]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/astconv.rs
rustc: remove fmt::{Debug,Display} from ty::TyKind.
[rust.git] / src / librustc_typeck / astconv.rs
1 //! Conversion from AST representation of types to the `ty.rs` representation.
2 //! The main routine here is `ast_ty_to_ty()`; each use is parameterized by an
3 //! instance of `AstConv`.
4
5 use errors::{Applicability, DiagnosticId};
6 use crate::hir::{self, GenericArg, GenericArgs, ExprKind};
7 use crate::hir::def::Def;
8 use crate::hir::def_id::DefId;
9 use crate::hir::HirVec;
10 use crate::lint;
11 use crate::middle::resolve_lifetime as rl;
12 use crate::namespace::Namespace;
13 use rustc::lint::builtin::AMBIGUOUS_ASSOCIATED_ITEMS;
14 use rustc::traits;
15 use rustc::ty::{self, Ty, TyCtxt, ToPredicate, TypeFoldable};
16 use rustc::ty::{GenericParamDef, GenericParamDefKind};
17 use rustc::ty::subst::{Kind, Subst, InternalSubsts, SubstsRef};
18 use rustc::ty::wf::object_region_bounds;
19 use rustc::mir::interpret::ConstValue;
20 use rustc_data_structures::sync::Lrc;
21 use rustc_target::spec::abi;
22 use crate::require_c_abi_if_c_variadic;
23 use smallvec::SmallVec;
24 use syntax::ast;
25 use syntax::feature_gate::{GateIssue, emit_feature_err};
26 use syntax::ptr::P;
27 use syntax::util::lev_distance::find_best_match_for_name;
28 use syntax_pos::{DUMMY_SP, Span, MultiSpan};
29 use crate::util::common::ErrorReported;
30 use crate::util::nodemap::FxHashMap;
31
32 use std::collections::BTreeSet;
33 use std::iter;
34 use std::slice;
35
36 use super::{check_type_alias_enum_variants_enabled};
37 use rustc_data_structures::fx::FxHashSet;
38
39 #[derive(Debug)]
40 pub struct PathSeg(pub DefId, pub usize);
41
42 pub trait AstConv<'gcx, 'tcx> {
43     fn tcx<'a>(&'a self) -> TyCtxt<'a, 'gcx, 'tcx>;
44
45     /// Returns the set of bounds in scope for the type parameter with
46     /// the given id.
47     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId)
48                                  -> Lrc<ty::GenericPredicates<'tcx>>;
49
50     /// What lifetime should we use when a lifetime is omitted (and not elided)?
51     fn re_infer(&self, span: Span, _def: Option<&ty::GenericParamDef>)
52                 -> Option<ty::Region<'tcx>>;
53
54     /// What type should we use when a type is omitted?
55     fn ty_infer(&self, span: Span) -> Ty<'tcx>;
56
57     /// Same as ty_infer, but with a known type parameter definition.
58     fn ty_infer_for_def(&self,
59                         _def: &ty::GenericParamDef,
60                         span: Span) -> Ty<'tcx> {
61         self.ty_infer(span)
62     }
63
64     /// Projecting an associated type from a (potentially)
65     /// higher-ranked trait reference is more complicated, because of
66     /// the possibility of late-bound regions appearing in the
67     /// associated type binding. This is not legal in function
68     /// signatures for that reason. In a function body, we can always
69     /// handle it because we can use inference variables to remove the
70     /// late-bound regions.
71     fn projected_ty_from_poly_trait_ref(&self,
72                                         span: Span,
73                                         item_def_id: DefId,
74                                         poly_trait_ref: ty::PolyTraitRef<'tcx>)
75                                         -> Ty<'tcx>;
76
77     /// Normalize an associated type coming from the user.
78     fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;
79
80     /// Invoked when we encounter an error from some prior pass
81     /// (e.g., resolve) that is translated into a ty-error. This is
82     /// used to help suppress derived errors typeck might otherwise
83     /// report.
84     fn set_tainted_by_errors(&self);
85
86     fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, span: Span);
87 }
88
89 struct ConvertedBinding<'tcx> {
90     item_name: ast::Ident,
91     ty: Ty<'tcx>,
92     span: Span,
93 }
94
95 #[derive(PartialEq)]
96 enum GenericArgPosition {
97     Type,
98     Value, // e.g., functions
99     MethodCall,
100 }
101
102 /// Dummy type used for the `Self` of a `TraitRef` created for converting
103 /// a trait object, and which gets removed in `ExistentialTraitRef`.
104 /// This type must not appear anywhere in other converted types.
105 const TRAIT_OBJECT_DUMMY_SELF: ty::TyKind<'static> = ty::Infer(ty::FreshTy(0));
106
107 impl<'o, 'gcx: 'tcx, 'tcx> dyn AstConv<'gcx, 'tcx> + 'o {
108     pub fn ast_region_to_region(&self,
109         lifetime: &hir::Lifetime,
110         def: Option<&ty::GenericParamDef>)
111         -> ty::Region<'tcx>
112     {
113         let tcx = self.tcx();
114         let lifetime_name = |def_id| {
115             tcx.hir().name_by_hir_id(tcx.hir().as_local_hir_id(def_id).unwrap()).as_interned_str()
116         };
117
118         let r = match tcx.named_region(lifetime.hir_id) {
119             Some(rl::Region::Static) => {
120                 tcx.types.re_static
121             }
122
123             Some(rl::Region::LateBound(debruijn, id, _)) => {
124                 let name = lifetime_name(id);
125                 tcx.mk_region(ty::ReLateBound(debruijn,
126                     ty::BrNamed(id, name)))
127             }
128
129             Some(rl::Region::LateBoundAnon(debruijn, index)) => {
130                 tcx.mk_region(ty::ReLateBound(debruijn, ty::BrAnon(index)))
131             }
132
133             Some(rl::Region::EarlyBound(index, id, _)) => {
134                 let name = lifetime_name(id);
135                 tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
136                     def_id: id,
137                     index,
138                     name,
139                 }))
140             }
141
142             Some(rl::Region::Free(scope, id)) => {
143                 let name = lifetime_name(id);
144                 tcx.mk_region(ty::ReFree(ty::FreeRegion {
145                     scope,
146                     bound_region: ty::BrNamed(id, name)
147                 }))
148
149                 // (*) -- not late-bound, won't change
150             }
151
152             None => {
153                 self.re_infer(lifetime.span, def)
154                     .unwrap_or_else(|| {
155                         // This indicates an illegal lifetime
156                         // elision. `resolve_lifetime` should have
157                         // reported an error in this case -- but if
158                         // not, let's error out.
159                         tcx.sess.delay_span_bug(lifetime.span, "unelided lifetime in signature");
160
161                         // Supply some dummy value. We don't have an
162                         // `re_error`, annoyingly, so use `'static`.
163                         tcx.types.re_static
164                     })
165             }
166         };
167
168         debug!("ast_region_to_region(lifetime={:?}) yields {:?}",
169                lifetime,
170                r);
171
172         r
173     }
174
175     /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
176     /// returns an appropriate set of substitutions for this particular reference to `I`.
177     pub fn ast_path_substs_for_ty(&self,
178         span: Span,
179         def_id: DefId,
180         item_segment: &hir::PathSegment)
181         -> SubstsRef<'tcx>
182     {
183         let (substs, assoc_bindings, _) = item_segment.with_generic_args(|generic_args| {
184             self.create_substs_for_ast_path(
185                 span,
186                 def_id,
187                 generic_args,
188                 item_segment.infer_types,
189                 None,
190             )
191         });
192
193         assoc_bindings.first().map(|b| Self::prohibit_assoc_ty_binding(self.tcx(), b.span));
194
195         substs
196     }
197
198     /// Report error if there is an explicit type parameter when using `impl Trait`.
199     fn check_impl_trait(
200         tcx: TyCtxt<'_, '_, '_>,
201         span: Span,
202         seg: &hir::PathSegment,
203         generics: &ty::Generics,
204     ) -> bool {
205         let explicit = !seg.infer_types;
206         let impl_trait = generics.params.iter().any(|param| match param.kind {
207             ty::GenericParamDefKind::Type {
208                 synthetic: Some(hir::SyntheticTyParamKind::ImplTrait), ..
209             } => true,
210             _ => false,
211         });
212
213         if explicit && impl_trait {
214             let mut err = struct_span_err! {
215                 tcx.sess,
216                 span,
217                 E0632,
218                 "cannot provide explicit type parameters when `impl Trait` is \
219                  used in argument position."
220             };
221
222             err.emit();
223         }
224
225         impl_trait
226     }
227
228     /// Checks that the correct number of generic arguments have been provided.
229     /// Used specifically for function calls.
230     pub fn check_generic_arg_count_for_call(
231         tcx: TyCtxt<'_, '_, '_>,
232         span: Span,
233         def: &ty::Generics,
234         seg: &hir::PathSegment,
235         is_method_call: bool,
236     ) -> bool {
237         let empty_args = P(hir::GenericArgs {
238             args: HirVec::new(), bindings: HirVec::new(), parenthesized: false,
239         });
240         let suppress_mismatch = Self::check_impl_trait(tcx, span, seg, &def);
241         Self::check_generic_arg_count(
242             tcx,
243             span,
244             def,
245             if let Some(ref args) = seg.args {
246                 args
247             } else {
248                 &empty_args
249             },
250             if is_method_call {
251                 GenericArgPosition::MethodCall
252             } else {
253                 GenericArgPosition::Value
254             },
255             def.parent.is_none() && def.has_self, // `has_self`
256             seg.infer_types || suppress_mismatch, // `infer_types`
257         ).0
258     }
259
260     /// Checks that the correct number of generic arguments have been provided.
261     /// This is used both for datatypes and function calls.
262     fn check_generic_arg_count(
263         tcx: TyCtxt<'_, '_, '_>,
264         span: Span,
265         def: &ty::Generics,
266         args: &hir::GenericArgs,
267         position: GenericArgPosition,
268         has_self: bool,
269         infer_types: bool,
270     ) -> (bool, Option<Vec<Span>>) {
271         // At this stage we are guaranteed that the generic arguments are in the correct order, e.g.
272         // that lifetimes will proceed types. So it suffices to check the number of each generic
273         // arguments in order to validate them with respect to the generic parameters.
