]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/method/probe.rs
directly contain `PredicateAtom` in `PredicateKind::ForAll`
[rust.git] / src / librustc_typeck / check / method / probe.rs
1 use super::suggest;
2 use super::MethodError;
3 use super::NoMatchData;
4 use super::{CandidateSource, ImplSource, TraitSource};
5
6 use crate::check::FnCtxt;
7 use crate::hir::def::DefKind;
8 use crate::hir::def_id::DefId;
9
10 use rustc_ast::ast;
11 use rustc_ast::util::lev_distance::{find_best_match_for_name, lev_distance};
12 use rustc_data_structures::fx::FxHashSet;
13 use rustc_data_structures::sync::Lrc;
14 use rustc_errors::struct_span_err;
15 use rustc_hir as hir;
16 use rustc_hir::def::Namespace;
17 use rustc_infer::infer::canonical::OriginalQueryValues;
18 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
19 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
20 use rustc_infer::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
21 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
22 use rustc_middle::middle::stability;
23 use rustc_middle::ty::subst::{InternalSubsts, Subst, SubstsRef};
24 use rustc_middle::ty::GenericParamDefKind;
25 use rustc_middle::ty::{
26     self, ParamEnvAnd, ToPolyTraitRef, ToPredicate, Ty, TyCtxt, TypeFoldable, WithConstness,
27 };
28 use rustc_session::config::nightly_options;
29 use rustc_session::lint;
30 use rustc_span::def_id::LocalDefId;
31 use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
32 use rustc_trait_selection::autoderef::{self, Autoderef};
33 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
34 use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
35 use rustc_trait_selection::traits::query::method_autoderef::{
36     CandidateStep, MethodAutoderefStepsResult,
37 };
38 use rustc_trait_selection::traits::query::CanonicalTyGoal;
39 use rustc_trait_selection::traits::{self, ObligationCause};
40 use std::cmp::max;
41 use std::iter;
42 use std::mem;
43 use std::ops::Deref;
44
45 use smallvec::{smallvec, SmallVec};
46
47 use self::CandidateKind::*;
48 pub use self::PickKind::*;
49
50 /// Boolean flag used to indicate if this search is for a suggestion
51 /// or not. If true, we can allow ambiguity and so forth.
52 #[derive(Clone, Copy)]
53 pub struct IsSuggestion(pub bool);
54
55 struct ProbeContext<'a, 'tcx> {
56     fcx: &'a FnCtxt<'a, 'tcx>,
57     span: Span,
58     mode: Mode,
59     method_name: Option<Ident>,
60     return_type: Option<Ty<'tcx>>,
61
62     /// This is the OriginalQueryValues for the steps queries
63     /// that are answered in steps.
64     orig_steps_var_values: OriginalQueryValues<'tcx>,
65     steps: Lrc<Vec<CandidateStep<'tcx>>>,
66
67     inherent_candidates: Vec<Candidate<'tcx>>,
68     extension_candidates: Vec<Candidate<'tcx>>,
69     impl_dups: FxHashSet<DefId>,
70
71     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
72     /// used for error reporting
73     static_candidates: Vec<CandidateSource>,
74
75     /// When probing for names, include names that are close to the
76     /// requested name (by Levensthein distance)
77     allow_similar_names: bool,
78
79     /// Some(candidate) if there is a private candidate
80     private_candidate: Option<(DefKind, DefId)>,
81
82     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
83     /// for error reporting
84     unsatisfied_predicates: Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>)>,
85
86     is_suggestion: IsSuggestion,
87 }
88
89 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
90     type Target = FnCtxt<'a, 'tcx>;
91     fn deref(&self) -> &Self::Target {
92         &self.fcx
93     }
94 }
95
96 #[derive(Debug)]
97 struct Candidate<'tcx> {
98     // Candidates are (I'm not quite sure, but they are mostly) basically
99     // some metadata on top of a `ty::AssocItem` (without substs).
100     //
101     // However, method probing wants to be able to evaluate the predicates
102     // for a function with the substs applied - for example, if a function
103     // has `where Self: Sized`, we don't want to consider it unless `Self`
104     // is actually `Sized`, and similarly, return-type suggestions want
105     // to consider the "actual" return type.
106     //
107     // The way this is handled is through `xform_self_ty`. It contains
108     // the receiver type of this candidate, but `xform_self_ty`,
109     // `xform_ret_ty` and `kind` (which contains the predicates) have the
110     // generic parameters of this candidate substituted with the *same set*
111     // of inference variables, which acts as some weird sort of "query".
112     //
113     // When we check out a candidate, we require `xform_self_ty` to be
114     // a subtype of the passed-in self-type, and this equates the type
115     // variables in the rest of the fields.
116     //
117     // For example, if we have this candidate:
118     // ```
119     //    trait Foo {
120     //        fn foo(&self) where Self: Sized;
121     //    }
122     // ```
123     //
124     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
125     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
126     // the receiver `&T`, we'll do the subtyping which will make `?X`
127     // get the right value, then when we evaluate the predicate we'll check
128     // if `T: Sized`.
129     xform_self_ty: Ty<'tcx>,
130     xform_ret_ty: Option<Ty<'tcx>>,
131     item: ty::AssocItem,
132     kind: CandidateKind<'tcx>,
133     import_ids: SmallVec<[LocalDefId; 1]>,
134 }
135
136 #[derive(Debug)]
137 enum CandidateKind<'tcx> {
138     InherentImplCandidate(
139         SubstsRef<'tcx>,
140         // Normalize obligations
141         Vec<traits::PredicateObligation<'tcx>>,
142     ),
143     ObjectCandidate,
144     TraitCandidate(ty::TraitRef<'tcx>),
145     WhereClauseCandidate(
146         // Trait
147         ty::PolyTraitRef<'tcx>,
148     ),
149 }
150
151 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
152 enum ProbeResult {
153     NoMatch,
154     BadReturnType,
155     Match,
156 }
157
158 #[derive(Debug, PartialEq, Clone)]
159 pub struct Pick<'tcx> {
160     pub item: ty::AssocItem,
161     pub kind: PickKind<'tcx>,
162     pub import_ids: SmallVec<[LocalDefId; 1]>,
163
164     // Indicates that the source expression should be autoderef'd N times
165     //
166     // A = expr | *expr | **expr | ...
167     pub autoderefs: usize,
168
169     // Indicates that an autoref is applied after the optional autoderefs
170     //
171     // B = A | &A | &mut A
172     pub autoref: Option<hir::Mutability>,
173
174     // Indicates that the source expression should be "unsized" to a
175     // target type. This should probably eventually go away in favor
176     // of just coercing method receivers.
177     //
178     // C = B | unsize(B)
179     pub unsize: Option<Ty<'tcx>>,
180 }
181
182 #[derive(Clone, Debug, PartialEq, Eq)]
183 pub enum PickKind<'tcx> {
184     InherentImplPick,
185     ObjectPick,
186     TraitPick,
187     WhereClausePick(
188         // Trait
189         ty::PolyTraitRef<'tcx>,
190     ),
191 }
192
193 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
194
195 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
196 pub enum Mode {
197     // An expression of the form `receiver.method_name(...)`.
198     // Autoderefs are performed on `receiver`, lookup is done based on the
199     // `self` argument  of the method, and static methods aren't considered.
200     MethodCall,
201     // An expression of the form `Type::item` or `<T>::item`.
202     // No autoderefs are performed, lookup is done based on the type each
203     // implementation is for, and static methods are included.
