]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/astconv.rs
Report late-bound region lint as error in `check_generic_arg_count`
[rust.git] / src / librustc_typeck / astconv.rs
1 // ignore-tidy-filelength FIXME(#67418) Split up this file.
2 //! Conversion from AST representation of types to the `ty.rs` representation.
3 //! The main routine here is `ast_ty_to_ty()`; each use is parameterized by an
4 //! instance of `AstConv`.
5
6 // ignore-tidy-filelength
7
8 use crate::collect::PlaceholderHirTyCollector;
9 use crate::lint;
10 use crate::middle::lang_items::SizedTraitLangItem;
11 use crate::middle::resolve_lifetime as rl;
12 use crate::require_c_abi_if_c_variadic;
13 use crate::util::common::ErrorReported;
14 use rustc::lint::builtin::AMBIGUOUS_ASSOCIATED_ITEMS;
15 use rustc::session::parse::feature_err;
16 use rustc::ty::subst::{self, InternalSubsts, Subst, SubstsRef};
17 use rustc::ty::{self, Const, DefIdTree, ToPredicate, Ty, TyCtxt, TypeFoldable, WithConstness};
18 use rustc::ty::{GenericParamDef, GenericParamDefKind};
19 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
20 use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticId};
21 use rustc_hir as hir;
22 use rustc_hir::def::{CtorOf, DefKind, Namespace, Res};
23 use rustc_hir::def_id::DefId;
24 use rustc_hir::intravisit::Visitor;
25 use rustc_hir::print;
26 use rustc_hir::{Constness, ExprKind, GenericArg, GenericArgs};
27 use rustc_infer::traits;
28 use rustc_infer::traits::astconv_object_safety_violations;
29 use rustc_infer::traits::error_reporting::report_object_safety_error;
30 use rustc_infer::traits::wf::object_region_bounds;
31 use rustc_span::symbol::sym;
32 use rustc_span::{MultiSpan, Span, DUMMY_SP};
33 use rustc_target::spec::abi;
34 use smallvec::SmallVec;
35 use syntax::ast;
36 use syntax::util::lev_distance::find_best_match_for_name;
37
38 use std::collections::BTreeSet;
39 use std::iter;
40 use std::slice;
41
42 use rustc::mir::interpret::LitToConstInput;
43
44 #[derive(Debug)]
45 pub struct PathSeg(pub DefId, pub usize);
46
47 pub trait AstConv<'tcx> {
48     fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
49
50     fn item_def_id(&self) -> Option<DefId>;
51
52     fn default_constness_for_trait_bounds(&self) -> Constness;
53
54     /// Returns predicates in scope of the form `X: Foo`, where `X` is
55     /// a type parameter `X` with the given id `def_id`. This is a
56     /// subset of the full set of predicates.
57     ///
58     /// This is used for one specific purpose: resolving "short-hand"
59     /// associated type references like `T::Item`. In principle, we
60     /// would do that by first getting the full set of predicates in
61     /// scope and then filtering down to find those that apply to `T`,
62     /// but this can lead to cycle errors. The problem is that we have
63     /// to do this resolution *in order to create the predicates in
64     /// the first place*. Hence, we have this "special pass".
65     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId) -> ty::GenericPredicates<'tcx>;
66
67     /// Returns the lifetime to use when a lifetime is omitted (and not elided).
68     fn re_infer(&self, param: Option<&ty::GenericParamDef>, span: Span)
69     -> Option<ty::Region<'tcx>>;
70
71     /// Returns the type to use when a type is omitted.
72     fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx>;
73
74     /// Returns `true` if `_` is allowed in type signatures in the current context.
75     fn allow_ty_infer(&self) -> bool;
76
77     /// Returns the const to use when a const is omitted.
78     fn ct_infer(
79         &self,
80         ty: Ty<'tcx>,
81         param: Option<&ty::GenericParamDef>,
82         span: Span,
83     ) -> &'tcx Const<'tcx>;
84
85     /// Projecting an associated type from a (potentially)
86     /// higher-ranked trait reference is more complicated, because of
87     /// the possibility of late-bound regions appearing in the
88     /// associated type binding. This is not legal in function
89     /// signatures for that reason. In a function body, we can always
90     /// handle it because we can use inference variables to remove the
91     /// late-bound regions.
92     fn projected_ty_from_poly_trait_ref(
93         &self,
94         span: Span,
95         item_def_id: DefId,
96         item_segment: &hir::PathSegment<'_>,
97         poly_trait_ref: ty::PolyTraitRef<'tcx>,
98     ) -> Ty<'tcx>;
99
100     /// Normalize an associated type coming from the user.
101     fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;
102
103     /// Invoked when we encounter an error from some prior pass
104     /// (e.g., resolve) that is translated into a ty-error. This is
105     /// used to help suppress derived errors typeck might otherwise
106     /// report.
107     fn set_tainted_by_errors(&self);
108
109     fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, span: Span);
110 }
111
112 pub enum SizedByDefault {
113     Yes,
114     No,
115 }
116
117 struct ConvertedBinding<'a, 'tcx> {
118     item_name: ast::Ident,
119     kind: ConvertedBindingKind<'a, 'tcx>,
120     span: Span,
121 }
122
123 enum ConvertedBindingKind<'a, 'tcx> {
124     Equality(Ty<'tcx>),
125     Constraint(&'a [hir::GenericBound<'a>]),
126 }
127
128 #[derive(PartialEq)]
129 enum GenericArgPosition {
130     Type,
131     Value, // e.g., functions
132     MethodCall,
133 }
134
135 impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
136     pub fn ast_region_to_region(
137         &self,
138         lifetime: &hir::Lifetime,
139         def: Option<&ty::GenericParamDef>,
140     ) -> ty::Region<'tcx> {
141         let tcx = self.tcx();
142         let lifetime_name = |def_id| tcx.hir().name(tcx.hir().as_local_hir_id(def_id).unwrap());
143
144         let r = match tcx.named_region(lifetime.hir_id) {
145             Some(rl::Region::Static) => tcx.lifetimes.re_static,
146
147             Some(rl::Region::LateBound(debruijn, id, _)) => {
148                 let name = lifetime_name(id);
149                 tcx.mk_region(ty::ReLateBound(debruijn, ty::BrNamed(id, name)))
150             }
151
152             Some(rl::Region::LateBoundAnon(debruijn, index)) => {
153                 tcx.mk_region(ty::ReLateBound(debruijn, ty::BrAnon(index)))
154             }
155
156             Some(rl::Region::EarlyBound(index, id, _)) => {
157                 let name = lifetime_name(id);
158                 tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion { def_id: id, index, name }))
159             }
160
161             Some(rl::Region::Free(scope, id)) => {
162                 let name = lifetime_name(id);
163                 tcx.mk_region(ty::ReFree(ty::FreeRegion {
164                     scope,
165                     bound_region: ty::BrNamed(id, name),
166                 }))
167
168                 // (*) -- not late-bound, won't change
169             }
170
171             None => {
172                 self.re_infer(def, lifetime.span).unwrap_or_else(|| {
173                     // This indicates an illegal lifetime
174                     // elision. `resolve_lifetime` should have
175                     // reported an error in this case -- but if
176                     // not, let's error out.
177                     tcx.sess.delay_span_bug(lifetime.span, "unelided lifetime in signature");
178
179                     // Supply some dummy value. We don't have an
180                     // `re_error`, annoyingly, so use `'static`.
181                     tcx.lifetimes.re_static
182                 })
183             }
184         };
185
186         debug!("ast_region_to_region(lifetime={:?}) yields {:?}", lifetime, r);
187
188         r
189     }
190
191     /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
192     /// returns an appropriate set of substitutions for this particular reference to `I`.
193     pub fn ast_path_substs_for_ty(
194         &self,
195         span: Span,
196         def_id: DefId,
197         item_segment: &hir::PathSegment<'_>,
198     ) -> SubstsRef<'tcx> {
199         let (substs, assoc_bindings, _) = self.create_substs_for_ast_path(
200             span,
201             def_id,
202             &[],
203             item_segment.generic_args(),
204             item_segment.infer_args,
205             None,
206         );
207
208         assoc_bindings.first().map(|b| Self::prohibit_assoc_ty_binding(self.tcx(), b.span));
209
210         substs
211     }
212
213     /// Report error if there is an explicit type parameter when using `impl Trait`.
214     fn check_impl_trait(
215         tcx: TyCtxt<'_>,
216         seg: &hir::PathSegment<'_>,
217         generics: &ty::Generics,
218     ) -> bool {
219         let explicit = !seg.infer_args;
220         let impl_trait = generics.params.iter().any(|param| match param.kind {
221             ty::GenericParamDefKind::Type {
222                 synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
223                 ..
224             } => true,
225             _ => false,
226         });
227
228         if explicit && impl_trait {
229             let spans = seg
230                 .generic_args()
231                 .args
232                 .iter()
233                 .filter_map(|arg| match arg {
234                     GenericArg::Type(_) => Some(arg.span()),
235                     _ => None,
236                 })
237                 .collect::<Vec<_>>();
238
239             let mut err = struct_span_err! {
240                 tcx.sess,
241                 spans.clone(),
242                 E0632,
243                 "cannot provide explicit generic arguments when `impl Trait` is \
244                 used in argument position"
245             };
246
247             for span in spans {
248                 err.span_label(span, "explicit generic argument not allowed");
249             }
250
251             err.emit();
252         }
253
254         impl_trait
255     }
256
257     /// Checks that the correct number of generic arguments have been provided.
258     /// Used specifically for function calls.
259     pub fn check_generic_arg_count_for_call(
260         tcx: TyCtxt<'_>,
261         span: Span,
262         def: &ty::Generics,
263         seg: &hir::PathSegment<'_>,
264         is_method_call: bool,
265     ) -> bool {
266         let empty_args = hir::GenericArgs::none();
267         let suppress_mismatch = Self::check_impl_trait(tcx, seg, &def);
268         Self::check_generic_arg_count(
269             tcx,
270             span,
271             def,
272             if let Some(ref args) = seg.args { args } else { &empty_args },
273             if is_method_call { GenericArgPosition::MethodCall } else { GenericArgPosition::Value },
274             def.parent.is_none() && def.has_self, // `has_self`
275             seg.infer_args || suppress_mismatch,  // `infer_args`
276         )
277         .0
278     }
279
280     /// Checks that the correct number of generic arguments have been provided.
281     /// This is used both for datatypes and function calls.
282     fn check_generic_arg_count(
283         tcx: TyCtxt<'_>,
284         span: Span,
285         def: &ty::Generics,
286         args: &hir::GenericArgs<'_>,
287         position: GenericArgPosition,
288         has_self: bool,
289         infer_args: bool,
290     ) -> (bool, Vec<Span>) {
291         // At this stage we are guaranteed that the generic arguments are in the correct order, e.g.
292         // that lifetimes will proceed types. So it suffices to check the number of each generic
293         // arguments in order to validate them with respect to the generic parameters.
294         let param_counts = def.own_counts();
295         let arg_counts = args.own_counts();
296         let infer_lifetimes = position != GenericArgPosition::Type && arg_counts.lifetimes == 0;
297
298         let mut defaults: ty::GenericParamCount = Default::default();
299         for param in &def.params {
300             match param.kind {
301                 GenericParamDefKind::Lifetime => {}
302                 GenericParamDefKind::Type { has_default, .. } => {
303                     defaults.types += has_default as usize
304                 }
305                 GenericParamDefKind::Const => {
306                     // FIXME(const_generics:defaults)
307                 }
308             };
309         }
310
311         if position != GenericArgPosition::Type && !args.bindings.is_empty() {
312             AstConv::prohibit_assoc_ty_binding(tcx, args.bindings[0].span);
313         }
314
315         // Prohibit explicit lifetime arguments if late-bound lifetime parameters are present.
316         let mut reported_late_bound_region_err = false;
317         if !infer_lifetimes {
318             if let Some(span_late) = def.has_late_bound_regions {
319                 reported_late_bound_region_err = true;
320                 let msg = "cannot specify lifetime arguments explicitly \
321                            if late bound lifetime parameters are present";
322                 let note = "the late bound lifetime parameter is introduced here";
323                 let span = args.args[0].span();
324                 if position == GenericArgPosition::Value
325                     && arg_counts.lifetimes != param_counts.lifetimes
326                 {
327                     let mut err = tcx.sess.struct_span_err(span, msg);
328                     err.span_note(span_late, note);
329                     err.emit();
330                 } else {
331                     let mut multispan = MultiSpan::from_span(span);
332                     multispan.push_span_label(span_late, note.to_string());
333                     tcx.struct_span_lint_hir(
334                         lint::builtin::LATE_BOUND_LIFETIME_ARGUMENTS,
335                         args.args[0].id(),
336                         multispan,
337                         |lint| lint.build(msg).emit(),
338                     );
339                 }
340             }
341         }
342
343         let check_kind_count =
344             |kind, required, permitted, provided, offset, unexpected_spans: &mut Vec<Span>| {
345                 debug!(
346                     "check_kind_count: kind: {} required: {} permitted: {} provided: {} offset: {}",
347                     kind, required, permitted, provided, offset
348                 );
349                 // We enforce the following: `required` <= `provided` <= `permitted`.
350                 // For kinds without defaults (e.g.., lifetimes), `required == permitted`.
351                 // For other kinds (i.e., types), `permitted` may be greater than `required`.
352                 if required <= provided && provided <= permitted {
353                     return false;
354                 }
355
356                 // Unfortunately lifetime and type parameter mismatches are typically styled
357                 // differently in diagnostics, which means we have a few cases to consider here.
358                 let (bound, quantifier) = if required != permitted {
359                     if provided < required {
360                         (required, "at least ")
361                     } else {
362                         // provided > permitted
363                         (permitted, "at most ")
364                     }
365                 } else {
366                     (required, "")
367                 };
368
369                 let (spans, label) = if required == permitted && provided > permitted {
370                     // In the case when the user has provided too many arguments,
371                     // we want to point to the unexpected arguments.
372                     let spans: Vec<Span> = args.args[offset + permitted..offset + provided]
373                         .iter()
374                         .map(|arg| arg.span())
375                         .collect();
376                     unexpected_spans.extend(spans.clone());
377                     (spans, format!("unexpected {} argument", kind))
378                 } else {
379                     (
380                         vec![span],
381                         format!(
382                             "expected {}{} {} argument{}",
383                             quantifier,
384                             bound,
385                             kind,
386                             pluralize!(bound),
387                         ),
388                     )
389                 };
390
391                 let mut err = tcx.sess.struct_span_err_with_code(
392                     spans.clone(),
393                     &format!(
394                         "wrong number of {} arguments: expected {}{}, found {}",
395                         kind, quantifier, bound, provided,
396                     ),
397                     DiagnosticId::Error("E0107".into()),
398                 );
399                 for span in spans {
400                     err.span_label(span, label.as_str());
401                 }
402                 err.emit();
403
404                 true
405             };
406
407         let mut arg_count_mismatch = reported_late_bound_region_err;
408         let mut unexpected_spans = vec![];
409
410         if !reported_late_bound_region_err
411             && (!infer_lifetimes || arg_counts.lifetimes > param_counts.lifetimes)
412         {
413             arg_count_mismatch |= check_kind_count(
414                 "lifetime",
415                 param_counts.lifetimes,
416                 param_counts.lifetimes,
417                 arg_counts.lifetimes,
418                 0,
419                 &mut unexpected_spans,
420             );
421         }
422         // FIXME(const_generics:defaults)
423         if !infer_args || arg_counts.consts > param_counts.consts {
424             arg_count_mismatch |= check_kind_count(
425                 "const",
426                 param_counts.consts,
427                 param_counts.consts,
428                 arg_counts.consts,
429                 arg_counts.lifetimes + arg_counts.types,
430                 &mut unexpected_spans,
431             );
432         }
433         // Note that type errors are currently be emitted *after* const errors.
