]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/method/probe.rs
Update const_forget.rs
[rust.git] / src / librustc_typeck / check / method / probe.rs
1 use super::suggest;
2 use super::MethodError;
3 use super::NoMatchData;
4 use super::{CandidateSource, ImplSource, TraitSource};
5
6 use crate::check::autoderef::{self, Autoderef};
7 use crate::check::FnCtxt;
8 use crate::hir::def::DefKind;
9 use crate::hir::def_id::DefId;
10
11 use rustc::lint;
12 use rustc::middle::stability;
13 use rustc::session::config::nightly_options;
14 use rustc::ty::subst::{InternalSubsts, Subst, SubstsRef};
15 use rustc::ty::GenericParamDefKind;
16 use rustc::ty::{
17     self, ParamEnvAnd, ToPolyTraitRef, ToPredicate, Ty, TyCtxt, TypeFoldable, WithConstness,
18 };
19 use rustc_ast::ast;
20 use rustc_ast::util::lev_distance::{find_best_match_for_name, lev_distance};
21 use rustc_data_structures::fx::FxHashSet;
22 use rustc_data_structures::sync::Lrc;
23 use rustc_errors::struct_span_err;
24 use rustc_hir as hir;
25 use rustc_hir::def::Namespace;
26 use rustc_infer::infer::canonical::OriginalQueryValues;
27 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
28 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
29 use rustc_infer::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
30 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
31 use rustc_infer::traits::query::method_autoderef::MethodAutoderefBadTy;
32 use rustc_infer::traits::query::method_autoderef::{CandidateStep, MethodAutoderefStepsResult};
33 use rustc_infer::traits::query::CanonicalTyGoal;
34 use rustc_infer::traits::{self, ObligationCause};
35 use rustc_span::{symbol::Symbol, Span, DUMMY_SP};
36 use std::cmp::max;
37 use std::iter;
38 use std::mem;
39 use std::ops::Deref;
40
41 use smallvec::{smallvec, SmallVec};
42
43 use self::CandidateKind::*;
44 pub use self::PickKind::*;
45
46 /// Boolean flag used to indicate if this search is for a suggestion
47 /// or not. If true, we can allow ambiguity and so forth.
48 #[derive(Clone, Copy)]
49 pub struct IsSuggestion(pub bool);
50
51 struct ProbeContext<'a, 'tcx> {
52     fcx: &'a FnCtxt<'a, 'tcx>,
53     span: Span,
54     mode: Mode,
55     method_name: Option<ast::Ident>,
56     return_type: Option<Ty<'tcx>>,
57
58     /// This is the OriginalQueryValues for the steps queries
59     /// that are answered in steps.
60     orig_steps_var_values: OriginalQueryValues<'tcx>,
61     steps: Lrc<Vec<CandidateStep<'tcx>>>,
62
63     inherent_candidates: Vec<Candidate<'tcx>>,
64     extension_candidates: Vec<Candidate<'tcx>>,
65     impl_dups: FxHashSet<DefId>,
66
67     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
68     /// used for error reporting
69     static_candidates: Vec<CandidateSource>,
70
71     /// When probing for names, include names that are close to the
72     /// requested name (by Levensthein distance)
73     allow_similar_names: bool,
74
75     /// Some(candidate) if there is a private candidate
76     private_candidate: Option<(DefKind, DefId)>,
77
78     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
79     /// for error reporting
80     unsatisfied_predicates: Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>)>,
81
82     is_suggestion: IsSuggestion,
83 }
84
85 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
86     type Target = FnCtxt<'a, 'tcx>;
87     fn deref(&self) -> &Self::Target {
88         &self.fcx
89     }
90 }
91
92 #[derive(Debug)]
93 struct Candidate<'tcx> {
94     // Candidates are (I'm not quite sure, but they are mostly) basically
95     // some metadata on top of a `ty::AssocItem` (without substs).
96     //
97     // However, method probing wants to be able to evaluate the predicates
98     // for a function with the substs applied - for example, if a function
99     // has `where Self: Sized`, we don't want to consider it unless `Self`
100     // is actually `Sized`, and similarly, return-type suggestions want
101     // to consider the "actual" return type.
102     //
103     // The way this is handled is through `xform_self_ty`. It contains
104     // the receiver type of this candidate, but `xform_self_ty`,
105     // `xform_ret_ty` and `kind` (which contains the predicates) have the
106     // generic parameters of this candidate substituted with the *same set*
107     // of inference variables, which acts as some weird sort of "query".
108     //
109     // When we check out a candidate, we require `xform_self_ty` to be
110     // a subtype of the passed-in self-type, and this equates the type
111     // variables in the rest of the fields.
112     //
113     // For example, if we have this candidate:
114     // ```
115     //    trait Foo {
116     //        fn foo(&self) where Self: Sized;
117     //    }
118     // ```
119     //
120     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
121     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
122     // the receiver `&T`, we'll do the subtyping which will make `?X`
123     // get the right value, then when we evaluate the predicate we'll check
124     // if `T: Sized`.
125     xform_self_ty: Ty<'tcx>,
126     xform_ret_ty: Option<Ty<'tcx>>,
127     item: ty::AssocItem,
128     kind: CandidateKind<'tcx>,
129     import_ids: SmallVec<[hir::HirId; 1]>,
130 }
131
132 #[derive(Debug)]
133 enum CandidateKind<'tcx> {
134     InherentImplCandidate(
135         SubstsRef<'tcx>,
136         // Normalize obligations
137         Vec<traits::PredicateObligation<'tcx>>,
138     ),
139     ObjectCandidate,
140     TraitCandidate(ty::TraitRef<'tcx>),
141     WhereClauseCandidate(
142         // Trait
143         ty::PolyTraitRef<'tcx>,
144     ),
145 }
146
147 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
148 enum ProbeResult {
149     NoMatch,
150     BadReturnType,
151     Match,
152 }
153
154 #[derive(Debug, PartialEq, Clone)]
155 pub struct Pick<'tcx> {
156     pub item: ty::AssocItem,
157     pub kind: PickKind<'tcx>,
158     pub import_ids: SmallVec<[hir::HirId; 1]>,
159
160     // Indicates that the source expression should be autoderef'd N times
161     //
162     // A = expr | *expr | **expr | ...
163     pub autoderefs: usize,
164
165     // Indicates that an autoref is applied after the optional autoderefs
166     //
167     // B = A | &A | &mut A
168     pub autoref: Option<hir::Mutability>,
169
170     // Indicates that the source expression should be "unsized" to a
171     // target type. This should probably eventually go away in favor
172     // of just coercing method receivers.
173     //
174     // C = B | unsize(B)
175     pub unsize: Option<Ty<'tcx>>,
176 }
177
178 #[derive(Clone, Debug, PartialEq, Eq)]
179 pub enum PickKind<'tcx> {
180     InherentImplPick,
181     ObjectPick,
182     TraitPick,
183     WhereClausePick(
184         // Trait
185         ty::PolyTraitRef<'tcx>,
186     ),
187 }
188
189 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
190
191 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
192 pub enum Mode {
193     // An expression of the form `receiver.method_name(...)`.
194     // Autoderefs are performed on `receiver`, lookup is done based on the
195     // `self` argument  of the method, and static methods aren't considered.
196     MethodCall,
197     // An expression of the form `Type::item` or `<T>::item`.
198     // No autoderefs are performed, lookup is done based on the type each
199     // implementation is for, and static methods are included.
200     Path,
201 }
202
203 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
204 pub enum ProbeScope {
205     // Assemble candidates coming only from traits in scope.
206     TraitsInScope,
207
208     // Assemble candidates coming from all traits.
