref impl_data))) => {
1017                         // If only a single impl matches, make the error message point
1018                         // to that impl.
1019                         ImplSource(impl_data.impl_def_id)
1020                     }
1021                     _ => {
1022                         TraitSource(candidate.item.container.id())
1023                     }
1024                 }
1025             })
1026         }
1027     }
1028
1029     fn consider_probe(&self,
1030                       self_ty: Ty<'tcx>,
1031                       probe: &Candidate<'tcx>,
1032                       possibly_unsatisfied_predicates: &mut Vec<TraitRef<'tcx>>)
1033                       -> ProbeResult {
1034         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1035
1036         self.probe(|_| {
1037             // First check that the self type can be related.
1038             let sub_obligations = match self.at(&ObligationCause::dummy(), self.param_env)
1039                                             .sup(probe.xform_self_ty, self_ty) {
1040                 Ok(InferOk { obligations, value: () }) => obligations,
1041                 Err(_) => {
1042                     debug!("--> cannot relate self-types");
1043                     return ProbeResult::NoMatch;
1044                 }
1045             };
1046
1047             let mut result = ProbeResult::Match;
1048             let selcx = &mut traits::SelectionContext::new(self);
1049             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1050
1051             // If so, impls may carry other conditions (e.g., where
1052             // clauses) that must be considered. Make sure that those
1053             // match as well (or at least may match, sometimes we
1054             // don't have enough information to fully evaluate).
1055             let candidate_obligations : Vec<_> = match probe.kind {
1056                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1057                     // Check whether the impl imposes obligations we have to worry about.
1058                     let impl_def_id = probe.item.container.id();
1059                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1060                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1061                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1062                         traits::normalize(selcx, self.param_env, cause.clone(), &impl_bounds);
1063
1064                     // Convert the bounds into obligations.
1065                     let impl_obligations = traits::predicates_for_generics(
1066                         cause.clone(), self.param_env, &impl_bounds);
1067
1068                     debug!("impl_obligations={:?}", impl_obligations);
1069                     impl_obligations.into_iter()
1070                         .chain(norm_obligations.into_iter())
1071                         .chain(ref_obligations.iter().cloned())
1072                         .collect()
1073                 }
1074
1075                 ObjectCandidate |
1076                 WhereClauseCandidate(..) => {
1077                     // These have no additional conditions to check.
1078                     vec![]
1079                 }
1080
1081                 TraitCandidate(trait_ref) => {
1082                     let predicate = trait_ref.to_predicate();
1083                     let obligation =
1084                         traits::Obligation::new(cause.clone(), self.param_env, predicate);
1085                     if !selcx.evaluate_obligation(&obligation) {
1086                         if self.probe(|_| self.select_trait_candidate(trait_ref).is_err()) {
1087                             // This candidate's primary obligation doesn't even
1088                             // select - don't bother registering anything in
1089                             // `potentially_unsatisfied_predicates`.
1090                             return ProbeResult::NoMatch;
1091                         } else {
1092                             // Some nested subobligation of this predicate
1093                             // failed.
1094                             //
1095                             // FIXME: try to find the exact nested subobligation
1096                             // and point at it rather than reporting the entire
1097                             // trait-ref?
1098                             result = ProbeResult::NoMatch;
1099                             let trait_ref = self.resolve_type_vars_if_possible(&trait_ref);
1100                             possibly_unsatisfied_predicates.push(trait_ref);
1101                         }
1102                     }
1103                     vec![]
1104                 }
1105             };
1106
1107             debug!("consider_probe - candidate_obligations={:?} sub_obligations={:?}",
1108                    candidate_obligations, sub_obligations);
1109
1110             // Evaluate those obligations to see if they might possibly hold.
