]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/compare_method.rs
Rollup merge of #67630 - oli-obk:extern_ptr_dangling, r=spastorino
[rust.git] / src / librustc_typeck / check / compare_method.rs
1 use errors::{pluralize, struct_span_err, Applicability, DiagnosticId};
2 use rustc::hir::intravisit;
3 use rustc::infer::{self, InferOk};
4 use rustc::traits::{self, ObligationCause, ObligationCauseCode, Reveal};
5 use rustc::ty::error::{ExpectedFound, TypeError};
6 use rustc::ty::subst::{InternalSubsts, Subst};
7 use rustc::ty::util::ExplicitSelf;
8 use rustc::ty::{self, GenericParamDefKind, TyCtxt};
9 use rustc::util::common::ErrorReported;
10 use rustc_hir as hir;
11 use rustc_hir::def::{DefKind, Res};
12 use rustc_hir::{GenericParamKind, ImplItemKind, TraitItemKind};
13 use rustc_span::Span;
14
15 use super::{potentially_plural_count, FnCtxt, Inherited};
16
17 use rustc_error_codes::*;
18
19 /// Checks that a method from an impl conforms to the signature of
20 /// the same method as declared in the trait.
21 ///
22 /// # Parameters
23 ///
24 /// - `impl_m`: type of the method we are checking
25 /// - `impl_m_span`: span to use for reporting errors
26 /// - `trait_m`: the method in the trait
27 /// - `impl_trait_ref`: the TraitRef corresponding to the trait implementation
28
29 crate fn compare_impl_method<'tcx>(
30     tcx: TyCtxt<'tcx>,
31     impl_m: &ty::AssocItem,
32     impl_m_span: Span,
33     trait_m: &ty::AssocItem,
34     impl_trait_ref: ty::TraitRef<'tcx>,
35     trait_item_span: Option<Span>,
36 ) {
37     debug!("compare_impl_method(impl_trait_ref={:?})", impl_trait_ref);
38
39     let impl_m_span = tcx.sess.source_map().def_span(impl_m_span);
40
41     if let Err(ErrorReported) = compare_self_type(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref)
42     {
43         return;
44     }
45
46     if let Err(ErrorReported) =
47         compare_number_of_generics(tcx, impl_m, impl_m_span, trait_m, trait_item_span)
48     {
49         return;
50     }
51
52     if let Err(ErrorReported) =
53         compare_number_of_method_arguments(tcx, impl_m, impl_m_span, trait_m, trait_item_span)
54     {
55         return;
56     }
57
58     if let Err(ErrorReported) = compare_synthetic_generics(tcx, impl_m, trait_m) {
59         return;
60     }
61
62     if let Err(ErrorReported) =
63         compare_predicate_entailment(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref)
64     {
65         return;
66     }
67 }
68
69 fn compare_predicate_entailment<'tcx>(
70     tcx: TyCtxt<'tcx>,
71     impl_m: &ty::AssocItem,
72     impl_m_span: Span,
73     trait_m: &ty::AssocItem,
74     impl_trait_ref: ty::TraitRef<'tcx>,
75 ) -> Result<(), ErrorReported> {
76     let trait_to_impl_substs = impl_trait_ref.substs;
77
78     // This node-id should be used for the `body_id` field on each
79     // `ObligationCause` (and the `FnCtxt`). This is what
80     // `regionck_item` expects.
81     let impl_m_hir_id = tcx.hir().as_local_hir_id(impl_m.def_id).unwrap();
82
83     let cause = ObligationCause {
84         span: impl_m_span,
85         body_id: impl_m_hir_id,
86         code: ObligationCauseCode::CompareImplMethodObligation {
87             item_name: impl_m.ident.name,
88             impl_item_def_id: impl_m.def_id,
89             trait_item_def_id: trait_m.def_id,
90         },
91     };
92
93     // This code is best explained by example. Consider a trait:
94     //
95     //     trait Trait<'t,T> {
96     //          fn method<'a,M>(t: &'t T, m: &'a M) -> Self;
97     //     }
98     //
99     // And an impl:
100     //
101     //     impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
102     //          fn method<'b,N>(t: &'j &'i U, m: &'b N) -> Foo;
103     //     }
104     //
105     // We wish to decide if those two method types are compatible.
106     //
107     // We start out with trait_to_impl_substs, that maps the trait
108     // type parameters to impl type parameters. This is taken from the
109     // impl trait reference:
110     //
111     //     trait_to_impl_substs = {'t => 'j, T => &'i U, Self => Foo}
112     //
113     // We create a mapping `dummy_substs` that maps from the impl type
114     // parameters to fresh types and regions. For type parameters,
115     // this is the identity transform, but we could as well use any
116     // placeholder types. For regions, we convert from bound to free
117     // regions (Note: but only early-bound regions, i.e., those
118     // declared on the impl or used in type parameter bounds).
119     //
120     //     impl_to_skol_substs = {'i => 'i0, U => U0, N => N0 }
121     //
122     // Now we can apply skol_substs to the type of the impl method
123     // to yield a new function type in terms of our fresh, placeholder
124     // types:
125     //
126     //     <'b> fn(t: &'i0 U0, m: &'b) -> Foo
127     //
128     // We now want to extract and substitute the type of the *trait*
129     // method and compare it. To do so, we must create a compound
130     // substitution by combining trait_to_impl_substs and
131     // impl_to_skol_substs, and also adding a mapping for the method
132     // type parameters. We extend the mapping to also include
133     // the method parameters.
134     //
135     //     trait_to_skol_substs = { T => &'i0 U0, Self => Foo, M => N0 }
136     //
137     // Applying this to the trait method type yields:
138     //
139     //     <'a> fn(t: &'i0 U0, m: &'a) -> Foo
140     //
141     // This type is also the same but the name of the bound region ('a
142     // vs 'b).  However, the normal subtyping rules on fn types handle
143     // this kind of equivalency just fine.
144     //
145     // We now use these substitutions to ensure that all declared bounds are
146     // satisfied by the implementation's method.
