]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/method/probe.rs
661883f2ac11d6916b2e7d1dfbe370bb6ada856a
[rust.git] / src / librustc_typeck / check / method / probe.rs
1 use super::MethodError;
2 use super::NoMatchData;
3 use super::{CandidateSource, ImplSource, TraitSource};
4 use super::suggest;
5
6 use crate::check::autoderef::{self, Autoderef};
7 use crate::check::FnCtxt;
8 use crate::hir::def_id::DefId;
9 use crate::hir::def::DefKind;
10 use crate::namespace::Namespace;
11
12 use rustc_data_structures::sync::Lrc;
13 use rustc::hir;
14 use rustc::lint;
15 use rustc::session::config::nightly_options;
16 use rustc::ty::subst::{Subst, InternalSubsts, SubstsRef};
17 use rustc::traits::{self, ObligationCause};
18 use rustc::traits::query::{CanonicalTyGoal};
19 use rustc::traits::query::method_autoderef::{CandidateStep, MethodAutoderefStepsResult};
20 use rustc::traits::query::method_autoderef::{MethodAutoderefBadTy};
21 use rustc::ty::{self, ParamEnvAnd, Ty, TyCtxt, ToPolyTraitRef, ToPredicate, TraitRef, TypeFoldable};
22 use rustc::ty::GenericParamDefKind;
23 use rustc::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
24 use rustc::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
25 use rustc::util::nodemap::FxHashSet;
26 use rustc::infer::{self, InferOk};
27 use rustc::infer::canonical::{Canonical, QueryResponse};
28 use rustc::infer::canonical::{OriginalQueryValues};
29 use rustc::middle::stability;
30 use syntax::ast;
31 use syntax::util::lev_distance::{lev_distance, find_best_match_for_name};
32 use syntax_pos::{DUMMY_SP, Span, symbol::Symbol};
33 use std::iter;
34 use std::mem;
35 use std::ops::Deref;
36 use std::cmp::max;
37
38 use smallvec::{smallvec, SmallVec};
39
40 use self::CandidateKind::*;
41 pub use self::PickKind::*;
42
43 /// Boolean flag used to indicate if this search is for a suggestion
44 /// or not. If true, we can allow ambiguity and so forth.
45 #[derive(Clone, Copy)]
46 pub struct IsSuggestion(pub bool);
47
48 struct ProbeContext<'a, 'tcx> {
49     fcx: &'a FnCtxt<'a, 'tcx>,
50     span: Span,
51     mode: Mode,
52     method_name: Option<ast::Ident>,
53     return_type: Option<Ty<'tcx>>,
54
55     /// This is the OriginalQueryValues for the steps queries
56     /// that are answered in steps.
57     orig_steps_var_values: OriginalQueryValues<'tcx>,
58     steps: Lrc<Vec<CandidateStep<'tcx>>>,
59
60     inherent_candidates: Vec<Candidate<'tcx>>,
61     extension_candidates: Vec<Candidate<'tcx>>,
62     impl_dups: FxHashSet<DefId>,
63
64     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
65     /// used for error reporting
66     static_candidates: Vec<CandidateSource>,
67
68     /// When probing for names, include names that are close to the
69     /// requested name (by Levensthein distance)
70     allow_similar_names: bool,
71
72     /// Some(candidate) if there is a private candidate
73     private_candidate: Option<(DefKind, DefId)>,
74
75     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
76     /// for error reporting
77     unsatisfied_predicates: Vec<TraitRef<'tcx>>,
78
79     is_suggestion: IsSuggestion,
80 }
81
82 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
83     type Target = FnCtxt<'a, 'tcx>;
84     fn deref(&self) -> &Self::Target {
85         &self.fcx
86     }
87 }
88
89 #[derive(Debug)]
90 struct Candidate<'tcx> {
91     // Candidates are (I'm not quite sure, but they are mostly) basically
92     // some metadata on top of a `ty::AssocItem` (without substs).
93     //
94     // However, method probing wants to be able to evaluate the predicates
95     // for a function with the substs applied - for example, if a function
96     // has `where Self: Sized`, we don't want to consider it unless `Self`
97     // is actually `Sized`, and similarly, return-type suggestions want
98     // to consider the "actual" return type.
99     //
100     // The way this is handled is through `xform_self_ty`. It contains
101     // the receiver type of this candidate, but `xform_self_ty`,
102     // `xform_ret_ty` and `kind` (which contains the predicates) have the
103     // generic parameters of this candidate substituted with the *same set*
104     // of inference variables, which acts as some weird sort of "query".
105     //
106     // When we check out a candidate, we require `xform_self_ty` to be
107     // a subtype of the passed-in self-type, and this equates the type
108     // variables in the rest of the fields.
109     //
110     // For example, if we have this candidate:
111     // ```
112     //    trait Foo {
113     //        fn foo(&self) where Self: Sized;
114     //    }
115     // ```
116     //
117     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
118     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
119     // the receiver `&T`, we'll do the subtyping which will make `?X`
120     // get the right value, then when we evaluate the predicate we'll check
121     // if `T: Sized`.
122     xform_self_ty: Ty<'tcx>,
123     xform_ret_ty: Option<Ty<'tcx>>,
124     item: ty::AssocItem,
125     kind: CandidateKind<'tcx>,
126     import_ids: SmallVec<[hir::HirId; 1]>,
127 }
128
129 #[derive(Debug)]
130 enum CandidateKind<'tcx> {
131     InherentImplCandidate(SubstsRef<'tcx>,
132                           // Normalize obligations
133                           Vec<traits::PredicateObligation<'tcx>>),
134     ObjectCandidate,
135     TraitCandidate(ty::TraitRef<'tcx>),
136     WhereClauseCandidate(// Trait
137                          ty::PolyTraitRef<'tcx>),
138 }
139
140 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
141 enum ProbeResult {
142     NoMatch,
143     BadReturnType,
144     Match,
145 }
146
147 #[derive(Debug, PartialEq, Clone)]
148 pub struct Pick<'tcx> {
149     pub item: ty::AssocItem,
150     pub kind: PickKind<'tcx>,
151     pub import_ids: SmallVec<[hir::HirId; 1]>,
152
153     // Indicates that the source expression should be autoderef'd N times
154     //
155     // A = expr | *expr | **expr | ...
156     pub autoderefs: usize,
157
158     // Indicates that an autoref is applied after the optional autoderefs
159     //
160     // B = A | &A | &mut A
161     pub autoref: Option<hir::Mutability>,
162
163     // Indicates that the source expression should be "unsized" to a
164     // target type. This should probably eventually go away in favor
165     // of just coercing method receivers.
166     //
167     // C = B | unsize(B)
168     pub unsize: Option<Ty<'tcx>>,
169 }
170
171 #[derive(Clone, Debug, PartialEq, Eq)]
172 pub enum PickKind<'tcx> {
173     InherentImplPick,
174     ObjectPick,
175     TraitPick,
176     WhereClausePick(// Trait
177                     ty::PolyTraitRef<'tcx>),
178 }
179
180 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
181
182 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
183 pub enum Mode {
184     // An expression of the form `receiver.method_name(...)`.
185     // Autoderefs are performed on `receiver`, lookup is done based on the
186     // `self` argument  of the method, and static methods aren't considered.
187     MethodCall,
188     // An expression of the form `Type::item` or `<T>::item`.
189     // No autoderefs are performed, lookup is done based on the type each
190     // implementation is for, and static methods are included.
191     Path,
192 }
193
194 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
195 pub enum ProbeScope {
196     // Assemble candidates coming only from traits in scope.
197     TraitsInScope,
198
199     // Assemble candidates coming from all traits.