274         let param_counts = def.own_counts();
275         let arg_counts = args.own_counts();
276         let infer_lifetimes = position != GenericArgPosition::Type && arg_counts.lifetimes == 0;
277         let infer_consts = position != GenericArgPosition::Type && arg_counts.consts == 0;
278
279         let mut defaults: ty::GenericParamCount = Default::default();
280         for param in &def.params {
281             match param.kind {
282                 GenericParamDefKind::Lifetime => {}
283                 GenericParamDefKind::Type { has_default, .. } => {
284                     defaults.types += has_default as usize
285                 }
286                 GenericParamDefKind::Const => {
287                     // FIXME(const_generics:defaults)
288                 }
289             };
290         }
291
292         if position != GenericArgPosition::Type && !args.bindings.is_empty() {
293             AstConv::prohibit_assoc_ty_binding(tcx, args.bindings[0].span);
294         }
295
296         // Prohibit explicit lifetime arguments if late-bound lifetime parameters are present.
297         if !infer_lifetimes {
298             if let Some(span_late) = def.has_late_bound_regions {
299                 let msg = "cannot specify lifetime arguments explicitly \
300                            if late bound lifetime parameters are present";
301                 let note = "the late bound lifetime parameter is introduced here";
302                 let span = args.args[0].span();
303                 if position == GenericArgPosition::Value
304                     && arg_counts.lifetimes != param_counts.lifetimes {
305                     let mut err = tcx.sess.struct_span_err(span, msg);
306                     err.span_note(span_late, note);
307                     err.emit();
308                     return (true, None);
309                 } else {
310                     let mut multispan = MultiSpan::from_span(span);
311                     multispan.push_span_label(span_late, note.to_string());
312                     tcx.lint_hir(lint::builtin::LATE_BOUND_LIFETIME_ARGUMENTS,
313                                  args.args[0].id(), multispan, msg);
314                     return (false, None);
315                 }
316             }
317         }
318
319         let check_kind_count = |kind, required, permitted, provided, offset| {
320             debug!(
321                 "check_kind_count: kind: {} required: {} permitted: {} provided: {} offset: {}",
322                 kind,
323                 required,
324                 permitted,
325                 provided,
326                 offset
327             );
328             // We enforce the following: `required` <= `provided` <= `permitted`.
329             // For kinds without defaults (i.e., lifetimes), `required == permitted`.
330             // For other kinds (i.e., types), `permitted` may be greater than `required`.
331             if required <= provided && provided <= permitted {
332                 return (false, None);
333             }
334
335             // Unfortunately lifetime and type parameter mismatches are typically styled
336             // differently in diagnostics, which means we have a few cases to consider here.
337             let (bound, quantifier) = if required != permitted {
338                 if provided < required {
339                     (required, "at least ")
340                 } else { // provided > permitted
341                     (permitted, "at most ")
342                 }
343             } else {
344                 (required, "")
345             };
346
347             let mut potential_assoc_types: Option<Vec<Span>> = None;
348             let (spans, label) = if required == permitted && provided > permitted {
349                 // In the case when the user has provided too many arguments,
350                 // we want to point to the unexpected arguments.
351                 let spans: Vec<Span> = args.args[offset+permitted .. offset+provided]
352                         .iter()
353                         .map(|arg| arg.span())
354                         .collect();
355                 potential_assoc_types = Some(spans.clone());
356                 (spans, format!( "unexpected {} argument", kind))
357             } else {
358                 (vec![span], format!(
359                     "expected {}{} {} argument{}",
360                     quantifier,
361                     bound,
362                     kind,
363                     if bound != 1 { "s" } else { "" },
364                 ))
365             };
366
367             let mut err = tcx.sess.struct_span_err_with_code(
368                 spans.clone(),
369                 &format!(
370                     "wrong number of {} arguments: expected {}{}, found {}",
371                     kind,
372                     quantifier,
373                     bound,
374                     provided,
375                 ),
376                 DiagnosticId::Error("E0107".into())
377             );
378             for span in spans {
379                 err.span_label(span, label.as_str());
380             }
381             err.emit();
382
383             (provided > required, // `suppress_error`
384              potential_assoc_types)
385         };
386
387         if !infer_lifetimes || arg_counts.lifetimes > param_counts.lifetimes {
388             check_kind_count(
389                 "lifetime",
390                 param_counts.lifetimes,
391                 param_counts.lifetimes,
392                 arg_counts.lifetimes,
393                 0,
394             );
395         }
396         // FIXME(const_generics:defaults)
397         if !infer_consts || arg_counts.consts > param_counts.consts {
398             check_kind_count(
399                 "const",
400                 param_counts.consts,
401                 param_counts.consts,
402                 arg_counts.consts,
403                 arg_counts.lifetimes + arg_counts.types,
404             );
405         }
406         // Note that type errors are currently be emitted *after* const errors.
407         if !infer_types
408             || arg_counts.types > param_counts.types - defaults.types - has_self as usize {
409             check_kind_count(
410                 "type",
411                 param_counts.types - defaults.types - has_self as usize,
412                 param_counts.types - has_self as usize,
413                 arg_counts.types,
414                 arg_counts.lifetimes,
415             )
416         } else {
417             (false, None)
418         }
419     }
420
421     /// Creates the relevant generic argument substitutions
422     /// corresponding to a set of generic parameters. This is a
423     /// rather complex function. Let us try to explain the role
424     /// of each of its parameters:
425     ///
426     /// To start, we are given the `def_id` of the thing we are
427     /// creating the substitutions for, and a partial set of
428     /// substitutions `parent_substs`. In general, the substitutions
429     /// for an item begin with substitutions for all the "parents" of
430     /// that item -- e.g., for a method it might include the
431     /// parameters from the impl.
432     ///
433     /// Therefore, the method begins by walking down these parents,
434     /// starting with the outermost parent and proceed inwards until
435     /// it reaches `def_id`. For each parent `P`, it will check `parent_substs`
436     /// first to see if the parent's substitutions are listed in there. If so,
437     /// we can append those and move on. Otherwise, it invokes the
438     /// three callback functions:
439     ///
440     /// - `args_for_def_id`: given the `DefId` `P`, supplies back the
441     ///   generic arguments that were given to that parent from within
442     ///   the path; so e.g., if you have `<T as Foo>::Bar`, the `DefId`
443     ///   might refer to the trait `Foo`, and the arguments might be
444     ///   `[T]`. The boolean value indicates whether to infer values
445     ///   for arguments whose values were not explicitly provided.
446     /// - `provided_kind`: given the generic parameter and the value from `args_for_def_id`,
447     ///   instantiate a `Kind`.
448     /// - `inferred_kind`: if no parameter was provided, and inference is enabled, then
449     ///   creates a suitable inference variable.
450     pub fn create_substs_for_generic_args<'a, 'b>(
451         tcx: TyCtxt<'a, 'gcx, 'tcx>,
452         def_id: DefId,
453         parent_substs: &[Kind<'tcx>],
454         has_self: bool,
455         self_ty: Option<Ty<'tcx>>,
456         args_for_def_id: impl Fn(DefId) -> (Option<&'b GenericArgs>, bool),
457         provided_kind: impl Fn(&GenericParamDef, &GenericArg) -> Kind<'tcx>,
458         inferred_kind: impl Fn(Option<&[Kind<'tcx>]>, &GenericParamDef, bool) -> Kind<'tcx>,
459     ) -> SubstsRef<'tcx> {
460         // Collect the segments of the path; we need to substitute arguments
461         // for parameters throughout the entire path (wherever there are
462         // generic parameters).
463         let mut parent_defs = tcx.generics_of(def_id);
464         let count = parent_defs.count();
465         let mut stack = vec![(def_id, parent_defs)];
466         while let Some(def_id) = parent_defs.parent {
467             parent_defs = tcx.generics_of(def_id);
468             stack.push((def_id, parent_defs));
469         }
470
471         // We manually build up the substitution, rather than using convenience
472         // methods in `subst.rs`, so that we can iterate over the arguments and
473         // parameters in lock-step linearly, instead of trying to match each pair.
474         let mut substs: SmallVec<[Kind<'tcx>; 8]> = SmallVec::with_capacity(count);
475
476         // Iterate over each segment of the path.
477         while let Some((def_id, defs)) = stack.pop() {
478             let mut params = defs.params.iter().peekable();
479
480             // If we have already computed substitutions for parents, we can use those directly.
481             while let Some(&param) = params.peek() {
482                 if let Some(&kind) = parent_substs.get(param.index as usize) {
483                     substs.push(kind);
484                     params.next();
485                 } else {
486                     break;
487                 }
488             }
489
490             // `Self` is handled first, unless it's been handled in `parent_substs`.
491             if has_self {
492                 if let Some(&param) = params.peek() {
493                     if param.index == 0 {
494                         if let GenericParamDefKind::Type { .. } = param.kind {
495                             substs.push(self_ty.map(|ty| ty.into())
496                                 .unwrap_or_else(|| inferred_kind(None, param, true)));
497                             params.next();
498                         }
499                     }
500                 }
501             }
502
503             // Check whether this segment takes generic arguments and the user has provided any.
504             let (generic_args, infer_types) = args_for_def_id(def_id);
505
506             let mut args = generic_args.iter().flat_map(|generic_args| generic_args.args.iter())
507                 .peekable();
508
509             loop {
510                 // We're going to iterate through the generic arguments that the user
511                 // provided, matching them with the generic parameters we expect.
512                 // Mismatches can occur as a result of elided lifetimes, or for malformed
513                 // input. We try to handle both sensibly.
514                 match (args.peek(), params.peek()) {
515                     (Some(&arg), Some(&param)) => {
516                         match (arg, &param.kind) {
517                             (GenericArg::Lifetime(_), GenericParamDefKind::Lifetime)
518                             | (GenericArg::Type(_), GenericParamDefKind::Type { .. })
519                             | (GenericArg::Const(_), GenericParamDefKind::Const) => {
520                                 substs.push(provided_kind(param, arg));
521                                 args.next();
522                                 params.next();
523                             }
524                             (GenericArg::Type(_), GenericParamDefKind::Lifetime)
525                             | (GenericArg::Const(_), GenericParamDefKind::Lifetime) => {
526                                 // We expected a lifetime argument, but got a type or const
527                                 // argument. That means we're inferring the lifetimes.
