]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/method/probe.rs
Rollup merge of #70038 - DutchGhost:const-forget-tests, r=RalfJung
[rust.git] / src / librustc_typeck / check / method / probe.rs
1 use super::suggest;
2 use super::MethodError;
3 use super::NoMatchData;
4 use super::{CandidateSource, ImplSource, TraitSource};
5
6 use crate::check::autoderef::{self, Autoderef};
7 use crate::check::FnCtxt;
8 use crate::hir::def::DefKind;
9 use crate::hir::def_id::DefId;
10
11 use rustc::middle::stability;
12 use rustc::ty::subst::{InternalSubsts, Subst, SubstsRef};
13 use rustc::ty::GenericParamDefKind;
14 use rustc::ty::{
15     self, ParamEnvAnd, ToPolyTraitRef, ToPredicate, Ty, TyCtxt, TypeFoldable, WithConstness,
16 };
17 use rustc_ast::ast;
18 use rustc_ast::util::lev_distance::{find_best_match_for_name, lev_distance};
19 use rustc_data_structures::fx::FxHashSet;
20 use rustc_data_structures::sync::Lrc;
21 use rustc_errors::struct_span_err;
22 use rustc_hir as hir;
23 use rustc_hir::def::Namespace;
24 use rustc_infer::infer::canonical::OriginalQueryValues;
25 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
26 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
27 use rustc_infer::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
28 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
29 use rustc_session::config::nightly_options;
30 use rustc_session::lint;
31 use rustc_span::{symbol::Symbol, Span, DUMMY_SP};
32 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
33 use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
34 use rustc_trait_selection::traits::query::method_autoderef::{
35     CandidateStep, MethodAutoderefStepsResult,
36 };
37 use rustc_trait_selection::traits::query::CanonicalTyGoal;
38 use rustc_trait_selection::traits::{self, ObligationCause};
39 use std::cmp::max;
40 use std::iter;
41 use std::mem;
42 use std::ops::Deref;
43
44 use smallvec::{smallvec, SmallVec};
45
46 use self::CandidateKind::*;
47 pub use self::PickKind::*;
48
49 /// Boolean flag used to indicate if this search is for a suggestion
50 /// or not. If true, we can allow ambiguity and so forth.
51 #[derive(Clone, Copy)]
52 pub struct IsSuggestion(pub bool);
53
54 struct ProbeContext<'a, 'tcx> {
55     fcx: &'a FnCtxt<'a, 'tcx>,
56     span: Span,
57     mode: Mode,
58     method_name: Option<ast::Ident>,
59     return_type: Option<Ty<'tcx>>,
60
61     /// This is the OriginalQueryValues for the steps queries
62     /// that are answered in steps.
63     orig_steps_var_values: OriginalQueryValues<'tcx>,
64     steps: Lrc<Vec<CandidateStep<'tcx>>>,
65
66     inherent_candidates: Vec<Candidate<'tcx>>,
67     extension_candidates: Vec<Candidate<'tcx>>,
68     impl_dups: FxHashSet<DefId>,
69
70     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
71     /// used for error reporting
72     static_candidates: Vec<CandidateSource>,
73
74     /// When probing for names, include names that are close to the
75     /// requested name (by Levensthein distance)
76     allow_similar_names: bool,
77
78     /// Some(candidate) if there is a private candidate
79     private_candidate: Option<(DefKind, DefId)>,
80
81     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
82     /// for error reporting
83     unsatisfied_predicates: Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>)>,
84
85     is_suggestion: IsSuggestion,
86 }
87
88 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
89     type Target = FnCtxt<'a, 'tcx>;
90     fn deref(&self) -> &Self::Target {
91         &self.fcx
92     }
93 }
94
95 #[derive(Debug)]
96 struct Candidate<'tcx> {
97     // Candidates are (I'm not quite sure, but they are mostly) basically
98     // some metadata on top of a `ty::AssocItem` (without substs).
99     //
100     // However, method probing wants to be able to evaluate the predicates
101     // for a function with the substs applied - for example, if a function
102     // has `where Self: Sized`, we don't want to consider it unless `Self`
103     // is actually `Sized`, and similarly, return-type suggestions want
104     // to consider the "actual" return type.
105     //
106     // The way this is handled is through `xform_self_ty`. It contains
107     // the receiver type of this candidate, but `xform_self_ty`,
108     // `xform_ret_ty` and `kind` (which contains the predicates) have the
109     // generic parameters of this candidate substituted with the *same set*
110     // of inference variables, which acts as some weird sort of "query".
111     //
112     // When we check out a candidate, we require `xform_self_ty` to be
113     // a subtype of the passed-in self-type, and this equates the type
114     // variables in the rest of the fields.
115     //
116     // For example, if we have this candidate:
117     // ```
118     //    trait Foo {
119     //        fn foo(&self) where Self: Sized;
120     //    }
121     // ```
122     //
123     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
124     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
125     // the receiver `&T`, we'll do the subtyping which will make `?X`
126     // get the right value, then when we evaluate the predicate we'll check
127     // if `T: Sized`.
128     xform_self_ty: Ty<'tcx>,
129     xform_ret_ty: Option<Ty<'tcx>>,
130     item: ty::AssocItem,
131     kind: CandidateKind<'tcx>,
132     import_ids: SmallVec<[hir::HirId; 1]>,
133 }
134
135 #[derive(Debug)]
136 enum CandidateKind<'tcx> {
137     InherentImplCandidate(
138         SubstsRef<'tcx>,
139         // Normalize obligations
140         Vec<traits::PredicateObligation<'tcx>>,
141     ),
142     ObjectCandidate,
143     TraitCandidate(ty::TraitRef<'tcx>),
144     WhereClauseCandidate(
145         // Trait
146         ty::PolyTraitRef<'tcx>,
147     ),
148 }
149
150 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
151 enum ProbeResult {
152     NoMatch,
153     BadReturnType,
154     Match,
155 }
156
157 #[derive(Debug, PartialEq, Clone)]
158 pub struct Pick<'tcx> {
159     pub item: ty::AssocItem,
160     pub kind: PickKind<'tcx>,
161     pub import_ids: SmallVec<[hir::HirId; 1]>,
162
163     // Indicates that the source expression should be autoderef'd N times
164     //
165     // A = expr | *expr | **expr | ...
166     pub autoderefs: usize,
167
168     // Indicates that an autoref is applied after the optional autoderefs
169     //
170     // B = A | &A | &mut A
171     pub autoref: Option<hir::Mutability>,
172
173     // Indicates that the source expression should be "unsized" to a
174     // target type. This should probably eventually go away in favor
175     // of just coercing method receivers.
176     //
177     // C = B | unsize(B)
178     pub unsize: Option<Ty<'tcx>>,
179 }
180
181 #[derive(Clone, Debug, PartialEq, Eq)]
182 pub enum PickKind<'tcx> {
183     InherentImplPick,
184     ObjectPick,
185     TraitPick,
186     WhereClausePick(
187         // Trait
188         ty::PolyTraitRef<'tcx>,
189     ),
190 }
191
192 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
193
194 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
195 pub enum Mode {
196     // An expression of the form `receiver.method_name(...)`.
197     // Autoderefs are performed on `receiver`, lookup is done based on the
198     // `self` argument  of the method, and static methods aren't considered.
199     MethodCall,
200     // An expression of the form `Type::item` or `<T>::item`.
201     // No autoderefs are performed, lookup is done based on the type each
202     // implementation is for, and static methods are included.