200     AllTraits,
201 }
202
203 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
204     /// This is used to offer suggestions to users. It returns methods
205     /// that could have been called which have the desired return
206     /// type. Some effort is made to rule out methods that, if called,
207     /// would result in an error (basically, the same criteria we
208     /// would use to decide if a method is a plausible fit for
209     /// ambiguity purposes).
210     pub fn probe_for_return_type(&self,
211                                  span: Span,
212                                  mode: Mode,
213                                  return_type: Ty<'tcx>,
214                                  self_ty: Ty<'tcx>,
215                                  scope_expr_id: hir::HirId)
216                                  -> Vec<ty::AssocItem> {
217         debug!("probe(self_ty={:?}, return_type={}, scope_expr_id={})",
218                self_ty,
219                return_type,
220                scope_expr_id);
221         let method_names =
222             self.probe_op(span, mode, None, Some(return_type), IsSuggestion(true),
223                           self_ty, scope_expr_id, ProbeScope::AllTraits,
224                           |probe_cx| Ok(probe_cx.candidate_method_names()))
225                 .unwrap_or(vec![]);
226          method_names
227              .iter()
228              .flat_map(|&method_name| {
229                  self.probe_op(
230                      span, mode, Some(method_name), Some(return_type),
231                      IsSuggestion(true), self_ty, scope_expr_id,
232                      ProbeScope::AllTraits, |probe_cx| probe_cx.pick()
233                  ).ok().map(|pick| pick.item)
234              })
235             .collect()
236     }
237
238     pub fn probe_for_name(&self,
239                           span: Span,
240                           mode: Mode,
241                           item_name: ast::Ident,
242                           is_suggestion: IsSuggestion,
243                           self_ty: Ty<'tcx>,
244                           scope_expr_id: hir::HirId,
245                           scope: ProbeScope)
246                           -> PickResult<'tcx> {
247         debug!("probe(self_ty={:?}, item_name={}, scope_expr_id={})",
248                self_ty,
249                item_name,
250                scope_expr_id);
251         self.probe_op(span,
252                       mode,
253                       Some(item_name),
254                       None,
255                       is_suggestion,
256                       self_ty,
257                       scope_expr_id,
258                       scope,
259                       |probe_cx| probe_cx.pick())
260     }
261
262     fn probe_op<OP, R>(
263         &'a self,
264         span: Span,
265         mode: Mode,
266         method_name: Option<ast::Ident>,
267         return_type: Option<Ty<'tcx>>,
268         is_suggestion: IsSuggestion,
269         self_ty: Ty<'tcx>,
270         scope_expr_id: hir::HirId,
271         scope: ProbeScope,
272         op: OP,
273     ) -> Result<R, MethodError<'tcx>>
274     where
275         OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
276     {
277         let mut orig_values = OriginalQueryValues::default();
278         let param_env_and_self_ty =
279             self.infcx.canonicalize_query(
280                 &ParamEnvAnd {
281                     param_env: self.param_env,
282                     value: self_ty
283                 }, &mut orig_values);
284
285         let steps = if mode == Mode::MethodCall {
286             self.tcx.method_autoderef_steps(param_env_and_self_ty)
287         } else {
288             self.infcx.probe(|_| {
289                 // Mode::Path - the deref steps is "trivial". This turns
290                 // our CanonicalQuery into a "trivial" QueryResponse. This
291                 // is a bit inefficient, but I don't think that writing
292                 // special handling for this "trivial case" is a good idea.
293
294                 let infcx = &self.infcx;
295                 let (ParamEnvAnd {
296                     param_env: _,
297                     value: self_ty
298                 }, canonical_inference_vars) =
299                     infcx.instantiate_canonical_with_fresh_inference_vars(
300                         span, &param_env_and_self_ty);
301                 debug!("probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
302                        param_env_and_self_ty, self_ty);
303                 MethodAutoderefStepsResult {
304                     steps: Lrc::new(vec![CandidateStep {
305                         self_ty: self.make_query_response_ignoring_pending_obligations(
306                             canonical_inference_vars, self_ty),
307                         autoderefs: 0,
308                         from_unsafe_deref: false,
309                         unsize: false,
310                     }]),
311                     opt_bad_ty: None,
312                     reached_recursion_limit: false
313                 }
314             })
315         };
316
317         // If our autoderef loop had reached the recursion limit,
318         // report an overflow error, but continue going on with
319         // the truncated autoderef list.
320         if steps.reached_recursion_limit {
321             self.probe(|_| {
322                 let ty = &steps.steps.last().unwrap_or_else(|| {
323                     span_bug!(span, "reached the recursion limit in 0 steps?")
324                 }).self_ty;
325                 let ty = self.probe_instantiate_query_response(span, &orig_values, ty)
326                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
327                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span,
328                                                                   ty.value);
329             });
330         }
331
332
333         // If we encountered an `_` type or an error type during autoderef, this is
334         // ambiguous.
335         if let Some(bad_ty) = &steps.opt_bad_ty {
336             if is_suggestion.0 {
337                 // Ambiguity was encountered during a suggestion. Just keep going.
338                 debug!("ProbeContext: encountered ambiguity in suggestion");
339             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
340                 // this case used to be allowed by the compiler,
341                 // so we do a future-compat lint here for the 2015 edition
342                 // (see https://github.com/rust-lang/rust/issues/46906)
343                 if self.tcx.sess.rust_2018() {
344                     span_err!(self.tcx.sess, span, E0699,
345                               "the type of this value must be known \
346                                to call a method on a raw pointer on it");
347                 } else {
348                    self.tcx.lint_hir(
349                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
350                         scope_expr_id,
351                         span,
352                         "type annotations needed");
353                 }
354             } else {
355                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
356                 // an `Err`, report the right "type annotations needed" error pointing
357                 // to it.
