]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/compare_method.rs
compiletest: Do not run debuginfo tests with gdb on msvc targets
[rust.git] / src / librustc_typeck / check / compare_method.rs
1 use rustc::hir::map::Map;
2 use rustc::infer::{self, InferOk};
3 use rustc::traits::{self, ObligationCause, ObligationCauseCode, Reveal};
4 use rustc::ty::error::{ExpectedFound, TypeError};
5 use rustc::ty::subst::{InternalSubsts, Subst};
6 use rustc::ty::util::ExplicitSelf;
7 use rustc::ty::{self, GenericParamDefKind, TyCtxt};
8 use rustc::util::common::ErrorReported;
9 use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticId};
10 use rustc_hir as hir;
11 use rustc_hir::def::{DefKind, Res};
12 use rustc_hir::intravisit;
13 use rustc_hir::{GenericParamKind, ImplItemKind, TraitItemKind};
14 use rustc_span::Span;
15
16 use super::{potentially_plural_count, FnCtxt, Inherited};
17
18 /// Checks that a method from an impl conforms to the signature of
19 /// the same method as declared in the trait.
20 ///
21 /// # Parameters
22 ///
23 /// - `impl_m`: type of the method we are checking
24 /// - `impl_m_span`: span to use for reporting errors
25 /// - `trait_m`: the method in the trait
26 /// - `impl_trait_ref`: the TraitRef corresponding to the trait implementation
27
28 crate fn compare_impl_method<'tcx>(
29     tcx: TyCtxt<'tcx>,
30     impl_m: &ty::AssocItem,
31     impl_m_span: Span,
32     trait_m: &ty::AssocItem,
33     impl_trait_ref: ty::TraitRef<'tcx>,
34     trait_item_span: Option<Span>,
35 ) {
36     debug!("compare_impl_method(impl_trait_ref={:?})", impl_trait_ref);
37
38     let impl_m_span = tcx.sess.source_map().def_span(impl_m_span);
39
40     if let Err(ErrorReported) = compare_self_type(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref)
41     {
42         return;
43     }
44
45     if let Err(ErrorReported) =
46         compare_number_of_generics(tcx, impl_m, impl_m_span, trait_m, trait_item_span)
47     {
48         return;
49     }
50
51     if let Err(ErrorReported) =
52         compare_number_of_method_arguments(tcx, impl_m, impl_m_span, trait_m, trait_item_span)
53     {
54         return;
55     }
56
57     if let Err(ErrorReported) = compare_synthetic_generics(tcx, impl_m, trait_m) {
58         return;
59     }
60
61     if let Err(ErrorReported) =
62         compare_predicate_entailment(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref)
63     {
64         return;
65     }
66 }
67
68 fn compare_predicate_entailment<'tcx>(
69     tcx: TyCtxt<'tcx>,
70     impl_m: &ty::AssocItem,
71     impl_m_span: Span,
72     trait_m: &ty::AssocItem,
73     impl_trait_ref: ty::TraitRef<'tcx>,
74 ) -> Result<(), ErrorReported> {
75     let trait_to_impl_substs = impl_trait_ref.substs;
76
77     // This node-id should be used for the `body_id` field on each
78     // `ObligationCause` (and the `FnCtxt`). This is what
79     // `regionck_item` expects.
80     let impl_m_hir_id = tcx.hir().as_local_hir_id(impl_m.def_id).unwrap();
81
82     let cause = ObligationCause {
83         span: impl_m_span,
84         body_id: impl_m_hir_id,
85         code: ObligationCauseCode::CompareImplMethodObligation {
86             item_name: impl_m.ident.name,
87             impl_item_def_id: impl_m.def_id,
88             trait_item_def_id: trait_m.def_id,
89         },
90     };
91
92     // This code is best explained by example. Consider a trait:
93     //
94     //     trait Trait<'t,T> {
95     //          fn method<'a,M>(t: &'t T, m: &'a M) -> Self;
96     //     }
97     //
98     // And an impl:
99     //
100     //     impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
101     //          fn method<'b,N>(t: &'j &'i U, m: &'b N) -> Foo;
102     //     }
103     //
104     // We wish to decide if those two method types are compatible.
105     //
106     // We start out with trait_to_impl_substs, that maps the trait
107     // type parameters to impl type parameters. This is taken from the
108     // impl trait reference:
109     //
110     //     trait_to_impl_substs = {'t => 'j, T => &'i U, Self => Foo}
111     //
112     // We create a mapping `dummy_substs` that maps from the impl type
113     // parameters to fresh types and regions. For type parameters,
114     // this is the identity transform, but we could as well use any
115     // placeholder types. For regions, we convert from bound to free
116     // regions (Note: but only early-bound regions, i.e., those
117     // declared on the impl or used in type parameter bounds).
118     //
119     //     impl_to_skol_substs = {'i => 'i0, U => U0, N => N0 }
120     //
121     // Now we can apply skol_substs to the type of the impl method
122     // to yield a new function type in terms of our fresh, placeholder
123     // types:
124     //
125     //     <'b> fn(t: &'i0 U0, m: &'b) -> Foo
126     //
127     // We now want to extract and substitute the type of the *trait*
128     // method and compare it. To do so, we must create a compound
129     // substitution by combining trait_to_impl_substs and
130     // impl_to_skol_substs, and also adding a mapping for the method
131     // type parameters. We extend the mapping to also include
132     // the method parameters.
133     //
134     //     trait_to_skol_substs = { T => &'i0 U0, Self => Foo, M => N0 }
135     //
136     // Applying this to the trait method type yields:
137     //
138     //     <'a> fn(t: &'i0 U0, m: &'a) -> Foo
139     //
140     // This type is also the same but the name of the bound region ('a
141     // vs 'b).  However, the normal subtyping rules on fn types handle
142     // this kind of equivalency just fine.
143     //
144     // We now use these substitutions to ensure that all declared bounds are
145     // satisfied by the implementation's method.