147     //
148     // We do this by creating a parameter environment which contains a
149     // substitution corresponding to impl_to_skol_substs. We then build
150     // trait_to_skol_substs and use it to convert the predicates contained
151     // in the trait_m.generics to the placeholder form.
152     //
153     // Finally we register each of these predicates as an obligation in
154     // a fresh FulfillmentCtxt, and invoke select_all_or_error.
155
156     // Create mapping from impl to placeholder.
157     let impl_to_skol_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
158
159     // Create mapping from trait to placeholder.
160     let trait_to_skol_substs =
161         impl_to_skol_substs.rebase_onto(tcx, impl_m.container.id(), trait_to_impl_substs);
162     debug!("compare_impl_method: trait_to_skol_substs={:?}", trait_to_skol_substs);
163
164     let impl_m_generics = tcx.generics_of(impl_m.def_id);
165     let trait_m_generics = tcx.generics_of(trait_m.def_id);
166     let impl_m_predicates = tcx.predicates_of(impl_m.def_id);
167     let trait_m_predicates = tcx.predicates_of(trait_m.def_id);
168
169     // Check region bounds.
170     check_region_bounds_on_impl_item(
171         tcx,
172         impl_m_span,
173         impl_m,
174         trait_m,
175         &trait_m_generics,
176         &impl_m_generics,
177     )?;
178
179     // Create obligations for each predicate declared by the impl
180     // definition in the context of the trait's parameter
181     // environment. We can't just use `impl_env.caller_bounds`,
182     // however, because we want to replace all late-bound regions with
183     // region variables.
184     let impl_predicates = tcx.predicates_of(impl_m_predicates.parent.unwrap());
185     let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
186
187     debug!("compare_impl_method: impl_bounds={:?}", hybrid_preds);
188
189     // This is the only tricky bit of the new way we check implementation methods
190     // We need to build a set of predicates where only the method-level bounds
191     // are from the trait and we assume all other bounds from the implementation
192     // to be previously satisfied.
193     //
194     // We then register the obligations from the impl_m and check to see
195     // if all constraints hold.
196     hybrid_preds
197         .predicates
198         .extend(trait_m_predicates.instantiate_own(tcx, trait_to_skol_substs).predicates);
199
200     // Construct trait parameter environment and then shift it into the placeholder viewpoint.
201     // The key step here is to update the caller_bounds's predicates to be
202     // the new hybrid bounds we computed.
203     let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_hir_id);
204     let param_env = ty::ParamEnv::new(
205         tcx.intern_predicates(&hybrid_preds.predicates),
206         Reveal::UserFacing,
207         None,
208     );
209     let param_env = traits::normalize_param_env_or_error(
210         tcx,
211         impl_m.def_id,
212         param_env,
213         normalize_cause.clone(),
214     );
215
216     tcx.infer_ctxt().enter(|infcx| {
217         let inh = Inherited::new(infcx, impl_m.def_id);
218         let infcx = &inh.infcx;
219
220         debug!("compare_impl_method: caller_bounds={:?}", param_env.caller_bounds);
221
222         let mut selcx = traits::SelectionContext::new(&infcx);
223
224         let impl_m_own_bounds = impl_m_predicates.instantiate_own(tcx, impl_to_skol_substs);
225         let (impl_m_own_bounds, _) = infcx.replace_bound_vars_with_fresh_vars(
226             impl_m_span,
227             infer::HigherRankedType,
228             &ty::Binder::bind(impl_m_own_bounds.predicates),
229         );
230         for predicate in impl_m_own_bounds {
231             let traits::Normalized { value: predicate, obligations } =
232                 traits::normalize(&mut selcx, param_env, normalize_cause.clone(), &predicate);
233
234             inh.register_predicates(obligations);
235             inh.register_predicate(traits::Obligation::new(cause.clone(), param_env, predicate));
236         }
237
238         // We now need to check that the signature of the impl method is
239         // compatible with that of the trait method. We do this by
240         // checking that `impl_fty <: trait_fty`.
241         //
242         // FIXME. Unfortunately, this doesn't quite work right now because
243         // associated type normalization is not integrated into subtype
244         // checks. For the comparison to be valid, we need to
245         // normalize the associated types in the impl/trait methods
246         // first. However, because function types bind regions, just
247         // calling `normalize_associated_types_in` would have no effect on
248         // any associated types appearing in the fn arguments or return
249         // type.
250
251         // Compute placeholder form of impl and trait method tys.
252         let tcx = infcx.tcx;
253
254         let (impl_sig, _) = infcx.replace_bound_vars_with_fresh_vars(
255             impl_m_span,
256             infer::HigherRankedType,
257             &tcx.fn_sig(impl_m.def_id),
258         );
259         let impl_sig =
260             inh.normalize_associated_types_in(impl_m_span, impl_m_hir_id, param_env, &impl_sig);
261         let impl_fty = tcx.mk_fn_ptr(ty::Binder::bind(impl_sig));
262         debug!("compare_impl_method: impl_fty={:?}", impl_fty);
263
264         let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, &tcx.fn_sig(trait_m.def_id));
265         let trait_sig = trait_sig.subst(tcx, trait_to_skol_substs);
266         let trait_sig =
267             inh.normalize_associated_types_in(impl_m_span, impl_m_hir_id, param_env, &trait_sig);
268         let trait_fty = tcx.mk_fn_ptr(ty::Binder::bind(trait_sig));
269
270         debug!("compare_impl_method: trait_fty={:?}", trait_fty);
271
272         let sub_result = infcx.at(&cause, param_env).sup(trait_fty, impl_fty).map(
273             |InferOk { obligations, .. }| {
274                 inh.register_predicates(obligations);
275             },
276         );
277
278         if let Err(terr) = sub_result {
279             debug!("sub_types failed: impl ty {:?}, trait ty {:?}", impl_fty, trait_fty);
280
281             let (impl_err_span, trait_err_span) = extract_spans_for_error_reporting(
282                 &infcx, param_env, &terr, &cause, impl_m, impl_sig, trait_m, trait_sig,
283             );
284
285             let cause = ObligationCause { span: impl_err_span, ..cause };
286
287             let mut diag = struct_span_err!(
288                 tcx.sess,
289                 cause.span(tcx),
290                 E0053,
291                 "method `{}` has an incompatible type for trait",
292                 trait_m.ident
293             );
294             if let TypeError::Mutability = terr {
295                 if let Some(trait_err_span) = trait_err_span {
296                     if let Ok(trait_err_str) = tcx.sess.source_map().span_to_snippet(trait_err_span)
297                     {
298                         diag.span_suggestion(
299                             impl_err_span,
300                             "consider change the type to match the mutability in trait",
301                             trait_err_str,
302                             Applicability::MachineApplicable,
303                         );
304                     }
305                 }
306             }
307
308             infcx.note_type_err(
309                 &mut diag,
310                 &cause,
311                 trait_err_span.map(|sp| (sp, "type in trait".to_owned())),
312                 Some(infer::ValuePairs::Types(ExpectedFound {
313                     expected: trait_fty,
314                     found: impl_fty,
315                 })),
316                 &terr,
317             );
318             diag.emit();
319             return Err(ErrorReported);
320         }
321
322         // Check that all obligations are satisfied by the implementation's
323         // version.