528                                 substs.push(inferred_kind(None, param, infer_types));
529                                 params.next();
530                             }
531                             (_, _) => {
532                                 // We expected one kind of parameter, but the user provided
533                                 // another. This is an error, but we need to handle it
534                                 // gracefully so we can report sensible errors.
535                                 // In this case, we're simply going to infer this argument.
536                                 args.next();
537                             }
538                         }
539                     }
540                     (Some(_), None) => {
541                         // We should never be able to reach this point with well-formed input.
542                         // Getting to this point means the user supplied more arguments than
543                         // there are parameters.
544                         args.next();
545                     }
546                     (None, Some(&param)) => {
547                         // If there are fewer arguments than parameters, it means
548                         // we're inferring the remaining arguments.
549                         substs.push(inferred_kind(Some(&substs), param, infer_types));
550                         args.next();
551                         params.next();
552                     }
553                     (None, None) => break,
554                 }
555             }
556         }
557
558         tcx.intern_substs(&substs)
559     }
560
561     /// Given the type/region arguments provided to some path (along with
562     /// an implicit `Self`, if this is a trait reference) returns the complete
563     /// set of substitutions. This may involve applying defaulted type parameters.
564     ///
565     /// Note that the type listing given here is *exactly* what the user provided.
566     fn create_substs_for_ast_path(&self,
567         span: Span,
568         def_id: DefId,
569         generic_args: &hir::GenericArgs,
570         infer_types: bool,
571         self_ty: Option<Ty<'tcx>>)
572         -> (SubstsRef<'tcx>, Vec<ConvertedBinding<'tcx>>, Option<Vec<Span>>)
573     {
574         // If the type is parameterized by this region, then replace this
575         // region with the current anon region binding (in other words,
576         // whatever & would get replaced with).
577         debug!("create_substs_for_ast_path(def_id={:?}, self_ty={:?}, \
578                 generic_args={:?})",
579                def_id, self_ty, generic_args);
580
581         let tcx = self.tcx();
582         let generic_params = tcx.generics_of(def_id);
583
584         // If a self-type was declared, one should be provided.
585         assert_eq!(generic_params.has_self, self_ty.is_some());
586
587         let has_self = generic_params.has_self;
588         let (_, potential_assoc_types) = Self::check_generic_arg_count(
589             tcx,
590             span,
591             &generic_params,
592             &generic_args,
593             GenericArgPosition::Type,
594             has_self,
595             infer_types,
596         );
597
598         let is_object = self_ty.map_or(false, |ty| ty.sty == TRAIT_OBJECT_DUMMY_SELF);
599         let default_needs_object_self = |param: &ty::GenericParamDef| {
600             if let GenericParamDefKind::Type { has_default, .. } = param.kind {
601                 if is_object && has_default {
602                     if tcx.at(span).type_of(param.def_id).has_self_ty() {
603                         // There is no suitable inference default for a type parameter
604                         // that references self, in an object type.
605                         return true;
606                     }
607                 }
608             }
609
610             false
611         };
612
613         let substs = Self::create_substs_for_generic_args(
614             tcx,
615             def_id,
616             &[][..],
617             self_ty.is_some(),
618             self_ty,
619             // Provide the generic args, and whether types should be inferred.
620             |_| (Some(generic_args), infer_types),
621             // Provide substitutions for parameters for which (valid) arguments have been provided.
622             |param, arg| {
623                 match (&param.kind, arg) {
624                     (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
625                         self.ast_region_to_region(&lt, Some(param)).into()
626                     }
627                     (GenericParamDefKind::Type { .. }, GenericArg::Type(ty)) => {
628                         self.ast_ty_to_ty(&ty).into()
629                     }
630                     (GenericParamDefKind::Const, GenericArg::Const(ct)) => {
631                         self.ast_const_to_const(&ct.value, tcx.type_of(param.def_id)).into()
632                     }
633                     _ => unreachable!(),
634                 }
635             },
636             // Provide substitutions for parameters for which arguments are inferred.
637             |substs, param, infer_types| {
638                 match param.kind {
639                     GenericParamDefKind::Lifetime => tcx.types.re_static.into(),
640                     GenericParamDefKind::Type { has_default, .. } => {
641                         if !infer_types && has_default {
642                             // No type parameter provided, but a default exists.
643
644                             // If we are converting an object type, then the
645                             // `Self` parameter is unknown. However, some of the
646                             // other type parameters may reference `Self` in their
647                             // defaults. This will lead to an ICE if we are not
648                             // careful!
649                             if default_needs_object_self(param) {
650                                 struct_span_err!(tcx.sess, span, E0393,
651                                                     "the type parameter `{}` must be explicitly \
652                                                      specified",
653                                                     param.name)
654                                     .span_label(span,
655                                                 format!("missing reference to `{}`", param.name))
656                                     .note(&format!("because of the default `Self` reference, \
657                                                     type parameters must be specified on object \
658                                                     types"))
659                                     .emit();
660                                 tcx.types.err.into()
661                             } else {
662                                 // This is a default type parameter.
663                                 self.normalize_ty(
664                                     span,
665                                     tcx.at(span).type_of(param.def_id)
666                                        .subst_spanned(tcx, substs.unwrap(), Some(span))
667                                 ).into()
668                             }
669                         } else if infer_types {
670                             // No type parameters were provided, we can infer all.
671                             if !default_needs_object_self(param) {
672                                 self.ty_infer_for_def(param, span).into()
673                             } else {
674                                 self.ty_infer(span).into()
675                             }
676                         } else {
677                             // We've already errored above about the mismatch.
678                             tcx.types.err.into()
679                         }
680                     }
681                     GenericParamDefKind::Const => {
682                         // FIXME(const_generics:defaults)
683                         // We've already errored above about the mismatch.
684                         tcx.types.err.into()
685                     }
686                 }
687             },
688         );
689
690         let assoc_bindings = generic_args.bindings.iter().map(|binding| {
691             ConvertedBinding {
692                 item_name: binding.ident,
693                 ty: self.ast_ty_to_ty(&binding.ty),
694                 span: binding.span,
695             }
696         }).collect();
697
698         debug!("create_substs_for_ast_path(generic_params={:?}, self_ty={:?}) -> {:?}",
699                generic_params, self_ty, substs);
700
701         (substs, assoc_bindings, potential_assoc_types)
702     }
703
704     /// Instantiates the path for the given trait reference, assuming that it's
705     /// bound to a valid trait type. Returns the def_id for the defining trait.
706     /// The type _cannot_ be a type other than a trait type.
707     ///
708     /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T = X>`
709     /// are disallowed. Otherwise, they are pushed onto the vector given.
710     pub fn instantiate_mono_trait_ref(&self,
711         trait_ref: &hir::TraitRef,
712         self_ty: Ty<'tcx>)
713         -> ty::TraitRef<'tcx>
714     {
715         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
716
717         self.ast_path_to_mono_trait_ref(trait_ref.path.span,
718                                         trait_ref.trait_def_id(),
719                                         self_ty,
720                                         trait_ref.path.segments.last().unwrap())
721     }
722
723     /// The given trait-ref must actually be a trait.
724     pub(super) fn instantiate_poly_trait_ref_inner(&self,
725         trait_ref: &hir::TraitRef,
726         self_ty: Ty<'tcx>,
727         poly_projections: &mut Vec<(ty::PolyProjectionPredicate<'tcx>, Span)>,
728         speculative: bool)
729         -> (ty::PolyTraitRef<'tcx>, Option<Vec<Span>>)
730     {
731         let trait_def_id = trait_ref.trait_def_id();
732
733         debug!("instantiate_poly_trait_ref({:?}, def_id={:?})", trait_ref, trait_def_id);
734
735         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
736
737         let (substs, assoc_bindings, potential_assoc_types) = self.create_substs_for_ast_trait_ref(
738             trait_ref.path.span,
739             trait_def_id,
740             self_ty,
741             trait_ref.path.segments.last().unwrap(),
742         );
743         let poly_trait_ref = ty::Binder::bind(ty::TraitRef::new(trait_def_id, substs));
744
745         let mut dup_bindings = FxHashMap::default();
746         poly_projections.extend(assoc_bindings.iter().filter_map(|binding| {
747             // specify type to assert that error was already reported in Err case:
748             let predicate: Result<_, ErrorReported> =
749                 self.ast_type_binding_to_poly_projection_predicate(
750                     trait_ref.hir_ref_id, poly_trait_ref, binding, speculative, &mut dup_bindings);
751             // okay to ignore Err because of ErrorReported (see above)
752             Some((predicate.ok()?, binding.span))
753         }));
754
755         debug!("instantiate_poly_trait_ref({:?}, projections={:?}) -> {:?}",
756                trait_ref, poly_projections, poly_trait_ref);
757         (poly_trait_ref, potential_assoc_types)
758     }
759
760     pub fn instantiate_poly_trait_ref(&self,
761         poly_trait_ref: &hir::PolyTraitRef,
762         self_ty: Ty<'tcx>,
763         poly_projections: &mut Vec<(ty::PolyProjectionPredicate<'tcx>, Span)>)
764         -> (ty::PolyTraitRef<'tcx>, Option<Vec<Span>>)
765     {
766         self.instantiate_poly_trait_ref_inner(&poly_trait_ref.trait_ref, self_ty,
767                                               poly_projections, false)
768     }
769
770     fn ast_path_to_mono_trait_ref(&self,
771                                   span: Span,
772                                   trait_def_id: DefId,
773                                   self_ty: Ty<'tcx>,
774                                   trait_segment: &hir::PathSegment)
775                                   -> ty::TraitRef<'tcx>
776     {
777         let (substs, assoc_bindings, _) =
778             self.create_substs_for_ast_trait_ref(span,
779                                                  trait_def_id,
780                                                  self_ty,
781                                                  trait_segment);
782         assoc_bindings.first().map(|b| AstConv::prohibit_assoc_ty_binding(self.tcx(), b.span));
783         ty::TraitRef::new(trait_def_id, substs)
784     }
785
786     fn create_substs_for_ast_trait_ref(
787         &self,
788         span: Span,
789         trait_def_id: DefId,
790         self_ty: Ty<'tcx>,
791         trait_segment: &hir::PathSegment,
792     ) -> (SubstsRef<'tcx>, Vec<ConvertedBinding<'tcx>>, Option<Vec<Span>>) {
793         debug!("create_substs_for_ast_trait_ref(trait_segment={:?})",
794                trait_segment);
795
796         let trait_def = self.tcx().trait_def(trait_def_id);
797
798         if !self.tcx().features().unboxed_closures &&
799             trait_segment.with_generic_args(|generic_args| generic_args.parenthesized)
800             != trait_def.paren_sugar {
801             // For now, require that parenthetical notation be used only with `Fn()` etc.