209     AllTraits,
210 }
211
212 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
213     /// This is used to offer suggestions to users. It returns methods
214     /// that could have been called which have the desired return
215     /// type. Some effort is made to rule out methods that, if called,
216     /// would result in an error (basically, the same criteria we
217     /// would use to decide if a method is a plausible fit for
218     /// ambiguity purposes).
219     pub fn probe_for_return_type(
220         &self,
221         span: Span,
222         mode: Mode,
223         return_type: Ty<'tcx>,
224         self_ty: Ty<'tcx>,
225         scope_expr_id: hir::HirId,
226     ) -> Vec<ty::AssocItem> {
227         debug!(
228             "probe(self_ty={:?}, return_type={}, scope_expr_id={})",
229             self_ty, return_type, scope_expr_id
230         );
231         let method_names = self
232             .probe_op(
233                 span,
234                 mode,
235                 None,
236                 Some(return_type),
237                 IsSuggestion(true),
238                 self_ty,
239                 scope_expr_id,
240                 ProbeScope::AllTraits,
241                 |probe_cx| Ok(probe_cx.candidate_method_names()),
242             )
243             .unwrap_or(vec![]);
244         method_names
245             .iter()
246             .flat_map(|&method_name| {
247                 self.probe_op(
248                     span,
249                     mode,
250                     Some(method_name),
251                     Some(return_type),
252                     IsSuggestion(true),
253                     self_ty,
254                     scope_expr_id,
255                     ProbeScope::AllTraits,
256                     |probe_cx| probe_cx.pick(),
257                 )
258                 .ok()
259                 .map(|pick| pick.item)
260             })
261             .collect()
262     }
263
264     pub fn probe_for_name(
265         &self,
266         span: Span,
267         mode: Mode,
268         item_name: ast::Ident,
269         is_suggestion: IsSuggestion,
270         self_ty: Ty<'tcx>,
271         scope_expr_id: hir::HirId,
272         scope: ProbeScope,
273     ) -> PickResult<'tcx> {
274         debug!(
275             "probe(self_ty={:?}, item_name={}, scope_expr_id={})",
276             self_ty, item_name, scope_expr_id
277         );
278         self.probe_op(
279             span,
280             mode,
281             Some(item_name),
282             None,
283             is_suggestion,
284             self_ty,
285             scope_expr_id,
286             scope,
287             |probe_cx| probe_cx.pick(),
288         )
289     }
290
291     fn probe_op<OP, R>(
292         &'a self,
293         span: Span,
294         mode: Mode,
295         method_name: Option<ast::Ident>,
296         return_type: Option<Ty<'tcx>>,
297         is_suggestion: IsSuggestion,
298         self_ty: Ty<'tcx>,
299         scope_expr_id: hir::HirId,
300         scope: ProbeScope,
301         op: OP,
302     ) -> Result<R, MethodError<'tcx>>
303     where
304         OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
305     {
306         let mut orig_values = OriginalQueryValues::default();
307         let param_env_and_self_ty = self.infcx.canonicalize_query(
308             &ParamEnvAnd { param_env: self.param_env, value: self_ty },
309             &mut orig_values,
310         );
311
312         let steps = if mode == Mode::MethodCall {
313             self.tcx.method_autoderef_steps(param_env_and_self_ty)
314         } else {
315             self.infcx.probe(|_| {
316                 // Mode::Path - the deref steps is "trivial". This turns
317                 // our CanonicalQuery into a "trivial" QueryResponse. This
318                 // is a bit inefficient, but I don't think that writing
319                 // special handling for this "trivial case" is a good idea.
320
321                 let infcx = &self.infcx;
322                 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
323                     infcx.instantiate_canonical_with_fresh_inference_vars(
324                         span,
325                         &param_env_and_self_ty,
326                     );
327                 debug!(
328                     "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
329                     param_env_and_self_ty, self_ty
330                 );
331                 MethodAutoderefStepsResult {
332                     steps: Lrc::new(vec![CandidateStep {
333                         self_ty: self.make_query_response_ignoring_pending_obligations(
334                             canonical_inference_vars,
335                             self_ty,
336                         ),
337                         autoderefs: 0,
338                         from_unsafe_deref: false,
339                         unsize: false,
340                     }]),
341                     opt_bad_ty: None,
342                     reached_recursion_limit: false,
343                 }
344             })
345         };
346
347         // If our autoderef loop had reached the recursion limit,
348         // report an overflow error, but continue going on with
349         // the truncated autoderef list.
350         if steps.reached_recursion_limit {
351             self.probe(|_| {
352                 let ty = &steps
353                     .steps
354                     .last()
355                     .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
356                     .self_ty;
357                 let ty = self
358                     .probe_instantiate_query_response(span, &orig_values, ty)
359                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
360                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
361             });
362         }
363
364         // If we encountered an `_` type or an error type during autoderef, this is
365         // ambiguous.
366         if let Some(bad_ty) = &steps.opt_bad_ty {
367             if is_suggestion.0 {
368                 // Ambiguity was encountered during a suggestion. Just keep going.
369                 debug!("ProbeContext: encountered ambiguity in suggestion");
370             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
371                 // this case used to be allowed by the compiler,
372                 // so we do a future-compat lint here for the 2015 edition
373                 // (see https://github.com/rust-lang/rust/issues/46906)
374                 if self.tcx.sess.rust_2018() {
375                     struct_span_err!(
376                         self.tcx.sess,
377                         span,
378                         E0699,
379                         "the type of this value must be known \
380                                to call a method on a raw pointer on it"
381                     )
382                     .emit();
383                 } else {
384                     self.tcx.struct_span_lint_hir(
385                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
386                         scope_expr_id,
387                         span,
388                         |lint| lint.build("type annotations needed").emit(),
389                     );
390                 }
391             } else {
392                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
393                 // an `Err`, report the right "type annotations needed" error pointing
394                 // to it.
395                 let ty = &bad_ty.ty;
396                 let ty = self
397                     .probe_instantiate_query_response(span, &orig_values, ty)
398                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
399                 let ty = self.structurally_resolved_type(span, ty.value);
400                 assert_eq!(ty, self.tcx.types.err);
401                 return Err(MethodError::NoMatch(NoMatchData::new(
402                     Vec::new(),
403                     Vec::new(),
404                     Vec::new(),
405                     None,
406                     mode,
407                 )));
408             }
409         }
410
411         debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
412
413         // this creates one big transaction so that all type variables etc
414         // that we create during the probe process are removed later
415         self.probe(|_| {
416             let mut probe_cx = ProbeContext::new(
417                 self,
418                 span,
419                 mode,
420                 method_name,
421                 return_type,
422                 orig_values,
423                 steps.steps,
424                 is_suggestion,
425             );
426
427             probe_cx.assemble_inherent_candidates();
428             match scope {
429                 ProbeScope::TraitsInScope => {
430                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)?