146     //
147     // We do this by creating a parameter environment which contains a
148     // substitution corresponding to impl_to_skol_substs. We then build
149     // trait_to_skol_substs and use it to convert the predicates contained
150     // in the trait_m.generics to the placeholder form.
151     //
152     // Finally we register each of these predicates as an obligation in
153     // a fresh FulfillmentCtxt, and invoke select_all_or_error.
154
155     // Create mapping from impl to placeholder.
156     let impl_to_skol_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
157
158     // Create mapping from trait to placeholder.
159     let trait_to_skol_substs =
160         impl_to_skol_substs.rebase_onto(tcx, impl_m.container.id(), trait_to_impl_substs);
161     debug!("compare_impl_method: trait_to_skol_substs={:?}", trait_to_skol_substs);
162
163     let impl_m_generics = tcx.generics_of(impl_m.def_id);
164     let trait_m_generics = tcx.generics_of(trait_m.def_id);
165     let impl_m_predicates = tcx.predicates_of(impl_m.def_id);
166     let trait_m_predicates = tcx.predicates_of(trait_m.def_id);
167
168     // Check region bounds.
169     check_region_bounds_on_impl_item(
170         tcx,
171         impl_m_span,
172         impl_m,
173         trait_m,
174         &trait_m_generics,
175         &impl_m_generics,
176     )?;
177
178     // Create obligations for each predicate declared by the impl
179     // definition in the context of the trait's parameter
180     // environment. We can't just use `impl_env.caller_bounds`,
181     // however, because we want to replace all late-bound regions with
182     // region variables.
183     let impl_predicates = tcx.predicates_of(impl_m_predicates.parent.unwrap());
184     let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
185
186     debug!("compare_impl_method: impl_bounds={:?}", hybrid_preds);
187
188     // This is the only tricky bit of the new way we check implementation methods
189     // We need to build a set of predicates where only the method-level bounds
190     // are from the trait and we assume all other bounds from the implementation
191     // to be previously satisfied.
192     //
193     // We then register the obligations from the impl_m and check to see
194     // if all constraints hold.
195     hybrid_preds
196         .predicates
197         .extend(trait_m_predicates.instantiate_own(tcx, trait_to_skol_substs).predicates);
198
199     // Construct trait parameter environment and then shift it into the placeholder viewpoint.
200     // The key step here is to update the caller_bounds's predicates to be
201     // the new hybrid bounds we computed.
202     let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_hir_id);
203     let param_env = ty::ParamEnv::new(
204         tcx.intern_predicates(&hybrid_preds.predicates),
205         Reveal::UserFacing,
206         None,
207     );
208     let param_env = traits::normalize_param_env_or_error(
209         tcx,
210         impl_m.def_id,
211         param_env,
212         normalize_cause.clone(),
213     );
214
215     tcx.infer_ctxt().enter(|infcx| {
216         let inh = Inherited::new(infcx, impl_m.def_id);
217         let infcx = &inh.infcx;
218
219         debug!("compare_impl_method: caller_bounds={:?}", param_env.caller_bounds);
220
221         let mut selcx = traits::SelectionContext::new(&infcx);
222
223         let impl_m_own_bounds = impl_m_predicates.instantiate_own(tcx, impl_to_skol_substs);
224         let (impl_m_own_bounds, _) = infcx.replace_bound_vars_with_fresh_vars(
225             impl_m_span,
226             infer::HigherRankedType,
227             &ty::Binder::bind(impl_m_own_bounds.predicates),
228         );
229         for predicate in impl_m_own_bounds {
230             let traits::Normalized { value: predicate, obligations } =
231                 traits::normalize(&mut selcx, param_env, normalize_cause.clone(), &predicate);
232
233             inh.register_predicates(obligations);
234             inh.register_predicate(traits::Obligation::new(cause.clone(), param_env, predicate));
235         }
236
237         // We now need to check that the signature of the impl method is
238         // compatible with that of the trait method. We do this by
239         // checking that `impl_fty <: trait_fty`.
240         //
241         // FIXME. Unfortunately, this doesn't quite work right now because
242         // associated type normalization is not integrated into subtype
243         // checks. For the comparison to be valid, we need to
244         // normalize the associated types in the impl/trait methods
245         // first. However, because function types bind regions, just
246         // calling `normalize_associated_types_in` would have no effect on
247         // any associated types appearing in the fn arguments or return
248         // type.
249
250         // Compute placeholder form of impl and trait method tys.
251         let tcx = infcx.tcx;
252
253         let (impl_sig, _) = infcx.replace_bound_vars_with_fresh_vars(
254             impl_m_span,
255             infer::HigherRankedType,
256             &tcx.fn_sig(impl_m.def_id),
257         );
258         let impl_sig =
259             inh.normalize_associated_types_in(impl_m_span, impl_m_hir_id, param_env, &impl_sig);
260         let impl_fty = tcx.mk_fn_ptr(ty::Binder::bind(impl_sig));
261         debug!("compare_impl_method: impl_fty={:?}", impl_fty);
262
263         let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, &tcx.fn_sig(trait_m.def_id));
264         let trait_sig = trait_sig.subst(tcx, trait_to_skol_substs);
265         let trait_sig =
266             inh.normalize_associated_types_in(impl_m_span, impl_m_hir_id, param_env, &trait_sig);
267         let trait_fty = tcx.mk_fn_ptr(ty::Binder::bind(trait_sig));
268
269         debug!("compare_impl_method: trait_fty={:?}", trait_fty);
270
271         let sub_result = infcx.at(&cause, param_env).sup(trait_fty, impl_fty).map(
272             |InferOk { obligations, .. }| {
273                 inh.register_predicates(obligations);
274             },
275         );
276
277         if let Err(terr) = sub_result {
278             debug!("sub_types failed: impl ty {:?}, trait ty {:?}", impl_fty, trait_fty);
279
280             let (impl_err_span, trait_err_span) = extract_spans_for_error_reporting(
281                 &infcx, param_env, &terr, &cause, impl_m, impl_sig, trait_m, trait_sig,
282             );
283
284             let cause = ObligationCause { span: impl_err_span, ..cause };
285
286             let mut diag = struct_span_err!(
287                 tcx.sess,
288                 cause.span(tcx),
289                 E0053,
290                 "method `{}` has an incompatible type for trait",
291                 trait_m.ident
292             );
293             if let TypeError::Mutability = terr {
294                 if let Some(trait_err_span) = trait_err_span {
295                     if let Ok(trait_err_str) = tcx.sess.source_map().span_to_snippet(trait_err_span)
296                     {
297                         diag.span_suggestion(
298                             impl_err_span,
299                             "consider change the type to match the mutability in trait",
300                             trait_err_str,
301                             Applicability::MachineApplicable,
302                         );
303                     }
304                 }
305             }
306
307             infcx.note_type_err(
308                 &mut diag,
309                 &cause,
310                 trait_err_span.map(|sp| (sp, "type in trait".to_owned())),
311                 Some(infer::ValuePairs::Types(ExpectedFound {
312                     expected: trait_fty,
313                     found: impl_fty,
314                 })),
315                 &terr,
316             );
317             diag.emit();
318             return Err(ErrorReported);
319         }
320
321         // Check that all obligations are satisfied by the implementation's
322         // version.