434         if !infer_args || arg_counts.types > param_counts.types - defaults.types - has_self as usize
435         {
436             arg_count_mismatch |= check_kind_count(
437                 "type",
438                 param_counts.types - defaults.types - has_self as usize,
439                 param_counts.types - has_self as usize,
440                 arg_counts.types,
441                 arg_counts.lifetimes,
442                 &mut unexpected_spans,
443             );
444         }
445
446         (arg_count_mismatch, unexpected_spans)
447     }
448
449     /// Creates the relevant generic argument substitutions
450     /// corresponding to a set of generic parameters. This is a
451     /// rather complex function. Let us try to explain the role
452     /// of each of its parameters:
453     ///
454     /// To start, we are given the `def_id` of the thing we are
455     /// creating the substitutions for, and a partial set of
456     /// substitutions `parent_substs`. In general, the substitutions
457     /// for an item begin with substitutions for all the "parents" of
458     /// that item -- e.g., for a method it might include the
459     /// parameters from the impl.
460     ///
461     /// Therefore, the method begins by walking down these parents,
462     /// starting with the outermost parent and proceed inwards until
463     /// it reaches `def_id`. For each parent `P`, it will check `parent_substs`
464     /// first to see if the parent's substitutions are listed in there. If so,
465     /// we can append those and move on. Otherwise, it invokes the
466     /// three callback functions:
467     ///
468     /// - `args_for_def_id`: given the `DefId` `P`, supplies back the
469     ///   generic arguments that were given to that parent from within
470     ///   the path; so e.g., if you have `<T as Foo>::Bar`, the `DefId`
471     ///   might refer to the trait `Foo`, and the arguments might be
472     ///   `[T]`. The boolean value indicates whether to infer values
473     ///   for arguments whose values were not explicitly provided.
474     /// - `provided_kind`: given the generic parameter and the value from `args_for_def_id`,
475     ///   instantiate a `GenericArg`.
476     /// - `inferred_kind`: if no parameter was provided, and inference is enabled, then
477     ///   creates a suitable inference variable.
478     pub fn create_substs_for_generic_args<'b>(
479         tcx: TyCtxt<'tcx>,
480         def_id: DefId,
481         parent_substs: &[subst::GenericArg<'tcx>],
482         has_self: bool,
483         self_ty: Option<Ty<'tcx>>,
484         args_for_def_id: impl Fn(DefId) -> (Option<&'b GenericArgs<'b>>, bool),
485         provided_kind: impl Fn(&GenericParamDef, &GenericArg<'_>) -> subst::GenericArg<'tcx>,
486         mut inferred_kind: impl FnMut(
487             Option<&[subst::GenericArg<'tcx>]>,
488             &GenericParamDef,
489             bool,
490         ) -> subst::GenericArg<'tcx>,
491     ) -> SubstsRef<'tcx> {
492         // Collect the segments of the path; we need to substitute arguments
493         // for parameters throughout the entire path (wherever there are
494         // generic parameters).
495         let mut parent_defs = tcx.generics_of(def_id);
496         let count = parent_defs.count();
497         let mut stack = vec![(def_id, parent_defs)];
498         while let Some(def_id) = parent_defs.parent {
499             parent_defs = tcx.generics_of(def_id);
500             stack.push((def_id, parent_defs));
501         }
502
503         // We manually build up the substitution, rather than using convenience
504         // methods in `subst.rs`, so that we can iterate over the arguments and
505         // parameters in lock-step linearly, instead of trying to match each pair.
506         let mut substs: SmallVec<[subst::GenericArg<'tcx>; 8]> = SmallVec::with_capacity(count);
507
508         // Iterate over each segment of the path.
509         while let Some((def_id, defs)) = stack.pop() {
510             let mut params = defs.params.iter().peekable();
511
512             // If we have already computed substitutions for parents, we can use those directly.
513             while let Some(&param) = params.peek() {
514                 if let Some(&kind) = parent_substs.get(param.index as usize) {
515                     substs.push(kind);
516                     params.next();
517                 } else {
518                     break;
519                 }
520             }
521
522             // `Self` is handled first, unless it's been handled in `parent_substs`.
523             if has_self {
524                 if let Some(&param) = params.peek() {
525                     if param.index == 0 {
526                         if let GenericParamDefKind::Type { .. } = param.kind {
527                             substs.push(
528                                 self_ty
529                                     .map(|ty| ty.into())
530                                     .unwrap_or_else(|| inferred_kind(None, param, true)),
531                             );
532                             params.next();
533                         }
534                     }
535                 }
536             }
537
538             // Check whether this segment takes generic arguments and the user has provided any.
539             let (generic_args, infer_args) = args_for_def_id(def_id);
540
541             let mut args =
542                 generic_args.iter().flat_map(|generic_args| generic_args.args.iter()).peekable();
543
544             loop {
545                 // We're going to iterate through the generic arguments that the user
546                 // provided, matching them with the generic parameters we expect.
547                 // Mismatches can occur as a result of elided lifetimes, or for malformed
548                 // input. We try to handle both sensibly.
549                 match (args.peek(), params.peek()) {
550                     (Some(&arg), Some(&param)) => {
551                         match (arg, &param.kind) {
552                             (GenericArg::Lifetime(_), GenericParamDefKind::Lifetime)
553                             | (GenericArg::Type(_), GenericParamDefKind::Type { .. })
554                             | (GenericArg::Const(_), GenericParamDefKind::Const) => {
555                                 substs.push(provided_kind(param, arg));
556                                 args.next();
557                                 params.next();
558                             }
559                             (GenericArg::Type(_), GenericParamDefKind::Lifetime)
560                             | (GenericArg::Const(_), GenericParamDefKind::Lifetime) => {
561                                 // We expected a lifetime argument, but got a type or const
562                                 // argument. That means we're inferring the lifetimes.
563                                 substs.push(inferred_kind(None, param, infer_args));
564                                 params.next();
565                             }
566                             (_, _) => {
567                                 // We expected one kind of parameter, but the user provided
568                                 // another. This is an error, but we need to handle it
569                                 // gracefully so we can report sensible errors.
570                                 // In this case, we're simply going to infer this argument.
571                                 args.next();
572                             }
573                         }
574                     }
575                     (Some(_), None) => {
576                         // We should never be able to reach this point with well-formed input.
577                         // Getting to this point means the user supplied more arguments than
578                         // there are parameters.
579                         args.next();
580                     }
581                     (None, Some(&param)) => {
582                         // If there are fewer arguments than parameters, it means
583                         // we're inferring the remaining arguments.
584                         substs.push(inferred_kind(Some(&substs), param, infer_args));
585                         args.next();
586                         params.next();
587                     }
588                     (None, None) => break,
589                 }
590             }
591         }
592
593         tcx.intern_substs(&substs)
594     }
595
596     /// Given the type/lifetime/const arguments provided to some path (along with
597     /// an implicit `Self`, if this is a trait reference), returns the complete
598     /// set of substitutions. This may involve applying defaulted type parameters.
599     /// Also returns back constriants on associated types.
600     ///
601     /// Example:
602     ///
603     /// ```
604     /// T: std::ops::Index<usize, Output = u32>
605     /// ^1 ^^^^^^^^^^^^^^2 ^^^^3  ^^^^^^^^^^^4
606     /// ```
607     ///
608     /// 1. The `self_ty` here would refer to the type `T`.
609     /// 2. The path in question is the path to the trait `std::ops::Index`,
610     ///    which will have been resolved to a `def_id`
611     /// 3. The `generic_args` contains info on the `<...>` contents. The `usize` type
612     ///    parameters are returned in the `SubstsRef`, the associated type bindings like
613     ///    `Output = u32` are returned in the `Vec<ConvertedBinding...>` result.
614     ///
615     /// Note that the type listing given here is *exactly* what the user provided.
616     ///
617     /// For (generic) associated types
618     ///
619     /// ```
620     /// <Vec<u8> as Iterable<u8>>::Iter::<'a>
621     /// ```
622     ///
623     /// We have the parent substs are the substs for the parent trait:
624     /// `[Vec<u8>, u8]` and `generic_args` are the arguments for the associated
625     /// type itself: `['a]`. The returned `SubstsRef` concatenates these two
626     /// lists: `[Vec<u8>, u8, 'a]`.
627     fn create_substs_for_ast_path<'a>(
628         &self,
629         span: Span,
630         def_id: DefId,
631         parent_substs: &[subst::GenericArg<'tcx>],
632         generic_args: &'a hir::GenericArgs<'_>,
633         infer_args: bool,
634         self_ty: Option<Ty<'tcx>>,
635     ) -> (SubstsRef<'tcx>, Vec<ConvertedBinding<'a, 'tcx>>, Vec<Span>) {
636         // If the type is parameterized by this region, then replace this
637         // region with the current anon region binding (in other words,
638         // whatever & would get replaced with).
639         debug!(
640             "create_substs_for_ast_path(def_id={:?}, self_ty={:?}, \
641                 generic_args={:?})",
642             def_id, self_ty, generic_args
643         );
644
645         let tcx = self.tcx();
646         let generic_params = tcx.generics_of(def_id);
647
648         if generic_params.has_self {
649             if generic_params.parent.is_some() {
650                 // The parent is a trait so it should have at least one subst
651                 // for the `Self` type.
652                 assert!(!parent_substs.is_empty())
653             } else {
654                 // This item (presumably a trait) needs a self-type.
655                 assert!(self_ty.is_some());
656             }
657         } else {
658             assert!(self_ty.is_none() && parent_substs.is_empty());
659         }
660
661         let (_, potential_assoc_types) = Self::check_generic_arg_count(
662             tcx,
663             span,
664             &generic_params,
665             &generic_args,
666             GenericArgPosition::Type,
667             self_ty.is_some(),
668             infer_args,
669         );
670
671         let is_object = self_ty.map_or(false, |ty| ty == self.tcx().types.trait_object_dummy_self);
672         let default_needs_object_self = |param: &ty::GenericParamDef| {
673             if let GenericParamDefKind::Type { has_default, .. } = param.kind {
674                 if is_object && has_default {
675                     let self_param = tcx.types.self_param;
676                     if tcx.at(span).type_of(param.def_id).walk().any(|ty| ty == self_param) {
677                         // There is no suitable inference default for a type parameter
678                         // that references self, in an object type.
679                         return true;
680                     }
681                 }
682             }
683
684             false
685         };
686
687         let mut missing_type_params = vec![];
688         let substs = Self::create_substs_for_generic_args(
689             tcx,
690             def_id,
691             parent_substs,
692             self_ty.is_some(),
693             self_ty,
694             // Provide the generic args, and whether types should be inferred.
695             |did| {
696                 if did == def_id {
697                     (Some(generic_args), infer_args)
698                 } else {
699                     // The last component of this tuple is unimportant.
700                     (None, false)
701                 }
702             },
703             // Provide substitutions for parameters for which (valid) arguments have been provided.
704             |param, arg| match (&param.kind, arg) {
705                 (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
706                     self.ast_region_to_region(&lt, Some(param)).into()
707                 }
708                 (GenericParamDefKind::Type { .. }, GenericArg::Type(ty)) => {
709                     self.ast_ty_to_ty(&ty).into()
710                 }
711                 (GenericParamDefKind::Const, GenericArg::Const(ct)) => {
712                     self.ast_const_to_const(&ct.value, tcx.type_of(param.def_id)).into()
713                 }
714                 _ => unreachable!(),
715             },
716             // Provide substitutions for parameters for which arguments are inferred.
717             |substs, param, infer_args| {
718                 match param.kind {
719                     GenericParamDefKind::Lifetime => tcx.lifetimes.re_static.into(),
720                     GenericParamDefKind::Type { has_default, .. } => {
721                         if !infer_args && has_default {
722                             // No type parameter provided, but a default exists.
723
724                             // If we are converting an object type, then the
725                             // `Self` parameter is unknown. However, some of the
726                             // other type parameters may reference `Self` in their
727                             // defaults. This will lead to an ICE if we are not
728                             // careful!
729                             if default_needs_object_self(param) {
730                                 missing_type_params.push(param.name.to_string());
731                                 tcx.types.err.into()
732                             } else {
733                                 // This is a default type parameter.
734                                 self.normalize_ty(
735                                     span,
736                                     tcx.at(span).type_of(param.def_id).subst_spanned(
737                                         tcx,
738                                         substs.unwrap(),
739                                         Some(span),
740                                     ),
741                                 )
742                                 .into()
743                             }
744                         } else if infer_args {
745                             // No type parameters were provided, we can infer all.
746                             let param =
747                                 if !default_needs_object_self(param) { Some(param) } else { None };
748                             self.ty_infer(param, span).into()
749                         } else {
750                             // We've already errored above about the mismatch.
751                             tcx.types.err.into()
752                         }
753                     }
754                     GenericParamDefKind::Const => {
755                         // FIXME(const_generics:defaults)
756                         if infer_args {
757                             // No const parameters were provided, we can infer all.
758                             let ty = tcx.at(span).type_of(param.def_id);
759                             self.ct_infer(ty, Some(param), span).into()
760                         } else {
761                             // We've already errored above about the mismatch.
762                             tcx.consts.err.into()
763                         }
764                     }
765                 }
766             },
767         );
768
769         self.complain_about_missing_type_params(
770             missing_type_params,
771             def_id,
772             span,
773             generic_args.args.is_empty(),
774         );
775
776         // Convert associated-type bindings or constraints into a separate vector.
777         // Example: Given this:
778         //
779         //     T: Iterator<Item = u32>
780         //
781         // The `T` is passed in as a self-type; the `Item = u32` is
782         // not a "type parameter" of the `Iterator` trait, but rather
783         // a restriction on `<T as Iterator>::Item`, so it is passed
784         // back separately.
