]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/check/callee.rs
Add an unstable FileTypeExt extension trait for Windows
[rust.git] / src / librustc_typeck / check / callee.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use super::{Expectation, FnCtxt, Needs, TupleArgumentsFlag};
12 use super::autoderef::Autoderef;
13 use super::method::MethodCallee;
14
15 use hir::def::Def;
16 use hir::def_id::{DefId, LOCAL_CRATE};
17 use rustc::{infer, traits};
18 use rustc::ty::{self, TyCtxt, TypeFoldable, Ty};
19 use rustc::ty::adjustment::{Adjustment, Adjust, AutoBorrow};
20 use syntax::abi;
21 use syntax::symbol::Symbol;
22 use syntax_pos::Span;
23
24 use rustc::hir;
25
26 /// Check that it is legal to call methods of the trait corresponding
27 /// to `trait_id` (this only cares about the trait, not the specific
28 /// method that is called)
29 pub fn check_legal_trait_for_method_call(tcx: TyCtxt, span: Span, trait_id: DefId) {
30     if tcx.lang_items().drop_trait() == Some(trait_id) {
31         struct_span_err!(tcx.sess, span, E0040, "explicit use of destructor method")
32             .span_label(span, "explicit destructor calls not allowed")
33             .emit();
34     }
35 }
36
37 enum CallStep<'tcx> {
38     Builtin(Ty<'tcx>),
39     DeferredClosure(ty::FnSig<'tcx>),
40     /// e.g. enum variant constructors
41     Overloaded(MethodCallee<'tcx>),
42 }
43
44 impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
45     pub fn check_call(&self,
46                       call_expr: &'gcx hir::Expr,
47                       callee_expr: &'gcx hir::Expr,
48                       arg_exprs: &'gcx [hir::Expr],
49                       expected: Expectation<'tcx>)
50                       -> Ty<'tcx> {
51         let original_callee_ty = self.check_expr(callee_expr);
52         let expr_ty = self.structurally_resolved_type(call_expr.span, original_callee_ty);
53
54         let mut autoderef = self.autoderef(callee_expr.span, expr_ty);
55         let mut result = None;
56         while result.is_none() && autoderef.next().is_some() {
57             result = self.try_overloaded_call_step(call_expr, callee_expr, &autoderef);
58         }
59         autoderef.finalize();
60
61         let output = match result {
62             None => {
63                 // this will report an error since original_callee_ty is not a fn
64                 self.confirm_builtin_call(call_expr, original_callee_ty, arg_exprs, expected)
65             }
66
67             Some(CallStep::Builtin(callee_ty)) => {
68                 self.confirm_builtin_call(call_expr, callee_ty, arg_exprs, expected)
69             }
70
71             Some(CallStep::DeferredClosure(fn_sig)) => {
72                 self.confirm_deferred_closure_call(call_expr, arg_exprs, expected, fn_sig)
73             }
74
75             Some(CallStep::Overloaded(method_callee)) => {
76                 self.confirm_overloaded_call(call_expr, arg_exprs, expected, method_callee)
77             }
78         };
79
80         // we must check that return type of called functions is WF:
81         self.register_wf_obligation(output, call_expr.span, traits::MiscObligation);
82
83         output
84     }
85
86     fn try_overloaded_call_step(&self,
87                                 call_expr: &'gcx hir::Expr,
88                                 callee_expr: &'gcx hir::Expr,
89                                 autoderef: &Autoderef<'a, 'gcx, 'tcx>)
90                                 -> Option<CallStep<'tcx>> {
91         let adjusted_ty = autoderef.unambiguous_final_ty();
92         debug!("try_overloaded_call_step(call_expr={:?}, adjusted_ty={:?})",
93                call_expr,
94                adjusted_ty);
95
96         // If the callee is a bare function or a closure, then we're all set.