323         if let Err(ref errors) = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx) {
324             infcx.report_fulfillment_errors(errors, None, false);
325             return Err(ErrorReported);
326         }
327
328         // Finally, resolve all regions. This catches wily misuses of
329         // lifetime parameters.
330         let fcx = FnCtxt::new(&inh, param_env, impl_m_hir_id);
331         fcx.regionck_item(impl_m_hir_id, impl_m_span, &[]);
332
333         Ok(())
334     })
335 }
336
337 fn check_region_bounds_on_impl_item<'tcx>(
338     tcx: TyCtxt<'tcx>,
339     span: Span,
340     impl_m: &ty::AssocItem,
341     trait_m: &ty::AssocItem,
342     trait_generics: &ty::Generics,
343     impl_generics: &ty::Generics,
344 ) -> Result<(), ErrorReported> {
345     let trait_params = trait_generics.own_counts().lifetimes;
346     let impl_params = impl_generics.own_counts().lifetimes;
347
348     debug!(
349         "check_region_bounds_on_impl_item: \
350             trait_generics={:?} \
351             impl_generics={:?}",
352         trait_generics, impl_generics
353     );
354
355     // Must have same number of early-bound lifetime parameters.
356     // Unfortunately, if the user screws up the bounds, then this
357     // will change classification between early and late.  E.g.,
358     // if in trait we have `<'a,'b:'a>`, and in impl we just have
359     // `<'a,'b>`, then we have 2 early-bound lifetime parameters
360     // in trait but 0 in the impl. But if we report "expected 2
361     // but found 0" it's confusing, because it looks like there
362     // are zero. Since I don't quite know how to phrase things at
363     // the moment, give a kind of vague error message.
364     if trait_params != impl_params {
365         let item_kind = assoc_item_kind_str(impl_m);
366         let def_span = tcx.sess.source_map().def_span(span);
367         let span = tcx.hir().get_generics(impl_m.def_id).map(|g| g.span).unwrap_or(def_span);
368         let mut err = struct_span_err!(
369             tcx.sess,
370             span,
371             E0195,
372             "lifetime parameters or bounds on {} `{}` do not match the trait declaration",
373             item_kind,
374             impl_m.ident,
375         );
376         err.span_label(span, &format!("lifetimes do not match {} in trait", item_kind));
377         if let Some(sp) = tcx.hir().span_if_local(trait_m.def_id) {
378             let def_sp = tcx.sess.source_map().def_span(sp);
379             let sp = tcx.hir().get_generics(trait_m.def_id).map(|g| g.span).unwrap_or(def_sp);
380             err.span_label(
381                 sp,
382                 &format!("lifetimes in impl do not match this {} in trait", item_kind),
383             );
384         }
385         err.emit();
386         return Err(ErrorReported);
387     }
388
389     Ok(())
390 }
391
392 fn extract_spans_for_error_reporting<'a, 'tcx>(
393     infcx: &infer::InferCtxt<'a, 'tcx>,
394     param_env: ty::ParamEnv<'tcx>,
395     terr: &TypeError<'_>,
396     cause: &ObligationCause<'tcx>,
397     impl_m: &ty::AssocItem,
398     impl_sig: ty::FnSig<'tcx>,
399     trait_m: &ty::AssocItem,
400     trait_sig: ty::FnSig<'tcx>,
401 ) -> (Span, Option<Span>) {
402     let tcx = infcx.tcx;
403     let impl_m_hir_id = tcx.hir().as_local_hir_id(impl_m.def_id).unwrap();
404     let (impl_m_output, impl_m_iter) = match tcx.hir().expect_impl_item(impl_m_hir_id).kind {
405         ImplItemKind::Method(ref impl_m_sig, _) => {
406             (&impl_m_sig.decl.output, impl_m_sig.decl.inputs.iter())
407         }
408         _ => bug!("{:?} is not a method", impl_m),
409     };
410
411     match *terr {
412         TypeError::Mutability => {
413             if let Some(trait_m_hir_id) = tcx.hir().as_local_hir_id(trait_m.def_id) {
414                 let trait_m_iter = match tcx.hir().expect_trait_item(trait_m_hir_id).kind {
415                     TraitItemKind::Method(ref trait_m_sig, _) => trait_m_sig.decl.inputs.iter(),
416                     _ => bug!("{:?} is not a TraitItemKind::Method", trait_m),
417                 };
418
419                 impl_m_iter
420                     .zip(trait_m_iter)
421                     .find(|&(ref impl_arg, ref trait_arg)| {
422                         match (&impl_arg.kind, &trait_arg.kind) {
423                             (
424                                 &hir::TyKind::Rptr(_, ref impl_mt),
425                                 &hir::TyKind::Rptr(_, ref trait_mt),
426                             )
427                             | (&hir::TyKind::Ptr(ref impl_mt), &hir::TyKind::Ptr(ref trait_mt)) => {
428                                 impl_mt.mutbl != trait_mt.mutbl
429                             }
430                             _ => false,
431                         }
432                     })
433                     .map(|(ref impl_arg, ref trait_arg)| (impl_arg.span, Some(trait_arg.span)))
434                     .unwrap_or_else(|| (cause.span(tcx), tcx.hir().span_if_local(trait_m.def_id)))
435             } else {
436                 (cause.span(tcx), tcx.hir().span_if_local(trait_m.def_id))
437             }
438         }
439         TypeError::Sorts(ExpectedFound { .. }) => {
440             if let Some(trait_m_hir_id) = tcx.hir().as_local_hir_id(trait_m.def_id) {
441                 let (trait_m_output, trait_m_iter) =
442                     match tcx.hir().expect_trait_item(trait_m_hir_id).kind {
443                         TraitItemKind::Method(ref trait_m_sig, _) => {
444                             (&trait_m_sig.decl.output, trait_m_sig.decl.inputs.iter())
445                         }
446                         _ => bug!("{:?} is not a TraitItemKind::Method", trait_m),
447                     };
448
449                 let impl_iter = impl_sig.inputs().iter();
450                 let trait_iter = trait_sig.inputs().iter();
451                 impl_iter
452                     .zip(trait_iter)
453                     .zip(impl_m_iter)
454                     .zip(trait_m_iter)
455                     .filter_map(
456                         |(((&impl_arg_ty, &trait_arg_ty), impl_arg), trait_arg)| match infcx
457                             .at(&cause, param_env)
458                             .sub(trait_arg_ty, impl_arg_ty)
459                         {
460                             Ok(_) => None,
461                             Err(_) => Some((impl_arg.span, Some(trait_arg.span))),