785         let assoc_bindings = generic_args
786             .bindings
787             .iter()
788             .map(|binding| {
789                 let kind = match binding.kind {
790                     hir::TypeBindingKind::Equality { ref ty } => {
791                         ConvertedBindingKind::Equality(self.ast_ty_to_ty(ty))
792                     }
793                     hir::TypeBindingKind::Constraint { ref bounds } => {
794                         ConvertedBindingKind::Constraint(bounds)
795                     }
796                 };
797                 ConvertedBinding { item_name: binding.ident, kind, span: binding.span }
798             })
799             .collect();
800
801         debug!(
802             "create_substs_for_ast_path(generic_params={:?}, self_ty={:?}) -> {:?}",
803             generic_params, self_ty, substs
804         );
805
806         (substs, assoc_bindings, potential_assoc_types)
807     }
808
809     crate fn create_substs_for_associated_item(
810         &self,
811         tcx: TyCtxt<'tcx>,
812         span: Span,
813         item_def_id: DefId,
814         item_segment: &hir::PathSegment<'_>,
815         parent_substs: SubstsRef<'tcx>,
816     ) -> SubstsRef<'tcx> {
817         if tcx.generics_of(item_def_id).params.is_empty() {
818             self.prohibit_generics(slice::from_ref(item_segment));
819
820             parent_substs
821         } else {
822             self.create_substs_for_ast_path(
823                 span,
824                 item_def_id,
825                 parent_substs,
826                 item_segment.generic_args(),
827                 item_segment.infer_args,
828                 None,
829             )
830             .0
831         }
832     }
833
834     /// On missing type parameters, emit an E0393 error and provide a structured suggestion using
835     /// the type parameter's name as a placeholder.
836     fn complain_about_missing_type_params(
837         &self,
838         missing_type_params: Vec<String>,
839         def_id: DefId,
840         span: Span,
841         empty_generic_args: bool,
842     ) {
843         if missing_type_params.is_empty() {
844             return;
845         }
846         let display =
847             missing_type_params.iter().map(|n| format!("`{}`", n)).collect::<Vec<_>>().join(", ");
848         let mut err = struct_span_err!(
849             self.tcx().sess,
850             span,
851             E0393,
852             "the type parameter{} {} must be explicitly specified",
853             pluralize!(missing_type_params.len()),
854             display,
855         );
856         err.span_label(
857             self.tcx().def_span(def_id),
858             &format!(
859                 "type parameter{} {} must be specified for this",
860                 pluralize!(missing_type_params.len()),
861                 display,
862             ),
863         );
864         let mut suggested = false;
865         if let (Ok(snippet), true) = (
866             self.tcx().sess.source_map().span_to_snippet(span),
867             // Don't suggest setting the type params if there are some already: the order is
868             // tricky to get right and the user will already know what the syntax is.
869             empty_generic_args,
870         ) {
871             if snippet.ends_with('>') {
872                 // The user wrote `Trait<'a, T>` or similar. To provide an accurate suggestion
873                 // we would have to preserve the right order. For now, as clearly the user is
874                 // aware of the syntax, we do nothing.
875             } else {
876                 // The user wrote `Iterator`, so we don't have a type we can suggest, but at
877                 // least we can clue them to the correct syntax `Iterator<Type>`.
878                 err.span_suggestion(
879                     span,
880                     &format!(
881                         "set the type parameter{plural} to the desired type{plural}",
882                         plural = pluralize!(missing_type_params.len()),
883                     ),
884                     format!("{}<{}>", snippet, missing_type_params.join(", ")),
885                     Applicability::HasPlaceholders,
886                 );
887                 suggested = true;
888             }
889         }
890         if !suggested {
891             err.span_label(
892                 span,
893                 format!(
894                     "missing reference{} to {}",
895                     pluralize!(missing_type_params.len()),
896                     display,
897                 ),
898             );
899         }
900         err.note(&format!(
901             "because of the default `Self` reference, type parameters must be \
902                             specified on object types"
903         ));
904         err.emit();
905     }
906
907     /// Instantiates the path for the given trait reference, assuming that it's
908     /// bound to a valid trait type. Returns the `DefId` of the defining trait.
909     /// The type _cannot_ be a type other than a trait type.
910     ///
911     /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T = X>`
912     /// are disallowed. Otherwise, they are pushed onto the vector given.
913     pub fn instantiate_mono_trait_ref(
914         &self,
915         trait_ref: &hir::TraitRef<'_>,
916         self_ty: Ty<'tcx>,
917     ) -> ty::TraitRef<'tcx> {
918         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
919
920         self.ast_path_to_mono_trait_ref(
921             trait_ref.path.span,
922             trait_ref.trait_def_id(),
923             self_ty,
924             trait_ref.path.segments.last().unwrap(),
925         )
926     }
927
928     /// The given trait-ref must actually be a trait.
929     pub(super) fn instantiate_poly_trait_ref_inner(
930         &self,
931         trait_ref: &hir::TraitRef<'_>,
932         span: Span,
933         constness: Constness,
934         self_ty: Ty<'tcx>,
935         bounds: &mut Bounds<'tcx>,
936         speculative: bool,
937     ) -> Vec<Span> {
938         let trait_def_id = trait_ref.trait_def_id();
939
940         debug!("instantiate_poly_trait_ref({:?}, def_id={:?})", trait_ref, trait_def_id);
941
942         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
943
944         let path_span = if let [segment] = &trait_ref.path.segments[..] {
945             // FIXME: `trait_ref.path.span` can point to a full path with multiple
946             // segments, even though `trait_ref.path.segments` is of length `1`. Work
947             // around that bug here, even though it should be fixed elsewhere.
948             // This would otherwise cause an invalid suggestion. For an example, look at
949             // `src/test/ui/issues/issue-28344.rs`.
950             segment.ident.span
951         } else {
952             trait_ref.path.span
953         };
954         let (substs, assoc_bindings, potential_assoc_types) = self.create_substs_for_ast_trait_ref(
955             path_span,
956             trait_def_id,
957             self_ty,
958             trait_ref.path.segments.last().unwrap(),
959         );
960         let poly_trait_ref = ty::Binder::bind(ty::TraitRef::new(trait_def_id, substs));
961
962         bounds.trait_bounds.push((poly_trait_ref, span, constness));
963
964         let mut dup_bindings = FxHashMap::default();
965         for binding in &assoc_bindings {
966             // Specify type to assert that error was already reported in `Err` case.
967             let _: Result<_, ErrorReported> = self.add_predicates_for_ast_type_binding(
968                 trait_ref.hir_ref_id,
969                 poly_trait_ref,
970                 binding,
971                 bounds,
972                 speculative,
973                 &mut dup_bindings,
974                 span,
975             );
976             // Okay to ignore `Err` because of `ErrorReported` (see above).
977         }
978
979         debug!(
980             "instantiate_poly_trait_ref({:?}, bounds={:?}) -> {:?}",
981             trait_ref, bounds, poly_trait_ref
982         );
983
984         potential_assoc_types
985     }
986
987     /// Given a trait bound like `Debug`, applies that trait bound the given self-type to construct
988     /// a full trait reference. The resulting trait reference is returned. This may also generate
989     /// auxiliary bounds, which are added to `bounds`.
990     ///
991     /// Example:
992     ///
993     /// ```
994     /// poly_trait_ref = Iterator<Item = u32>
995     /// self_ty = Foo
996     /// ```
997     ///
998     /// this would return `Foo: Iterator` and add `<Foo as Iterator>::Item = u32` into `bounds`.
999     ///
1000     /// **A note on binders:** against our usual convention, there is an implied bounder around
1001     /// the `self_ty` and `poly_trait_ref` parameters here. So they may reference bound regions.
1002     /// If for example you had `for<'a> Foo<'a>: Bar<'a>`, then the `self_ty` would be `Foo<'a>`
1003     /// where `'a` is a bound region at depth 0. Similarly, the `poly_trait_ref` would be
1004     /// `Bar<'a>`. The returned poly-trait-ref will have this binder instantiated explicitly,
1005     /// however.
1006     pub fn instantiate_poly_trait_ref(
1007         &self,
1008         poly_trait_ref: &hir::PolyTraitRef<'_>,
1009         constness: Constness,
1010         self_ty: Ty<'tcx>,
1011         bounds: &mut Bounds<'tcx>,
1012     ) -> Vec<Span> {
1013         self.instantiate_poly_trait_ref_inner(
1014             &poly_trait_ref.trait_ref,
1015             poly_trait_ref.span,
1016             constness,
1017             self_ty,
1018             bounds,
1019             false,
1020         )
1021     }
1022
1023     fn ast_path_to_mono_trait_ref(
1024         &self,
1025         span: Span,
1026         trait_def_id: DefId,
1027         self_ty: Ty<'tcx>,
1028         trait_segment: &hir::PathSegment<'_>,
1029     ) -> ty::TraitRef<'tcx> {
1030         let (substs, assoc_bindings, _) =
1031             self.create_substs_for_ast_trait_ref(span, trait_def_id, self_ty, trait_segment);
1032         assoc_bindings.first().map(|b| AstConv::prohibit_assoc_ty_binding(self.tcx(), b.span));
1033         ty::TraitRef::new(trait_def_id, substs)
1034     }
1035
1036     /// When the code is using the `Fn` traits directly, instead of the `Fn(A) -> B` syntax, emit
1037     /// an error and attempt to build a reasonable structured suggestion.
1038     fn complain_about_internal_fn_trait(
1039         &self,
1040         span: Span,
1041         trait_def_id: DefId,
1042         trait_segment: &'a hir::PathSegment<'a>,
1043     ) {
1044         let trait_def = self.tcx().trait_def(trait_def_id);
1045
1046         if !self.tcx().features().unboxed_closures
1047             && trait_segment.generic_args().parenthesized != trait_def.paren_sugar
1048         {
1049             // For now, require that parenthetical notation be used only with `Fn()` etc.
1050             let (msg, sugg) = if trait_def.paren_sugar {
1051                 (
1052                     "the precise format of `Fn`-family traits' type parameters is subject to \
1053                      change",
1054                     Some(format!(
1055                         "{}{} -> {}",
1056                         trait_segment.ident,
1057                         trait_segment
1058                             .args
1059                             .as_ref()
1060                             .and_then(|args| args.args.get(0))
1061                             .and_then(|arg| match arg {
1062                                 hir::GenericArg::Type(ty) => {
1063                                     Some(print::to_string(print::NO_ANN, |s| s.print_type(ty)))
1064                                 }
1065                                 _ => None,
1066                             })
1067                             .unwrap_or_else(|| "()".to_string()),
1068                         trait_segment
1069                             .generic_args()
1070                             .bindings
1071                             .iter()
1072                             .filter_map(|b| match (b.ident.as_str() == "Output", &b.kind) {
1073                                 (true, hir::TypeBindingKind::Equality { ty }) => {
1074                                     Some(print::to_string(print::NO_ANN, |s| s.print_type(ty)))
1075                                 }
1076                                 _ => None,
1077                             })
1078                             .next()
1079                             .unwrap_or_else(|| "()".to_string()),
1080                     )),
1081                 )
1082             } else {
1083                 ("parenthetical notation is only stable when used with `Fn`-family traits", None)
1084             };
1085             let sess = &self.tcx().sess.parse_sess;
1086             let mut err = feature_err(sess, sym::unboxed_closures, span, msg);
1087             if let Some(sugg) = sugg {
1088                 let msg = "use parenthetical notation instead";
1089                 err.span_suggestion(span, msg, sugg, Applicability::MaybeIncorrect);
1090             }
1091             err.emit();
1092         }
1093     }
1094
1095     fn create_substs_for_ast_trait_ref<'a>(
1096         &self,
1097         span: Span,
1098         trait_def_id: DefId,
1099         self_ty: Ty<'tcx>,
1100         trait_segment: &'a hir::PathSegment<'a>,
1101     ) -> (SubstsRef<'tcx>, Vec<ConvertedBinding<'a, 'tcx>>, Vec<Span>) {
1102         debug!("create_substs_for_ast_trait_ref(trait_segment={:?})", trait_segment);
1103
1104         self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment);
1105
1106         self.create_substs_for_ast_path(
1107             span,
1108             trait_def_id,
1109             &[],
1110             trait_segment.generic_args(),
1111             trait_segment.infer_args,
1112             Some(self_ty),
1113         )
1114     }
1115
1116     fn trait_defines_associated_type_named(
1117         &self,
1118         trait_def_id: DefId,
1119         assoc_name: ast::Ident,
1120     ) -> bool {
1121         self.tcx()
1122             .associated_items(trait_def_id)
1123             .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, trait_def_id)
1124             .is_some()
1125     }
1126
1127     // Returns `true` if a bounds list includes `?Sized`.
1128     pub fn is_unsized(&self, ast_bounds: &[hir::GenericBound<'_>], span: Span) -> bool {
1129         let tcx = self.tcx();
1130
1131         // Try to find an unbound in bounds.
1132         let mut unbound = None;
1133         for ab in ast_bounds {
1134             if let &hir::GenericBound::Trait(ref ptr, hir::TraitBoundModifier::Maybe) = ab {
1135                 if unbound.is_none() {
1136                     unbound = Some(&ptr.trait_ref);
1137                 } else {
1138                     struct_span_err!(
1139                         tcx.sess,
1140                         span,
1141                         E0203,
1142                         "type parameter has more than one relaxed default \
1143                         bound, only one is supported"
1144                     )
1145                     .emit();
1146                 }
1147             }
1148         }
1149
1150         let kind_id = tcx.lang_items().require(SizedTraitLangItem);
1151         match unbound {
1152             Some(tpb) => {
1153                 // FIXME(#8559) currently requires the unbound to be built-in.
1154                 if let Ok(kind_id) = kind_id {
1155                     if tpb.path.res != Res::Def(DefKind::Trait, kind_id) {
1156                         tcx.sess.span_warn(
1157                             span,
1158                             "default bound relaxed for a type parameter, but \
1159                              this does nothing because the given bound is not \
1160                              a default; only `?Sized` is supported",
1161                         );
1162                     }
1163                 }
1164             }
1165             _ if kind_id.is_ok() => {
1166                 return false;
1167             }
1168             // No lang item for `Sized`, so we can't add it as a bound.
1169             None => {}
1170         }
1171
1172         true
1173     }
1174
1175     /// This helper takes a *converted* parameter type (`param_ty`)
1176     /// and an *unconverted* list of bounds:
1177     ///
1178     /// ```
1179     /// fn foo<T: Debug>
1180     ///        ^  ^^^^^ `ast_bounds` parameter, in HIR form
1181     ///        |
1182     ///        `param_ty`, in ty form
1183     /// ```
1184     ///
1185     /// It adds these `ast_bounds` into the `bounds` structure.
1186     ///
1187     /// **A note on binders:** there is an implied binder around
1188     /// `param_ty` and `ast_bounds`. See `instantiate_poly_trait_ref`
1189     /// for more details.
1190     fn add_bounds(
1191         &self,
1192         param_ty: Ty<'tcx>,
1193         ast_bounds: &[hir::GenericBound<'_>],
1194         bounds: &mut Bounds<'tcx>,
1195     ) {
1196         let mut trait_bounds = Vec::new();
1197         let mut region_bounds = Vec::new();
1198
1199         let constness = self.default_constness_for_trait_bounds();
1200         for ast_bound in ast_bounds {
1201             match *ast_bound {
1202                 hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::None) => {
1203                     trait_bounds.push((b, constness))
1204                 }
1205                 hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::MaybeConst) => {
1206                     trait_bounds.push((b, Constness::NotConst))
1207                 }
1208                 hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => {}
1209                 hir::GenericBound::Outlives(ref l) => region_bounds.push(l),
1210             }
1211         }
1212
1213         for (bound, constness) in trait_bounds {
1214             let _ = self.instantiate_poly_trait_ref(bound, constness, param_ty, bounds);
1215         }
1216
1217         bounds.region_bounds.extend(
1218             region_bounds.into_iter().map(|r| (self.ast_region_to_region(r, None), r.span)),
1219         );
1220     }
1221
1222     /// Translates a list of bounds from the HIR into the `Bounds` data structure.