1111             for o in candidate_obligations.into_iter().chain(sub_obligations) {
1112                 let o = self.resolve_type_vars_if_possible(&o);
1113                 if !selcx.evaluate_obligation(&o) {
1114                     result = ProbeResult::NoMatch;
1115                     if let &ty::Predicate::Trait(ref pred) = &o.predicate {
1116                         possibly_unsatisfied_predicates.push(pred.0.trait_ref);
1117                     }
1118                 }
1119             }
1120
1121             if let ProbeResult::Match = result {
1122                 if let (Some(return_ty), Some(xform_ret_ty)) =
1123                     (self.return_type, probe.xform_ret_ty)
1124                 {
1125                     let xform_ret_ty = self.resolve_type_vars_if_possible(&xform_ret_ty);
1126                     debug!("comparing return_ty {:?} with xform ret ty {:?}",
1127                            return_ty,
1128                            probe.xform_ret_ty);
1129                     if self.at(&ObligationCause::dummy(), self.param_env)
1130                         .sup(return_ty, xform_ret_ty)
1131                         .is_err()
1132                     {
1133                         return ProbeResult::BadReturnType;
1134                     }
1135                 }
1136             }
1137
1138             result
1139         })
1140     }
1141
1142     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1143     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1144     /// external interface of the method can be determined from the trait, it's ok not to decide.
1145     /// We can basically just collapse all of the probes for various impls into one where-clause
1146     /// probe. This will result in a pending obligation so when more type-info is available we can
1147     /// make the final decision.
1148     ///
1149     /// Example (`src/test/run-pass/method-two-trait-defer-resolution-1.rs`):
1150     ///
1151     /// ```
1152     /// trait Foo { ... }
1153     /// impl Foo for Vec<int> { ... }
1154     /// impl Foo for Vec<usize> { ... }
1155     /// ```
1156     ///
1157     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1158     /// use, so it's ok to just commit to "using the method from the trait Foo".
1159     fn collapse_candidates_to_trait_pick(&self, probes: &[(&Candidate<'tcx>, ProbeResult)])
1160                                          -> Option<Pick<'tcx>>
1161     {
1162         // Do all probes correspond to the same trait?
1163         let container = probes[0].0.item.container;
1164         match container {
1165             ty::TraitContainer(_) => {}
1166             ty::ImplContainer(_) => return None,
1167         }
1168         if probes[1..].iter().any(|&(p, _)| p.item.container != container) {
1169             return None;
1170         }
1171
1172         // FIXME: check the return type here somehow.
1173         // If so, just use this trait and call it a day.
1174         Some(Pick {
1175             item: probes[0].0.item.clone(),
1176             kind: TraitPick,
1177             import_id: probes[0].0.import_id,
1178             autoderefs: 0,
1179             autoref: None,
1180             unsize: None,
1181         })
1182     }
1183
1184     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1185     /// candidate method where the method name may have been misspelt. Similarly to other
1186     /// Levenshtein based suggestions, we provide at most one such suggestion.
1187     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssociatedItem>, MethodError<'tcx>> {
1188         debug!("Probing for method names similar to {:?}",
1189                self.method_name);
1190
1191         let steps = self.steps.clone();
1192         self.probe(|_| {
1193             let mut pcx = ProbeContext::new(self.fcx, self.span, self.mode, self.method_name,
1194                                             self.return_type, steps);
1195             pcx.allow_similar_names = true;
1196             pcx.assemble_inherent_candidates();
1197             pcx.assemble_extension_candidates_for_traits_in_scope(ast::DUMMY_NODE_ID)?;
1198
1199             let method_names = pcx.candidate_method_names();
1200             pcx.allow_similar_names = false;
1201             let applicable_close_candidates: Vec<ty::AssociatedItem> = method_names
1202                 .iter()
1203                 .filter_map(|&method_name| {
1204                     pcx.reset();
1205                     pcx.method_name = Some(method_name);
1206                     pcx.assemble_inherent_candidates();
1207                     pcx.assemble_extension_candidates_for_traits_in_scope(ast::DUMMY_NODE_ID)
1208                         .ok().map_or(None, |_| {
1209                             pcx.pick_core()
1210                                 .and_then(|pick| pick.ok())
1211                                 .and_then(|pick| Some(pick.item))
1212                         })
1213                 })
1214                .collect();
1215
1216             if applicable_close_candidates.is_empty() {
1217                 Ok(None)
1218             } else {
1219                 let best_name = {
1220                     let names = applicable_close_candidates.iter().map(|cand| &cand.name);
1221                     find_best_match_for_name(names,
1222                                              &self.method_name.unwrap().as_str(),
1223                                              None)
1224                 }.unwrap();
1225                 Ok(applicable_close_candidates
1226                    .into_iter()
1227                    .find(|method| method.name == best_name))
1228             }
1229         })
1230     }
1231
1232     ///////////////////////////////////////////////////////////////////////////
1233     // MISCELLANY
1234     fn has_applicable_self(&self, item: &ty::AssociatedItem) -> bool {
1235         // "Fast track" -- check for usage of sugar when in method call
1236         // mode.