203     Path,
204 }
205
206 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
207 pub enum ProbeScope {
208     // Assemble candidates coming only from traits in scope.
209     TraitsInScope,
210
211     // Assemble candidates coming from all traits.
212     AllTraits,
213 }
214
215 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
216     /// This is used to offer suggestions to users. It returns methods
217     /// that could have been called which have the desired return
218     /// type. Some effort is made to rule out methods that, if called,
219     /// would result in an error (basically, the same criteria we
220     /// would use to decide if a method is a plausible fit for
221     /// ambiguity purposes).
222     pub fn probe_for_return_type(
223         &self,
224         span: Span,
225         mode: Mode,
226         return_type: Ty<'tcx>,
227         self_ty: Ty<'tcx>,
228         scope_expr_id: hir::HirId,
229     ) -> Vec<ty::AssocItem> {
230         debug!(
231             "probe(self_ty={:?}, return_type={}, scope_expr_id={})",
232             self_ty, return_type, scope_expr_id
233         );
234         let method_names = self
235             .probe_op(
236                 span,
237                 mode,
238                 None,
239                 Some(return_type),
240                 IsSuggestion(true),
241                 self_ty,
242                 scope_expr_id,
243                 ProbeScope::AllTraits,
244                 |probe_cx| Ok(probe_cx.candidate_method_names()),
245             )
246             .unwrap_or(vec![]);
247         method_names
248             .iter()
249             .flat_map(|&method_name| {
250                 self.probe_op(
251                     span,
252                     mode,
253                     Some(method_name),
254                     Some(return_type),
255                     IsSuggestion(true),
256                     self_ty,
257                     scope_expr_id,
258                     ProbeScope::AllTraits,
259                     |probe_cx| probe_cx.pick(),
260                 )
261                 .ok()
262                 .map(|pick| pick.item)
263             })
264             .collect()
265     }
266
267     pub fn probe_for_name(
268         &self,
269         span: Span,
270         mode: Mode,
271         item_name: ast::Ident,
272         is_suggestion: IsSuggestion,
273         self_ty: Ty<'tcx>,
274         scope_expr_id: hir::HirId,
275         scope: ProbeScope,
276     ) -> PickResult<'tcx> {
277         debug!(
278             "probe(self_ty={:?}, item_name={}, scope_expr_id={})",
279             self_ty, item_name, scope_expr_id
280         );
281         self.probe_op(
282             span,
283             mode,
284             Some(item_name),
285             None,
286             is_suggestion,
287             self_ty,
288             scope_expr_id,
289             scope,
290             |probe_cx| probe_cx.pick(),
291         )
292     }
293
294     fn probe_op<OP, R>(
295         &'a self,
296         span: Span,
297         mode: Mode,
298         method_name: Option<ast::Ident>,
299         return_type: Option<Ty<'tcx>>,
300         is_suggestion: IsSuggestion,
301         self_ty: Ty<'tcx>,
302         scope_expr_id: hir::HirId,
303         scope: ProbeScope,
304         op: OP,
305     ) -> Result<R, MethodError<'tcx>>
306     where
307         OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
308     {
309         let mut orig_values = OriginalQueryValues::default();
310         let param_env_and_self_ty = self.infcx.canonicalize_query(
311             &ParamEnvAnd { param_env: self.param_env, value: self_ty },
312             &mut orig_values,
313         );
314
315         let steps = if mode == Mode::MethodCall {
316             self.tcx.method_autoderef_steps(param_env_and_self_ty)
317         } else {
318             self.infcx.probe(|_| {
319                 // Mode::Path - the deref steps is "trivial". This turns
320                 // our CanonicalQuery into a "trivial" QueryResponse. This
321                 // is a bit inefficient, but I don't think that writing
322                 // special handling for this "trivial case" is a good idea.
323
324                 let infcx = &self.infcx;
325                 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
326                     infcx.instantiate_canonical_with_fresh_inference_vars(
327                         span,
328                         &param_env_and_self_ty,
329                     );
330                 debug!(
331                     "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
332                     param_env_and_self_ty, self_ty
333                 );
334                 MethodAutoderefStepsResult {
335                     steps: Lrc::new(vec![CandidateStep {
336                         self_ty: self.make_query_response_ignoring_pending_obligations(
337                             canonical_inference_vars,
338                             self_ty,
339                         ),
340                         autoderefs: 0,
341                         from_unsafe_deref: false,
342                         unsize: false,
343                     }]),
344                     opt_bad_ty: None,
345                     reached_recursion_limit: false,
346                 }
347             })
348         };
349
350         // If our autoderef loop had reached the recursion limit,
351         // report an overflow error, but continue going on with
352         // the truncated autoderef list.
353         if steps.reached_recursion_limit {
354             self.probe(|_| {
355                 let ty = &steps
356                     .steps
357                     .last()
358                     .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
359                     .self_ty;
360                 let ty = self
361                     .probe_instantiate_query_response(span, &orig_values, ty)
362                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
363                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
364             });
365         }
366
367         // If we encountered an `_` type or an error type during autoderef, this is
368         // ambiguous.
369         if let Some(bad_ty) = &steps.opt_bad_ty {
370             if is_suggestion.0 {
371                 // Ambiguity was encountered during a suggestion. Just keep going.
372                 debug!("ProbeContext: encountered ambiguity in suggestion");
373             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
374                 // this case used to be allowed by the compiler,
375                 // so we do a future-compat lint here for the 2015 edition
376                 // (see https://github.com/rust-lang/rust/issues/46906)
377                 if self.tcx.sess.rust_2018() {
378                     struct_span_err!(
379                         self.tcx.sess,
380                         span,
381                         E0699,
382                         "the type of this value must be known \
383                                to call a method on a raw pointer on it"
384                     )
385                     .emit();
386                 } else {
387                     self.tcx.struct_span_lint_hir(
388                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
389                         scope_expr_id,
390                         span,
391                         |lint| lint.build("type annotations needed").emit(),
392                     );
393                 }
394             } else {
395                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
396                 // an `Err`, report the right "type annotations needed" error pointing
397                 // to it.
398                 let ty = &bad_ty.ty;
399                 let ty = self
400                     .probe_instantiate_query_response(span, &orig_values, ty)
401                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
402                 let ty = self.structurally_resolved_type(span, ty.value);
403                 assert_eq!(ty, self.tcx.types.err);
404                 return Err(MethodError::NoMatch(NoMatchData::new(
405                     Vec::new(),
406                     Vec::new(),
407                     Vec::new(),
408                     None,
409                     mode,
410                 )));
411             }
412         }
413
414         debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
415
416         // this creates one big transaction so that all type variables etc
417         // that we create during the probe process are removed later
418         self.probe(|_| {
419             let mut probe_cx = ProbeContext::new(
420                 self,
421                 span,
422                 mode,
423                 method_name,
424                 return_type,
425                 orig_values,
426                 steps.steps,
427                 is_suggestion,
428             );
429
430             probe_cx.assemble_inherent_candidates();
431             match scope {
432                 ProbeScope::TraitsInScope => {
433                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)?