204     Path,
205 }
206
207 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
208 pub enum ProbeScope {
209     // Assemble candidates coming only from traits in scope.
210     TraitsInScope,
211
212     // Assemble candidates coming from all traits.
213     AllTraits,
214 }
215
216 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
217     /// This is used to offer suggestions to users. It returns methods
218     /// that could have been called which have the desired return
219     /// type. Some effort is made to rule out methods that, if called,
220     /// would result in an error (basically, the same criteria we
221     /// would use to decide if a method is a plausible fit for
222     /// ambiguity purposes).
223     pub fn probe_for_return_type(
224         &self,
225         span: Span,
226         mode: Mode,
227         return_type: Ty<'tcx>,
228         self_ty: Ty<'tcx>,
229         scope_expr_id: hir::HirId,
230     ) -> Vec<ty::AssocItem> {
231         debug!(
232             "probe(self_ty={:?}, return_type={}, scope_expr_id={})",
233             self_ty, return_type, scope_expr_id
234         );
235         let method_names = self
236             .probe_op(
237                 span,
238                 mode,
239                 None,
240                 Some(return_type),
241                 IsSuggestion(true),
242                 self_ty,
243                 scope_expr_id,
244                 ProbeScope::AllTraits,
245                 |probe_cx| Ok(probe_cx.candidate_method_names()),
246             )
247             .unwrap_or(vec![]);
248         method_names
249             .iter()
250             .flat_map(|&method_name| {
251                 self.probe_op(
252                     span,
253                     mode,
254                     Some(method_name),
255                     Some(return_type),
256                     IsSuggestion(true),
257                     self_ty,
258                     scope_expr_id,
259                     ProbeScope::AllTraits,
260                     |probe_cx| probe_cx.pick(),
261                 )
262                 .ok()
263                 .map(|pick| pick.item)
264             })
265             .collect()
266     }
267
268     pub fn probe_for_name(
269         &self,
270         span: Span,
271         mode: Mode,
272         item_name: Ident,
273         is_suggestion: IsSuggestion,
274         self_ty: Ty<'tcx>,
275         scope_expr_id: hir::HirId,
276         scope: ProbeScope,
277     ) -> PickResult<'tcx> {
278         debug!(
279             "probe(self_ty={:?}, item_name={}, scope_expr_id={})",
280             self_ty, item_name, scope_expr_id
281         );
282         self.probe_op(
283             span,
284             mode,
285             Some(item_name),
286             None,
287             is_suggestion,
288             self_ty,
289             scope_expr_id,
290             scope,
291             |probe_cx| probe_cx.pick(),
292         )
293     }
294
295     fn probe_op<OP, R>(
296         &'a self,
297         span: Span,
298         mode: Mode,
299         method_name: Option<Ident>,
300         return_type: Option<Ty<'tcx>>,
301         is_suggestion: IsSuggestion,
302         self_ty: Ty<'tcx>,
303         scope_expr_id: hir::HirId,
304         scope: ProbeScope,
305         op: OP,
306     ) -> Result<R, MethodError<'tcx>>
307     where
308         OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
309     {
310         let mut orig_values = OriginalQueryValues::default();
311         let param_env_and_self_ty = self.infcx.canonicalize_query(
312             &ParamEnvAnd { param_env: self.param_env, value: self_ty },
313             &mut orig_values,
314         );
315
316         let steps = if mode == Mode::MethodCall {
317             self.tcx.method_autoderef_steps(param_env_and_self_ty)
318         } else {
319             self.infcx.probe(|_| {
320                 // Mode::Path - the deref steps is "trivial". This turns
321                 // our CanonicalQuery into a "trivial" QueryResponse. This
322                 // is a bit inefficient, but I don't think that writing
323                 // special handling for this "trivial case" is a good idea.
324
325                 let infcx = &self.infcx;
326                 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
327                     infcx.instantiate_canonical_with_fresh_inference_vars(
328                         span,
329                         &param_env_and_self_ty,
330                     );
331                 debug!(
332                     "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
333                     param_env_and_self_ty, self_ty
334                 );
335                 MethodAutoderefStepsResult {
336                     steps: Lrc::new(vec![CandidateStep {
337                         self_ty: self.make_query_response_ignoring_pending_obligations(
338                             canonical_inference_vars,
339                             self_ty,
340                         ),
341                         autoderefs: 0,
342                         from_unsafe_deref: false,
343                         unsize: false,
344                     }]),
345                     opt_bad_ty: None,
346                     reached_recursion_limit: false,
347                 }
348             })
349         };
350
351         // If our autoderef loop had reached the recursion limit,
352         // report an overflow error, but continue going on with
353         // the truncated autoderef list.
354         if steps.reached_recursion_limit {
355             self.probe(|_| {
356                 let ty = &steps
357                     .steps
358                     .last()
359                     .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
360                     .self_ty;
361                 let ty = self
362                     .probe_instantiate_query_response(span, &orig_values, ty)
363                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
364                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
365             });
366         }
367
368         // If we encountered an `_` type or an error type during autoderef, this is
369         // ambiguous.
370         if let Some(bad_ty) = &steps.opt_bad_ty {
371             if is_suggestion.0 {
372                 // Ambiguity was encountered during a suggestion. Just keep going.
373                 debug!("ProbeContext: encountered ambiguity in suggestion");
374             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
375                 // this case used to be allowed by the compiler,
376                 // so we do a future-compat lint here for the 2015 edition
377                 // (see https://github.com/rust-lang/rust/issues/46906)
378                 if self.tcx.sess.rust_2018() {
379                     struct_span_err!(
380                         self.tcx.sess,
381                         span,
382                         E0699,
383                         "the type of this value must be known to call a method on a raw pointer on \
384                          it"
385                     )
386                     .emit();
387                 } else {
388                     self.tcx.struct_span_lint_hir(
389                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
390                         scope_expr_id,
391                         span,
392                         |lint| lint.build("type annotations needed").emit(),
393                     );
394                 }
395             } else {
396                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
397                 // an `Err`, report the right "type annotations needed" error pointing
398                 // to it.
399                 let ty = &bad_ty.ty;
400                 let ty = self
401                     .probe_instantiate_query_response(span, &orig_values, ty)
402                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
403                 let ty = self.structurally_resolved_type(span, ty.value);
404                 assert!(matches!(ty.kind, ty::Error(_)));
405                 return Err(MethodError::NoMatch(NoMatchData::new(
406                     Vec::new(),
407                     Vec::new(),
408                     Vec::new(),
409                     None,
410                     mode,
411                 )));
412             }
413         }
414
415         debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
416
417         // this creates one big transaction so that all type variables etc
418         // that we create during the probe process are removed later
419         self.probe(|_| {
420             let mut probe_cx = ProbeContext::new(
421                 self,
422                 span,
423                 mode,
424                 method_name,
425                 return_type,
426                 orig_values,
427                 steps.steps,
428                 is_suggestion,
429             );
430
431             probe_cx.assemble_inherent_candidates();
432             match scope {
433                 ProbeScope::TraitsInScope => {
434                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)?