1237         //
1238         // In Path mode (i.e., resolving a value like `T::next`), consider any
1239         // associated value (i.e., methods, constants) but not types.
1240         match self.mode {
1241             Mode::MethodCall => item.method_has_self_argument,
1242             Mode::Path => match item.kind {
1243                 ty::AssociatedKind::Type => false,
1244                 ty::AssociatedKind::Method | ty::AssociatedKind::Const => true
1245             },
1246         }
1247         // FIXME -- check for types that deref to `Self`,
1248         // like `Rc<Self>` and so on.
1249         //
1250         // Note also that the current code will break if this type
1251         // includes any of the type parameters defined on the method
1252         // -- but this could be overcome.
1253     }
1254
1255     fn record_static_candidate(&mut self, source: CandidateSource) {
1256         self.static_candidates.push(source);
1257     }
1258
1259     fn xform_self_ty(&self,
1260                      item: &ty::AssociatedItem,
1261                      impl_ty: Ty<'tcx>,
1262                      substs: &Substs<'tcx>)
1263                      -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1264         if item.kind == ty::AssociatedKind::Method && self.mode == Mode::MethodCall {
1265             let sig = self.xform_method_sig(item.def_id, substs);
1266             (sig.inputs()[0], Some(sig.output()))
1267         } else {
1268             (impl_ty, None)
1269         }
1270     }
1271
1272     fn xform_method_sig(&self,
1273                         method: DefId,
1274                         substs: &Substs<'tcx>)
1275                         -> ty::FnSig<'tcx>
1276     {
1277         let fn_sig = self.tcx.fn_sig(method);
1278         debug!("xform_self_ty(fn_sig={:?}, substs={:?})",
1279                fn_sig,
1280                substs);
1281
1282         assert!(!substs.has_escaping_regions());
1283
1284         // It is possible for type parameters or early-bound lifetimes
1285         // to appear in the signature of `self`. The substitutions we
1286         // are given do not include type/lifetime parameters for the
1287         // method yet. So create fresh variables here for those too,
1288         // if there are any.
1289         let generics = self.tcx.generics_of(method);
1290         assert_eq!(substs.types().count(), generics.parent_types as usize);
1291         assert_eq!(substs.regions().count(), generics.parent_regions as usize);
1292
1293         // Erase any late-bound regions from the method and substitute
1294         // in the values from the substitution.
1295         let xform_fn_sig = self.erase_late_bound_regions(&fn_sig);
1296
1297         if generics.types.is_empty() && generics.regions.is_empty() {
1298             xform_fn_sig.subst(self.tcx, substs)
1299         } else {
1300             let substs = Substs::for_item(self.tcx, method, |def, _| {
1301                 let i = def.index as usize;
1302                 if i < substs.len() {
1303                     substs.region_at(i)
1304                 } else {
1305                     // In general, during probe we erase regions. See
1306                     // `impl_self_ty()` for an explanation.
