]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/method/probe.rs
Run `rustfmt --file-lines ...` for changes from previous commits.
[rust.git] / src / librustc_typeck / check / method / probe.rs
1 use super::MethodError;
2 use super::NoMatchData;
3 use super::{CandidateSource, ImplSource, TraitSource};
4 use super::suggest;
5
6 use crate::check::autoderef::{self, Autoderef};
7 use crate::check::FnCtxt;
8 use crate::hir::def_id::DefId;
9 use crate::hir::def::DefKind;
10 use crate::namespace::Namespace;
11
12 use rustc_data_structures::sync::Lrc;
13 use rustc::hir;
14 use rustc::lint;
15 use rustc::session::config::nightly_options;
16 use rustc::ty::subst::{Subst, InternalSubsts, SubstsRef};
17 use rustc::traits::{self, ObligationCause};
18 use rustc::traits::query::{CanonicalTyGoal};
19 use rustc::traits::query::method_autoderef::{CandidateStep, MethodAutoderefStepsResult};
20 use rustc::traits::query::method_autoderef::{MethodAutoderefBadTy};
21 use rustc::ty::{self, ParamEnvAnd, Ty, TyCtxt, ToPolyTraitRef, ToPredicate, TraitRef, TypeFoldable};
22 use rustc::ty::GenericParamDefKind;
23 use rustc::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
24 use rustc::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
25 use rustc::util::nodemap::FxHashSet;
26 use rustc::infer::{self, InferOk};
27 use rustc::infer::canonical::{Canonical, QueryResponse};
28 use rustc::infer::canonical::{OriginalQueryValues};
29 use rustc::middle::stability;
30 use syntax::ast;
31 use syntax::util::lev_distance::{lev_distance, find_best_match_for_name};
32 use syntax_pos::{DUMMY_SP, Span, symbol::Symbol};
33 use std::iter;
34 use std::mem;
35 use std::ops::Deref;
36 use std::cmp::max;
37
38 use smallvec::{smallvec, SmallVec};
39
40 use self::CandidateKind::*;
41 pub use self::PickKind::*;
42
43 /// Boolean flag used to indicate if this search is for a suggestion
44 /// or not. If true, we can allow ambiguity and so forth.
45 #[derive(Clone, Copy)]
46 pub struct IsSuggestion(pub bool);
47
48 struct ProbeContext<'a, 'gcx: 'a + 'tcx, 'tcx: 'a> {
49     fcx: &'a FnCtxt<'a, 'gcx, 'tcx>,
50     span: Span,
51     mode: Mode,
52     method_name: Option<ast::Ident>,
53     return_type: Option<Ty<'tcx>>,
54
55     /// This is the OriginalQueryValues for the steps queries
56     /// that are answered in steps.
57     orig_steps_var_values: OriginalQueryValues<'tcx>,
58     steps: Lrc<Vec<CandidateStep<'gcx>>>,
59
60     inherent_candidates: Vec<Candidate<'tcx>>,
61     extension_candidates: Vec<Candidate<'tcx>>,
62     impl_dups: FxHashSet<DefId>,
63
64     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
65     /// used for error reporting
66     static_candidates: Vec<CandidateSource>,
67
68     /// When probing for names, include names that are close to the
69     /// requested name (by Levensthein distance)
70     allow_similar_names: bool,
71
72     /// Some(candidate) if there is a private candidate
73     private_candidate: Option<(DefKind, DefId)>,
74
75     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
76     /// for error reporting
77     unsatisfied_predicates: Vec<TraitRef<'tcx>>,
78
79     is_suggestion: IsSuggestion,
80 }
81
82 impl<'a, 'gcx, 'tcx> Deref for ProbeContext<'a, 'gcx, 'tcx> {
83     type Target = FnCtxt<'a, 'gcx, 'tcx>;
84     fn deref(&self) -> &Self::Target {
85         &self.fcx
86     }
87 }
88
89 #[derive(Debug)]
90 struct Candidate<'tcx> {
91     // Candidates are (I'm not quite sure, but they are mostly) basically
92     // some metadata on top of a `ty::AssocItem` (without substs).
93     //
94     // However, method probing wants to be able to evaluate the predicates
95     // for a function with the substs applied - for example, if a function
96     // has `where Self: Sized`, we don't want to consider it unless `Self`
97     // is actually `Sized`, and similarly, return-type suggestions want
98     // to consider the "actual" return type.
99     //
100     // The way this is handled is through `xform_self_ty`. It contains
101     // the receiver type of this candidate, but `xform_self_ty`,
102     // `xform_ret_ty` and `kind` (which contains the predicates) have the
103     // generic parameters of this candidate substituted with the *same set*
104     // of inference variables, which acts as some weird sort of "query".
105     //
106     // When we check out a candidate, we require `xform_self_ty` to be
107     // a subtype of the passed-in self-type, and this equates the type
108     // variables in the rest of the fields.
109     //
110     // For example, if we have this candidate:
111     // ```
112     //    trait Foo {
113     //        fn foo(&self) where Self: Sized;
114     //    }
115     // ```
116     //
117     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
118     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
119     // the receiver `&T`, we'll do the subtyping which will make `?X`
120     // get the right value, then when we evaluate the predicate we'll check
121     // if `T: Sized`.
122     xform_self_ty: Ty<'tcx>,
123     xform_ret_ty: Option<Ty<'tcx>>,
124     item: ty::AssocItem,
125     kind: CandidateKind<'tcx>,
126     import_ids: SmallVec<[hir::HirId; 1]>,
127 }
128
129 #[derive(Debug)]
130 enum CandidateKind<'tcx> {
131     InherentImplCandidate(SubstsRef<'tcx>,
132                           // Normalize obligations
133                           Vec<traits::PredicateObligation<'tcx>>),
134     ObjectCandidate,
135     TraitCandidate(ty::TraitRef<'tcx>),
136     WhereClauseCandidate(// Trait
137                          ty::PolyTraitRef<'tcx>),
138 }
139
140 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
141 enum ProbeResult {
142     NoMatch,
143     BadReturnType,
144     Match,
145 }
146
147 #[derive(Debug, PartialEq, Clone)]
148 pub struct Pick<'tcx> {
149     pub item: ty::AssocItem,
150     pub kind: PickKind<'tcx>,
151     pub import_ids: SmallVec<[hir::HirId; 1]>,
152
153     // Indicates that the source expression should be autoderef'd N times
154     //
155     // A = expr | *expr | **expr | ...
156     pub autoderefs: usize,
157
158     // Indicates that an autoref is applied after the optional autoderefs
159     //
160     // B = A | &A | &mut A
161     pub autoref: Option<hir::Mutability>,
162
163     // Indicates that the source expression should be "unsized" to a
164     // target type. This should probably eventually go away in favor
165     // of just coercing method receivers.
166     //
167     // C = B | unsize(B)
168     pub unsize: Option<Ty<'tcx>>,
169 }
170
171 #[derive(Clone, Debug, PartialEq, Eq)]
172 pub enum PickKind<'tcx> {
173     InherentImplPick,
174     ObjectPick,
175     TraitPick,
176     WhereClausePick(// Trait
177                     ty::PolyTraitRef<'tcx>),
178 }
179
180 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
181
182 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
183 pub enum Mode {
184     // An expression of the form `receiver.method_name(...)`.
185     // Autoderefs are performed on `receiver`, lookup is done based on the
186     // `self` argument  of the method, and static methods aren't considered.
187     MethodCall,
188     // An expression of the form `Type::item` or `<T>::item`.
189     // No autoderefs are performed, lookup is done based on the type each
190     // implementation is for, and static methods are included.
191     Path,
192 }
193
194 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
195 pub enum ProbeScope {
196     // Assemble candidates coming only from traits in scope.
197     TraitsInScope,
198
199     // Assemble candidates coming from all traits.