434                 }
435                 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits()?,
436             };
437             op(probe_cx)
438         })
439     }
440 }
441
442 pub fn provide(providers: &mut ty::query::Providers<'_>) {
443     providers.method_autoderef_steps = method_autoderef_steps;
444 }
445
446 fn method_autoderef_steps<'tcx>(
447     tcx: TyCtxt<'tcx>,
448     goal: CanonicalTyGoal<'tcx>,
449 ) -> MethodAutoderefStepsResult<'tcx> {
450     debug!("method_autoderef_steps({:?})", goal);
451
452     tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
453         let ParamEnvAnd { param_env, value: self_ty } = goal;
454
455         let mut autoderef = Autoderef::new(infcx, param_env, hir::DUMMY_HIR_ID, DUMMY_SP, self_ty)
456             .include_raw_pointers()
457             .silence_errors();
458         let mut reached_raw_pointer = false;
459         let mut steps: Vec<_> = autoderef
460             .by_ref()
461             .map(|(ty, d)| {
462                 let step = CandidateStep {
463                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
464                         inference_vars.clone(),
465                         ty,
466                     ),
467                     autoderefs: d,
468                     from_unsafe_deref: reached_raw_pointer,
469                     unsize: false,
470                 };
471                 if let ty::RawPtr(_) = ty.kind {
472                     // all the subsequent steps will be from_unsafe_deref
473                     reached_raw_pointer = true;
474                 }
475                 step
476             })
477             .collect();
478
479         let final_ty = autoderef.maybe_ambiguous_final_ty();
480         let opt_bad_ty = match final_ty.kind {
481             ty::Infer(ty::TyVar(_)) | ty::Error => Some(MethodAutoderefBadTy {
482                 reached_raw_pointer,
483                 ty: infcx
484                     .make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
485             }),
486             ty::Array(elem_ty, _) => {
487                 let dereferences = steps.len() - 1;
488
489                 steps.push(CandidateStep {
490                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
491                         inference_vars,
492                         infcx.tcx.mk_slice(elem_ty),
493                     ),
494                     autoderefs: dereferences,
495                     // this could be from an unsafe deref if we had
496                     // a *mut/const [T; N]
497                     from_unsafe_deref: reached_raw_pointer,
498                     unsize: true,
499                 });
500
501                 None
502             }
503             _ => None,
504         };
505
506         debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
507
508         MethodAutoderefStepsResult {
509             steps: Lrc::new(steps),
510             opt_bad_ty: opt_bad_ty.map(Lrc::new),
511             reached_recursion_limit: autoderef.reached_recursion_limit(),
512         }
513     })
514 }
515
516 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
517     fn new(
518         fcx: &'a FnCtxt<'a, 'tcx>,
519         span: Span,
520         mode: Mode,
521         method_name: Option<ast::Ident>,
522         return_type: Option<Ty<'tcx>>,
523         orig_steps_var_values: OriginalQueryValues<'tcx>,
524         steps: Lrc<Vec<CandidateStep<'tcx>>>,
525         is_suggestion: IsSuggestion,
526     ) -> ProbeContext<'a, 'tcx> {
527         ProbeContext {
528             fcx,
529             span,
530             mode,
531             method_name,
532             return_type,
533             inherent_candidates: Vec::new(),
534             extension_candidates: Vec::new(),
535             impl_dups: FxHashSet::default(),
536             orig_steps_var_values,
537             steps,
538             static_candidates: Vec::new(),
539             allow_similar_names: false,
540             private_candidate: None,
541             unsatisfied_predicates: Vec::new(),
542             is_suggestion,
543         }
544     }
545
546     fn reset(&mut self) {
547         self.inherent_candidates.clear();
548         self.extension_candidates.clear();
549         self.impl_dups.clear();
550         self.static_candidates.clear();
551         self.private_candidate = None;
552     }
553
554     ///////////////////////////////////////////////////////////////////////////
555     // CANDIDATE ASSEMBLY
556
557     fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
558         let is_accessible = if let Some(name) = self.method_name {
559             let item = candidate.item;
560             let def_scope =
561                 self.tcx.adjust_ident_and_get_scope(name, item.container.id(), self.body_id).1;
562             item.vis.is_accessible_from(def_scope, self.tcx)
563         } else {
564             true
565         };
566         if is_accessible {
567             if is_inherent {
568                 self.inherent_candidates.push(candidate);
569             } else {
570                 self.extension_candidates.push(candidate);
571             }
572         } else if self.private_candidate.is_none() {
573             self.private_candidate = Some((candidate.item.def_kind(), candidate.item.def_id));
574         }
575     }
576
577     fn assemble_inherent_candidates(&mut self) {
578         let steps = Lrc::clone(&self.steps);
579         for step in steps.iter() {
580             self.assemble_probe(&step.self_ty);
581         }
582     }
583
584     fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
585         debug!("assemble_probe: self_ty={:?}", self_ty);
586         let lang_items = self.tcx.lang_items();
587
588         match self_ty.value.value.kind {
589             ty::Dynamic(ref data, ..) => {
590                 if let Some(p) = data.principal() {
591                     // Subtle: we can't use `instantiate_query_response` here: using it will
592                     // commit to all of the type equalities assumed by inference going through
593                     // autoderef (see the `method-probe-no-guessing` test).
594                     //
595                     // However, in this code, it is OK if we end up with an object type that is
596                     // "more general" than the object type that we are evaluating. For *every*
597                     // object type `MY_OBJECT`, a function call that goes through a trait-ref
598                     // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
599                     // `ObjectCandidate`, and it should be discoverable "exactly" through one
600                     // of the iterations in the autoderef loop, so there is no problem with it
601                     // being discoverable in another one of these iterations.
602                     //
603                     // Using `instantiate_canonical_with_fresh_inference_vars` on our
604                     // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
605                     // `CanonicalVarValues` will exactly give us such a generalization - it
606                     // will still match the original object type, but it won't pollute our
607                     // type variables in any form, so just do that!