358                 let ty = &bad_ty.ty;
359                 let ty = self.probe_instantiate_query_response(span, &orig_values, ty)
360                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
361                 let ty = self.structurally_resolved_type(span, ty.value);
362                 assert_eq!(ty, self.tcx.types.err);
363                 return Err(MethodError::NoMatch(NoMatchData::new(Vec::new(),
364                                                                  Vec::new(),
365                                                                  Vec::new(),
366                                                                  None,
367                                                                  mode)));
368             }
369         }
370
371         debug!("ProbeContext: steps for self_ty={:?} are {:?}",
372                self_ty,
373                steps);
374
375
376         // this creates one big transaction so that all type variables etc
377         // that we create during the probe process are removed later
378         self.probe(|_| {
379             let mut probe_cx = ProbeContext::new(
380                 self, span, mode, method_name, return_type, orig_values,
381                 steps.steps, is_suggestion,
382             );
383
384             probe_cx.assemble_inherent_candidates();
385             match scope {
386                 ProbeScope::TraitsInScope =>
387                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)?,
388                 ProbeScope::AllTraits =>
389                     probe_cx.assemble_extension_candidates_for_all_traits()?,
390             };
391             op(probe_cx)
392         })
393     }
394 }
395
396 pub fn provide(providers: &mut ty::query::Providers<'_>) {
397     providers.method_autoderef_steps = method_autoderef_steps;
398 }
399
400 fn method_autoderef_steps<'tcx>(
401     tcx: TyCtxt<'tcx>,
402     goal: CanonicalTyGoal<'tcx>,
403 ) -> MethodAutoderefStepsResult<'tcx> {
404     debug!("method_autoderef_steps({:?})", goal);
405
406     tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
407         let ParamEnvAnd { param_env, value: self_ty } = goal;
408
409         let mut autoderef = Autoderef::new(infcx, param_env, hir::DUMMY_HIR_ID, DUMMY_SP, self_ty)
410             .include_raw_pointers()
411             .silence_errors();
412         let mut reached_raw_pointer = false;
413         let mut steps: Vec<_> = autoderef.by_ref()
414             .map(|(ty, d)| {
415                 let step = CandidateStep {
416                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
417                         inference_vars.clone(), ty),
418                     autoderefs: d,
419                     from_unsafe_deref: reached_raw_pointer,
420                     unsize: false,
421                 };
422                 if let ty::RawPtr(_) = ty.sty {
423                     // all the subsequent steps will be from_unsafe_deref
424                     reached_raw_pointer = true;
425                 }
426                 step
427             })
428             .collect();
429
430         let final_ty = autoderef.maybe_ambiguous_final_ty();
431         let opt_bad_ty = match final_ty.sty {
432             ty::Infer(ty::TyVar(_)) |
433             ty::Error => {
434                 Some(MethodAutoderefBadTy {
435                     reached_raw_pointer,
436                     ty: infcx.make_query_response_ignoring_pending_obligations(
437                         inference_vars, final_ty)
438                 })
439             }
440             ty::Array(elem_ty, _) => {
441                 let dereferences = steps.len() - 1;
442
443                 steps.push(CandidateStep {
444                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
445                         inference_vars, infcx.tcx.mk_slice(elem_ty)),
446                     autoderefs: dereferences,
447                     // this could be from an unsafe deref if we had
448                     // a *mut/const [T; N]
449                     from_unsafe_deref: reached_raw_pointer,
450                     unsize: true,
451                 });
452
453                 None
454             }
455             _ => None
456         };
457
458         debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
459
460         MethodAutoderefStepsResult {
461             steps: Lrc::new(steps),
462             opt_bad_ty: opt_bad_ty.map(Lrc::new),
463             reached_recursion_limit: autoderef.reached_recursion_limit()
464         }
465     })
466 }
467
468 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
469     fn new(
470         fcx: &'a FnCtxt<'a, 'tcx>,
471         span: Span,
472         mode: Mode,
473         method_name: Option<ast::Ident>,
474         return_type: Option<Ty<'tcx>>,
475         orig_steps_var_values: OriginalQueryValues<'tcx>,
476         steps: Lrc<Vec<CandidateStep<'tcx>>>,
477         is_suggestion: IsSuggestion,
478     ) -> ProbeContext<'a, 'tcx> {
479         ProbeContext {
480             fcx,
481             span,
482             mode,
483             method_name,
484             return_type,
485             inherent_candidates: Vec::new(),
486             extension_candidates: Vec::new(),
487             impl_dups: FxHashSet::default(),
488             orig_steps_var_values,
489             steps,
490             static_candidates: Vec::new(),
491             allow_similar_names: false,
492             private_candidate: None,
493             unsatisfied_predicates: Vec::new(),
494             is_suggestion,
495         }
496     }
497
498     fn reset(&mut self) {
499         self.inherent_candidates.clear();
500         self.extension_candidates.clear();
501         self.impl_dups.clear();
502         self.static_candidates.clear();
503         self.private_candidate = None;
504     }
505
506     ///////////////////////////////////////////////////////////////////////////
507     // CANDIDATE ASSEMBLY
508
509     fn push_candidate(&mut self,
510                       candidate: Candidate<'tcx>,
511                       is_inherent: bool)
512     {
513         let is_accessible = if let Some(name) = self.method_name {
514             let item = candidate.item;
515             let def_scope =
516                 self.tcx.adjust_ident_and_get_scope(name, item.container.id(), self.body_id).1;
517             item.vis.is_accessible_from(def_scope, self.tcx)
518         } else {
519             true
520         };
521         if is_accessible {
522             if is_inherent {
523                 self.inherent_candidates.push(candidate);
524             } else {
525                 self.extension_candidates.push(candidate);
526             }
527         } else if self.private_candidate.is_none() {
528             self.private_candidate =
529                 Some((candidate.item.def_kind(), candidate.item.def_id));
530         }
531     }
532
533     fn assemble_inherent_candidates(&mut self) {
534         let steps = self.steps.clone();
535         for step in steps.iter() {
536             self.assemble_probe(&step.self_ty);
537         }
538     }
539
540     fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
541         debug!("assemble_probe: self_ty={:?}", self_ty);
542         let lang_items = self.tcx.lang_items();
543
544         match self_ty.value.value.sty {
545             ty::Dynamic(ref data, ..) => {
546                 if let Some(p) = data.principal() {
547                     // Subtle: we can't use `instantiate_query_response` here: using it will
548                     // commit to all of the type equalities assumed by inference going through
549                     // autoderef (see the `method-probe-no-guessing` test).
550                     //
551                     // However, in this code, it is OK if we end up with an object type that is
552                     // "more general" than the object type that we are evaluating. For *every*
553                     // object type `MY_OBJECT`, a function call that goes through a trait-ref
554                     // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
555                     // `ObjectCandidate`, and it should be discoverable "exactly" through one
556                     // of the iterations in the autoderef loop, so there is no problem with it
557                     // being discoverable in another one of these iterations.
558                     //
559                     // Using `instantiate_canonical_with_fresh_inference_vars` on our
560                     // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
561                     // `CanonicalVarValues` will exactly give us such a generalization - it
562                     // will still match the original object type, but it won't pollute our
563                     // type variables in any form, so just do that!
564                     let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
565                         self.fcx.instantiate_canonical_with_fresh_inference_vars(
566                             self.span, &self_ty);
567
568                     self.assemble_inherent_candidates_from_object(generalized_self_ty);
569                     self.assemble_inherent_impl_candidates_for_type(p.def_id());
570                 }
571             }
572             ty::Adt(def, _) => {
573                 self.assemble_inherent_impl_candidates_for_type(def.did);
574             }
575             ty::Foreign(did) => {
576                 self.assemble_inherent_impl_candidates_for_type(did);
577             }
578             ty::Param(p) => {
579                 self.assemble_inherent_candidates_from_param(p);
580             }
581             ty::Char => {
582                 let lang_def_id = lang_items.char_impl();
583                 self.assemble_inherent_impl_for_primitive(lang_def_id);
584             }
585             ty::Str => {
586                 let lang_def_id = lang_items.str_impl();
587                 self.assemble_inherent_impl_for_primitive(lang_def_id);
588
589                 let lang_def_id = lang_items.str_alloc_impl();
590                 self.assemble_inherent_impl_for_primitive(lang_def_id);
591             }
592             ty::Slice(_) => {
593                 let lang_def_id = lang_items.slice_impl();
594                 self.assemble_inherent_impl_for_primitive(lang_def_id);