462                         },
463                     )
464                     .next()
465                     .unwrap_or_else(|| {
466                         if infcx
467                             .at(&cause, param_env)
468                             .sup(trait_sig.output(), impl_sig.output())
469                             .is_err()
470                         {
471                             (impl_m_output.span(), Some(trait_m_output.span()))
472                         } else {
473                             (cause.span(tcx), tcx.hir().span_if_local(trait_m.def_id))
474                         }
475                     })
476             } else {
477                 (cause.span(tcx), tcx.hir().span_if_local(trait_m.def_id))
478             }
479         }
480         _ => (cause.span(tcx), tcx.hir().span_if_local(trait_m.def_id)),
481     }
482 }
483
484 fn compare_self_type<'tcx>(
485     tcx: TyCtxt<'tcx>,
486     impl_m: &ty::AssocItem,
487     impl_m_span: Span,
488     trait_m: &ty::AssocItem,
489     impl_trait_ref: ty::TraitRef<'tcx>,
490 ) -> Result<(), ErrorReported> {
491     // Try to give more informative error messages about self typing
492     // mismatches.  Note that any mismatch will also be detected
493     // below, where we construct a canonical function type that
494     // includes the self parameter as a normal parameter.  It's just
495     // that the error messages you get out of this code are a bit more
496     // inscrutable, particularly for cases where one method has no
497     // self.
498
499     let self_string = |method: &ty::AssocItem| {
500         let untransformed_self_ty = match method.container {
501             ty::ImplContainer(_) => impl_trait_ref.self_ty(),
502             ty::TraitContainer(_) => tcx.types.self_param,
503         };
504         let self_arg_ty = *tcx.fn_sig(method.def_id).input(0).skip_binder();
505         let param_env = ty::ParamEnv::reveal_all();
506
507         tcx.infer_ctxt().enter(|infcx| {
508             let self_arg_ty =
509                 tcx.liberate_late_bound_regions(method.def_id, &ty::Binder::bind(self_arg_ty));
510             let can_eq_self = |ty| infcx.can_eq(param_env, untransformed_self_ty, ty).is_ok();
511             match ExplicitSelf::determine(self_arg_ty, can_eq_self) {
512                 ExplicitSelf::ByValue => "self".to_owned(),
513                 ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
514                 ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
515                 _ => format!("self: {}", self_arg_ty),
516             }
517         })
518     };
519
520     match (trait_m.method_has_self_argument, impl_m.method_has_self_argument) {
521         (false, false) | (true, true) => {}
522
523         (false, true) => {
524             let self_descr = self_string(impl_m);
525             let mut err = struct_span_err!(
526                 tcx.sess,
527                 impl_m_span,
528                 E0185,
529                 "method `{}` has a `{}` declaration in the impl, but \
530                                             not in the trait",
531                 trait_m.ident,
532                 self_descr
533             );
534             err.span_label(impl_m_span, format!("`{}` used in impl", self_descr));
535             if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
536                 err.span_label(span, format!("trait method declared without `{}`", self_descr));
537             } else {
538                 err.note_trait_signature(trait_m.ident.to_string(), trait_m.signature(tcx));
539             }
540             err.emit();
541             return Err(ErrorReported);
542         }
543
544         (true, false) => {
545             let self_descr = self_string(trait_m);
546             let mut err = struct_span_err!(
547                 tcx.sess,
548                 impl_m_span,
549                 E0186,
550                 "method `{}` has a `{}` declaration in the trait, but \
551                                             not in the impl",
552                 trait_m.ident,
553                 self_descr
554             );
555             err.span_label(impl_m_span, format!("expected `{}` in impl", self_descr));
556             if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
557                 err.span_label(span, format!("`{}` used in trait", self_descr));
558             } else {
559                 err.note_trait_signature(trait_m.ident.to_string(), trait_m.signature(tcx));
560             }
561             err.emit();
562             return Err(ErrorReported);
563         }
564     }
565
566     Ok(())
567 }
568
569 fn compare_number_of_generics<'tcx>(
570     tcx: TyCtxt<'tcx>,
571     impl_: &ty::AssocItem,
572     _impl_span: Span,
573     trait_: &ty::AssocItem,
574     trait_span: Option<Span>,
575 ) -> Result<(), ErrorReported> {
576     let trait_own_counts = tcx.generics_of(trait_.def_id).own_counts();
577     let impl_own_counts = tcx.generics_of(impl_.def_id).own_counts();
578
579     let matchings = [
580         ("type", trait_own_counts.types, impl_own_counts.types),
581         ("const", trait_own_counts.consts, impl_own_counts.consts),
582     ];
583
584     let item_kind = assoc_item_kind_str(impl_);
585
586     let mut err_occurred = false;
587     for &(kind, trait_count, impl_count) in &matchings {
588         if impl_count != trait_count {
589             err_occurred = true;
590
591             let (trait_spans, impl_trait_spans) =
592                 if let Some(trait_hir_id) = tcx.hir().as_local_hir_id(trait_.def_id) {
593                     let trait_item = tcx.hir().expect_trait_item(trait_hir_id);
594                     if trait_item.generics.params.is_empty() {
595                         (Some(vec![trait_item.generics.span]), vec![])
596                     } else {
597                         let arg_spans: Vec<Span> =
598                             trait_item.generics.params.iter().map(|p| p.span).collect();
599                         let impl_trait_spans: Vec<Span> = trait_item
600                             .generics
601                             .params
602                             .iter()
603                             .filter_map(|p| match p.kind {
604                                 GenericParamKind::Type {
605                                     synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
606                                     ..