200     AllTraits,
201 }
202
203 impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
204     /// This is used to offer suggestions to users. It returns methods
205     /// that could have been called which have the desired return
206     /// type. Some effort is made to rule out methods that, if called,
207     /// would result in an error (basically, the same criteria we
208     /// would use to decide if a method is a plausible fit for
209     /// ambiguity purposes).
210     pub fn probe_for_return_type(&self,
211                                  span: Span,
212                                  mode: Mode,
213                                  return_type: Ty<'tcx>,
214                                  self_ty: Ty<'tcx>,
215                                  scope_expr_id: hir::HirId)
216                                  -> Vec<ty::AssocItem> {
217         debug!("probe(self_ty={:?}, return_type={}, scope_expr_id={})",
218                self_ty,
219                return_type,
220                scope_expr_id);
221         let method_names =
222             self.probe_op(span, mode, None, Some(return_type), IsSuggestion(true),
223                           self_ty, scope_expr_id, ProbeScope::AllTraits,
224                           |probe_cx| Ok(probe_cx.candidate_method_names()))
225                 .unwrap_or(vec![]);
226          method_names
227              .iter()
228              .flat_map(|&method_name| {
229                  self.probe_op(
230                      span, mode, Some(method_name), Some(return_type),
231                      IsSuggestion(true), self_ty, scope_expr_id,
232                      ProbeScope::AllTraits, |probe_cx| probe_cx.pick()
233                  ).ok().map(|pick| pick.item)
234              })
235             .collect()
236     }
237
238     pub fn probe_for_name(&self,
239                           span: Span,
240                           mode: Mode,
241                           item_name: ast::Ident,
242                           is_suggestion: IsSuggestion,
243                           self_ty: Ty<'tcx>,
244                           scope_expr_id: hir::HirId,
245                           scope: ProbeScope)
246                           -> PickResult<'tcx> {
247         debug!("probe(self_ty={:?}, item_name={}, scope_expr_id={})",
248                self_ty,
249                item_name,
250                scope_expr_id);
251         self.probe_op(span,
252                       mode,
253                       Some(item_name),
254                       None,
255                       is_suggestion,
256                       self_ty,
257                       scope_expr_id,
258                       scope,
259                       |probe_cx| probe_cx.pick())
260     }
261
262     fn probe_op<OP,R>(&'a self,
263                       span: Span,
264                       mode: Mode,
265                       method_name: Option<ast::Ident>,
266                       return_type: Option<Ty<'tcx>>,
267                       is_suggestion: IsSuggestion,
268                       self_ty: Ty<'tcx>,
269                       scope_expr_id: hir::HirId,
270                       scope: ProbeScope,
271                       op: OP)
272                       -> Result<R, MethodError<'tcx>>
273         where OP: FnOnce(ProbeContext<'a, 'gcx, 'tcx>) -> Result<R, MethodError<'tcx>>
274     {
275         let mut orig_values = OriginalQueryValues::default();
276         let param_env_and_self_ty =
277             self.infcx.canonicalize_query(
278                 &ParamEnvAnd {
279                     param_env: self.param_env,
280                     value: self_ty
281                 }, &mut orig_values);
282
283         let steps = if mode == Mode::MethodCall {
284             self.tcx.method_autoderef_steps(param_env_and_self_ty)
285         } else {
286             self.infcx.probe(|_| {
287                 // Mode::Path - the deref steps is "trivial". This turns
288                 // our CanonicalQuery into a "trivial" QueryResponse. This
289                 // is a bit inefficient, but I don't think that writing
290                 // special handling for this "trivial case" is a good idea.
291
292                 let infcx = &self.infcx;
293                 let (ParamEnvAnd {
294                     param_env: _,
295                     value: self_ty
296                 }, canonical_inference_vars) =
297                     infcx.instantiate_canonical_with_fresh_inference_vars(
298                         span, &param_env_and_self_ty);
299                 debug!("probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
300                        param_env_and_self_ty, self_ty);
301                 MethodAutoderefStepsResult {
302                     steps: Lrc::new(vec![CandidateStep {
303                         self_ty: self.make_query_response_ignoring_pending_obligations(
304                             canonical_inference_vars, self_ty),
305                         autoderefs: 0,
306                         from_unsafe_deref: false,
307                         unsize: false,
308                     }]),
309                     opt_bad_ty: None,
310                     reached_recursion_limit: false
311                 }
312             })
313         };
314
315         // If our autoderef loop had reached the recursion limit,
316         // report an overflow error, but continue going on with
317         // the truncated autoderef list.
318         if steps.reached_recursion_limit {
319             self.probe(|_| {
320                 let ty = &steps.steps.last().unwrap_or_else(|| {
321                     span_bug!(span, "reached the recursion limit in 0 steps?")
322                 }).self_ty;
323                 let ty = self.probe_instantiate_query_response(span, &orig_values, ty)
324                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
325                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span,
326                                                                   ty.value);
327             });
328         }
329
330
331         // If we encountered an `_` type or an error type during autoderef, this is
332         // ambiguous.
333         if let Some(bad_ty) = &steps.opt_bad_ty {
334             if is_suggestion.0 {
335                 // Ambiguity was encountered during a suggestion. Just keep going.
336                 debug!("ProbeContext: encountered ambiguity in suggestion");
337             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
338                 // this case used to be allowed by the compiler,
339                 // so we do a future-compat lint here for the 2015 edition
340                 // (see https://github.com/rust-lang/rust/issues/46906)
341                 if self.tcx.sess.rust_2018() {
342                     span_err!(self.tcx.sess, span, E0699,
343                               "the type of this value must be known \
344                                to call a method on a raw pointer on it");
345                 } else {
346                    self.tcx.lint_hir(
347                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
348                         scope_expr_id,
349                         span,
350                         "type annotations needed");
351                 }
352             } else {
353                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
354                 // an `Err`, report the right "type annotations needed" error pointing
355                 // to it.