435                 }
436                 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits()?,
437             };
438             op(probe_cx)
439         })
440     }
441 }
442
443 pub fn provide(providers: &mut ty::query::Providers) {
444     providers.method_autoderef_steps = method_autoderef_steps;
445 }
446
447 fn method_autoderef_steps<'tcx>(
448     tcx: TyCtxt<'tcx>,
449     goal: CanonicalTyGoal<'tcx>,
450 ) -> MethodAutoderefStepsResult<'tcx> {
451     debug!("method_autoderef_steps({:?})", goal);
452
453     tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
454         let ParamEnvAnd { param_env, value: self_ty } = goal;
455
456         let mut autoderef = Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty)
457             .include_raw_pointers()
458             .silence_errors();
459         let mut reached_raw_pointer = false;
460         let mut steps: Vec<_> = autoderef
461             .by_ref()
462             .map(|(ty, d)| {
463                 let step = CandidateStep {
464                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
465                         inference_vars.clone(),
466                         ty,
467                     ),
468                     autoderefs: d,
469                     from_unsafe_deref: reached_raw_pointer,
470                     unsize: false,
471                 };
472                 if let ty::RawPtr(_) = ty.kind {
473                     // all the subsequent steps will be from_unsafe_deref
474                     reached_raw_pointer = true;
475                 }
476                 step
477             })
478             .collect();
479
480         let final_ty = autoderef.final_ty(true);
481         let opt_bad_ty = match final_ty.kind {
482             ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
483                 reached_raw_pointer,
484                 ty: infcx
485                     .make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
486             }),
487             ty::Array(elem_ty, _) => {
488                 let dereferences = steps.len() - 1;
489
490                 steps.push(CandidateStep {
491                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
492                         inference_vars,
493                         infcx.tcx.mk_slice(elem_ty),
494                     ),
495                     autoderefs: dereferences,
496                     // this could be from an unsafe deref if we had
497                     // a *mut/const [T; N]
498                     from_unsafe_deref: reached_raw_pointer,
499                     unsize: true,
500                 });
501
502                 None
503             }
504             _ => None,
505         };
506
507         debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
508
509         MethodAutoderefStepsResult {
510             steps: Lrc::new(steps),
511             opt_bad_ty: opt_bad_ty.map(Lrc::new),
512             reached_recursion_limit: autoderef.reached_recursion_limit(),
513         }
514     })
515 }
516
517 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
518     fn new(
519         fcx: &'a FnCtxt<'a, 'tcx>,
520         span: Span,
521         mode: Mode,
522         method_name: Option<Ident>,
523         return_type: Option<Ty<'tcx>>,
524         orig_steps_var_values: OriginalQueryValues<'tcx>,
525         steps: Lrc<Vec<CandidateStep<'tcx>>>,
526         is_suggestion: IsSuggestion,
527     ) -> ProbeContext<'a, 'tcx> {
528         ProbeContext {
529             fcx,
530             span,
531             mode,
532             method_name,
533             return_type,
534             inherent_candidates: Vec::new(),
535             extension_candidates: Vec::new(),
536             impl_dups: FxHashSet::default(),
537             orig_steps_var_values,
538             steps,
539             static_candidates: Vec::new(),
540             allow_similar_names: false,
541             private_candidate: None,
542             unsatisfied_predicates: Vec::new(),
543             is_suggestion,
544         }
545     }
546
547     fn reset(&mut self) {
548         self.inherent_candidates.clear();
549         self.extension_candidates.clear();
550         self.impl_dups.clear();
551         self.static_candidates.clear();
552         self.private_candidate = None;
553     }
554
555     ///////////////////////////////////////////////////////////////////////////
556     // CANDIDATE ASSEMBLY
557
558     fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
559         let is_accessible = if let Some(name) = self.method_name {
560             let item = candidate.item;
561             let def_scope =
562                 self.tcx.adjust_ident_and_get_scope(name, item.container.id(), self.body_id).1;
563             item.vis.is_accessible_from(def_scope, self.tcx)
564         } else {
565             true
566         };
567         if is_accessible {
568             if is_inherent {
569                 self.inherent_candidates.push(candidate);
570             } else {
571                 self.extension_candidates.push(candidate);
572             }
573         } else if self.private_candidate.is_none() {
574             self.private_candidate =
575                 Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
576         }
577     }
578
579     fn assemble_inherent_candidates(&mut self) {
580         let steps = Lrc::clone(&self.steps);
581         for step in steps.iter() {
582             self.assemble_probe(&step.self_ty);
583         }
584     }
585
586     fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
587         debug!("assemble_probe: self_ty={:?}", self_ty);
588         let lang_items = self.tcx.lang_items();
589
590         match self_ty.value.value.kind {
591             ty::Dynamic(ref data, ..) => {
592                 if let Some(p) = data.principal() {
593                     // Subtle: we can't use `instantiate_query_response` here: using it will
594                     // commit to all of the type equalities assumed by inference going through
595                     // autoderef (see the `method-probe-no-guessing` test).
596                     //
597                     // However, in this code, it is OK if we end up with an object type that is
598                     // "more general" than the object type that we are evaluating. For *every*
599                     // object type `MY_OBJECT`, a function call that goes through a trait-ref
600                     // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
601                     // `ObjectCandidate`, and it should be discoverable "exactly" through one
602                     // of the iterations in the autoderef loop, so there is no problem with it
603                     // being discoverable in another one of these iterations.
604                     //
605                     // Using `instantiate_canonical_with_fresh_inference_vars` on our
606                     // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
607                     // `CanonicalVarValues` will exactly give us such a generalization - it
608                     // will still match the original object type, but it won't pollute our
609                     // type variables in any form, so just do that!
610                     let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
611                         self.fcx
612                             .instantiate_canonical_with_fresh_inference_vars(self.span, &self_ty);
613
614                     self.assemble_inherent_candidates_from_object(generalized_self_ty);
615                     self.assemble_inherent_impl_candidates_for_type(p.def_id());
616                 }
617             }
618             ty::Adt(def, _) => {
619                 self.assemble_inherent_impl_candidates_for_type(def.did);
620             }
621             ty::Foreign(did) => {
622                 self.assemble_inherent_impl_candidates_for_type(did);
623             }
624             ty::Param(p) => {
625                 self.assemble_inherent_candidates_from_param(p);
626             }
627             ty::Bool => {
628                 let lang_def_id = lang_items.bool_impl();
629                 self.assemble_inherent_impl_for_primitive(lang_def_id);
630             }
631             ty::Char => {
632                 let lang_def_id = lang_items.char_impl();
633                 self.assemble_inherent_impl_for_primitive(lang_def_id);
634             }
635             ty::Str => {
636                 let lang_def_id = lang_items.str_impl();
637                 self.assemble_inherent_impl_for_primitive(lang_def_id);
638
639                 let lang_def_id = lang_items.str_alloc_impl();
640                 self.assemble_inherent_impl_for_primitive(lang_def_id);
641             }
642             ty::Slice(_) => {
643                 for &lang_def_id in &[
644                     lang_items.slice_impl(),
645                     lang_items.slice_u8_impl(),
646                     lang_items.slice_alloc_impl(),
647                     lang_items.slice_u8_alloc_impl(),
648                 ] {
649                     self.assemble_inherent_impl_for_primitive(lang_def_id);