1307                     self.tcx.types.re_erased
1308                 }
1309             }, |def, _cur_substs| {
1310                 let i = def.index as usize;
1311                 if i < substs.len() {
1312                     substs.type_at(i)
1313                 } else {
1314                     self.type_var_for_def(ty::UniverseIndex::ROOT, self.span, def)
1315                 }
1316             });
1317             xform_fn_sig.subst(self.tcx, substs)
1318         }
1319     }
1320
1321     /// Get the type of an impl and generate substitutions with placeholders.
1322     fn impl_ty_and_substs(&self, impl_def_id: DefId) -> (Ty<'tcx>, &'tcx Substs<'tcx>) {
1323         (self.tcx.type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1324     }
1325
1326     fn fresh_item_substs(&self, def_id: DefId) -> &'tcx Substs<'tcx> {
1327         Substs::for_item(self.tcx,
1328                          def_id,
1329                          |_, _| self.tcx.types.re_erased,
1330                          |_, _| self.next_ty_var(
1331                              ty::UniverseIndex::ROOT,
1332                              TypeVariableOrigin::SubstitutionPlaceholder(
1333                                  self.tcx.def_span(def_id))))
1334     }
1335
1336     /// Replace late-bound-regions bound by `value` with `'static` using
1337     /// `ty::erase_late_bound_regions`.
1338     ///
1339     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1340     /// method matching. It is reasonable during the probe phase because we don't consider region
1341     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1342     /// rather than creating fresh region variables. This is nice for two reasons:
1343     ///
1344     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1345     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1346     ///    usage. (Admittedly, this is a rather small effect, though measureable.)
1347     ///
1348     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1349     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1350     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1351     ///    region got replaced with the same variable, which requires a bit more coordination
1352     ///    and/or tracking the substitution and
1353     ///    so forth.
1354     fn erase_late_bound_regions<T>(&self, value: &ty::Binder<T>) -> T
1355         where T: TypeFoldable<'tcx>
1356     {
1357         self.tcx.erase_late_bound_regions(value)
1358     }
1359
1360     /// Find the method with the appropriate name (or return type, as the case may be). If
1361     /// `allow_similar_names` is set, find methods with close-matching names.
1362     fn impl_or_trait_item(&self, def_id: DefId) -> Vec<ty::AssociatedItem> {
1363         if let Some(name) = self.method_name {
1364             if self.allow_similar_names {
1365                 let max_dist = max(name.as_str().len(), 3) / 3;
1366                 self.tcx.associated_items(def_id)
1367                     .filter(|x| {
1368                         let dist = lev_distance(&*name.as_str(), &x.name.as_str());
1369                         Namespace::from(x.kind) == Namespace::Value && dist > 0
1370                         && dist <= max_dist
1371                     })
1372                     .collect()
1373             } else {
1374                 self.fcx
1375                     .associated_item(def_id, name, Namespace::Value)
1376                     .map_or(Vec::new(), |x| vec![x])
1377             }
1378         } else {
1379             self.tcx.associated_items(def_id).collect()
1380         }
1381     }
1382 }
1383
1384 impl<'tcx> Candidate<'tcx> {
1385     fn to_unadjusted_pick(&self) -> Pick<'tcx> {
1386         Pick {
1387             item: self.item.clone(),
1388             kind: match self.kind {
1389                 InherentImplCandidate(..) => InherentImplPick,
1390                 ObjectCandidate => ObjectPick,
1391                 TraitCandidate(_) => TraitPick,
1392                 WhereClauseCandidate(ref trait_ref) => {
1393                     // Only trait derived from where-clauses should
1394                     // appear here, so they should not contain any
1395                     // inference variables or other artifacts. This
1396                     // means they are safe to put into the
1397                     // `WhereClausePick`.
1398                     assert!(!trait_ref.substs().needs_infer());
1399
1400                     WhereClausePick(trait_ref.clone())
1401                 }
1402             },
1403             import_id: self.import_id,
1404             autoderefs: 0,
1405             autoref: None,
1406             unsize: None,
1407         }
1408     }
1409 }