]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/astconv.rs
Ban multi-trait objects via trait aliases.
[rust.git] / src / librustc_typeck / astconv.rs
1 //! Conversion from AST representation of types to the `ty.rs` representation.
2 //! The main routine here is `ast_ty_to_ty()`; each use is parameterized by an
3 //! instance of `AstConv`.
4
5 use errors::{Applicability, DiagnosticId};
6 use crate::hir::{self, GenericArg, GenericArgs, ExprKind};
7 use crate::hir::def::{CtorOf, Res, DefKind};
8 use crate::hir::def_id::DefId;
9 use crate::hir::HirVec;
10 use crate::lint;
11 use crate::middle::resolve_lifetime as rl;
12 use crate::namespace::Namespace;
13 use rustc::lint::builtin::AMBIGUOUS_ASSOCIATED_ITEMS;
14 use rustc::traits;
15 use rustc::ty::{self, DefIdTree, Ty, TyCtxt, ToPredicate, TypeFoldable};
16 use rustc::ty::{GenericParamDef, GenericParamDefKind};
17 use rustc::ty::subst::{Kind, Subst, InternalSubsts, SubstsRef};
18 use rustc::ty::wf::object_region_bounds;
19 use rustc::mir::interpret::ConstValue;
20 use rustc_data_structures::sync::Lrc;
21 use rustc_target::spec::abi;
22 use crate::require_c_abi_if_c_variadic;
23 use smallvec::SmallVec;
24 use syntax::ast;
25 use syntax::feature_gate::{GateIssue, emit_feature_err};
26 use syntax::ptr::P;
27 use syntax::util::lev_distance::find_best_match_for_name;
28 use syntax::symbol::sym;
29 use syntax_pos::{DUMMY_SP, Span, MultiSpan};
30 use crate::util::common::ErrorReported;
31 use crate::util::nodemap::FxHashMap;
32
33 use std::collections::BTreeSet;
34 use std::iter;
35 use std::slice;
36
37 use super::{check_type_alias_enum_variants_enabled};
38 use rustc_data_structures::fx::FxHashSet;
39
40 #[derive(Debug)]
41 pub struct PathSeg(pub DefId, pub usize);
42
43 pub trait AstConv<'gcx, 'tcx> {
44     fn tcx<'a>(&'a self) -> TyCtxt<'a, 'gcx, 'tcx>;
45
46     /// Returns the set of bounds in scope for the type parameter with
47     /// the given id.
48     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId)
49                                  -> Lrc<ty::GenericPredicates<'tcx>>;
50
51     /// What lifetime should we use when a lifetime is omitted (and not elided)?
52     fn re_infer(&self, span: Span, _def: Option<&ty::GenericParamDef>)
53                 -> Option<ty::Region<'tcx>>;
54
55     /// What type should we use when a type is omitted?
56     fn ty_infer(&self, span: Span) -> Ty<'tcx>;
57
58     /// Same as ty_infer, but with a known type parameter definition.
59     fn ty_infer_for_def(&self,
60                         _def: &ty::GenericParamDef,
61                         span: Span) -> Ty<'tcx> {
62         self.ty_infer(span)
63     }
64
65     /// Projecting an associated type from a (potentially)
66     /// higher-ranked trait reference is more complicated, because of
67     /// the possibility of late-bound regions appearing in the
68     /// associated type binding. This is not legal in function
69     /// signatures for that reason. In a function body, we can always
70     /// handle it because we can use inference variables to remove the
71     /// late-bound regions.
72     fn projected_ty_from_poly_trait_ref(&self,
73                                         span: Span,
74                                         item_def_id: DefId,
75                                         poly_trait_ref: ty::PolyTraitRef<'tcx>)
76                                         -> Ty<'tcx>;
77
78     /// Normalize an associated type coming from the user.
79     fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;
80
81     /// Invoked when we encounter an error from some prior pass
82     /// (e.g., resolve) that is translated into a ty-error. This is
83     /// used to help suppress derived errors typeck might otherwise
84     /// report.
85     fn set_tainted_by_errors(&self);
86
87     fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, span: Span);
88 }
89
90 struct ConvertedBinding<'tcx> {
91     item_name: ast::Ident,
92     ty: Ty<'tcx>,
93     span: Span,
94 }
95
96 #[derive(PartialEq)]
97 enum GenericArgPosition {
98     Type,
99     Value, // e.g., functions
100     MethodCall,
101 }
102
103 impl<'o, 'gcx: 'tcx, 'tcx> dyn AstConv<'gcx, 'tcx> + 'o {
104     pub fn ast_region_to_region(&self,
105         lifetime: &hir::Lifetime,
106         def: Option<&ty::GenericParamDef>)
107         -> ty::Region<'tcx>
108     {
109         let tcx = self.tcx();
110         let lifetime_name = |def_id| {
111             tcx.hir().name_by_hir_id(tcx.hir().as_local_hir_id(def_id).unwrap()).as_interned_str()
112         };
113
114         let r = match tcx.named_region(lifetime.hir_id) {
115             Some(rl::Region::Static) => {
116                 tcx.lifetimes.re_static
117             }
118
119             Some(rl::Region::LateBound(debruijn, id, _)) => {
120                 let name = lifetime_name(id);
121                 tcx.mk_region(ty::ReLateBound(debruijn,
122                     ty::BrNamed(id, name)))
123             }
124
125             Some(rl::Region::LateBoundAnon(debruijn, index)) => {
126                 tcx.mk_region(ty::ReLateBound(debruijn, ty::BrAnon(index)))
127             }
128
129             Some(rl::Region::EarlyBound(index, id, _)) => {
130                 let name = lifetime_name(id);
131                 tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
132                     def_id: id,
133                     index,
134                     name,
135                 }))
136             }
137
138             Some(rl::Region::Free(scope, id)) => {
139                 let name = lifetime_name(id);
140                 tcx.mk_region(ty::ReFree(ty::FreeRegion {
141                     scope,
142                     bound_region: ty::BrNamed(id, name)
143                 }))
144
145                 // (*) -- not late-bound, won't change
146             }
147
148             None => {
149                 self.re_infer(lifetime.span, def)
150                     .unwrap_or_else(|| {
151                         // This indicates an illegal lifetime
152                         // elision. `resolve_lifetime` should have
153                         // reported an error in this case -- but if
154                         // not, let's error out.
155                         tcx.sess.delay_span_bug(lifetime.span, "unelided lifetime in signature");
156
157                         // Supply some dummy value. We don't have an
158                         // `re_error`, annoyingly, so use `'static`.
159                         tcx.lifetimes.re_static
160                     })
161             }
162         };
163
164         debug!("ast_region_to_region(lifetime={:?}) yields {:?}",
165                lifetime,
166                r);
167
168         r
169     }
170
171     /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
172     /// returns an appropriate set of substitutions for this particular reference to `I`.
173     pub fn ast_path_substs_for_ty(&self,
174         span: Span,
175         def_id: DefId,
176         item_segment: &hir::PathSegment)
177         -> SubstsRef<'tcx>
178     {
179         let (substs, assoc_bindings, _) = item_segment.with_generic_args(|generic_args| {
180             self.create_substs_for_ast_path(
181                 span,
182                 def_id,
183                 generic_args,
184                 item_segment.infer_types,
185                 None,
186             )
187         });
188
189         assoc_bindings.first().map(|b| Self::prohibit_assoc_ty_binding(self.tcx(), b.span));
190
191         substs
192     }
193
194     /// Report error if there is an explicit type parameter when using `impl Trait`.
195     fn check_impl_trait(
196         tcx: TyCtxt<'_, '_, '_>,
197         span: Span,
198         seg: &hir::PathSegment,
199         generics: &ty::Generics,
200     ) -> bool {
201         let explicit = !seg.infer_types;
202         let impl_trait = generics.params.iter().any(|param| match param.kind {
203             ty::GenericParamDefKind::Type {
204                 synthetic: Some(hir::SyntheticTyParamKind::ImplTrait), ..
205             } => true,
206             _ => false,
207         });
208
209         if explicit && impl_trait {
210             let mut err = struct_span_err! {
211                 tcx.sess,
212                 span,
213                 E0632,
214                 "cannot provide explicit type parameters when `impl Trait` is \
215                  used in argument position."
216             };
217
218             err.emit();
219         }
220
221         impl_trait
222     }
223
224     /// Checks that the correct number of generic arguments have been provided.
225     /// Used specifically for function calls.
226     pub fn check_generic_arg_count_for_call(
227         tcx: TyCtxt<'_, '_, '_>,
228         span: Span,
229         def: &ty::Generics,
230         seg: &hir::PathSegment,
231         is_method_call: bool,
232     ) -> bool {
233         let empty_args = P(hir::GenericArgs {
234             args: HirVec::new(), bindings: HirVec::new(), parenthesized: false,
235         });
236         let suppress_mismatch = Self::check_impl_trait(tcx, span, seg, &def);
237         Self::check_generic_arg_count(
238             tcx,
239             span,
240             def,
241             if let Some(ref args) = seg.args {
242                 args
243             } else {
244                 &empty_args
245             },
246             if is_method_call {
247                 GenericArgPosition::MethodCall
248             } else {
249                 GenericArgPosition::Value
250             },
251             def.parent.is_none() && def.has_self, // `has_self`
252             seg.infer_types || suppress_mismatch, // `infer_types`
253         ).0
254     }
255
256     /// Checks that the correct number of generic arguments have been provided.
257     /// This is used both for datatypes and function calls.
258     fn check_generic_arg_count(
259         tcx: TyCtxt<'_, '_, '_>,
260         span: Span,
261         def: &ty::Generics,
262         args: &hir::GenericArgs,
263         position: GenericArgPosition,
264         has_self: bool,
265         infer_types: bool,
266     ) -> (bool, Option<Vec<Span>>) {
267         // At this stage we are guaranteed that the generic arguments are in the correct order, e.g.
268         // that lifetimes will proceed types. So it suffices to check the number of each generic
269         // arguments in order to validate them with respect to the generic parameters.
270         let param_counts = def.own_counts();
271         let arg_counts = args.own_counts();
272         let infer_lifetimes = position != GenericArgPosition::Type && arg_counts.lifetimes == 0;
273         let infer_consts = position != GenericArgPosition::Type && arg_counts.consts == 0;
274
275         let mut defaults: ty::GenericParamCount = Default::default();
276         for param in &def.params {
277             match param.kind {
278                 GenericParamDefKind::Lifetime => {}
279                 GenericParamDefKind::Type { has_default, .. } => {
280                     defaults.types += has_default as usize
281                 }
282                 GenericParamDefKind::Const => {
283                     // FIXME(const_generics:defaults)
284                 }
285             };
286         }
287
288         if position != GenericArgPosition::Type && !args.bindings.is_empty() {
289             AstConv::prohibit_assoc_ty_binding(tcx, args.bindings[0].span);
290         }
291
292         // Prohibit explicit lifetime arguments if late-bound lifetime parameters are present.