324         if let Err(ref errors) = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx) {
325             infcx.report_fulfillment_errors(errors, None, false);
326             return Err(ErrorReported);
327         }
328
329         // Finally, resolve all regions. This catches wily misuses of
330         // lifetime parameters.
331         let fcx = FnCtxt::new(&inh, param_env, impl_m_hir_id);
332         fcx.regionck_item(impl_m_hir_id, impl_m_span, &[]);
333
334         Ok(())
335     })
336 }
337
338 fn check_region_bounds_on_impl_item<'tcx>(
339     tcx: TyCtxt<'tcx>,
340     span: Span,
341     impl_m: &ty::AssocItem,
342     trait_m: &ty::AssocItem,
343     trait_generics: &ty::Generics,
344     impl_generics: &ty::Generics,
345 ) -> Result<(), ErrorReported> {
346     let trait_params = trait_generics.own_counts().lifetimes;
347     let impl_params = impl_generics.own_counts().lifetimes;
348
349     debug!(
350         "check_region_bounds_on_impl_item: \
351             trait_generics={:?} \
352             impl_generics={:?}",
353         trait_generics, impl_generics
354     );
355
356     // Must have same number of early-bound lifetime parameters.
357     // Unfortunately, if the user screws up the bounds, then this
358     // will change classification between early and late.  E.g.,
359     // if in trait we have `<'a,'b:'a>`, and in impl we just have
360     // `<'a,'b>`, then we have 2 early-bound lifetime parameters
361     // in trait but 0 in the impl. But if we report "expected 2
362     // but found 0" it's confusing, because it looks like there
363     // are zero. Since I don't quite know how to phrase things at
364     // the moment, give a kind of vague error message.
365     if trait_params != impl_params {
366         let item_kind = assoc_item_kind_str(impl_m);
367         let def_span = tcx.sess.source_map().def_span(span);
368         let span = tcx.hir().get_generics(impl_m.def_id).map(|g| g.span).unwrap_or(def_span);
369         let mut err = struct_span_err!(
370             tcx.sess,
371             span,
372             E0195,
373             "lifetime parameters or bounds on {} `{}` do not match the trait declaration",
374             item_kind,
375             impl_m.ident,
376         );
377         err.span_label(span, &format!("lifetimes do not match {} in trait", item_kind));
378         if let Some(sp) = tcx.hir().span_if_local(trait_m.def_id) {
379             let def_sp = tcx.sess.source_map().def_span(sp);
380             let sp = tcx.hir().get_generics(trait_m.def_id).map(|g| g.span).unwrap_or(def_sp);
381             err.span_label(
382                 sp,
383                 &format!("lifetimes in impl do not match this {} in trait", item_kind),
384             );
385         }
386         err.emit();
387         return Err(ErrorReported);
388     }
389
390     Ok(())
391 }
392
393 fn extract_spans_for_error_reporting<'a, 'tcx>(
394     infcx: &infer::InferCtxt<'a, 'tcx>,
395     param_env: ty::ParamEnv<'tcx>,
396     terr: &TypeError<'_>,
397     cause: &ObligationCause<'tcx>,
398     impl_m: &ty::AssocItem,
399     impl_sig: ty::FnSig<'tcx>,
400     trait_m: &ty::AssocItem,
401     trait_sig: ty::FnSig<'tcx>,
402 ) -> (Span, Option<Span>) {
403     let tcx = infcx.tcx;
404     let impl_m_hir_id = tcx.hir().as_local_hir_id(impl_m.def_id).unwrap();
405     let (impl_m_output, impl_m_iter) = match tcx.hir().expect_impl_item(impl_m_hir_id).kind {
406         ImplItemKind::Method(ref impl_m_sig, _) => {
407             (&impl_m_sig.decl.output, impl_m_sig.decl.inputs.iter())
408         }
409         _ => bug!("{:?} is not a method", impl_m),
410     };
411
412     match *terr {
413         TypeError::Mutability => {
414             if let Some(trait_m_hir_id) = tcx.hir().as_local_hir_id(trait_m.def_id) {
415                 let trait_m_iter = match tcx.hir().expect_trait_item(trait_m_hir_id).kind {
416                     TraitItemKind::Method(ref trait_m_sig, _) => trait_m_sig.decl.inputs.iter(),
417                     _ => bug!("{:?} is not a TraitItemKind::Method", trait_m),
418                 };
419
420                 impl_m_iter
421                     .zip(trait_m_iter)
422                     .find(|&(ref impl_arg, ref trait_arg)| {
423                         match (&impl_arg.kind, &trait_arg.kind) {
424                             (
425                                 &hir::TyKind::Rptr(_, ref impl_mt),
426                                 &hir::TyKind::Rptr(_, ref trait_mt),
427                             )
428                             | (&hir::TyKind::Ptr(ref impl_mt), &hir::TyKind::Ptr(ref trait_mt)) => {
429                                 impl_mt.mutbl != trait_mt.mutbl
430                             }
431                             _ => false,
432                         }
433                     })
434                     .map(|(ref impl_arg, ref trait_arg)| (impl_arg.span, Some(trait_arg.span)))
435                     .unwrap_or_else(|| (cause.span(tcx), tcx.hir().span_if_local(trait_m.def_id)))
436             } else {
437                 (cause.span(tcx), tcx.hir().span_if_local(trait_m.def_id))
438             }
439         }
440         TypeError::Sorts(ExpectedFound { .. }) => {
441             if let Some(trait_m_hir_id) = tcx.hir().as_local_hir_id(trait_m.def_id) {
442                 let (trait_m_output, trait_m_iter) =
443                     match tcx.hir().expect_trait_item(trait_m_hir_id).kind {
444                         TraitItemKind::Method(ref trait_m_sig, _) => {
445                             (&trait_m_sig.decl.output, trait_m_sig.decl.inputs.iter())
446                         }
447                         _ => bug!("{:?} is not a TraitItemKind::Method", trait_m),
448                     };
449
450                 let impl_iter = impl_sig.inputs().iter();
451                 let trait_iter = trait_sig.inputs().iter();
452                 impl_iter
453                     .zip(trait_iter)
454                     .zip(impl_m_iter)
455                     .zip(trait_m_iter)
456                     .filter_map(
457                         |(((&impl_arg_ty, &trait_arg_ty), impl_arg), trait_arg)| match infcx
458                             .at(&cause, param_env)
459                             .sub(trait_arg_ty, impl_arg_ty)
460                         {
461                             Ok(_) => None,
462                             Err(_) => Some((impl_arg.span, Some(trait_arg.span))),