608                     let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
609                         self.fcx
610                             .instantiate_canonical_with_fresh_inference_vars(self.span, &self_ty);
611
612                     self.assemble_inherent_candidates_from_object(generalized_self_ty);
613                     self.assemble_inherent_impl_candidates_for_type(p.def_id());
614                 }
615             }
616             ty::Adt(def, _) => {
617                 self.assemble_inherent_impl_candidates_for_type(def.did);
618             }
619             ty::Foreign(did) => {
620                 self.assemble_inherent_impl_candidates_for_type(did);
621             }
622             ty::Param(p) => {
623                 self.assemble_inherent_candidates_from_param(p);
624             }
625             ty::Bool => {
626                 let lang_def_id = lang_items.bool_impl();
627                 self.assemble_inherent_impl_for_primitive(lang_def_id);
628             }
629             ty::Char => {
630                 let lang_def_id = lang_items.char_impl();
631                 self.assemble_inherent_impl_for_primitive(lang_def_id);
632             }
633             ty::Str => {
634                 let lang_def_id = lang_items.str_impl();
635                 self.assemble_inherent_impl_for_primitive(lang_def_id);
636
637                 let lang_def_id = lang_items.str_alloc_impl();
638                 self.assemble_inherent_impl_for_primitive(lang_def_id);
639             }
640             ty::Slice(_) => {
641                 for &lang_def_id in &[
642                     lang_items.slice_impl(),
643                     lang_items.slice_u8_impl(),
644                     lang_items.slice_alloc_impl(),
645                     lang_items.slice_u8_alloc_impl(),
646                 ] {
647                     self.assemble_inherent_impl_for_primitive(lang_def_id);
648                 }
649             }
650             ty::RawPtr(ty::TypeAndMut { ty: _, mutbl }) => {
651                 let lang_def_id = match mutbl {
652                     hir::Mutability::Not => lang_items.const_ptr_impl(),
653                     hir::Mutability::Mut => lang_items.mut_ptr_impl(),
654                 };
655                 self.assemble_inherent_impl_for_primitive(lang_def_id);
656             }
657             ty::Int(i) => {
658                 let lang_def_id = match i {
659                     ast::IntTy::I8 => lang_items.i8_impl(),
660                     ast::IntTy::I16 => lang_items.i16_impl(),
661                     ast::IntTy::I32 => lang_items.i32_impl(),
662                     ast::IntTy::I64 => lang_items.i64_impl(),
663                     ast::IntTy::I128 => lang_items.i128_impl(),
664                     ast::IntTy::Isize => lang_items.isize_impl(),
665                 };
666                 self.assemble_inherent_impl_for_primitive(lang_def_id);
667             }
668             ty::Uint(i) => {
669                 let lang_def_id = match i {
670                     ast::UintTy::U8 => lang_items.u8_impl(),
671                     ast::UintTy::U16 => lang_items.u16_impl(),
672                     ast::UintTy::U32 => lang_items.u32_impl(),
673                     ast::UintTy::U64 => lang_items.u64_impl(),
674                     ast::UintTy::U128 => lang_items.u128_impl(),
675                     ast::UintTy::Usize => lang_items.usize_impl(),
676                 };
677                 self.assemble_inherent_impl_for_primitive(lang_def_id);
678             }
679             ty::Float(f) => {
680                 let (lang_def_id1, lang_def_id2) = match f {
681                     ast::FloatTy::F32 => (lang_items.f32_impl(), lang_items.f32_runtime_impl()),
682                     ast::FloatTy::F64 => (lang_items.f64_impl(), lang_items.f64_runtime_impl()),
683                 };
684                 self.assemble_inherent_impl_for_primitive(lang_def_id1);
685                 self.assemble_inherent_impl_for_primitive(lang_def_id2);
686             }
687             _ => {}
688         }
689     }
690
691     fn assemble_inherent_impl_for_primitive(&mut self, lang_def_id: Option<DefId>) {
692         if let Some(impl_def_id) = lang_def_id {
693             self.assemble_inherent_impl_probe(impl_def_id);
694         }
695     }
696
697     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
698         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
699         for &impl_def_id in impl_def_ids.iter() {
700             self.assemble_inherent_impl_probe(impl_def_id);
701         }
702     }
703
704     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
705         if !self.impl_dups.insert(impl_def_id) {
706             return; // already visited
707         }
708
709         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
710
711         for item in self.impl_or_trait_item(impl_def_id) {
712             if !self.has_applicable_self(&item) {
713                 // No receiver declared. Not a candidate.
714                 self.record_static_candidate(ImplSource(impl_def_id));
715                 continue;
716             }
717
718             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
719             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
720
721             // Determine the receiver type that the method itself expects.
722             let xform_tys = self.xform_self_ty(&item, impl_ty, impl_substs);
723
724             // We can't use normalize_associated_types_in as it will pollute the
725             // fcx's fulfillment context after this probe is over.
726             let cause = traits::ObligationCause::misc(self.span, self.body_id);
727             let selcx = &mut traits::SelectionContext::new(self.fcx);
728             let traits::Normalized { value: (xform_self_ty, xform_ret_ty), obligations } =
729                 traits::normalize(selcx, self.param_env, cause, &xform_tys);
730             debug!(
731                 "assemble_inherent_impl_probe: xform_self_ty = {:?}/{:?}",
732                 xform_self_ty, xform_ret_ty
733             );
734
735             self.push_candidate(
736                 Candidate {
737                     xform_self_ty,
738                     xform_ret_ty,
739                     item,
740                     kind: InherentImplCandidate(impl_substs, obligations),
741                     import_ids: smallvec![],
742                 },
743                 true,
744             );
745         }
746     }
747
748     fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
749         debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
750
751         let principal = match self_ty.kind {
752             ty::Dynamic(ref data, ..) => Some(data),
753             _ => None,
754         }
755         .and_then(|data| data.principal())
756         .unwrap_or_else(|| {
757             span_bug!(
758                 self.span,
759                 "non-object {:?} in assemble_inherent_candidates_from_object",
760                 self_ty
761             )
762         });
763
764         // It is illegal to invoke a method on a trait instance that
765         // refers to the `Self` type. An error will be reported by
766         // `enforce_object_limitations()` if the method refers to the
767         // `Self` type anywhere other than the receiver. Here, we use
768         // a substitution that replaces `Self` with the object type
769         // itself. Hence, a `&self` method will wind up with an
770         // argument type like `&Trait`.
771         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
772         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
773             let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
774
775             let (xform_self_ty, xform_ret_ty) =
776                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
777             this.push_candidate(
778                 Candidate {
779                     xform_self_ty,
780                     xform_ret_ty,
781                     item,
782                     kind: ObjectCandidate,
783                     import_ids: smallvec![],
784                 },
785                 true,
786             );
787         });
788     }
789
790     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
791         // FIXME: do we want to commit to this behavior for param bounds?
792
793         let bounds = self.param_env.caller_bounds.iter().filter_map(|predicate| match *predicate {
794             ty::Predicate::Trait(ref trait_predicate, _) => {
795                 match trait_predicate.skip_binder().trait_ref.self_ty().kind {
796                     ty::Param(ref p) if *p == param_ty => Some(trait_predicate.to_poly_trait_ref()),
797                     _ => None,
798                 }
799             }
800             ty::Predicate::Subtype(..)
801             | ty::Predicate::Projection(..)
802             | ty::Predicate::RegionOutlives(..)
803             | ty::Predicate::WellFormed(..)
804             | ty::Predicate::ObjectSafe(..)
805             | ty::Predicate::ClosureKind(..)
806             | ty::Predicate::TypeOutlives(..)
807             | ty::Predicate::ConstEvaluatable(..) => None,
808         });
809
810         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
811             let trait_ref = this.erase_late_bound_regions(&poly_trait_ref);
812
813             let (xform_self_ty, xform_ret_ty) =
814                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
815
816             // Because this trait derives from a where-clause, it
817             // should not contain any inference variables or other
818             // artifacts. This means it is safe to put into the
819             // `WhereClauseCandidate` and (eventually) into the
820             // `WhereClausePick`.
821             assert!(!trait_ref.substs.needs_infer());
822
823             this.push_candidate(
824                 Candidate {
825                     xform_self_ty,
826                     xform_ret_ty,
827                     item,
828                     kind: WhereClauseCandidate(poly_trait_ref),
829                     import_ids: smallvec![],
830                 },
831                 true,
832             );
833         });
834     }
835
836     // Do a search through a list of bounds, using a callback to actually
837     // create the candidates.