293         let mut reported_late_bound_region_err = None;
294         if !infer_lifetimes {
295             if let Some(span_late) = def.has_late_bound_regions {
296                 let msg = "cannot specify lifetime arguments explicitly \
297                            if late bound lifetime parameters are present";
298                 let note = "the late bound lifetime parameter is introduced here";
299                 let span = args.args[0].span();
300                 if position == GenericArgPosition::Value
301                     && arg_counts.lifetimes != param_counts.lifetimes {
302                     let mut err = tcx.sess.struct_span_err(span, msg);
303                     err.span_note(span_late, note);
304                     err.emit();
305                     reported_late_bound_region_err = Some(true);
306                 } else {
307                     let mut multispan = MultiSpan::from_span(span);
308                     multispan.push_span_label(span_late, note.to_string());
309                     tcx.lint_hir(lint::builtin::LATE_BOUND_LIFETIME_ARGUMENTS,
310                                  args.args[0].id(), multispan, msg);
311                     reported_late_bound_region_err = Some(false);
312                 }
313             }
314         }
315
316         let check_kind_count = |kind, required, permitted, provided, offset| {
317             debug!(
318                 "check_kind_count: kind: {} required: {} permitted: {} provided: {} offset: {}",
319                 kind,
320                 required,
321                 permitted,
322                 provided,
323                 offset
324             );
325             // We enforce the following: `required` <= `provided` <= `permitted`.
326             // For kinds without defaults (i.e., lifetimes), `required == permitted`.
327             // For other kinds (i.e., types), `permitted` may be greater than `required`.
328             if required <= provided && provided <= permitted {
329                 return (reported_late_bound_region_err.unwrap_or(false), None);
330             }
331
332             // Unfortunately lifetime and type parameter mismatches are typically styled
333             // differently in diagnostics, which means we have a few cases to consider here.
334             let (bound, quantifier) = if required != permitted {
335                 if provided < required {
336                     (required, "at least ")
337                 } else { // provided > permitted
338                     (permitted, "at most ")
339                 }
340             } else {
341                 (required, "")
342             };
343
344             let mut potential_assoc_types: Option<Vec<Span>> = None;
345             let (spans, label) = if required == permitted && provided > permitted {
346                 // In the case when the user has provided too many arguments,
347                 // we want to point to the unexpected arguments.
348                 let spans: Vec<Span> = args.args[offset+permitted .. offset+provided]
349                         .iter()
350                         .map(|arg| arg.span())
351                         .collect();
352                 potential_assoc_types = Some(spans.clone());
353                 (spans, format!( "unexpected {} argument", kind))
354             } else {
355                 (vec![span], format!(
356                     "expected {}{} {} argument{}",
357                     quantifier,
358                     bound,
359                     kind,
360                     if bound != 1 { "s" } else { "" },
361                 ))
362             };
363
364             let mut err = tcx.sess.struct_span_err_with_code(
365                 spans.clone(),
366                 &format!(
367                     "wrong number of {} arguments: expected {}{}, found {}",
368                     kind,
369                     quantifier,
370                     bound,
371                     provided,
372                 ),
373                 DiagnosticId::Error("E0107".into())
374             );
375             for span in spans {
376                 err.span_label(span, label.as_str());
377             }
378             err.emit();
379
380             (provided > required, // `suppress_error`
381              potential_assoc_types)
382         };
383
384         if reported_late_bound_region_err.is_none()
385             && (!infer_lifetimes || arg_counts.lifetimes > param_counts.lifetimes) {
386             check_kind_count(
387                 "lifetime",
388                 param_counts.lifetimes,
389                 param_counts.lifetimes,
390                 arg_counts.lifetimes,
391                 0,
392             );
393         }
394         // FIXME(const_generics:defaults)
395         if !infer_consts || arg_counts.consts > param_counts.consts {
396             check_kind_count(
397                 "const",
398                 param_counts.consts,
399                 param_counts.consts,
400                 arg_counts.consts,
401                 arg_counts.lifetimes + arg_counts.types,
402             );
403         }
404         // Note that type errors are currently be emitted *after* const errors.
405         if !infer_types
406             || arg_counts.types > param_counts.types - defaults.types - has_self as usize {
407             check_kind_count(
408                 "type",
409                 param_counts.types - defaults.types - has_self as usize,
410                 param_counts.types - has_self as usize,
411                 arg_counts.types,
412                 arg_counts.lifetimes,
413             )
414         } else {
415             (reported_late_bound_region_err.unwrap_or(false), None)
416         }
417     }
418
419     /// Creates the relevant generic argument substitutions
420     /// corresponding to a set of generic parameters. This is a
421     /// rather complex function. Let us try to explain the role
422     /// of each of its parameters:
423     ///
424     /// To start, we are given the `def_id` of the thing we are
425     /// creating the substitutions for, and a partial set of
426     /// substitutions `parent_substs`. In general, the substitutions
427     /// for an item begin with substitutions for all the "parents" of
428     /// that item -- e.g., for a method it might include the
429     /// parameters from the impl.
430     ///
431     /// Therefore, the method begins by walking down these parents,
432     /// starting with the outermost parent and proceed inwards until
433     /// it reaches `def_id`. For each parent `P`, it will check `parent_substs`
434     /// first to see if the parent's substitutions are listed in there. If so,
435     /// we can append those and move on. Otherwise, it invokes the
436     /// three callback functions:
437     ///
438     /// - `args_for_def_id`: given the `DefId` `P`, supplies back the
439     ///   generic arguments that were given to that parent from within
440     ///   the path; so e.g., if you have `<T as Foo>::Bar`, the `DefId`
441     ///   might refer to the trait `Foo`, and the arguments might be
442     ///   `[T]`. The boolean value indicates whether to infer values
443     ///   for arguments whose values were not explicitly provided.
444     /// - `provided_kind`: given the generic parameter and the value from `args_for_def_id`,
445     ///   instantiate a `Kind`.
446     /// - `inferred_kind`: if no parameter was provided, and inference is enabled, then
447     ///   creates a suitable inference variable.
448     pub fn create_substs_for_generic_args<'a, 'b>(
449         tcx: TyCtxt<'a, 'gcx, 'tcx>,
450         def_id: DefId,
451         parent_substs: &[Kind<'tcx>],
452         has_self: bool,
453         self_ty: Option<Ty<'tcx>>,
454         args_for_def_id: impl Fn(DefId) -> (Option<&'b GenericArgs>, bool),
455         provided_kind: impl Fn(&GenericParamDef, &GenericArg) -> Kind<'tcx>,
456         inferred_kind: impl Fn(Option<&[Kind<'tcx>]>, &GenericParamDef, bool) -> Kind<'tcx>,
457     ) -> SubstsRef<'tcx> {
458         // Collect the segments of the path; we need to substitute arguments
459         // for parameters throughout the entire path (wherever there are
460         // generic parameters).
461         let mut parent_defs = tcx.generics_of(def_id);
462         let count = parent_defs.count();
463         let mut stack = vec![(def_id, parent_defs)];
464         while let Some(def_id) = parent_defs.parent {
465             parent_defs = tcx.generics_of(def_id);
466             stack.push((def_id, parent_defs));
467         }
468
469         // We manually build up the substitution, rather than using convenience
470         // methods in `subst.rs`, so that we can iterate over the arguments and
471         // parameters in lock-step linearly, instead of trying to match each pair.
472         let mut substs: SmallVec<[Kind<'tcx>; 8]> = SmallVec::with_capacity(count);
473
474         // Iterate over each segment of the path.
475         while let Some((def_id, defs)) = stack.pop() {
476             let mut params = defs.params.iter().peekable();
477
478             // If we have already computed substitutions for parents, we can use those directly.
479             while let Some(&param) = params.peek() {
480                 if let Some(&kind) = parent_substs.get(param.index as usize) {
481                     substs.push(kind);
482                     params.next();
483                 } else {
484                     break;
485                 }
486             }
487
488             // `Self` is handled first, unless it's been handled in `parent_substs`.
489             if has_self {
490                 if let Some(&param) = params.peek() {
491                     if param.index == 0 {
492                         if let GenericParamDefKind::Type { .. } = param.kind {
493                             substs.push(self_ty.map(|ty| ty.into())
494                                 .unwrap_or_else(|| inferred_kind(None, param, true)));
495                             params.next();
496                         }
497                     }
498                 }
499             }
500
501             // Check whether this segment takes generic arguments and the user has provided any.
502             let (generic_args, infer_types) = args_for_def_id(def_id);
503
504             let mut args = generic_args.iter().flat_map(|generic_args| generic_args.args.iter())
505                 .peekable();
506
507             loop {
508                 // We're going to iterate through the generic arguments that the user
509                 // provided, matching them with the generic parameters we expect.
510                 // Mismatches can occur as a result of elided lifetimes, or for malformed
511                 // input. We try to handle both sensibly.
512                 match (args.peek(), params.peek()) {
513                     (Some(&arg), Some(&param)) => {
514                         match (arg, &param.kind) {
515                             (GenericArg::Lifetime(_), GenericParamDefKind::Lifetime)
516                             | (GenericArg::Type(_), GenericParamDefKind::Type { .. })
517                             | (GenericArg::Const(_), GenericParamDefKind::Const) => {
518                                 substs.push(provided_kind(param, arg));
519                                 args.next();
520                                 params.next();
521                             }
522                             (GenericArg::Type(_), GenericParamDefKind::Lifetime)
523                             | (GenericArg::Const(_), GenericParamDefKind::Lifetime) => {
524                                 // We expected a lifetime argument, but got a type or const
525                                 // argument. That means we're inferring the lifetimes.
526                                 substs.push(inferred_kind(None, param, infer_types));
527                                 params.next();
528                             }
529                             (_, _) => {
530                                 // We expected one kind of parameter, but the user provided
531                                 // another. This is an error, but we need to handle it
532                                 // gracefully so we can report sensible errors.
533                                 // In this case, we're simply going to infer this argument.
534                                 args.next();
535                             }
536                         }
537                     }
538                     (Some(_), None) => {
539                         // We should never be able to reach this point with well-formed input.
540                         // Getting to this point means the user supplied more arguments than
541                         // there are parameters.
542                         args.next();
543                     }
544                     (None, Some(&param)) => {
545                         // If there are fewer arguments than parameters, it means
546                         // we're inferring the remaining arguments.
547                         substs.push(inferred_kind(Some(&substs), param, infer_types));
548                         args.next();
549                         params.next();
550                     }
551                     (None, None) => break,
552                 }
553             }
554         }
555
556         tcx.intern_substs(&substs)
557     }
558
559     /// Given the type/lifetime/const arguments provided to some path (along with
560     /// an implicit `Self`, if this is a trait reference) returns the complete
561     /// set of substitutions. This may involve applying defaulted type parameters.
562     ///
563     /// Note that the type listing given here is *exactly* what the user provided.