650                 }
651             }
652             ty::RawPtr(ty::TypeAndMut { ty: _, mutbl }) => {
653                 let (lang_def_id1, lang_def_id2) = match mutbl {
654                     hir::Mutability::Not => {
655                         (lang_items.const_ptr_impl(), lang_items.const_slice_ptr_impl())
656                     }
657                     hir::Mutability::Mut => {
658                         (lang_items.mut_ptr_impl(), lang_items.mut_slice_ptr_impl())
659                     }
660                 };
661                 self.assemble_inherent_impl_for_primitive(lang_def_id1);
662                 self.assemble_inherent_impl_for_primitive(lang_def_id2);
663             }
664             ty::Int(i) => {
665                 let lang_def_id = match i {
666                     ast::IntTy::I8 => lang_items.i8_impl(),
667                     ast::IntTy::I16 => lang_items.i16_impl(),
668                     ast::IntTy::I32 => lang_items.i32_impl(),
669                     ast::IntTy::I64 => lang_items.i64_impl(),
670                     ast::IntTy::I128 => lang_items.i128_impl(),
671                     ast::IntTy::Isize => lang_items.isize_impl(),
672                 };
673                 self.assemble_inherent_impl_for_primitive(lang_def_id);
674             }
675             ty::Uint(i) => {
676                 let lang_def_id = match i {
677                     ast::UintTy::U8 => lang_items.u8_impl(),
678                     ast::UintTy::U16 => lang_items.u16_impl(),
679                     ast::UintTy::U32 => lang_items.u32_impl(),
680                     ast::UintTy::U64 => lang_items.u64_impl(),
681                     ast::UintTy::U128 => lang_items.u128_impl(),
682                     ast::UintTy::Usize => lang_items.usize_impl(),
683                 };
684                 self.assemble_inherent_impl_for_primitive(lang_def_id);
685             }
686             ty::Float(f) => {
687                 let (lang_def_id1, lang_def_id2) = match f {
688                     ast::FloatTy::F32 => (lang_items.f32_impl(), lang_items.f32_runtime_impl()),
689                     ast::FloatTy::F64 => (lang_items.f64_impl(), lang_items.f64_runtime_impl()),
690                 };
691                 self.assemble_inherent_impl_for_primitive(lang_def_id1);
692                 self.assemble_inherent_impl_for_primitive(lang_def_id2);
693             }
694             _ => {}
695         }
696     }
697
698     fn assemble_inherent_impl_for_primitive(&mut self, lang_def_id: Option<DefId>) {
699         if let Some(impl_def_id) = lang_def_id {
700             self.assemble_inherent_impl_probe(impl_def_id);
701         }
702     }
703
704     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
705         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
706         for &impl_def_id in impl_def_ids.iter() {
707             self.assemble_inherent_impl_probe(impl_def_id);
708         }
709     }
710
711     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
712         if !self.impl_dups.insert(impl_def_id) {
713             return; // already visited
714         }
715
716         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
717
718         for item in self.impl_or_trait_item(impl_def_id) {
719             if !self.has_applicable_self(&item) {
720                 // No receiver declared. Not a candidate.
721                 self.record_static_candidate(ImplSource(impl_def_id));
722                 continue;
723             }
724
725             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
726             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
727
728             // Determine the receiver type that the method itself expects.
729             let xform_tys = self.xform_self_ty(&item, impl_ty, impl_substs);
730
731             // We can't use normalize_associated_types_in as it will pollute the
732             // fcx's fulfillment context after this probe is over.
733             let cause = traits::ObligationCause::misc(self.span, self.body_id);
734             let selcx = &mut traits::SelectionContext::new(self.fcx);
735             let traits::Normalized { value: (xform_self_ty, xform_ret_ty), obligations } =
736                 traits::normalize(selcx, self.param_env, cause, &xform_tys);
737             debug!(
738                 "assemble_inherent_impl_probe: xform_self_ty = {:?}/{:?}",
739                 xform_self_ty, xform_ret_ty
740             );
741
742             self.push_candidate(
743                 Candidate {
744                     xform_self_ty,
745                     xform_ret_ty,
746                     item,
747                     kind: InherentImplCandidate(impl_substs, obligations),
748                     import_ids: smallvec![],
749                 },
750                 true,
751             );
752         }
753     }
754
755     fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
756         debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
757
758         let principal = match self_ty.kind {
759             ty::Dynamic(ref data, ..) => Some(data),
760             _ => None,
761         }
762         .and_then(|data| data.principal())
763         .unwrap_or_else(|| {
764             span_bug!(
765                 self.span,
766                 "non-object {:?} in assemble_inherent_candidates_from_object",
767                 self_ty
768             )
769         });
770
771         // It is illegal to invoke a method on a trait instance that
772         // refers to the `Self` type. An error will be reported by
773         // `enforce_object_limitations()` if the method refers to the
774         // `Self` type anywhere other than the receiver. Here, we use
775         // a substitution that replaces `Self` with the object type
776         // itself. Hence, a `&self` method will wind up with an
777         // argument type like `&Trait`.
778         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
779         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
780             let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
781
782             let (xform_self_ty, xform_ret_ty) =
783                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
784             this.push_candidate(
785                 Candidate {
786                     xform_self_ty,
787                     xform_ret_ty,
788                     item,
789                     kind: ObjectCandidate,
790                     import_ids: smallvec![],
791                 },
792                 true,
793             );
794         });
795     }
796
797     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
798         // FIXME: do we want to commit to this behavior for param bounds?
799         debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
800
801         let bounds =
802             self.param_env.caller_bounds().iter().map(ty::Predicate::skip_binders).filter_map(
803                 |predicate| match predicate {
804                     ty::PredicateAtom::Trait(trait_predicate, _) => {
805                         match trait_predicate.trait_ref.self_ty().kind {
806                             ty::Param(ref p) if *p == param_ty => {
807                                 Some(ty::Binder::bind(trait_predicate.trait_ref))
808                             }
809                             _ => None,
810                         }
811                     }
812                     ty::PredicateAtom::Subtype(..)
813                     | ty::PredicateAtom::Projection(..)
814                     | ty::PredicateAtom::RegionOutlives(..)
815                     | ty::PredicateAtom::WellFormed(..)
816                     | ty::PredicateAtom::ObjectSafe(..)
817                     | ty::PredicateAtom::ClosureKind(..)
818                     | ty::PredicateAtom::TypeOutlives(..)
819                     | ty::PredicateAtom::ConstEvaluatable(..)
820                     | ty::PredicateAtom::ConstEquate(..) => None,
821                 },
822             );
823
824         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
825             let trait_ref = this.erase_late_bound_regions(&poly_trait_ref);
826
827             let (xform_self_ty, xform_ret_ty) =
828                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
829
830             // Because this trait derives from a where-clause, it
831             // should not contain any inference variables or other
832             // artifacts. This means it is safe to put into the
833             // `WhereClauseCandidate` and (eventually) into the
834             // `WhereClausePick`.
835             assert!(!trait_ref.substs.needs_infer());
836
837             this.push_candidate(
838                 Candidate {
839                     xform_self_ty,
840                     xform_ret_ty,
841                     item,
842                     kind: WhereClauseCandidate(poly_trait_ref),
843                     import_ids: smallvec![],
844                 },
845                 true,
846             );
847         });
848     }
849
850     // Do a search through a list of bounds, using a callback to actually
851     // create the candidates.