1223     /// The self-type for the bounds is given by `param_ty`.
1224     ///
1225     /// Example:
1226     ///
1227     /// ```
1228     /// fn foo<T: Bar + Baz>() { }
1229     ///        ^  ^^^^^^^^^ ast_bounds
1230     ///        param_ty
1231     /// ```
1232     ///
1233     /// The `sized_by_default` parameter indicates if, in this context, the `param_ty` should be
1234     /// considered `Sized` unless there is an explicit `?Sized` bound.  This would be true in the
1235     /// example above, but is not true in supertrait listings like `trait Foo: Bar + Baz`.
1236     ///
1237     /// `span` should be the declaration size of the parameter.
1238     pub fn compute_bounds(
1239         &self,
1240         param_ty: Ty<'tcx>,
1241         ast_bounds: &[hir::GenericBound<'_>],
1242         sized_by_default: SizedByDefault,
1243         span: Span,
1244     ) -> Bounds<'tcx> {
1245         let mut bounds = Bounds::default();
1246
1247         self.add_bounds(param_ty, ast_bounds, &mut bounds);
1248         bounds.trait_bounds.sort_by_key(|(t, _, _)| t.def_id());
1249
1250         bounds.implicitly_sized = if let SizedByDefault::Yes = sized_by_default {
1251             if !self.is_unsized(ast_bounds, span) { Some(span) } else { None }
1252         } else {
1253             None
1254         };
1255
1256         bounds
1257     }
1258
1259     /// Given an HIR binding like `Item = Foo` or `Item: Foo`, pushes the corresponding predicates
1260     /// onto `bounds`.
1261     ///
1262     /// **A note on binders:** given something like `T: for<'a> Iterator<Item = &'a u32>`, the
1263     /// `trait_ref` here will be `for<'a> T: Iterator`. The `binding` data however is from *inside*
1264     /// the binder (e.g., `&'a u32`) and hence may reference bound regions.
1265     fn add_predicates_for_ast_type_binding(
1266         &self,
1267         hir_ref_id: hir::HirId,
1268         trait_ref: ty::PolyTraitRef<'tcx>,
1269         binding: &ConvertedBinding<'_, 'tcx>,
1270         bounds: &mut Bounds<'tcx>,
1271         speculative: bool,
1272         dup_bindings: &mut FxHashMap<DefId, Span>,
1273         path_span: Span,
1274     ) -> Result<(), ErrorReported> {
1275         let tcx = self.tcx();
1276
1277         if !speculative {
1278             // Given something like `U: SomeTrait<T = X>`, we want to produce a
1279             // predicate like `<U as SomeTrait>::T = X`. This is somewhat
1280             // subtle in the event that `T` is defined in a supertrait of
1281             // `SomeTrait`, because in that case we need to upcast.
1282             //
1283             // That is, consider this case:
1284             //
1285             // ```
1286             // trait SubTrait: SuperTrait<int> { }
1287             // trait SuperTrait<A> { type T; }
1288             //
1289             // ... B: SubTrait<T = foo> ...
1290             // ```
1291             //
1292             // We want to produce `<B as SuperTrait<int>>::T == foo`.
1293
1294             // Find any late-bound regions declared in `ty` that are not
1295             // declared in the trait-ref. These are not well-formed.
1296             //
1297             // Example:
1298             //
1299             //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
1300             //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
1301             if let ConvertedBindingKind::Equality(ty) = binding.kind {
1302                 let late_bound_in_trait_ref =
1303                     tcx.collect_constrained_late_bound_regions(&trait_ref);
1304                 let late_bound_in_ty =
1305                     tcx.collect_referenced_late_bound_regions(&ty::Binder::bind(ty));
1306                 debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
1307                 debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
1308                 for br in late_bound_in_ty.difference(&late_bound_in_trait_ref) {
1309                     let br_name = match *br {
1310                         ty::BrNamed(_, name) => name,
1311                         _ => {
1312                             span_bug!(
1313                                 binding.span,
1314                                 "anonymous bound region {:?} in binding but not trait ref",
1315                                 br
1316                             );
1317                         }
1318                     };
1319                     // FIXME: point at the type params that don't have appropriate lifetimes:
1320                     // struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
1321                     //                         ----  ----     ^^^^^^^
1322                     struct_span_err!(
1323                         tcx.sess,
1324                         binding.span,
1325                         E0582,
1326                         "binding for associated type `{}` references lifetime `{}`, \
1327                          which does not appear in the trait input types",
1328                         binding.item_name,
1329                         br_name
1330                     )
1331                     .emit();
1332                 }
1333             }
1334         }
1335
1336         let candidate =
1337             if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
1338                 // Simple case: X is defined in the current trait.
1339                 trait_ref
1340             } else {
1341                 // Otherwise, we have to walk through the supertraits to find
1342                 // those that do.
1343                 self.one_bound_for_assoc_type(
1344                     || traits::supertraits(tcx, trait_ref),
1345                     || trait_ref.print_only_trait_path().to_string(),
1346                     binding.item_name,
1347                     path_span,
1348                     || match binding.kind {
1349                         ConvertedBindingKind::Equality(ty) => Some(ty.to_string()),
1350                         _ => None,
1351                     },
1352                 )?
1353             };
1354
1355         let (assoc_ident, def_scope) =
1356             tcx.adjust_ident_and_get_scope(binding.item_name, candidate.def_id(), hir_ref_id);
1357
1358         // We have already adjusted the item name above, so compare with `ident.modern()` instead
1359         // of calling `filter_by_name_and_kind`.
1360         let assoc_ty = tcx
1361             .associated_items(candidate.def_id())
1362             .filter_by_name_unhygienic(assoc_ident.name)
1363             .find(|i| i.kind == ty::AssocKind::Type && i.ident.modern() == assoc_ident)
1364             .expect("missing associated type");
1365
1366         if !assoc_ty.vis.is_accessible_from(def_scope, tcx) {
1367             let msg = format!("associated type `{}` is private", binding.item_name);
1368             tcx.sess.span_err(binding.span, &msg);
1369         }
1370         tcx.check_stability(assoc_ty.def_id, Some(hir_ref_id), binding.span);
1371
1372         if !speculative {
1373             dup_bindings
1374                 .entry(assoc_ty.def_id)
1375                 .and_modify(|prev_span| {
1376                     struct_span_err!(
1377                         self.tcx().sess,
1378                         binding.span,
1379                         E0719,
1380                         "the value of the associated type `{}` (from trait `{}`) \
1381                          is already specified",
1382                         binding.item_name,
1383                         tcx.def_path_str(assoc_ty.container.id())
1384                     )
1385                     .span_label(binding.span, "re-bound here")
1386                     .span_label(*prev_span, format!("`{}` bound here first", binding.item_name))
1387                     .emit();
1388                 })
1389                 .or_insert(binding.span);
1390         }
1391
1392         match binding.kind {
1393             ConvertedBindingKind::Equality(ref ty) => {
1394                 // "Desugar" a constraint like `T: Iterator<Item = u32>` this to
1395                 // the "projection predicate" for:
1396                 //
1397                 // `<T as Iterator>::Item = u32`
1398                 bounds.projection_bounds.push((
1399                     candidate.map_bound(|trait_ref| ty::ProjectionPredicate {
1400                         projection_ty: ty::ProjectionTy::from_ref_and_name(
1401                             tcx,
1402                             trait_ref,
1403                             binding.item_name,
1404                         ),
1405                         ty,
1406                     }),
1407                     binding.span,
1408                 ));
1409             }
1410             ConvertedBindingKind::Constraint(ast_bounds) => {
1411                 // "Desugar" a constraint like `T: Iterator<Item: Debug>` to
1412                 //
1413                 // `<T as Iterator>::Item: Debug`
1414                 //
1415                 // Calling `skip_binder` is okay, because `add_bounds` expects the `param_ty`
1416                 // parameter to have a skipped binder.
1417                 let param_ty = tcx.mk_projection(assoc_ty.def_id, candidate.skip_binder().substs);
1418                 self.add_bounds(param_ty, ast_bounds, bounds);
1419             }
1420         }
1421         Ok(())
1422     }
1423
1424     fn ast_path_to_ty(
1425         &self,
1426         span: Span,
1427         did: DefId,
1428         item_segment: &hir::PathSegment<'_>,
1429     ) -> Ty<'tcx> {
1430         let substs = self.ast_path_substs_for_ty(span, did, item_segment);
1431         self.normalize_ty(span, self.tcx().at(span).type_of(did).subst(self.tcx(), substs))
1432     }
1433
1434     fn conv_object_ty_poly_trait_ref(
1435         &self,
1436         span: Span,
1437         trait_bounds: &[hir::PolyTraitRef<'_>],
1438         lifetime: &hir::Lifetime,
1439     ) -> Ty<'tcx> {
1440         let tcx = self.tcx();
1441
1442         let mut bounds = Bounds::default();
1443         let mut potential_assoc_types = Vec::new();
1444         let dummy_self = self.tcx().types.trait_object_dummy_self;
1445         for trait_bound in trait_bounds.iter().rev() {
1446             let cur_potential_assoc_types = self.instantiate_poly_trait_ref(
1447                 trait_bound,
1448                 Constness::NotConst,
1449                 dummy_self,
1450                 &mut bounds,
1451             );
1452             potential_assoc_types.extend(cur_potential_assoc_types.into_iter());
1453         }
1454
1455         // Expand trait aliases recursively and check that only one regular (non-auto) trait
1456         // is used and no 'maybe' bounds are used.
1457         let expanded_traits =
1458             traits::expand_trait_aliases(tcx, bounds.trait_bounds.iter().map(|&(a, b, _)| (a, b)));
1459         let (mut auto_traits, regular_traits): (Vec<_>, Vec<_>) =
1460             expanded_traits.partition(|i| tcx.trait_is_auto(i.trait_ref().def_id()));
1461         if regular_traits.len() > 1 {
1462             let first_trait = &regular_traits[0];
1463             let additional_trait = &regular_traits[1];
1464             let mut err = struct_span_err!(
1465                 tcx.sess,
1466                 additional_trait.bottom().1,
1467                 E0225,
1468                 "only auto traits can be used as additional traits in a trait object"
1469             );
1470             additional_trait.label_with_exp_info(
1471                 &mut err,
1472                 "additional non-auto trait",
1473                 "additional use",
1474             );
1475             first_trait.label_with_exp_info(&mut err, "first non-auto trait", "first use");
1476             err.emit();
1477         }
1478
1479         if regular_traits.is_empty() && auto_traits.is_empty() {
1480             struct_span_err!(
1481                 tcx.sess,
1482                 span,
1483                 E0224,
1484                 "at least one trait is required for an object type"
1485             )
1486             .emit();
1487             return tcx.types.err;
1488         }
1489
1490         // Check that there are no gross object safety violations;
1491         // most importantly, that the supertraits don't contain `Self`,
1492         // to avoid ICEs.
1493         for item in &regular_traits {
1494             let object_safety_violations =
1495                 astconv_object_safety_violations(tcx, item.trait_ref().def_id());
1496             if !object_safety_violations.is_empty() {
1497                 report_object_safety_error(
1498                     tcx,
1499                     span,
1500                     item.trait_ref().def_id(),
1501                     object_safety_violations,
1502                 )
1503                 .emit();
1504                 return tcx.types.err;
1505             }
1506         }
1507
1508         // Use a `BTreeSet` to keep output in a more consistent order.
1509         let mut associated_types: FxHashMap<Span, BTreeSet<DefId>> = FxHashMap::default();
1510
1511         let regular_traits_refs_spans = bounds
1512             .trait_bounds
1513             .into_iter()
1514             .filter(|(trait_ref, _, _)| !tcx.trait_is_auto(trait_ref.def_id()));
1515
1516         for (base_trait_ref, span, constness) in regular_traits_refs_spans {
1517             assert_eq!(constness, Constness::NotConst);
1518
1519             for trait_ref in traits::elaborate_trait_ref(tcx, base_trait_ref) {
1520                 debug!(
1521                     "conv_object_ty_poly_trait_ref: observing object predicate `{:?}`",
1522                     trait_ref
1523                 );
1524                 match trait_ref {
1525                     ty::Predicate::Trait(pred, _) => {
1526                         associated_types.entry(span).or_default().extend(
1527                             tcx.associated_items(pred.def_id())
1528                                 .in_definition_order()
1529                                 .filter(|item| item.kind == ty::AssocKind::Type)
1530                                 .map(|item| item.def_id),
1531                         );
1532                     }
1533                     ty::Predicate::Projection(pred) => {
1534                         // A `Self` within the original bound will be substituted with a
1535                         // `trait_object_dummy_self`, so check for that.
1536                         let references_self = pred.skip_binder().ty.walk().any(|t| t == dummy_self);
1537
1538                         // If the projection output contains `Self`, force the user to
1539                         // elaborate it explicitly to avoid a lot of complexity.
1540                         //
1541                         // The "classicaly useful" case is the following:
1542                         // ```
1543                         //     trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
1544                         //         type MyOutput;
1545                         //     }
1546                         // ```
1547                         //
1548                         // Here, the user could theoretically write `dyn MyTrait<Output = X>`,
1549                         // but actually supporting that would "expand" to an infinitely-long type
1550                         // `fix $ Ï„ â†’ dyn MyTrait<MyOutput = X, Output = <Ï„ as MyTrait>::MyOutput`.
1551                         //
1552                         // Instead, we force the user to write
1553                         // `dyn MyTrait<MyOutput = X, Output = X>`, which is uglier but works. See
1554                         // the discussion in #56288 for alternatives.
1555                         if !references_self {
1556                             // Include projections defined on supertraits.
1557                             bounds.projection_bounds.push((pred, span));
1558                         }
1559                     }
1560                     _ => (),
1561                 }
1562             }
1563         }
1564
1565         for (projection_bound, _) in &bounds.projection_bounds {
1566             for (_, def_ids) in &mut associated_types {
1567                 def_ids.remove(&projection_bound.projection_def_id());
1568             }
1569         }
1570
1571         self.complain_about_missing_associated_types(
1572             associated_types,
1573             potential_assoc_types,
1574             trait_bounds,
1575         );
1576
1577         // De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
1578         // `dyn Trait + Send`.
1579         auto_traits.sort_by_key(|i| i.trait_ref().def_id());
1580         auto_traits.dedup_by_key(|i| i.trait_ref().def_id());
1581         debug!("regular_traits: {:?}", regular_traits);
1582         debug!("auto_traits: {:?}", auto_traits);
1583
1584         // Transform a `PolyTraitRef` into a `PolyExistentialTraitRef` by
1585         // removing the dummy `Self` type (`trait_object_dummy_self`).