463                         },
464                     )
465                     .next()
466                     .unwrap_or_else(|| {
467                         if infcx
468                             .at(&cause, param_env)
469                             .sup(trait_sig.output(), impl_sig.output())
470                             .is_err()
471                         {
472                             (impl_m_output.span(), Some(trait_m_output.span()))
473                         } else {
474                             (cause.span(tcx), tcx.hir().span_if_local(trait_m.def_id))
475                         }
476                     })
477             } else {
478                 (cause.span(tcx), tcx.hir().span_if_local(trait_m.def_id))
479             }
480         }
481         _ => (cause.span(tcx), tcx.hir().span_if_local(trait_m.def_id)),
482     }
483 }
484
485 fn compare_self_type<'tcx>(
486     tcx: TyCtxt<'tcx>,
487     impl_m: &ty::AssocItem,
488     impl_m_span: Span,
489     trait_m: &ty::AssocItem,
490     impl_trait_ref: ty::TraitRef<'tcx>,
491 ) -> Result<(), ErrorReported> {
492     // Try to give more informative error messages about self typing
493     // mismatches.  Note that any mismatch will also be detected
494     // below, where we construct a canonical function type that
495     // includes the self parameter as a normal parameter.  It's just
496     // that the error messages you get out of this code are a bit more
497     // inscrutable, particularly for cases where one method has no
498     // self.
499
500     let self_string = |method: &ty::AssocItem| {
501         let untransformed_self_ty = match method.container {
502             ty::ImplContainer(_) => impl_trait_ref.self_ty(),
503             ty::TraitContainer(_) => tcx.types.self_param,
504         };
505         let self_arg_ty = *tcx.fn_sig(method.def_id).input(0).skip_binder();
506         let param_env = ty::ParamEnv::reveal_all();
507
508         tcx.infer_ctxt().enter(|infcx| {
509             let self_arg_ty =
510                 tcx.liberate_late_bound_regions(method.def_id, &ty::Binder::bind(self_arg_ty));
511             let can_eq_self = |ty| infcx.can_eq(param_env, untransformed_self_ty, ty).is_ok();
512             match ExplicitSelf::determine(self_arg_ty, can_eq_self) {
513                 ExplicitSelf::ByValue => "self".to_owned(),
514                 ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
515                 ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
516                 _ => format!("self: {}", self_arg_ty),
517             }
518         })
519     };
520
521     match (trait_m.method_has_self_argument, impl_m.method_has_self_argument) {
522         (false, false) | (true, true) => {}
523
524         (false, true) => {
525             let self_descr = self_string(impl_m);
526             let mut err = struct_span_err!(
527                 tcx.sess,
528                 impl_m_span,
529                 E0185,
530                 "method `{}` has a `{}` declaration in the impl, but \
531                                             not in the trait",
532                 trait_m.ident,
533                 self_descr
534             );
535             err.span_label(impl_m_span, format!("`{}` used in impl", self_descr));
536             if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
537                 err.span_label(span, format!("trait method declared without `{}`", self_descr));
538             } else {
539                 err.note_trait_signature(trait_m.ident.to_string(), trait_m.signature(tcx));
540             }
541             err.emit();
542             return Err(ErrorReported);
543         }
544
545         (true, false) => {
546             let self_descr = self_string(trait_m);
547             let mut err = struct_span_err!(
548                 tcx.sess,
549                 impl_m_span,
550                 E0186,
551                 "method `{}` has a `{}` declaration in the trait, but \
552                                             not in the impl",
553                 trait_m.ident,
554                 self_descr
555             );
556             err.span_label(impl_m_span, format!("expected `{}` in impl", self_descr));
557             if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
558                 err.span_label(span, format!("`{}` used in trait", self_descr));
559             } else {
560                 err.note_trait_signature(trait_m.ident.to_string(), trait_m.signature(tcx));
561             }
562             err.emit();
563             return Err(ErrorReported);
564         }
565     }
566
567     Ok(())
568 }
569
570 fn compare_number_of_generics<'tcx>(
571     tcx: TyCtxt<'tcx>,
572     impl_: &ty::AssocItem,
573     _impl_span: Span,
574     trait_: &ty::AssocItem,
575     trait_span: Option<Span>,
576 ) -> Result<(), ErrorReported> {
577     let trait_own_counts = tcx.generics_of(trait_.def_id).own_counts();
578     let impl_own_counts = tcx.generics_of(impl_.def_id).own_counts();
579
580     let matchings = [
581         ("type", trait_own_counts.types, impl_own_counts.types),
582         ("const", trait_own_counts.consts, impl_own_counts.consts),
583     ];
584
585     let item_kind = assoc_item_kind_str(impl_);
586
587     let mut err_occurred = false;
588     for &(kind, trait_count, impl_count) in &matchings {
589         if impl_count != trait_count {
590             err_occurred = true;
591
592             let (trait_spans, impl_trait_spans) =
593                 if let Some(trait_hir_id) = tcx.hir().as_local_hir_id(trait_.def_id) {
594                     let trait_item = tcx.hir().expect_trait_item(trait_hir_id);
595                     if trait_item.generics.params.is_empty() {
596                         (Some(vec![trait_item.generics.span]), vec![])
597                     } else {
598                         let arg_spans: Vec<Span> =
599                             trait_item.generics.params.iter().map(|p| p.span).collect();
600                         let impl_trait_spans: Vec<Span> = trait_item
601                             .generics
602                             .params
603                             .iter()
604                             .filter_map(|p| match p.kind {
605                                 GenericParamKind::Type {
606                                     synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
607                                     ..