595
596                 let lang_def_id = lang_items.slice_u8_impl();
597                 self.assemble_inherent_impl_for_primitive(lang_def_id);
598
599                 let lang_def_id = lang_items.slice_alloc_impl();
600                 self.assemble_inherent_impl_for_primitive(lang_def_id);
601
602                 let lang_def_id = lang_items.slice_u8_alloc_impl();
603                 self.assemble_inherent_impl_for_primitive(lang_def_id);
604             }
605             ty::RawPtr(ty::TypeAndMut { ty: _, mutbl: hir::MutImmutable }) => {
606                 let lang_def_id = lang_items.const_ptr_impl();
607                 self.assemble_inherent_impl_for_primitive(lang_def_id);
608             }
609             ty::RawPtr(ty::TypeAndMut { ty: _, mutbl: hir::MutMutable }) => {
610                 let lang_def_id = lang_items.mut_ptr_impl();
611                 self.assemble_inherent_impl_for_primitive(lang_def_id);
612             }
613             ty::Int(ast::IntTy::I8) => {
614                 let lang_def_id = lang_items.i8_impl();
615                 self.assemble_inherent_impl_for_primitive(lang_def_id);
616             }
617             ty::Int(ast::IntTy::I16) => {
618                 let lang_def_id = lang_items.i16_impl();
619                 self.assemble_inherent_impl_for_primitive(lang_def_id);
620             }
621             ty::Int(ast::IntTy::I32) => {
622                 let lang_def_id = lang_items.i32_impl();
623                 self.assemble_inherent_impl_for_primitive(lang_def_id);
624             }
625             ty::Int(ast::IntTy::I64) => {
626                 let lang_def_id = lang_items.i64_impl();
627                 self.assemble_inherent_impl_for_primitive(lang_def_id);
628             }
629             ty::Int(ast::IntTy::I128) => {
630                 let lang_def_id = lang_items.i128_impl();
631                 self.assemble_inherent_impl_for_primitive(lang_def_id);
632             }
633             ty::Int(ast::IntTy::Isize) => {
634                 let lang_def_id = lang_items.isize_impl();
635                 self.assemble_inherent_impl_for_primitive(lang_def_id);
636             }
637             ty::Uint(ast::UintTy::U8) => {
638                 let lang_def_id = lang_items.u8_impl();
639                 self.assemble_inherent_impl_for_primitive(lang_def_id);
640             }
641             ty::Uint(ast::UintTy::U16) => {
642                 let lang_def_id = lang_items.u16_impl();
643                 self.assemble_inherent_impl_for_primitive(lang_def_id);
644             }
645             ty::Uint(ast::UintTy::U32) => {
646                 let lang_def_id = lang_items.u32_impl();
647                 self.assemble_inherent_impl_for_primitive(lang_def_id);
648             }
649             ty::Uint(ast::UintTy::U64) => {
650                 let lang_def_id = lang_items.u64_impl();
651                 self.assemble_inherent_impl_for_primitive(lang_def_id);
652             }
653             ty::Uint(ast::UintTy::U128) => {
654                 let lang_def_id = lang_items.u128_impl();
655                 self.assemble_inherent_impl_for_primitive(lang_def_id);
656             }
657             ty::Uint(ast::UintTy::Usize) => {
658                 let lang_def_id = lang_items.usize_impl();
659                 self.assemble_inherent_impl_for_primitive(lang_def_id);
660             }
661             ty::Float(ast::FloatTy::F32) => {
662                 let lang_def_id = lang_items.f32_impl();
663                 self.assemble_inherent_impl_for_primitive(lang_def_id);
664
665                 let lang_def_id = lang_items.f32_runtime_impl();
666                 self.assemble_inherent_impl_for_primitive(lang_def_id);
667             }
668             ty::Float(ast::FloatTy::F64) => {
669                 let lang_def_id = lang_items.f64_impl();
670                 self.assemble_inherent_impl_for_primitive(lang_def_id);
671
672                 let lang_def_id = lang_items.f64_runtime_impl();
673                 self.assemble_inherent_impl_for_primitive(lang_def_id);
674             }
675             _ => {}
676         }
677     }
678
679     fn assemble_inherent_impl_for_primitive(&mut self, lang_def_id: Option<DefId>) {
680         if let Some(impl_def_id) = lang_def_id {
681             self.assemble_inherent_impl_probe(impl_def_id);
682         }
683     }
684
685     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
686         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
687         for &impl_def_id in impl_def_ids.iter() {
688             self.assemble_inherent_impl_probe(impl_def_id);
689         }
690     }
691
692     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
693         if !self.impl_dups.insert(impl_def_id) {
694             return; // already visited
695         }
696
697         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
698
699         for item in self.impl_or_trait_item(impl_def_id) {
700             if !self.has_applicable_self(&item) {
701                 // No receiver declared. Not a candidate.
702                 self.record_static_candidate(ImplSource(impl_def_id));
703                 continue
704             }
705
706             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
707             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
708
709             // Determine the receiver type that the method itself expects.
710             let xform_tys = self.xform_self_ty(&item, impl_ty, impl_substs);
711
712             // We can't use normalize_associated_types_in as it will pollute the
713             // fcx's fulfillment context after this probe is over.
714             let cause = traits::ObligationCause::misc(self.span, self.body_id);
715             let selcx = &mut traits::SelectionContext::new(self.fcx);
716             let traits::Normalized { value: (xform_self_ty, xform_ret_ty), obligations } =
717                 traits::normalize(selcx, self.param_env, cause, &xform_tys);
718             debug!("assemble_inherent_impl_probe: xform_self_ty = {:?}/{:?}",
719                    xform_self_ty, xform_ret_ty);
720
721             self.push_candidate(Candidate {
722                 xform_self_ty, xform_ret_ty, item,
723                 kind: InherentImplCandidate(impl_substs, obligations),
724                 import_ids: smallvec![]
725             }, true);
726         }
727     }
728
729     fn assemble_inherent_candidates_from_object(&mut self,
730                                                 self_ty: Ty<'tcx>) {
731         debug!("assemble_inherent_candidates_from_object(self_ty={:?})",
732                self_ty);
733
734         let principal = match self_ty.sty {
735             ty::Dynamic(ref data, ..) => Some(data),
736             _ => None
737         }.and_then(|data| data.principal()).unwrap_or_else(|| {
738             span_bug!(self.span, "non-object {:?} in assemble_inherent_candidates_from_object",
739                       self_ty)
740         });
741
742         // It is illegal to invoke a method on a trait instance that
743         // refers to the `Self` type. An error will be reported by
744         // `enforce_object_limitations()` if the method refers to the
745         // `Self` type anywhere other than the receiver. Here, we use
746         // a substitution that replaces `Self` with the object type
747         // itself. Hence, a `&self` method will wind up with an
748         // argument type like `&Trait`.
749         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
750         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
751             let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
752
753             let (xform_self_ty, xform_ret_ty) =
754                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
755             this.push_candidate(Candidate {
756                 xform_self_ty, xform_ret_ty, item,
757                 kind: ObjectCandidate,
758                 import_ids: smallvec![]
759             }, true);
760         });
761     }
762
763     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
764         // FIXME: do we want to commit to this behavior for param bounds?
765
766         let bounds = self.param_env
767             .caller_bounds
768             .iter()
769             .filter_map(|predicate| {
770                 match *predicate {
771                     ty::Predicate::Trait(ref trait_predicate) => {
772                         match trait_predicate.skip_binder().trait_ref.self_ty().sty {
773                             ty::Param(ref p) if *p == param_ty => {
774                                 Some(trait_predicate.to_poly_trait_ref())
775                             }
776                             _ => None,
777                         }
778                     }
779                     ty::Predicate::Subtype(..) |
780                     ty::Predicate::Projection(..) |
781                     ty::Predicate::RegionOutlives(..) |
782                     ty::Predicate::WellFormed(..) |
783                     ty::Predicate::ObjectSafe(..) |
784                     ty::Predicate::ClosureKind(..) |
785                     ty::Predicate::TypeOutlives(..) |
786                     ty::Predicate::ConstEvaluatable(..) => None,
787                 }
788             });
789
790         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
791             let trait_ref = this.erase_late_bound_regions(&poly_trait_ref);
792
793             let (xform_self_ty, xform_ret_ty) =
794                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
795
796             // Because this trait derives from a where-clause, it
797             // should not contain any inference variables or other
798             // artifacts. This means it is safe to put into the
799             // `WhereClauseCandidate` and (eventually) into the
800             // `WhereClausePick`.
801             assert!(!trait_ref.substs.needs_infer());
802
803             this.push_candidate(Candidate {
804                 xform_self_ty, xform_ret_ty, item,
805                 kind: WhereClauseCandidate(poly_trait_ref),
806                 import_ids: smallvec![]
807             }, true);
808         });
809     }
810
811     // Do a search through a list of bounds, using a callback to actually
812     // create the candidates.