1586         let trait_ref_to_existential = |trait_ref: ty::TraitRef<'tcx>| {
1587             if trait_ref.self_ty() != dummy_self {
1588                 // FIXME: There appears to be a missing filter on top of `expand_trait_aliases`,
1589                 // which picks up non-supertraits where clauses - but also, the object safety
1590                 // completely ignores trait aliases, which could be object safety hazards. We
1591                 // `delay_span_bug` here to avoid an ICE in stable even when the feature is
1592                 // disabled. (#66420)
1593                 tcx.sess.delay_span_bug(
1594                     DUMMY_SP,
1595                     &format!(
1596                         "trait_ref_to_existential called on {:?} with non-dummy Self",
1597                         trait_ref,
1598                     ),
1599                 );
1600             }
1601             ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
1602         };
1603
1604         // Erase the `dummy_self` (`trait_object_dummy_self`) used above.
1605         let existential_trait_refs = regular_traits
1606             .iter()
1607             .map(|i| i.trait_ref().map_bound(|trait_ref| trait_ref_to_existential(trait_ref)));
1608         let existential_projections = bounds.projection_bounds.iter().map(|(bound, _)| {
1609             bound.map_bound(|b| {
1610                 let trait_ref = trait_ref_to_existential(b.projection_ty.trait_ref(tcx));
1611                 ty::ExistentialProjection {
1612                     ty: b.ty,
1613                     item_def_id: b.projection_ty.item_def_id,
1614                     substs: trait_ref.substs,
1615                 }
1616             })
1617         });
1618
1619         // Calling `skip_binder` is okay because the predicates are re-bound.
1620         let regular_trait_predicates = existential_trait_refs
1621             .map(|trait_ref| ty::ExistentialPredicate::Trait(*trait_ref.skip_binder()));
1622         let auto_trait_predicates = auto_traits
1623             .into_iter()
1624             .map(|trait_ref| ty::ExistentialPredicate::AutoTrait(trait_ref.trait_ref().def_id()));
1625         let mut v = regular_trait_predicates
1626             .chain(auto_trait_predicates)
1627             .chain(
1628                 existential_projections
1629                     .map(|x| ty::ExistentialPredicate::Projection(*x.skip_binder())),
1630             )
1631             .collect::<SmallVec<[_; 8]>>();
1632         v.sort_by(|a, b| a.stable_cmp(tcx, b));
1633         v.dedup();
1634         let existential_predicates = ty::Binder::bind(tcx.mk_existential_predicates(v.into_iter()));
1635
1636         // Use explicitly-specified region bound.
1637         let region_bound = if !lifetime.is_elided() {
1638             self.ast_region_to_region(lifetime, None)
1639         } else {
1640             self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
1641                 if tcx.named_region(lifetime.hir_id).is_some() {
1642                     self.ast_region_to_region(lifetime, None)
1643                 } else {
1644                     self.re_infer(None, span).unwrap_or_else(|| {
1645                         struct_span_err!(
1646                             tcx.sess,
1647                             span,
1648                             E0228,
1649                             "the lifetime bound for this object type cannot be deduced \
1650                              from context; please supply an explicit bound"
1651                         )
1652                         .emit();
1653                         tcx.lifetimes.re_static
1654                     })
1655                 }
1656             })
1657         };
1658         debug!("region_bound: {:?}", region_bound);
1659
1660         let ty = tcx.mk_dynamic(existential_predicates, region_bound);
1661         debug!("trait_object_type: {:?}", ty);
1662         ty
1663     }
1664
1665     /// When there are any missing associated types, emit an E0191 error and attempt to supply a
1666     /// reasonable suggestion on how to write it. For the case of multiple associated types in the
1667     /// same trait bound have the same name (as they come from different super-traits), we instead
1668     /// emit a generic note suggesting using a `where` clause to constraint instead.
1669     fn complain_about_missing_associated_types(
1670         &self,
1671         associated_types: FxHashMap<Span, BTreeSet<DefId>>,
1672         potential_assoc_types: Vec<Span>,
1673         trait_bounds: &[hir::PolyTraitRef<'_>],
1674     ) {
1675         if !associated_types.values().any(|v| v.len() > 0) {
1676             return;
1677         }
1678         let tcx = self.tcx();
1679         // FIXME: Marked `mut` so that we can replace the spans further below with a more
1680         // appropriate one, but this should be handled earlier in the span assignment.
1681         let mut associated_types: FxHashMap<Span, Vec<_>> = associated_types
1682             .into_iter()
1683             .map(|(span, def_ids)| {
1684                 (span, def_ids.into_iter().map(|did| tcx.associated_item(did)).collect())
1685             })
1686             .collect();
1687         let mut names = vec![];
1688
1689         // Account for things like `dyn Foo + 'a`, like in tests `issue-22434.rs` and
1690         // `issue-22560.rs`.
1691         let mut trait_bound_spans: Vec<Span> = vec![];
1692         for (span, items) in &associated_types {
1693             if !items.is_empty() {
1694                 trait_bound_spans.push(*span);
1695             }
1696             for assoc_item in items {
1697                 let trait_def_id = assoc_item.container.id();
1698                 names.push(format!(
1699                     "`{}` (from trait `{}`)",
1700                     assoc_item.ident,
1701                     tcx.def_path_str(trait_def_id),
1702                 ));
1703             }
1704         }
1705
1706         match (&potential_assoc_types[..], &trait_bounds) {
1707             ([], [bound]) => match &bound.trait_ref.path.segments[..] {
1708                 // FIXME: `trait_ref.path.span` can point to a full path with multiple
1709                 // segments, even though `trait_ref.path.segments` is of length `1`. Work
1710                 // around that bug here, even though it should be fixed elsewhere.
1711                 // This would otherwise cause an invalid suggestion. For an example, look at
1712                 // `src/test/ui/issues/issue-28344.rs` where instead of the following:
1713                 //
1714                 //   error[E0191]: the value of the associated type `Output`
1715                 //                 (from trait `std::ops::BitXor`) must be specified
1716                 //   --> $DIR/issue-28344.rs:4:17
1717                 //    |
1718                 // LL |     let x: u8 = BitXor::bitor(0 as u8, 0 as u8);
1719                 //    |                 ^^^^^^ help: specify the associated type:
1720                 //    |                              `BitXor<Output = Type>`
1721                 //
1722                 // we would output:
1723                 //
1724                 //   error[E0191]: the value of the associated type `Output`
1725                 //                 (from trait `std::ops::BitXor`) must be specified
1726                 //   --> $DIR/issue-28344.rs:4:17
1727                 //    |
1728                 // LL |     let x: u8 = BitXor::bitor(0 as u8, 0 as u8);
1729                 //    |                 ^^^^^^^^^^^^^ help: specify the associated type:
1730                 //    |                                     `BitXor::bitor<Output = Type>`
1731                 [segment] if segment.args.is_none() => {
1732                     trait_bound_spans = vec![segment.ident.span];
1733                     associated_types = associated_types
1734                         .into_iter()
1735                         .map(|(_, items)| (segment.ident.span, items))
1736                         .collect();
1737                 }
1738                 _ => {}
1739             },
1740             _ => {}
1741         }
1742         names.sort();
1743         trait_bound_spans.sort();
1744         let mut err = struct_span_err!(
1745             tcx.sess,
1746             trait_bound_spans,
1747             E0191,
1748             "the value of the associated type{} {} must be specified",
1749             pluralize!(names.len()),
1750             names.join(", "),
1751         );
1752         let mut suggestions = vec![];
1753         let mut types_count = 0;
1754         let mut where_constraints = vec![];
1755         for (span, assoc_items) in &associated_types {
1756             let mut names: FxHashMap<_, usize> = FxHashMap::default();
1757             for item in assoc_items {
1758                 types_count += 1;
1759                 *names.entry(item.ident.name).or_insert(0) += 1;
1760             }
1761             let mut dupes = false;
1762             for item in assoc_items {
1763                 let prefix = if names[&item.ident.name] > 1 {
1764                     let trait_def_id = item.container.id();
1765                     dupes = true;
1766                     format!("{}::", tcx.def_path_str(trait_def_id))
1767                 } else {
1768                     String::new()
1769                 };
1770                 if let Some(sp) = tcx.hir().span_if_local(item.def_id) {
1771                     err.span_label(sp, format!("`{}{}` defined here", prefix, item.ident));
1772                 }
1773             }
1774             if potential_assoc_types.len() == assoc_items.len() {
1775                 // Only suggest when the amount of missing associated types equals the number of
1776                 // extra type arguments present, as that gives us a relatively high confidence
1777                 // that the user forgot to give the associtated type's name. The canonical
1778                 // example would be trying to use `Iterator<isize>` instead of
1779                 // `Iterator<Item = isize>`.
1780                 for (potential, item) in potential_assoc_types.iter().zip(assoc_items.iter()) {
1781                     if let Ok(snippet) = tcx.sess.source_map().span_to_snippet(*potential) {
1782                         suggestions.push((*potential, format!("{} = {}", item.ident, snippet)));
1783                     }
1784                 }
1785             } else if let (Ok(snippet), false) =
1786                 (tcx.sess.source_map().span_to_snippet(*span), dupes)
1787             {
1788                 let types: Vec<_> =
1789                     assoc_items.iter().map(|item| format!("{} = Type", item.ident)).collect();
1790                 let code = if snippet.ends_with(">") {
1791                     // The user wrote `Trait<'a>` or similar and we don't have a type we can
1792                     // suggest, but at least we can clue them to the correct syntax
1793                     // `Trait<'a, Item = Type>` while accounting for the `<'a>` in the
1794                     // suggestion.
1795                     format!("{}, {}>", &snippet[..snippet.len() - 1], types.join(", "))
1796                 } else {
1797                     // The user wrote `Iterator`, so we don't have a type we can suggest, but at
1798                     // least we can clue them to the correct syntax `Iterator<Item = Type>`.
1799                     format!("{}<{}>", snippet, types.join(", "))
1800                 };
1801                 suggestions.push((*span, code));
1802             } else if dupes {
1803                 where_constraints.push(*span);
1804             }
1805         }
1806         let where_msg = "consider introducing a new type parameter, adding `where` constraints \
1807                          using the fully-qualified path to the associated types";
1808         if !where_constraints.is_empty() && suggestions.is_empty() {
1809             // If there are duplicates associated type names and a single trait bound do not
1810             // use structured suggestion, it means that there are multiple super-traits with
1811             // the same associated type name.
1812             err.help(where_msg);
1813         }
1814         if suggestions.len() != 1 {
1815             // We don't need this label if there's an inline suggestion, show otherwise.
1816             for (span, assoc_items) in &associated_types {
1817                 let mut names: FxHashMap<_, usize> = FxHashMap::default();
1818                 for item in assoc_items {
1819                     types_count += 1;
1820                     *names.entry(item.ident.name).or_insert(0) += 1;
1821                 }
1822                 let mut label = vec![];
1823                 for item in assoc_items {
1824                     let postfix = if names[&item.ident.name] > 1 {
1825                         let trait_def_id = item.container.id();
1826                         format!(" (from trait `{}`)", tcx.def_path_str(trait_def_id))
1827                     } else {
1828                         String::new()
1829                     };
1830                     label.push(format!("`{}`{}", item.ident, postfix));
1831                 }
1832                 if !label.is_empty() {
1833                     err.span_label(
1834                         *span,
1835                         format!(
1836                             "associated type{} {} must be specified",
1837                             pluralize!(label.len()),
1838                             label.join(", "),
1839                         ),
1840                     );
1841                 }
1842             }
1843         }
1844         if !suggestions.is_empty() {
1845             err.multipart_suggestion(
1846                 &format!("specify the associated type{}", pluralize!(types_count)),
1847                 suggestions,
1848                 Applicability::HasPlaceholders,
1849             );
1850             if !where_constraints.is_empty() {
1851                 err.span_help(where_constraints, where_msg);
1852             }
1853         }
1854         err.emit();
1855     }
1856
1857     fn report_ambiguous_associated_type(
1858         &self,
1859         span: Span,
1860         type_str: &str,
1861         trait_str: &str,
1862         name: ast::Name,
1863     ) {
1864         let mut err = struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type");
1865         if let (Some(_), Ok(snippet)) = (
1866             self.tcx().sess.confused_type_with_std_module.borrow().get(&span),
1867             self.tcx().sess.source_map().span_to_snippet(span),
1868         ) {
1869             err.span_suggestion(
1870                 span,
1871                 "you are looking for the module in `std`, not the primitive type",
1872                 format!("std::{}", snippet),
1873                 Applicability::MachineApplicable,
1874             );
1875         } else {
1876             err.span_suggestion(
1877                 span,
1878                 "use fully-qualified syntax",
1879                 format!("<{} as {}>::{}", type_str, trait_str, name),
1880                 Applicability::HasPlaceholders,
1881             );
1882         }
1883         err.emit();
1884     }
1885
1886     // Search for a bound on a type parameter which includes the associated item
1887     // given by `assoc_name`. `ty_param_def_id` is the `DefId` of the type parameter
1888     // This function will fail if there are no suitable bounds or there is
1889     // any ambiguity.
1890     fn find_bound_for_assoc_item(
1891         &self,
1892         ty_param_def_id: DefId,
1893         assoc_name: ast::Ident,
1894         span: Span,
1895     ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported> {
1896         let tcx = self.tcx();
1897
1898         debug!(
1899             "find_bound_for_assoc_item(ty_param_def_id={:?}, assoc_name={:?}, span={:?})",
1900             ty_param_def_id, assoc_name, span,
1901         );
1902
1903         let predicates = &self.get_type_parameter_bounds(span, ty_param_def_id).predicates;
1904
1905         debug!("find_bound_for_assoc_item: predicates={:#?}", predicates);
1906
1907         let param_hir_id = tcx.hir().as_local_hir_id(ty_param_def_id).unwrap();
1908         let param_name = tcx.hir().ty_param_name(param_hir_id);
1909         self.one_bound_for_assoc_type(
1910             || {
1911                 traits::transitive_bounds(
1912                     tcx,
1913                     predicates.iter().filter_map(|(p, _)| p.to_opt_poly_trait_ref()),
1914                 )
1915             },
1916             || param_name.to_string(),
1917             assoc_name,
1918             span,
1919             || None,
1920         )
1921     }
1922
1923     // Checks that `bounds` contains exactly one element and reports appropriate
1924     // errors otherwise.
1925     fn one_bound_for_assoc_type<I>(
1926         &self,
1927         all_candidates: impl Fn() -> I,
1928         ty_param_name: impl Fn() -> String,
1929         assoc_name: ast::Ident,
1930         span: Span,
1931         is_equality: impl Fn() -> Option<String>,
1932     ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
1933     where
1934         I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
1935     {
1936         let mut matching_candidates = all_candidates()
1937             .filter(|r| self.trait_defines_associated_type_named(r.def_id(), assoc_name));
1938
1939         let bound = match matching_candidates.next() {
1940             Some(bound) => bound,
1941             None => {
1942                 self.complain_about_assoc_type_not_found(
1943                     all_candidates,
1944                     &ty_param_name(),
1945                     assoc_name,
1946                     span,
1947                 );
1948                 return Err(ErrorReported);
1949             }
1950         };
1951
1952         debug!("one_bound_for_assoc_type: bound = {:?}", bound);
1953
1954         if let Some(bound2) = matching_candidates.next() {
1955             debug!("one_bound_for_assoc_type: bound2 = {:?}", bound2);
1956
1957             let is_equality = is_equality();
1958             let bounds = iter::once(bound).chain(iter::once(bound2)).chain(matching_candidates);
1959             let mut err = if is_equality.is_some() {
1960                 // More specific Error Index entry.