431                 }
432                 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits()?,
433             };
434             op(probe_cx)
435         })
436     }
437 }
438
439 pub fn provide(providers: &mut ty::query::Providers<'_>) {
440     providers.method_autoderef_steps = method_autoderef_steps;
441 }
442
443 fn method_autoderef_steps<'tcx>(
444     tcx: TyCtxt<'tcx>,
445     goal: CanonicalTyGoal<'tcx>,
446 ) -> MethodAutoderefStepsResult<'tcx> {
447     debug!("method_autoderef_steps({:?})", goal);
448
449     tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
450         let ParamEnvAnd { param_env, value: self_ty } = goal;
451
452         let mut autoderef = Autoderef::new(infcx, param_env, hir::DUMMY_HIR_ID, DUMMY_SP, self_ty)
453             .include_raw_pointers()
454             .silence_errors();
455         let mut reached_raw_pointer = false;
456         let mut steps: Vec<_> = autoderef
457             .by_ref()
458             .map(|(ty, d)| {
459                 let step = CandidateStep {
460                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
461                         inference_vars.clone(),
462                         ty,
463                     ),
464                     autoderefs: d,
465                     from_unsafe_deref: reached_raw_pointer,
466                     unsize: false,
467                 };
468                 if let ty::RawPtr(_) = ty.kind {
469                     // all the subsequent steps will be from_unsafe_deref
470                     reached_raw_pointer = true;
471                 }
472                 step
473             })
474             .collect();
475
476         let final_ty = autoderef.maybe_ambiguous_final_ty();
477         let opt_bad_ty = match final_ty.kind {
478             ty::Infer(ty::TyVar(_)) | ty::Error => Some(MethodAutoderefBadTy {
479                 reached_raw_pointer,
480                 ty: infcx
481                     .make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
482             }),
483             ty::Array(elem_ty, _) => {
484                 let dereferences = steps.len() - 1;
485
486                 steps.push(CandidateStep {
487                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
488                         inference_vars,
489                         infcx.tcx.mk_slice(elem_ty),
490                     ),
491                     autoderefs: dereferences,
492                     // this could be from an unsafe deref if we had
493                     // a *mut/const [T; N]
494                     from_unsafe_deref: reached_raw_pointer,
495                     unsize: true,
496                 });
497
498                 None
499             }
500             _ => None,
501         };
502
503         debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
504
505         MethodAutoderefStepsResult {
506             steps: Lrc::new(steps),
507             opt_bad_ty: opt_bad_ty.map(Lrc::new),
508             reached_recursion_limit: autoderef.reached_recursion_limit(),
509         }
510     })
511 }
512
513 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
514     fn new(
515         fcx: &'a FnCtxt<'a, 'tcx>,
516         span: Span,
517         mode: Mode,
518         method_name: Option<ast::Ident>,
519         return_type: Option<Ty<'tcx>>,
520         orig_steps_var_values: OriginalQueryValues<'tcx>,
521         steps: Lrc<Vec<CandidateStep<'tcx>>>,
522         is_suggestion: IsSuggestion,
523     ) -> ProbeContext<'a, 'tcx> {
524         ProbeContext {
525             fcx,
526             span,
527             mode,
528             method_name,
529             return_type,
530             inherent_candidates: Vec::new(),
531             extension_candidates: Vec::new(),
532             impl_dups: FxHashSet::default(),
533             orig_steps_var_values,
534             steps,
535             static_candidates: Vec::new(),
536             allow_similar_names: false,
537             private_candidate: None,
538             unsatisfied_predicates: Vec::new(),
539             is_suggestion,
540         }
541     }
542
543     fn reset(&mut self) {
544         self.inherent_candidates.clear();
545         self.extension_candidates.clear();
546         self.impl_dups.clear();
547         self.static_candidates.clear();
548         self.private_candidate = None;
549     }
550
551     ///////////////////////////////////////////////////////////////////////////
552     // CANDIDATE ASSEMBLY
553
554     fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
555         let is_accessible = if let Some(name) = self.method_name {
556             let item = candidate.item;
557             let def_scope =
558                 self.tcx.adjust_ident_and_get_scope(name, item.container.id(), self.body_id).1;
559             item.vis.is_accessible_from(def_scope, self.tcx)
560         } else {
561             true
562         };
563         if is_accessible {
564             if is_inherent {
565                 self.inherent_candidates.push(candidate);
566             } else {
567                 self.extension_candidates.push(candidate);
568             }
569         } else if self.private_candidate.is_none() {
570             self.private_candidate = Some((candidate.item.def_kind(), candidate.item.def_id));
571         }
572     }
573
574     fn assemble_inherent_candidates(&mut self) {
575         let steps = self.steps.clone();
576         for step in steps.iter() {
577             self.assemble_probe(&step.self_ty);
578         }
579     }
580
581     fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
582         debug!("assemble_probe: self_ty={:?}", self_ty);
583         let lang_items = self.tcx.lang_items();
584
585         match self_ty.value.value.kind {
586             ty::Dynamic(ref data, ..) => {
587                 if let Some(p) = data.principal() {
588                     // Subtle: we can't use `instantiate_query_response` here: using it will
589                     // commit to all of the type equalities assumed by inference going through
590                     // autoderef (see the `method-probe-no-guessing` test).
591                     //
592                     // However, in this code, it is OK if we end up with an object type that is
593                     // "more general" than the object type that we are evaluating. For *every*
594                     // object type `MY_OBJECT`, a function call that goes through a trait-ref
595                     // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
596                     // `ObjectCandidate`, and it should be discoverable "exactly" through one
597                     // of the iterations in the autoderef loop, so there is no problem with it
598                     // being discoverable in another one of these iterations.
599                     //
600                     // Using `instantiate_canonical_with_fresh_inference_vars` on our
601                     // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
602                     // `CanonicalVarValues` will exactly give us such a generalization - it
603                     // will still match the original object type, but it won't pollute our
604                     // type variables in any form, so just do that!
605                     let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
606                         self.fcx
607                             .instantiate_canonical_with_fresh_inference_vars(self.span, &self_ty);
608
609                     self.assemble_inherent_candidates_from_object(generalized_self_ty);
610                     self.assemble_inherent_impl_candidates_for_type(p.def_id());
611                 }
612             }
613             ty::Adt(def, _) => {
614                 self.assemble_inherent_impl_candidates_for_type(def.did);
615             }
616             ty::Foreign(did) => {
617                 self.assemble_inherent_impl_candidates_for_type(did);
618             }
619             ty::Param(p) => {
620                 self.assemble_inherent_candidates_from_param(p);
621             }
622             ty::Bool => {
623                 let lang_def_id = lang_items.bool_impl();
624                 self.assemble_inherent_impl_for_primitive(lang_def_id);
625             }
626             ty::Char => {
627                 let lang_def_id = lang_items.char_impl();
628                 self.assemble_inherent_impl_for_primitive(lang_def_id);
629             }
630             ty::Str => {
631                 let lang_def_id = lang_items.str_impl();
632                 self.assemble_inherent_impl_for_primitive(lang_def_id);
633
634                 let lang_def_id = lang_items.str_alloc_impl();
635                 self.assemble_inherent_impl_for_primitive(lang_def_id);
636             }
637             ty::Slice(_) => {
638                 let lang_def_id = lang_items.slice_impl();
639                 self.assemble_inherent_impl_for_primitive(lang_def_id);
640
641                 let lang_def_id = lang_items.slice_u8_impl();
642                 self.assemble_inherent_impl_for_primitive(lang_def_id);
643
644                 let lang_def_id = lang_items.slice_alloc_impl();
645                 self.assemble_inherent_impl_for_primitive(lang_def_id);
646
647                 let lang_def_id = lang_items.slice_u8_alloc_impl();
648                 self.assemble_inherent_impl_for_primitive(lang_def_id);
649             }
650             ty::RawPtr(ty::TypeAndMut { ty: _, mutbl: hir::Mutability::Not }) => {
651                 let lang_def_id = lang_items.const_ptr_impl();
652                 self.assemble_inherent_impl_for_primitive(lang_def_id);
653             }