564     fn create_substs_for_ast_path(&self,
565         span: Span,
566         def_id: DefId,
567         generic_args: &hir::GenericArgs,
568         infer_types: bool,
569         self_ty: Option<Ty<'tcx>>)
570         -> (SubstsRef<'tcx>, Vec<ConvertedBinding<'tcx>>, Option<Vec<Span>>)
571     {
572         // If the type is parameterized by this region, then replace this
573         // region with the current anon region binding (in other words,
574         // whatever & would get replaced with).
575         debug!("create_substs_for_ast_path(def_id={:?}, self_ty={:?}, \
576                 generic_args={:?})",
577                def_id, self_ty, generic_args);
578
579         let tcx = self.tcx();
580         let generic_params = tcx.generics_of(def_id);
581
582         // If a self-type was declared, one should be provided.
583         assert_eq!(generic_params.has_self, self_ty.is_some());
584
585         let has_self = generic_params.has_self;
586         let (_, potential_assoc_types) = Self::check_generic_arg_count(
587             tcx,
588             span,
589             &generic_params,
590             &generic_args,
591             GenericArgPosition::Type,
592             has_self,
593             infer_types,
594         );
595
596         let is_object = self_ty.map_or(false, |ty| {
597             ty == self.tcx().types.trait_object_dummy_self
598         });
599         let default_needs_object_self = |param: &ty::GenericParamDef| {
600             if let GenericParamDefKind::Type { has_default, .. } = param.kind {
601                 if is_object && has_default {
602                     if tcx.at(span).type_of(param.def_id).has_self_ty() {
603                         // There is no suitable inference default for a type parameter
604                         // that references self, in an object type.
605                         return true;
606                     }
607                 }
608             }
609
610             false
611         };
612
613         let substs = Self::create_substs_for_generic_args(
614             tcx,
615             def_id,
616             &[][..],
617             self_ty.is_some(),
618             self_ty,
619             // Provide the generic args, and whether types should be inferred.
620             |_| (Some(generic_args), infer_types),
621             // Provide substitutions for parameters for which (valid) arguments have been provided.
622             |param, arg| {
623                 match (&param.kind, arg) {
624                     (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
625                         self.ast_region_to_region(&lt, Some(param)).into()
626                     }
627                     (GenericParamDefKind::Type { .. }, GenericArg::Type(ty)) => {
628                         self.ast_ty_to_ty(&ty).into()
629                     }
630                     (GenericParamDefKind::Const, GenericArg::Const(ct)) => {
631                         self.ast_const_to_const(&ct.value, tcx.type_of(param.def_id)).into()
632                     }
633                     _ => unreachable!(),
634                 }
635             },
636             // Provide substitutions for parameters for which arguments are inferred.
637             |substs, param, infer_types| {
638                 match param.kind {
639                     GenericParamDefKind::Lifetime => tcx.lifetimes.re_static.into(),
640                     GenericParamDefKind::Type { has_default, .. } => {
641                         if !infer_types && has_default {
642                             // No type parameter provided, but a default exists.
643
644                             // If we are converting an object type, then the
645                             // `Self` parameter is unknown. However, some of the
646                             // other type parameters may reference `Self` in their
647                             // defaults. This will lead to an ICE if we are not
648                             // careful!
649                             if default_needs_object_self(param) {
650                                 struct_span_err!(tcx.sess, span, E0393,
651                                                     "the type parameter `{}` must be explicitly \
652                                                      specified",
653                                                     param.name)
654                                     .span_label(span,
655                                                 format!("missing reference to `{}`", param.name))
656                                     .note(&format!("because of the default `Self` reference, \
657                                                     type parameters must be specified on object \
658                                                     types"))
659                                     .emit();
660                                 tcx.types.err.into()
661                             } else {
662                                 // This is a default type parameter.
663                                 self.normalize_ty(
664                                     span,
665                                     tcx.at(span).type_of(param.def_id)
666                                        .subst_spanned(tcx, substs.unwrap(), Some(span))
667                                 ).into()
668                             }
669                         } else if infer_types {
670                             // No type parameters were provided, we can infer all.
671                             if !default_needs_object_self(param) {
672                                 self.ty_infer_for_def(param, span).into()
673                             } else {
674                                 self.ty_infer(span).into()
675                             }
676                         } else {
677                             // We've already errored above about the mismatch.
678                             tcx.types.err.into()
679                         }
680                     }
681                     GenericParamDefKind::Const => {
682                         // FIXME(const_generics:defaults)
683                         // We've already errored above about the mismatch.
684                         tcx.consts.err.into()
685                     }
686                 }
687             },
688         );
689
690         let assoc_bindings = generic_args.bindings.iter().map(|binding| {
691             ConvertedBinding {
692                 item_name: binding.ident,
693                 ty: self.ast_ty_to_ty(&binding.ty),
694                 span: binding.span,
695             }
696         }).collect();
697
698         debug!("create_substs_for_ast_path(generic_params={:?}, self_ty={:?}) -> {:?}",
699                generic_params, self_ty, substs);
700
701         (substs, assoc_bindings, potential_assoc_types)
702     }
703
704     /// Instantiates the path for the given trait reference, assuming that it's
705     /// bound to a valid trait type. Returns the def-ID for the defining trait.
706     /// The type _cannot_ be a type other than a trait type.
707     ///
708     /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T = X>`
709     /// are disallowed. Otherwise, they are pushed onto the vector given.
710     pub fn instantiate_mono_trait_ref(&self,
711         trait_ref: &hir::TraitRef,
712         self_ty: Ty<'tcx>)
713         -> ty::TraitRef<'tcx>
714     {
715         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
716
717         self.ast_path_to_mono_trait_ref(trait_ref.path.span,
718                                         trait_ref.trait_def_id(),
719                                         self_ty,
720                                         trait_ref.path.segments.last().unwrap())
721     }
722
723     /// The given trait-ref must actually be a trait.
724     pub(super) fn instantiate_poly_trait_ref_inner(&self,
725         trait_ref: &hir::TraitRef,
726         self_ty: Ty<'tcx>,
727         poly_projections: &mut Vec<(ty::PolyProjectionPredicate<'tcx>, Span)>,
728         speculative: bool)
729         -> (ty::PolyTraitRef<'tcx>, Option<Vec<Span>>)
730     {
731         let trait_def_id = trait_ref.trait_def_id();
732
733         debug!("instantiate_poly_trait_ref({:?}, def_id={:?})", trait_ref, trait_def_id);
734
735         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
736
737         let (substs, assoc_bindings, potential_assoc_types) = self.create_substs_for_ast_trait_ref(
738             trait_ref.path.span,
739             trait_def_id,
740             self_ty,
741             trait_ref.path.segments.last().unwrap(),
742         );
743         let poly_trait_ref = ty::Binder::bind(ty::TraitRef::new(trait_def_id, substs));
744
745         let mut dup_bindings = FxHashMap::default();
746         poly_projections.extend(assoc_bindings.iter().filter_map(|binding| {
747             // specify type to assert that error was already reported in Err case:
748             let predicate: Result<_, ErrorReported> =
749                 self.ast_type_binding_to_poly_projection_predicate(
750                     trait_ref.hir_ref_id, poly_trait_ref, binding, speculative, &mut dup_bindings);
751             // okay to ignore Err because of ErrorReported (see above)
752             Some((predicate.ok()?, binding.span))
753         }));
754
755         debug!("instantiate_poly_trait_ref({:?}, projections={:?}) -> {:?}",
756                trait_ref, poly_projections, poly_trait_ref);
757         (poly_trait_ref, potential_assoc_types)
758     }
759
760     pub fn instantiate_poly_trait_ref(&self,
761         poly_trait_ref: &hir::PolyTraitRef,
762         self_ty: Ty<'tcx>,
763         poly_projections: &mut Vec<(ty::PolyProjectionPredicate<'tcx>, Span)>)
764         -> (ty::PolyTraitRef<'tcx>, Option<Vec<Span>>)
765     {
766         self.instantiate_poly_trait_ref_inner(&poly_trait_ref.trait_ref, self_ty,
767                                               poly_projections, false)
768     }
769
770     fn ast_path_to_mono_trait_ref(&self,
771                                   span: Span,
772                                   trait_def_id: DefId,
773                                   self_ty: Ty<'tcx>,
774                                   trait_segment: &hir::PathSegment)
775                                   -> ty::TraitRef<'tcx>
776     {
777         let (substs, assoc_bindings, _) =
778             self.create_substs_for_ast_trait_ref(span,
779                                                  trait_def_id,
780                                                  self_ty,
781                                                  trait_segment);
782         assoc_bindings.first().map(|b| AstConv::prohibit_assoc_ty_binding(self.tcx(), b.span));
783         ty::TraitRef::new(trait_def_id, substs)
784     }
785
786     fn create_substs_for_ast_trait_ref(
787         &self,
788         span: Span,
789         trait_def_id: DefId,
790         self_ty: Ty<'tcx>,
791         trait_segment: &hir::PathSegment,
792     ) -> (SubstsRef<'tcx>, Vec<ConvertedBinding<'tcx>>, Option<Vec<Span>>) {
793         debug!("create_substs_for_ast_trait_ref(trait_segment={:?})",
794                trait_segment);
795
796         let trait_def = self.tcx().trait_def(trait_def_id);
797
798         if !self.tcx().features().unboxed_closures &&
799             trait_segment.with_generic_args(|generic_args| generic_args.parenthesized)
800             != trait_def.paren_sugar {
801             // For now, require that parenthetical notation be used only with `Fn()` etc.
802             let msg = if trait_def.paren_sugar {
803                 "the precise format of `Fn`-family traits' type parameters is subject to change. \
804                  Use parenthetical notation (Fn(Foo, Bar) -> Baz) instead"
805             } else {
806                 "parenthetical notation is only stable when used with `Fn`-family traits"
807             };
808             emit_feature_err(&self.tcx().sess.parse_sess, sym::unboxed_closures,
809                              span, GateIssue::Language, msg);
810         }
811
812         trait_segment.with_generic_args(|generic_args| {
813             self.create_substs_for_ast_path(span,
814                                             trait_def_id,
815                                             generic_args,
816                                             trait_segment.infer_types,
817                                             Some(self_ty))
818         })
819     }
820
821     fn trait_defines_associated_type_named(&self,
822                                            trait_def_id: DefId,
823                                            assoc_name: ast::Ident)
824                                            -> bool
825     {
826         self.tcx().associated_items(trait_def_id).any(|item| {
827             item.kind == ty::AssociatedKind::Type &&
828             self.tcx().hygienic_eq(assoc_name, item.ident, trait_def_id)
829         })
830     }
831
832     fn ast_type_binding_to_poly_projection_predicate(
833         &self,
834         hir_ref_id: hir::HirId,
835         trait_ref: ty::PolyTraitRef<'tcx>,
836         binding: &ConvertedBinding<'tcx>,
837         speculative: bool,
838         dup_bindings: &mut FxHashMap<DefId, Span>)
839         -> Result<ty::PolyProjectionPredicate<'tcx>, ErrorReported>
840     {
841         let tcx = self.tcx();
842
843         if !speculative {
844             // Given something like `U: SomeTrait<T = X>`, we want to produce a
845             // predicate like `<U as SomeTrait>::T = X`. This is somewhat
846             // subtle in the event that `T` is defined in a supertrait of
847             // `SomeTrait`, because in that case we need to upcast.