1961                 struct_span_err!(
1962                     self.tcx().sess,
1963                     span,
1964                     E0222,
1965                     "ambiguous associated type `{}` in bounds of `{}`",
1966                     assoc_name,
1967                     ty_param_name()
1968                 )
1969             } else {
1970                 struct_span_err!(
1971                     self.tcx().sess,
1972                     span,
1973                     E0221,
1974                     "ambiguous associated type `{}` in bounds of `{}`",
1975                     assoc_name,
1976                     ty_param_name()
1977                 )
1978             };
1979             err.span_label(span, format!("ambiguous associated type `{}`", assoc_name));
1980
1981             let mut where_bounds = vec![];
1982             for bound in bounds {
1983                 let bound_id = bound.def_id();
1984                 let bound_span = self
1985                     .tcx()
1986                     .associated_items(bound_id)
1987                     .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, bound_id)
1988                     .and_then(|item| self.tcx().hir().span_if_local(item.def_id));
1989
1990                 if let Some(bound_span) = bound_span {
1991                     err.span_label(
1992                         bound_span,
1993                         format!(
1994                             "ambiguous `{}` from `{}`",
1995                             assoc_name,
1996                             bound.print_only_trait_path(),
1997                         ),
1998                     );
1999                     if let Some(constraint) = &is_equality {
2000                         where_bounds.push(format!(
2001                             "        T: {trait}::{assoc} = {constraint}",
2002                             trait=bound.print_only_trait_path(),
2003                             assoc=assoc_name,
2004                             constraint=constraint,
2005                         ));
2006                     } else {
2007                         err.span_suggestion(
2008                             span,
2009                             "use fully qualified syntax to disambiguate",
2010                             format!(
2011                                 "<{} as {}>::{}",
2012                                 ty_param_name(),
2013                                 bound.print_only_trait_path(),
2014                                 assoc_name,
2015                             ),
2016                             Applicability::MaybeIncorrect,
2017                         );
2018                     }
2019                 } else {
2020                     err.note(&format!(
2021                         "associated type `{}` could derive from `{}`",
2022                         ty_param_name(),
2023                         bound.print_only_trait_path(),
2024                     ));
2025                 }
2026             }
2027             if !where_bounds.is_empty() {
2028                 err.help(&format!(
2029                     "consider introducing a new type parameter `T` and adding `where` constraints:\
2030                      \n    where\n        T: {},\n{}",
2031                     ty_param_name(),
2032                     where_bounds.join(",\n"),
2033                 ));
2034             }
2035             err.emit();
2036             if !where_bounds.is_empty() {
2037                 return Err(ErrorReported);
2038             }
2039         }
2040         return Ok(bound);
2041     }
2042
2043     fn complain_about_assoc_type_not_found<I>(
2044         &self,
2045         all_candidates: impl Fn() -> I,
2046         ty_param_name: &str,
2047         assoc_name: ast::Ident,
2048         span: Span,
2049     ) where
2050         I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
2051     {
2052         // The fallback span is needed because `assoc_name` might be an `Fn()`'s `Output` without a
2053         // valid span, so we point at the whole path segment instead.
2054         let span = if assoc_name.span != DUMMY_SP { assoc_name.span } else { span };
2055         let mut err = struct_span_err!(
2056             self.tcx().sess,
2057             span,
2058             E0220,
2059             "associated type `{}` not found for `{}`",
2060             assoc_name,
2061             ty_param_name
2062         );
2063
2064         let all_candidate_names: Vec<_> = all_candidates()
2065             .map(|r| self.tcx().associated_items(r.def_id()).in_definition_order())
2066             .flatten()
2067             .filter_map(
2068                 |item| if item.kind == ty::AssocKind::Type { Some(item.ident.name) } else { None },
2069             )
2070             .collect();
2071
2072         if let (Some(suggested_name), true) = (
2073             find_best_match_for_name(all_candidate_names.iter(), &assoc_name.as_str(), None),
2074             assoc_name.span != DUMMY_SP,
2075         ) {
2076             err.span_suggestion(
2077                 assoc_name.span,
2078                 "there is an associated type with a similar name",
2079                 suggested_name.to_string(),
2080                 Applicability::MaybeIncorrect,
2081             );
2082         } else {
2083             err.span_label(span, format!("associated type `{}` not found", assoc_name));
2084         }
2085
2086         err.emit();
2087     }
2088
2089     // Create a type from a path to an associated type.
2090     // For a path `A::B::C::D`, `qself_ty` and `qself_def` are the type and def for `A::B::C`
2091     // and item_segment is the path segment for `D`. We return a type and a def for
2092     // the whole path.
2093     // Will fail except for `T::A` and `Self::A`; i.e., if `qself_ty`/`qself_def` are not a type
2094     // parameter or `Self`.
2095     pub fn associated_path_to_ty(
2096         &self,
2097         hir_ref_id: hir::HirId,
2098         span: Span,
2099         qself_ty: Ty<'tcx>,
2100         qself_res: Res,
2101         assoc_segment: &hir::PathSegment<'_>,
2102         permit_variants: bool,
2103     ) -> Result<(Ty<'tcx>, DefKind, DefId), ErrorReported> {
2104         let tcx = self.tcx();
2105         let assoc_ident = assoc_segment.ident;
2106
2107         debug!("associated_path_to_ty: {:?}::{}", qself_ty, assoc_ident);
2108
2109         // Check if we have an enum variant.
2110         let mut variant_resolution = None;
2111         if let ty::Adt(adt_def, _) = qself_ty.kind {
2112             if adt_def.is_enum() {
2113                 let variant_def = adt_def
2114                     .variants
2115                     .iter()
2116                     .find(|vd| tcx.hygienic_eq(assoc_ident, vd.ident, adt_def.did));
2117                 if let Some(variant_def) = variant_def {
2118                     if permit_variants {
2119                         tcx.check_stability(variant_def.def_id, Some(hir_ref_id), span);
2120                         self.prohibit_generics(slice::from_ref(assoc_segment));
2121                         return Ok((qself_ty, DefKind::Variant, variant_def.def_id));
2122                     } else {
2123                         variant_resolution = Some(variant_def.def_id);
2124                     }
2125                 }
2126             }
2127         }
2128
2129         // Find the type of the associated item, and the trait where the associated
2130         // item is declared.
2131         let bound = match (&qself_ty.kind, qself_res) {
2132             (_, Res::SelfTy(Some(_), Some(impl_def_id))) => {
2133                 // `Self` in an impl of a trait -- we have a concrete self type and a
2134                 // trait reference.
2135                 let trait_ref = match tcx.impl_trait_ref(impl_def_id) {
2136                     Some(trait_ref) => trait_ref,
2137                     None => {
2138                         // A cycle error occurred, most likely.
2139                         return Err(ErrorReported);
2140                     }
2141                 };
2142
2143                 self.one_bound_for_assoc_type(
2144                     || traits::supertraits(tcx, ty::Binder::bind(trait_ref)),
2145                     || "Self".to_string(),
2146                     assoc_ident,
2147                     span,
2148                     || None,
2149                 )?
2150             }
2151             (&ty::Param(_), Res::SelfTy(Some(param_did), None))
2152             | (&ty::Param(_), Res::Def(DefKind::TyParam, param_did)) => {
2153                 self.find_bound_for_assoc_item(param_did, assoc_ident, span)?
2154             }
2155             _ => {
2156                 if variant_resolution.is_some() {
2157                     // Variant in type position
2158                     let msg = format!("expected type, found variant `{}`", assoc_ident);
2159                     tcx.sess.span_err(span, &msg);
2160                 } else if qself_ty.is_enum() {
2161                     let mut err = struct_span_err!(
2162                         tcx.sess,
2163                         assoc_ident.span,
2164                         E0599,
2165                         "no variant named `{}` found for enum `{}`",
2166                         assoc_ident,
2167                         qself_ty,
2168                     );
2169
2170                     let adt_def = qself_ty.ty_adt_def().expect("enum is not an ADT");
2171                     if let Some(suggested_name) = find_best_match_for_name(
2172                         adt_def.variants.iter().map(|variant| &variant.ident.name),
2173                         &assoc_ident.as_str(),
2174                         None,
2175                     ) {
2176                         err.span_suggestion(
2177                             assoc_ident.span,
2178                             "there is a variant with a similar name",
2179                             suggested_name.to_string(),
2180                             Applicability::MaybeIncorrect,
2181                         );
2182                     } else {
2183                         err.span_label(
2184                             assoc_ident.span,
2185                             format!("variant not found in `{}`", qself_ty),
2186                         );
2187                     }
2188
2189                     if let Some(sp) = tcx.hir().span_if_local(adt_def.did) {
2190                         let sp = tcx.sess.source_map().def_span(sp);
2191                         err.span_label(sp, format!("variant `{}` not found here", assoc_ident));
2192                     }
2193
2194                     err.emit();
2195                 } else if !qself_ty.references_error() {
2196                     // Don't print `TyErr` to the user.
2197                     self.report_ambiguous_associated_type(
2198                         span,
2199                         &qself_ty.to_string(),
2200                         "Trait",
2201                         assoc_ident.name,
2202                     );
2203                 }
2204                 return Err(ErrorReported);
2205             }
2206         };
2207
2208         let trait_did = bound.def_id();
2209         let (assoc_ident, def_scope) =
2210             tcx.adjust_ident_and_get_scope(assoc_ident, trait_did, hir_ref_id);
2211
2212         // We have already adjusted the item name above, so compare with `ident.modern()` instead
2213         // of calling `filter_by_name_and_kind`.
2214         let item = tcx
2215             .associated_items(trait_did)
2216             .in_definition_order()
2217             .find(|i| i.kind.namespace() == Namespace::TypeNS && i.ident.modern() == assoc_ident)
2218             .expect("missing associated type");
2219
2220         let ty = self.projected_ty_from_poly_trait_ref(span, item.def_id, assoc_segment, bound);
2221         let ty = self.normalize_ty(span, ty);
2222
2223         let kind = DefKind::AssocTy;
2224         if !item.vis.is_accessible_from(def_scope, tcx) {
2225             let msg = format!("{} `{}` is private", kind.descr(item.def_id), assoc_ident);
2226             tcx.sess.span_err(span, &msg);
2227         }
2228         tcx.check_stability(item.def_id, Some(hir_ref_id), span);
2229
2230         if let Some(variant_def_id) = variant_resolution {
2231             tcx.struct_span_lint_hir(AMBIGUOUS_ASSOCIATED_ITEMS, hir_ref_id, span, |lint| {
2232                 let mut err = lint.build("ambiguous associated item");
2233                 let mut could_refer_to = |kind: DefKind, def_id, also| {
2234                     let note_msg = format!(
2235                         "`{}` could{} refer to the {} defined here",
2236                         assoc_ident,
2237                         also,
2238                         kind.descr(def_id)
2239                     );
2240                     err.span_note(tcx.def_span(def_id), &note_msg);
2241                 };
2242
2243                 could_refer_to(DefKind::Variant, variant_def_id, "");
2244                 could_refer_to(kind, item.def_id, " also");
2245
2246                 err.span_suggestion(
2247                     span,
2248                     "use fully-qualified syntax",
2249                     format!("<{} as {}>::{}", qself_ty, tcx.item_name(trait_did), assoc_ident),
2250                     Applicability::MachineApplicable,
2251                 );
2252
2253                 err.emit();
2254             });
2255         }
2256         Ok((ty, kind, item.def_id))
2257     }
2258
2259     fn qpath_to_ty(
2260         &self,
2261         span: Span,
2262         opt_self_ty: Option<Ty<'tcx>>,
2263         item_def_id: DefId,
2264         trait_segment: &hir::PathSegment<'_>,
2265         item_segment: &hir::PathSegment<'_>,
2266     ) -> Ty<'tcx> {
2267         let tcx = self.tcx();
2268
2269         let trait_def_id = tcx.parent(item_def_id).unwrap();
2270
2271         debug!("qpath_to_ty: trait_def_id={:?}", trait_def_id);
2272
2273         let self_ty = if let Some(ty) = opt_self_ty {
2274             ty
2275         } else {
2276             let path_str = tcx.def_path_str(trait_def_id);
2277
2278             let def_id = self.item_def_id();
2279
2280             debug!("qpath_to_ty: self.item_def_id()={:?}", def_id);
2281
2282             let parent_def_id = def_id
2283                 .and_then(|def_id| tcx.hir().as_local_hir_id(def_id))
2284                 .map(|hir_id| tcx.hir().get_parent_did(hir_id));
2285
2286             debug!("qpath_to_ty: parent_def_id={:?}", parent_def_id);
2287
2288             // If the trait in segment is the same as the trait defining the item,
2289             // use the `<Self as ..>` syntax in the error.
2290             let is_part_of_self_trait_constraints = def_id == Some(trait_def_id);
2291             let is_part_of_fn_in_self_trait = parent_def_id == Some(trait_def_id);
2292
2293             let type_name = if is_part_of_self_trait_constraints || is_part_of_fn_in_self_trait {
2294                 "Self"
2295             } else {
2296                 "Type"
2297             };
2298
2299             self.report_ambiguous_associated_type(
2300                 span,
2301                 type_name,
2302                 &path_str,
2303                 item_segment.ident.name,
2304             );
2305             return tcx.types.err;
2306         };
2307
2308         debug!("qpath_to_ty: self_type={:?}", self_ty);
2309
2310         let trait_ref = self.ast_path_to_mono_trait_ref(span, trait_def_id, self_ty, trait_segment);
2311
2312         let item_substs = self.create_substs_for_associated_item(
2313             tcx,
2314             span,
2315             item_def_id,
2316             item_segment,
2317             trait_ref.substs,
2318         );
2319
2320         debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
2321
2322         self.normalize_ty(span, tcx.mk_projection(item_def_id, item_substs))
2323     }
2324
2325     pub fn prohibit_generics<'a, T: IntoIterator<Item = &'a hir::PathSegment<'a>>>(
2326         &self,
2327         segments: T,
2328     ) -> bool {
2329         let mut has_err = false;
2330         for segment in segments {
2331             let (mut err_for_lt, mut err_for_ty, mut err_for_ct) = (false, false, false);
2332             for arg in segment.generic_args().args {
2333                 let (span, kind) = match arg {
2334                     hir::GenericArg::Lifetime(lt) => {
2335                         if err_for_lt {
2336                             continue;
2337                         }
2338                         err_for_lt = true;
2339                         has_err = true;
2340                         (lt.span, "lifetime")
2341                     }
2342                     hir::GenericArg::Type(ty) => {
2343                         if err_for_ty {
2344                             continue;
2345                         }
2346                         err_for_ty = true;
2347                         has_err = true;
2348                         (ty.span, "type")
2349                     }
2350                     hir::GenericArg::Const(ct) => {
2351                         if err_for_ct {
2352                             continue;
2353                         }
2354                         err_for_ct = true;
2355                         (ct.span, "const")
2356                     }
2357                 };
2358                 let mut err = struct_span_err!(
2359                     self.tcx().sess,
2360                     span,
2361                     E0109,
2362                     "{} arguments are not allowed for this type",
2363                     kind,
2364                 );
2365                 err.span_label(span, format!("{} argument not allowed", kind));
2366                 err.emit();
2367                 if err_for_lt && err_for_ty && err_for_ct {
2368                     break;
2369                 }
2370             }
2371             for binding in segment.generic_args().bindings {
2372                 has_err = true;
2373                 Self::prohibit_assoc_ty_binding(self.tcx(), binding.span);
2374                 break;
2375             }
2376         }
2377         has_err
2378     }
2379
2380     pub fn prohibit_assoc_ty_binding(tcx: TyCtxt<'_>, span: Span) {
2381         let mut err = struct_span_err!(
2382             tcx.sess,
2383             span,
2384             E0229,
2385             "associated type bindings are not allowed here"
2386         );
2387         err.span_label(span, "associated type not allowed here").emit();
2388     }
2389
2390     // FIXME(eddyb, varkor) handle type paths here too, not just value ones.