654             ty::RawPtr(ty::TypeAndMut { ty: _, mutbl: hir::Mutability::Mut }) => {
655                 let lang_def_id = lang_items.mut_ptr_impl();
656                 self.assemble_inherent_impl_for_primitive(lang_def_id);
657             }
658             ty::Int(ast::IntTy::I8) => {
659                 let lang_def_id = lang_items.i8_impl();
660                 self.assemble_inherent_impl_for_primitive(lang_def_id);
661             }
662             ty::Int(ast::IntTy::I16) => {
663                 let lang_def_id = lang_items.i16_impl();
664                 self.assemble_inherent_impl_for_primitive(lang_def_id);
665             }
666             ty::Int(ast::IntTy::I32) => {
667                 let lang_def_id = lang_items.i32_impl();
668                 self.assemble_inherent_impl_for_primitive(lang_def_id);
669             }
670             ty::Int(ast::IntTy::I64) => {
671                 let lang_def_id = lang_items.i64_impl();
672                 self.assemble_inherent_impl_for_primitive(lang_def_id);
673             }
674             ty::Int(ast::IntTy::I128) => {
675                 let lang_def_id = lang_items.i128_impl();
676                 self.assemble_inherent_impl_for_primitive(lang_def_id);
677             }
678             ty::Int(ast::IntTy::Isize) => {
679                 let lang_def_id = lang_items.isize_impl();
680                 self.assemble_inherent_impl_for_primitive(lang_def_id);
681             }
682             ty::Uint(ast::UintTy::U8) => {
683                 let lang_def_id = lang_items.u8_impl();
684                 self.assemble_inherent_impl_for_primitive(lang_def_id);
685             }
686             ty::Uint(ast::UintTy::U16) => {
687                 let lang_def_id = lang_items.u16_impl();
688                 self.assemble_inherent_impl_for_primitive(lang_def_id);
689             }
690             ty::Uint(ast::UintTy::U32) => {
691                 let lang_def_id = lang_items.u32_impl();
692                 self.assemble_inherent_impl_for_primitive(lang_def_id);
693             }
694             ty::Uint(ast::UintTy::U64) => {
695                 let lang_def_id = lang_items.u64_impl();
696                 self.assemble_inherent_impl_for_primitive(lang_def_id);
697             }
698             ty::Uint(ast::UintTy::U128) => {
699                 let lang_def_id = lang_items.u128_impl();
700                 self.assemble_inherent_impl_for_primitive(lang_def_id);
701             }
702             ty::Uint(ast::UintTy::Usize) => {
703                 let lang_def_id = lang_items.usize_impl();
704                 self.assemble_inherent_impl_for_primitive(lang_def_id);
705             }
706             ty::Float(ast::FloatTy::F32) => {
707                 let lang_def_id = lang_items.f32_impl();
708                 self.assemble_inherent_impl_for_primitive(lang_def_id);
709
710                 let lang_def_id = lang_items.f32_runtime_impl();
711                 self.assemble_inherent_impl_for_primitive(lang_def_id);
712             }
713             ty::Float(ast::FloatTy::F64) => {
714                 let lang_def_id = lang_items.f64_impl();
715                 self.assemble_inherent_impl_for_primitive(lang_def_id);
716
717                 let lang_def_id = lang_items.f64_runtime_impl();
718                 self.assemble_inherent_impl_for_primitive(lang_def_id);
719             }
720             _ => {}
721         }
722     }
723
724     fn assemble_inherent_impl_for_primitive(&mut self, lang_def_id: Option<DefId>) {
725         if let Some(impl_def_id) = lang_def_id {
726             self.assemble_inherent_impl_probe(impl_def_id);
727         }
728     }
729
730     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
731         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
732         for &impl_def_id in impl_def_ids.iter() {
733             self.assemble_inherent_impl_probe(impl_def_id);
734         }
735     }
736
737     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
738         if !self.impl_dups.insert(impl_def_id) {
739             return; // already visited
740         }
741
742         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
743
744         for item in self.impl_or_trait_item(impl_def_id) {
745             if !self.has_applicable_self(&item) {
746                 // No receiver declared. Not a candidate.
747                 self.record_static_candidate(ImplSource(impl_def_id));
748                 continue;
749             }
750
751             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
752             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
753
754             // Determine the receiver type that the method itself expects.
755             let xform_tys = self.xform_self_ty(&item, impl_ty, impl_substs);
756
757             // We can't use normalize_associated_types_in as it will pollute the
758             // fcx's fulfillment context after this probe is over.
759             let cause = traits::ObligationCause::misc(self.span, self.body_id);
760             let selcx = &mut traits::SelectionContext::new(self.fcx);
761             let traits::Normalized { value: (xform_self_ty, xform_ret_ty), obligations } =
762                 traits::normalize(selcx, self.param_env, cause, &xform_tys);
763             debug!(
764                 "assemble_inherent_impl_probe: xform_self_ty = {:?}/{:?}",
765                 xform_self_ty, xform_ret_ty
766             );
767
768             self.push_candidate(
769                 Candidate {
770                     xform_self_ty,
771                     xform_ret_ty,
772                     item,
773                     kind: InherentImplCandidate(impl_substs, obligations),
774                     import_ids: smallvec![],
775                 },
776                 true,
777             );
778         }
779     }
780
781     fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
782         debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
783
784         let principal = match self_ty.kind {
785             ty::Dynamic(ref data, ..) => Some(data),
786             _ => None,
787         }
788         .and_then(|data| data.principal())
789         .unwrap_or_else(|| {
790             span_bug!(
791                 self.span,
792                 "non-object {:?} in assemble_inherent_candidates_from_object",
793                 self_ty
794             )
795         });
796
797         // It is illegal to invoke a method on a trait instance that
798         // refers to the `Self` type. An error will be reported by
799         // `enforce_object_limitations()` if the method refers to the
800         // `Self` type anywhere other than the receiver. Here, we use
801         // a substitution that replaces `Self` with the object type
802         // itself. Hence, a `&self` method will wind up with an
803         // argument type like `&Trait`.
804         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
805         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
806             let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
807
808             let (xform_self_ty, xform_ret_ty) =
809                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
810             this.push_candidate(
811                 Candidate {
812                     xform_self_ty,
813                     xform_ret_ty,
814                     item,
815                     kind: ObjectCandidate,
816                     import_ids: smallvec![],
817                 },
818                 true,
819             );
820         });
821     }
822
823     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
824         // FIXME: do we want to commit to this behavior for param bounds?
825
826         let bounds = self.param_env.caller_bounds.iter().filter_map(|predicate| match *predicate {
827             ty::Predicate::Trait(ref trait_predicate, _) => {
828                 match trait_predicate.skip_binder().trait_ref.self_ty().kind {
829                     ty::Param(ref p) if *p == param_ty => Some(trait_predicate.to_poly_trait_ref()),
830                     _ => None,
831                 }
832             }
833             ty::Predicate::Subtype(..)
834             | ty::Predicate::Projection(..)
835             | ty::Predicate::RegionOutlives(..)
836             | ty::Predicate::WellFormed(..)
837             | ty::Predicate::ObjectSafe(..)
838             | ty::Predicate::ClosureKind(..)
839             | ty::Predicate::TypeOutlives(..)
840             | ty::Predicate::ConstEvaluatable(..) => None,
841         });
842
843         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
844             let trait_ref = this.erase_late_bound_regions(&poly_trait_ref);
845
846             let (xform_self_ty, xform_ret_ty) =
847                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
848
849             // Because this trait derives from a where-clause, it
850             // should not contain any inference variables or other
851             // artifacts. This means it is safe to put into the
852             // `WhereClauseCandidate` and (eventually) into the
853             // `WhereClausePick`.
854             assert!(!trait_ref.substs.needs_infer());
855
856             this.push_candidate(
857                 Candidate {
858                     xform_self_ty,
859                     xform_ret_ty,
860                     item,
861                     kind: WhereClauseCandidate(poly_trait_ref),
862                     import_ids: smallvec![],
863                 },
864                 true,
865             );
866         });
867     }
868
869     // Do a search through a list of bounds, using a callback to actually
870     // create the candidates.