848             //
849             // That is, consider this case:
850             //
851             // ```
852             // trait SubTrait: SuperTrait<int> { }
853             // trait SuperTrait<A> { type T; }
854             //
855             // ... B : SubTrait<T=foo> ...
856             // ```
857             //
858             // We want to produce `<B as SuperTrait<int>>::T == foo`.
859
860             // Find any late-bound regions declared in `ty` that are not
861             // declared in the trait-ref. These are not wellformed.
862             //
863             // Example:
864             //
865             //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
866             //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
867             let late_bound_in_trait_ref = tcx.collect_constrained_late_bound_regions(&trait_ref);
868             let late_bound_in_ty =
869                 tcx.collect_referenced_late_bound_regions(&ty::Binder::bind(binding.ty));
870             debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
871             debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
872             for br in late_bound_in_ty.difference(&late_bound_in_trait_ref) {
873                 let br_name = match *br {
874                     ty::BrNamed(_, name) => name,
875                     _ => {
876                         span_bug!(
877                             binding.span,
878                             "anonymous bound region {:?} in binding but not trait ref",
879                             br);
880                     }
881                 };
882                 struct_span_err!(tcx.sess,
883                                 binding.span,
884                                 E0582,
885                                 "binding for associated type `{}` references lifetime `{}`, \
886                                  which does not appear in the trait input types",
887                                 binding.item_name, br_name)
888                     .emit();
889             }
890         }
891
892         let candidate = if self.trait_defines_associated_type_named(trait_ref.def_id(),
893                                                                     binding.item_name) {
894             // Simple case: X is defined in the current trait.
895             Ok(trait_ref)
896         } else {
897             // Otherwise, we have to walk through the supertraits to find
898             // those that do.
899             let candidates = traits::supertraits(tcx, trait_ref).filter(|r| {
900                 self.trait_defines_associated_type_named(r.def_id(), binding.item_name)
901             });
902             self.one_bound_for_assoc_type(candidates, &trait_ref.to_string(),
903                                           binding.item_name, binding.span)
904         }?;
905
906         let (assoc_ident, def_scope) =
907             tcx.adjust_ident(binding.item_name, candidate.def_id(), hir_ref_id);
908         let assoc_ty = tcx.associated_items(candidate.def_id()).find(|i| {
909             i.kind == ty::AssociatedKind::Type && i.ident.modern() == assoc_ident
910         }).expect("missing associated type");
911
912         if !assoc_ty.vis.is_accessible_from(def_scope, tcx) {
913             let msg = format!("associated type `{}` is private", binding.item_name);
914             tcx.sess.span_err(binding.span, &msg);
915         }
916         tcx.check_stability(assoc_ty.def_id, Some(hir_ref_id), binding.span);
917
918         if !speculative {
919             dup_bindings.entry(assoc_ty.def_id)
920                 .and_modify(|prev_span| {
921                     struct_span_err!(self.tcx().sess, binding.span, E0719,
922                                      "the value of the associated type `{}` (from the trait `{}`) \
923                                       is already specified",
924                                      binding.item_name,
925                                      tcx.def_path_str(assoc_ty.container.id()))
926                         .span_label(binding.span, "re-bound here")
927                         .span_label(*prev_span, format!("`{}` bound here first", binding.item_name))
928                         .emit();
929                 })
930                 .or_insert(binding.span);
931         }
932
933         Ok(candidate.map_bound(|trait_ref| {
934             ty::ProjectionPredicate {
935                 projection_ty: ty::ProjectionTy::from_ref_and_name(
936                     tcx,
937                     trait_ref,
938                     binding.item_name,
939                 ),
940                 ty: binding.ty,
941             }
942         }))
943     }
944
945     fn ast_path_to_ty(&self,
946         span: Span,
947         did: DefId,
948         item_segment: &hir::PathSegment)
949         -> Ty<'tcx>
950     {
951         let substs = self.ast_path_substs_for_ty(span, did, item_segment);
952         self.normalize_ty(
953             span,
954             self.tcx().at(span).type_of(did).subst(self.tcx(), substs)
955         )
956     }
957
958     /// Transform a `PolyTraitRef` into a `PolyExistentialTraitRef` by
959     /// removing the dummy `Self` type (`trait_object_dummy_self`).
960     fn trait_ref_to_existential(&self, trait_ref: ty::TraitRef<'tcx>)
961                                 -> ty::ExistentialTraitRef<'tcx> {
962         if trait_ref.self_ty() != self.tcx().types.trait_object_dummy_self {
963             bug!("trait_ref_to_existential called on {:?} with non-dummy Self", trait_ref);
964         }
965         ty::ExistentialTraitRef::erase_self_ty(self.tcx(), trait_ref)
966     }
967
968     fn conv_object_ty_poly_trait_ref(&self,
969         span: Span,
970         trait_bounds: &[hir::PolyTraitRef],
971         lifetime: &hir::Lifetime)
972         -> Ty<'tcx>
973     {
974         let tcx = self.tcx();
975
976         if trait_bounds.is_empty() {
977             span_err!(tcx.sess, span, E0224,
978                 "at least one non-builtin trait is required for an object type");
979             return tcx.types.err;
980         }
981
982         let mut projection_bounds = Vec::new();
983         let dummy_self = self.tcx().types.trait_object_dummy_self;
984         let mut bound_trait_refs = Vec::with_capacity(trait_bounds.len());
985         let (principal, potential_assoc_types) = self.instantiate_poly_trait_ref(
986             &trait_bounds[0],
987             dummy_self,
988             &mut projection_bounds,
989         );
990         debug!("principal: {:?}", principal);
991
992         for trait_bound in trait_bounds[1..].iter().rev() {
993             // Sanity check for non-principal trait bounds.
994             let (tr, _) = self.instantiate_poly_trait_ref(
995                 trait_bound,
996                 dummy_self,
997                 &mut Vec::new()
998             );
999             bound_trait_refs.push((tr, trait_bound.span));
1000         }
1001         bound_trait_refs.push((principal, trait_bounds[0].span));
1002
1003         let expanded_traits = traits::expand_trait_refs(tcx, bound_trait_refs);
1004         let (auto_traits, regular_traits): (Vec<_>, Vec<_>) =
1005             expanded_traits.partition(|i| tcx.trait_is_auto(i.trait_ref.def_id()));
1006         if regular_traits.len() > 1 {
1007             let extra_trait = &regular_traits[1];
1008             let mut err = struct_span_err!(tcx.sess, extra_trait.top_level_span, E0225,
1009                 "only auto traits can be used as additional traits in a trait object");
1010             err.span_label(extra_trait.span, "non-auto additional trait");
1011             if extra_trait.span != extra_trait.top_level_span {
1012                 err.span_label(extra_trait.top_level_span, "expanded from this alias");
1013             }
1014             err.emit();
1015         }
1016
1017         // Check that there are no gross object safety violations;
1018         // most importantly, that the supertraits don't contain `Self`,
1019         // to avoid ICEs.
1020         let object_safety_violations =
1021             tcx.global_tcx().astconv_object_safety_violations(principal.def_id());
1022         if !object_safety_violations.is_empty() {
1023             tcx.report_object_safety_error(span, principal.def_id(), object_safety_violations)
1024                 .map(|mut err| err.emit());
1025             return tcx.types.err;
1026         }
1027
1028         // Use a `BTreeSet` to keep output in a more consistent order.
1029         let mut associated_types = BTreeSet::default();
1030
1031         for tr in traits::elaborate_trait_ref(tcx, principal) {
1032             debug!("conv_object_ty_poly_trait_ref: observing object predicate `{:?}`", tr);
1033             match tr {
1034                 ty::Predicate::Trait(pred) => {
1035                     associated_types
1036                         .extend(tcx.associated_items(pred.def_id())
1037                         .filter(|item| item.kind == ty::AssociatedKind::Type)
1038                         .map(|item| item.def_id));
1039                 }
1040                 ty::Predicate::Projection(pred) => {
1041                     // A `Self` within the original bound will be substituted with a
1042                     // `trait_object_dummy_self`, so check for that.
1043                     let references_self =
1044                         pred.skip_binder().ty.walk().any(|t| t == dummy_self);
1045
1046                     // If the projection output contains `Self`, force the user to
1047                     // elaborate it explicitly to avoid a lot of complexity.
1048                     //
1049                     // The "classicaly useful" case is the following:
1050                     // ```
1051                     //     trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
1052                     //         type MyOutput;
1053                     //     }
1054                     // ```
1055                     //
1056                     // Here, the user could theoretically write `dyn MyTrait<Output = X>`,
1057                     // but actually supporting that would "expand" to an infinitely-long type
1058                     // `fix $ Ï„ â†’ dyn MyTrait<MyOutput = X, Output = <Ï„ as MyTrait>::MyOutput`.
1059                     //
1060                     // Instead, we force the user to write `dyn MyTrait<MyOutput = X, Output = X>`,
1061                     // which is uglier but works. See the discussion in #56288 for alternatives.
1062                     if !references_self {
1063                         // Include projections defined on supertraits.
1064                         projection_bounds.push((pred, DUMMY_SP))
1065                     }
1066                 }
1067                 _ => ()
1068             }
1069         }
1070
1071         for (projection_bound, _) in &projection_bounds {
1072             associated_types.remove(&projection_bound.projection_def_id());
1073         }
1074
1075         if !associated_types.is_empty() {
1076             let names = associated_types.iter().map(|item_def_id| {
1077                 let assoc_item = tcx.associated_item(*item_def_id);
1078                 let trait_def_id = assoc_item.container.id();
1079                 format!(
1080                     "`{}` (from the trait `{}`)",
1081                     assoc_item.ident,
1082                     tcx.def_path_str(trait_def_id),
1083                 )
1084             }).collect::<Vec<_>>().join(", ");
1085             let mut err = struct_span_err!(
1086                 tcx.sess,
1087                 span,
1088                 E0191,
1089                 "the value of the associated type{} {} must be specified",
1090                 if associated_types.len() == 1 { "" } else { "s" },
1091                 names,
1092             );
1093             let mut suggest = false;
1094             let mut potential_assoc_types_spans = vec![];
1095             if let Some(potential_assoc_types) = potential_assoc_types {
1096                 if potential_assoc_types.len() == associated_types.len() {
1097                     // Only suggest when the amount of missing associated types is equals to the
1098                     // extra type arguments present, as that gives us a relatively high confidence
1099                     // that the user forgot to give the associtated type's name. The canonical
1100                     // example would be trying to use `Iterator<isize>` instead of
1101                     // `Iterator<Item=isize>`.