802             let msg = if trait_def.paren_sugar {
803                 "the precise format of `Fn`-family traits' type parameters is subject to change. \
804                  Use parenthetical notation (Fn(Foo, Bar) -> Baz) instead"
805             } else {
806                 "parenthetical notation is only stable when used with `Fn`-family traits"
807             };
808             emit_feature_err(&self.tcx().sess.parse_sess, "unboxed_closures",
809                              span, GateIssue::Language, msg);
810         }
811
812         trait_segment.with_generic_args(|generic_args| {
813             self.create_substs_for_ast_path(span,
814                                             trait_def_id,
815                                             generic_args,
816                                             trait_segment.infer_types,
817                                             Some(self_ty))
818         })
819     }
820
821     fn trait_defines_associated_type_named(&self,
822                                            trait_def_id: DefId,
823                                            assoc_name: ast::Ident)
824                                            -> bool
825     {
826         self.tcx().associated_items(trait_def_id).any(|item| {
827             item.kind == ty::AssociatedKind::Type &&
828             self.tcx().hygienic_eq(assoc_name, item.ident, trait_def_id)
829         })
830     }
831
832     fn ast_type_binding_to_poly_projection_predicate(
833         &self,
834         hir_ref_id: hir::HirId,
835         trait_ref: ty::PolyTraitRef<'tcx>,
836         binding: &ConvertedBinding<'tcx>,
837         speculative: bool,
838         dup_bindings: &mut FxHashMap<DefId, Span>)
839         -> Result<ty::PolyProjectionPredicate<'tcx>, ErrorReported>
840     {
841         let tcx = self.tcx();
842
843         if !speculative {
844             // Given something like `U: SomeTrait<T = X>`, we want to produce a
845             // predicate like `<U as SomeTrait>::T = X`. This is somewhat
846             // subtle in the event that `T` is defined in a supertrait of
847             // `SomeTrait`, because in that case we need to upcast.
848             //
849             // That is, consider this case:
850             //
851             // ```
852             // trait SubTrait: SuperTrait<int> { }
853             // trait SuperTrait<A> { type T; }
854             //
855             // ... B : SubTrait<T=foo> ...
856             // ```
857             //
858             // We want to produce `<B as SuperTrait<int>>::T == foo`.
859
860             // Find any late-bound regions declared in `ty` that are not
861             // declared in the trait-ref. These are not wellformed.
862             //
863             // Example:
864             //
865             //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
866             //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
867             let late_bound_in_trait_ref = tcx.collect_constrained_late_bound_regions(&trait_ref);
868             let late_bound_in_ty =
869                 tcx.collect_referenced_late_bound_regions(&ty::Binder::bind(binding.ty));
870             debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
871             debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
872             for br in late_bound_in_ty.difference(&late_bound_in_trait_ref) {
873                 let br_name = match *br {
874                     ty::BrNamed(_, name) => name,
875                     _ => {
876                         span_bug!(
877                             binding.span,
878                             "anonymous bound region {:?} in binding but not trait ref",
879                             br);
880                     }
881                 };
882                 struct_span_err!(tcx.sess,
883                                 binding.span,
884                                 E0582,
885                                 "binding for associated type `{}` references lifetime `{}`, \
886                                  which does not appear in the trait input types",
887                                 binding.item_name, br_name)
888                     .emit();
889             }
890         }
891
892         let candidate = if self.trait_defines_associated_type_named(trait_ref.def_id(),
893                                                                     binding.item_name) {
894             // Simple case: X is defined in the current trait.
895             Ok(trait_ref)
896         } else {
897             // Otherwise, we have to walk through the supertraits to find
898             // those that do.
899             let candidates = traits::supertraits(tcx, trait_ref).filter(|r| {
900                 self.trait_defines_associated_type_named(r.def_id(), binding.item_name)
901             });
902             self.one_bound_for_assoc_type(candidates, &trait_ref.to_string(),
903                                           binding.item_name, binding.span)
904         }?;
905
906         let (assoc_ident, def_scope) =
907             tcx.adjust_ident(binding.item_name, candidate.def_id(), hir_ref_id);
908         let assoc_ty = tcx.associated_items(candidate.def_id()).find(|i| {
909             i.kind == ty::AssociatedKind::Type && i.ident.modern() == assoc_ident
910         }).expect("missing associated type");
911
912         if !assoc_ty.vis.is_accessible_from(def_scope, tcx) {
913             let msg = format!("associated type `{}` is private", binding.item_name);
914             tcx.sess.span_err(binding.span, &msg);
915         }
916         tcx.check_stability(assoc_ty.def_id, Some(hir_ref_id), binding.span);
917
918         if !speculative {
919             dup_bindings.entry(assoc_ty.def_id)
920                 .and_modify(|prev_span| {
921                     struct_span_err!(self.tcx().sess, binding.span, E0719,
922                                      "the value of the associated type `{}` (from the trait `{}`) \
923                                       is already specified",
924                                      binding.item_name,
925                                      tcx.item_path_str(assoc_ty.container.id()))
926                         .span_label(binding.span, "re-bound here")
927                         .span_label(*prev_span, format!("`{}` bound here first", binding.item_name))
928                         .emit();
929                 })
930                 .or_insert(binding.span);
931         }
932
933         Ok(candidate.map_bound(|trait_ref| {
934             ty::ProjectionPredicate {
935                 projection_ty: ty::ProjectionTy::from_ref_and_name(
936                     tcx,
937                     trait_ref,
938                     binding.item_name,
939                 ),
940                 ty: binding.ty,
941             }
942         }))
943     }
944
945     fn ast_path_to_ty(&self,
946         span: Span,
947         did: DefId,
948         item_segment: &hir::PathSegment)
949         -> Ty<'tcx>
950     {
951         let substs = self.ast_path_substs_for_ty(span, did, item_segment);
952         self.normalize_ty(
953             span,
954             self.tcx().at(span).type_of(did).subst(self.tcx(), substs)
955         )
956     }
957
958     /// Transform a `PolyTraitRef` into a `PolyExistentialTraitRef` by
959     /// removing the dummy `Self` type (`TRAIT_OBJECT_DUMMY_SELF`).
960     fn trait_ref_to_existential(&self, trait_ref: ty::TraitRef<'tcx>)
961                                 -> ty::ExistentialTraitRef<'tcx> {
962         if trait_ref.self_ty().sty != TRAIT_OBJECT_DUMMY_SELF {
963             bug!("trait_ref_to_existential called on {:?} with non-dummy Self", trait_ref);
964         }
965         ty::ExistentialTraitRef::erase_self_ty(self.tcx(), trait_ref)
966     }
967
968     fn conv_object_ty_poly_trait_ref(&self,
969         span: Span,
970         trait_bounds: &[hir::PolyTraitRef],
971         lifetime: &hir::Lifetime)
972         -> Ty<'tcx>
973     {
974         let tcx = self.tcx();
975
976         if trait_bounds.is_empty() {
977             span_err!(tcx.sess, span, E0224,
978                       "at least one non-builtin trait is required for an object type");
979             return tcx.types.err;
980         }
981
982         let mut projection_bounds = Vec::new();
983         let dummy_self = tcx.mk_ty(TRAIT_OBJECT_DUMMY_SELF);
984         let (principal, potential_assoc_types) = self.instantiate_poly_trait_ref(
985             &trait_bounds[0],
986             dummy_self,
987             &mut projection_bounds,
988         );
989         debug!("principal: {:?}", principal);
990
991         for trait_bound in trait_bounds[1..].iter() {
992             // sanity check for non-principal trait bounds
993             self.instantiate_poly_trait_ref(trait_bound,
994                                             dummy_self,
995                                             &mut vec![]);
996         }
997
998         let (mut auto_traits, trait_bounds) = split_auto_traits(tcx, &trait_bounds[1..]);
999
1000         if !trait_bounds.is_empty() {
1001             let b = &trait_bounds[0];
1002             let span = b.trait_ref.path.span;
1003             struct_span_err!(self.tcx().sess, span, E0225,
1004                 "only auto traits can be used as additional traits in a trait object")
1005                 .span_label(span, "non-auto additional trait")
1006                 .emit();
1007         }
1008
1009         // Check that there are no gross object safety violations;
1010         // most importantly, that the supertraits don't contain `Self`,
1011         // to avoid ICEs.
1012         let object_safety_violations =
1013             tcx.global_tcx().astconv_object_safety_violations(principal.def_id());
1014         if !object_safety_violations.is_empty() {
1015             tcx.report_object_safety_error(
1016                 span, principal.def_id(), object_safety_violations)
1017                .emit();
1018             return tcx.types.err;
1019         }
1020
1021         // Use a `BTreeSet` to keep output in a more consistent order.
1022         let mut associated_types = BTreeSet::default();
1023
1024         for tr in traits::elaborate_trait_ref(tcx, principal) {
1025             debug!("conv_object_ty_poly_trait_ref: observing object predicate `{:?}`", tr);
1026             match tr {
1027                 ty::Predicate::Trait(pred) => {
1028                     associated_types.extend(tcx.associated_items(pred.def_id())
1029                                     .filter(|item| item.kind == ty::AssociatedKind::Type)
1030                                     .map(|item| item.def_id));
1031                 }
1032                 ty::Predicate::Projection(pred) => {
1033                     // A `Self` within the original bound will be substituted with a
1034                     // `TRAIT_OBJECT_DUMMY_SELF`, so check for that.
1035                     let references_self =
1036                         pred.skip_binder().ty.walk().any(|t| t == dummy_self);
1037
1038                     // If the projection output contains `Self`, force the user to
1039                     // elaborate it explicitly to avoid a bunch of complexity.
1040                     //
1041                     // The "classicaly useful" case is the following:
1042                     // ```
1043                     //     trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
1044                     //         type MyOutput;
1045                     //     }
1046                     // ```
1047                     //
1048                     // Here, the user could theoretically write `dyn MyTrait<Output=X>`,
1049                     // but actually supporting that would "expand" to an infinitely-long type
1050                     // `fix $ Ï„ â†’ dyn MyTrait<MyOutput=X, Output=<Ï„ as MyTrait>::MyOutput`.