97         match adjusted_ty.sty {
98             ty::TyFnDef(..) | ty::TyFnPtr(_) => {
99                 let adjustments = autoderef.adjust_steps(Needs::None);
100                 self.apply_adjustments(callee_expr, adjustments);
101                 return Some(CallStep::Builtin(adjusted_ty));
102             }
103
104             ty::TyClosure(def_id, substs) => {
105                 assert_eq!(def_id.krate, LOCAL_CRATE);
106
107                 // Check whether this is a call to a closure where we
108                 // haven't yet decided on whether the closure is fn vs
109                 // fnmut vs fnonce. If so, we have to defer further processing.
110                 if self.closure_kind(def_id, substs).is_none() {
111                     let closure_ty = self.closure_sig(def_id, substs);
112                     let fn_sig = self.replace_late_bound_regions_with_fresh_var(call_expr.span,
113                                                                    infer::FnCall,
114                                                                    &closure_ty)
115                         .0;
116                     let adjustments = autoderef.adjust_steps(Needs::None);
117                     self.record_deferred_call_resolution(def_id, DeferredCallResolution {
118                         call_expr,
119                         callee_expr,
120                         adjusted_ty,
121                         adjustments,
122                         fn_sig,
123                         closure_def_id: def_id,
124                         closure_substs: substs,
125                     });
126                     return Some(CallStep::DeferredClosure(fn_sig));
127                 }
128             }
129
130             // Hack: we know that there are traits implementing Fn for &F
131             // where F:Fn and so forth. In the particular case of types
132             // like `x: &mut FnMut()`, if there is a call `x()`, we would
133             // normally translate to `FnMut::call_mut(&mut x, ())`, but
134             // that winds up requiring `mut x: &mut FnMut()`. A little
135             // over the top. The simplest fix by far is to just ignore
136             // this case and deref again, so we wind up with
137             // `FnMut::call_mut(&mut *x, ())`.
138             ty::TyRef(..) if autoderef.step_count() == 0 => {
139                 return None;
140             }
141
142             _ => {}
143         }
144
145         self.try_overloaded_call_traits(call_expr, adjusted_ty).map(|(autoref, method)| {
146             let mut adjustments = autoderef.adjust_steps(Needs::None);
147             adjustments.extend(autoref);
148             self.apply_adjustments(callee_expr, adjustments);
149             CallStep::Overloaded(method)
150         })
151     }
152
153     fn try_overloaded_call_traits(&self,
154                                   call_expr: &hir::Expr,
155                                   adjusted_ty: Ty<'tcx>)
156                                   -> Option<(Option<Adjustment<'tcx>>,
157                                              MethodCallee<'tcx>)> {
158         // Try the options that are least restrictive on the caller first.
159         for &(opt_trait_def_id, method_name, borrow) in
160             &[(self.tcx.lang_items().fn_trait(), Symbol::intern("call"), true),
161               (self.tcx.lang_items().fn_mut_trait(), Symbol::intern("call_mut"), true),
162               (self.tcx.lang_items().fn_once_trait(), Symbol::intern("call_once"), false)] {
163             let trait_def_id = match opt_trait_def_id {
164                 Some(def_id) => def_id,
165                 None => continue,
166             };
167
168             match self.lookup_method_in_trait(call_expr.span,
169                                               method_name,
170                                               trait_def_id,
171                                               adjusted_ty,
172                                               None) {
173                 None => continue,
174                 Some(ok) => {
175                     let method = self.register_infer_ok_obligations(ok);
176                     let mut autoref = None;
177                     if borrow {
178                         if let ty::TyRef(region, mt) = method.sig.inputs()[0].sty {
179                             autoref = Some(Adjustment {
180                                 kind: Adjust::Borrow(AutoBorrow::Ref(region, mt.mutbl)),
181                                 target: method.sig.inputs()[0]
182                             });
183                         }
184                     }
185                     return Some((autoref, method));
186                 }
187             }
188         }
189
190         None
191     }
192
193     fn confirm_builtin_call(&self,
194                             call_expr: &hir::Expr,
195                             callee_ty: Ty<'tcx>,
196                             arg_exprs: &'gcx [hir::Expr],
197                             expected: Expectation<'tcx>)
198                             -> Ty<'tcx> {
199         let (fn_sig, def_span) = match callee_ty.sty {
200             ty::TyFnDef(def_id, _) => {