1102                     suggest = true;
1103                     potential_assoc_types_spans = potential_assoc_types;
1104                 }
1105             }
1106             let mut suggestions = vec![];
1107             for (i, item_def_id) in associated_types.iter().enumerate() {
1108                 let assoc_item = tcx.associated_item(*item_def_id);
1109                 err.span_label(
1110                     span,
1111                     format!("associated type `{}` must be specified", assoc_item.ident),
1112                 );
1113                 if item_def_id.is_local() {
1114                     err.span_label(
1115                         tcx.def_span(*item_def_id),
1116                         format!("`{}` defined here", assoc_item.ident),
1117                     );
1118                 }
1119                 if suggest {
1120                     if let Ok(snippet) = tcx.sess.source_map().span_to_snippet(
1121                         potential_assoc_types_spans[i],
1122                     ) {
1123                         suggestions.push((
1124                             potential_assoc_types_spans[i],
1125                             format!("{} = {}", assoc_item.ident, snippet),
1126                         ));
1127                     }
1128                 }
1129             }
1130             if !suggestions.is_empty() {
1131                 let msg = format!("if you meant to specify the associated {}, write",
1132                     if suggestions.len() == 1 { "type" } else { "types" });
1133                 err.multipart_suggestion(
1134                     &msg,
1135                     suggestions,
1136                     Applicability::MaybeIncorrect,
1137                 );
1138             }
1139             err.emit();
1140         }
1141
1142         // Erase the `dummy_self` (`trait_object_dummy_self`) used above.
1143         let existential_principal = principal.map_bound(|trait_ref| {
1144             self.trait_ref_to_existential(trait_ref)
1145         });
1146         let existential_projections = projection_bounds.iter().map(|(bound, _)| {
1147             bound.map_bound(|b| {
1148                 let trait_ref = self.trait_ref_to_existential(b.projection_ty.trait_ref(tcx));
1149                 ty::ExistentialProjection {
1150                     ty: b.ty,
1151                     item_def_id: b.projection_ty.item_def_id,
1152                     substs: trait_ref.substs,
1153                 }
1154             })
1155         });
1156
1157         // De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
1158         // `dyn Trait + Send`.
1159         let mut auto_traits: Vec<_> =
1160             auto_traits.into_iter().map(|i| i.trait_ref.def_id()).collect();
1161         auto_traits.sort();
1162         auto_traits.dedup();
1163         debug!("auto_traits: {:?}", auto_traits);
1164
1165         // Calling `skip_binder` is okay because the predicates are re-bound.
1166         let principal = if tcx.trait_is_auto(existential_principal.def_id()) {
1167             ty::ExistentialPredicate::AutoTrait(existential_principal.def_id())
1168         } else {
1169             ty::ExistentialPredicate::Trait(*existential_principal.skip_binder())
1170         };
1171         let mut v =
1172             iter::once(principal)
1173             .chain(auto_traits.into_iter().map(ty::ExistentialPredicate::AutoTrait))
1174             .chain(existential_projections
1175                 .map(|x| ty::ExistentialPredicate::Projection(*x.skip_binder())))
1176             .collect::<SmallVec<[_; 8]>>();
1177         v.sort_by(|a, b| a.stable_cmp(tcx, b));
1178         v.dedup();
1179         let existential_predicates = ty::Binder::bind(tcx.mk_existential_predicates(v.into_iter()));
1180
1181         // Use explicitly-specified region bound.
1182         let region_bound = if !lifetime.is_elided() {
1183             self.ast_region_to_region(lifetime, None)
1184         } else {
1185             self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
1186                 if tcx.named_region(lifetime.hir_id).is_some() {
1187                     self.ast_region_to_region(lifetime, None)
1188                 } else {
1189                     self.re_infer(span, None).unwrap_or_else(|| {
1190                         span_err!(tcx.sess, span, E0228,
1191                             "the lifetime bound for this object type cannot be deduced \
1192                              from context; please supply an explicit bound");
1193                         tcx.lifetimes.re_static
1194                     })
1195                 }
1196             })
1197         };
1198         debug!("region_bound: {:?}", region_bound);
1199
1200         let ty = tcx.mk_dynamic(existential_predicates, region_bound);
1201         debug!("trait_object_type: {:?}", ty);
1202         ty
1203     }
1204
1205     fn report_ambiguous_associated_type(
1206         &self,
1207         span: Span,
1208         type_str: &str,
1209         trait_str: &str,
1210         name: &str,
1211     ) {
1212         let mut err = struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type");
1213         if let (Some(_), Ok(snippet)) = (
1214             self.tcx().sess.confused_type_with_std_module.borrow().get(&span),
1215             self.tcx().sess.source_map().span_to_snippet(span),
1216          ) {
1217             err.span_suggestion(
1218                 span,
1219                 "you are looking for the module in `std`, not the primitive type",
1220                 format!("std::{}", snippet),
1221                 Applicability::MachineApplicable,
1222             );
1223         } else {
1224             err.span_suggestion(
1225                     span,
1226                     "use fully-qualified syntax",
1227                     format!("<{} as {}>::{}", type_str, trait_str, name),
1228                     Applicability::HasPlaceholders
1229             );
1230         }
1231         err.emit();
1232     }
1233
1234     // Search for a bound on a type parameter which includes the associated item
1235     // given by `assoc_name`. `ty_param_def_id` is the `DefId` for the type parameter
1236     // This function will fail if there are no suitable bounds or there is
1237     // any ambiguity.
1238     fn find_bound_for_assoc_item(&self,
1239                                  ty_param_def_id: DefId,
1240                                  assoc_name: ast::Ident,
1241                                  span: Span)
1242                                  -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
1243     {
1244         let tcx = self.tcx();
1245
1246         let predicates = &self.get_type_parameter_bounds(span, ty_param_def_id).predicates;
1247         let bounds = predicates.iter().filter_map(|(p, _)| p.to_opt_poly_trait_ref());
1248
1249         // Check that there is exactly one way to find an associated type with the
1250         // correct name.
1251         let suitable_bounds = traits::transitive_bounds(tcx, bounds)
1252             .filter(|b| self.trait_defines_associated_type_named(b.def_id(), assoc_name));
1253
1254         let param_hir_id = tcx.hir().as_local_hir_id(ty_param_def_id).unwrap();
1255         let param_name = tcx.hir().ty_param_name(param_hir_id);
1256         self.one_bound_for_assoc_type(suitable_bounds,
1257                                       &param_name.as_str(),
1258                                       assoc_name,
1259                                       span)
1260     }
1261
1262     // Checks that `bounds` contains exactly one element and reports appropriate
1263     // errors otherwise.
1264     fn one_bound_for_assoc_type<I>(&self,
1265                                    mut bounds: I,
1266                                    ty_param_name: &str,
1267                                    assoc_name: ast::Ident,
1268                                    span: Span)
1269         -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
1270         where I: Iterator<Item=ty::PolyTraitRef<'tcx>>
1271     {
1272         let bound = match bounds.next() {
1273             Some(bound) => bound,
1274             None => {
1275                 struct_span_err!(self.tcx().sess, span, E0220,
1276                                  "associated type `{}` not found for `{}`",
1277                                  assoc_name,
1278                                  ty_param_name)
1279                   .span_label(span, format!("associated type `{}` not found", assoc_name))
1280                   .emit();
1281                 return Err(ErrorReported);
1282             }
1283         };
1284
1285         if let Some(bound2) = bounds.next() {
1286             let bounds = iter::once(bound).chain(iter::once(bound2)).chain(bounds);
1287             let mut err = struct_span_err!(
1288                 self.tcx().sess, span, E0221,
1289                 "ambiguous associated type `{}` in bounds of `{}`",
1290                 assoc_name,
1291                 ty_param_name);
1292             err.span_label(span, format!("ambiguous associated type `{}`", assoc_name));
1293
1294             for bound in bounds {
1295                 let bound_span = self.tcx().associated_items(bound.def_id()).find(|item| {
1296                     item.kind == ty::AssociatedKind::Type &&
1297                         self.tcx().hygienic_eq(assoc_name, item.ident, bound.def_id())
1298                 })
1299                 .and_then(|item| self.tcx().hir().span_if_local(item.def_id));
1300
1301                 if let Some(span) = bound_span {
1302                     err.span_label(span, format!("ambiguous `{}` from `{}`",
1303                                                  assoc_name,
1304                                                  bound));
1305                 } else {
1306                     span_note!(&mut err, span,
1307                                "associated type `{}` could derive from `{}`",
1308                                ty_param_name,
1309                                bound);
1310                 }
1311             }
1312             err.emit();
1313         }
1314
1315         return Ok(bound);
1316     }
1317
1318     // Create a type from a path to an associated type.
1319     // For a path `A::B::C::D`, `qself_ty` and `qself_def` are the type and def for `A::B::C`
1320     // and item_segment is the path segment for `D`. We return a type and a def for
1321     // the whole path.
1322     // Will fail except for `T::A` and `Self::A`; i.e., if `qself_ty`/`qself_def` are not a type
1323     // parameter or `Self`.
1324     pub fn associated_path_to_ty(
1325         &self,
1326         hir_ref_id: hir::HirId,
1327         span: Span,
1328         qself_ty: Ty<'tcx>,
1329         qself_res: Res,
1330         assoc_segment: &hir::PathSegment,
1331         permit_variants: bool,
1332     ) -> Result<(Ty<'tcx>, DefKind, DefId), ErrorReported> {
1333         let tcx = self.tcx();
1334         let assoc_ident = assoc_segment.ident;
1335
1336         debug!("associated_path_to_ty: {:?}::{}", qself_ty, assoc_ident);
1337
1338         self.prohibit_generics(slice::from_ref(assoc_segment));
1339
1340         // Check if we have an enum variant.
1341         let mut variant_resolution = None;
1342         if let ty::Adt(adt_def, _) = qself_ty.sty {
1343             if adt_def.is_enum() {
1344                 let variant_def = adt_def.variants.iter().find(|vd| {
1345                     tcx.hygienic_eq(assoc_ident, vd.ident, adt_def.did)
1346                 });
1347                 if let Some(variant_def) = variant_def {
1348                     if permit_variants {
1349                         check_type_alias_enum_variants_enabled(tcx, span);
1350                         tcx.check_stability(variant_def.def_id, Some(hir_ref_id), span);
1351                         return Ok((qself_ty, DefKind::Variant, variant_def.def_id));
1352                     } else {
1353                         variant_resolution = Some(variant_def.def_id);
1354                     }
1355                 }
1356             }
1357         }
1358
1359         // Find the type of the associated item, and the trait where the associated
1360         // item is declared.
1361         let bound = match (&qself_ty.sty, qself_res) {
1362             (_, Res::SelfTy(Some(_), Some(impl_def_id))) => {
1363                 // `Self` in an impl of a trait -- we have a concrete self type and a
1364                 // trait reference.
1365                 let trait_ref = match tcx.impl_trait_ref(impl_def_id) {
1366                     Some(trait_ref) => trait_ref,
1367                     None => {
1368                         // A cycle error occurred, most likely.
1369                         return Err(ErrorReported);
1370                     }
1371                 };
1372
1373                 let candidates = traits::supertraits(tcx, ty::Binder::bind(trait_ref))
1374                     .filter(|r| self.trait_defines_associated_type_named(r.def_id(), assoc_ident));
1375
1376                 self.one_bound_for_assoc_type(candidates, "Self", assoc_ident, span)?