1051                     //
1052                     // Instead, we force the user to write `dyn MyTrait<MyOutput=X, Output=X>`,
1053                     // which is uglier but works. See the discussion in #56288 for alternatives.
1054                     if !references_self {
1055                         // Include projections defined on supertraits,
1056                         projection_bounds.push((pred, DUMMY_SP))
1057                     }
1058                 }
1059                 _ => ()
1060             }
1061         }
1062
1063         for (projection_bound, _) in &projection_bounds {
1064             associated_types.remove(&projection_bound.projection_def_id());
1065         }
1066
1067         if !associated_types.is_empty() {
1068             let names = associated_types.iter().map(|item_def_id| {
1069                 let assoc_item = tcx.associated_item(*item_def_id);
1070                 let trait_def_id = assoc_item.container.id();
1071                 format!(
1072                     "`{}` (from the trait `{}`)",
1073                     assoc_item.ident,
1074                     tcx.item_path_str(trait_def_id),
1075                 )
1076             }).collect::<Vec<_>>().join(", ");
1077             let mut err = struct_span_err!(
1078                 tcx.sess,
1079                 span,
1080                 E0191,
1081                 "the value of the associated type{} {} must be specified",
1082                 if associated_types.len() == 1 { "" } else { "s" },
1083                 names,
1084             );
1085             let mut suggest = false;
1086             let mut potential_assoc_types_spans = vec![];
1087             if let Some(potential_assoc_types) = potential_assoc_types {
1088                 if potential_assoc_types.len() == associated_types.len() {
1089                     // Only suggest when the amount of missing associated types is equals to the
1090                     // extra type arguments present, as that gives us a relatively high confidence
1091                     // that the user forgot to give the associtated type's name. The canonical
1092                     // example would be trying to use `Iterator<isize>` instead of
1093                     // `Iterator<Item=isize>`.
1094                     suggest = true;
1095                     potential_assoc_types_spans = potential_assoc_types;
1096                 }
1097             }
1098             let mut suggestions = vec![];
1099             for (i, item_def_id) in associated_types.iter().enumerate() {
1100                 let assoc_item = tcx.associated_item(*item_def_id);
1101                 err.span_label(
1102                     span,
1103                     format!("associated type `{}` must be specified", assoc_item.ident),
1104                 );
1105                 if item_def_id.is_local() {
1106                     err.span_label(
1107                         tcx.def_span(*item_def_id),
1108                         format!("`{}` defined here", assoc_item.ident),
1109                     );
1110                 }
1111                 if suggest {
1112                     if let Ok(snippet) = tcx.sess.source_map().span_to_snippet(
1113                         potential_assoc_types_spans[i],
1114                     ) {
1115                         suggestions.push((
1116                             potential_assoc_types_spans[i],
1117                             format!("{} = {}", assoc_item.ident, snippet),
1118                         ));
1119                     }
1120                 }
1121             }
1122             if !suggestions.is_empty() {
1123                 let msg = format!("if you meant to specify the associated {}, write",
1124                     if suggestions.len() == 1 { "type" } else { "types" });
1125                 err.multipart_suggestion(
1126                     &msg,
1127                     suggestions,
1128                     Applicability::MaybeIncorrect,
1129                 );
1130             }
1131             err.emit();
1132         }
1133
1134         // Erase the `dummy_self` (`TRAIT_OBJECT_DUMMY_SELF`) used above.
1135         let existential_principal = principal.map_bound(|trait_ref| {
1136             self.trait_ref_to_existential(trait_ref)
1137         });
1138         let existential_projections = projection_bounds.iter().map(|(bound, _)| {
1139             bound.map_bound(|b| {
1140                 let trait_ref = self.trait_ref_to_existential(b.projection_ty.trait_ref(tcx));
1141                 ty::ExistentialProjection {
1142                     ty: b.ty,
1143                     item_def_id: b.projection_ty.item_def_id,
1144                     substs: trait_ref.substs,
1145                 }
1146             })
1147         });
1148
1149         // Dedup auto traits so that `dyn Trait + Send + Send` is the same as `dyn Trait + Send`.
1150         auto_traits.sort();
1151         auto_traits.dedup();
1152
1153         // Calling `skip_binder` is okay, because the predicates are re-bound.
1154         let principal = if tcx.trait_is_auto(existential_principal.def_id()) {
1155             ty::ExistentialPredicate::AutoTrait(existential_principal.def_id())
1156         } else {
1157             ty::ExistentialPredicate::Trait(*existential_principal.skip_binder())
1158         };
1159         let mut v =
1160             iter::once(principal)
1161             .chain(auto_traits.into_iter().map(ty::ExistentialPredicate::AutoTrait))
1162             .chain(existential_projections
1163                 .map(|x| ty::ExistentialPredicate::Projection(*x.skip_binder())))
1164             .collect::<SmallVec<[_; 8]>>();
1165         v.sort_by(|a, b| a.stable_cmp(tcx, b));
1166         v.dedup();
1167         let existential_predicates = ty::Binder::bind(tcx.mk_existential_predicates(v.into_iter()));
1168
1169         // Use explicitly-specified region bound.
1170         let region_bound = if !lifetime.is_elided() {
1171             self.ast_region_to_region(lifetime, None)
1172         } else {
1173             self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
1174                 if tcx.named_region(lifetime.hir_id).is_some() {
1175                     self.ast_region_to_region(lifetime, None)
1176                 } else {
1177                     self.re_infer(span, None).unwrap_or_else(|| {
1178                         span_err!(tcx.sess, span, E0228,
1179                                   "the lifetime bound for this object type cannot be deduced \
1180                                    from context; please supply an explicit bound");
1181                         tcx.types.re_static
1182                     })
1183                 }
1184             })
1185         };
1186
1187         debug!("region_bound: {:?}", region_bound);
1188
1189         let ty = tcx.mk_dynamic(existential_predicates, region_bound);
1190         debug!("trait_object_type: {:?}", ty);
1191         ty
1192     }
1193
1194     fn report_ambiguous_associated_type(&self,
1195                                         span: Span,
1196                                         type_str: &str,
1197                                         trait_str: &str,
1198                                         name: &str) {
1199         struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type")
1200             .span_suggestion(
1201                 span,
1202                 "use fully-qualified syntax",
1203                 format!("<{} as {}>::{}", type_str, trait_str, name),
1204                 Applicability::HasPlaceholders
1205             ).emit();
1206     }
1207
1208     // Search for a bound on a type parameter which includes the associated item
1209     // given by `assoc_name`. `ty_param_def_id` is the `DefId` for the type parameter
1210     // This function will fail if there are no suitable bounds or there is
1211     // any ambiguity.
1212     fn find_bound_for_assoc_item(&self,
1213                                  ty_param_def_id: DefId,
1214                                  assoc_name: ast::Ident,
1215                                  span: Span)
1216                                  -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
1217     {
1218         let tcx = self.tcx();
1219
1220         let predicates = &self.get_type_parameter_bounds(span, ty_param_def_id).predicates;
1221         let bounds = predicates.iter().filter_map(|(p, _)| p.to_opt_poly_trait_ref());
1222
1223         // Check that there is exactly one way to find an associated type with the
1224         // correct name.
1225         let suitable_bounds = traits::transitive_bounds(tcx, bounds)
1226             .filter(|b| self.trait_defines_associated_type_named(b.def_id(), assoc_name));
1227
1228         let param_hir_id = tcx.hir().as_local_hir_id(ty_param_def_id).unwrap();
1229         let param_name = tcx.hir().ty_param_name(param_hir_id);
1230         self.one_bound_for_assoc_type(suitable_bounds,
1231                                       &param_name.as_str(),
1232                                       assoc_name,
1233                                       span)
1234     }
1235
1236     // Checks that `bounds` contains exactly one element and reports appropriate
1237     // errors otherwise.
1238     fn one_bound_for_assoc_type<I>(&self,
1239                                    mut bounds: I,
1240                                    ty_param_name: &str,
1241                                    assoc_name: ast::Ident,
1242                                    span: Span)
1243         -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
1244         where I: Iterator<Item=ty::PolyTraitRef<'tcx>>
1245     {
1246         let bound = match bounds.next() {
1247             Some(bound) => bound,
1248             None => {
1249                 struct_span_err!(self.tcx().sess, span, E0220,
1250                                  "associated type `{}` not found for `{}`",
1251                                  assoc_name,
1252                                  ty_param_name)
1253                   .span_label(span, format!("associated type `{}` not found", assoc_name))
1254                   .emit();
1255                 return Err(ErrorReported);
1256             }
1257         };
1258
1259         if let Some(bound2) = bounds.next() {
1260             let bounds = iter::once(bound).chain(iter::once(bound2)).chain(bounds);
1261             let mut err = struct_span_err!(
1262                 self.tcx().sess, span, E0221,
1263                 "ambiguous associated type `{}` in bounds of `{}`",
1264                 assoc_name,
1265                 ty_param_name);
1266             err.span_label(span, format!("ambiguous associated type `{}`", assoc_name));
1267
1268             for bound in bounds {
1269                 let bound_span = self.tcx().associated_items(bound.def_id()).find(|item| {
1270                     item.kind == ty::AssociatedKind::Type &&
1271                         self.tcx().hygienic_eq(assoc_name, item.ident, bound.def_id())
1272                 })
1273                 .and_then(|item| self.tcx().hir().span_if_local(item.def_id));
1274
1275                 if let Some(span) = bound_span {
1276                     err.span_label(span, format!("ambiguous `{}` from `{}`",
1277                                                  assoc_name,
1278                                                  bound));
1279                 } else {
1280                     span_note!(&mut err, span,
1281                                "associated type `{}` could derive from `{}`",
1282                                ty_param_name,
1283                                bound);
1284                 }
1285             }
1286             err.emit();
1287         }
1288
1289         return Ok(bound);
1290     }
1291
1292     // Create a type from a path to an associated type.
1293     // For a path `A::B::C::D`, `qself_ty` and `qself_def` are the type and def for `A::B::C`
1294     // and item_segment is the path segment for `D`. We return a type and a def for
1295     // the whole path.