607                                 } => Some(p.span),
608                                 _ => None,
609                             })
610                             .collect();
611                         (Some(arg_spans), impl_trait_spans)
612                     }
613                 } else {
614                     (trait_span.map(|s| vec![s]), vec![])
615                 };
616
617             let impl_hir_id = tcx.hir().as_local_hir_id(impl_.def_id).unwrap();
618             let impl_item = tcx.hir().expect_impl_item(impl_hir_id);
619             let impl_item_impl_trait_spans: Vec<Span> = impl_item
620                 .generics
621                 .params
622                 .iter()
623                 .filter_map(|p| match p.kind {
624                     GenericParamKind::Type {
625                         synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
626                         ..
627                     } => Some(p.span),
628                     _ => None,
629                 })
630                 .collect();
631             let spans = impl_item.generics.spans();
632             let span = spans.primary_span();
633
634             let mut err = tcx.sess.struct_span_err_with_code(
635                 spans,
636                 &format!(
637                     "{} `{}` has {} {kind} parameter{} but its trait \
638                      declaration has {} {kind} parameter{}",
639                     item_kind,
640                     trait_.ident,
641                     impl_count,
642                     pluralize!(impl_count),
643                     trait_count,
644                     pluralize!(trait_count),
645                     kind = kind,
646                 ),
647                 DiagnosticId::Error("E0049".into()),
648             );
649
650             let mut suffix = None;
651
652             if let Some(spans) = trait_spans {
653                 let mut spans = spans.iter();
654                 if let Some(span) = spans.next() {
655                     err.span_label(
656                         *span,
657                         format!(
658                             "expected {} {} parameter{}",
659                             trait_count,
660                             kind,
661                             pluralize!(trait_count),
662                         ),
663                     );
664                 }
665                 for span in spans {
666                     err.span_label(*span, "");
667                 }
668             } else {
669                 suffix = Some(format!(", expected {}", trait_count));
670             }
671
672             if let Some(span) = span {
673                 err.span_label(
674                     span,
675                     format!(
676                         "found {} {} parameter{}{}",
677                         impl_count,
678                         kind,
679                         pluralize!(impl_count),
680                         suffix.unwrap_or_else(|| String::new()),
681                     ),
682                 );
683             }
684
685             for span in impl_trait_spans.iter().chain(impl_item_impl_trait_spans.iter()) {
686                 err.span_label(*span, "`impl Trait` introduces an implicit type parameter");
687             }
688
689             err.emit();
690         }
691     }
692
693     if err_occurred { Err(ErrorReported) } else { Ok(()) }
694 }
695
696 fn compare_number_of_method_arguments<'tcx>(
697     tcx: TyCtxt<'tcx>,
698     impl_m: &ty::AssocItem,
699     impl_m_span: Span,
700     trait_m: &ty::AssocItem,
701     trait_item_span: Option<Span>,
702 ) -> Result<(), ErrorReported> {
703     let impl_m_fty = tcx.fn_sig(impl_m.def_id);
704     let trait_m_fty = tcx.fn_sig(trait_m.def_id);
705     let trait_number_args = trait_m_fty.inputs().skip_binder().len();
706     let impl_number_args = impl_m_fty.inputs().skip_binder().len();
707     if trait_number_args != impl_number_args {
708         let trait_m_hir_id = tcx.hir().as_local_hir_id(trait_m.def_id);
709         let trait_span = if let Some(trait_id) = trait_m_hir_id {
710             match tcx.hir().expect_trait_item(trait_id).kind {
711                 TraitItemKind::Method(ref trait_m_sig, _) => {
712                     let pos = if trait_number_args > 0 { trait_number_args - 1 } else { 0 };
713                     if let Some(arg) = trait_m_sig.decl.inputs.get(pos) {
714                         Some(if pos == 0 {
715                             arg.span
716                         } else {
717                             Span::new(
718                                 trait_m_sig.decl.inputs[0].span.lo(),
719                                 arg.span.hi(),
720                                 arg.span.ctxt(),
721                             )
722                         })
723                     } else {
724                         trait_item_span
725                     }
726                 }
727                 _ => bug!("{:?} is not a method", impl_m),
728             }
729         } else {
730             trait_item_span
731         };
732         let impl_m_hir_id = tcx.hir().as_local_hir_id(impl_m.def_id).unwrap();
733         let impl_span = match tcx.hir().expect_impl_item(impl_m_hir_id).kind {
734             ImplItemKind::Method(ref impl_m_sig, _) => {
735                 let pos = if impl_number_args > 0 { impl_number_args - 1 } else { 0 };
736                 if let Some(arg) = impl_m_sig.decl.inputs.get(pos) {
737                     if pos == 0 {
738                         arg.span
739                     } else {
740                         Span::new(
741                             impl_m_sig.decl.inputs[0].span.lo(),
742                             arg.span.hi(),
743                             arg.span.ctxt(),
744                         )
745                     }
746                 } else {
747                     impl_m_span
748                 }
749             }
750             _ => bug!("{:?} is not a method", impl_m),
751         };