201                 (callee_ty.fn_sig(self.tcx), self.tcx.hir.span_if_local(def_id))
202             }
203             ty::TyFnPtr(sig) => (sig, None),
204             ref t => {
205                 let mut unit_variant = None;
206                 if let &ty::TyAdt(adt_def, ..) = t {
207                     if adt_def.is_enum() {
208                         if let hir::ExprCall(ref expr, _) = call_expr.node {
209                             unit_variant = Some(self.tcx.hir.node_to_pretty_string(expr.id))
210                         }
211                     }
212                 }
213
214                 let mut err = type_error_struct!(
215                     self.tcx.sess,
216                     call_expr.span,
217                     callee_ty,
218                     E0618,
219                     "expected function, found {}",
220                     match unit_variant {
221                         Some(ref path) => format!("enum variant `{}`", path),
222                         None => format!("`{}`", callee_ty),
223                     });
224
225                 err.span_label(call_expr.span, "not a function");
226
227                 if let Some(ref path) = unit_variant {
228                     err.span_suggestion(call_expr.span,
229                                         &format!("`{}` is a unit variant, you need to write it \
230                                                   without the parenthesis", path),
231                                         path.to_string());
232                 }
233
234                 if let hir::ExprCall(ref expr, _) = call_expr.node {
235                     let def = if let hir::ExprPath(ref qpath) = expr.node {
236                         self.tables.borrow().qpath_def(qpath, expr.hir_id)
237                     } else {
238                         Def::Err
239                     };
240                     let def_span = match def {
241                         Def::Err => None,
242                         Def::Local(id) | Def::Upvar(id, ..) => {
243                             Some(self.tcx.hir.span(id))
244                         }
245                         _ => self.tcx.hir.span_if_local(def.def_id())
246                     };
247                     if let Some(span) = def_span {
248                         let name = match unit_variant {
249                             Some(path) => path,
250                             None => callee_ty.to_string(),
251                         };
252                         err.span_label(span, format!("`{}` defined here", name));
253                     }
254                 }
255
256                 err.emit();
257
258                 // This is the "default" function signature, used in case of error.
259                 // In that case, we check each argument against "error" in order to
260                 // set up all the node type bindings.
261                 (ty::Binder(self.tcx.mk_fn_sig(
262                     self.err_args(arg_exprs.len()).into_iter(),
263                     self.tcx.types.err,
264                     false,
265                     hir::Unsafety::Normal,
266                     abi::Abi::Rust
267                 )), None)
268             }
269         };
270
271         // Replace any late-bound regions that appear in the function
272         // signature with region variables. We also have to
273         // renormalize the associated types at this point, since they
274         // previously appeared within a `Binder<>` and hence would not
275         // have been normalized before.
276         let fn_sig =
277             self.replace_late_bound_regions_with_fresh_var(call_expr.span, infer::FnCall, &fn_sig)
278                 .0;
279         let fn_sig = self.normalize_associated_types_in(call_expr.span, &fn_sig);
280
281         // Call the generic checker.
282         let expected_arg_tys =
283             self.expected_inputs_for_expected_output(call_expr.span,
284                                             expected,
285                                             fn_sig.output(),
286                                             fn_sig.inputs());
287         self.check_argument_types(call_expr.span,
288                                   call_expr.span,
289                                   fn_sig.inputs(),
290                                   &expected_arg_tys[..],
291                                   arg_exprs,
292                                   fn_sig.variadic,
293                                   TupleArgumentsFlag::DontTupleArguments,
294                                   def_span);
295
296         fn_sig.output()
297     }
298
299     fn confirm_deferred_closure_call(&self,
300                                      call_expr: &hir::Expr,
301                                      arg_exprs: &'gcx [hir::Expr],
302                                      expected: Expectation<'tcx>,
303                                      fn_sig: ty::FnSig<'tcx>)
304                                      -> Ty<'tcx> {
305         // `fn_sig` is the *signature* of the cosure being called. We
306         // don't know the full details yet (`Fn` vs `FnMut` etc), but we
307         // do know the types expected for each argument and the return
308         // type.