813     fn elaborate_bounds<F>(
814         &mut self,
815         bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
816         mut mk_cand: F,
817     ) where
818         F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
819     {
820         let tcx = self.tcx;
821         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
822             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
823             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
824                 if !self.has_applicable_self(&item) {
825                     self.record_static_candidate(TraitSource(bound_trait_ref.def_id()));
826                 } else {
827                     mk_cand(self, bound_trait_ref, item);
828                 }
829             }
830         }
831     }
832
833     fn assemble_extension_candidates_for_traits_in_scope(&mut self,
834                                                          expr_hir_id: hir::HirId)
835                                                          -> Result<(), MethodError<'tcx>> {
836         if expr_hir_id == hir::DUMMY_HIR_ID {
837             return Ok(())
838         }
839         let mut duplicates = FxHashSet::default();
840         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
841         if let Some(applicable_traits) = opt_applicable_traits {
842             for trait_candidate in applicable_traits.iter() {
843                 let trait_did = trait_candidate.def_id;
844                 if duplicates.insert(trait_did) {
845                     let import_ids = trait_candidate.import_ids.iter().map(|node_id|
846                         self.fcx.tcx.hir().node_to_hir_id(*node_id)).collect();
847                     let result = self.assemble_extension_candidates_for_trait(import_ids,
848                                                                               trait_did);
849                     result?;
850                 }
851             }
852         }
853         Ok(())
854     }
855
856     fn assemble_extension_candidates_for_all_traits(&mut self) -> Result<(), MethodError<'tcx>> {
857         let mut duplicates = FxHashSet::default();
858         for trait_info in suggest::all_traits(self.tcx) {
859             if duplicates.insert(trait_info.def_id) {
860                 self.assemble_extension_candidates_for_trait(smallvec![], trait_info.def_id)?;
861             }
862         }
863         Ok(())
864     }
865
866     pub fn matches_return_type(&self,
867                                method: &ty::AssocItem,
868                                self_ty: Option<Ty<'tcx>>,
869                                expected: Ty<'tcx>) -> bool {
870         match method.kind {
871             ty::AssocKind::Method => {
872                 let fty = self.tcx.fn_sig(method.def_id);
873                 self.probe(|_| {
874                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
875                     let fty = fty.subst(self.tcx, substs);
876                     let (fty, _) = self.replace_bound_vars_with_fresh_vars(
877                         self.span,
878                         infer::FnCall,
879                         &fty
880                     );
881
882                     if let Some(self_ty) = self_ty {
883                         if self.at(&ObligationCause::dummy(), self.param_env)
884                                .sup(fty.inputs()[0], self_ty)
885                                .is_err()
886                         {
887                             return false
888                         }
889                     }
890                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
891                 })
892             }
893             _ => false,
894         }
895     }
896
897     fn assemble_extension_candidates_for_trait(&mut self,
898                                                import_ids: SmallVec<[hir::HirId; 1]>,
899                                                trait_def_id: DefId)
900                                                -> Result<(), MethodError<'tcx>> {
901         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})",
902                trait_def_id);
903         let trait_substs = self.fresh_item_substs(trait_def_id);
904         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
905
906         if self.tcx.is_trait_alias(trait_def_id) {
907             // For trait aliases, assume all super-traits are relevant.
908             let bounds = iter::once(trait_ref.to_poly_trait_ref());
909             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
910                 let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
911
912                 let (xform_self_ty, xform_ret_ty) =
913                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
914                 this.push_candidate(Candidate {
915                     xform_self_ty, xform_ret_ty, item, import_ids: import_ids.clone(),
916                     kind: TraitCandidate(new_trait_ref),
917                 }, true);
918             });
919         } else {
920             debug_assert!(self.tcx.is_trait(trait_def_id));
921             for item in self.impl_or_trait_item(trait_def_id) {
922                 // Check whether `trait_def_id` defines a method with suitable name.
923                 if !self.has_applicable_self(&item) {
924                     debug!("method has inapplicable self");
925                     self.record_static_candidate(TraitSource(trait_def_id));
926                     continue;
927                 }
928
929                 let (xform_self_ty, xform_ret_ty) =
930                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
931                 self.push_candidate(Candidate {
932                     xform_self_ty, xform_ret_ty, item, import_ids: import_ids.clone(),
933                     kind: TraitCandidate(trait_ref),
934                 }, false);
935             }
936         }
937         Ok(())
938     }
939
940     fn candidate_method_names(&self) -> Vec<ast::Ident> {
941         let mut set = FxHashSet::default();
942         let mut names: Vec<_> = self.inherent_candidates
943             .iter()
944             .chain(&self.extension_candidates)
945             .filter(|candidate| {
946                 if let Some(return_ty) = self.return_type {
947                     self.matches_return_type(&candidate.item, None, return_ty)
948                 } else {
949                     true
950                 }
951             })
952             .map(|candidate| candidate.item.ident)
953             .filter(|&name| set.insert(name))
954             .collect();
955
956         // Sort them by the name so we have a stable result.
957         names.sort_by_cached_key(|n| n.as_str());
958         names
959     }
960
961     ///////////////////////////////////////////////////////////////////////////
962     // THE ACTUAL SEARCH
963
964     fn pick(mut self) -> PickResult<'tcx> {
965         assert!(self.method_name.is_some());
966
967         if let Some(r) = self.pick_core() {
968             return r;
969         }
970
971         debug!("pick: actual search failed, assemble diagnotics");
972
973         let static_candidates = mem::replace(&mut self.static_candidates, vec![]);
974         let private_candidate = self.private_candidate.take();
975         let unsatisfied_predicates = mem::replace(&mut self.unsatisfied_predicates, vec![]);
976
977         // things failed, so lets look at all traits, for diagnostic purposes now:
978         self.reset();
979
980         let span = self.span;
981         let tcx = self.tcx;
982
983         self.assemble_extension_candidates_for_all_traits()?;
984
985         let out_of_scope_traits = match self.pick_core() {
986             Some(Ok(p)) => vec![p.item.container.id()],
987             //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
988             Some(Err(MethodError::Ambiguity(v))) => {
989                 v.into_iter()
990                     .map(|source| {
991                         match source {
992                             TraitSource(id) => id,
993                             ImplSource(impl_id) => {
994                                 match tcx.trait_id_of_impl(impl_id) {
995                                     Some(id) => id,
996                                     None => {
997                                         span_bug!(span,
998                                                   "found inherent method when looking at traits")
999                                     }
1000                                 }
1001                             }
1002                         }
1003                     })
1004                     .collect()
1005             }
1006             Some(Err(MethodError::NoMatch(NoMatchData { out_of_scope_traits: others, .. }))) => {
1007                 assert!(others.is_empty());
1008                 vec![]
1009             }
1010             _ => vec![],
1011         };
1012
1013         if let Some((kind, def_id)) = private_candidate {
1014             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1015         }
1016         let lev_candidate = self.probe_for_lev_candidate()?;
1017
1018         Err(MethodError::NoMatch(NoMatchData::new(static_candidates,
1019                                                   unsatisfied_predicates,
1020                                                   out_of_scope_traits,
1021                                                   lev_candidate,
1022                                                   self.mode)))
1023     }
1024
1025     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1026         let steps = self.steps.clone();
1027
1028         // find the first step that works
1029         steps
1030             .iter()
1031             .filter(|step| {
1032                 debug!("pick_core: step={:?}", step);
1033                 // skip types that are from a type error or that would require dereferencing
1034                 // a raw pointer
1035                 !step.self_ty.references_error() && !step.from_unsafe_deref
1036             }).flat_map(|step| {
1037                 let InferOk { value: self_ty, obligations: _ } =
1038                     self.fcx.probe_instantiate_query_response(
1039                         self.span, &self.orig_steps_var_values, &step.self_ty
1040                     ).unwrap_or_else(|_| {
1041                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1042                     });
1043                 self.pick_by_value_method(step, self_ty).or_else(|| {
1044                 self.pick_autorefd_method(step, self_ty, hir::MutImmutable).or_else(|| {
1045                 self.pick_autorefd_method(step, self_ty, hir::MutMutable)
1046             })})})
1047             .next()
1048     }
1049
1050     fn pick_by_value_method(
1051         &mut self,
1052         step: &CandidateStep<'tcx>,
1053         self_ty: Ty<'tcx>,
1054     ) -> Option<PickResult<'tcx>> {
1055         //! For each type `T` in the step list, this attempts to find a
1056         //! method where the (transformed) self type is exactly `T`. We
1057         //! do however do one transformation on the adjustment: if we
1058         //! are passing a region pointer in, we will potentially
1059         //! *reborrow* it to a shorter lifetime. This allows us to
1060         //! transparently pass `&mut` pointers, in particular, without
1061         //! consuming them for their entire lifetime.