608                                 } => Some(p.span),
609                                 _ => None,
610                             })
611                             .collect();
612                         (Some(arg_spans), impl_trait_spans)
613                     }
614                 } else {
615                     (trait_span.map(|s| vec![s]), vec![])
616                 };
617
618             let impl_hir_id = tcx.hir().as_local_hir_id(impl_.def_id).unwrap();
619             let impl_item = tcx.hir().expect_impl_item(impl_hir_id);
620             let impl_item_impl_trait_spans: Vec<Span> = impl_item
621                 .generics
622                 .params
623                 .iter()
624                 .filter_map(|p| match p.kind {
625                     GenericParamKind::Type {
626                         synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
627                         ..
628                     } => Some(p.span),
629                     _ => None,
630                 })
631                 .collect();
632             let spans = impl_item.generics.spans();
633             let span = spans.primary_span();
634
635             let mut err = tcx.sess.struct_span_err_with_code(
636                 spans,
637                 &format!(
638                     "{} `{}` has {} {kind} parameter{} but its trait \
639                      declaration has {} {kind} parameter{}",
640                     item_kind,
641                     trait_.ident,
642                     impl_count,
643                     pluralize!(impl_count),
644                     trait_count,
645                     pluralize!(trait_count),
646                     kind = kind,
647                 ),
648                 DiagnosticId::Error("E0049".into()),
649             );
650
651             let mut suffix = None;
652
653             if let Some(spans) = trait_spans {
654                 let mut spans = spans.iter();
655                 if let Some(span) = spans.next() {
656                     err.span_label(
657                         *span,
658                         format!(
659                             "expected {} {} parameter{}",
660                             trait_count,
661                             kind,
662                             pluralize!(trait_count),
663                         ),
664                     );
665                 }
666                 for span in spans {
667                     err.span_label(*span, "");
668                 }
669             } else {
670                 suffix = Some(format!(", expected {}", trait_count));
671             }
672
673             if let Some(span) = span {
674                 err.span_label(
675                     span,
676                     format!(
677                         "found {} {} parameter{}{}",
678                         impl_count,
679                         kind,
680                         pluralize!(impl_count),
681                         suffix.unwrap_or_else(|| String::new()),
682                     ),
683                 );
684             }
685
686             for span in impl_trait_spans.iter().chain(impl_item_impl_trait_spans.iter()) {
687                 err.span_label(*span, "`impl Trait` introduces an implicit type parameter");
688             }
689
690             err.emit();
691         }
692     }
693
694     if err_occurred { Err(ErrorReported) } else { Ok(()) }
695 }
696
697 fn compare_number_of_method_arguments<'tcx>(
698     tcx: TyCtxt<'tcx>,
699     impl_m: &ty::AssocItem,
700     impl_m_span: Span,
701     trait_m: &ty::AssocItem,
702     trait_item_span: Option<Span>,
703 ) -> Result<(), ErrorReported> {
704     let impl_m_fty = tcx.fn_sig(impl_m.def_id);
705     let trait_m_fty = tcx.fn_sig(trait_m.def_id);
706     let trait_number_args = trait_m_fty.inputs().skip_binder().len();
707     let impl_number_args = impl_m_fty.inputs().skip_binder().len();
708     if trait_number_args != impl_number_args {
709         let trait_m_hir_id = tcx.hir().as_local_hir_id(trait_m.def_id);
710         let trait_span = if let Some(trait_id) = trait_m_hir_id {
711             match tcx.hir().expect_trait_item(trait_id).kind {
712                 TraitItemKind::Method(ref trait_m_sig, _) => {
713                     let pos = if trait_number_args > 0 { trait_number_args - 1 } else { 0 };
714                     if let Some(arg) = trait_m_sig.decl.inputs.get(pos) {
715                         Some(if pos == 0 {
716                             arg.span
717                         } else {
718                             Span::new(
719                                 trait_m_sig.decl.inputs[0].span.lo(),
720                                 arg.span.hi(),
721                                 arg.span.ctxt(),
722                             )
723                         })
724                     } else {
725                         trait_item_span
726                     }
727                 }
728                 _ => bug!("{:?} is not a method", impl_m),
729             }
730         } else {
731             trait_item_span
732         };
733         let impl_m_hir_id = tcx.hir().as_local_hir_id(impl_m.def_id).unwrap();
734         let impl_span = match tcx.hir().expect_impl_item(impl_m_hir_id).kind {
735             ImplItemKind::Method(ref impl_m_sig, _) => {
736                 let pos = if impl_number_args > 0 { impl_number_args - 1 } else { 0 };
737                 if let Some(arg) = impl_m_sig.decl.inputs.get(pos) {
738                     if pos == 0 {
739                         arg.span
740                     } else {
741                         Span::new(
742                             impl_m_sig.decl.inputs[0].span.lo(),
743                             arg.span.hi(),
744                             arg.span.ctxt(),
745                         )
746                     }
747                 } else {
748                     impl_m_span
749                 }
750             }
751             _ => bug!("{:?} is not a method", impl_m),
752         };