871     fn elaborate_bounds<F>(
872         &mut self,
873         bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
874         mut mk_cand: F,
875     ) where
876         F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
877     {
878         let tcx = self.tcx;
879         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
880             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
881             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
882                 if !self.has_applicable_self(&item) {
883                     self.record_static_candidate(TraitSource(bound_trait_ref.def_id()));
884                 } else {
885                     mk_cand(self, bound_trait_ref, item);
886                 }
887             }
888         }
889     }
890
891     fn assemble_extension_candidates_for_traits_in_scope(
892         &mut self,
893         expr_hir_id: hir::HirId,
894     ) -> Result<(), MethodError<'tcx>> {
895         if expr_hir_id == hir::DUMMY_HIR_ID {
896             return Ok(());
897         }
898         let mut duplicates = FxHashSet::default();
899         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
900         if let Some(applicable_traits) = opt_applicable_traits {
901             for trait_candidate in applicable_traits.iter() {
902                 let trait_did = trait_candidate.def_id;
903                 if duplicates.insert(trait_did) {
904                     let result = self.assemble_extension_candidates_for_trait(
905                         &trait_candidate.import_ids,
906                         trait_did,
907                     );
908                     result?;
909                 }
910             }
911         }
912         Ok(())
913     }
914
915     fn assemble_extension_candidates_for_all_traits(&mut self) -> Result<(), MethodError<'tcx>> {
916         let mut duplicates = FxHashSet::default();
917         for trait_info in suggest::all_traits(self.tcx) {
918             if duplicates.insert(trait_info.def_id) {
919                 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id)?;
920             }
921         }
922         Ok(())
923     }
924
925     pub fn matches_return_type(
926         &self,
927         method: &ty::AssocItem,
928         self_ty: Option<Ty<'tcx>>,
929         expected: Ty<'tcx>,
930     ) -> bool {
931         match method.kind {
932             ty::AssocKind::Method => {
933                 let fty = self.tcx.fn_sig(method.def_id);
934                 self.probe(|_| {
935                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
936                     let fty = fty.subst(self.tcx, substs);
937                     let (fty, _) =
938                         self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, &fty);
939
940                     if let Some(self_ty) = self_ty {
941                         if self
942                             .at(&ObligationCause::dummy(), self.param_env)
943                             .sup(fty.inputs()[0], self_ty)
944                             .is_err()
945                         {
946                             return false;
947                         }
948                     }
949                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
950                 })
951             }
952             _ => false,
953         }
954     }
955
956     fn assemble_extension_candidates_for_trait(
957         &mut self,
958         import_ids: &SmallVec<[hir::HirId; 1]>,
959         trait_def_id: DefId,
960     ) -> Result<(), MethodError<'tcx>> {
961         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
962         let trait_substs = self.fresh_item_substs(trait_def_id);
963         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
964
965         if self.tcx.is_trait_alias(trait_def_id) {
966             // For trait aliases, assume all super-traits are relevant.
967             let bounds = iter::once(trait_ref.to_poly_trait_ref());
968             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
969                 let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
970
971                 let (xform_self_ty, xform_ret_ty) =
972                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
973                 this.push_candidate(
974                     Candidate {
975                         xform_self_ty,
976                         xform_ret_ty,
977                         item,
978                         import_ids: import_ids.clone(),
979                         kind: TraitCandidate(new_trait_ref),
980                     },
981                     true,
982                 );
983             });
984         } else {
985             debug_assert!(self.tcx.is_trait(trait_def_id));
986             for item in self.impl_or_trait_item(trait_def_id) {
987                 // Check whether `trait_def_id` defines a method with suitable name.
988                 if !self.has_applicable_self(&item) {
989                     debug!("method has inapplicable self");
990                     self.record_static_candidate(TraitSource(trait_def_id));
991                     continue;
992                 }
993
994                 let (xform_self_ty, xform_ret_ty) =
995                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
996                 self.push_candidate(
997                     Candidate {
998                         xform_self_ty,
999                         xform_ret_ty,
1000                         item,
1001                         import_ids: import_ids.clone(),
1002                         kind: TraitCandidate(trait_ref),
1003                     },
1004                     false,
1005                 );
1006             }
1007         }
1008         Ok(())
1009     }
1010
1011     fn candidate_method_names(&self) -> Vec<ast::Ident> {
1012         let mut set = FxHashSet::default();
1013         let mut names: Vec<_> = self
1014             .inherent_candidates
1015             .iter()
1016             .chain(&self.extension_candidates)
1017             .filter(|candidate| {
1018                 if let Some(return_ty) = self.return_type {
1019                     self.matches_return_type(&candidate.item, None, return_ty)
1020                 } else {
1021                     true
1022                 }
1023             })
1024             .map(|candidate| candidate.item.ident)
1025             .filter(|&name| set.insert(name))
1026             .collect();
1027
1028         // Sort them by the name so we have a stable result.
1029         names.sort_by_cached_key(|n| n.as_str());
1030         names
1031     }
1032
1033     ///////////////////////////////////////////////////////////////////////////
1034     // THE ACTUAL SEARCH
1035
1036     fn pick(mut self) -> PickResult<'tcx> {
1037         assert!(self.method_name.is_some());
1038
1039         if let Some(r) = self.pick_core() {
1040             return r;
1041         }
1042
1043         debug!("pick: actual search failed, assemble diagnotics");
1044
1045         let static_candidates = mem::take(&mut self.static_candidates);
1046         let private_candidate = self.private_candidate.take();
1047         let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
1048
1049         // things failed, so lets look at all traits, for diagnostic purposes now:
1050         self.reset();
1051
1052         let span = self.span;
1053         let tcx = self.tcx;
1054
1055         self.assemble_extension_candidates_for_all_traits()?;
1056
1057         let out_of_scope_traits = match self.pick_core() {
1058             Some(Ok(p)) => vec![p.item.container.id()],
1059             //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
1060             Some(Err(MethodError::Ambiguity(v))) => v
1061                 .into_iter()
1062                 .map(|source| match source {
1063                     TraitSource(id) => id,
1064                     ImplSource(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1065                         Some(id) => id,
1066                         None => span_bug!(span, "found inherent method when looking at traits"),
1067                     },
1068                 })
1069                 .collect(),
1070             Some(Err(MethodError::NoMatch(NoMatchData {
1071                 out_of_scope_traits: others, ..
1072             }))) => {
1073                 assert!(others.is_empty());
1074                 vec![]
1075             }
1076             _ => vec![],
1077         };
1078
1079         if let Some((kind, def_id)) = private_candidate {
1080             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1081         }
1082         let lev_candidate = self.probe_for_lev_candidate()?;
1083
1084         Err(MethodError::NoMatch(NoMatchData::new(
1085             static_candidates,
1086             unsatisfied_predicates,
1087             out_of_scope_traits,
1088             lev_candidate,
1089             self.mode,
1090         )))
1091     }
1092
1093     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1094         let steps = self.steps.clone();
1095
1096         // find the first step that works
1097         steps
1098             .iter()
1099             .filter(|step| {
1100                 debug!("pick_core: step={:?}", step);
1101                 // skip types that are from a type error or that would require dereferencing
1102                 // a raw pointer
1103                 !step.self_ty.references_error() && !step.from_unsafe_deref
1104             })
1105             .flat_map(|step| {
1106                 let InferOk { value: self_ty, obligations: _ } = self
1107                     .fcx
1108                     .probe_instantiate_query_response(
1109                         self.span,
1110                         &self.orig_steps_var_values,
1111                         &step.self_ty,
1112                     )
1113                     .unwrap_or_else(|_| {
1114                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1115                     });
1116                 self.pick_by_value_method(step, self_ty).or_else(|| {
1117                     self.pick_autorefd_method(step, self_ty, hir::Mutability::Not)
1118                         .or_else(|| self.pick_autorefd_method(step, self_ty, hir::Mutability::Mut))
1119                 })
1120             })
1121             .next()
1122     }
1123
1124     fn pick_by_value_method(
1125         &mut self,
1126         step: &CandidateStep<'tcx>,
1127         self_ty: Ty<'tcx>,
1128     ) -> Option<PickResult<'tcx>> {
1129         //! For each type `T` in the step list, this attempts to find a
1130         //! method where the (transformed) self type is exactly `T`. We
1131         //! do however do one transformation on the adjustment: if we
1132         //! are passing a region pointer in, we will potentially
1133         //! *reborrow* it to a shorter lifetime. This allows us to
1134         //! transparently pass `&mut` pointers, in particular, without
1135         //! consuming them for their entire lifetime.