1062
1063         if step.unsize {
1064             return None;
1065         }
1066
1067         self.pick_method(self_ty).map(|r| {
1068             r.map(|mut pick| {
1069                 pick.autoderefs = step.autoderefs;
1070
1071                 // Insert a `&*` or `&mut *` if this is a reference type:
1072                 if let ty::Ref(_, _, mutbl) = step.self_ty.value.value.sty {
1073                     pick.autoderefs += 1;
1074                     pick.autoref = Some(mutbl);
1075                 }
1076
1077                 pick
1078             })
1079         })
1080     }
1081
1082     fn pick_autorefd_method(
1083         &mut self,
1084         step: &CandidateStep<'tcx>,
1085         self_ty: Ty<'tcx>,
1086         mutbl: hir::Mutability,
1087     ) -> Option<PickResult<'tcx>> {
1088         let tcx = self.tcx;
1089
1090         // In general, during probing we erase regions. See
1091         // `impl_self_ty()` for an explanation.
1092         let region = tcx.lifetimes.re_erased;
1093
1094         let autoref_ty = tcx.mk_ref(region,
1095                                     ty::TypeAndMut {
1096                                         ty: self_ty, mutbl
1097                                     });
1098         self.pick_method(autoref_ty).map(|r| {
1099             r.map(|mut pick| {
1100                 pick.autoderefs = step.autoderefs;
1101                 pick.autoref = Some(mutbl);
1102                 pick.unsize = if step.unsize {
1103                     Some(self_ty)
1104                 } else {
1105                     None
1106                 };
1107                 pick
1108             })
1109         })
1110     }
1111
1112     fn pick_method(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1113         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1114
1115         let mut possibly_unsatisfied_predicates = Vec::new();
1116         let mut unstable_candidates = Vec::new();
1117
1118         for (kind, candidates) in &[
1119             ("inherent", &self.inherent_candidates),
1120             ("extension", &self.extension_candidates),
1121         ] {
1122             debug!("searching {} candidates", kind);
1123             let res = self.consider_candidates(
1124                 self_ty,
1125                 candidates.iter(),
1126                 &mut possibly_unsatisfied_predicates,
1127                 Some(&mut unstable_candidates),
1128             );
1129             if let Some(pick) = res {
1130                 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1131                     if let Ok(p) = &pick {
1132                         // Emit a lint if there are unstable candidates alongside the stable ones.
1133                         //
1134                         // We suppress warning if we're picking the method only because it is a
1135                         // suggestion.
1136                         self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1137                     }
1138                 }
1139                 return Some(pick);
1140             }
1141         }
1142
1143         debug!("searching unstable candidates");
1144         let res = self.consider_candidates(
1145             self_ty,
1146             unstable_candidates.into_iter().map(|(c, _)| c),
1147             &mut possibly_unsatisfied_predicates,
1148             None,
1149         );
1150         if res.is_none() {
1151             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1152         }
1153         res
1154     }
1155
1156     fn consider_candidates<'b, ProbesIter>(
1157         &self,
1158         self_ty: Ty<'tcx>,
1159         probes: ProbesIter,
1160         possibly_unsatisfied_predicates: &mut Vec<TraitRef<'tcx>>,
1161         unstable_candidates: Option<&mut Vec<(&'b Candidate<'tcx>, Symbol)>>,
1162     ) -> Option<PickResult<'tcx>>
1163     where
1164         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1165     {
1166         let mut applicable_candidates: Vec<_> = probes.clone()
1167             .map(|probe| {
1168                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1169             })
1170             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1171             .collect();
1172
1173         debug!("applicable_candidates: {:?}", applicable_candidates);
1174
1175         if applicable_candidates.len() > 1 {
1176             if let Some(pick) = self.collapse_candidates_to_trait_pick(&applicable_candidates[..]) {
1177                 return Some(Ok(pick));
1178             }
1179         }
1180
1181         if let Some(uc) = unstable_candidates {
1182             applicable_candidates.retain(|&(p, _)| {
1183                 if let stability::EvalResult::Deny { feature, .. } =
1184                     self.tcx.eval_stability(p.item.def_id, None, self.span)
1185                 {
1186                     uc.push((p, feature));
1187                     return false;
1188                 }
1189                 true
1190             });
1191         }
1192
1193         if applicable_candidates.len() > 1 {
1194             let sources = probes
1195                 .map(|p| self.candidate_source(p, self_ty))
1196                 .collect();
1197             return Some(Err(MethodError::Ambiguity(sources)));
1198         }
1199
1200         applicable_candidates.pop().map(|(probe, status)| {
1201             if status == ProbeResult::Match {
1202                 Ok(probe.to_unadjusted_pick())
1203             } else {
1204                 Err(MethodError::BadReturnType)
1205             }
1206         })
1207     }
1208
1209     fn emit_unstable_name_collision_hint(
1210         &self,
1211         stable_pick: &Pick<'_>,
1212         unstable_candidates: &[(&Candidate<'tcx>, Symbol)],
1213     ) {
1214         let mut diag = self.tcx.struct_span_lint_hir(
1215             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1216             self.fcx.body_id,
1217             self.span,
1218             "a method with this name may be added to the standard library in the future",
1219         );
1220
1221         // FIXME: This should be a `span_suggestion` instead of `help`
1222         // However `self.span` only
1223         // highlights the method name, so we can't use it. Also consider reusing the code from
1224         // `report_method_error()`.
1225         diag.help(&format!(
1226             "call with fully qualified syntax `{}(...)` to keep using the current method",
1227             self.tcx.def_path_str(stable_pick.item.def_id),
1228         ));
1229
1230         if nightly_options::is_nightly_build() {
1231             for (candidate, feature) in unstable_candidates {
1232                 diag.help(&format!(
1233                     "add #![feature({})] to the crate attributes to enable `{}`",
1234                     feature,
1235                     self.tcx.def_path_str(candidate.item.def_id),
1236                 ));
1237             }
1238         }
1239
1240         diag.emit();
1241     }
1242
1243     fn select_trait_candidate(&self, trait_ref: ty::TraitRef<'tcx>)
1244                               -> traits::SelectionResult<'tcx, traits::Selection<'tcx>>
1245     {
1246         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1247         let predicate =
1248             trait_ref.to_poly_trait_ref().to_poly_trait_predicate();
1249         let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1250         traits::SelectionContext::new(self).select(&obligation)
1251     }
1252
1253     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>)
1254                         -> CandidateSource
1255     {
1256         match candidate.kind {
1257             InherentImplCandidate(..) => ImplSource(candidate.item.container.id()),
1258             ObjectCandidate |
1259             WhereClauseCandidate(_) => TraitSource(candidate.item.container.id()),
1260             TraitCandidate(trait_ref) => self.probe(|_| {
1261                 let _ = self.at(&ObligationCause::dummy(), self.param_env)
1262                     .sup(candidate.xform_self_ty, self_ty);
1263                 match self.select_trait_candidate(trait_ref) {
1264                     Ok(Some(traits::Vtable::VtableImpl(ref impl_data))) => {
1265                         // If only a single impl matches, make the error message point
1266                         // to that impl.