752         let mut err = struct_span_err!(
753             tcx.sess,
754             impl_span,
755             E0050,
756             "method `{}` has {} but the declaration in \
757                                         trait `{}` has {}",
758             trait_m.ident,
759             potentially_plural_count(impl_number_args, "parameter"),
760             tcx.def_path_str(trait_m.def_id),
761             trait_number_args
762         );
763         if let Some(trait_span) = trait_span {
764             err.span_label(
765                 trait_span,
766                 format!(
767                     "trait requires {}",
768                     potentially_plural_count(trait_number_args, "parameter")
769                 ),
770             );
771         } else {
772             err.note_trait_signature(trait_m.ident.to_string(), trait_m.signature(tcx));
773         }
774         err.span_label(
775             impl_span,
776             format!(
777                 "expected {}, found {}",
778                 potentially_plural_count(trait_number_args, "parameter"),
779                 impl_number_args
780             ),
781         );
782         err.emit();
783         return Err(ErrorReported);
784     }
785
786     Ok(())
787 }
788
789 fn compare_synthetic_generics<'tcx>(
790     tcx: TyCtxt<'tcx>,
791     impl_m: &ty::AssocItem,
792     trait_m: &ty::AssocItem,
793 ) -> Result<(), ErrorReported> {
794     // FIXME(chrisvittal) Clean up this function, list of FIXME items:
795     //     1. Better messages for the span labels
796     //     2. Explanation as to what is going on
797     // If we get here, we already have the same number of generics, so the zip will
798     // be okay.
799     let mut error_found = false;
800     let impl_m_generics = tcx.generics_of(impl_m.def_id);
801     let trait_m_generics = tcx.generics_of(trait_m.def_id);
802     let impl_m_type_params = impl_m_generics.params.iter().filter_map(|param| match param.kind {
803         GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
804         GenericParamDefKind::Lifetime | GenericParamDefKind::Const => None,
805     });
806     let trait_m_type_params = trait_m_generics.params.iter().filter_map(|param| match param.kind {
807         GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
808         GenericParamDefKind::Lifetime | GenericParamDefKind::Const => None,
809     });
810     for ((impl_def_id, impl_synthetic), (trait_def_id, trait_synthetic)) in
811         impl_m_type_params.zip(trait_m_type_params)
812     {
813         if impl_synthetic != trait_synthetic {
814             let impl_hir_id = tcx.hir().as_local_hir_id(impl_def_id).unwrap();
815             let impl_span = tcx.hir().span(impl_hir_id);
816             let trait_span = tcx.def_span(trait_def_id);
817             let mut err = struct_span_err!(
818                 tcx.sess,
819                 impl_span,
820                 E0643,
821                 "method `{}` has incompatible signature for trait",
822                 trait_m.ident
823             );
824             err.span_label(trait_span, "declaration in trait here");
825             match (impl_synthetic, trait_synthetic) {
826                 // The case where the impl method uses `impl Trait` but the trait method uses
827                 // explicit generics
828                 (Some(hir::SyntheticTyParamKind::ImplTrait), None) => {
829                     err.span_label(impl_span, "expected generic parameter, found `impl Trait`");
830                     (|| {
831                         // try taking the name from the trait impl
832                         // FIXME: this is obviously suboptimal since the name can already be used
833                         // as another generic argument
834                         let new_name = tcx.sess.source_map().span_to_snippet(trait_span).ok()?;
835                         let trait_m = tcx.hir().as_local_hir_id(trait_m.def_id)?;
836                         let trait_m = tcx.hir().trait_item(hir::TraitItemId { hir_id: trait_m });
837
838                         let impl_m = tcx.hir().as_local_hir_id(impl_m.def_id)?;
839                         let impl_m = tcx.hir().impl_item(hir::ImplItemId { hir_id: impl_m });
840
841                         // in case there are no generics, take the spot between the function name
842                         // and the opening paren of the argument list
843                         let new_generics_span =
844                             tcx.sess.source_map().generate_fn_name_span(impl_span)?.shrink_to_hi();
845                         // in case there are generics, just replace them
846                         let generics_span =
847                             impl_m.generics.span.substitute_dummy(new_generics_span);
848                         // replace with the generics from the trait
849                         let new_generics =
850                             tcx.sess.source_map().span_to_snippet(trait_m.generics.span).ok()?;
851
852                         err.multipart_suggestion(
853                             "try changing the `impl Trait` argument to a generic parameter",
854                             vec![
855                                 // replace `impl Trait` with `T`
856                                 (impl_span, new_name),
857                                 // replace impl method generics with trait method generics
858                                 // This isn't quite right, as users might have changed the names
859                                 // of the generics, but it works for the common case
860                                 (generics_span, new_generics),
861                             ],
862                             Applicability::MaybeIncorrect,
863                         );
864                         Some(())
865                     })();
866                 }
867                 // The case where the trait method uses `impl Trait`, but the impl method uses
868                 // explicit generics.