852     fn elaborate_bounds<F>(
853         &mut self,
854         bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
855         mut mk_cand: F,
856     ) where
857         F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
858     {
859         let tcx = self.tcx;
860         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
861             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
862             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
863                 if !self.has_applicable_self(&item) {
864                     self.record_static_candidate(TraitSource(bound_trait_ref.def_id()));
865                 } else {
866                     mk_cand(self, bound_trait_ref, item);
867                 }
868             }
869         }
870     }
871
872     fn assemble_extension_candidates_for_traits_in_scope(
873         &mut self,
874         expr_hir_id: hir::HirId,
875     ) -> Result<(), MethodError<'tcx>> {
876         let mut duplicates = FxHashSet::default();
877         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
878         if let Some(applicable_traits) = opt_applicable_traits {
879             for trait_candidate in applicable_traits.iter() {
880                 let trait_did = trait_candidate.def_id;
881                 if duplicates.insert(trait_did) {
882                     let result = self.assemble_extension_candidates_for_trait(
883                         &trait_candidate.import_ids,
884                         trait_did,
885                     );
886                     result?;
887                 }
888             }
889         }
890         Ok(())
891     }
892
893     fn assemble_extension_candidates_for_all_traits(&mut self) -> Result<(), MethodError<'tcx>> {
894         let mut duplicates = FxHashSet::default();
895         for trait_info in suggest::all_traits(self.tcx) {
896             if duplicates.insert(trait_info.def_id) {
897                 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id)?;
898             }
899         }
900         Ok(())
901     }
902
903     pub fn matches_return_type(
904         &self,
905         method: &ty::AssocItem,
906         self_ty: Option<Ty<'tcx>>,
907         expected: Ty<'tcx>,
908     ) -> bool {
909         match method.kind {
910             ty::AssocKind::Fn => {
911                 let fty = self.tcx.fn_sig(method.def_id);
912                 self.probe(|_| {
913                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
914                     let fty = fty.subst(self.tcx, substs);
915                     let (fty, _) =
916                         self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, &fty);
917
918                     if let Some(self_ty) = self_ty {
919                         if self
920                             .at(&ObligationCause::dummy(), self.param_env)
921                             .sup(fty.inputs()[0], self_ty)
922                             .is_err()
923                         {
924                             return false;
925                         }
926                     }
927                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
928                 })
929             }
930             _ => false,
931         }
932     }
933
934     fn assemble_extension_candidates_for_trait(
935         &mut self,
936         import_ids: &SmallVec<[LocalDefId; 1]>,
937         trait_def_id: DefId,
938     ) -> Result<(), MethodError<'tcx>> {
939         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
940         let trait_substs = self.fresh_item_substs(trait_def_id);
941         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
942
943         if self.tcx.is_trait_alias(trait_def_id) {
944             // For trait aliases, assume all super-traits are relevant.
945             let bounds = iter::once(trait_ref.to_poly_trait_ref());
946             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
947                 let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);
948
949                 let (xform_self_ty, xform_ret_ty) =
950                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
951                 this.push_candidate(
952                     Candidate {
953                         xform_self_ty,
954                         xform_ret_ty,
955                         item,
956                         import_ids: import_ids.clone(),
957                         kind: TraitCandidate(new_trait_ref),
958                     },
959                     false,
960                 );
961             });
962         } else {
963             debug_assert!(self.tcx.is_trait(trait_def_id));
964             for item in self.impl_or_trait_item(trait_def_id) {
965                 // Check whether `trait_def_id` defines a method with suitable name.
966                 if !self.has_applicable_self(&item) {
967                     debug!("method has inapplicable self");
968                     self.record_static_candidate(TraitSource(trait_def_id));
969                     continue;
970                 }
971
972                 let (xform_self_ty, xform_ret_ty) =
973                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
974                 self.push_candidate(
975                     Candidate {
976                         xform_self_ty,
977                         xform_ret_ty,
978                         item,
979                         import_ids: import_ids.clone(),
980                         kind: TraitCandidate(trait_ref),
981                     },
982                     false,
983                 );
984             }
985         }
986         Ok(())
987     }
988
989     fn candidate_method_names(&self) -> Vec<Ident> {
990         let mut set = FxHashSet::default();
991         let mut names: Vec<_> = self
992             .inherent_candidates
993             .iter()
994             .chain(&self.extension_candidates)
995             .filter(|candidate| {
996                 if let Some(return_ty) = self.return_type {
997                     self.matches_return_type(&candidate.item, None, return_ty)
998                 } else {
999                     true
1000                 }
1001             })
1002             .map(|candidate| candidate.item.ident)
1003             .filter(|&name| set.insert(name))
1004             .collect();
1005
1006         // Sort them by the name so we have a stable result.
1007         names.sort_by_cached_key(|n| n.as_str());
1008         names
1009     }
1010
1011     ///////////////////////////////////////////////////////////////////////////
1012     // THE ACTUAL SEARCH
1013
1014     fn pick(mut self) -> PickResult<'tcx> {
1015         assert!(self.method_name.is_some());
1016
1017         if let Some(r) = self.pick_core() {
1018             return r;
1019         }
1020
1021         debug!("pick: actual search failed, assemble diagnostics");
1022
1023         let static_candidates = mem::take(&mut self.static_candidates);
1024         let private_candidate = self.private_candidate.take();
1025         let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
1026
1027         // things failed, so lets look at all traits, for diagnostic purposes now:
1028         self.reset();
1029
1030         let span = self.span;
1031         let tcx = self.tcx;
1032
1033         self.assemble_extension_candidates_for_all_traits()?;
1034
1035         let out_of_scope_traits = match self.pick_core() {
1036             Some(Ok(p)) => vec![p.item.container.id()],
1037             //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
1038             Some(Err(MethodError::Ambiguity(v))) => v
1039                 .into_iter()
1040                 .map(|source| match source {
1041                     TraitSource(id) => id,
1042                     ImplSource(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1043                         Some(id) => id,
1044                         None => span_bug!(span, "found inherent method when looking at traits"),
1045                     },
1046                 })
1047                 .collect(),
1048             Some(Err(MethodError::NoMatch(NoMatchData {
1049                 out_of_scope_traits: others, ..
1050             }))) => {
1051                 assert!(others.is_empty());
1052                 vec![]
1053             }
1054             _ => vec![],
1055         };
1056
1057         if let Some((kind, def_id)) = private_candidate {
1058             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1059         }
1060         let lev_candidate = self.probe_for_lev_candidate()?;
1061
1062         Err(MethodError::NoMatch(NoMatchData::new(
1063             static_candidates,
1064             unsatisfied_predicates,
1065             out_of_scope_traits,
1066             lev_candidate,
1067             self.mode,
1068         )))
1069     }
1070
1071     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1072         let steps = self.steps.clone();
1073
1074         // find the first step that works
1075         steps
1076             .iter()
1077             .filter(|step| {
1078                 debug!("pick_core: step={:?}", step);
1079                 // skip types that are from a type error or that would require dereferencing
1080                 // a raw pointer
1081                 !step.self_ty.references_error() && !step.from_unsafe_deref
1082             })
1083             .flat_map(|step| {
1084                 let InferOk { value: self_ty, obligations: _ } = self
1085                     .fcx
1086                     .probe_instantiate_query_response(
1087                         self.span,
1088                         &self.orig_steps_var_values,
1089                         &step.self_ty,
1090                     )
1091                     .unwrap_or_else(|_| {
1092                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1093                     });
1094                 self.pick_by_value_method(step, self_ty).or_else(|| {
1095                     self.pick_autorefd_method(step, self_ty, hir::Mutability::Not)
1096                         .or_else(|| self.pick_autorefd_method(step, self_ty, hir::Mutability::Mut))
1097                 })
1098             })
1099             .next()
1100     }
1101
1102     fn pick_by_value_method(
1103         &mut self,
1104         step: &CandidateStep<'tcx>,
1105         self_ty: Ty<'tcx>,
1106     ) -> Option<PickResult<'tcx>> {
1107         //! For each type `T` in the step list, this attempts to find a
1108         //! method where the (transformed) self type is exactly `T`. We
1109         //! do however do one transformation on the adjustment: if we
1110         //! are passing a region pointer in, we will potentially
1111         //! *reborrow* it to a shorter lifetime. This allows us to
1112         //! transparently pass `&mut` pointers, in particular, without
1113         //! consuming them for their entire lifetime.