1267                         ImplSource(impl_data.impl_def_id)
1268                     }
1269                     _ => {
1270                         TraitSource(candidate.item.container.id())
1271                     }
1272                 }
1273             })
1274         }
1275     }
1276
1277     fn consider_probe(&self,
1278                       self_ty: Ty<'tcx>,
1279                       probe: &Candidate<'tcx>,
1280                       possibly_unsatisfied_predicates: &mut Vec<TraitRef<'tcx>>)
1281                       -> ProbeResult {
1282         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1283
1284         self.probe(|_| {
1285             // First check that the self type can be related.
1286             let sub_obligations = match self.at(&ObligationCause::dummy(), self.param_env)
1287                                             .sup(probe.xform_self_ty, self_ty) {
1288                 Ok(InferOk { obligations, value: () }) => obligations,
1289                 Err(_) => {
1290                     debug!("--> cannot relate self-types");
1291                     return ProbeResult::NoMatch;
1292                 }
1293             };
1294
1295             let mut result = ProbeResult::Match;
1296             let selcx = &mut traits::SelectionContext::new(self);
1297             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1298
1299             // If so, impls may carry other conditions (e.g., where
1300             // clauses) that must be considered. Make sure that those
1301             // match as well (or at least may match, sometimes we
1302             // don't have enough information to fully evaluate).
1303             let candidate_obligations : Vec<_> = match probe.kind {
1304                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1305                     // Check whether the impl imposes obligations we have to worry about.
1306                     let impl_def_id = probe.item.container.id();
1307                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1308                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1309                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1310                         traits::normalize(selcx, self.param_env, cause.clone(), &impl_bounds);
1311
1312                     // Convert the bounds into obligations.
1313                     let impl_obligations = traits::predicates_for_generics(
1314                         cause, self.param_env, &impl_bounds);
1315
1316                     debug!("impl_obligations={:?}", impl_obligations);
1317                     impl_obligations.into_iter()
1318                         .chain(norm_obligations.into_iter())
1319                         .chain(ref_obligations.iter().cloned())
1320                         .collect()
1321                 }
1322
1323                 ObjectCandidate |
1324                 WhereClauseCandidate(..) => {
1325                     // These have no additional conditions to check.
1326                     vec![]
1327                 }
1328
1329                 TraitCandidate(trait_ref) => {
1330                     let predicate = trait_ref.to_predicate();
1331                     let obligation =
1332                         traits::Obligation::new(cause, self.param_env, predicate);
1333                     if !self.predicate_may_hold(&obligation) {
1334                         if self.probe(|_| self.select_trait_candidate(trait_ref).is_err()) {
1335                             // This candidate's primary obligation doesn't even
1336                             // select - don't bother registering anything in
1337                             // `potentially_unsatisfied_predicates`.
1338                             return ProbeResult::NoMatch;
1339                         } else {
1340                             // Some nested subobligation of this predicate
1341                             // failed.
1342                             //
1343                             // FIXME: try to find the exact nested subobligation
1344                             // and point at it rather than reporting the entire
1345                             // trait-ref?
1346                             result = ProbeResult::NoMatch;
1347                             let trait_ref = self.resolve_vars_if_possible(&trait_ref);
1348                             possibly_unsatisfied_predicates.push(trait_ref);
1349                         }
1350                     }
1351                     vec![]
1352                 }
1353             };
1354
1355             debug!("consider_probe - candidate_obligations={:?} sub_obligations={:?}",
1356                    candidate_obligations, sub_obligations);
1357
1358             // Evaluate those obligations to see if they might possibly hold.
1359             for o in candidate_obligations.into_iter().chain(sub_obligations) {
1360                 let o = self.resolve_vars_if_possible(&o);
1361                 if !self.predicate_may_hold(&o) {
1362                     result = ProbeResult::NoMatch;
1363                     if let &ty::Predicate::Trait(ref pred) = &o.predicate {
1364                         possibly_unsatisfied_predicates.push(pred.skip_binder().trait_ref);
1365                     }
1366                 }
1367             }
1368
1369             if let ProbeResult::Match = result {
1370                 if let (Some(return_ty), Some(xform_ret_ty)) =
1371                     (self.return_type, probe.xform_ret_ty)
1372                 {
1373                     let xform_ret_ty = self.resolve_vars_if_possible(&xform_ret_ty);
1374                     debug!("comparing return_ty {:?} with xform ret ty {:?}",
1375                            return_ty,
1376                            probe.xform_ret_ty);
1377                     if self.at(&ObligationCause::dummy(), self.param_env)
1378                         .sup(return_ty, xform_ret_ty)
1379                         .is_err()
1380                     {
1381                         return ProbeResult::BadReturnType;
1382                     }
1383                 }
1384             }
1385
1386             result
1387         })
1388     }
1389
1390     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1391     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1392     /// external interface of the method can be determined from the trait, it's ok not to decide.
1393     /// We can basically just collapse all of the probes for various impls into one where-clause
1394     /// probe. This will result in a pending obligation so when more type-info is available we can
1395     /// make the final decision.
1396     ///
1397     /// Example (`src/test/run-pass/method-two-trait-defer-resolution-1.rs`):
1398     ///
1399     /// ```
1400     /// trait Foo { ... }
1401     /// impl Foo for Vec<int> { ... }
1402     /// impl Foo for Vec<usize> { ... }
1403     /// ```
1404     ///
1405     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1406     /// use, so it's ok to just commit to "using the method from the trait Foo".
1407     fn collapse_candidates_to_trait_pick(&self, probes: &[(&Candidate<'tcx>, ProbeResult)])
1408                                          -> Option<Pick<'tcx>>
1409     {
1410         // Do all probes correspond to the same trait?
1411         let container = probes[0].0.item.container;
1412         if let ty::ImplContainer(_) = container {
1413             return None
1414         }
1415         if probes[1..].iter().any(|&(p, _)| p.item.container != container) {
1416             return None;
1417         }
1418
1419         // FIXME: check the return type here somehow.
1420         // If so, just use this trait and call it a day.
1421         Some(Pick {
1422             item: probes[0].0.item.clone(),
1423             kind: TraitPick,
1424             import_ids: probes[0].0.import_ids.clone(),
1425             autoderefs: 0,
1426             autoref: None,
1427             unsize: None,
1428         })
1429     }
1430
1431     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1432     /// candidate method where the method name may have been misspelt. Similarly to other
1433     /// Levenshtein based suggestions, we provide at most one such suggestion.
1434     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1435         debug!("Probing for method names similar to {:?}",
1436                self.method_name);
1437
1438         let steps = self.steps.clone();
1439         self.probe(|_| {
1440             let mut pcx = ProbeContext::new(self.fcx, self.span, self.mode, self.method_name,
1441                                             self.return_type,
1442                                             self.orig_steps_var_values.clone(),
1443                                             steps, IsSuggestion(true));
1444             pcx.allow_similar_names = true;
1445             pcx.assemble_inherent_candidates();
1446             pcx.assemble_extension_candidates_for_traits_in_scope(hir::DUMMY_HIR_ID)?;
1447
1448             let method_names = pcx.candidate_method_names();
1449             pcx.allow_similar_names = false;
1450             let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1451                 .iter()
1452                 .filter_map(|&method_name| {
1453                     pcx.reset();
1454                     pcx.method_name = Some(method_name);
1455                     pcx.assemble_inherent_candidates();
1456                     pcx.assemble_extension_candidates_for_traits_in_scope(hir::DUMMY_HIR_ID)
1457                         .ok().map_or(None, |_| {
1458                             pcx.pick_core()
1459                                 .and_then(|pick| pick.ok())
1460                                 .and_then(|pick| Some(pick.item))
1461                         })
1462                 })
1463                .collect();
1464
1465             if applicable_close_candidates.is_empty() {
1466                 Ok(None)
1467             } else {
1468                 let best_name = {
1469                     let names = applicable_close_candidates.iter().map(|cand| &cand.ident.name);
1470                     find_best_match_for_name(names,
1471                                              &self.method_name.unwrap().as_str(),
1472                                              None)
1473                 }.unwrap();
1474                 Ok(applicable_close_candidates
1475                    .into_iter()
1476                    .find(|method| method.ident.name == best_name))
1477             }
1478         })
1479     }
1480
1481     ///////////////////////////////////////////////////////////////////////////
1482     // MISCELLANY
1483     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1484         // "Fast track" -- check for usage of sugar when in method call
1485         // mode.