753         let mut err = struct_span_err!(
754             tcx.sess,
755             impl_span,
756             E0050,
757             "method `{}` has {} but the declaration in \
758                                         trait `{}` has {}",
759             trait_m.ident,
760             potentially_plural_count(impl_number_args, "parameter"),
761             tcx.def_path_str(trait_m.def_id),
762             trait_number_args
763         );
764         if let Some(trait_span) = trait_span {
765             err.span_label(
766                 trait_span,
767                 format!(
768                     "trait requires {}",
769                     potentially_plural_count(trait_number_args, "parameter")
770                 ),
771             );
772         } else {
773             err.note_trait_signature(trait_m.ident.to_string(), trait_m.signature(tcx));
774         }
775         err.span_label(
776             impl_span,
777             format!(
778                 "expected {}, found {}",
779                 potentially_plural_count(trait_number_args, "parameter"),
780                 impl_number_args
781             ),
782         );
783         err.emit();
784         return Err(ErrorReported);
785     }
786
787     Ok(())
788 }
789
790 fn compare_synthetic_generics<'tcx>(
791     tcx: TyCtxt<'tcx>,
792     impl_m: &ty::AssocItem,
793     trait_m: &ty::AssocItem,
794 ) -> Result<(), ErrorReported> {
795     // FIXME(chrisvittal) Clean up this function, list of FIXME items:
796     //     1. Better messages for the span labels
797     //     2. Explanation as to what is going on
798     // If we get here, we already have the same number of generics, so the zip will
799     // be okay.
800     let mut error_found = false;
801     let impl_m_generics = tcx.generics_of(impl_m.def_id);
802     let trait_m_generics = tcx.generics_of(trait_m.def_id);
803     let impl_m_type_params = impl_m_generics.params.iter().filter_map(|param| match param.kind {
804         GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
805         GenericParamDefKind::Lifetime | GenericParamDefKind::Const => None,
806     });
807     let trait_m_type_params = trait_m_generics.params.iter().filter_map(|param| match param.kind {
808         GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
809         GenericParamDefKind::Lifetime | GenericParamDefKind::Const => None,
810     });
811     for ((impl_def_id, impl_synthetic), (trait_def_id, trait_synthetic)) in
812         impl_m_type_params.zip(trait_m_type_params)
813     {
814         if impl_synthetic != trait_synthetic {
815             let impl_hir_id = tcx.hir().as_local_hir_id(impl_def_id).unwrap();
816             let impl_span = tcx.hir().span(impl_hir_id);
817             let trait_span = tcx.def_span(trait_def_id);
818             let mut err = struct_span_err!(
819                 tcx.sess,
820                 impl_span,
821                 E0643,
822                 "method `{}` has incompatible signature for trait",
823                 trait_m.ident
824             );
825             err.span_label(trait_span, "declaration in trait here");
826             match (impl_synthetic, trait_synthetic) {
827                 // The case where the impl method uses `impl Trait` but the trait method uses
828                 // explicit generics
829                 (Some(hir::SyntheticTyParamKind::ImplTrait), None) => {
830                     err.span_label(impl_span, "expected generic parameter, found `impl Trait`");
831                     (|| {
832                         // try taking the name from the trait impl
833                         // FIXME: this is obviously suboptimal since the name can already be used
834                         // as another generic argument
835                         let new_name = tcx.sess.source_map().span_to_snippet(trait_span).ok()?;
836                         let trait_m = tcx.hir().as_local_hir_id(trait_m.def_id)?;
837                         let trait_m = tcx.hir().trait_item(hir::TraitItemId { hir_id: trait_m });
838
839                         let impl_m = tcx.hir().as_local_hir_id(impl_m.def_id)?;
840                         let impl_m = tcx.hir().impl_item(hir::ImplItemId { hir_id: impl_m });
841
842                         // in case there are no generics, take the spot between the function name
843                         // and the opening paren of the argument list
844                         let new_generics_span =
845                             tcx.sess.source_map().generate_fn_name_span(impl_span)?.shrink_to_hi();
846                         // in case there are generics, just replace them
847                         let generics_span =
848                             impl_m.generics.span.substitute_dummy(new_generics_span);
849                         // replace with the generics from the trait
850                         let new_generics =
851                             tcx.sess.source_map().span_to_snippet(trait_m.generics.span).ok()?;
852
853                         err.multipart_suggestion(
854                             "try changing the `impl Trait` argument to a generic parameter",
855                             vec![
856                                 // replace `impl Trait` with `T`
857                                 (impl_span, new_name),
858                                 // replace impl method generics with trait method generics
859                                 // This isn't quite right, as users might have changed the names
860                                 // of the generics, but it works for the common case
861                                 (generics_span, new_generics),
862                             ],
863                             Applicability::MaybeIncorrect,
864                         );
865                         Some(())
866                     })();
867                 }
868                 // The case where the trait method uses `impl Trait`, but the impl method uses
869                 // explicit generics.