2391     pub fn def_ids_for_value_path_segments(
2392         &self,
2393         segments: &[hir::PathSegment<'_>],
2394         self_ty: Option<Ty<'tcx>>,
2395         kind: DefKind,
2396         def_id: DefId,
2397     ) -> Vec<PathSeg> {
2398         // We need to extract the type parameters supplied by the user in
2399         // the path `path`. Due to the current setup, this is a bit of a
2400         // tricky-process; the problem is that resolve only tells us the
2401         // end-point of the path resolution, and not the intermediate steps.
2402         // Luckily, we can (at least for now) deduce the intermediate steps
2403         // just from the end-point.
2404         //
2405         // There are basically five cases to consider:
2406         //
2407         // 1. Reference to a constructor of a struct:
2408         //
2409         //        struct Foo<T>(...)
2410         //
2411         //    In this case, the parameters are declared in the type space.
2412         //
2413         // 2. Reference to a constructor of an enum variant:
2414         //
2415         //        enum E<T> { Foo(...) }
2416         //
2417         //    In this case, the parameters are defined in the type space,
2418         //    but may be specified either on the type or the variant.
2419         //
2420         // 3. Reference to a fn item or a free constant:
2421         //
2422         //        fn foo<T>() { }
2423         //
2424         //    In this case, the path will again always have the form
2425         //    `a::b::foo::<T>` where only the final segment should have
2426         //    type parameters. However, in this case, those parameters are
2427         //    declared on a value, and hence are in the `FnSpace`.
2428         //
2429         // 4. Reference to a method or an associated constant:
2430         //
2431         //        impl<A> SomeStruct<A> {
2432         //            fn foo<B>(...)
2433         //        }
2434         //
2435         //    Here we can have a path like
2436         //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
2437         //    may appear in two places. The penultimate segment,
2438         //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
2439         //    final segment, `foo::<B>` contains parameters in fn space.
2440         //
2441         // The first step then is to categorize the segments appropriately.
2442
2443         let tcx = self.tcx();
2444
2445         assert!(!segments.is_empty());
2446         let last = segments.len() - 1;
2447
2448         let mut path_segs = vec![];
2449
2450         match kind {
2451             // Case 1. Reference to a struct constructor.
2452             DefKind::Ctor(CtorOf::Struct, ..) => {
2453                 // Everything but the final segment should have no
2454                 // parameters at all.
2455                 let generics = tcx.generics_of(def_id);
2456                 // Variant and struct constructors use the
2457                 // generics of their parent type definition.
2458                 let generics_def_id = generics.parent.unwrap_or(def_id);
2459                 path_segs.push(PathSeg(generics_def_id, last));
2460             }
2461
2462             // Case 2. Reference to a variant constructor.
2463             DefKind::Ctor(CtorOf::Variant, ..) | DefKind::Variant => {
2464                 let adt_def = self_ty.map(|t| t.ty_adt_def().unwrap());
2465                 let (generics_def_id, index) = if let Some(adt_def) = adt_def {
2466                     debug_assert!(adt_def.is_enum());
2467                     (adt_def.did, last)
2468                 } else if last >= 1 && segments[last - 1].args.is_some() {
2469                     // Everything but the penultimate segment should have no
2470                     // parameters at all.
2471                     let mut def_id = def_id;
2472
2473                     // `DefKind::Ctor` -> `DefKind::Variant`
2474                     if let DefKind::Ctor(..) = kind {
2475                         def_id = tcx.parent(def_id).unwrap()
2476                     }
2477
2478                     // `DefKind::Variant` -> `DefKind::Enum`
2479                     let enum_def_id = tcx.parent(def_id).unwrap();
2480                     (enum_def_id, last - 1)
2481                 } else {
2482                     // FIXME: lint here recommending `Enum::<...>::Variant` form
2483                     // instead of `Enum::Variant::<...>` form.
2484
2485                     // Everything but the final segment should have no
2486                     // parameters at all.
2487                     let generics = tcx.generics_of(def_id);
2488                     // Variant and struct constructors use the
2489                     // generics of their parent type definition.
2490                     (generics.parent.unwrap_or(def_id), last)
2491                 };
2492                 path_segs.push(PathSeg(generics_def_id, index));
2493             }
2494
2495             // Case 3. Reference to a top-level value.
2496             DefKind::Fn | DefKind::Const | DefKind::ConstParam | DefKind::Static => {
2497                 path_segs.push(PathSeg(def_id, last));
2498             }
2499
2500             // Case 4. Reference to a method or associated const.
2501             DefKind::Method | DefKind::AssocConst => {
2502                 if segments.len() >= 2 {
2503                     let generics = tcx.generics_of(def_id);
2504                     path_segs.push(PathSeg(generics.parent.unwrap(), last - 1));
2505                 }
2506                 path_segs.push(PathSeg(def_id, last));
2507             }
2508
2509             kind => bug!("unexpected definition kind {:?} for {:?}", kind, def_id),
2510         }
2511
2512         debug!("path_segs = {:?}", path_segs);
2513
2514         path_segs
2515     }
2516
2517     // Check a type `Path` and convert it to a `Ty`.
2518     pub fn res_to_ty(
2519         &self,
2520         opt_self_ty: Option<Ty<'tcx>>,
2521         path: &hir::Path<'_>,
2522         permit_variants: bool,
2523     ) -> Ty<'tcx> {
2524         let tcx = self.tcx();
2525
2526         debug!(
2527             "res_to_ty(res={:?}, opt_self_ty={:?}, path_segments={:?})",
2528             path.res, opt_self_ty, path.segments
2529         );
2530
2531         let span = path.span;
2532         match path.res {
2533             Res::Def(DefKind::OpaqueTy, did) => {
2534                 // Check for desugared `impl Trait`.
2535                 assert!(ty::is_impl_trait_defn(tcx, did).is_none());
2536                 let item_segment = path.segments.split_last().unwrap();
2537                 self.prohibit_generics(item_segment.1);
2538                 let substs = self.ast_path_substs_for_ty(span, did, item_segment.0);
2539                 self.normalize_ty(span, tcx.mk_opaque(did, substs))
2540             }
2541             Res::Def(DefKind::Enum, did)
2542             | Res::Def(DefKind::TyAlias, did)
2543             | Res::Def(DefKind::Struct, did)
2544             | Res::Def(DefKind::Union, did)
2545             | Res::Def(DefKind::ForeignTy, did) => {
2546                 assert_eq!(opt_self_ty, None);
2547                 self.prohibit_generics(path.segments.split_last().unwrap().1);
2548                 self.ast_path_to_ty(span, did, path.segments.last().unwrap())
2549             }
2550             Res::Def(kind @ DefKind::Variant, def_id) if permit_variants => {
2551                 // Convert "variant type" as if it were a real type.
2552                 // The resulting `Ty` is type of the variant's enum for now.
2553                 assert_eq!(opt_self_ty, None);
2554
2555                 let path_segs =
2556                     self.def_ids_for_value_path_segments(&path.segments, None, kind, def_id);
2557                 let generic_segs: FxHashSet<_> =
2558                     path_segs.iter().map(|PathSeg(_, index)| index).collect();
2559                 self.prohibit_generics(path.segments.iter().enumerate().filter_map(
2560                     |(index, seg)| {
2561                         if !generic_segs.contains(&index) { Some(seg) } else { None }
2562                     },
2563                 ));
2564
2565                 let PathSeg(def_id, index) = path_segs.last().unwrap();
2566                 self.ast_path_to_ty(span, *def_id, &path.segments[*index])
2567             }
2568             Res::Def(DefKind::TyParam, def_id) => {
2569                 assert_eq!(opt_self_ty, None);
2570                 self.prohibit_generics(path.segments);
2571
2572                 let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
2573                 let item_id = tcx.hir().get_parent_node(hir_id);
2574                 let item_def_id = tcx.hir().local_def_id(item_id);
2575                 let generics = tcx.generics_of(item_def_id);
2576                 let index = generics.param_def_id_to_index[&def_id];
2577                 tcx.mk_ty_param(index, tcx.hir().name(hir_id))
2578             }
2579             Res::SelfTy(Some(_), None) => {
2580                 // `Self` in trait or type alias.
2581                 assert_eq!(opt_self_ty, None);
2582                 self.prohibit_generics(path.segments);
2583                 tcx.types.self_param
2584             }
2585             Res::SelfTy(_, Some(def_id)) => {
2586                 // `Self` in impl (we know the concrete type).
2587                 assert_eq!(opt_self_ty, None);
2588                 self.prohibit_generics(path.segments);
2589                 // Try to evaluate any array length constants.
2590                 self.normalize_ty(span, tcx.at(span).type_of(def_id))
2591             }
2592             Res::Def(DefKind::AssocTy, def_id) => {
2593                 debug_assert!(path.segments.len() >= 2);
2594                 self.prohibit_generics(&path.segments[..path.segments.len() - 2]);
2595                 self.qpath_to_ty(
2596                     span,
2597                     opt_self_ty,
2598                     def_id,
2599                     &path.segments[path.segments.len() - 2],
2600                     path.segments.last().unwrap(),
2601                 )
2602             }
2603             Res::PrimTy(prim_ty) => {
2604                 assert_eq!(opt_self_ty, None);
2605                 self.prohibit_generics(path.segments);
2606                 match prim_ty {
2607                     hir::PrimTy::Bool => tcx.types.bool,
2608                     hir::PrimTy::Char => tcx.types.char,
2609                     hir::PrimTy::Int(it) => tcx.mk_mach_int(it),
2610                     hir::PrimTy::Uint(uit) => tcx.mk_mach_uint(uit),
2611                     hir::PrimTy::Float(ft) => tcx.mk_mach_float(ft),
2612                     hir::PrimTy::Str => tcx.mk_str(),
2613                 }
2614             }
2615             Res::Err => {
2616                 self.set_tainted_by_errors();
2617                 return self.tcx().types.err;
2618             }
2619             _ => span_bug!(span, "unexpected resolution: {:?}", path.res),
2620         }
2621     }
2622
2623     /// Parses the programmer's textual representation of a type into our
2624     /// internal notion of a type.
2625     pub fn ast_ty_to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
2626         debug!("ast_ty_to_ty(id={:?}, ast_ty={:?} ty_ty={:?})", ast_ty.hir_id, ast_ty, ast_ty.kind);
2627
2628         let tcx = self.tcx();
2629
2630         let result_ty = match ast_ty.kind {
2631             hir::TyKind::Slice(ref ty) => tcx.mk_slice(self.ast_ty_to_ty(&ty)),
2632             hir::TyKind::Ptr(ref mt) => {
2633                 tcx.mk_ptr(ty::TypeAndMut { ty: self.ast_ty_to_ty(&mt.ty), mutbl: mt.mutbl })
2634             }
2635             hir::TyKind::Rptr(ref region, ref mt) => {
2636                 let r = self.ast_region_to_region(region, None);
2637                 debug!("ast_ty_to_ty: r={:?}", r);
2638                 let t = self.ast_ty_to_ty(&mt.ty);
2639                 tcx.mk_ref(r, ty::TypeAndMut { ty: t, mutbl: mt.mutbl })
2640             }
2641             hir::TyKind::Never => tcx.types.never,
2642             hir::TyKind::Tup(ref fields) => {
2643                 tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(&t)))
2644             }
2645             hir::TyKind::BareFn(ref bf) => {
2646                 require_c_abi_if_c_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
2647                 tcx.mk_fn_ptr(self.ty_of_fn(bf.unsafety, bf.abi, &bf.decl, &[], None))
2648             }
2649             hir::TyKind::TraitObject(ref bounds, ref lifetime) => {
2650                 self.conv_object_ty_poly_trait_ref(ast_ty.span, bounds, lifetime)
2651             }
2652             hir::TyKind::Path(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
2653                 debug!("ast_ty_to_ty: maybe_qself={:?} path={:?}", maybe_qself, path);
2654                 let opt_self_ty = maybe_qself.as_ref().map(|qself| self.ast_ty_to_ty(qself));
2655                 self.res_to_ty(opt_self_ty, path, false)
2656             }
2657             hir::TyKind::Def(item_id, ref lifetimes) => {
2658                 let did = tcx.hir().local_def_id(item_id.id);
2659                 self.impl_trait_ty_to_ty(did, lifetimes)
2660             }
2661             hir::TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
2662                 debug!("ast_ty_to_ty: qself={:?} segment={:?}", qself, segment);
2663                 let ty = self.ast_ty_to_ty(qself);
2664
2665                 let res = if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = qself.kind {
2666                     path.res
2667                 } else {
2668                     Res::Err
2669                 };
2670                 self.associated_path_to_ty(ast_ty.hir_id, ast_ty.span, ty, res, segment, false)
2671                     .map(|(ty, _, _)| ty)
2672                     .unwrap_or(tcx.types.err)
2673             }
2674             hir::TyKind::Array(ref ty, ref length) => {
2675                 let length = self.ast_const_to_const(length, tcx.types.usize);
2676                 let array_ty = tcx.mk_ty(ty::Array(self.ast_ty_to_ty(&ty), length));
2677                 self.normalize_ty(ast_ty.span, array_ty)
2678             }
2679             hir::TyKind::Typeof(ref _e) => {
2680                 struct_span_err!(
2681                     tcx.sess,
2682                     ast_ty.span,
2683                     E0516,
2684                     "`typeof` is a reserved keyword but unimplemented"
2685                 )
2686                 .span_label(ast_ty.span, "reserved keyword")
2687                 .emit();
2688
2689                 tcx.types.err
2690             }
2691             hir::TyKind::Infer => {
2692                 // Infer also appears as the type of arguments or return
2693                 // values in a ExprKind::Closure, or as
2694                 // the type of local variables. Both of these cases are
2695                 // handled specially and will not descend into this routine.