1296     // Will fail except for `T::A` and `Self::A`; i.e., if `qself_ty`/`qself_def` are not a type
1297     // parameter or `Self`.
1298     pub fn associated_path_to_ty(
1299         &self,
1300         hir_ref_id: hir::HirId,
1301         span: Span,
1302         qself_ty: Ty<'tcx>,
1303         qself_def: Def,
1304         assoc_segment: &hir::PathSegment,
1305         permit_variants: bool,
1306     ) -> (Ty<'tcx>, Def) {
1307         let tcx = self.tcx();
1308         let assoc_ident = assoc_segment.ident;
1309
1310         debug!("associated_path_to_ty: {:?}::{}", qself_ty, assoc_ident);
1311
1312         self.prohibit_generics(slice::from_ref(assoc_segment));
1313
1314         // Check if we have an enum variant.
1315         let mut variant_resolution = None;
1316         if let ty::Adt(adt_def, _) = qself_ty.sty {
1317             if adt_def.is_enum() {
1318                 let variant_def = adt_def.variants.iter().find(|vd| {
1319                     tcx.hygienic_eq(assoc_ident, vd.ident, adt_def.did)
1320                 });
1321                 if let Some(variant_def) = variant_def {
1322                     let def = Def::Variant(variant_def.did);
1323                     if permit_variants {
1324                         check_type_alias_enum_variants_enabled(tcx, span);
1325                         tcx.check_stability(variant_def.did, Some(hir_ref_id), span);
1326                         return (qself_ty, def);
1327                     } else {
1328                         variant_resolution = Some(def);
1329                     }
1330                 }
1331             }
1332         }
1333
1334         // Find the type of the associated item, and the trait where the associated
1335         // item is declared.
1336         let bound = match (&qself_ty.sty, qself_def) {
1337             (_, Def::SelfTy(Some(_), Some(impl_def_id))) => {
1338                 // `Self` in an impl of a trait -- we have a concrete self type and a
1339                 // trait reference.
1340                 let trait_ref = match tcx.impl_trait_ref(impl_def_id) {
1341                     Some(trait_ref) => trait_ref,
1342                     None => {
1343                         // A cycle error occurred, most likely.
1344                         return (tcx.types.err, Def::Err);
1345                     }
1346                 };
1347
1348                 let candidates = traits::supertraits(tcx, ty::Binder::bind(trait_ref))
1349                     .filter(|r| self.trait_defines_associated_type_named(r.def_id(), assoc_ident));
1350
1351                 match self.one_bound_for_assoc_type(candidates, "Self", assoc_ident, span) {
1352                     Ok(bound) => bound,
1353                     Err(ErrorReported) => return (tcx.types.err, Def::Err),
1354                 }
1355             }
1356             (&ty::Param(_), Def::SelfTy(Some(param_did), None)) |
1357             (&ty::Param(_), Def::TyParam(param_did)) => {
1358                 match self.find_bound_for_assoc_item(param_did, assoc_ident, span) {
1359                     Ok(bound) => bound,
1360                     Err(ErrorReported) => return (tcx.types.err, Def::Err),
1361                 }
1362             }
1363             _ => {
1364                 if variant_resolution.is_some() {
1365                     // Variant in type position
1366                     let msg = format!("expected type, found variant `{}`", assoc_ident);
1367                     tcx.sess.span_err(span, &msg);
1368                 } else if qself_ty.is_enum() {
1369                     // Report as incorrect enum variant rather than ambiguous type.
1370                     let mut err = tcx.sess.struct_span_err(
1371                         span,
1372                         &format!("no variant `{}` on enum `{}`", &assoc_ident.as_str(), qself_ty),
1373                     );
1374                     // Check if it was a typo.
1375                     let adt_def = qself_ty.ty_adt_def().expect("enum is not an ADT");
1376                     if let Some(suggested_name) = find_best_match_for_name(
1377                         adt_def.variants.iter().map(|variant| &variant.ident.name),
1378                         &assoc_ident.as_str(),
1379                         None,
1380                     ) {
1381                         err.span_suggestion(
1382                             span,
1383                             "did you mean",
1384                             format!("{}::{}", qself_ty, suggested_name),
1385                             Applicability::MaybeIncorrect,
1386                         );
1387                     } else {
1388                         err.span_label(span, "unknown variant");
1389                     }
1390                     err.emit();
1391                 } else if !qself_ty.references_error() {
1392                     // Don't print `TyErr` to the user.
1393                     self.report_ambiguous_associated_type(span,
1394                                                           &qself_ty.to_string(),
1395                                                           "Trait",
1396                                                           &assoc_ident.as_str());
1397                 }
1398                 return (tcx.types.err, Def::Err);
1399             }
1400         };
1401
1402         let trait_did = bound.def_id();
1403         let (assoc_ident, def_scope) = tcx.adjust_ident(assoc_ident, trait_did, hir_ref_id);
1404         let item = tcx.associated_items(trait_did).find(|i| {
1405             Namespace::from(i.kind) == Namespace::Type &&
1406                 i.ident.modern() == assoc_ident
1407         }).expect("missing associated type");
1408
1409         let ty = self.projected_ty_from_poly_trait_ref(span, item.def_id, bound);
1410         let ty = self.normalize_ty(span, ty);
1411
1412         let def = Def::AssociatedTy(item.def_id);
1413         if !item.vis.is_accessible_from(def_scope, tcx) {
1414             let msg = format!("{} `{}` is private", def.kind_name(), assoc_ident);
1415             tcx.sess.span_err(span, &msg);
1416         }
1417         tcx.check_stability(item.def_id, Some(hir_ref_id), span);
1418
1419         if let Some(variant_def) = variant_resolution {
1420             let mut err = tcx.struct_span_lint_hir(
1421                 AMBIGUOUS_ASSOCIATED_ITEMS,
1422                 hir_ref_id,
1423                 span,
1424                 "ambiguous associated item",
1425             );
1426
1427             let mut could_refer_to = |def: Def, also| {
1428                 let note_msg = format!("`{}` could{} refer to {} defined here",
1429                                        assoc_ident, also, def.kind_name());
1430                 err.span_note(tcx.def_span(def.def_id()), &note_msg);
1431             };
1432             could_refer_to(variant_def, "");
1433             could_refer_to(def, " also");
1434
1435             err.span_suggestion(
1436                 span,
1437                 "use fully-qualified syntax",
1438                 format!("<{} as {}>::{}", qself_ty, "Trait", assoc_ident),
1439                 Applicability::HasPlaceholders,
1440             ).emit();
1441         }
1442
1443         (ty, def)
1444     }
1445
1446     fn qpath_to_ty(&self,
1447                    span: Span,
1448                    opt_self_ty: Option<Ty<'tcx>>,
1449                    item_def_id: DefId,
1450                    trait_segment: &hir::PathSegment,
1451                    item_segment: &hir::PathSegment)
1452                    -> Ty<'tcx>
1453     {
1454         let tcx = self.tcx();
1455         let trait_def_id = tcx.parent_def_id(item_def_id).unwrap();
1456
1457         self.prohibit_generics(slice::from_ref(item_segment));
1458
1459         let self_ty = if let Some(ty) = opt_self_ty {
1460             ty
1461         } else {
1462             let path_str = tcx.item_path_str(trait_def_id);
1463             self.report_ambiguous_associated_type(span,
1464                                                   "Type",
1465                                                   &path_str,
1466                                                   &item_segment.ident.as_str());
1467             return tcx.types.err;
1468         };
1469
1470         debug!("qpath_to_ty: self_type={:?}", self_ty);
1471
1472         let trait_ref = self.ast_path_to_mono_trait_ref(span,
1473                                                         trait_def_id,
1474                                                         self_ty,
1475                                                         trait_segment);
1476
1477         debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
1478
1479         self.normalize_ty(span, tcx.mk_projection(item_def_id, trait_ref.substs))
1480     }
1481
1482     pub fn prohibit_generics<'a, T: IntoIterator<Item = &'a hir::PathSegment>>(
1483             &self, segments: T) -> bool {
1484         let mut has_err = false;
1485         for segment in segments {
1486             segment.with_generic_args(|generic_args| {
1487                 let (mut err_for_lt, mut err_for_ty, mut err_for_ct) = (false, false, false);
1488                 for arg in &generic_args.args {
1489                     let (mut span_err, span, kind) = match arg {
1490                         // FIXME(varkor): unify E0109, E0110 and E0111.
1491                         hir::GenericArg::Lifetime(lt) => {
1492                             if err_for_lt { continue }
1493                             err_for_lt = true;
1494                             has_err = true;
1495                             (struct_span_err!(self.tcx().sess, lt.span, E0110,
1496                                               "lifetime arguments are not allowed on this entity"),
1497                              lt.span,
1498                              "lifetime")
1499                         }
1500                         hir::GenericArg::Type(ty) => {
1501                             if err_for_ty { continue }
1502                             err_for_ty = true;
1503                             has_err = true;
1504                             (struct_span_err!(self.tcx().sess, ty.span, E0109,
1505                                               "type arguments are not allowed on this entity"),
1506                              ty.span,
1507                              "type")
1508                         }
1509                         hir::GenericArg::Const(ct) => {
1510                             if err_for_ct { continue }
1511                             err_for_ct = true;
1512                             (struct_span_err!(self.tcx().sess, ct.span, E0111,
1513                                               "const parameters are not allowed on this type"),
1514                              ct.span,
1515                              "const")
1516                         }
1517                     };
1518                     span_err.span_label(span, format!("{} argument not allowed", kind))
1519                             .emit();
1520                     if err_for_lt && err_for_ty && err_for_ct {
1521                         break;
1522                     }
1523                 }
1524                 for binding in &generic_args.bindings {
1525                     has_err = true;
1526                     Self::prohibit_assoc_ty_binding(self.tcx(), binding.span);
1527                     break;
1528                 }
1529             })
1530         }
1531         has_err
1532     }
1533
1534     pub fn prohibit_assoc_ty_binding(tcx: TyCtxt<'_, '_, '_>, span: Span) {
1535         let mut err = struct_span_err!(tcx.sess, span, E0229,
1536                                        "associated type bindings are not allowed here");
1537         err.span_label(span, "associated type not allowed here").emit();
1538     }
1539
1540     pub fn def_ids_for_path_segments(&self,
1541                                      segments: &[hir::PathSegment],
1542                                      self_ty: Option<Ty<'tcx>>,
1543                                      def: Def)
1544                                      -> Vec<PathSeg> {
1545         // We need to extract the type parameters supplied by the user in
1546         // the path `path`. Due to the current setup, this is a bit of a
1547         // tricky-process; the problem is that resolve only tells us the
1548         // end-point of the path resolution, and not the intermediate steps.