356                 let ty = &bad_ty.ty;
357                 let ty = self.probe_instantiate_query_response(span, &orig_values, ty)
358                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
359                 let ty = self.structurally_resolved_type(span, ty.value);
360                 assert_eq!(ty, self.tcx.types.err);
361                 return Err(MethodError::NoMatch(NoMatchData::new(Vec::new(),
362                                                                  Vec::new(),
363                                                                  Vec::new(),
364                                                                  None,
365                                                                  mode)));
366             }
367         }
368
369         debug!("ProbeContext: steps for self_ty={:?} are {:?}",
370                self_ty,
371                steps);
372
373
374         // this creates one big transaction so that all type variables etc
375         // that we create during the probe process are removed later
376         self.probe(|_| {
377             let mut probe_cx = ProbeContext::new(
378                 self, span, mode, method_name, return_type, orig_values,
379                 steps.steps, is_suggestion,
380             );
381
382             probe_cx.assemble_inherent_candidates();
383             match scope {
384                 ProbeScope::TraitsInScope =>
385                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)?,
386                 ProbeScope::AllTraits =>
387                     probe_cx.assemble_extension_candidates_for_all_traits()?,
388             };
389             op(probe_cx)
390         })
391     }
392 }
393
394 pub fn provide(providers: &mut ty::query::Providers<'_>) {
395     providers.method_autoderef_steps = method_autoderef_steps;
396 }
397
398 fn method_autoderef_steps<'gcx, 'tcx>(
399     tcx: TyCtxt<'gcx, 'gcx>,
400     goal: CanonicalTyGoal<'tcx>,
401 ) -> MethodAutoderefStepsResult<'gcx> {
402     debug!("method_autoderef_steps({:?})", goal);
403
404     tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
405         let ParamEnvAnd { param_env, value: self_ty } = goal;
406
407         let mut autoderef = Autoderef::new(infcx, param_env, hir::DUMMY_HIR_ID, DUMMY_SP, self_ty)
408             .include_raw_pointers()
409             .silence_errors();
410         let mut reached_raw_pointer = false;
411         let mut steps: Vec<_> = autoderef.by_ref()
412             .map(|(ty, d)| {
413                 let step = CandidateStep {
414                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
415                         inference_vars.clone(), ty),
416                     autoderefs: d,
417                     from_unsafe_deref: reached_raw_pointer,
418                     unsize: false,
419                 };
420                 if let ty::RawPtr(_) = ty.sty {
421                     // all the subsequent steps will be from_unsafe_deref
422                     reached_raw_pointer = true;
423                 }
424                 step
425             })
426             .collect();
427
428         let final_ty = autoderef.maybe_ambiguous_final_ty();
429         let opt_bad_ty = match final_ty.sty {
430             ty::Infer(ty::TyVar(_)) |
431             ty::Error => {
432                 Some(MethodAutoderefBadTy {
433                     reached_raw_pointer,
434                     ty: infcx.make_query_response_ignoring_pending_obligations(
435                         inference_vars, final_ty)
436                 })
437             }
438             ty::Array(elem_ty, _) => {
439                 let dereferences = steps.len() - 1;
440
441                 steps.push(CandidateStep {
442                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
443                         inference_vars, infcx.tcx.mk_slice(elem_ty)),
444                     autoderefs: dereferences,
445                     // this could be from an unsafe deref if we had
446                     // a *mut/const [T; N]
447                     from_unsafe_deref: reached_raw_pointer,
448                     unsize: true,
449                 });
450
451                 None
452             }
453             _ => None
454         };
455
456         debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
457
458         MethodAutoderefStepsResult {
459             steps: Lrc::new(steps),
460             opt_bad_ty: opt_bad_ty.map(Lrc::new),
461             reached_recursion_limit: autoderef.reached_recursion_limit()
462         }
463     })
464 }
465
466
467 impl<'a, 'gcx, 'tcx> ProbeContext<'a, 'gcx, 'tcx> {
468     fn new(fcx: &'a FnCtxt<'a, 'gcx, 'tcx>,
469            span: Span,
470            mode: Mode,
471            method_name: Option<ast::Ident>,
472            return_type: Option<Ty<'tcx>>,
473            orig_steps_var_values: OriginalQueryValues<'tcx>,
474            steps: Lrc<Vec<CandidateStep<'gcx>>>,
475            is_suggestion: IsSuggestion)
476            -> ProbeContext<'a, 'gcx, 'tcx> {
477         ProbeContext {
478             fcx,
479             span,
480             mode,
481             method_name,
482             return_type,
483             inherent_candidates: Vec::new(),
484             extension_candidates: Vec::new(),
485             impl_dups: FxHashSet::default(),
486             orig_steps_var_values,
487             steps,
488             static_candidates: Vec::new(),
489             allow_similar_names: false,
490             private_candidate: None,
491             unsatisfied_predicates: Vec::new(),
492             is_suggestion,
493         }
494     }
495
496     fn reset(&mut self) {
497         self.inherent_candidates.clear();
498         self.extension_candidates.clear();
499         self.impl_dups.clear();
500         self.static_candidates.clear();
501         self.private_candidate = None;
502     }
503
504     ///////////////////////////////////////////////////////////////////////////
505     // CANDIDATE ASSEMBLY
506
507     fn push_candidate(&mut self,
508                       candidate: Candidate<'tcx>,
509                       is_inherent: bool)
510     {
511         let is_accessible = if let Some(name) = self.method_name {
512             let item = candidate.item;
513             let def_scope =
514                 self.tcx.adjust_ident_and_get_scope(name, item.container.id(), self.body_id).1;
515             item.vis.is_accessible_from(def_scope, self.tcx)
516         } else {
517             true
518         };
519         if is_accessible {
520             if is_inherent {
521                 self.inherent_candidates.push(candidate);
522             } else {
523                 self.extension_candidates.push(candidate);
524             }
525         } else if self.private_candidate.is_none() {
526             self.private_candidate =
527                 Some((candidate.item.def_kind(), candidate.item.def_id));
528         }
529     }
530
531     fn assemble_inherent_candidates(&mut self) {
532         let steps = self.steps.clone();
533         for step in steps.iter() {
534             self.assemble_probe(&step.self_ty);
535         }
536     }
537
538     fn assemble_probe(&mut self, self_ty: &Canonical<'gcx, QueryResponse<'gcx, Ty<'gcx>>>) {
539         debug!("assemble_probe: self_ty={:?}", self_ty);
540         let lang_items = self.tcx.lang_items();
541
542         match self_ty.value.value.sty {
543             ty::Dynamic(ref data, ..) => {
544                 if let Some(p) = data.principal() {
545                     // Subtle: we can't use `instantiate_query_response` here: using it will
546                     // commit to all of the type equalities assumed by inference going through
547                     // autoderef (see the `method-probe-no-guessing` test).
548                     //
549                     // However, in this code, it is OK if we end up with an object type that is
550                     // "more general" than the object type that we are evaluating. For *every*
551                     // object type `MY_OBJECT`, a function call that goes through a trait-ref
552                     // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
553                     // `ObjectCandidate`, and it should be discoverable "exactly" through one
554                     // of the iterations in the autoderef loop, so there is no problem with it
555                     // being discoverable in another one of these iterations.
556                     //
557                     // Using `instantiate_canonical_with_fresh_inference_vars` on our
558                     // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
559                     // `CanonicalVarValues` will exactly give us such a generalization - it
560                     // will still match the original object type, but it won't pollute our
561                     // type variables in any form, so just do that!
562                     let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
563                         self.fcx.instantiate_canonical_with_fresh_inference_vars(
564                             self.span, &self_ty);
565
566                     self.assemble_inherent_candidates_from_object(generalized_self_ty);
567                     self.assemble_inherent_impl_candidates_for_type(p.def_id());
568                 }
569             }
570             ty::Adt(def, _) => {
571                 self.assemble_inherent_impl_candidates_for_type(def.did);
572             }
573             ty::Foreign(did) => {
574                 self.assemble_inherent_impl_candidates_for_type(did);
575             }
576             ty::Param(p) => {
577                 self.assemble_inherent_candidates_from_param(p);
578             }
579             ty::Char => {
580                 let lang_def_id = lang_items.char_impl();
581                 self.assemble_inherent_impl_for_primitive(lang_def_id);
582             }
583             ty::Str => {
584                 let lang_def_id = lang_items.str_impl();
585                 self.assemble_inherent_impl_for_primitive(lang_def_id);
586
587                 let lang_def_id = lang_items.str_alloc_impl();
588                 self.assemble_inherent_impl_for_primitive(lang_def_id);
589             }
590             ty::Slice(_) => {
591                 let lang_def_id = lang_items.slice_impl();