2696                 self.ty_infer(None, ast_ty.span)
2697             }
2698             hir::TyKind::Err => tcx.types.err,
2699         };
2700
2701         debug!("ast_ty_to_ty: result_ty={:?}", result_ty);
2702
2703         self.record_ty(ast_ty.hir_id, result_ty, ast_ty.span);
2704         result_ty
2705     }
2706
2707     /// Returns the `DefId` of the constant parameter that the provided expression is a path to.
2708     pub fn const_param_def_id(&self, expr: &hir::Expr<'_>) -> Option<DefId> {
2709         // Unwrap a block, so that e.g. `{ P }` is recognised as a parameter. Const arguments
2710         // currently have to be wrapped in curly brackets, so it's necessary to special-case.
2711         let expr = match &expr.kind {
2712             ExprKind::Block(block, _) if block.stmts.is_empty() && block.expr.is_some() => {
2713                 block.expr.as_ref().unwrap()
2714             }
2715             _ => expr,
2716         };
2717
2718         match &expr.kind {
2719             ExprKind::Path(hir::QPath::Resolved(_, path)) => match path.res {
2720                 Res::Def(DefKind::ConstParam, did) => Some(did),
2721                 _ => None,
2722             },
2723             _ => None,
2724         }
2725     }
2726
2727     pub fn ast_const_to_const(
2728         &self,
2729         ast_const: &hir::AnonConst,
2730         ty: Ty<'tcx>,
2731     ) -> &'tcx ty::Const<'tcx> {
2732         debug!("ast_const_to_const(id={:?}, ast_const={:?})", ast_const.hir_id, ast_const);
2733
2734         let tcx = self.tcx();
2735         let def_id = tcx.hir().local_def_id(ast_const.hir_id);
2736
2737         let expr = &tcx.hir().body(ast_const.body).value;
2738
2739         let lit_input = match expr.kind {
2740             hir::ExprKind::Lit(ref lit) => Some(LitToConstInput { lit: &lit.node, ty, neg: false }),
2741             hir::ExprKind::Unary(hir::UnOp::UnNeg, ref expr) => match expr.kind {
2742                 hir::ExprKind::Lit(ref lit) => {
2743                     Some(LitToConstInput { lit: &lit.node, ty, neg: true })
2744                 }
2745                 _ => None,
2746             },
2747             _ => None,
2748         };
2749
2750         if let Some(lit_input) = lit_input {
2751             // If an error occurred, ignore that it's a literal and leave reporting the error up to
2752             // mir.
2753             if let Ok(c) = tcx.at(expr.span).lit_to_const(lit_input) {
2754                 return c;
2755             } else {
2756                 tcx.sess.delay_span_bug(expr.span, "ast_const_to_const: couldn't lit_to_const");
2757             }
2758         }
2759
2760         let kind = if let Some(def_id) = self.const_param_def_id(expr) {
2761             // Find the name and index of the const parameter by indexing the generics of the
2762             // parent item and construct a `ParamConst`.
2763             let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
2764             let item_id = tcx.hir().get_parent_node(hir_id);
2765             let item_def_id = tcx.hir().local_def_id(item_id);
2766             let generics = tcx.generics_of(item_def_id);
2767             let index = generics.param_def_id_to_index[&tcx.hir().local_def_id(hir_id)];
2768             let name = tcx.hir().name(hir_id);
2769             ty::ConstKind::Param(ty::ParamConst::new(index, name))
2770         } else {
2771             ty::ConstKind::Unevaluated(def_id, InternalSubsts::identity_for_item(tcx, def_id), None)
2772         };
2773         tcx.mk_const(ty::Const { val: kind, ty })
2774     }
2775
2776     pub fn impl_trait_ty_to_ty(
2777         &self,
2778         def_id: DefId,
2779         lifetimes: &[hir::GenericArg<'_>],
2780     ) -> Ty<'tcx> {
2781         debug!("impl_trait_ty_to_ty(def_id={:?}, lifetimes={:?})", def_id, lifetimes);
2782         let tcx = self.tcx();
2783
2784         let generics = tcx.generics_of(def_id);
2785
2786         debug!("impl_trait_ty_to_ty: generics={:?}", generics);
2787         let substs = InternalSubsts::for_item(tcx, def_id, |param, _| {
2788             if let Some(i) = (param.index as usize).checked_sub(generics.parent_count) {
2789                 // Our own parameters are the resolved lifetimes.
2790                 match param.kind {
2791                     GenericParamDefKind::Lifetime => {
2792                         if let hir::GenericArg::Lifetime(lifetime) = &lifetimes[i] {
2793                             self.ast_region_to_region(lifetime, None).into()
2794                         } else {
2795                             bug!()
2796                         }
2797                     }
2798                     _ => bug!(),
2799                 }
2800             } else {
2801                 // Replace all parent lifetimes with `'static`.
2802                 match param.kind {
2803                     GenericParamDefKind::Lifetime => tcx.lifetimes.re_static.into(),
2804                     _ => tcx.mk_param_from_def(param),
2805                 }
2806             }
2807         });
2808         debug!("impl_trait_ty_to_ty: substs={:?}", substs);
2809
2810         let ty = tcx.mk_opaque(def_id, substs);
2811         debug!("impl_trait_ty_to_ty: {}", ty);
2812         ty
2813     }
2814
2815     pub fn ty_of_arg(&self, ty: &hir::Ty<'_>, expected_ty: Option<Ty<'tcx>>) -> Ty<'tcx> {
2816         match ty.kind {
2817             hir::TyKind::Infer if expected_ty.is_some() => {
2818                 self.record_ty(ty.hir_id, expected_ty.unwrap(), ty.span);
2819                 expected_ty.unwrap()
2820             }
2821             _ => self.ast_ty_to_ty(ty),
2822         }
2823     }
2824
2825     pub fn ty_of_fn(
2826         &self,
2827         unsafety: hir::Unsafety,
2828         abi: abi::Abi,
2829         decl: &hir::FnDecl<'_>,
2830         generic_params: &[hir::GenericParam<'_>],
2831         ident_span: Option<Span>,
2832     ) -> ty::PolyFnSig<'tcx> {
2833         debug!("ty_of_fn");
2834
2835         let tcx = self.tcx();
2836
2837         // We proactively collect all the infered type params to emit a single error per fn def.
2838         let mut visitor = PlaceholderHirTyCollector::default();
2839         for ty in decl.inputs {
2840             visitor.visit_ty(ty);
2841         }
2842         let input_tys = decl.inputs.iter().map(|a| self.ty_of_arg(a, None));
2843         let output_ty = match decl.output {
2844             hir::FnRetTy::Return(ref output) => {
2845                 visitor.visit_ty(output);
2846                 self.ast_ty_to_ty(output)
2847             }
2848             hir::FnRetTy::DefaultReturn(..) => tcx.mk_unit(),
2849         };
2850
2851         debug!("ty_of_fn: output_ty={:?}", output_ty);
2852
2853         let bare_fn_ty =
2854             ty::Binder::bind(tcx.mk_fn_sig(input_tys, output_ty, decl.c_variadic, unsafety, abi));
2855
2856         if !self.allow_ty_infer() {
2857             // We always collect the spans for placeholder types when evaluating `fn`s, but we
2858             // only want to emit an error complaining about them if infer types (`_`) are not
2859             // allowed. `allow_ty_infer` gates this behavior.
2860             crate::collect::placeholder_type_error(
2861                 tcx,
2862                 ident_span.map(|sp| sp.shrink_to_hi()).unwrap_or(DUMMY_SP),
2863                 generic_params,
2864                 visitor.0,
2865                 ident_span.is_some(),
2866             );
2867         }
2868
2869         // Find any late-bound regions declared in return type that do
2870         // not appear in the arguments. These are not well-formed.
2871         //
2872         // Example:
2873         //     for<'a> fn() -> &'a str <-- 'a is bad
2874         //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
2875         let inputs = bare_fn_ty.inputs();
2876         let late_bound_in_args =
2877             tcx.collect_constrained_late_bound_regions(&inputs.map_bound(|i| i.to_owned()));
2878         let output = bare_fn_ty.output();
2879         let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
2880         for br in late_bound_in_ret.difference(&late_bound_in_args) {
2881             let lifetime_name = match *br {
2882                 ty::BrNamed(_, name) => format!("lifetime `{}`,", name),
2883                 ty::BrAnon(_) | ty::BrEnv => "an anonymous lifetime".to_string(),
2884             };
2885             let mut err = struct_span_err!(
2886                 tcx.sess,
2887                 decl.output.span(),
2888                 E0581,
2889                 "return type references {} \
2890                                             which is not constrained by the fn input types",
2891                 lifetime_name
2892             );
2893             if let ty::BrAnon(_) = *br {
2894                 // The only way for an anonymous lifetime to wind up
2895                 // in the return type but **also** be unconstrained is
2896                 // if it only appears in "associated types" in the
2897                 // input. See #47511 for an example. In this case,
2898                 // though we can easily give a hint that ought to be
2899                 // relevant.
2900                 err.note(
2901                     "lifetimes appearing in an associated type \
2902                           are not considered constrained",
2903                 );
2904             }
2905             err.emit();
2906         }
2907
2908         bare_fn_ty
2909     }
2910
2911     /// Given the bounds on an object, determines what single region bound (if any) we can
2912     /// use to summarize this type. The basic idea is that we will use the bound the user
2913     /// provided, if they provided one, and otherwise search the supertypes of trait bounds
2914     /// for region bounds. It may be that we can derive no bound at all, in which case
2915     /// we return `None`.
2916     fn compute_object_lifetime_bound(
2917         &self,
2918         span: Span,
2919         existential_predicates: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
2920     ) -> Option<ty::Region<'tcx>> // if None, use the default
2921     {
2922         let tcx = self.tcx();
2923
2924         debug!("compute_opt_region_bound(existential_predicates={:?})", existential_predicates);
2925
2926         // No explicit region bound specified. Therefore, examine trait
2927         // bounds and see if we can derive region bounds from those.
2928         let derived_region_bounds = object_region_bounds(tcx, existential_predicates);
2929
2930         // If there are no derived region bounds, then report back that we
2931         // can find no region bound. The caller will use the default.
2932         if derived_region_bounds.is_empty() {
2933             return None;
2934         }
2935
2936         // If any of the derived region bounds are 'static, that is always
2937         // the best choice.
2938         if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
2939             return Some(tcx.lifetimes.re_static);
2940         }
2941
2942         // Determine whether there is exactly one unique region in the set
2943         // of derived region bounds. If so, use that. Otherwise, report an
2944         // error.
2945         let r = derived_region_bounds[0];
2946         if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
2947             struct_span_err!(
2948                 tcx.sess,
2949                 span,
2950                 E0227,
2951                 "ambiguous lifetime bound, explicit lifetime bound required"
2952             )
2953             .emit();
2954         }
2955         return Some(r);
2956     }
2957 }
2958
2959 /// Collects together a list of bounds that are applied to some type,
2960 /// after they've been converted into `ty` form (from the HIR
2961 /// representations). These lists of bounds occur in many places in
2962 /// Rust's syntax:
2963 ///
2964 /// ```
2965 /// trait Foo: Bar + Baz { }
2966 ///            ^^^^^^^^^ supertrait list bounding the `Self` type parameter
2967 ///
2968 /// fn foo<T: Bar + Baz>() { }
2969 ///           ^^^^^^^^^ bounding the type parameter `T`
2970 ///
2971 /// impl dyn Bar + Baz
2972 ///          ^^^^^^^^^ bounding the forgotten dynamic type
2973 /// ```
2974 ///
2975 /// Our representation is a bit mixed here -- in some cases, we
2976 /// include the self type (e.g., `trait_bounds`) but in others we do
2977 #[derive(Default, PartialEq, Eq, Clone, Debug)]
2978 pub struct Bounds<'tcx> {
2979     /// A list of region bounds on the (implicit) self type. So if you
2980     /// had `T: 'a + 'b` this might would be a list `['a, 'b]` (but
2981     /// the `T` is not explicitly included).
2982     pub region_bounds: Vec<(ty::Region<'tcx>, Span)>,
2983
2984     /// A list of trait bounds. So if you had `T: Debug` this would be
2985     /// `T: Debug`. Note that the self-type is explicit here.
2986     pub trait_bounds: Vec<(ty::PolyTraitRef<'tcx>, Span, Constness)>,
2987
2988     /// A list of projection equality bounds. So if you had `T:
2989     /// Iterator<Item = u32>` this would include `<T as
2990     /// Iterator>::Item => u32`. Note that the self-type is explicit
2991     /// here.
2992     pub projection_bounds: Vec<(ty::PolyProjectionPredicate<'tcx>, Span)>,
2993
2994     /// `Some` if there is *no* `?Sized` predicate. The `span`
2995     /// is the location in the source of the `T` declaration which can
2996     /// be cited as the source of the `T: Sized` requirement.
2997     pub implicitly_sized: Option<Span>,
2998 }
2999
3000 impl<'tcx> Bounds<'tcx> {
3001     /// Converts a bounds list into a flat set of predicates (like
3002     /// where-clauses). Because some of our bounds listings (e.g.,
3003     /// regions) don't include the self-type, you must supply the
3004     /// self-type here (the `param_ty` parameter).
3005     pub fn predicates(
3006         &self,
3007         tcx: TyCtxt<'tcx>,
3008         param_ty: Ty<'tcx>,
3009     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
3010         // If it could be sized, and is, add the `Sized` predicate.
3011         let sized_predicate = self.implicitly_sized.and_then(|span| {
3012             tcx.lang_items().sized_trait().map(|sized| {
3013                 let trait_ref = ty::Binder::bind(ty::TraitRef {
3014                     def_id: sized,
3015                     substs: tcx.mk_substs_trait(param_ty, &[]),
3016                 });
3017                 (trait_ref.without_const().to_predicate(), span)
3018             })
3019         });
3020
3021         sized_predicate
3022             .into_iter()
3023             .chain(
3024                 self.region_bounds
3025                     .iter()
3026                     .map(|&(region_bound, span)| {
3027                         // Account for the binder being introduced below; no need to shift `param_ty`
3028                         // because, at present at least, it either only refers to early-bound regions,
3029                         // or it's a generic associated type that deliberately has escaping bound vars.
3030                         let region_bound = ty::fold::shift_region(tcx, region_bound, 1);
3031                         let outlives = ty::OutlivesPredicate(param_ty, region_bound);
3032                         (ty::Binder::bind(outlives).to_predicate(), span)
3033                     })
3034                     .chain(self.trait_bounds.iter().map(|&(bound_trait_ref, span, constness)| {
3035                         let predicate = bound_trait_ref.with_constness(constness).to_predicate();
3036                         (predicate, span)
3037                     }))
3038                     .chain(
3039                         self.projection_bounds
3040                             .iter()
3041                             .map(|&(projection, span)| (projection.to_predicate(), span)),
3042                     ),
3043             )
3044             .collect()
3045     }
3046 }