870                 (None, Some(hir::SyntheticTyParamKind::ImplTrait)) => {
871                     err.span_label(impl_span, "expected `impl Trait`, found generic parameter");
872                     (|| {
873                         let impl_m = tcx.hir().as_local_hir_id(impl_m.def_id)?;
874                         let impl_m = tcx.hir().impl_item(hir::ImplItemId { hir_id: impl_m });
875                         let input_tys = match impl_m.kind {
876                             hir::ImplItemKind::Method(ref sig, _) => sig.decl.inputs,
877                             _ => unreachable!(),
878                         };
879                         struct Visitor(Option<Span>, hir::def_id::DefId);
880                         impl<'v> intravisit::Visitor<'v> for Visitor {
881                             fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
882                                 intravisit::walk_ty(self, ty);
883                                 if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) =
884                                     ty.kind
885                                 {
886                                     if let Res::Def(DefKind::TyParam, def_id) = path.res {
887                                         if def_id == self.1 {
888                                             self.0 = Some(ty.span);
889                                         }
890                                     }
891                                 }
892                             }
893                             fn nested_visit_map<'this>(
894                                 &'this mut self,
895                             ) -> intravisit::NestedVisitorMap<'this, 'v>
896                             {
897                                 intravisit::NestedVisitorMap::None
898                             }
899                         }
900                         let mut visitor = Visitor(None, impl_def_id);
901                         for ty in input_tys {
902                             intravisit::Visitor::visit_ty(&mut visitor, ty);
903                         }
904                         let span = visitor.0?;
905
906                         let bounds =
907                             impl_m.generics.params.iter().find_map(|param| match param.kind {
908                                 GenericParamKind::Lifetime { .. } => None,
909                                 GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
910                                     if param.hir_id == impl_hir_id {
911                                         Some(&param.bounds)
912                                     } else {
913                                         None
914                                     }
915                                 }
916                             })?;
917                         let bounds = bounds.first()?.span().to(bounds.last()?.span());
918                         let bounds = tcx.sess.source_map().span_to_snippet(bounds).ok()?;
919
920                         err.multipart_suggestion(
921                             "try removing the generic parameter and using `impl Trait` instead",
922                             vec![
923                                 // delete generic parameters
924                                 (impl_m.generics.span, String::new()),
925                                 // replace param usage with `impl Trait`
926                                 (span, format!("impl {}", bounds)),
927                             ],
928                             Applicability::MaybeIncorrect,
929                         );
930                         Some(())
931                     })();
932                 }
933                 _ => unreachable!(),
934             }
935             err.emit();
936             error_found = true;
937         }
938     }
939     if error_found { Err(ErrorReported) } else { Ok(()) }
940 }
941
942 crate fn compare_const_impl<'tcx>(
943     tcx: TyCtxt<'tcx>,
944     impl_c: &ty::AssocItem,
945     impl_c_span: Span,
946     trait_c: &ty::AssocItem,
947     impl_trait_ref: ty::TraitRef<'tcx>,
948 ) {
949     debug!("compare_const_impl(impl_trait_ref={:?})", impl_trait_ref);
950
951     tcx.infer_ctxt().enter(|infcx| {
952         let param_env = tcx.param_env(impl_c.def_id);
953         let inh = Inherited::new(infcx, impl_c.def_id);
954         let infcx = &inh.infcx;
955
956         // The below is for the most part highly similar to the procedure
957         // for methods above. It is simpler in many respects, especially
958         // because we shouldn't really have to deal with lifetimes or
959         // predicates. In fact some of this should probably be put into
960         // shared functions because of DRY violations...
961         let trait_to_impl_substs = impl_trait_ref.substs;
962
963         // Create a parameter environment that represents the implementation's
964         // method.
965         let impl_c_hir_id = tcx.hir().as_local_hir_id(impl_c.def_id).unwrap();
966
967         // Compute placeholder form of impl and trait const tys.
968         let impl_ty = tcx.type_of(impl_c.def_id);
969         let trait_ty = tcx.type_of(trait_c.def_id).subst(tcx, trait_to_impl_substs);
970         let mut cause = ObligationCause::misc(impl_c_span, impl_c_hir_id);
971
972         // There is no "body" here, so just pass dummy id.
973         let impl_ty =
974             inh.normalize_associated_types_in(impl_c_span, impl_c_hir_id, param_env, &impl_ty);
975
976         debug!("compare_const_impl: impl_ty={:?}", impl_ty);
977
978         let trait_ty =
979             inh.normalize_associated_types_in(impl_c_span, impl_c_hir_id, param_env, &trait_ty);
980
981         debug!("compare_const_impl: trait_ty={:?}", trait_ty);
982
983         let err = infcx
984             .at(&cause, param_env)
985             .sup(trait_ty, impl_ty)
986             .map(|ok| inh.register_infer_ok_obligations(ok));
987
988         if let Err(terr) = err {
989             debug!(
990                 "checking associated const for compatibility: impl ty {:?}, trait ty {:?}",
991                 impl_ty, trait_ty
992             );
993
994             // Locate the Span containing just the type of the offending impl
995             match tcx.hir().expect_impl_item(impl_c_hir_id).kind {
996                 ImplItemKind::Const(ref ty, _) => cause.span = ty.span,
997                 _ => bug!("{:?} is not a impl const", impl_c),
998             }
999
1000             let mut diag = struct_span_err!(
1001                 tcx.sess,
1002                 cause.span,
1003                 E0326,
1004                 "implemented const `{}` has an incompatible type for \
1005                                              trait",
1006                 trait_c.ident
1007             );
1008
1009             let trait_c_hir_id = tcx.hir().as_local_hir_id(trait_c.def_id);
1010             let trait_c_span = trait_c_hir_id.map(|trait_c_hir_id| {
1011                 // Add a label to the Span containing just the type of the const
1012                 match tcx.hir().expect_trait_item(trait_c_hir_id).kind {
1013                     TraitItemKind::Const(ref ty, _) => ty.span,
1014                     _ => bug!("{:?} is not a trait const", trait_c),
1015                 }
1016             });
1017
1018             infcx.note_type_err(
1019                 &mut diag,
1020                 &cause,
1021                 trait_c_span.map(|span| (span, "type in trait".to_owned())),
1022                 Some(infer::ValuePairs::Types(ExpectedFound {
1023                     expected: trait_ty,
1024                     found: impl_ty,
1025                 })),
1026                 &terr,
1027             );
1028             diag.emit();
1029         }
1030
1031         // Check that all obligations are satisfied by the implementation's
1032         // version.