1114
1115         if step.unsize {
1116             return None;
1117         }
1118
1119         self.pick_method(self_ty).map(|r| {
1120             r.map(|mut pick| {
1121                 pick.autoderefs = step.autoderefs;
1122
1123                 // Insert a `&*` or `&mut *` if this is a reference type:
1124                 if let ty::Ref(_, _, mutbl) = step.self_ty.value.value.kind {
1125                     pick.autoderefs += 1;
1126                     pick.autoref = Some(mutbl);
1127                 }
1128
1129                 pick
1130             })
1131         })
1132     }
1133
1134     fn pick_autorefd_method(
1135         &mut self,
1136         step: &CandidateStep<'tcx>,
1137         self_ty: Ty<'tcx>,
1138         mutbl: hir::Mutability,
1139     ) -> Option<PickResult<'tcx>> {
1140         let tcx = self.tcx;
1141
1142         // In general, during probing we erase regions.
1143         let region = tcx.lifetimes.re_erased;
1144
1145         let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1146         self.pick_method(autoref_ty).map(|r| {
1147             r.map(|mut pick| {
1148                 pick.autoderefs = step.autoderefs;
1149                 pick.autoref = Some(mutbl);
1150                 pick.unsize = step.unsize.then_some(self_ty);
1151                 pick
1152             })
1153         })
1154     }
1155
1156     fn pick_method(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1157         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1158
1159         let mut possibly_unsatisfied_predicates = Vec::new();
1160         let mut unstable_candidates = Vec::new();
1161
1162         for (kind, candidates) in
1163             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1164         {
1165             debug!("searching {} candidates", kind);
1166             let res = self.consider_candidates(
1167                 self_ty,
1168                 candidates.iter(),
1169                 &mut possibly_unsatisfied_predicates,
1170                 Some(&mut unstable_candidates),
1171             );
1172             if let Some(pick) = res {
1173                 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1174                     if let Ok(p) = &pick {
1175                         // Emit a lint if there are unstable candidates alongside the stable ones.
1176                         //
1177                         // We suppress warning if we're picking the method only because it is a
1178                         // suggestion.
1179                         self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1180                     }
1181                 }
1182                 return Some(pick);
1183             }
1184         }
1185
1186         debug!("searching unstable candidates");
1187         let res = self.consider_candidates(
1188             self_ty,
1189             unstable_candidates.into_iter().map(|(c, _)| c),
1190             &mut possibly_unsatisfied_predicates,
1191             None,
1192         );
1193         if res.is_none() {
1194             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1195         }
1196         res
1197     }
1198
1199     fn consider_candidates<'b, ProbesIter>(
1200         &self,
1201         self_ty: Ty<'tcx>,
1202         probes: ProbesIter,
1203         possibly_unsatisfied_predicates: &mut Vec<(
1204             ty::Predicate<'tcx>,
1205             Option<ty::Predicate<'tcx>>,
1206         )>,
1207         unstable_candidates: Option<&mut Vec<(&'b Candidate<'tcx>, Symbol)>>,
1208     ) -> Option<PickResult<'tcx>>
1209     where
1210         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1211     {
1212         let mut applicable_candidates: Vec<_> = probes
1213             .clone()
1214             .map(|probe| {
1215                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1216             })
1217             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1218             .collect();
1219
1220         debug!("applicable_candidates: {:?}", applicable_candidates);
1221
1222         if applicable_candidates.len() > 1 {
1223             if let Some(pick) = self.collapse_candidates_to_trait_pick(&applicable_candidates[..]) {
1224                 return Some(Ok(pick));
1225             }
1226         }
1227
1228         if let Some(uc) = unstable_candidates {
1229             applicable_candidates.retain(|&(p, _)| {
1230                 if let stability::EvalResult::Deny { feature, .. } =
1231                     self.tcx.eval_stability(p.item.def_id, None, self.span)
1232                 {
1233                     uc.push((p, feature));
1234                     return false;
1235                 }
1236                 true
1237             });
1238         }
1239
1240         if applicable_candidates.len() > 1 {
1241             let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
1242             return Some(Err(MethodError::Ambiguity(sources)));
1243         }
1244
1245         applicable_candidates.pop().map(|(probe, status)| {
1246             if status == ProbeResult::Match {
1247                 Ok(probe.to_unadjusted_pick())
1248             } else {
1249                 Err(MethodError::BadReturnType)
1250             }
1251         })
1252     }
1253
1254     fn emit_unstable_name_collision_hint(
1255         &self,
1256         stable_pick: &Pick<'_>,
1257         unstable_candidates: &[(&Candidate<'tcx>, Symbol)],
1258     ) {
1259         self.tcx.struct_span_lint_hir(
1260             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1261             self.fcx.body_id,
1262             self.span,
1263             |lint| {
1264                 let mut diag = lint.build(
1265                     "a method with this name may be added to the standard library in the future",
1266                 );
1267                 // FIXME: This should be a `span_suggestion` instead of `help`
1268                 // However `self.span` only
1269                 // highlights the method name, so we can't use it. Also consider reusing the code from
1270                 // `report_method_error()`.
1271                 diag.help(&format!(
1272                     "call with fully qualified syntax `{}(...)` to keep using the current method",
1273                     self.tcx.def_path_str(stable_pick.item.def_id),
1274                 ));
1275
1276                 if nightly_options::is_nightly_build() {
1277                     for (candidate, feature) in unstable_candidates {
1278                         diag.help(&format!(
1279                             "add `#![feature({})]` to the crate attributes to enable `{}`",
1280                             feature,
1281                             self.tcx.def_path_str(candidate.item.def_id),
1282                         ));
1283                     }
1284                 }
1285
1286                 diag.emit();
1287             },
1288         );
1289     }
1290
1291     fn select_trait_candidate(
1292         &self,
1293         trait_ref: ty::TraitRef<'tcx>,
1294     ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1295         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1296         let predicate = trait_ref.to_poly_trait_ref().to_poly_trait_predicate();
1297         let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1298         traits::SelectionContext::new(self).select(&obligation)
1299     }
1300
1301     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1302         match candidate.kind {
1303             InherentImplCandidate(..) => ImplSource(candidate.item.container.id()),
1304             ObjectCandidate | WhereClauseCandidate(_) => TraitSource(candidate.item.container.id()),
1305             TraitCandidate(trait_ref) => self.probe(|_| {
1306                 let _ = self
1307                     .at(&ObligationCause::dummy(), self.param_env)
1308                     .sup(candidate.xform_self_ty, self_ty);
1309                 match self.select_trait_candidate(trait_ref) {
1310                     Ok(Some(traits::ImplSource::ImplSourceUserDefined(ref impl_data))) => {
1311                         // If only a single impl matches, make the error message point
1312                         // to that impl.
1313                         ImplSource(impl_data.impl_def_id)
1314                     }
1315                     _ => TraitSource(candidate.item.container.id()),
1316                 }
1317             }),
1318         }
1319     }
1320
1321     fn consider_probe(
1322         &self,
1323         self_ty: Ty<'tcx>,
1324         probe: &Candidate<'tcx>,
1325         possibly_unsatisfied_predicates: &mut Vec<(
1326             ty::Predicate<'tcx>,
1327             Option<ty::Predicate<'tcx>>,
1328         )>,
1329     ) -> ProbeResult {
1330         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1331
1332         self.probe(|_| {
1333             // First check that the self type can be related.