1377             }
1378             (&ty::Param(_), Res::SelfTy(Some(param_did), None)) |
1379             (&ty::Param(_), Res::Def(DefKind::TyParam, param_did)) => {
1380                 self.find_bound_for_assoc_item(param_did, assoc_ident, span)?
1381             }
1382             _ => {
1383                 if variant_resolution.is_some() {
1384                     // Variant in type position
1385                     let msg = format!("expected type, found variant `{}`", assoc_ident);
1386                     tcx.sess.span_err(span, &msg);
1387                 } else if qself_ty.is_enum() {
1388                     let mut err = tcx.sess.struct_span_err(
1389                         assoc_ident.span,
1390                         &format!("no variant `{}` in enum `{}`", assoc_ident, qself_ty),
1391                     );
1392
1393                     let adt_def = qself_ty.ty_adt_def().expect("enum is not an ADT");
1394                     if let Some(suggested_name) = find_best_match_for_name(
1395                         adt_def.variants.iter().map(|variant| &variant.ident.name),
1396                         &assoc_ident.as_str(),
1397                         None,
1398                     ) {
1399                         err.span_suggestion(
1400                             assoc_ident.span,
1401                             "there is a variant with a similar name",
1402                             suggested_name.to_string(),
1403                             Applicability::MaybeIncorrect,
1404                         );
1405                     } else {
1406                         err.span_label(span, format!("variant not found in `{}`", qself_ty));
1407                     }
1408
1409                     if let Some(sp) = tcx.hir().span_if_local(adt_def.did) {
1410                         let sp = tcx.sess.source_map().def_span(sp);
1411                         err.span_label(sp, format!("variant `{}` not found here", assoc_ident));
1412                     }
1413
1414                     err.emit();
1415                 } else if !qself_ty.references_error() {
1416                     // Don't print `TyErr` to the user.
1417                     self.report_ambiguous_associated_type(
1418                         span,
1419                         &qself_ty.to_string(),
1420                         "Trait",
1421                         &assoc_ident.as_str(),
1422                     );
1423                 }
1424                 return Err(ErrorReported);
1425             }
1426         };
1427
1428         let trait_did = bound.def_id();
1429         let (assoc_ident, def_scope) = tcx.adjust_ident(assoc_ident, trait_did, hir_ref_id);
1430         let item = tcx.associated_items(trait_did).find(|i| {
1431             Namespace::from(i.kind) == Namespace::Type &&
1432                 i.ident.modern() == assoc_ident
1433         }).expect("missing associated type");
1434
1435         let ty = self.projected_ty_from_poly_trait_ref(span, item.def_id, bound);
1436         let ty = self.normalize_ty(span, ty);
1437
1438         let kind = DefKind::AssociatedTy;
1439         if !item.vis.is_accessible_from(def_scope, tcx) {
1440             let msg = format!("{} `{}` is private", kind.descr(), assoc_ident);
1441             tcx.sess.span_err(span, &msg);
1442         }
1443         tcx.check_stability(item.def_id, Some(hir_ref_id), span);
1444
1445         if let Some(variant_def_id) = variant_resolution {
1446             let mut err = tcx.struct_span_lint_hir(
1447                 AMBIGUOUS_ASSOCIATED_ITEMS,
1448                 hir_ref_id,
1449                 span,
1450                 "ambiguous associated item",
1451             );
1452
1453             let mut could_refer_to = |kind: DefKind, def_id, also| {
1454                 let note_msg = format!("`{}` could{} refer to {} defined here",
1455                                        assoc_ident, also, kind.descr());
1456                 err.span_note(tcx.def_span(def_id), &note_msg);
1457             };
1458             could_refer_to(DefKind::Variant, variant_def_id, "");
1459             could_refer_to(kind, item.def_id, " also");
1460
1461             err.span_suggestion(
1462                 span,
1463                 "use fully-qualified syntax",
1464                 format!("<{} as {}>::{}", qself_ty, "Trait", assoc_ident),
1465                 Applicability::HasPlaceholders,
1466             ).emit();
1467         }
1468
1469         Ok((ty, kind, item.def_id))
1470     }
1471
1472     fn qpath_to_ty(&self,
1473                    span: Span,
1474                    opt_self_ty: Option<Ty<'tcx>>,
1475                    item_def_id: DefId,
1476                    trait_segment: &hir::PathSegment,
1477                    item_segment: &hir::PathSegment)
1478                    -> Ty<'tcx>
1479     {
1480         let tcx = self.tcx();
1481         let trait_def_id = tcx.parent(item_def_id).unwrap();
1482
1483         self.prohibit_generics(slice::from_ref(item_segment));
1484
1485         let self_ty = if let Some(ty) = opt_self_ty {
1486             ty
1487         } else {
1488             let path_str = tcx.def_path_str(trait_def_id);
1489             self.report_ambiguous_associated_type(
1490                 span,
1491                 "Type",
1492                 &path_str,
1493                 &item_segment.ident.as_str(),
1494             );
1495             return tcx.types.err;
1496         };
1497
1498         debug!("qpath_to_ty: self_type={:?}", self_ty);
1499
1500         let trait_ref = self.ast_path_to_mono_trait_ref(span,
1501                                                         trait_def_id,
1502                                                         self_ty,
1503                                                         trait_segment);
1504
1505         debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
1506
1507         self.normalize_ty(span, tcx.mk_projection(item_def_id, trait_ref.substs))
1508     }
1509
1510     pub fn prohibit_generics<'a, T: IntoIterator<Item = &'a hir::PathSegment>>(
1511             &self, segments: T) -> bool {
1512         let mut has_err = false;
1513         for segment in segments {
1514             segment.with_generic_args(|generic_args| {
1515                 let (mut err_for_lt, mut err_for_ty, mut err_for_ct) = (false, false, false);
1516                 for arg in &generic_args.args {
1517                     let (span, kind) = match arg {
1518                         hir::GenericArg::Lifetime(lt) => {
1519                             if err_for_lt { continue }
1520                             err_for_lt = true;
1521                             has_err = true;
1522                             (lt.span, "lifetime")
1523                         }
1524                         hir::GenericArg::Type(ty) => {
1525                             if err_for_ty { continue }
1526                             err_for_ty = true;
1527                             has_err = true;
1528                             (ty.span, "type")
1529                         }
1530                         hir::GenericArg::Const(ct) => {
1531                             if err_for_ct { continue }
1532                             err_for_ct = true;
1533                             (ct.span, "const")
1534                         }
1535                     };
1536                     let mut err = struct_span_err!(
1537                         self.tcx().sess,
1538                         span,
1539                         E0109,
1540                         "{} arguments are not allowed for this type",
1541                         kind,
1542                     );
1543                     err.span_label(span, format!("{} argument not allowed", kind));
1544                     err.emit();
1545                     if err_for_lt && err_for_ty && err_for_ct {
1546                         break;
1547                     }
1548                 }
1549                 for binding in &generic_args.bindings {
1550                     has_err = true;
1551                     Self::prohibit_assoc_ty_binding(self.tcx(), binding.span);
1552                     break;
1553                 }
1554             })
1555         }
1556         has_err
1557     }
1558
1559     pub fn prohibit_assoc_ty_binding(tcx: TyCtxt<'_, '_, '_>, span: Span) {
1560         let mut err = struct_span_err!(tcx.sess, span, E0229,
1561                                        "associated type bindings are not allowed here");
1562         err.span_label(span, "associated type not allowed here").emit();
1563     }
1564
1565     // FIXME(eddyb, varkor) handle type paths here too, not just value ones.
1566     pub fn def_ids_for_value_path_segments(
1567         &self,
1568         segments: &[hir::PathSegment],
1569         self_ty: Option<Ty<'tcx>>,
1570         kind: DefKind,
1571         def_id: DefId,
1572     ) -> Vec<PathSeg> {
1573         // We need to extract the type parameters supplied by the user in
1574         // the path `path`. Due to the current setup, this is a bit of a
1575         // tricky-process; the problem is that resolve only tells us the
1576         // end-point of the path resolution, and not the intermediate steps.
1577         // Luckily, we can (at least for now) deduce the intermediate steps
1578         // just from the end-point.
1579         //
1580         // There are basically five cases to consider:
1581         //
1582         // 1. Reference to a constructor of a struct:
1583         //
1584         //        struct Foo<T>(...)
1585         //
1586         //    In this case, the parameters are declared in the type space.
1587         //
1588         // 2. Reference to a constructor of an enum variant:
1589         //
1590         //        enum E<T> { Foo(...) }
1591         //
1592         //    In this case, the parameters are defined in the type space,
1593         //    but may be specified either on the type or the variant.
1594         //
1595         // 3. Reference to a fn item or a free constant:
1596         //
1597         //        fn foo<T>() { }
1598         //
1599         //    In this case, the path will again always have the form
1600         //    `a::b::foo::<T>` where only the final segment should have
1601         //    type parameters. However, in this case, those parameters are
1602         //    declared on a value, and hence are in the `FnSpace`.
1603         //
1604         // 4. Reference to a method or an associated constant:
1605         //
1606         //        impl<A> SomeStruct<A> {
1607         //            fn foo<B>(...)
1608         //        }
1609         //
1610         //    Here we can have a path like
1611         //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
1612         //    may appear in two places. The penultimate segment,
1613         //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
1614         //    final segment, `foo::<B>` contains parameters in fn space.
1615         //
1616         // The first step then is to categorize the segments appropriately.
1617
1618         let tcx = self.tcx();
1619
1620         assert!(!segments.is_empty());
1621         let last = segments.len() - 1;
1622
1623         let mut path_segs = vec![];
1624
1625         match kind {
1626             // Case 1. Reference to a struct constructor.
1627             DefKind::Ctor(CtorOf::Struct, ..) => {
1628                 // Everything but the final segment should have no
1629                 // parameters at all.
1630                 let generics = tcx.generics_of(def_id);
1631                 // Variant and struct constructors use the
1632                 // generics of their parent type definition.
1633                 let generics_def_id = generics.parent.unwrap_or(def_id);
1634                 path_segs.push(PathSeg(generics_def_id, last));
1635             }
1636
1637             // Case 2. Reference to a variant constructor.
1638             DefKind::Ctor(CtorOf::Variant, ..)
1639             | DefKind::Variant => {
1640                 let adt_def = self_ty.map(|t| t.ty_adt_def().unwrap());
1641                 let (generics_def_id, index) = if let Some(adt_def) = adt_def {
1642                     debug_assert!(adt_def.is_enum());
1643                     (adt_def.did, last)
1644                 } else if last >= 1 && segments[last - 1].args.is_some() {
1645                     // Everything but the penultimate segment should have no
1646                     // parameters at all.