1033         if let Err(ref errors) = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx) {
1034             infcx.report_fulfillment_errors(errors, None, false);
1035             return;
1036         }
1037
1038         let fcx = FnCtxt::new(&inh, param_env, impl_c_hir_id);
1039         fcx.regionck_item(impl_c_hir_id, impl_c_span, &[]);
1040     });
1041 }
1042
1043 crate fn compare_ty_impl<'tcx>(
1044     tcx: TyCtxt<'tcx>,
1045     impl_ty: &ty::AssocItem,
1046     impl_ty_span: Span,
1047     trait_ty: &ty::AssocItem,
1048     impl_trait_ref: ty::TraitRef<'tcx>,
1049     trait_item_span: Option<Span>,
1050 ) {
1051     debug!("compare_impl_type(impl_trait_ref={:?})", impl_trait_ref);
1052
1053     let _: Result<(), ErrorReported> = (|| {
1054         compare_number_of_generics(tcx, impl_ty, impl_ty_span, trait_ty, trait_item_span)?;
1055
1056         compare_type_predicate_entailment(tcx, impl_ty, impl_ty_span, trait_ty, impl_trait_ref)
1057     })();
1058 }
1059
1060 /// The equivalent of [compare_predicate_entailment], but for associated types
1061 /// instead of associated functions.
1062 fn compare_type_predicate_entailment(
1063     tcx: TyCtxt<'tcx>,
1064     impl_ty: &ty::AssocItem,
1065     impl_ty_span: Span,
1066     trait_ty: &ty::AssocItem,
1067     impl_trait_ref: ty::TraitRef<'tcx>,
1068 ) -> Result<(), ErrorReported> {
1069     let impl_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
1070     let trait_to_impl_substs =
1071         impl_substs.rebase_onto(tcx, impl_ty.container.id(), impl_trait_ref.substs);
1072
1073     let impl_ty_generics = tcx.generics_of(impl_ty.def_id);
1074     let trait_ty_generics = tcx.generics_of(trait_ty.def_id);
1075     let impl_ty_predicates = tcx.predicates_of(impl_ty.def_id);
1076     let trait_ty_predicates = tcx.predicates_of(trait_ty.def_id);
1077
1078     check_region_bounds_on_impl_item(
1079         tcx,
1080         impl_ty_span,
1081         impl_ty,
1082         trait_ty,
1083         &trait_ty_generics,
1084         &impl_ty_generics,
1085     )?;
1086
1087     let impl_ty_own_bounds = impl_ty_predicates.instantiate_own(tcx, impl_substs);
1088
1089     if impl_ty_own_bounds.is_empty() {
1090         // Nothing to check.
1091         return Ok(());
1092     }
1093
1094     // This `HirId` should be used for the `body_id` field on each
1095     // `ObligationCause` (and the `FnCtxt`). This is what
1096     // `regionck_item` expects.
1097     let impl_ty_hir_id = tcx.hir().as_local_hir_id(impl_ty.def_id).unwrap();
1098     let cause = ObligationCause {
1099         span: impl_ty_span,
1100         body_id: impl_ty_hir_id,
1101         code: ObligationCauseCode::CompareImplTypeObligation {
1102             item_name: impl_ty.ident.name,
1103             impl_item_def_id: impl_ty.def_id,
1104             trait_item_def_id: trait_ty.def_id,
1105         },
1106     };
1107
1108     debug!("compare_type_predicate_entailment: trait_to_impl_substs={:?}", trait_to_impl_substs);
1109
1110     // The predicates declared by the impl definition, the trait and the
1111     // associated type in the trait are assumed.
1112     let impl_predicates = tcx.predicates_of(impl_ty_predicates.parent.unwrap());
1113     let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
1114     hybrid_preds
1115         .predicates
1116         .extend(trait_ty_predicates.instantiate_own(tcx, trait_to_impl_substs).predicates);
1117
1118     debug!("compare_type_predicate_entailment: bounds={:?}", hybrid_preds);
1119
1120     let normalize_cause = traits::ObligationCause::misc(impl_ty_span, impl_ty_hir_id);
1121     let param_env = ty::ParamEnv::new(
1122         tcx.intern_predicates(&hybrid_preds.predicates),
1123         Reveal::UserFacing,
1124         None,
1125     );
1126     let param_env = traits::normalize_param_env_or_error(
1127         tcx,
1128         impl_ty.def_id,
1129         param_env,
1130         normalize_cause.clone(),
1131     );
1132     tcx.infer_ctxt().enter(|infcx| {
1133         let inh = Inherited::new(infcx, impl_ty.def_id);
1134         let infcx = &inh.infcx;
1135
1136         debug!("compare_type_predicate_entailment: caller_bounds={:?}", param_env.caller_bounds);
1137
1138         let mut selcx = traits::SelectionContext::new(&infcx);
1139
1140         for predicate in impl_ty_own_bounds.predicates {
1141             let traits::Normalized { value: predicate, obligations } =
1142                 traits::normalize(&mut selcx, param_env, normalize_cause.clone(), &predicate);
1143
1144             inh.register_predicates(obligations);
1145             inh.register_predicate(traits::Obligation::new(cause.clone(), param_env, predicate));
1146         }
1147
1148         // Check that all obligations are satisfied by the implementation's
1149         // version.
1150         if let Err(ref errors) = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx) {
1151             infcx.report_fulfillment_errors(errors, None, false);
1152             return Err(ErrorReported);
1153         }
1154
1155         // Finally, resolve all regions. This catches wily misuses of
1156         // lifetime parameters.
1157         let fcx = FnCtxt::new(&inh, param_env, impl_ty_hir_id);
1158         fcx.regionck_item(impl_ty_hir_id, impl_ty_span, &[]);
1159
1160         Ok(())
1161     })
1162 }
1163
1164 fn assoc_item_kind_str(impl_item: &ty::AssocItem) -> &'static str {
1165     match impl_item.kind {
1166         ty::AssocKind::Const => "const",
1167         ty::AssocKind::Method => "method",
1168         ty::AssocKind::Type | ty::AssocKind::OpaqueTy => "type",
1169     }
1170 }