592                 self.assemble_inherent_impl_for_primitive(lang_def_id);
593
594                 let lang_def_id = lang_items.slice_u8_impl();
595                 self.assemble_inherent_impl_for_primitive(lang_def_id);
596
597                 let lang_def_id = lang_items.slice_alloc_impl();
598                 self.assemble_inherent_impl_for_primitive(lang_def_id);
599
600                 let lang_def_id = lang_items.slice_u8_alloc_impl();
601                 self.assemble_inherent_impl_for_primitive(lang_def_id);
602             }
603             ty::RawPtr(ty::TypeAndMut { ty: _, mutbl: hir::MutImmutable }) => {
604                 let lang_def_id = lang_items.const_ptr_impl();
605                 self.assemble_inherent_impl_for_primitive(lang_def_id);
606             }
607             ty::RawPtr(ty::TypeAndMut { ty: _, mutbl: hir::MutMutable }) => {
608                 let lang_def_id = lang_items.mut_ptr_impl();
609                 self.assemble_inherent_impl_for_primitive(lang_def_id);
610             }
611             ty::Int(ast::IntTy::I8) => {
612                 let lang_def_id = lang_items.i8_impl();
613                 self.assemble_inherent_impl_for_primitive(lang_def_id);
614             }
615             ty::Int(ast::IntTy::I16) => {
616                 let lang_def_id = lang_items.i16_impl();
617                 self.assemble_inherent_impl_for_primitive(lang_def_id);
618             }
619             ty::Int(ast::IntTy::I32) => {
620                 let lang_def_id = lang_items.i32_impl();
621                 self.assemble_inherent_impl_for_primitive(lang_def_id);
622             }
623             ty::Int(ast::IntTy::I64) => {
624                 let lang_def_id = lang_items.i64_impl();
625                 self.assemble_inherent_impl_for_primitive(lang_def_id);
626             }
627             ty::Int(ast::IntTy::I128) => {
628                 let lang_def_id = lang_items.i128_impl();
629                 self.assemble_inherent_impl_for_primitive(lang_def_id);
630             }
631             ty::Int(ast::IntTy::Isize) => {
632                 let lang_def_id = lang_items.isize_impl();
633                 self.assemble_inherent_impl_for_primitive(lang_def_id);
634             }
635             ty::Uint(ast::UintTy::U8) => {
636                 let lang_def_id = lang_items.u8_impl();
637                 self.assemble_inherent_impl_for_primitive(lang_def_id);
638             }
639             ty::Uint(ast::UintTy::U16) => {
640                 let lang_def_id = lang_items.u16_impl();
641                 self.assemble_inherent_impl_for_primitive(lang_def_id);
642             }
643             ty::Uint(ast::UintTy::U32) => {
644                 let lang_def_id = lang_items.u32_impl();
645                 self.assemble_inherent_impl_for_primitive(lang_def_id);
646             }
647             ty::Uint(ast::UintTy::U64) => {
648                 let lang_def_id = lang_items.u64_impl();
649                 self.assemble_inherent_impl_for_primitive(lang_def_id);
650             }
651             ty::Uint(ast::UintTy::U128) => {
652                 let lang_def_id = lang_items.u128_impl();
653                 self.assemble_inherent_impl_for_primitive(lang_def_id);
654             }
655             ty::Uint(ast::UintTy::Usize) => {
656                 let lang_def_id = lang_items.usize_impl();
657                 self.assemble_inherent_impl_for_primitive(lang_def_id);
658             }
659             ty::Float(ast::FloatTy::F32) => {
660                 let lang_def_id = lang_items.f32_impl();
661                 self.assemble_inherent_impl_for_primitive(lang_def_id);
662
663                 let lang_def_id = lang_items.f32_runtime_impl();
664                 self.assemble_inherent_impl_for_primitive(lang_def_id);
665             }
666             ty::Float(ast::FloatTy::F64) => {
667                 let lang_def_id = lang_items.f64_impl();
668                 self.assemble_inherent_impl_for_primitive(lang_def_id);
669
670                 let lang_def_id = lang_items.f64_runtime_impl();
671                 self.assemble_inherent_impl_for_primitive(lang_def_id);
672             }
673             _ => {}
674         }
675     }
676
677     fn assemble_inherent_impl_for_primitive(&mut self, lang_def_id: Option<DefId>) {
678         if let Some(impl_def_id) = lang_def_id {
679             self.assemble_inherent_impl_probe(impl_def_id);
680         }
681     }
682
683     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
684         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
685         for &impl_def_id in impl_def_ids.iter() {
686             self.assemble_inherent_impl_probe(impl_def_id);
687         }
688     }
689
690     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
691         if !self.impl_dups.insert(impl_def_id) {
692             return; // already visited
693         }
694
695         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
696
697         for item in self.impl_or_trait_item(impl_def_id) {
698             if !self.has_applicable_self(&item) {
699                 // No receiver declared. Not a candidate.
700                 self.record_static_candidate(ImplSource(impl_def_id));
701                 continue
702             }
703
704             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
705             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
706
707             // Determine the receiver type that the method itself expects.
708             let xform_tys = self.xform_self_ty(&item, impl_ty, impl_substs);
709
710             // We can't use normalize_associated_types_in as it will pollute the
711             // fcx's fulfillment context after this probe is over.
712             let cause = traits::ObligationCause::misc(self.span, self.body_id);
713             let selcx = &mut traits::SelectionContext::new(self.fcx);
714             let traits::Normalized { value: (xform_self_ty, xform_ret_ty), obligations } =
715                 traits::normalize(selcx, self.param_env, cause, &xform_tys);
716             debug!("assemble_inherent_impl_probe: xform_self_ty = {:?}/{:?}",
717                    xform_self_ty, xform_ret_ty);
718
719             self.push_candidate(Candidate {
720                 xform_self_ty, xform_ret_ty, item,
721                 kind: InherentImplCandidate(impl_substs, obligations),
722                 import_ids: smallvec![]
723             }, true);
724         }
725     }
726
727     fn assemble_inherent_candidates_from_object(&mut self,
728                                                 self_ty: Ty<'tcx>) {
729         debug!("assemble_inherent_candidates_from_object(self_ty={:?})",
730                self_ty);
731
732         let principal = match self_ty.sty {
733             ty::Dynamic(ref data, ..) => Some(data),
734             _ => None
735         }.and_then(|data| data.principal()).unwrap_or_else(|| {
736             span_bug!(self.span, "non-object {:?} in assemble_inherent_candidates_from_object",
737                       self_ty)
738         });
739
740         // It is illegal to invoke a method on a trait instance that
741         // refers to the `Self` type. An error will be reported by
742         // `enforce_object_limitations()` if the method refers to the
743         // `Self` type anywhere other than the receiver. Here, we use
744         // a substitution that replaces `Self` with the object type
745         // itself. Hence, a `&self` method will wind up with an
746         // argument type like `&Trait`.
747         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
748         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
749             let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
750
751             let (xform_self_ty, xform_ret_ty) =
752                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
753             this.push_candidate(Candidate {
754                 xform_self_ty, xform_ret_ty, item,
755                 kind: ObjectCandidate,
756                 import_ids: smallvec![]
757             }, true);
758         });
759     }
760
761     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
762         // FIXME: do we want to commit to this behavior for param bounds?
763
764         let bounds = self.param_env
765             .caller_bounds
766             .iter()
767             .filter_map(|predicate| {
768                 match *predicate {
769                     ty::Predicate::Trait(ref trait_predicate) => {
770                         match trait_predicate.skip_binder().trait_ref.self_ty().sty {
771                             ty::Param(ref p) if *p == param_ty => {
772                                 Some(trait_predicate.to_poly_trait_ref())
773                             }
774                             _ => None,
775                         }
776                     }
777                     ty::Predicate::Subtype(..) |
778                     ty::Predicate::Projection(..) |
779                     ty::Predicate::RegionOutlives(..) |
780                     ty::Predicate::WellFormed(..) |
781                     ty::Predicate::ObjectSafe(..) |
782                     ty::Predicate::ClosureKind(..) |
783                     ty::Predicate::TypeOutlives(..) |
784                     ty::Predicate::ConstEvaluatable(..) => None,
785                 }
786             });
787
788         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
789             let trait_ref = this.erase_late_bound_regions(&poly_trait_ref);
790
791             let (xform_self_ty, xform_ret_ty) =
792                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
793
794             // Because this trait derives from a where-clause, it
795             // should not contain any inference variables or other
796             // artifacts. This means it is safe to put into the
797             // `WhereClauseCandidate` and (eventually) into the
798             // `WhereClausePick`.
799             assert!(!trait_ref.substs.needs_infer());
800
801             this.push_candidate(Candidate {
802                 xform_self_ty, xform_ret_ty, item,
803                 kind: WhereClauseCandidate(poly_trait_ref),
804                 import_ids: smallvec![]
805             }, true);
806         });
807     }
808
809     // Do a search through a list of bounds, using a callback to actually
810     // create the candidates.