869                 (None, Some(hir::SyntheticTyParamKind::ImplTrait)) => {
870                     err.span_label(impl_span, "expected `impl Trait`, found generic parameter");
871                     (|| {
872                         let impl_m = tcx.hir().as_local_hir_id(impl_m.def_id)?;
873                         let impl_m = tcx.hir().impl_item(hir::ImplItemId { hir_id: impl_m });
874                         let input_tys = match impl_m.kind {
875                             hir::ImplItemKind::Method(ref sig, _) => sig.decl.inputs,
876                             _ => unreachable!(),
877                         };
878                         struct Visitor(Option<Span>, hir::def_id::DefId);
879                         impl<'v> intravisit::Visitor<'v> for Visitor {
880                             fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
881                                 intravisit::walk_ty(self, ty);
882                                 if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) =
883                                     ty.kind
884                                 {
885                                     if let Res::Def(DefKind::TyParam, def_id) = path.res {
886                                         if def_id == self.1 {
887                                             self.0 = Some(ty.span);
888                                         }
889                                     }
890                                 }
891                             }
892                             type Map = Map<'v>;
893                             fn nested_visit_map(
894                                 &mut self,
895                             ) -> intravisit::NestedVisitorMap<'_, Self::Map>
896                             {
897                                 intravisit::NestedVisitorMap::None
898                             }
899                         }
900                         let mut visitor = Visitor(None, impl_def_id);
901                         for ty in input_tys {
902                             intravisit::Visitor::visit_ty(&mut visitor, ty);
903                         }
904                         let span = visitor.0?;
905
906                         let bounds =
907                             impl_m.generics.params.iter().find_map(|param| match param.kind {
908                                 GenericParamKind::Lifetime { .. } => None,
909                                 GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
910                                     if param.hir_id == impl_hir_id {
911                                         Some(&param.bounds)
912                                     } else {
913                                         None
914                                     }
915                                 }
916                             })?;
917                         let bounds = bounds.first()?.span().to(bounds.last()?.span());
918                         let bounds = tcx.sess.source_map().span_to_snippet(bounds).ok()?;
919
920                         err.multipart_suggestion(
921                             "try removing the generic parameter and using `impl Trait` instead",
922                             vec![
923                                 // delete generic parameters
924                                 (impl_m.generics.span, String::new()),
925                                 // replace param usage with `impl Trait`
926                                 (span, format!("impl {}", bounds)),
927                             ],
928                             Applicability::MaybeIncorrect,
929                         );
930                         Some(())
931                     })();
932                 }
933                 _ => unreachable!(),
934             }
935             err.emit();
936             error_found = true;
937         }
938     }
939     if error_found { Err(ErrorReported) } else { Ok(()) }
940 }
941
942 crate fn compare_const_impl<'tcx>(
943     tcx: TyCtxt<'tcx>,
944     impl_c: &ty::AssocItem,
945     impl_c_span: Span,
946     trait_c: &ty::AssocItem,
947     impl_trait_ref: ty::TraitRef<'tcx>,
948 ) {
949     debug!("compare_const_impl(impl_trait_ref={:?})", impl_trait_ref);
950
951     tcx.infer_ctxt().enter(|infcx| {
952         let param_env = tcx.param_env(impl_c.def_id);
953         let inh = Inherited::new(infcx, impl_c.def_id);
954         let infcx = &inh.infcx;
955
956         // The below is for the most part highly similar to the procedure
957         // for methods above. It is simpler in many respects, especially
958         // because we shouldn't really have to deal with lifetimes or
959         // predicates. In fact some of this should probably be put into
960         // shared functions because of DRY violations...
961         let trait_to_impl_substs = impl_trait_ref.substs;
962
963         // Create a parameter environment that represents the implementation's
964         // method.
965         let impl_c_hir_id = tcx.hir().as_local_hir_id(impl_c.def_id).unwrap();
966
967         // Compute placeholder form of impl and trait const tys.
968         let impl_ty = tcx.type_of(impl_c.def_id);
969         let trait_ty = tcx.type_of(trait_c.def_id).subst(tcx, trait_to_impl_substs);
970         let mut cause = ObligationCause::misc(impl_c_span, impl_c_hir_id);
971
972         // There is no "body" here, so just pass dummy id.
973         let impl_ty =
974             inh.normalize_associated_types_in(impl_c_span, impl_c_hir_id, param_env, &impl_ty);
975
976         debug!("compare_const_impl: impl_ty={:?}", impl_ty);
977
978         let trait_ty =
979             inh.normalize_associated_types_in(impl_c_span, impl_c_hir_id, param_env, &trait_ty);
980
981         debug!("compare_const_impl: trait_ty={:?}", trait_ty);
982
983         let err = infcx
984             .at(&cause, param_env)
985             .sup(trait_ty, impl_ty)
986             .map(|ok| inh.register_infer_ok_obligations(ok));
987
988         if let Err(terr) = err {
989             debug!(
990                 "checking associated const for compatibility: impl ty {:?}, trait ty {:?}",
991                 impl_ty, trait_ty
992             );
993
994             // Locate the Span containing just the type of the offending impl
995             match tcx.hir().expect_impl_item(impl_c_hir_id).kind {
996                 ImplItemKind::Const(ref ty, _) => cause.span = ty.span,
997                 _ => bug!("{:?} is not a impl const", impl_c),
998             }
999
1000             let mut diag = struct_span_err!(
1001                 tcx.sess,
1002                 cause.span,
1003                 E0326,
1004                 "implemented const `{}` has an incompatible type for \
1005                                              trait",
1006                 trait_c.ident
1007             );
1008
1009             let trait_c_hir_id = tcx.hir().as_local_hir_id(trait_c.def_id);
1010             let trait_c_span = trait_c_hir_id.map(|trait_c_hir_id| {
1011                 // Add a label to the Span containing just the type of the const
1012                 match tcx.hir().expect_trait_item(trait_c_hir_id).kind {
1013                     TraitItemKind::Const(ref ty, _) => ty.span,
1014                     _ => bug!("{:?} is not a trait const", trait_c),
1015                 }
1016             });
1017
1018             infcx.note_type_err(
1019                 &mut diag,
1020                 &cause,
1021                 trait_c_span.map(|span| (span, "type in trait".to_owned())),
1022                 Some(infer::ValuePairs::Types(ExpectedFound {
1023                     expected: trait_ty,
1024                     found: impl_ty,
1025                 })),
1026                 &terr,
1027             );
1028             diag.emit();
1029         }
1030
1031         // Check that all obligations are satisfied by the implementation's
1032         // version.