1549         // Luckily, we can (at least for now) deduce the intermediate steps
1550         // just from the end-point.
1551         //
1552         // There are basically five cases to consider:
1553         //
1554         // 1. Reference to a constructor of a struct:
1555         //
1556         //        struct Foo<T>(...)
1557         //
1558         //    In this case, the parameters are declared in the type space.
1559         //
1560         // 2. Reference to a constructor of an enum variant:
1561         //
1562         //        enum E<T> { Foo(...) }
1563         //
1564         //    In this case, the parameters are defined in the type space,
1565         //    but may be specified either on the type or the variant.
1566         //
1567         // 3. Reference to a fn item or a free constant:
1568         //
1569         //        fn foo<T>() { }
1570         //
1571         //    In this case, the path will again always have the form
1572         //    `a::b::foo::<T>` where only the final segment should have
1573         //    type parameters. However, in this case, those parameters are
1574         //    declared on a value, and hence are in the `FnSpace`.
1575         //
1576         // 4. Reference to a method or an associated constant:
1577         //
1578         //        impl<A> SomeStruct<A> {
1579         //            fn foo<B>(...)
1580         //        }
1581         //
1582         //    Here we can have a path like
1583         //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
1584         //    may appear in two places. The penultimate segment,
1585         //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
1586         //    final segment, `foo::<B>` contains parameters in fn space.
1587         //
1588         // 5. Reference to a local variable
1589         //
1590         //    Local variables can't have any type parameters.
1591         //
1592         // The first step then is to categorize the segments appropriately.
1593
1594         let tcx = self.tcx();
1595
1596         assert!(!segments.is_empty());
1597         let last = segments.len() - 1;
1598
1599         let mut path_segs = vec![];
1600
1601         match def {
1602             // Case 1. Reference to a struct constructor.
1603             Def::StructCtor(def_id, ..) |
1604             Def::SelfCtor(.., def_id) => {
1605                 // Everything but the final segment should have no
1606                 // parameters at all.
1607                 let generics = tcx.generics_of(def_id);
1608                 // Variant and struct constructors use the
1609                 // generics of their parent type definition.
1610                 let generics_def_id = generics.parent.unwrap_or(def_id);
1611                 path_segs.push(PathSeg(generics_def_id, last));
1612             }
1613
1614             // Case 2. Reference to a variant constructor.
1615             Def::Variant(def_id) |
1616             Def::VariantCtor(def_id, ..) => {
1617                 let adt_def = self_ty.map(|t| t.ty_adt_def().unwrap());
1618                 let (generics_def_id, index) = if let Some(adt_def) = adt_def {
1619                     debug_assert!(adt_def.is_enum());
1620                     (adt_def.did, last)
1621                 } else if last >= 1 && segments[last - 1].args.is_some() {
1622                     // Everything but the penultimate segment should have no
1623                     // parameters at all.
1624                     let enum_def_id = tcx.parent_def_id(def_id).unwrap();
1625                     (enum_def_id, last - 1)
1626                 } else {
1627                     // FIXME: lint here recommending `Enum::<...>::Variant` form
1628                     // instead of `Enum::Variant::<...>` form.
1629
1630                     // Everything but the final segment should have no
1631                     // parameters at all.
1632                     let generics = tcx.generics_of(def_id);
1633                     // Variant and struct constructors use the
1634                     // generics of their parent type definition.
1635                     (generics.parent.unwrap_or(def_id), last)
1636                 };
1637                 path_segs.push(PathSeg(generics_def_id, index));
1638             }
1639
1640             // Case 3. Reference to a top-level value.
1641             Def::Fn(def_id) |
1642             Def::Const(def_id) |
1643             Def::ConstParam(def_id) |
1644             Def::Static(def_id, _) => {
1645                 path_segs.push(PathSeg(def_id, last));
1646             }
1647
1648             // Case 4. Reference to a method or associated const.
1649             Def::Method(def_id) |
1650             Def::AssociatedConst(def_id) => {
1651                 if segments.len() >= 2 {
1652                     let generics = tcx.generics_of(def_id);
1653                     path_segs.push(PathSeg(generics.parent.unwrap(), last - 1));
1654                 }
1655                 path_segs.push(PathSeg(def_id, last));
1656             }
1657
1658             // Case 5. Local variable, no generics.
1659             Def::Local(..) | Def::Upvar(..) => {}
1660
1661             _ => bug!("unexpected definition: {:?}", def),
1662         }
1663
1664         debug!("path_segs = {:?}", path_segs);
1665
1666         path_segs
1667     }
1668
1669     // Check a type `Path` and convert it to a `Ty`.
1670     pub fn def_to_ty(&self,
1671                      opt_self_ty: Option<Ty<'tcx>>,
1672                      path: &hir::Path,
1673                      permit_variants: bool)
1674                      -> Ty<'tcx> {
1675         let tcx = self.tcx();
1676
1677         debug!("def_to_ty(def={:?}, opt_self_ty={:?}, path_segments={:?})",
1678                path.def, opt_self_ty, path.segments);
1679
1680         let span = path.span;
1681         match path.def {
1682             Def::Existential(did) => {
1683                 // Check for desugared impl trait.
1684                 assert!(ty::is_impl_trait_defn(tcx, did).is_none());
1685                 let item_segment = path.segments.split_last().unwrap();
1686                 self.prohibit_generics(item_segment.1);
1687                 let substs = self.ast_path_substs_for_ty(span, did, item_segment.0);
1688                 self.normalize_ty(
1689                     span,
1690                     tcx.mk_opaque(did, substs),
1691                 )
1692             }
1693             Def::Enum(did) | Def::TyAlias(did) | Def::Struct(did) |
1694             Def::Union(did) | Def::ForeignTy(did) => {
1695                 assert_eq!(opt_self_ty, None);
1696                 self.prohibit_generics(path.segments.split_last().unwrap().1);
1697                 self.ast_path_to_ty(span, did, path.segments.last().unwrap())
1698             }
1699             Def::Variant(_) if permit_variants => {
1700                 // Convert "variant type" as if it were a real type.
1701                 // The resulting `Ty` is type of the variant's enum for now.
1702                 assert_eq!(opt_self_ty, None);
1703
1704                 let path_segs = self.def_ids_for_path_segments(&path.segments, None, path.def);
1705                 let generic_segs: FxHashSet<_> =
1706                     path_segs.iter().map(|PathSeg(_, index)| index).collect();
1707                 self.prohibit_generics(path.segments.iter().enumerate().filter_map(|(index, seg)| {
1708                     if !generic_segs.contains(&index) {
1709                         Some(seg)
1710                     } else {
1711                         None
1712                     }
1713                 }));
1714
1715                 let PathSeg(def_id, index) = path_segs.last().unwrap();
1716                 self.ast_path_to_ty(span, *def_id, &path.segments[*index])
1717             }
1718             Def::TyParam(did) => {
1719                 assert_eq!(opt_self_ty, None);
1720                 self.prohibit_generics(&path.segments);
1721
1722                 let hir_id = tcx.hir().as_local_hir_id(did).unwrap();
1723                 let item_id = tcx.hir().get_parent_node_by_hir_id(hir_id);
1724                 let item_def_id = tcx.hir().local_def_id_from_hir_id(item_id);
1725                 let generics = tcx.generics_of(item_def_id);
1726                 let index = generics.param_def_id_to_index[
1727                     &tcx.hir().local_def_id_from_hir_id(hir_id)];
1728                 tcx.mk_ty_param(index, tcx.hir().name_by_hir_id(hir_id).as_interned_str())
1729             }
1730             Def::SelfTy(_, Some(def_id)) => {
1731                 // `Self` in impl (we know the concrete type).
1732                 assert_eq!(opt_self_ty, None);
1733                 self.prohibit_generics(&path.segments);
1734                 // Try to evaluate any array length constants
1735                 self.normalize_ty(span, tcx.at(span).type_of(def_id))
1736             }
1737             Def::SelfTy(Some(_), None) => {
1738                 // `Self` in trait.
1739                 assert_eq!(opt_self_ty, None);
1740                 self.prohibit_generics(&path.segments);
1741                 tcx.mk_self_type()
1742             }
1743             Def::AssociatedTy(def_id) => {
1744                 debug_assert!(path.segments.len() >= 2);
1745                 self.prohibit_generics(&path.segments[..path.segments.len() - 2]);
1746                 self.qpath_to_ty(span,
1747                                  opt_self_ty,
1748                                  def_id,
1749                                  &path.segments[path.segments.len() - 2],
1750                                  path.segments.last().unwrap())
1751             }
1752             Def::PrimTy(prim_ty) => {
1753                 assert_eq!(opt_self_ty, None);
1754                 self.prohibit_generics(&path.segments);
1755                 match prim_ty {
1756                     hir::Bool => tcx.types.bool,
1757                     hir::Char => tcx.types.char,
1758                     hir::Int(it) => tcx.mk_mach_int(it),
1759                     hir::Uint(uit) => tcx.mk_mach_uint(uit),
1760                     hir::Float(ft) => tcx.mk_mach_float(ft),
1761                     hir::Str => tcx.mk_str()
1762                 }
1763             }
1764             Def::Err => {
1765                 self.set_tainted_by_errors();
1766                 return self.tcx().types.err;
1767             }
1768             _ => span_bug!(span, "unexpected definition: {:?}", path.def)
1769         }
1770     }
1771
1772     /// Parses the programmer's textual representation of a type into our
1773     /// internal notion of a type.