838     fn elaborate_bounds<F>(
839         &mut self,
840         bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
841         mut mk_cand: F,
842     ) where
843         F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
844     {
845         let tcx = self.tcx;
846         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
847             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
848             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
849                 if !self.has_applicable_self(&item) {
850                     self.record_static_candidate(TraitSource(bound_trait_ref.def_id()));
851                 } else {
852                     mk_cand(self, bound_trait_ref, item);
853                 }
854             }
855         }
856     }
857
858     fn assemble_extension_candidates_for_traits_in_scope(
859         &mut self,
860         expr_hir_id: hir::HirId,
861     ) -> Result<(), MethodError<'tcx>> {
862         if expr_hir_id == hir::DUMMY_HIR_ID {
863             return Ok(());
864         }
865         let mut duplicates = FxHashSet::default();
866         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
867         if let Some(applicable_traits) = opt_applicable_traits {
868             for trait_candidate in applicable_traits.iter() {
869                 let trait_did = trait_candidate.def_id;
870                 if duplicates.insert(trait_did) {
871                     let result = self.assemble_extension_candidates_for_trait(
872                         &trait_candidate.import_ids,
873                         trait_did,
874                     );
875                     result?;
876                 }
877             }
878         }
879         Ok(())
880     }
881
882     fn assemble_extension_candidates_for_all_traits(&mut self) -> Result<(), MethodError<'tcx>> {
883         let mut duplicates = FxHashSet::default();
884         for trait_info in suggest::all_traits(self.tcx) {
885             if duplicates.insert(trait_info.def_id) {
886                 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id)?;
887             }
888         }
889         Ok(())
890     }
891
892     pub fn matches_return_type(
893         &self,
894         method: &ty::AssocItem,
895         self_ty: Option<Ty<'tcx>>,
896         expected: Ty<'tcx>,
897     ) -> bool {
898         match method.kind {
899             ty::AssocKind::Method => {
900                 let fty = self.tcx.fn_sig(method.def_id);
901                 self.probe(|_| {
902                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
903                     let fty = fty.subst(self.tcx, substs);
904                     let (fty, _) =
905                         self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, &fty);
906
907                     if let Some(self_ty) = self_ty {
908                         if self
909                             .at(&ObligationCause::dummy(), self.param_env)
910                             .sup(fty.inputs()[0], self_ty)
911                             .is_err()
912                         {
913                             return false;
914                         }
915                     }
916                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
917                 })
918             }
919             _ => false,
920         }
921     }
922
923     fn assemble_extension_candidates_for_trait(
924         &mut self,
925         import_ids: &SmallVec<[hir::HirId; 1]>,
926         trait_def_id: DefId,
927     ) -> Result<(), MethodError<'tcx>> {
928         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
929         let trait_substs = self.fresh_item_substs(trait_def_id);
930         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
931
932         if self.tcx.is_trait_alias(trait_def_id) {
933             // For trait aliases, assume all super-traits are relevant.
934             let bounds = iter::once(trait_ref.to_poly_trait_ref());
935             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
936                 let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
937
938                 let (xform_self_ty, xform_ret_ty) =
939                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
940                 this.push_candidate(
941                     Candidate {
942                         xform_self_ty,
943                         xform_ret_ty,
944                         item,
945                         import_ids: import_ids.clone(),
946                         kind: TraitCandidate(new_trait_ref),
947                     },
948                     true,
949                 );
950             });
951         } else {
952             debug_assert!(self.tcx.is_trait(trait_def_id));
953             for item in self.impl_or_trait_item(trait_def_id) {
954                 // Check whether `trait_def_id` defines a method with suitable name.
955                 if !self.has_applicable_self(&item) {
956                     debug!("method has inapplicable self");
957                     self.record_static_candidate(TraitSource(trait_def_id));
958                     continue;
959                 }
960
961                 let (xform_self_ty, xform_ret_ty) =
962                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
963                 self.push_candidate(
964                     Candidate {
965                         xform_self_ty,
966                         xform_ret_ty,
967                         item,
968                         import_ids: import_ids.clone(),
969                         kind: TraitCandidate(trait_ref),
970                     },
971                     false,
972                 );
973             }
974         }
975         Ok(())
976     }
977
978     fn candidate_method_names(&self) -> Vec<ast::Ident> {
979         let mut set = FxHashSet::default();
980         let mut names: Vec<_> = self
981             .inherent_candidates
982             .iter()
983             .chain(&self.extension_candidates)
984             .filter(|candidate| {
985                 if let Some(return_ty) = self.return_type {
986                     self.matches_return_type(&candidate.item, None, return_ty)
987                 } else {
988                     true
989                 }
990             })
991             .map(|candidate| candidate.item.ident)
992             .filter(|&name| set.insert(name))
993             .collect();
994
995         // Sort them by the name so we have a stable result.
996         names.sort_by_cached_key(|n| n.as_str());
997         names
998     }
999
1000     ///////////////////////////////////////////////////////////////////////////
1001     // THE ACTUAL SEARCH
1002
1003     fn pick(mut self) -> PickResult<'tcx> {
1004         assert!(self.method_name.is_some());
1005
1006         if let Some(r) = self.pick_core() {
1007             return r;
1008         }
1009
1010         debug!("pick: actual search failed, assemble diagnostics");
1011
1012         let static_candidates = mem::take(&mut self.static_candidates);
1013         let private_candidate = self.private_candidate.take();
1014         let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
1015
1016         // things failed, so lets look at all traits, for diagnostic purposes now:
1017         self.reset();
1018
1019         let span = self.span;
1020         let tcx = self.tcx;
1021
1022         self.assemble_extension_candidates_for_all_traits()?;
1023
1024         let out_of_scope_traits = match self.pick_core() {
1025             Some(Ok(p)) => vec![p.item.container.id()],
1026             //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
1027             Some(Err(MethodError::Ambiguity(v))) => v
1028                 .into_iter()
1029                 .map(|source| match source {
1030                     TraitSource(id) => id,
1031                     ImplSource(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1032                         Some(id) => id,
1033                         None => span_bug!(span, "found inherent method when looking at traits"),
1034                     },
1035                 })
1036                 .collect(),
1037             Some(Err(MethodError::NoMatch(NoMatchData {
1038                 out_of_scope_traits: others, ..
1039             }))) => {
1040                 assert!(others.is_empty());
1041                 vec![]
1042             }
1043             _ => vec![],
1044         };
1045
1046         if let Some((kind, def_id)) = private_candidate {
1047             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1048         }
1049         let lev_candidate = self.probe_for_lev_candidate()?;
1050
1051         Err(MethodError::NoMatch(NoMatchData::new(
1052             static_candidates,
1053             unsatisfied_predicates,
1054             out_of_scope_traits,
1055             lev_candidate,
1056             self.mode,
1057         )))
1058     }
1059
1060     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1061         let steps = self.steps.clone();
1062
1063         // find the first step that works
1064         steps
1065             .iter()
1066             .filter(|step| {
1067                 debug!("pick_core: step={:?}", step);
1068                 // skip types that are from a type error or that would require dereferencing
1069                 // a raw pointer
1070                 !step.self_ty.references_error() && !step.from_unsafe_deref
1071             })
1072             .flat_map(|step| {
1073                 let InferOk { value: self_ty, obligations: _ } = self
1074                     .fcx
1075                     .probe_instantiate_query_response(
1076                         self.span,
1077                         &self.orig_steps_var_values,
1078                         &step.self_ty,
1079                     )
1080                     .unwrap_or_else(|_| {
1081                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1082                     });
1083                 self.pick_by_value_method(step, self_ty).or_else(|| {
1084                     self.pick_autorefd_method(step, self_ty, hir::Mutability::Not)
1085                         .or_else(|| self.pick_autorefd_method(step, self_ty, hir::Mutability::Mut))
1086                 })
1087             })
1088             .next()
1089     }
1090
1091     fn pick_by_value_method(
1092         &mut self,
1093         step: &CandidateStep<'tcx>,
1094         self_ty: Ty<'tcx>,
1095     ) -> Option<PickResult<'tcx>> {
1096         //! For each type `T` in the step list, this attempts to find a
1097         //! method where the (transformed) self type is exactly `T`. We
1098         //! do however do one transformation on the adjustment: if we
1099         //! are passing a region pointer in, we will potentially
1100         //! *reborrow* it to a shorter lifetime. This allows us to
1101         //! transparently pass `&mut` pointers, in particular, without
1102         //! consuming them for their entire lifetime.