1334             let sub_obligations = match self
1335                 .at(&ObligationCause::dummy(), self.param_env)
1336                 .sup(probe.xform_self_ty, self_ty)
1337             {
1338                 Ok(InferOk { obligations, value: () }) => obligations,
1339                 Err(_) => {
1340                     debug!("--> cannot relate self-types");
1341                     return ProbeResult::NoMatch;
1342                 }
1343             };
1344
1345             let mut result = ProbeResult::Match;
1346             let selcx = &mut traits::SelectionContext::new(self);
1347             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1348
1349             // If so, impls may carry other conditions (e.g., where
1350             // clauses) that must be considered. Make sure that those
1351             // match as well (or at least may match, sometimes we
1352             // don't have enough information to fully evaluate).
1353             match probe.kind {
1354                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1355                     // Check whether the impl imposes obligations we have to worry about.
1356                     let impl_def_id = probe.item.container.id();
1357                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1358                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1359                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1360                         traits::normalize(selcx, self.param_env, cause.clone(), &impl_bounds);
1361
1362                     // Convert the bounds into obligations.
1363                     let impl_obligations =
1364                         traits::predicates_for_generics(cause, self.param_env, impl_bounds);
1365
1366                     let candidate_obligations = impl_obligations
1367                         .chain(norm_obligations.into_iter())
1368                         .chain(ref_obligations.iter().cloned());
1369                     // Evaluate those obligations to see if they might possibly hold.
1370                     for o in candidate_obligations {
1371                         let o = self.resolve_vars_if_possible(&o);
1372                         if !self.predicate_may_hold(&o) {
1373                             result = ProbeResult::NoMatch;
1374                             possibly_unsatisfied_predicates.push((o.predicate, None));
1375                         }
1376                     }
1377                 }
1378
1379                 ObjectCandidate | WhereClauseCandidate(..) => {
1380                     // These have no additional conditions to check.
1381                 }
1382
1383                 TraitCandidate(trait_ref) => {
1384                     let predicate = trait_ref.without_const().to_predicate(self.tcx);
1385                     let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1386                     if !self.predicate_may_hold(&obligation) {
1387                         result = ProbeResult::NoMatch;
1388                         if self.probe(|_| {
1389                             match self.select_trait_candidate(trait_ref) {
1390                                 Err(_) => return true,
1391                                 Ok(Some(impl_source))
1392                                     if !impl_source.borrow_nested_obligations().is_empty() =>
1393                                 {
1394                                     for obligation in impl_source.borrow_nested_obligations() {
1395                                         // Determine exactly which obligation wasn't met, so
1396                                         // that we can give more context in the error.
1397                                         if !self.predicate_may_hold(&obligation) {
1398                                             let o = self.resolve_vars_if_possible(obligation);
1399                                             let predicate =
1400                                                 self.resolve_vars_if_possible(&predicate);
1401                                             let p = if predicate == o.predicate {
1402                                                 // Avoid "`MyStruct: Foo` which is required by
1403                                                 // `MyStruct: Foo`" in E0599.
1404                                                 None
1405                                             } else {
1406                                                 Some(predicate)
1407                                             };
1408                                             possibly_unsatisfied_predicates.push((o.predicate, p));
1409                                         }
1410                                     }
1411                                 }
1412                                 _ => {
1413                                     // Some nested subobligation of this predicate
1414                                     // failed.
1415                                     let predicate = self.resolve_vars_if_possible(&predicate);
1416                                     possibly_unsatisfied_predicates.push((predicate, None));
1417                                 }
1418                             }
1419                             false
1420                         }) {
1421                             // This candidate's primary obligation doesn't even
1422                             // select - don't bother registering anything in
1423                             // `potentially_unsatisfied_predicates`.
1424                             return ProbeResult::NoMatch;
1425                         }
1426                     }
1427                 }
1428             }
1429
1430             // Evaluate those obligations to see if they might possibly hold.
1431             for o in sub_obligations {
1432                 let o = self.resolve_vars_if_possible(&o);
1433                 if !self.predicate_may_hold(&o) {
1434                     result = ProbeResult::NoMatch;
1435                     possibly_unsatisfied_predicates.push((o.predicate, None));
1436                 }
1437             }
1438
1439             if let ProbeResult::Match = result {
1440                 if let (Some(return_ty), Some(xform_ret_ty)) =
1441                     (self.return_type, probe.xform_ret_ty)
1442                 {
1443                     let xform_ret_ty = self.resolve_vars_if_possible(&xform_ret_ty);
1444                     debug!(
1445                         "comparing return_ty {:?} with xform ret ty {:?}",
1446                         return_ty, probe.xform_ret_ty
1447                     );
1448                     if self
1449                         .at(&ObligationCause::dummy(), self.param_env)
1450                         .sup(return_ty, xform_ret_ty)
1451                         .is_err()
1452                     {
1453                         return ProbeResult::BadReturnType;
1454                     }
1455                 }
1456             }
1457
1458             result
1459         })
1460     }
1461
1462     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1463     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1464     /// external interface of the method can be determined from the trait, it's ok not to decide.
1465     /// We can basically just collapse all of the probes for various impls into one where-clause
1466     /// probe. This will result in a pending obligation so when more type-info is available we can
1467     /// make the final decision.
1468     ///
1469     /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1470     ///
1471     /// ```
1472     /// trait Foo { ... }
1473     /// impl Foo for Vec<i32> { ... }
1474     /// impl Foo for Vec<usize> { ... }
1475     /// ```
1476     ///
1477     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1478     /// use, so it's ok to just commit to "using the method from the trait Foo".
1479     fn collapse_candidates_to_trait_pick(
1480         &self,
1481         probes: &[(&Candidate<'tcx>, ProbeResult)],
1482     ) -> Option<Pick<'tcx>> {
1483         // Do all probes correspond to the same trait?
1484         let container = probes[0].0.item.container;
1485         if let ty::ImplContainer(_) = container {
1486             return None;
1487         }
1488         if probes[1..].iter().any(|&(p, _)| p.item.container != container) {
1489             return None;
1490         }
1491
1492         // FIXME: check the return type here somehow.
1493         // If so, just use this trait and call it a day.
1494         Some(Pick {
1495             item: probes[0].0.item,
1496             kind: TraitPick,
1497             import_ids: probes[0].0.import_ids.clone(),
1498             autoderefs: 0,
1499             autoref: None,
1500             unsize: None,
1501         })
1502     }
1503
1504     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1505     /// candidate method where the method name may have been misspelt. Similarly to other
1506     /// Levenshtein based suggestions, we provide at most one such suggestion.