811     fn elaborate_bounds<F>(&mut self,
812                            bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
813                            mut mk_cand: F)
814         where F: for<'b> FnMut(&mut ProbeContext<'b, 'gcx, 'tcx>,
815                                ty::PolyTraitRef<'tcx>,
816                                ty::AssocItem)
817     {
818         let tcx = self.tcx;
819         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
820             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
821             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
822                 if !self.has_applicable_self(&item) {
823                     self.record_static_candidate(TraitSource(bound_trait_ref.def_id()));
824                 } else {
825                     mk_cand(self, bound_trait_ref, item);
826                 }
827             }
828         }
829     }
830
831     fn assemble_extension_candidates_for_traits_in_scope(&mut self,
832                                                          expr_hir_id: hir::HirId)
833                                                          -> Result<(), MethodError<'tcx>> {
834         if expr_hir_id == hir::DUMMY_HIR_ID {
835             return Ok(())
836         }
837         let mut duplicates = FxHashSet::default();
838         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
839         if let Some(applicable_traits) = opt_applicable_traits {
840             for trait_candidate in applicable_traits.iter() {
841                 let trait_did = trait_candidate.def_id;
842                 if duplicates.insert(trait_did) {
843                     let import_ids = trait_candidate.import_ids.iter().map(|node_id|
844                         self.fcx.tcx.hir().node_to_hir_id(*node_id)).collect();
845                     let result = self.assemble_extension_candidates_for_trait(import_ids,
846                                                                               trait_did);
847                     result?;
848                 }
849             }
850         }
851         Ok(())
852     }
853
854     fn assemble_extension_candidates_for_all_traits(&mut self) -> Result<(), MethodError<'tcx>> {
855         let mut duplicates = FxHashSet::default();
856         for trait_info in suggest::all_traits(self.tcx) {
857             if duplicates.insert(trait_info.def_id) {
858                 self.assemble_extension_candidates_for_trait(smallvec![], trait_info.def_id)?;
859             }
860         }
861         Ok(())
862     }
863
864     pub fn matches_return_type(&self,
865                                method: &ty::AssocItem,
866                                self_ty: Option<Ty<'tcx>>,
867                                expected: Ty<'tcx>) -> bool {
868         match method.kind {
869             ty::AssocKind::Method => {
870                 let fty = self.tcx.fn_sig(method.def_id);
871                 self.probe(|_| {
872                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
873                     let fty = fty.subst(self.tcx, substs);
874                     let (fty, _) = self.replace_bound_vars_with_fresh_vars(
875                         self.span,
876                         infer::FnCall,
877                         &fty
878                     );
879
880                     if let Some(self_ty) = self_ty {
881                         if self.at(&ObligationCause::dummy(), self.param_env)
882                                .sup(fty.inputs()[0], self_ty)
883                                .is_err()
884                         {
885                             return false
886                         }
887                     }
888                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
889                 })
890             }
891             _ => false,
892         }
893     }
894
895     fn assemble_extension_candidates_for_trait(&mut self,
896                                                import_ids: SmallVec<[hir::HirId; 1]>,
897                                                trait_def_id: DefId)
898                                                -> Result<(), MethodError<'tcx>> {
899         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})",
900                trait_def_id);
901         let trait_substs = self.fresh_item_substs(trait_def_id);
902         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
903
904         if self.tcx.is_trait_alias(trait_def_id) {
905             // For trait aliases, assume all super-traits are relevant.
906             let bounds = iter::once(trait_ref.to_poly_trait_ref());
907             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
908                 let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
909
910                 let (xform_self_ty, xform_ret_ty) =
911                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
912                 this.push_candidate(Candidate {
913                     xform_self_ty, xform_ret_ty, item, import_ids: import_ids.clone(),
914                     kind: TraitCandidate(new_trait_ref),
915                 }, true);
916             });
917         } else {
918             debug_assert!(self.tcx.is_trait(trait_def_id));
919             for item in self.impl_or_trait_item(trait_def_id) {
920                 // Check whether `trait_def_id` defines a method with suitable name.
921                 if !self.has_applicable_self(&item) {
922                     debug!("method has inapplicable self");
923                     self.record_static_candidate(TraitSource(trait_def_id));
924                     continue;
925                 }
926
927                 let (xform_self_ty, xform_ret_ty) =
928                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
929                 self.push_candidate(Candidate {
930                     xform_self_ty, xform_ret_ty, item, import_ids: import_ids.clone(),
931                     kind: TraitCandidate(trait_ref),
932                 }, false);
933             }
934         }
935         Ok(())
936     }
937
938     fn candidate_method_names(&self) -> Vec<ast::Ident> {
939         let mut set = FxHashSet::default();
940         let mut names: Vec<_> = self.inherent_candidates
941             .iter()
942             .chain(&self.extension_candidates)
943             .filter(|candidate| {
944                 if let Some(return_ty) = self.return_type {
945                     self.matches_return_type(&candidate.item, None, return_ty)
946                 } else {
947                     true
948                 }
949             })
950             .map(|candidate| candidate.item.ident)
951             .filter(|&name| set.insert(name))
952             .collect();
953
954         // Sort them by the name so we have a stable result.
955         names.sort_by_cached_key(|n| n.as_str());
956         names
957     }
958
959     ///////////////////////////////////////////////////////////////////////////
960     // THE ACTUAL SEARCH
961
962     fn pick(mut self) -> PickResult<'tcx> {
963         assert!(self.method_name.is_some());
964
965         if let Some(r) = self.pick_core() {
966             return r;
967         }
968
969         debug!("pick: actual search failed, assemble diagnotics");
970
971         let static_candidates = mem::replace(&mut self.static_candidates, vec![]);
972         let private_candidate = self.private_candidate.take();
973         let unsatisfied_predicates = mem::replace(&mut self.unsatisfied_predicates, vec![]);
974
975         // things failed, so lets look at all traits, for diagnostic purposes now:
976         self.reset();
977
978         let span = self.span;
979         let tcx = self.tcx;
980
981         self.assemble_extension_candidates_for_all_traits()?;
982
983         let out_of_scope_traits = match self.pick_core() {
984             Some(Ok(p)) => vec![p.item.container.id()],
985             //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
986             Some(Err(MethodError::Ambiguity(v))) => {
987                 v.into_iter()
988                     .map(|source| {
989                         match source {
990                             TraitSource(id) => id,
991                             ImplSource(impl_id) => {
992                                 match tcx.trait_id_of_impl(impl_id) {
993                                     Some(id) => id,
994                                     None => {
995                                         span_bug!(span,
996                                                   "found inherent method when looking at traits")
997                                     }
998                                 }
999                             }
1000                         }
1001                     })
1002                     .collect()
1003             }
1004             Some(Err(MethodError::NoMatch(NoMatchData { out_of_scope_traits: others, .. }))) => {
1005                 assert!(others.is_empty());
1006                 vec![]
1007             }
1008             _ => vec![],
1009         };
1010
1011         if let Some((kind, def_id)) = private_candidate {
1012             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1013         }
1014         let lev_candidate = self.probe_for_lev_candidate()?;
1015
1016         Err(MethodError::NoMatch(NoMatchData::new(static_candidates,
1017                                                   unsatisfied_predicates,
1018                                                   out_of_scope_traits,
1019                                                   lev_candidate,
1020                                                   self.mode)))
1021     }
1022
1023     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1024         let steps = self.steps.clone();
1025
1026         // find the first step that works
1027         steps
1028             .iter()
1029             .filter(|step| {
1030                 debug!("pick_core: step={:?}", step);
1031                 // skip types that are from a type error or that would require dereferencing
1032                 // a raw pointer
1033                 !step.self_ty.references_error() && !step.from_unsafe_deref
1034             }).flat_map(|step| {
1035                 let InferOk { value: self_ty, obligations: _ } =
1036                     self.fcx.probe_instantiate_query_response(
1037                         self.span, &self.orig_steps_var_values, &step.self_ty
1038                     ).unwrap_or_else(|_| {
1039                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1040                     });
1041                 self.pick_by_value_method(step, self_ty).or_else(|| {
1042                 self.pick_autorefd_method(step, self_ty, hir::MutImmutable).or_else(|| {
1043                 self.pick_autorefd_method(step, self_ty, hir::MutMutable)
1044             })})})
1045             .next()
1046     }
1047
1048     fn pick_by_value_method(&mut self, step: &CandidateStep<'gcx>, self_ty: Ty<'tcx>)
1049                             -> Option<PickResult<'tcx>>
1050     {
1051         //! For each type `T` in the step list, this attempts to find a
1052         //! method where the (transformed) self type is exactly `T`. We
1053         //! do however do one transformation on the adjustment: if we
1054         //! are passing a region pointer in, we will potentially
1055         //! *reborrow* it to a shorter lifetime. This allows us to
1056         //! transparently pass `&mut` pointers, in particular, without
1057         //! consuming them for their entire lifetime.