1103
1104         if step.unsize {
1105             return None;
1106         }
1107
1108         self.pick_method(self_ty).map(|r| {
1109             r.map(|mut pick| {
1110                 pick.autoderefs = step.autoderefs;
1111
1112                 // Insert a `&*` or `&mut *` if this is a reference type:
1113                 if let ty::Ref(_, _, mutbl) = step.self_ty.value.value.kind {
1114                     pick.autoderefs += 1;
1115                     pick.autoref = Some(mutbl);
1116                 }
1117
1118                 pick
1119             })
1120         })
1121     }
1122
1123     fn pick_autorefd_method(
1124         &mut self,
1125         step: &CandidateStep<'tcx>,
1126         self_ty: Ty<'tcx>,
1127         mutbl: hir::Mutability,
1128     ) -> Option<PickResult<'tcx>> {
1129         let tcx = self.tcx;
1130
1131         // In general, during probing we erase regions. See
1132         // `impl_self_ty()` for an explanation.
1133         let region = tcx.lifetimes.re_erased;
1134
1135         let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1136         self.pick_method(autoref_ty).map(|r| {
1137             r.map(|mut pick| {
1138                 pick.autoderefs = step.autoderefs;
1139                 pick.autoref = Some(mutbl);
1140                 pick.unsize = step.unsize.then_some(self_ty);
1141                 pick
1142             })
1143         })
1144     }
1145
1146     fn pick_method(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1147         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1148
1149         let mut possibly_unsatisfied_predicates = Vec::new();
1150         let mut unstable_candidates = Vec::new();
1151
1152         for (kind, candidates) in
1153             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1154         {
1155             debug!("searching {} candidates", kind);
1156             let res = self.consider_candidates(
1157                 self_ty,
1158                 candidates.iter(),
1159                 &mut possibly_unsatisfied_predicates,
1160                 Some(&mut unstable_candidates),
1161             );
1162             if let Some(pick) = res {
1163                 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1164                     if let Ok(p) = &pick {
1165                         // Emit a lint if there are unstable candidates alongside the stable ones.
1166                         //
1167                         // We suppress warning if we're picking the method only because it is a
1168                         // suggestion.
1169                         self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1170                     }
1171                 }
1172                 return Some(pick);
1173             }
1174         }
1175
1176         debug!("searching unstable candidates");
1177         let res = self.consider_candidates(
1178             self_ty,
1179             unstable_candidates.into_iter().map(|(c, _)| c),
1180             &mut possibly_unsatisfied_predicates,
1181             None,
1182         );
1183         if res.is_none() {
1184             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1185         }
1186         res
1187     }
1188
1189     fn consider_candidates<'b, ProbesIter>(
1190         &self,
1191         self_ty: Ty<'tcx>,
1192         probes: ProbesIter,
1193         possibly_unsatisfied_predicates: &mut Vec<(
1194             ty::Predicate<'tcx>,
1195             Option<ty::Predicate<'tcx>>,
1196         )>,
1197         unstable_candidates: Option<&mut Vec<(&'b Candidate<'tcx>, Symbol)>>,
1198     ) -> Option<PickResult<'tcx>>
1199     where
1200         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1201     {
1202         let mut applicable_candidates: Vec<_> = probes
1203             .clone()
1204             .map(|probe| {
1205                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1206             })
1207             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1208             .collect();
1209
1210         debug!("applicable_candidates: {:?}", applicable_candidates);
1211
1212         if applicable_candidates.len() > 1 {
1213             if let Some(pick) = self.collapse_candidates_to_trait_pick(&applicable_candidates[..]) {
1214                 return Some(Ok(pick));
1215             }
1216         }
1217
1218         if let Some(uc) = unstable_candidates {
1219             applicable_candidates.retain(|&(p, _)| {
1220                 if let stability::EvalResult::Deny { feature, .. } =
1221                     self.tcx.eval_stability(p.item.def_id, None, self.span)
1222                 {
1223                     uc.push((p, feature));
1224                     return false;
1225                 }
1226                 true
1227             });
1228         }
1229
1230         if applicable_candidates.len() > 1 {
1231             let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
1232             return Some(Err(MethodError::Ambiguity(sources)));
1233         }
1234
1235         applicable_candidates.pop().map(|(probe, status)| {
1236             if status == ProbeResult::Match {
1237                 Ok(probe.to_unadjusted_pick())
1238             } else {
1239                 Err(MethodError::BadReturnType)
1240             }
1241         })
1242     }
1243
1244     fn emit_unstable_name_collision_hint(
1245         &self,
1246         stable_pick: &Pick<'_>,
1247         unstable_candidates: &[(&Candidate<'tcx>, Symbol)],
1248     ) {
1249         self.tcx.struct_span_lint_hir(
1250             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1251             self.fcx.body_id,
1252             self.span,
1253             |lint| {
1254                 let mut diag = lint.build(
1255                     "a method with this name may be added to the standard library in the future",
1256                 );
1257                 // FIXME: This should be a `span_suggestion` instead of `help`
1258                 // However `self.span` only
1259                 // highlights the method name, so we can't use it. Also consider reusing the code from
1260                 // `report_method_error()`.
1261                 diag.help(&format!(
1262                     "call with fully qualified syntax `{}(...)` to keep using the current method",
1263                     self.tcx.def_path_str(stable_pick.item.def_id),
1264                 ));
1265
1266                 if nightly_options::is_nightly_build() {
1267                     for (candidate, feature) in unstable_candidates {
1268                         diag.help(&format!(
1269                             "add `#![feature({})]` to the crate attributes to enable `{}`",
1270                             feature,
1271                             self.tcx.def_path_str(candidate.item.def_id),
1272                         ));
1273                     }
1274                 }
1275
1276                 diag.emit();
1277             },
1278         );
1279     }
1280
1281     fn select_trait_candidate(
1282         &self,
1283         trait_ref: ty::TraitRef<'tcx>,
1284     ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1285         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1286         let predicate = trait_ref.to_poly_trait_ref().to_poly_trait_predicate();
1287         let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1288         traits::SelectionContext::new(self).select(&obligation)
1289     }
1290
1291     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1292         match candidate.kind {
1293             InherentImplCandidate(..) => ImplSource(candidate.item.container.id()),
1294             ObjectCandidate | WhereClauseCandidate(_) => TraitSource(candidate.item.container.id()),
1295             TraitCandidate(trait_ref) => self.probe(|_| {
1296                 let _ = self
1297                     .at(&ObligationCause::dummy(), self.param_env)
1298                     .sup(candidate.xform_self_ty, self_ty);
1299                 match self.select_trait_candidate(trait_ref) {
1300                     Ok(Some(traits::Vtable::VtableImpl(ref impl_data))) => {
1301                         // If only a single impl matches, make the error message point
1302                         // to that impl.
1303                         ImplSource(impl_data.impl_def_id)
1304                     }
1305                     _ => TraitSource(candidate.item.container.id()),
1306                 }
1307             }),
1308         }
1309     }
1310
1311     fn consider_probe(
1312         &self,
1313         self_ty: Ty<'tcx>,
1314         probe: &Candidate<'tcx>,
1315         possibly_unsatisfied_predicates: &mut Vec<(
1316             ty::Predicate<'tcx>,
1317             Option<ty::Predicate<'tcx>>,
1318         )>,
1319     ) -> ProbeResult {
1320         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1321
1322         self.probe(|_| {
1323             // First check that the self type can be related.