1486         //
1487         // In Path mode (i.e., resolving a value like `T::next`), consider any
1488         // associated value (i.e., methods, constants) but not types.
1489         match self.mode {
1490             Mode::MethodCall => item.method_has_self_argument,
1491             Mode::Path => match item.kind {
1492                 ty::AssocKind::Existential |
1493                 ty::AssocKind::Type => false,
1494                 ty::AssocKind::Method | ty::AssocKind::Const => true
1495             },
1496         }
1497         // FIXME -- check for types that deref to `Self`,
1498         // like `Rc<Self>` and so on.
1499         //
1500         // Note also that the current code will break if this type
1501         // includes any of the type parameters defined on the method
1502         // -- but this could be overcome.
1503     }
1504
1505     fn record_static_candidate(&mut self, source: CandidateSource) {
1506         self.static_candidates.push(source);
1507     }
1508
1509     fn xform_self_ty(&self,
1510                      item: &ty::AssocItem,
1511                      impl_ty: Ty<'tcx>,
1512                      substs: SubstsRef<'tcx>)
1513                      -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1514         if item.kind == ty::AssocKind::Method && self.mode == Mode::MethodCall {
1515             let sig = self.xform_method_sig(item.def_id, substs);
1516             (sig.inputs()[0], Some(sig.output()))
1517         } else {
1518             (impl_ty, None)
1519         }
1520     }
1521
1522     fn xform_method_sig(&self,
1523                         method: DefId,
1524                         substs: SubstsRef<'tcx>)
1525                         -> ty::FnSig<'tcx>
1526     {
1527         let fn_sig = self.tcx.fn_sig(method);
1528         debug!("xform_self_ty(fn_sig={:?}, substs={:?})",
1529                fn_sig,
1530                substs);
1531
1532         assert!(!substs.has_escaping_bound_vars());
1533
1534         // It is possible for type parameters or early-bound lifetimes
1535         // to appear in the signature of `self`. The substitutions we
1536         // are given do not include type/lifetime parameters for the
1537         // method yet. So create fresh variables here for those too,
1538         // if there are any.
1539         let generics = self.tcx.generics_of(method);
1540         assert_eq!(substs.len(), generics.parent_count as usize);
1541
1542         // Erase any late-bound regions from the method and substitute
1543         // in the values from the substitution.
1544         let xform_fn_sig = self.erase_late_bound_regions(&fn_sig);
1545
1546         if generics.params.is_empty() {
1547             xform_fn_sig.subst(self.tcx, substs)
1548         } else {
1549             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1550                 let i = param.index as usize;
1551                 if i < substs.len() {
1552                     substs[i]
1553                 } else {
1554                     match param.kind {
1555                         GenericParamDefKind::Lifetime => {
1556                             // In general, during probe we erase regions. See
1557                             // `impl_self_ty()` for an explanation.
1558                             self.tcx.lifetimes.re_erased.into()
1559                         }
1560                         GenericParamDefKind::Type { .. }
1561                         | GenericParamDefKind::Const => {
1562                             self.var_for_def(self.span, param)
1563                         }
1564                     }
1565                 }
1566             });
1567             xform_fn_sig.subst(self.tcx, substs)
1568         }
1569     }
1570
1571     /// Gets the type of an impl and generate substitutions with placeholders.
1572     fn impl_ty_and_substs(&self, impl_def_id: DefId) -> (Ty<'tcx>, SubstsRef<'tcx>) {
1573         (self.tcx.type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1574     }
1575
1576     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1577         InternalSubsts::for_item(self.tcx, def_id, |param, _| {
1578             match param.kind {
1579                 GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1580                 GenericParamDefKind::Type { .. } => {
1581                     self.next_ty_var(TypeVariableOrigin {
1582                         kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1583                         span: self.tcx.def_span(def_id),
1584                     }).into()
1585                 }
1586                 GenericParamDefKind::Const { .. } => {
1587                     let span = self.tcx.def_span(def_id);
1588                     let origin = ConstVariableOrigin {
1589                         kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1590                         span,
1591                     };
1592                     self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1593                 }
1594             }
1595         })
1596     }
1597
1598     /// Replaces late-bound-regions bound by `value` with `'static` using
1599     /// `ty::erase_late_bound_regions`.
1600     ///
1601     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1602     /// method matching. It is reasonable during the probe phase because we don't consider region
1603     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1604     /// rather than creating fresh region variables. This is nice for two reasons:
1605     ///
1606     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1607     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1608     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1609     ///
1610     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1611     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1612     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1613     ///    region got replaced with the same variable, which requires a bit more coordination
1614     ///    and/or tracking the substitution and
1615     ///    so forth.
1616     fn erase_late_bound_regions<T>(&self, value: &ty::Binder<T>) -> T
1617         where T: TypeFoldable<'tcx>
1618     {
1619         self.tcx.erase_late_bound_regions(value)
1620     }
1621
1622     /// Finds the method with the appropriate name (or return type, as the case may be). If
1623     /// `allow_similar_names` is set, find methods with close-matching names.
1624     fn impl_or_trait_item(&self, def_id: DefId) -> Vec<ty::AssocItem> {
1625         if let Some(name) = self.method_name {
1626             if self.allow_similar_names {
1627                 let max_dist = max(name.as_str().len(), 3) / 3;
1628                 self.tcx.associated_items(def_id)
1629                     .filter(|x| {
1630                         let dist = lev_distance(&*name.as_str(), &x.ident.as_str());
1631                         Namespace::from(x.kind) == Namespace::Value && dist > 0
1632                             && dist <= max_dist
1633                     })
1634                     .collect()
1635             } else {
1636                 self.fcx
1637                     .associated_item(def_id, name, Namespace::Value)
1638                     .map_or(Vec::new(), |x| vec![x])
1639             }
1640         } else {
1641             self.tcx.associated_items(def_id).collect()
1642         }
1643     }
1644 }
1645
1646 impl<'tcx> Candidate<'tcx> {
1647     fn to_unadjusted_pick(&self) -> Pick<'tcx> {
1648         Pick {
1649             item: self.item.clone(),
1650             kind: match self.kind {
1651                 InherentImplCandidate(..) => InherentImplPick,
1652                 ObjectCandidate => ObjectPick,
1653                 TraitCandidate(_) => TraitPick,
1654                 WhereClauseCandidate(ref trait_ref) => {
1655                     // Only trait derived from where-clauses should
1656                     // appear here, so they should not contain any
1657                     // inference variables or other artifacts. This
1658                     // means they are safe to put into the
1659                     // `WhereClausePick`.
1660                     assert!(
1661                         !trait_ref.skip_binder().substs.needs_infer()
1662                             && !trait_ref.skip_binder().substs.has_placeholders()
1663                     );
1664
1665                     WhereClausePick(trait_ref.clone())
1666                 }
1667             },
1668             import_ids: self.import_ids.clone(),
1669             autoderefs: 0,
1670             autoref: None,
1671             unsize: None,
1672         }
1673     }
1674 }