1058
1059         if step.unsize {
1060             return None;
1061         }
1062
1063         self.pick_method(self_ty).map(|r| {
1064             r.map(|mut pick| {
1065                 pick.autoderefs = step.autoderefs;
1066
1067                 // Insert a `&*` or `&mut *` if this is a reference type:
1068                 if let ty::Ref(_, _, mutbl) = step.self_ty.value.value.sty {
1069                     pick.autoderefs += 1;
1070                     pick.autoref = Some(mutbl);
1071                 }
1072
1073                 pick
1074             })
1075         })
1076     }
1077
1078     fn pick_autorefd_method(&mut self,
1079                             step: &CandidateStep<'gcx>,
1080                             self_ty: Ty<'tcx>,
1081                             mutbl: hir::Mutability)
1082                             -> Option<PickResult<'tcx>> {
1083         let tcx = self.tcx;
1084
1085         // In general, during probing we erase regions. See
1086         // `impl_self_ty()` for an explanation.
1087         let region = tcx.lifetimes.re_erased;
1088
1089         let autoref_ty = tcx.mk_ref(region,
1090                                     ty::TypeAndMut {
1091                                         ty: self_ty, mutbl
1092                                     });
1093         self.pick_method(autoref_ty).map(|r| {
1094             r.map(|mut pick| {
1095                 pick.autoderefs = step.autoderefs;
1096                 pick.autoref = Some(mutbl);
1097                 pick.unsize = if step.unsize {
1098                     Some(self_ty)
1099                 } else {
1100                     None
1101                 };
1102                 pick
1103             })
1104         })
1105     }
1106
1107     fn pick_method(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1108         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1109
1110         let mut possibly_unsatisfied_predicates = Vec::new();
1111         let mut unstable_candidates = Vec::new();
1112
1113         for (kind, candidates) in &[
1114             ("inherent", &self.inherent_candidates),
1115             ("extension", &self.extension_candidates),
1116         ] {
1117             debug!("searching {} candidates", kind);
1118             let res = self.consider_candidates(
1119                 self_ty,
1120                 candidates.iter(),
1121                 &mut possibly_unsatisfied_predicates,
1122                 Some(&mut unstable_candidates),
1123             );
1124             if let Some(pick) = res {
1125                 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1126                     if let Ok(p) = &pick {
1127                         // Emit a lint if there are unstable candidates alongside the stable ones.
1128                         //
1129                         // We suppress warning if we're picking the method only because it is a
1130                         // suggestion.
1131                         self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1132                     }
1133                 }
1134                 return Some(pick);
1135             }
1136         }
1137
1138         debug!("searching unstable candidates");
1139         let res = self.consider_candidates(
1140             self_ty,
1141             unstable_candidates.into_iter().map(|(c, _)| c),
1142             &mut possibly_unsatisfied_predicates,
1143             None,
1144         );
1145         if res.is_none() {
1146             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1147         }
1148         res
1149     }
1150
1151     fn consider_candidates<'b, ProbesIter>(
1152         &self,
1153         self_ty: Ty<'tcx>,
1154         probes: ProbesIter,
1155         possibly_unsatisfied_predicates: &mut Vec<TraitRef<'tcx>>,
1156         unstable_candidates: Option<&mut Vec<(&'b Candidate<'tcx>, Symbol)>>,
1157     ) -> Option<PickResult<'tcx>>
1158     where
1159         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1160     {
1161         let mut applicable_candidates: Vec<_> = probes.clone()
1162             .map(|probe| {
1163                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1164             })
1165             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1166             .collect();
1167
1168         debug!("applicable_candidates: {:?}", applicable_candidates);
1169
1170         if applicable_candidates.len() > 1 {
1171             if let Some(pick) = self.collapse_candidates_to_trait_pick(&applicable_candidates[..]) {
1172                 return Some(Ok(pick));
1173             }
1174         }
1175
1176         if let Some(uc) = unstable_candidates {
1177             applicable_candidates.retain(|&(p, _)| {
1178                 if let stability::EvalResult::Deny { feature, .. } =
1179                     self.tcx.eval_stability(p.item.def_id, None, self.span)
1180                 {
1181                     uc.push((p, feature));
1182                     return false;
1183                 }
1184                 true
1185             });
1186         }
1187
1188         if applicable_candidates.len() > 1 {
1189             let sources = probes
1190                 .map(|p| self.candidate_source(p, self_ty))
1191                 .collect();
1192             return Some(Err(MethodError::Ambiguity(sources)));
1193         }
1194
1195         applicable_candidates.pop().map(|(probe, status)| {
1196             if status == ProbeResult::Match {
1197                 Ok(probe.to_unadjusted_pick())
1198             } else {
1199                 Err(MethodError::BadReturnType)
1200             }
1201         })
1202     }
1203
1204     fn emit_unstable_name_collision_hint(
1205         &self,
1206         stable_pick: &Pick<'_>,
1207         unstable_candidates: &[(&Candidate<'tcx>, Symbol)],
1208     ) {
1209         let mut diag = self.tcx.struct_span_lint_hir(
1210             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1211             self.fcx.body_id,
1212             self.span,
1213             "a method with this name may be added to the standard library in the future",
1214         );
1215
1216         // FIXME: This should be a `span_suggestion` instead of `help`
1217         // However `self.span` only
1218         // highlights the method name, so we can't use it. Also consider reusing the code from
1219         // `report_method_error()`.
1220         diag.help(&format!(
1221             "call with fully qualified syntax `{}(...)` to keep using the current method",
1222             self.tcx.def_path_str(stable_pick.item.def_id),
1223         ));
1224
1225         if nightly_options::is_nightly_build() {
1226             for (candidate, feature) in unstable_candidates {
1227                 diag.help(&format!(
1228                     "add #![feature({})] to the crate attributes to enable `{}`",
1229                     feature,
1230                     self.tcx.def_path_str(candidate.item.def_id),
1231                 ));
1232             }
1233         }
1234
1235         diag.emit();
1236     }
1237
1238     fn select_trait_candidate(&self, trait_ref: ty::TraitRef<'tcx>)
1239                               -> traits::SelectionResult<'tcx, traits::Selection<'tcx>>
1240     {
1241         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1242         let predicate =
1243             trait_ref.to_poly_trait_ref().to_poly_trait_predicate();
1244         let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1245         traits::SelectionContext::new(self).select(&obligation)
1246     }
1247
1248     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>)
1249                         -> CandidateSource
1250     {
1251         match candidate.kind {
1252             InherentImplCandidate(..) => ImplSource(candidate.item.container.id()),
1253             ObjectCandidate |
1254             WhereClauseCandidate(_) => TraitSource(candidate.item.container.id()),
1255             TraitCandidate(trait_ref) => self.probe(|_| {
1256                 let _ = self.at(&ObligationCause::dummy(), self.param_env)
1257                     .sup(candidate.xform_self_ty, self_ty);
1258                 match self.select_trait_candidate(trait_ref) {
1259                     Ok(Some(traits::Vtable::VtableImpl(ref impl_data))) => {
1260                         // If only a single impl matches, make the error message point
1261                         // to that impl.