1033         if let Err(ref errors) = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx) {
1034             infcx.report_fulfillment_errors(errors, None, false);
1035             return;
1036         }
1037
1038         let fcx = FnCtxt::new(&inh, param_env, impl_c_hir_id);
1039         fcx.regionck_item(impl_c_hir_id, impl_c_span, &[]);
1040     });
1041 }
1042
1043 crate fn compare_ty_impl<'tcx>(
1044     tcx: TyCtxt<'tcx>,
1045     impl_ty: &ty::AssocItem,
1046     impl_ty_span: Span,
1047     trait_ty: &ty::AssocItem,
1048     impl_trait_ref: ty::TraitRef<'tcx>,
1049     trait_item_span: Option<Span>,
1050 ) {
1051     debug!("compare_impl_type(impl_trait_ref={:?})", impl_trait_ref);
1052
1053     let _: Result<(), ErrorReported> = (|| {
1054         compare_number_of_generics(tcx, impl_ty, impl_ty_span, trait_ty, trait_item_span)?;
1055
1056         compare_type_predicate_entailment(tcx, impl_ty, impl_ty_span, trait_ty, impl_trait_ref)
1057     })();
1058 }
1059
1060 /// The equivalent of [compare_predicate_entailment], but for associated types
1061 /// instead of associated functions.
1062 fn compare_type_predicate_entailment(
1063     tcx: TyCtxt<'tcx>,
1064     impl_ty: &ty::AssocItem,
1065     impl_ty_span: Span,
1066     trait_ty: &ty::AssocItem,
1067     impl_trait_ref: ty::TraitRef<'tcx>,
1068 ) -> Result<(), ErrorReported> {
1069     let impl_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
1070     let trait_to_impl_substs =
1071         impl_substs.rebase_onto(tcx, impl_ty.container.id(), impl_trait_ref.substs);
1072
1073     let impl_ty_generics = tcx.generics_of(impl_ty.def_id);
1074     let trait_ty_generics = tcx.generics_of(trait_ty.def_id);
1075     let impl_ty_predicates = tcx.predicates_of(impl_ty.def_id);
1076     let trait_ty_predicates = tcx.predicates_of(trait_ty.def_id);
1077
1078     check_region_bounds_on_impl_item(
1079         tcx,
1080         impl_ty_span,
1081         impl_ty,
1082         trait_ty,
1083         &trait_ty_generics,
1084         &impl_ty_generics,
1085     )?;
1086
1087     let impl_ty_own_bounds = impl_ty_predicates.instantiate_own(tcx, impl_substs);
1088
1089     if impl_ty_own_bounds.is_empty() {
1090         // Nothing to check.
1091         return Ok(());
1092     }
1093
1094     // This `HirId` should be used for the `body_id` field on each
1095     // `ObligationCause` (and the `FnCtxt`). This is what
1096     // `regionck_item` expects.
1097     let impl_ty_hir_id = tcx.hir().as_local_hir_id(impl_ty.def_id).unwrap();
1098     let cause = ObligationCause {
1099         span: impl_ty_span,
1100         body_id: impl_ty_hir_id,
1101         code: ObligationCauseCode::CompareImplTypeObligation {
1102             item_name: impl_ty.ident.name,
1103             impl_item_def_id: impl_ty.def_id,
1104             trait_item_def_id: trait_ty.def_id,
1105         },
1106     };
1107
1108     debug!("compare_type_predicate_entailment: trait_to_impl_substs={:?}", trait_to_impl_substs);
1109
1110     // The predicates declared by the impl definition, the trait and the
1111     // associated type in the trait are assumed.
1112     let impl_predicates = tcx.predicates_of(impl_ty_predicates.parent.unwrap());
1113     let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
1114     hybrid_preds
1115         .predicates
1116         .extend(trait_ty_predicates.instantiate_own(tcx, trait_to_impl_substs).predicates);
1117
1118     debug!("compare_type_predicate_entailment: bounds={:?}", hybrid_preds);
1119
1120     let normalize_cause = traits::ObligationCause::misc(impl_ty_span, impl_ty_hir_id);
1121     let param_env = ty::ParamEnv::new(
1122         tcx.intern_predicates(&hybrid_preds.predicates),
1123         Reveal::UserFacing,
1124         None,
1125     );
1126     let param_env = traits::normalize_param_env_or_error(
1127         tcx,
1128         impl_ty.def_id,
1129         param_env,
1130         normalize_cause.clone(),
1131     );
1132     tcx.infer_ctxt().enter(|infcx| {
1133         let inh = Inherited::new(infcx, impl_ty.def_id);
1134         let infcx = &inh.infcx;
1135
1136         debug!("compare_type_predicate_entailment: caller_bounds={:?}", param_env.caller_bounds);
1137
1138         let mut selcx = traits::SelectionContext::new(&infcx);
1139
1140         for predicate in impl_ty_own_bounds.predicates {
1141             let traits::Normalized { value: predicate, obligations } =
1142                 traits::normalize(&mut selcx, param_env, normalize_cause.clone(), &predicate);
1143
1144             inh.register_predicates(obligations);
1145             inh.register_predicate(traits::Obligation::new(cause.clone(), param_env, predicate));
1146         }
1147
1148         // Check that all obligations are satisfied by the implementation's
1149         // version.
1150         if let Err(ref errors) = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx) {
1151             infcx.report_fulfillment_errors(errors, None, false);
1152             return Err(ErrorReported);
1153         }
1154
1155         // Finally, resolve all regions. This catches wily misuses of
1156         // lifetime parameters.
1157         let fcx = FnCtxt::new(&inh, param_env, impl_ty_hir_id);
1158         fcx.regionck_item(impl_ty_hir_id, impl_ty_span, &[]);
1159
1160         Ok(())
1161     })
1162 }
1163
1164 fn assoc_item_kind_str(impl_item: &ty::AssocItem) -> &'static str {
1165     match impl_item.kind {
1166         ty::AssocKind::Const => "const",
1167         ty::AssocKind::Method => "method",
1168         ty::AssocKind::Type | ty::AssocKind::OpaqueTy => "type",
1169     }
1170 }