1136
1137         if step.unsize {
1138             return None;
1139         }
1140
1141         self.pick_method(self_ty).map(|r| {
1142             r.map(|mut pick| {
1143                 pick.autoderefs = step.autoderefs;
1144
1145                 // Insert a `&*` or `&mut *` if this is a reference type:
1146                 if let ty::Ref(_, _, mutbl) = step.self_ty.value.value.kind {
1147                     pick.autoderefs += 1;
1148                     pick.autoref = Some(mutbl);
1149                 }
1150
1151                 pick
1152             })
1153         })
1154     }
1155
1156     fn pick_autorefd_method(
1157         &mut self,
1158         step: &CandidateStep<'tcx>,
1159         self_ty: Ty<'tcx>,
1160         mutbl: hir::Mutability,
1161     ) -> Option<PickResult<'tcx>> {
1162         let tcx = self.tcx;
1163
1164         // In general, during probing we erase regions. See
1165         // `impl_self_ty()` for an explanation.
1166         let region = tcx.lifetimes.re_erased;
1167
1168         let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1169         self.pick_method(autoref_ty).map(|r| {
1170             r.map(|mut pick| {
1171                 pick.autoderefs = step.autoderefs;
1172                 pick.autoref = Some(mutbl);
1173                 pick.unsize = step.unsize.then_some(self_ty);
1174                 pick
1175             })
1176         })
1177     }
1178
1179     fn pick_method(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1180         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1181
1182         let mut possibly_unsatisfied_predicates = Vec::new();
1183         let mut unstable_candidates = Vec::new();
1184
1185         for (kind, candidates) in
1186             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1187         {
1188             debug!("searching {} candidates", kind);
1189             let res = self.consider_candidates(
1190                 self_ty,
1191                 candidates.iter(),
1192                 &mut possibly_unsatisfied_predicates,
1193                 Some(&mut unstable_candidates),
1194             );
1195             if let Some(pick) = res {
1196                 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1197                     if let Ok(p) = &pick {
1198                         // Emit a lint if there are unstable candidates alongside the stable ones.
1199                         //
1200                         // We suppress warning if we're picking the method only because it is a
1201                         // suggestion.
1202                         self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1203                     }
1204                 }
1205                 return Some(pick);
1206             }
1207         }
1208
1209         debug!("searching unstable candidates");
1210         let res = self.consider_candidates(
1211             self_ty,
1212             unstable_candidates.into_iter().map(|(c, _)| c),
1213             &mut possibly_unsatisfied_predicates,
1214             None,
1215         );
1216         if res.is_none() {
1217             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1218         }
1219         res
1220     }
1221
1222     fn consider_candidates<'b, ProbesIter>(
1223         &self,
1224         self_ty: Ty<'tcx>,
1225         probes: ProbesIter,
1226         possibly_unsatisfied_predicates: &mut Vec<(
1227             ty::Predicate<'tcx>,
1228             Option<ty::Predicate<'tcx>>,
1229         )>,
1230         unstable_candidates: Option<&mut Vec<(&'b Candidate<'tcx>, Symbol)>>,
1231     ) -> Option<PickResult<'tcx>>
1232     where
1233         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1234     {
1235         let mut applicable_candidates: Vec<_> = probes
1236             .clone()
1237             .map(|probe| {
1238                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1239             })
1240             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1241             .collect();
1242
1243         debug!("applicable_candidates: {:?}", applicable_candidates);
1244
1245         if applicable_candidates.len() > 1 {
1246             if let Some(pick) = self.collapse_candidates_to_trait_pick(&applicable_candidates[..]) {
1247                 return Some(Ok(pick));
1248             }
1249         }
1250
1251         if let Some(uc) = unstable_candidates {
1252             applicable_candidates.retain(|&(p, _)| {
1253                 if let stability::EvalResult::Deny { feature, .. } =
1254                     self.tcx.eval_stability(p.item.def_id, None, self.span)
1255                 {
1256                     uc.push((p, feature));
1257                     return false;
1258                 }
1259                 true
1260             });
1261         }
1262
1263         if applicable_candidates.len() > 1 {
1264             let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
1265             return Some(Err(MethodError::Ambiguity(sources)));
1266         }
1267
1268         applicable_candidates.pop().map(|(probe, status)| {
1269             if status == ProbeResult::Match {
1270                 Ok(probe.to_unadjusted_pick())
1271             } else {
1272                 Err(MethodError::BadReturnType)
1273             }
1274         })
1275     }
1276
1277     fn emit_unstable_name_collision_hint(
1278         &self,
1279         stable_pick: &Pick<'_>,
1280         unstable_candidates: &[(&Candidate<'tcx>, Symbol)],
1281     ) {
1282         self.tcx.struct_span_lint_hir(
1283             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1284             self.fcx.body_id,
1285             self.span,
1286             |lint| {
1287                 let mut diag = lint.build(
1288                     "a method with this name may be added to the standard library in the future",
1289                 );
1290                 // FIXME: This should be a `span_suggestion` instead of `help`
1291                 // However `self.span` only
1292                 // highlights the method name, so we can't use it. Also consider reusing the code from
1293                 // `report_method_error()`.
1294                 diag.help(&format!(
1295                     "call with fully qualified syntax `{}(...)` to keep using the current method",
1296                     self.tcx.def_path_str(stable_pick.item.def_id),
1297                 ));
1298
1299                 if nightly_options::is_nightly_build() {
1300                     for (candidate, feature) in unstable_candidates {
1301                         diag.help(&format!(
1302                             "add `#![feature({})]` to the crate attributes to enable `{}`",
1303                             feature,
1304                             self.tcx.def_path_str(candidate.item.def_id),
1305                         ));
1306                     }
1307                 }
1308
1309                 diag.emit();
1310             },
1311         );
1312     }
1313
1314     fn select_trait_candidate(
1315         &self,
1316         trait_ref: ty::TraitRef<'tcx>,
1317     ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1318         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1319         let predicate = trait_ref.to_poly_trait_ref().to_poly_trait_predicate();
1320         let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1321         traits::SelectionContext::new(self).select(&obligation)
1322     }
1323
1324     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1325         match candidate.kind {
1326             InherentImplCandidate(..) => ImplSource(candidate.item.container.id()),
1327             ObjectCandidate | WhereClauseCandidate(_) => TraitSource(candidate.item.container.id()),
1328             TraitCandidate(trait_ref) => self.probe(|_| {
1329                 let _ = self
1330                     .at(&ObligationCause::dummy(), self.param_env)
1331                     .sup(candidate.xform_self_ty, self_ty);
1332                 match self.select_trait_candidate(trait_ref) {
1333                     Ok(Some(traits::Vtable::VtableImpl(ref impl_data))) => {
1334                         // If only a single impl matches, make the error message point
1335                         // to that impl.
1336                         ImplSource(impl_data.impl_def_id)
1337                     }
1338                     _ => TraitSource(candidate.item.container.id()),
1339                 }
1340             }),
1341         }
1342     }
1343
1344     fn consider_probe(
1345         &self,
1346         self_ty: Ty<'tcx>,
1347         probe: &Candidate<'tcx>,
1348         possibly_unsatisfied_predicates: &mut Vec<(
1349             ty::Predicate<'tcx>,
1350             Option<ty::Predicate<'tcx>>,
1351         )>,
1352     ) -> ProbeResult {
1353         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1354
1355         self.probe(|_| {
1356             // First check that the self type can be related.