1262                         ImplSource(impl_data.impl_def_id)
1263                     }
1264                     _ => {
1265                         TraitSource(candidate.item.container.id())
1266                     }
1267                 }
1268             })
1269         }
1270     }
1271
1272     fn consider_probe(&self,
1273                       self_ty: Ty<'tcx>,
1274                       probe: &Candidate<'tcx>,
1275                       possibly_unsatisfied_predicates: &mut Vec<TraitRef<'tcx>>)
1276                       -> ProbeResult {
1277         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1278
1279         self.probe(|_| {
1280             // First check that the self type can be related.
1281             let sub_obligations = match self.at(&ObligationCause::dummy(), self.param_env)
1282                                             .sup(probe.xform_self_ty, self_ty) {
1283                 Ok(InferOk { obligations, value: () }) => obligations,
1284                 Err(_) => {
1285                     debug!("--> cannot relate self-types");
1286                     return ProbeResult::NoMatch;
1287                 }
1288             };
1289
1290             let mut result = ProbeResult::Match;
1291             let selcx = &mut traits::SelectionContext::new(self);
1292             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1293
1294             // If so, impls may carry other conditions (e.g., where
1295             // clauses) that must be considered. Make sure that those
1296             // match as well (or at least may match, sometimes we
1297             // don't have enough information to fully evaluate).
1298             let candidate_obligations : Vec<_> = match probe.kind {
1299                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1300                     // Check whether the impl imposes obligations we have to worry about.
1301                     let impl_def_id = probe.item.container.id();
1302                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1303                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1304                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1305                         traits::normalize(selcx, self.param_env, cause.clone(), &impl_bounds);
1306
1307                     // Convert the bounds into obligations.
1308                     let impl_obligations = traits::predicates_for_generics(
1309                         cause, self.param_env, &impl_bounds);
1310
1311                     debug!("impl_obligations={:?}", impl_obligations);
1312                     impl_obligations.into_iter()
1313                         .chain(norm_obligations.into_iter())
1314                         .chain(ref_obligations.iter().cloned())
1315                         .collect()
1316                 }
1317
1318                 ObjectCandidate |
1319                 WhereClauseCandidate(..) => {
1320                     // These have no additional conditions to check.
1321                     vec![]
1322                 }
1323
1324                 TraitCandidate(trait_ref) => {
1325                     let predicate = trait_ref.to_predicate();
1326                     let obligation =
1327                         traits::Obligation::new(cause, self.param_env, predicate);
1328                     if !self.predicate_may_hold(&obligation) {
1329                         if self.probe(|_| self.select_trait_candidate(trait_ref).is_err()) {
1330                             // This candidate's primary obligation doesn't even
1331                             // select - don't bother registering anything in
1332                             // `potentially_unsatisfied_predicates`.
1333                             return ProbeResult::NoMatch;
1334                         } else {
1335                             // Some nested subobligation of this predicate
1336                             // failed.
1337                             //
1338                             // FIXME: try to find the exact nested subobligation
1339                             // and point at it rather than reporting the entire
1340                             // trait-ref?
1341                             result = ProbeResult::NoMatch;
1342                             let trait_ref = self.resolve_vars_if_possible(&trait_ref);
1343                             possibly_unsatisfied_predicates.push(trait_ref);
1344                         }
1345                     }
1346                     vec![]
1347                 }
1348             };
1349
1350             debug!("consider_probe - candidate_obligations={:?} sub_obligations={:?}",
1351                    candidate_obligations, sub_obligations);
1352
1353             // Evaluate those obligations to see if they might possibly hold.
1354             for o in candidate_obligations.into_iter().chain(sub_obligations) {
1355                 let o = self.resolve_vars_if_possible(&o);
1356                 if !self.predicate_may_hold(&o) {
1357                     result = ProbeResult::NoMatch;
1358                     if let &ty::Predicate::Trait(ref pred) = &o.predicate {
1359                         possibly_unsatisfied_predicates.push(pred.skip_binder().trait_ref);
1360                     }
1361                 }
1362             }
1363
1364             if let ProbeResult::Match = result {
1365                 if let (Some(return_ty), Some(xform_ret_ty)) =
1366                     (self.return_type, probe.xform_ret_ty)
1367                 {
1368                     let xform_ret_ty = self.resolve_vars_if_possible(&xform_ret_ty);
1369                     debug!("comparing return_ty {:?} with xform ret ty {:?}",
1370                            return_ty,
1371                            probe.xform_ret_ty);
1372                     if self.at(&ObligationCause::dummy(), self.param_env)
1373                         .sup(return_ty, xform_ret_ty)
1374                         .is_err()
1375                     {
1376                         return ProbeResult::BadReturnType;
1377                     }
1378                 }
1379             }
1380
1381             result
1382         })
1383     }
1384
1385     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1386     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1387     /// external interface of the method can be determined from the trait, it's ok not to decide.
1388     /// We can basically just collapse all of the probes for various impls into one where-clause
1389     /// probe. This will result in a pending obligation so when more type-info is available we can
1390     /// make the final decision.
1391     ///
1392     /// Example (`src/test/run-pass/method-two-trait-defer-resolution-1.rs`):
1393     ///
1394     /// ```
1395     /// trait Foo { ... }
1396     /// impl Foo for Vec<int> { ... }
1397     /// impl Foo for Vec<usize> { ... }
1398     /// ```
1399     ///
1400     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1401     /// use, so it's ok to just commit to "using the method from the trait Foo".
1402     fn collapse_candidates_to_trait_pick(&self, probes: &[(&Candidate<'tcx>, ProbeResult)])
1403                                          -> Option<Pick<'tcx>>
1404     {
1405         // Do all probes correspond to the same trait?
1406         let container = probes[0].0.item.container;
1407         if let ty::ImplContainer(_) = container {
1408             return None
1409         }
1410         if probes[1..].iter().any(|&(p, _)| p.item.container != container) {
1411             return None;
1412         }
1413
1414         // FIXME: check the return type here somehow.
1415         // If so, just use this trait and call it a day.
1416         Some(Pick {
1417             item: probes[0].0.item.clone(),
1418             kind: TraitPick,
1419             import_ids: probes[0].0.import_ids.clone(),
1420             autoderefs: 0,
1421             autoref: None,
1422             unsize: None,
1423         })
1424     }
1425
1426     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1427     /// candidate method where the method name may have been misspelt. Similarly to other
1428     /// Levenshtein based suggestions, we provide at most one such suggestion.
1429     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1430         debug!("Probing for method names similar to {:?}",
1431                self.method_name);
1432
1433         let steps = self.steps.clone();
1434         self.probe(|_| {
1435             let mut pcx = ProbeContext::new(self.fcx, self.span, self.mode, self.method_name,
1436                                             self.return_type,
1437                                             self.orig_steps_var_values.clone(),
1438                                             steps, IsSuggestion(true));
1439             pcx.allow_similar_names = true;
1440             pcx.assemble_inherent_candidates();
1441             pcx.assemble_extension_candidates_for_traits_in_scope(hir::DUMMY_HIR_ID)?;
1442
1443             let method_names = pcx.candidate_method_names();
1444             pcx.allow_similar_names = false;
1445             let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1446                 .iter()
1447                 .filter_map(|&method_name| {
1448                     pcx.reset();
1449                     pcx.method_name = Some(method_name);
1450                     pcx.assemble_inherent_candidates();
1451                     pcx.assemble_extension_candidates_for_traits_in_scope(hir::DUMMY_HIR_ID)
1452                         .ok().map_or(None, |_| {
1453                             pcx.pick_core()
1454                                 .and_then(|pick| pick.ok())
1455                                 .and_then(|pick| Some(pick.item))
1456                         })
1457                 })
1458                .collect();
1459
1460             if applicable_close_candidates.is_empty() {
1461                 Ok(None)
1462             } else {
1463                 let best_name = {
1464                     let names = applicable_close_candidates.iter().map(|cand| &cand.ident.name);
1465                     find_best_match_for_name(names,
1466                                              &self.method_name.unwrap().as_str(),
1467                                              None)
1468                 }.unwrap();
1469                 Ok(applicable_close_candidates
1470                    .into_iter()
1471                    .find(|method| method.ident.name == best_name))
1472             }
1473         })
1474     }
1475
1476     ///////////////////////////////////////////////////////////////////////////
1477     // MISCELLANY
1478     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1479         // "Fast track" -- check for usage of sugar when in method call
1480         // mode.