309
310         let expected_arg_tys = self.expected_inputs_for_expected_output(call_expr.span,
311                                                                expected,
312                                                                fn_sig.output().clone(),
313                                                                fn_sig.inputs());
314
315         self.check_argument_types(call_expr.span,
316                                   call_expr.span,
317                                   fn_sig.inputs(),
318                                   &expected_arg_tys,
319                                   arg_exprs,
320                                   fn_sig.variadic,
321                                   TupleArgumentsFlag::TupleArguments,
322                                   None);
323
324         fn_sig.output()
325     }
326
327     fn confirm_overloaded_call(&self,
328                                call_expr: &hir::Expr,
329                                arg_exprs: &'gcx [hir::Expr],
330                                expected: Expectation<'tcx>,
331                                method_callee: MethodCallee<'tcx>)
332                                -> Ty<'tcx> {
333         let output_type = self.check_method_argument_types(call_expr.span,
334                                                            call_expr.span,
335                                                            Ok(method_callee),
336                                                            arg_exprs,
337                                                            TupleArgumentsFlag::TupleArguments,
338                                                            expected);
339
340         self.write_method_call(call_expr.hir_id, method_callee);
341         output_type
342     }
343 }
344
345 #[derive(Debug)]
346 pub struct DeferredCallResolution<'gcx: 'tcx, 'tcx> {
347     call_expr: &'gcx hir::Expr,
348     callee_expr: &'gcx hir::Expr,
349     adjusted_ty: Ty<'tcx>,
350     adjustments: Vec<Adjustment<'tcx>>,
351     fn_sig: ty::FnSig<'tcx>,
352     closure_def_id: DefId,
353     closure_substs: ty::ClosureSubsts<'tcx>,
354 }
355
356 impl<'a, 'gcx, 'tcx> DeferredCallResolution<'gcx, 'tcx> {
357     pub fn resolve(self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) {
358         debug!("DeferredCallResolution::resolve() {:?}", self);
359
360         // we should not be invoked until the closure kind has been
361         // determined by upvar inference
362         assert!(fcx.closure_kind(self.closure_def_id, self.closure_substs).is_some());
363
364         // We may now know enough to figure out fn vs fnmut etc.
365         match fcx.try_overloaded_call_traits(self.call_expr,
366                                              self.adjusted_ty) {
367             Some((autoref, method_callee)) => {
368                 // One problem is that when we get here, we are going
369                 // to have a newly instantiated function signature
370                 // from the call trait. This has to be reconciled with
371                 // the older function signature we had before. In
372                 // principle we *should* be able to fn_sigs(), but we
373                 // can't because of the annoying need for a TypeTrace.
374                 // (This always bites me, should find a way to
375                 // refactor it.)
376                 let method_sig = method_callee.sig;
377
378                 debug!("attempt_resolution: method_callee={:?}", method_callee);
379
380                 for (method_arg_ty, self_arg_ty) in
381                     method_sig.inputs().iter().skip(1).zip(self.fn_sig.inputs()) {
382                     fcx.demand_eqtype(self.call_expr.span, &self_arg_ty, &method_arg_ty);
383                 }
384
385                 fcx.demand_eqtype(self.call_expr.span, method_sig.output(), self.fn_sig.output());
386
387                 let mut adjustments = self.adjustments;
388                 adjustments.extend(autoref);
389                 fcx.apply_adjustments(self.callee_expr, adjustments);
390
391                 fcx.write_method_call(self.call_expr.hir_id,
392                                       method_callee);
393             }
394             None => {
395                 span_bug!(self.call_expr.span,
396                           "failed to find an overloaded call trait for closure call");
397             }
398         }
399     }
400 }