1357             let sub_obligations = match self
1358                 .at(&ObligationCause::dummy(), self.param_env)
1359                 .sup(probe.xform_self_ty, self_ty)
1360             {
1361                 Ok(InferOk { obligations, value: () }) => obligations,
1362                 Err(_) => {
1363                     debug!("--> cannot relate self-types");
1364                     return ProbeResult::NoMatch;
1365                 }
1366             };
1367
1368             let mut result = ProbeResult::Match;
1369             let selcx = &mut traits::SelectionContext::new(self);
1370             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1371
1372             // If so, impls may carry other conditions (e.g., where
1373             // clauses) that must be considered. Make sure that those
1374             // match as well (or at least may match, sometimes we
1375             // don't have enough information to fully evaluate).
1376             let candidate_obligations: Vec<_> = match probe.kind {
1377                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1378                     // Check whether the impl imposes obligations we have to worry about.
1379                     let impl_def_id = probe.item.container.id();
1380                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1381                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1382                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1383                         traits::normalize(selcx, self.param_env, cause.clone(), &impl_bounds);
1384
1385                     // Convert the bounds into obligations.
1386                     let impl_obligations =
1387                         traits::predicates_for_generics(cause, self.param_env, &impl_bounds);
1388
1389                     debug!("impl_obligations={:?}", impl_obligations);
1390                     impl_obligations
1391                         .into_iter()
1392                         .chain(norm_obligations.into_iter())
1393                         .chain(ref_obligations.iter().cloned())
1394                         .collect()
1395                 }
1396
1397                 ObjectCandidate | WhereClauseCandidate(..) => {
1398                     // These have no additional conditions to check.
1399                     vec![]
1400                 }
1401
1402                 TraitCandidate(trait_ref) => {
1403                     let predicate = trait_ref.without_const().to_predicate();
1404                     let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1405                     if !self.predicate_may_hold(&obligation) {
1406                         if self.probe(|_| {
1407                             match self.select_trait_candidate(trait_ref) {
1408                                 Err(_) => return true,
1409                                 Ok(Some(vtable))
1410                                     if !vtable.borrow_nested_obligations().is_empty() =>
1411                                 {
1412                                     for obligation in vtable.borrow_nested_obligations() {
1413                                         // Determine exactly which obligation wasn't met, so
1414                                         // that we can give more context in the error.
1415                                         if !self.predicate_may_hold(&obligation) {
1416                                             result = ProbeResult::NoMatch;
1417                                             let o = self.resolve_vars_if_possible(obligation);
1418                                             let predicate =
1419                                                 self.resolve_vars_if_possible(&predicate);
1420                                             let p = if predicate == o.predicate {
1421                                                 // Avoid "`MyStruct: Foo` which is required by
1422                                                 // `MyStruct: Foo`" in E0599.
1423                                                 None
1424                                             } else {
1425                                                 Some(predicate)
1426                                             };
1427                                             possibly_unsatisfied_predicates.push((o.predicate, p));
1428                                         }
1429                                     }
1430                                 }
1431                                 _ => {
1432                                     // Some nested subobligation of this predicate
1433                                     // failed.
1434                                     result = ProbeResult::NoMatch;
1435                                     let predicate = self.resolve_vars_if_possible(&predicate);
1436                                     possibly_unsatisfied_predicates.push((predicate, None));
1437                                 }
1438                             }
1439                             false
1440                         }) {
1441                             // This candidate's primary obligation doesn't even
1442                             // select - don't bother registering anything in
1443                             // `potentially_unsatisfied_predicates`.
1444                             return ProbeResult::NoMatch;
1445                         }
1446                     }
1447                     vec![]
1448                 }
1449             };
1450
1451             debug!(
1452                 "consider_probe - candidate_obligations={:?} sub_obligations={:?}",
1453                 candidate_obligations, sub_obligations
1454             );
1455
1456             // Evaluate those obligations to see if they might possibly hold.
1457             for o in candidate_obligations.into_iter().chain(sub_obligations) {
1458                 let o = self.resolve_vars_if_possible(&o);
1459                 if !self.predicate_may_hold(&o) {
1460                     result = ProbeResult::NoMatch;
1461                     possibly_unsatisfied_predicates.push((o.predicate, None));
1462                 }
1463             }
1464
1465             if let ProbeResult::Match = result {
1466                 if let (Some(return_ty), Some(xform_ret_ty)) =
1467                     (self.return_type, probe.xform_ret_ty)
1468                 {
1469                     let xform_ret_ty = self.resolve_vars_if_possible(&xform_ret_ty);
1470                     debug!(
1471                         "comparing return_ty {:?} with xform ret ty {:?}",
1472                         return_ty, probe.xform_ret_ty
1473                     );
1474                     if self
1475                         .at(&ObligationCause::dummy(), self.param_env)
1476                         .sup(return_ty, xform_ret_ty)
1477                         .is_err()
1478                     {
1479                         return ProbeResult::BadReturnType;
1480                     }
1481                 }
1482             }
1483
1484             result
1485         })
1486     }
1487
1488     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1489     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1490     /// external interface of the method can be determined from the trait, it's ok not to decide.
1491     /// We can basically just collapse all of the probes for various impls into one where-clause
1492     /// probe. This will result in a pending obligation so when more type-info is available we can
1493     /// make the final decision.
1494     ///
1495     /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1496     ///
1497     /// ```
1498     /// trait Foo { ... }
1499     /// impl Foo for Vec<int> { ... }
1500     /// impl Foo for Vec<usize> { ... }
1501     /// ```
1502     ///
1503     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1504     /// use, so it's ok to just commit to "using the method from the trait Foo".
1505     fn collapse_candidates_to_trait_pick(
1506         &self,
1507         probes: &[(&Candidate<'tcx>, ProbeResult)],
1508     ) -> Option<Pick<'tcx>> {
1509         // Do all probes correspond to the same trait?
1510         let container = probes[0].0.item.container;
1511         if let ty::ImplContainer(_) = container {
1512             return None;
1513         }
1514         if probes[1..].iter().any(|&(p, _)| p.item.container != container) {
1515             return None;
1516         }
1517
1518         // FIXME: check the return type here somehow.
1519         // If so, just use this trait and call it a day.
1520         Some(Pick {
1521             item: probes[0].0.item,
1522             kind: TraitPick,
1523             import_ids: probes[0].0.import_ids.clone(),
1524             autoderefs: 0,
1525             autoref: None,
1526             unsize: None,
1527         })
1528     }
1529
1530     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1531     /// candidate method where the method name may have been misspelt. Similarly to other
1532     /// Levenshtein based suggestions, we provide at most one such suggestion.
1533     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1534         debug!("probing for method names similar to {:?}", self.method_name);
1535
1536         let steps = self.steps.clone();
1537         self.probe(|_| {
1538             let mut pcx = ProbeContext::new(
1539                 self.fcx,
1540                 self.span,
1541                 self.mode,
1542                 self.method_name,
1543                 self.return_type,
1544                 self.orig_steps_var_values.clone(),
1545                 steps,
1546                 IsSuggestion(true),
1547             );
1548             pcx.allow_similar_names = true;
1549             pcx.assemble_inherent_candidates();
1550             pcx.assemble_extension_candidates_for_traits_in_scope(hir::DUMMY_HIR_ID)?;
1551
1552             let method_names = pcx.candidate_method_names();
1553             pcx.allow_similar_names = false;
1554             let applicable_close_candidates: Vec<ty::AssocItem> =
1555                 method_names
1556                     .iter()
1557                     .filter_map(|&method_name| {
1558                         pcx.reset();
1559                         pcx.method_name = Some(method_name);
1560                         pcx.assemble_inherent_candidates();
1561                         pcx.assemble_extension_candidates_for_traits_in_scope(hir::DUMMY_HIR_ID)
1562                             .map_or(None, |_| {
1563                                 pcx.pick_core()
1564                                     .and_then(|pick| pick.ok())
1565                                     .and_then(|pick| Some(pick.item))
1566                             })
1567                     })
1568                     .collect();
1569
1570             if applicable_close_candidates.is_empty() {
1571                 Ok(None)
1572             } else {
1573                 let best_name = {
1574                     let names = applicable_close_candidates.iter().map(|cand| &cand.ident.name);
1575                     find_best_match_for_name(names, &self.method_name.unwrap().as_str(), None)
1576                 }
1577                 .unwrap();
1578                 Ok(applicable_close_candidates
1579                     .into_iter()
1580                     .find(|method| method.ident.name == best_name))
1581             }
1582         })
1583     }
1584
1585     ///////////////////////////////////////////////////////////////////////////
1586     // MISCELLANY
1587     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1588         // "Fast track" -- check for usage of sugar when in method call
1589         // mode.