1647                     let mut def_id = def_id;
1648
1649                     // `DefKind::Ctor` -> `DefKind::Variant`
1650                     if let DefKind::Ctor(..) = kind {
1651                         def_id = tcx.parent(def_id).unwrap()
1652                     }
1653
1654                     // `DefKind::Variant` -> `DefKind::Enum`
1655                     let enum_def_id = tcx.parent(def_id).unwrap();
1656                     (enum_def_id, last - 1)
1657                 } else {
1658                     // FIXME: lint here recommending `Enum::<...>::Variant` form
1659                     // instead of `Enum::Variant::<...>` form.
1660
1661                     // Everything but the final segment should have no
1662                     // parameters at all.
1663                     let generics = tcx.generics_of(def_id);
1664                     // Variant and struct constructors use the
1665                     // generics of their parent type definition.
1666                     (generics.parent.unwrap_or(def_id), last)
1667                 };
1668                 path_segs.push(PathSeg(generics_def_id, index));
1669             }
1670
1671             // Case 3. Reference to a top-level value.
1672             DefKind::Fn
1673             | DefKind::Const
1674             | DefKind::ConstParam
1675             | DefKind::Static => {
1676                 path_segs.push(PathSeg(def_id, last));
1677             }
1678
1679             // Case 4. Reference to a method or associated const.
1680             DefKind::Method
1681             | DefKind::AssociatedConst => {
1682                 if segments.len() >= 2 {
1683                     let generics = tcx.generics_of(def_id);
1684                     path_segs.push(PathSeg(generics.parent.unwrap(), last - 1));
1685                 }
1686                 path_segs.push(PathSeg(def_id, last));
1687             }
1688
1689             kind => bug!("unexpected definition kind {:?} for {:?}", kind, def_id),
1690         }
1691
1692         debug!("path_segs = {:?}", path_segs);
1693
1694         path_segs
1695     }
1696
1697     // Check a type `Path` and convert it to a `Ty`.
1698     pub fn res_to_ty(&self,
1699                      opt_self_ty: Option<Ty<'tcx>>,
1700                      path: &hir::Path,
1701                      permit_variants: bool)
1702                      -> Ty<'tcx> {
1703         let tcx = self.tcx();
1704
1705         debug!("res_to_ty(res={:?}, opt_self_ty={:?}, path_segments={:?})",
1706                path.res, opt_self_ty, path.segments);
1707
1708         let span = path.span;
1709         match path.res {
1710             Res::Def(DefKind::Existential, did) => {
1711                 // Check for desugared impl trait.
1712                 assert!(ty::is_impl_trait_defn(tcx, did).is_none());
1713                 let item_segment = path.segments.split_last().unwrap();
1714                 self.prohibit_generics(item_segment.1);
1715                 let substs = self.ast_path_substs_for_ty(span, did, item_segment.0);
1716                 self.normalize_ty(
1717                     span,
1718                     tcx.mk_opaque(did, substs),
1719                 )
1720             }
1721             Res::Def(DefKind::Enum, did)
1722             | Res::Def(DefKind::TyAlias, did)
1723             | Res::Def(DefKind::Struct, did)
1724             | Res::Def(DefKind::Union, did)
1725             | Res::Def(DefKind::ForeignTy, did) => {
1726                 assert_eq!(opt_self_ty, None);
1727                 self.prohibit_generics(path.segments.split_last().unwrap().1);
1728                 self.ast_path_to_ty(span, did, path.segments.last().unwrap())
1729             }
1730             Res::Def(kind @ DefKind::Variant, def_id) if permit_variants => {
1731                 // Convert "variant type" as if it were a real type.
1732                 // The resulting `Ty` is type of the variant's enum for now.
1733                 assert_eq!(opt_self_ty, None);
1734
1735                 let path_segs =
1736                     self.def_ids_for_value_path_segments(&path.segments, None, kind, def_id);
1737                 let generic_segs: FxHashSet<_> =
1738                     path_segs.iter().map(|PathSeg(_, index)| index).collect();
1739                 self.prohibit_generics(path.segments.iter().enumerate().filter_map(|(index, seg)| {
1740                     if !generic_segs.contains(&index) {
1741                         Some(seg)
1742                     } else {
1743                         None
1744                     }
1745                 }));
1746
1747                 let PathSeg(def_id, index) = path_segs.last().unwrap();
1748                 self.ast_path_to_ty(span, *def_id, &path.segments[*index])
1749             }
1750             Res::Def(DefKind::TyParam, did) => {
1751                 assert_eq!(opt_self_ty, None);
1752                 self.prohibit_generics(&path.segments);
1753
1754                 let hir_id = tcx.hir().as_local_hir_id(did).unwrap();
1755                 let item_id = tcx.hir().get_parent_node_by_hir_id(hir_id);
1756                 let item_def_id = tcx.hir().local_def_id_from_hir_id(item_id);
1757                 let generics = tcx.generics_of(item_def_id);
1758                 let index = generics.param_def_id_to_index[
1759                     &tcx.hir().local_def_id_from_hir_id(hir_id)];
1760                 tcx.mk_ty_param(index, tcx.hir().name_by_hir_id(hir_id).as_interned_str())
1761             }
1762             Res::SelfTy(_, Some(def_id)) => {
1763                 // `Self` in impl (we know the concrete type).
1764                 assert_eq!(opt_self_ty, None);
1765                 self.prohibit_generics(&path.segments);
1766                 // Try to evaluate any array length constants
1767                 self.normalize_ty(span, tcx.at(span).type_of(def_id))
1768             }
1769             Res::SelfTy(Some(_), None) => {
1770                 // `Self` in trait.
1771                 assert_eq!(opt_self_ty, None);
1772                 self.prohibit_generics(&path.segments);
1773                 tcx.mk_self_type()
1774             }
1775             Res::Def(DefKind::AssociatedTy, def_id) => {
1776                 debug_assert!(path.segments.len() >= 2);
1777                 self.prohibit_generics(&path.segments[..path.segments.len() - 2]);
1778                 self.qpath_to_ty(span,
1779                                  opt_self_ty,
1780                                  def_id,
1781                                  &path.segments[path.segments.len() - 2],
1782                                  path.segments.last().unwrap())
1783             }
1784             Res::PrimTy(prim_ty) => {
1785                 assert_eq!(opt_self_ty, None);
1786                 self.prohibit_generics(&path.segments);
1787                 match prim_ty {
1788                     hir::Bool => tcx.types.bool,
1789                     hir::Char => tcx.types.char,
1790                     hir::Int(it) => tcx.mk_mach_int(it),
1791                     hir::Uint(uit) => tcx.mk_mach_uint(uit),
1792                     hir::Float(ft) => tcx.mk_mach_float(ft),
1793                     hir::Str => tcx.mk_str()
1794                 }
1795             }
1796             Res::Err => {
1797                 self.set_tainted_by_errors();
1798                 return self.tcx().types.err;
1799             }
1800             _ => span_bug!(span, "unexpected resolution: {:?}", path.res)
1801         }
1802     }
1803
1804     /// Parses the programmer's textual representation of a type into our
1805     /// internal notion of a type.
1806     pub fn ast_ty_to_ty(&self, ast_ty: &hir::Ty) -> Ty<'tcx> {
1807         debug!("ast_ty_to_ty(id={:?}, ast_ty={:?} ty_ty={:?})",
1808                ast_ty.hir_id, ast_ty, ast_ty.node);
1809
1810         let tcx = self.tcx();
1811
1812         let result_ty = match ast_ty.node {
1813             hir::TyKind::Slice(ref ty) => {
1814                 tcx.mk_slice(self.ast_ty_to_ty(&ty))
1815             }
1816             hir::TyKind::Ptr(ref mt) => {
1817                 tcx.mk_ptr(ty::TypeAndMut {
1818                     ty: self.ast_ty_to_ty(&mt.ty),
1819                     mutbl: mt.mutbl
1820                 })
1821             }
1822             hir::TyKind::Rptr(ref region, ref mt) => {
1823                 let r = self.ast_region_to_region(region, None);
1824                 debug!("Ref r={:?}", r);
1825                 let t = self.ast_ty_to_ty(&mt.ty);
1826                 tcx.mk_ref(r, ty::TypeAndMut {ty: t, mutbl: mt.mutbl})
1827             }
1828             hir::TyKind::Never => {
1829                 tcx.types.never
1830             },
1831             hir::TyKind::Tup(ref fields) => {
1832                 tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(&t)))
1833             }
1834             hir::TyKind::BareFn(ref bf) => {
1835                 require_c_abi_if_c_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
1836                 tcx.mk_fn_ptr(self.ty_of_fn(bf.unsafety, bf.abi, &bf.decl))
1837             }
1838             hir::TyKind::TraitObject(ref bounds, ref lifetime) => {
1839                 self.conv_object_ty_poly_trait_ref(ast_ty.span, bounds, lifetime)
1840             }
1841             hir::TyKind::Path(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
1842                 debug!("ast_ty_to_ty: maybe_qself={:?} path={:?}", maybe_qself, path);
1843                 let opt_self_ty = maybe_qself.as_ref().map(|qself| {
1844                     self.ast_ty_to_ty(qself)
1845                 });
1846                 self.res_to_ty(opt_self_ty, path, false)
1847             }
1848             hir::TyKind::Def(item_id, ref lifetimes) => {
1849                 let did = tcx.hir().local_def_id_from_hir_id(item_id.id);
1850                 self.impl_trait_ty_to_ty(did, lifetimes)
1851             },
1852             hir::TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
1853                 debug!("ast_ty_to_ty: qself={:?} segment={:?}", qself, segment);
1854                 let ty = self.ast_ty_to_ty(qself);
1855
1856                 let res = if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = qself.node {
1857                     path.res
1858                 } else {
1859                     Res::Err
1860                 };
1861                 self.associated_path_to_ty(ast_ty.hir_id, ast_ty.span, ty, res, segment, false)
1862                     .map(|(ty, _, _)| ty).unwrap_or(tcx.types.err)
1863             }
1864             hir::TyKind::Array(ref ty, ref length) => {
1865                 let length = self.ast_const_to_const(length, tcx.types.usize);
1866                 let array_ty = tcx.mk_ty(ty::Array(self.ast_ty_to_ty(&ty), length));
1867                 self.normalize_ty(ast_ty.span, array_ty)
1868             }
1869             hir::TyKind::Typeof(ref _e) => {
1870                 struct_span_err!(tcx.sess, ast_ty.span, E0516,
1871                                  "`typeof` is a reserved keyword but unimplemented")
1872                     .span_label(ast_ty.span, "reserved keyword")
1873                     .emit();
1874
1875                 tcx.types.err
1876             }
1877             hir::TyKind::Infer => {
1878                 // Infer also appears as the type of arguments or return
1879                 // values in a ExprKind::Closure, or as
1880                 // the type of local variables. Both of these cases are
1881                 // handled specially and will not descend into this routine.