1324             let sub_obligations = match self
1325                 .at(&ObligationCause::dummy(), self.param_env)
1326                 .sup(probe.xform_self_ty, self_ty)
1327             {
1328                 Ok(InferOk { obligations, value: () }) => obligations,
1329                 Err(_) => {
1330                     debug!("--> cannot relate self-types");
1331                     return ProbeResult::NoMatch;
1332                 }
1333             };
1334
1335             let mut result = ProbeResult::Match;
1336             let selcx = &mut traits::SelectionContext::new(self);
1337             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1338
1339             // If so, impls may carry other conditions (e.g., where
1340             // clauses) that must be considered. Make sure that those
1341             // match as well (or at least may match, sometimes we
1342             // don't have enough information to fully evaluate).
1343             let candidate_obligations: Vec<_> = match probe.kind {
1344                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1345                     // Check whether the impl imposes obligations we have to worry about.
1346                     let impl_def_id = probe.item.container.id();
1347                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1348                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1349                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1350                         traits::normalize(selcx, self.param_env, cause.clone(), &impl_bounds);
1351
1352                     // Convert the bounds into obligations.
1353                     let impl_obligations =
1354                         traits::predicates_for_generics(cause, self.param_env, &impl_bounds);
1355
1356                     debug!("impl_obligations={:?}", impl_obligations);
1357                     impl_obligations
1358                         .into_iter()
1359                         .chain(norm_obligations.into_iter())
1360                         .chain(ref_obligations.iter().cloned())
1361                         .collect()
1362                 }
1363
1364                 ObjectCandidate | WhereClauseCandidate(..) => {
1365                     // These have no additional conditions to check.
1366                     vec![]
1367                 }
1368
1369                 TraitCandidate(trait_ref) => {
1370                     let predicate = trait_ref.without_const().to_predicate();
1371                     let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1372                     if !self.predicate_may_hold(&obligation) {
1373                         result = ProbeResult::NoMatch;
1374                         if self.probe(|_| {
1375                             match self.select_trait_candidate(trait_ref) {
1376                                 Err(_) => return true,
1377                                 Ok(Some(vtable))
1378                                     if !vtable.borrow_nested_obligations().is_empty() =>
1379                                 {
1380                                     for obligation in vtable.borrow_nested_obligations() {
1381                                         // Determine exactly which obligation wasn't met, so
1382                                         // that we can give more context in the error.
1383                                         if !self.predicate_may_hold(&obligation) {
1384                                             let o = self.resolve_vars_if_possible(obligation);
1385                                             let predicate =
1386                                                 self.resolve_vars_if_possible(&predicate);
1387                                             let p = if predicate == o.predicate {
1388                                                 // Avoid "`MyStruct: Foo` which is required by
1389                                                 // `MyStruct: Foo`" in E0599.
1390                                                 None
1391                                             } else {
1392                                                 Some(predicate)
1393                                             };
1394                                             possibly_unsatisfied_predicates.push((o.predicate, p));
1395                                         }
1396                                     }
1397                                 }
1398                                 _ => {
1399                                     // Some nested subobligation of this predicate
1400                                     // failed.
1401                                     let predicate = self.resolve_vars_if_possible(&predicate);
1402                                     possibly_unsatisfied_predicates.push((predicate, None));
1403                                 }
1404                             }
1405                             false
1406                         }) {
1407                             // This candidate's primary obligation doesn't even
1408                             // select - don't bother registering anything in
1409                             // `potentially_unsatisfied_predicates`.
1410                             return ProbeResult::NoMatch;
1411                         }
1412                     }
1413                     vec![]
1414                 }
1415             };
1416
1417             debug!(
1418                 "consider_probe - candidate_obligations={:?} sub_obligations={:?}",
1419                 candidate_obligations, sub_obligations
1420             );
1421
1422             // Evaluate those obligations to see if they might possibly hold.
1423             for o in candidate_obligations.into_iter().chain(sub_obligations) {
1424                 let o = self.resolve_vars_if_possible(&o);
1425                 if !self.predicate_may_hold(&o) {
1426                     result = ProbeResult::NoMatch;
1427                     possibly_unsatisfied_predicates.push((o.predicate, None));
1428                 }
1429             }
1430
1431             if let ProbeResult::Match = result {
1432                 if let (Some(return_ty), Some(xform_ret_ty)) =
1433                     (self.return_type, probe.xform_ret_ty)
1434                 {
1435                     let xform_ret_ty = self.resolve_vars_if_possible(&xform_ret_ty);
1436                     debug!(
1437                         "comparing return_ty {:?} with xform ret ty {:?}",
1438                         return_ty, probe.xform_ret_ty
1439                     );
1440                     if self
1441                         .at(&ObligationCause::dummy(), self.param_env)
1442                         .sup(return_ty, xform_ret_ty)
1443                         .is_err()
1444                     {
1445                         return ProbeResult::BadReturnType;
1446                     }
1447                 }
1448             }
1449
1450             result
1451         })
1452     }
1453
1454     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1455     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1456     /// external interface of the method can be determined from the trait, it's ok not to decide.
1457     /// We can basically just collapse all of the probes for various impls into one where-clause
1458     /// probe. This will result in a pending obligation so when more type-info is available we can
1459     /// make the final decision.
1460     ///
1461     /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1462     ///
1463     /// ```
1464     /// trait Foo { ... }
1465     /// impl Foo for Vec<int> { ... }
1466     /// impl Foo for Vec<usize> { ... }
1467     /// ```
1468     ///
1469     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1470     /// use, so it's ok to just commit to "using the method from the trait Foo".
1471     fn collapse_candidates_to_trait_pick(
1472         &self,
1473         probes: &[(&Candidate<'tcx>, ProbeResult)],
1474     ) -> Option<Pick<'tcx>> {
1475         // Do all probes correspond to the same trait?
1476         let container = probes[0].0.item.container;
1477         if let ty::ImplContainer(_) = container {
1478             return None;
1479         }
1480         if probes[1..].iter().any(|&(p, _)| p.item.container != container) {
1481             return None;
1482         }
1483
1484         // FIXME: check the return type here somehow.
1485         // If so, just use this trait and call it a day.
1486         Some(Pick {
1487             item: probes[0].0.item,
1488             kind: TraitPick,
1489             import_ids: probes[0].0.import_ids.clone(),
1490             autoderefs: 0,
1491             autoref: None,
1492             unsize: None,
1493         })
1494     }
1495
1496     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1497     /// candidate method where the method name may have been misspelt. Similarly to other
1498     /// Levenshtein based suggestions, we provide at most one such suggestion.
1499     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1500         debug!("probing for method names similar to {:?}", self.method_name);
1501
1502         let steps = self.steps.clone();
1503         self.probe(|_| {
1504             let mut pcx = ProbeContext::new(
1505                 self.fcx,
1506                 self.span,
1507                 self.mode,
1508                 self.method_name,
1509                 self.return_type,
1510                 self.orig_steps_var_values.clone(),
1511                 steps,
1512                 IsSuggestion(true),
1513             );
1514             pcx.allow_similar_names = true;
1515             pcx.assemble_inherent_candidates();
1516             pcx.assemble_extension_candidates_for_traits_in_scope(hir::DUMMY_HIR_ID)?;
1517
1518             let method_names = pcx.candidate_method_names();
1519             pcx.allow_similar_names = false;
1520             let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1521                 .iter()
1522                 .filter_map(|&method_name| {
1523                     pcx.reset();
1524                     pcx.method_name = Some(method_name);
1525                     pcx.assemble_inherent_candidates();
1526                     pcx.assemble_extension_candidates_for_traits_in_scope(hir::DUMMY_HIR_ID)
1527                         .map_or(None, |_| {
1528                             pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
1529                         })
1530                 })
1531                 .collect();
1532
1533             if applicable_close_candidates.is_empty() {
1534                 Ok(None)
1535             } else {
1536                 let best_name = {
1537                     let names = applicable_close_candidates.iter().map(|cand| &cand.ident.name);
1538                     find_best_match_for_name(names, &self.method_name.unwrap().as_str(), None)
1539                 }
1540                 .unwrap();
1541                 Ok(applicable_close_candidates
1542                     .into_iter()
1543                     .find(|method| method.ident.name == best_name))
1544             }
1545         })
1546     }
1547
1548     ///////////////////////////////////////////////////////////////////////////
1549     // MISCELLANY
1550     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1551         // "Fast track" -- check for usage of sugar when in method call
1552         // mode.