1481         //
1482         // In Path mode (i.e., resolving a value like `T::next`), consider any
1483         // associated value (i.e., methods, constants) but not types.
1484         match self.mode {
1485             Mode::MethodCall => item.method_has_self_argument,
1486             Mode::Path => match item.kind {
1487                 ty::AssocKind::Existential |
1488                 ty::AssocKind::Type => false,
1489                 ty::AssocKind::Method | ty::AssocKind::Const => true
1490             },
1491         }
1492         // FIXME -- check for types that deref to `Self`,
1493         // like `Rc<Self>` and so on.
1494         //
1495         // Note also that the current code will break if this type
1496         // includes any of the type parameters defined on the method
1497         // -- but this could be overcome.
1498     }
1499
1500     fn record_static_candidate(&mut self, source: CandidateSource) {
1501         self.static_candidates.push(source);
1502     }
1503
1504     fn xform_self_ty(&self,
1505                      item: &ty::AssocItem,
1506                      impl_ty: Ty<'tcx>,
1507                      substs: SubstsRef<'tcx>)
1508                      -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1509         if item.kind == ty::AssocKind::Method && self.mode == Mode::MethodCall {
1510             let sig = self.xform_method_sig(item.def_id, substs);
1511             (sig.inputs()[0], Some(sig.output()))
1512         } else {
1513             (impl_ty, None)
1514         }
1515     }
1516
1517     fn xform_method_sig(&self,
1518                         method: DefId,
1519                         substs: SubstsRef<'tcx>)
1520                         -> ty::FnSig<'tcx>
1521     {
1522         let fn_sig = self.tcx.fn_sig(method);
1523         debug!("xform_self_ty(fn_sig={:?}, substs={:?})",
1524                fn_sig,
1525                substs);
1526
1527         assert!(!substs.has_escaping_bound_vars());
1528
1529         // It is possible for type parameters or early-bound lifetimes
1530         // to appear in the signature of `self`. The substitutions we
1531         // are given do not include type/lifetime parameters for the
1532         // method yet. So create fresh variables here for those too,
1533         // if there are any.
1534         let generics = self.tcx.generics_of(method);
1535         assert_eq!(substs.len(), generics.parent_count as usize);
1536
1537         // Erase any late-bound regions from the method and substitute
1538         // in the values from the substitution.
1539         let xform_fn_sig = self.erase_late_bound_regions(&fn_sig);
1540
1541         if generics.params.is_empty() {
1542             xform_fn_sig.subst(self.tcx, substs)
1543         } else {
1544             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1545                 let i = param.index as usize;
1546                 if i < substs.len() {
1547                     substs[i]
1548                 } else {
1549                     match param.kind {
1550                         GenericParamDefKind::Lifetime => {
1551                             // In general, during probe we erase regions. See
1552                             // `impl_self_ty()` for an explanation.
1553                             self.tcx.lifetimes.re_erased.into()
1554                         }
1555                         GenericParamDefKind::Type { .. }
1556                         | GenericParamDefKind::Const => {
1557                             self.var_for_def(self.span, param)
1558                         }
1559                     }
1560                 }
1561             });
1562             xform_fn_sig.subst(self.tcx, substs)
1563         }
1564     }
1565
1566     /// Gets the type of an impl and generate substitutions with placeholders.
1567     fn impl_ty_and_substs(&self, impl_def_id: DefId) -> (Ty<'tcx>, SubstsRef<'tcx>) {
1568         (self.tcx.type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1569     }
1570
1571     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1572         InternalSubsts::for_item(self.tcx, def_id, |param, _| {
1573             match param.kind {
1574                 GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1575                 GenericParamDefKind::Type { .. } => {
1576                     self.next_ty_var(TypeVariableOrigin {
1577                         kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1578                         span: self.tcx.def_span(def_id),
1579                     }).into()
1580                 }
1581                 GenericParamDefKind::Const { .. } => {
1582                     let span = self.tcx.def_span(def_id);
1583                     let origin = ConstVariableOrigin {
1584                         kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1585                         span,
1586                     };
1587                     self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1588                 }
1589             }
1590         })
1591     }
1592
1593     /// Replaces late-bound-regions bound by `value` with `'static` using
1594     /// `ty::erase_late_bound_regions`.
1595     ///
1596     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1597     /// method matching. It is reasonable during the probe phase because we don't consider region
1598     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1599     /// rather than creating fresh region variables. This is nice for two reasons:
1600     ///
1601     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1602     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1603     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1604     ///
1605     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1606     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1607     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1608     ///    region got replaced with the same variable, which requires a bit more coordination
1609     ///    and/or tracking the substitution and
1610     ///    so forth.
1611     fn erase_late_bound_regions<T>(&self, value: &ty::Binder<T>) -> T
1612         where T: TypeFoldable<'tcx>
1613     {
1614         self.tcx.erase_late_bound_regions(value)
1615     }
1616
1617     /// Finds the method with the appropriate name (or return type, as the case may be). If
1618     /// `allow_similar_names` is set, find methods with close-matching names.
1619     fn impl_or_trait_item(&self, def_id: DefId) -> Vec<ty::AssocItem> {
1620         if let Some(name) = self.method_name {
1621             if self.allow_similar_names {
1622                 let max_dist = max(name.as_str().len(), 3) / 3;
1623                 self.tcx.associated_items(def_id)
1624                     .filter(|x| {
1625                         let dist = lev_distance(&*name.as_str(), &x.ident.as_str());
1626                         Namespace::from(x.kind) == Namespace::Value && dist > 0
1627                             && dist <= max_dist
1628                     })
1629                     .collect()
1630             } else {
1631                 self.fcx
1632                     .associated_item(def_id, name, Namespace::Value)
1633                     .map_or(Vec::new(), |x| vec![x])
1634             }
1635         } else {
1636             self.tcx.associated_items(def_id).collect()
1637         }
1638     }
1639 }
1640
1641 impl<'tcx> Candidate<'tcx> {
1642     fn to_unadjusted_pick(&self) -> Pick<'tcx> {
1643         Pick {
1644             item: self.item.clone(),
1645             kind: match self.kind {
1646                 InherentImplCandidate(..) => InherentImplPick,
1647                 ObjectCandidate => ObjectPick,
1648                 TraitCandidate(_) => TraitPick,
1649                 WhereClauseCandidate(ref trait_ref) => {
1650                     // Only trait derived from where-clauses should
1651                     // appear here, so they should not contain any
1652                     // inference variables or other artifacts. This
1653                     // means they are safe to put into the
1654                     // `WhereClausePick`.
1655                     assert!(
1656                         !trait_ref.skip_binder().substs.needs_infer()
1657                             && !trait_ref.skip_binder().substs.has_placeholders()
1658                     );
1659
1660                     WhereClausePick(trait_ref.clone())
1661                 }
1662             },
1663             import_ids: self.import_ids.clone(),
1664             autoderefs: 0,
1665             autoref: None,
1666             unsize: None,
1667         }
1668     }
1669 }