1882                 self.ty_infer(ast_ty.span)
1883             }
1884             hir::TyKind::Err => {
1885                 tcx.types.err
1886             }
1887             hir::TyKind::CVarArgs(lt) => {
1888                 let va_list_did = match tcx.lang_items().va_list() {
1889                     Some(did) => did,
1890                     None => span_bug!(ast_ty.span,
1891                                       "`va_list` lang item required for variadics"),
1892                 };
1893                 let region = self.ast_region_to_region(&lt, None);
1894                 tcx.type_of(va_list_did).subst(tcx, &[region.into()])
1895             }
1896         };
1897
1898         self.record_ty(ast_ty.hir_id, result_ty, ast_ty.span);
1899         result_ty
1900     }
1901
1902     pub fn ast_const_to_const(
1903         &self,
1904         ast_const: &hir::AnonConst,
1905         ty: Ty<'tcx>
1906     ) -> &'tcx ty::Const<'tcx> {
1907         debug!("ast_const_to_const(id={:?}, ast_const={:?})", ast_const.hir_id, ast_const);
1908
1909         let tcx = self.tcx();
1910         let def_id = tcx.hir().local_def_id_from_hir_id(ast_const.hir_id);
1911
1912         let mut const_ = ty::Const {
1913             val: ConstValue::Unevaluated(
1914                 def_id,
1915                 InternalSubsts::identity_for_item(tcx, def_id),
1916             ),
1917             ty,
1918         };
1919
1920         let mut expr = &tcx.hir().body(ast_const.body).value;
1921
1922         // Unwrap a block, so that e.g. `{ P }` is recognised as a parameter. Const arguments
1923         // currently have to be wrapped in curly brackets, so it's necessary to special-case.
1924         if let ExprKind::Block(block, _) = &expr.node {
1925             if block.stmts.is_empty() {
1926                 if let Some(trailing) = &block.expr {
1927                     expr = &trailing;
1928                 }
1929             }
1930         }
1931
1932         if let ExprKind::Path(ref qpath) = expr.node {
1933             if let hir::QPath::Resolved(_, ref path) = qpath {
1934                 if let Res::Def(DefKind::ConstParam, def_id) = path.res {
1935                     let node_id = tcx.hir().as_local_node_id(def_id).unwrap();
1936                     let item_id = tcx.hir().get_parent_node(node_id);
1937                     let item_def_id = tcx.hir().local_def_id(item_id);
1938                     let generics = tcx.generics_of(item_def_id);
1939                     let index = generics.param_def_id_to_index[&tcx.hir().local_def_id(node_id)];
1940                     let name = tcx.hir().name(node_id).as_interned_str();
1941                     const_.val = ConstValue::Param(ty::ParamConst::new(index, name));
1942                 }
1943             }
1944         };
1945
1946         tcx.mk_const(const_)
1947     }
1948
1949     pub fn impl_trait_ty_to_ty(
1950         &self,
1951         def_id: DefId,
1952         lifetimes: &[hir::GenericArg],
1953     ) -> Ty<'tcx> {
1954         debug!("impl_trait_ty_to_ty(def_id={:?}, lifetimes={:?})", def_id, lifetimes);
1955         let tcx = self.tcx();
1956
1957         let generics = tcx.generics_of(def_id);
1958
1959         debug!("impl_trait_ty_to_ty: generics={:?}", generics);
1960         let substs = InternalSubsts::for_item(tcx, def_id, |param, _| {
1961             if let Some(i) = (param.index as usize).checked_sub(generics.parent_count) {
1962                 // Our own parameters are the resolved lifetimes.
1963                 match param.kind {
1964                     GenericParamDefKind::Lifetime => {
1965                         if let hir::GenericArg::Lifetime(lifetime) = &lifetimes[i] {
1966                             self.ast_region_to_region(lifetime, None).into()
1967                         } else {
1968                             bug!()
1969                         }
1970                     }
1971                     _ => bug!()
1972                 }
1973             } else {
1974                 // Replace all parent lifetimes with 'static.
1975                 match param.kind {
1976                     GenericParamDefKind::Lifetime => {
1977                         tcx.lifetimes.re_static.into()
1978                     }
1979                     _ => tcx.mk_param_from_def(param)
1980                 }
1981             }
1982         });
1983         debug!("impl_trait_ty_to_ty: final substs = {:?}", substs);
1984
1985         let ty = tcx.mk_opaque(def_id, substs);
1986         debug!("impl_trait_ty_to_ty: {}", ty);
1987         ty
1988     }
1989
1990     pub fn ty_of_arg(&self,
1991                      ty: &hir::Ty,
1992                      expected_ty: Option<Ty<'tcx>>)
1993                      -> Ty<'tcx>
1994     {
1995         match ty.node {
1996             hir::TyKind::Infer if expected_ty.is_some() => {
1997                 self.record_ty(ty.hir_id, expected_ty.unwrap(), ty.span);
1998                 expected_ty.unwrap()
1999             }
2000             _ => self.ast_ty_to_ty(ty),
2001         }
2002     }
2003
2004     pub fn ty_of_fn(&self,
2005                     unsafety: hir::Unsafety,
2006                     abi: abi::Abi,
2007                     decl: &hir::FnDecl)
2008                     -> ty::PolyFnSig<'tcx> {
2009         debug!("ty_of_fn");
2010
2011         let tcx = self.tcx();
2012         let input_tys =
2013             decl.inputs.iter().map(|a| self.ty_of_arg(a, None));
2014
2015         let output_ty = match decl.output {
2016             hir::Return(ref output) => self.ast_ty_to_ty(output),
2017             hir::DefaultReturn(..) => tcx.mk_unit(),
2018         };
2019
2020         debug!("ty_of_fn: output_ty={:?}", output_ty);
2021
2022         let bare_fn_ty = ty::Binder::bind(tcx.mk_fn_sig(
2023             input_tys,
2024             output_ty,
2025             decl.c_variadic,
2026             unsafety,
2027             abi
2028         ));
2029
2030         // Find any late-bound regions declared in return type that do
2031         // not appear in the arguments. These are not well-formed.
2032         //
2033         // Example:
2034         //     for<'a> fn() -> &'a str <-- 'a is bad
2035         //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
2036         let inputs = bare_fn_ty.inputs();
2037         let late_bound_in_args = tcx.collect_constrained_late_bound_regions(
2038             &inputs.map_bound(|i| i.to_owned()));
2039         let output = bare_fn_ty.output();
2040         let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
2041         for br in late_bound_in_ret.difference(&late_bound_in_args) {
2042             let lifetime_name = match *br {
2043                 ty::BrNamed(_, name) => format!("lifetime `{}`,", name),
2044                 ty::BrAnon(_) | ty::BrFresh(_) | ty::BrEnv => "an anonymous lifetime".to_string(),
2045             };
2046             let mut err = struct_span_err!(tcx.sess,
2047                                            decl.output.span(),
2048                                            E0581,
2049                                            "return type references {} \
2050                                             which is not constrained by the fn input types",
2051                                            lifetime_name);
2052             if let ty::BrAnon(_) = *br {
2053                 // The only way for an anonymous lifetime to wind up
2054                 // in the return type but **also** be unconstrained is
2055                 // if it only appears in "associated types" in the
2056                 // input. See #47511 for an example. In this case,
2057                 // though we can easily give a hint that ought to be
2058                 // relevant.
2059                 err.note("lifetimes appearing in an associated type \
2060                           are not considered constrained");
2061             }
2062             err.emit();
2063         }
2064
2065         bare_fn_ty
2066     }
2067
2068     /// Given the bounds on an object, determines what single region bound (if any) we can
2069     /// use to summarize this type. The basic idea is that we will use the bound the user
2070     /// provided, if they provided one, and otherwise search the supertypes of trait bounds
2071     /// for region bounds. It may be that we can derive no bound at all, in which case
2072     /// we return `None`.
2073     fn compute_object_lifetime_bound(&self,
2074         span: Span,
2075         existential_predicates: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>)
2076         -> Option<ty::Region<'tcx>> // if None, use the default
2077     {
2078         let tcx = self.tcx();
2079
2080         debug!("compute_opt_region_bound(existential_predicates={:?})",
2081                existential_predicates);
2082
2083         // No explicit region bound specified. Therefore, examine trait
2084         // bounds and see if we can derive region bounds from those.
2085         let derived_region_bounds =
2086             object_region_bounds(tcx, existential_predicates);
2087
2088         // If there are no derived region bounds, then report back that we
2089         // can find no region bound. The caller will use the default.
2090         if derived_region_bounds.is_empty() {
2091             return None;
2092         }
2093
2094         // If any of the derived region bounds are 'static, that is always
2095         // the best choice.
2096         if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
2097             return Some(tcx.lifetimes.re_static);
2098         }
2099
2100         // Determine whether there is exactly one unique region in the set
2101         // of derived region bounds. If so, use that. Otherwise, report an
2102         // error.
2103         let r = derived_region_bounds[0];
2104         if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
2105             span_err!(tcx.sess, span, E0227,
2106                       "ambiguous lifetime bound, explicit lifetime bound required");
2107         }
2108         return Some(r);
2109     }
2110 }
2111
2112 // A helper struct for conveniently grouping a set of bounds which we pass to
2113 // and return from functions in multiple places.
2114 #[derive(PartialEq, Eq, Clone, Debug)]
2115 pub struct Bounds<'tcx> {
2116     pub region_bounds: Vec<(ty::Region<'tcx>, Span)>,
2117     pub implicitly_sized: Option<Span>,
2118     pub trait_bounds: Vec<(ty::PolyTraitRef<'tcx>, Span)>,
2119     pub projection_bounds: Vec<(ty::PolyProjectionPredicate<'tcx>, Span)>,
2120 }
2121
2122 impl<'a, 'gcx, 'tcx> Bounds<'tcx> {
2123     pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, param_ty: Ty<'tcx>)
2124                       -> Vec<(ty::Predicate<'tcx>, Span)>
2125     {
2126         // If it could be sized, and is, add the `Sized` predicate.
2127         let sized_predicate = self.implicitly_sized.and_then(|span| {
2128             tcx.lang_items().sized_trait().map(|sized| {
2129                 let trait_ref = ty::TraitRef {
2130                     def_id: sized,
2131                     substs: tcx.mk_substs_trait(param_ty, &[])
2132                 };
2133                 (trait_ref.to_predicate(), span)
2134             })
2135         });
2136
2137         sized_predicate.into_iter().chain(
2138             self.region_bounds.iter().map(|&(region_bound, span)| {
2139                 // Account for the binder being introduced below; no need to shift `param_ty`
2140                 // because, at present at least, it can only refer to early-bound regions.
2141                 let region_bound = ty::fold::shift_region(tcx, region_bound, 1);
2142                 let outlives = ty::OutlivesPredicate(param_ty, region_bound);
2143                 (ty::Binder::dummy(outlives).to_predicate(), span)
2144             }).chain(
2145                 self.trait_bounds.iter().map(|&(bound_trait_ref, span)| {
2146                     (bound_trait_ref.to_predicate(), span)
2147                 })
2148             ).chain(
2149                 self.projection_bounds.iter().map(|&(projection, span)| {
2150                     (projection.to_predicate(), span)
2151                 })
2152             )
2153         ).collect()
2154     }
2155 }