1507     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1508         debug!("probing for method names similar to {:?}", self.method_name);
1509
1510         let steps = self.steps.clone();
1511         self.probe(|_| {
1512             let mut pcx = ProbeContext::new(
1513                 self.fcx,
1514                 self.span,
1515                 self.mode,
1516                 self.method_name,
1517                 self.return_type,
1518                 self.orig_steps_var_values.clone(),
1519                 steps,
1520                 IsSuggestion(true),
1521             );
1522             pcx.allow_similar_names = true;
1523             pcx.assemble_inherent_candidates();
1524
1525             let method_names = pcx.candidate_method_names();
1526             pcx.allow_similar_names = false;
1527             let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1528                 .iter()
1529                 .filter_map(|&method_name| {
1530                     pcx.reset();
1531                     pcx.method_name = Some(method_name);
1532                     pcx.assemble_inherent_candidates();
1533                     pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
1534                 })
1535                 .collect();
1536
1537             if applicable_close_candidates.is_empty() {
1538                 Ok(None)
1539             } else {
1540                 let best_name = {
1541                     let names = applicable_close_candidates.iter().map(|cand| &cand.ident.name);
1542                     find_best_match_for_name(names, self.method_name.unwrap().name, None)
1543                 }
1544                 .unwrap();
1545                 Ok(applicable_close_candidates
1546                     .into_iter()
1547                     .find(|method| method.ident.name == best_name))
1548             }
1549         })
1550     }
1551
1552     ///////////////////////////////////////////////////////////////////////////
1553     // MISCELLANY
1554     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1555         // "Fast track" -- check for usage of sugar when in method call
1556         // mode.
1557         //
1558         // In Path mode (i.e., resolving a value like `T::next`), consider any
1559         // associated value (i.e., methods, constants) but not types.
1560         match self.mode {
1561             Mode::MethodCall => item.fn_has_self_parameter,
1562             Mode::Path => match item.kind {
1563                 ty::AssocKind::Type => false,
1564                 ty::AssocKind::Fn | ty::AssocKind::Const => true,
1565             },
1566         }
1567         // FIXME -- check for types that deref to `Self`,
1568         // like `Rc<Self>` and so on.
1569         //
1570         // Note also that the current code will break if this type
1571         // includes any of the type parameters defined on the method
1572         // -- but this could be overcome.
1573     }
1574
1575     fn record_static_candidate(&mut self, source: CandidateSource) {
1576         self.static_candidates.push(source);
1577     }
1578
1579     fn xform_self_ty(
1580         &self,
1581         item: &ty::AssocItem,
1582         impl_ty: Ty<'tcx>,
1583         substs: SubstsRef<'tcx>,
1584     ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1585         if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
1586             let sig = self.xform_method_sig(item.def_id, substs);
1587             (sig.inputs()[0], Some(sig.output()))
1588         } else {
1589             (impl_ty, None)
1590         }
1591     }
1592
1593     fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1594         let fn_sig = self.tcx.fn_sig(method);
1595         debug!("xform_self_ty(fn_sig={:?}, substs={:?})", fn_sig, substs);
1596
1597         assert!(!substs.has_escaping_bound_vars());
1598
1599         // It is possible for type parameters or early-bound lifetimes
1600         // to appear in the signature of `self`. The substitutions we
1601         // are given do not include type/lifetime parameters for the
1602         // method yet. So create fresh variables here for those too,
1603         // if there are any.
1604         let generics = self.tcx.generics_of(method);
1605         assert_eq!(substs.len(), generics.parent_count as usize);
1606
1607         // Erase any late-bound regions from the method and substitute
1608         // in the values from the substitution.
1609         let xform_fn_sig = self.erase_late_bound_regions(&fn_sig);
1610
1611         if generics.params.is_empty() {
1612             xform_fn_sig.subst(self.tcx, substs)
1613         } else {
1614             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1615                 let i = param.index as usize;
1616                 if i < substs.len() {
1617                     substs[i]
1618                 } else {
1619                     match param.kind {
1620                         GenericParamDefKind::Lifetime => {
1621                             // In general, during probe we erase regions.
1622                             self.tcx.lifetimes.re_erased.into()
1623                         }
1624                         GenericParamDefKind::Type { .. } | GenericParamDefKind::Const => {
1625                             self.var_for_def(self.span, param)
1626                         }
1627                     }
1628                 }
1629             });
1630             xform_fn_sig.subst(self.tcx, substs)
1631         }
1632     }
1633
1634     /// Gets the type of an impl and generate substitutions with placeholders.
1635     fn impl_ty_and_substs(&self, impl_def_id: DefId) -> (Ty<'tcx>, SubstsRef<'tcx>) {
1636         (self.tcx.type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1637     }
1638
1639     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1640         InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1641             GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1642             GenericParamDefKind::Type { .. } => self
1643                 .next_ty_var(TypeVariableOrigin {
1644                     kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1645                     span: self.tcx.def_span(def_id),
1646                 })
1647                 .into(),
1648             GenericParamDefKind::Const { .. } => {
1649                 let span = self.tcx.def_span(def_id);
1650                 let origin = ConstVariableOrigin {
1651                     kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1652                     span,
1653                 };
1654                 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1655             }
1656         })
1657     }
1658
1659     /// Replaces late-bound-regions bound by `value` with `'static` using
1660     /// `ty::erase_late_bound_regions`.
1661     ///
1662     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1663     /// method matching. It is reasonable during the probe phase because we don't consider region
1664     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1665     /// rather than creating fresh region variables. This is nice for two reasons:
1666     ///
1667     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1668     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1669     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1670     ///
1671     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1672     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1673     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1674     ///    region got replaced with the same variable, which requires a bit more coordination
1675     ///    and/or tracking the substitution and
1676     ///    so forth.
1677     fn erase_late_bound_regions<T>(&self, value: &ty::Binder<T>) -> T
1678     where
1679         T: TypeFoldable<'tcx>,
1680     {
1681         self.tcx.erase_late_bound_regions(value)
1682     }
1683
1684     /// Finds the method with the appropriate name (or return type, as the case may be). If
1685     /// `allow_similar_names` is set, find methods with close-matching names.
1686     fn impl_or_trait_item(&self, def_id: DefId) -> Vec<ty::AssocItem> {
1687         if let Some(name) = self.method_name {
1688             if self.allow_similar_names {
1689                 let max_dist = max(name.as_str().len(), 3) / 3;
1690                 self.tcx
1691                     .associated_items(def_id)
1692                     .in_definition_order()
1693                     .filter(|x| {
1694                         let dist = lev_distance(&*name.as_str(), &x.ident.as_str());
1695                         x.kind.namespace() == Namespace::ValueNS && dist > 0 && dist <= max_dist
1696                     })
1697                     .copied()
1698                     .collect()
1699             } else {
1700                 self.fcx
1701                     .associated_item(def_id, name, Namespace::ValueNS)
1702                     .map_or(Vec::new(), |x| vec![x])
1703             }
1704         } else {
1705             self.tcx.associated_items(def_id).in_definition_order().copied().collect()
1706         }
1707     }
1708 }
1709
1710 impl<'tcx> Candidate<'tcx> {
1711     fn to_unadjusted_pick(&self) -> Pick<'tcx> {
1712         Pick {
1713             item: self.item,
1714             kind: match self.kind {
1715                 InherentImplCandidate(..) => InherentImplPick,
1716                 ObjectCandidate => ObjectPick,
1717                 TraitCandidate(_) => TraitPick,
1718                 WhereClauseCandidate(ref trait_ref) => {
1719                     // Only trait derived from where-clauses should
1720                     // appear here, so they should not contain any
1721                     // inference variables or other artifacts. This
1722                     // means they are safe to put into the
1723                     // `WhereClausePick`.
1724                     assert!(
1725                         !trait_ref.skip_binder().substs.needs_infer()
1726                             && !trait_ref.skip_binder().substs.has_placeholders()
1727                     );
1728
1729                     WhereClausePick(*trait_ref)
1730                 }
1731             },
1732             import_ids: self.import_ids.clone(),
1733             autoderefs: 0,
1734             autoref: None,
1735             unsize: None,
1736         }
1737     }
1738 }