1553         //
1554         // In Path mode (i.e., resolving a value like `T::next`), consider any
1555         // associated value (i.e., methods, constants) but not types.
1556         match self.mode {
1557             Mode::MethodCall => item.method_has_self_argument,
1558             Mode::Path => match item.kind {
1559                 ty::AssocKind::OpaqueTy | ty::AssocKind::Type => false,
1560                 ty::AssocKind::Method | ty::AssocKind::Const => true,
1561             },
1562         }
1563         // FIXME -- check for types that deref to `Self`,
1564         // like `Rc<Self>` and so on.
1565         //
1566         // Note also that the current code will break if this type
1567         // includes any of the type parameters defined on the method
1568         // -- but this could be overcome.
1569     }
1570
1571     fn record_static_candidate(&mut self, source: CandidateSource) {
1572         self.static_candidates.push(source);
1573     }
1574
1575     fn xform_self_ty(
1576         &self,
1577         item: &ty::AssocItem,
1578         impl_ty: Ty<'tcx>,
1579         substs: SubstsRef<'tcx>,
1580     ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1581         if item.kind == ty::AssocKind::Method && self.mode == Mode::MethodCall {
1582             let sig = self.xform_method_sig(item.def_id, substs);
1583             (sig.inputs()[0], Some(sig.output()))
1584         } else {
1585             (impl_ty, None)
1586         }
1587     }
1588
1589     fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1590         let fn_sig = self.tcx.fn_sig(method);
1591         debug!("xform_self_ty(fn_sig={:?}, substs={:?})", fn_sig, substs);
1592
1593         assert!(!substs.has_escaping_bound_vars());
1594
1595         // It is possible for type parameters or early-bound lifetimes
1596         // to appear in the signature of `self`. The substitutions we
1597         // are given do not include type/lifetime parameters for the
1598         // method yet. So create fresh variables here for those too,
1599         // if there are any.
1600         let generics = self.tcx.generics_of(method);
1601         assert_eq!(substs.len(), generics.parent_count as usize);
1602
1603         // Erase any late-bound regions from the method and substitute
1604         // in the values from the substitution.
1605         let xform_fn_sig = self.erase_late_bound_regions(&fn_sig);
1606
1607         if generics.params.is_empty() {
1608             xform_fn_sig.subst(self.tcx, substs)
1609         } else {
1610             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1611                 let i = param.index as usize;
1612                 if i < substs.len() {
1613                     substs[i]
1614                 } else {
1615                     match param.kind {
1616                         GenericParamDefKind::Lifetime => {
1617                             // In general, during probe we erase regions. See
1618                             // `impl_self_ty()` for an explanation.
1619                             self.tcx.lifetimes.re_erased.into()
1620                         }
1621                         GenericParamDefKind::Type { .. } | GenericParamDefKind::Const => {
1622                             self.var_for_def(self.span, param)
1623                         }
1624                     }
1625                 }
1626             });
1627             xform_fn_sig.subst(self.tcx, substs)
1628         }
1629     }
1630
1631     /// Gets the type of an impl and generate substitutions with placeholders.
1632     fn impl_ty_and_substs(&self, impl_def_id: DefId) -> (Ty<'tcx>, SubstsRef<'tcx>) {
1633         (self.tcx.type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1634     }
1635
1636     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1637         InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1638             GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1639             GenericParamDefKind::Type { .. } => self
1640                 .next_ty_var(TypeVariableOrigin {
1641                     kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1642                     span: self.tcx.def_span(def_id),
1643                 })
1644                 .into(),
1645             GenericParamDefKind::Const { .. } => {
1646                 let span = self.tcx.def_span(def_id);
1647                 let origin = ConstVariableOrigin {
1648                     kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1649                     span,
1650                 };
1651                 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1652             }
1653         })
1654     }
1655
1656     /// Replaces late-bound-regions bound by `value` with `'static` using
1657     /// `ty::erase_late_bound_regions`.
1658     ///
1659     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1660     /// method matching. It is reasonable during the probe phase because we don't consider region
1661     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1662     /// rather than creating fresh region variables. This is nice for two reasons:
1663     ///
1664     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1665     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1666     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1667     ///
1668     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1669     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1670     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1671     ///    region got replaced with the same variable, which requires a bit more coordination
1672     ///    and/or tracking the substitution and
1673     ///    so forth.
1674     fn erase_late_bound_regions<T>(&self, value: &ty::Binder<T>) -> T
1675     where
1676         T: TypeFoldable<'tcx>,
1677     {
1678         self.tcx.erase_late_bound_regions(value)
1679     }
1680
1681     /// Finds the method with the appropriate name (or return type, as the case may be). If
1682     /// `allow_similar_names` is set, find methods with close-matching names.
1683     fn impl_or_trait_item(&self, def_id: DefId) -> Vec<ty::AssocItem> {
1684         if let Some(name) = self.method_name {
1685             if self.allow_similar_names {
1686                 let max_dist = max(name.as_str().len(), 3) / 3;
1687                 self.tcx
1688                     .associated_items(def_id)
1689                     .in_definition_order()
1690                     .filter(|x| {
1691                         let dist = lev_distance(&*name.as_str(), &x.ident.as_str());
1692                         x.kind.namespace() == Namespace::ValueNS && dist > 0 && dist <= max_dist
1693                     })
1694                     .copied()
1695                     .collect()
1696             } else {
1697                 self.fcx
1698                     .associated_item(def_id, name, Namespace::ValueNS)
1699                     .map_or(Vec::new(), |x| vec![x])
1700             }
1701         } else {
1702             self.tcx.associated_items(def_id).in_definition_order().copied().collect()
1703         }
1704     }
1705 }
1706
1707 impl<'tcx> Candidate<'tcx> {
1708     fn to_unadjusted_pick(&self) -> Pick<'tcx> {
1709         Pick {
1710             item: self.item,
1711             kind: match self.kind {
1712                 InherentImplCandidate(..) => InherentImplPick,
1713                 ObjectCandidate => ObjectPick,
1714                 TraitCandidate(_) => TraitPick,
1715                 WhereClauseCandidate(ref trait_ref) => {
1716                     // Only trait derived from where-clauses should
1717                     // appear here, so they should not contain any
1718                     // inference variables or other artifacts. This
1719                     // means they are safe to put into the
1720                     // `WhereClausePick`.
1721                     assert!(
1722                         !trait_ref.skip_binder().substs.needs_infer()
1723                             && !trait_ref.skip_binder().substs.has_placeholders()
1724                     );
1725
1726                     WhereClausePick(*trait_ref)
1727                 }
1728             },
1729             import_ids: self.import_ids.clone(),
1730             autoderefs: 0,
1731             autoref: None,
1732             unsize: None,
1733         }
1734     }
1735 }