1590         //
1591         // In Path mode (i.e., resolving a value like `T::next`), consider any
1592         // associated value (i.e., methods, constants) but not types.
1593         match self.mode {
1594             Mode::MethodCall => item.method_has_self_argument,
1595             Mode::Path => match item.kind {
1596                 ty::AssocKind::OpaqueTy | ty::AssocKind::Type => false,
1597                 ty::AssocKind::Method | ty::AssocKind::Const => true,
1598             },
1599         }
1600         // FIXME -- check for types that deref to `Self`,
1601         // like `Rc<Self>` and so on.
1602         //
1603         // Note also that the current code will break if this type
1604         // includes any of the type parameters defined on the method
1605         // -- but this could be overcome.
1606     }
1607
1608     fn record_static_candidate(&mut self, source: CandidateSource) {
1609         self.static_candidates.push(source);
1610     }
1611
1612     fn xform_self_ty(
1613         &self,
1614         item: &ty::AssocItem,
1615         impl_ty: Ty<'tcx>,
1616         substs: SubstsRef<'tcx>,
1617     ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1618         if item.kind == ty::AssocKind::Method && self.mode == Mode::MethodCall {
1619             let sig = self.xform_method_sig(item.def_id, substs);
1620             (sig.inputs()[0], Some(sig.output()))
1621         } else {
1622             (impl_ty, None)
1623         }
1624     }
1625
1626     fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1627         let fn_sig = self.tcx.fn_sig(method);
1628         debug!("xform_self_ty(fn_sig={:?}, substs={:?})", fn_sig, substs);
1629
1630         assert!(!substs.has_escaping_bound_vars());
1631
1632         // It is possible for type parameters or early-bound lifetimes
1633         // to appear in the signature of `self`. The substitutions we
1634         // are given do not include type/lifetime parameters for the
1635         // method yet. So create fresh variables here for those too,
1636         // if there are any.
1637         let generics = self.tcx.generics_of(method);
1638         assert_eq!(substs.len(), generics.parent_count as usize);
1639
1640         // Erase any late-bound regions from the method and substitute
1641         // in the values from the substitution.
1642         let xform_fn_sig = self.erase_late_bound_regions(&fn_sig);
1643
1644         if generics.params.is_empty() {
1645             xform_fn_sig.subst(self.tcx, substs)
1646         } else {
1647             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1648                 let i = param.index as usize;
1649                 if i < substs.len() {
1650                     substs[i]
1651                 } else {
1652                     match param.kind {
1653                         GenericParamDefKind::Lifetime => {
1654                             // In general, during probe we erase regions. See
1655                             // `impl_self_ty()` for an explanation.
1656                             self.tcx.lifetimes.re_erased.into()
1657                         }
1658                         GenericParamDefKind::Type { .. } | GenericParamDefKind::Const => {
1659                             self.var_for_def(self.span, param)
1660                         }
1661                     }
1662                 }
1663             });
1664             xform_fn_sig.subst(self.tcx, substs)
1665         }
1666     }
1667
1668     /// Gets the type of an impl and generate substitutions with placeholders.
1669     fn impl_ty_and_substs(&self, impl_def_id: DefId) -> (Ty<'tcx>, SubstsRef<'tcx>) {
1670         (self.tcx.type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1671     }
1672
1673     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1674         InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1675             GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1676             GenericParamDefKind::Type { .. } => self
1677                 .next_ty_var(TypeVariableOrigin {
1678                     kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1679                     span: self.tcx.def_span(def_id),
1680                 })
1681                 .into(),
1682             GenericParamDefKind::Const { .. } => {
1683                 let span = self.tcx.def_span(def_id);
1684                 let origin = ConstVariableOrigin {
1685                     kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1686                     span,
1687                 };
1688                 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1689             }
1690         })
1691     }
1692
1693     /// Replaces late-bound-regions bound by `value` with `'static` using
1694     /// `ty::erase_late_bound_regions`.
1695     ///
1696     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1697     /// method matching. It is reasonable during the probe phase because we don't consider region
1698     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1699     /// rather than creating fresh region variables. This is nice for two reasons:
1700     ///
1701     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1702     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1703     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1704     ///
1705     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1706     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1707     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1708     ///    region got replaced with the same variable, which requires a bit more coordination
1709     ///    and/or tracking the substitution and
1710     ///    so forth.
1711     fn erase_late_bound_regions<T>(&self, value: &ty::Binder<T>) -> T
1712     where
1713         T: TypeFoldable<'tcx>,
1714     {
1715         self.tcx.erase_late_bound_regions(value)
1716     }
1717
1718     /// Finds the method with the appropriate name (or return type, as the case may be). If
1719     /// `allow_similar_names` is set, find methods with close-matching names.
1720     fn impl_or_trait_item(&self, def_id: DefId) -> Vec<ty::AssocItem> {
1721         if let Some(name) = self.method_name {
1722             if self.allow_similar_names {
1723                 let max_dist = max(name.as_str().len(), 3) / 3;
1724                 self.tcx
1725                     .associated_items(def_id)
1726                     .in_definition_order()
1727                     .filter(|x| {
1728                         let dist = lev_distance(&*name.as_str(), &x.ident.as_str());
1729                         x.kind.namespace() == Namespace::ValueNS && dist > 0 && dist <= max_dist
1730                     })
1731                     .copied()
1732                     .collect()
1733             } else {
1734                 self.fcx
1735                     .associated_item(def_id, name, Namespace::ValueNS)
1736                     .map_or(Vec::new(), |x| vec![x])
1737             }
1738         } else {
1739             self.tcx.associated_items(def_id).in_definition_order().copied().collect()
1740         }
1741     }
1742 }
1743
1744 impl<'tcx> Candidate<'tcx> {
1745     fn to_unadjusted_pick(&self) -> Pick<'tcx> {
1746         Pick {
1747             item: self.item,
1748             kind: match self.kind {
1749                 InherentImplCandidate(..) => InherentImplPick,
1750                 ObjectCandidate => ObjectPick,
1751                 TraitCandidate(_) => TraitPick,
1752                 WhereClauseCandidate(ref trait_ref) => {
1753                     // Only trait derived from where-clauses should
1754                     // appear here, so they should not contain any
1755                     // inference variables or other artifacts. This
1756                     // means they are safe to put into the
1757                     // `WhereClausePick`.
1758                     assert!(
1759                         !trait_ref.skip_binder().substs.needs_infer()
1760                             && !trait_ref.skip_binder().substs.has_placeholders()
1761                     );
1762
1763                     WhereClausePick(*trait_ref)
1764                 }
1765             },
1766             import_ids: self.import_ids.clone(),
1767             autoderefs: 0,
1768             autoref: None,
1769             unsize: None,
1770         }
1771     }
1772 }