1774     pub fn ast_ty_to_ty(&self, ast_ty: &hir::Ty) -> Ty<'tcx> {
1775         debug!("ast_ty_to_ty(id={:?}, ast_ty={:?} ty_ty={:?})",
1776                ast_ty.hir_id, ast_ty, ast_ty.node);
1777
1778         let tcx = self.tcx();
1779
1780         let result_ty = match ast_ty.node {
1781             hir::TyKind::Slice(ref ty) => {
1782                 tcx.mk_slice(self.ast_ty_to_ty(&ty))
1783             }
1784             hir::TyKind::Ptr(ref mt) => {
1785                 tcx.mk_ptr(ty::TypeAndMut {
1786                     ty: self.ast_ty_to_ty(&mt.ty),
1787                     mutbl: mt.mutbl
1788                 })
1789             }
1790             hir::TyKind::Rptr(ref region, ref mt) => {
1791                 let r = self.ast_region_to_region(region, None);
1792                 debug!("Ref r={:?}", r);
1793                 let t = self.ast_ty_to_ty(&mt.ty);
1794                 tcx.mk_ref(r, ty::TypeAndMut {ty: t, mutbl: mt.mutbl})
1795             }
1796             hir::TyKind::Never => {
1797                 tcx.types.never
1798             },
1799             hir::TyKind::Tup(ref fields) => {
1800                 tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(&t)))
1801             }
1802             hir::TyKind::BareFn(ref bf) => {
1803                 require_c_abi_if_c_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
1804                 tcx.mk_fn_ptr(self.ty_of_fn(bf.unsafety, bf.abi, &bf.decl))
1805             }
1806             hir::TyKind::TraitObject(ref bounds, ref lifetime) => {
1807                 self.conv_object_ty_poly_trait_ref(ast_ty.span, bounds, lifetime)
1808             }
1809             hir::TyKind::Path(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
1810                 debug!("ast_ty_to_ty: maybe_qself={:?} path={:?}", maybe_qself, path);
1811                 let opt_self_ty = maybe_qself.as_ref().map(|qself| {
1812                     self.ast_ty_to_ty(qself)
1813                 });
1814                 self.def_to_ty(opt_self_ty, path, false)
1815             }
1816             hir::TyKind::Def(item_id, ref lifetimes) => {
1817                 let did = tcx.hir().local_def_id(item_id.id);
1818                 self.impl_trait_ty_to_ty(did, lifetimes)
1819             },
1820             hir::TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
1821                 debug!("ast_ty_to_ty: qself={:?} segment={:?}", qself, segment);
1822                 let ty = self.ast_ty_to_ty(qself);
1823
1824                 let def = if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = qself.node {
1825                     path.def
1826                 } else {
1827                     Def::Err
1828                 };
1829                 self.associated_path_to_ty(ast_ty.hir_id, ast_ty.span, ty, def, segment, false).0
1830             }
1831             hir::TyKind::Array(ref ty, ref length) => {
1832                 let length = self.ast_const_to_const(length, tcx.types.usize);
1833                 let array_ty = tcx.mk_ty(ty::Array(self.ast_ty_to_ty(&ty), length));
1834                 self.normalize_ty(ast_ty.span, array_ty)
1835             }
1836             hir::TyKind::Typeof(ref _e) => {
1837                 struct_span_err!(tcx.sess, ast_ty.span, E0516,
1838                                  "`typeof` is a reserved keyword but unimplemented")
1839                     .span_label(ast_ty.span, "reserved keyword")
1840                     .emit();
1841
1842                 tcx.types.err
1843             }
1844             hir::TyKind::Infer => {
1845                 // Infer also appears as the type of arguments or return
1846                 // values in a ExprKind::Closure, or as
1847                 // the type of local variables. Both of these cases are
1848                 // handled specially and will not descend into this routine.
1849                 self.ty_infer(ast_ty.span)
1850             }
1851             hir::TyKind::Err => {
1852                 tcx.types.err
1853             }
1854             hir::TyKind::CVarArgs(lt) => {
1855                 let va_list_did = match tcx.lang_items().va_list() {
1856                     Some(did) => did,
1857                     None => span_bug!(ast_ty.span,
1858                                       "`va_list` lang item required for variadics"),
1859                 };
1860                 let region = self.ast_region_to_region(&lt, None);
1861                 tcx.type_of(va_list_did).subst(tcx, &[region.into()])
1862             }
1863         };
1864
1865         self.record_ty(ast_ty.hir_id, result_ty, ast_ty.span);
1866         result_ty
1867     }
1868
1869     pub fn ast_const_to_const(
1870         &self,
1871         ast_const: &hir::AnonConst,
1872         ty: Ty<'tcx>
1873     ) -> &'tcx ty::LazyConst<'tcx> {
1874         debug!("ast_const_to_const(id={:?}, ast_const={:?})", ast_const.hir_id, ast_const);
1875
1876         let tcx = self.tcx();
1877         let def_id = tcx.hir().local_def_id_from_hir_id(ast_const.hir_id);
1878
1879         let mut lazy_const = ty::LazyConst::Unevaluated(
1880             def_id,
1881             InternalSubsts::identity_for_item(tcx, def_id),
1882         );
1883
1884         let expr = &tcx.hir().body(ast_const.body).value;
1885         if let ExprKind::Path(ref qpath) = expr.node {
1886             if let hir::QPath::Resolved(_, ref path) = qpath {
1887                 if let Def::ConstParam(def_id) = path.def {
1888                     let node_id = tcx.hir().as_local_node_id(def_id).unwrap();
1889                     let item_id = tcx.hir().get_parent_node(node_id);
1890                     let item_def_id = tcx.hir().local_def_id(item_id);
1891                     let generics = tcx.generics_of(item_def_id);
1892                     let index = generics.param_def_id_to_index[&tcx.hir().local_def_id(node_id)];
1893                     let name = tcx.hir().name(node_id).as_interned_str();
1894                     lazy_const = ty::LazyConst::Evaluated(ty::Const {
1895                         val: ConstValue::Param(ty::ParamConst::new(index, name)),
1896                         ty,
1897                     })
1898                 }
1899             }
1900         };
1901
1902         tcx.mk_lazy_const(lazy_const)
1903     }
1904
1905     pub fn impl_trait_ty_to_ty(
1906         &self,
1907         def_id: DefId,
1908         lifetimes: &[hir::GenericArg],
1909     ) -> Ty<'tcx> {
1910         debug!("impl_trait_ty_to_ty(def_id={:?}, lifetimes={:?})", def_id, lifetimes);
1911         let tcx = self.tcx();
1912
1913         let generics = tcx.generics_of(def_id);
1914
1915         debug!("impl_trait_ty_to_ty: generics={:?}", generics);
1916         let substs = InternalSubsts::for_item(tcx, def_id, |param, _| {
1917             if let Some(i) = (param.index as usize).checked_sub(generics.parent_count) {
1918                 // Our own parameters are the resolved lifetimes.
1919                 match param.kind {
1920                     GenericParamDefKind::Lifetime => {
1921                         if let hir::GenericArg::Lifetime(lifetime) = &lifetimes[i] {
1922                             self.ast_region_to_region(lifetime, None).into()
1923                         } else {
1924                             bug!()
1925                         }
1926                     }
1927                     _ => bug!()
1928                 }
1929             } else {
1930                 // Replace all parent lifetimes with 'static.
1931                 match param.kind {
1932                     GenericParamDefKind::Lifetime => {
1933                         tcx.types.re_static.into()
1934                     }
1935                     _ => tcx.mk_param_from_def(param)
1936                 }
1937             }
1938         });
1939         debug!("impl_trait_ty_to_ty: final substs = {:?}", substs);
1940
1941         let ty = tcx.mk_opaque(def_id, substs);
1942         debug!("impl_trait_ty_to_ty: {}", ty);
1943         ty
1944     }
1945
1946     pub fn ty_of_arg(&self,
1947                      ty: &hir::Ty,
1948                      expected_ty: Option<Ty<'tcx>>)
1949                      -> Ty<'tcx>
1950     {
1951         match ty.node {
1952             hir::TyKind::Infer if expected_ty.is_some() => {
1953                 self.record_ty(ty.hir_id, expected_ty.unwrap(), ty.span);
1954                 expected_ty.unwrap()
1955             }
1956             _ => self.ast_ty_to_ty(ty),
1957         }
1958     }
1959
1960     pub fn ty_of_fn(&self,
1961                     unsafety: hir::Unsafety,
1962                     abi: abi::Abi,
1963                     decl: &hir::FnDecl)
1964                     -> ty::PolyFnSig<'tcx> {
1965         debug!("ty_of_fn");
1966
1967         let tcx = self.tcx();
1968         let input_tys =
1969             decl.inputs.iter().map(|a| self.ty_of_arg(a, None));
1970
1971         let output_ty = match decl.output {
1972             hir::Return(ref output) => self.ast_ty_to_ty(output),
1973             hir::DefaultReturn(..) => tcx.mk_unit(),
1974         };
1975
1976         debug!("ty_of_fn: output_ty={:?}", output_ty);
1977
1978         let bare_fn_ty = ty::Binder::bind(tcx.mk_fn_sig(
1979             input_tys,
1980             output_ty,
1981             decl.c_variadic,
1982             unsafety,
1983             abi
1984         ));
1985
1986         // Find any late-bound regions declared in return type that do
1987         // not appear in the arguments. These are not well-formed.
1988         //
1989         // Example:
1990         //     for<'a> fn() -> &'a str <-- 'a is bad
1991         //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
1992         let inputs = bare_fn_ty.inputs();
1993         let late_bound_in_args = tcx.collect_constrained_late_bound_regions(
1994             &inputs.map_bound(|i| i.to_owned()));
1995         let output = bare_fn_ty.output();
1996         let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
1997         for br in late_bound_in_ret.difference(&late_bound_in_args) {
1998             let lifetime_name = match *br {
1999                 ty::BrNamed(_, name) => format!("lifetime `{}`,", name),
2000                 ty::BrAnon(_) | ty::BrFresh(_) | ty::BrEnv => "an anonymous lifetime".to_string(),
2001             };
2002             let mut err = struct_span_err!(tcx.sess,
2003                                            decl.output.span(),
2004                                            E0581,
2005                                            "return type references {} \
2006                                             which is not constrained by the fn input types",
2007                                            lifetime_name);
2008             if let ty::BrAnon(_) = *br {
2009                 // The only way for an anonymous lifetime to wind up
2010                 // in the return type but **also** be unconstrained is
2011                 // if it only appears in "associated types" in the
2012                 // input. See #47511 for an example. In this case,
2013                 // though we can easily give a hint that ought to be
2014                 // relevant.
2015                 err.note("lifetimes appearing in an associated type \
2016                           are not considered constrained");
2017             }
2018             err.emit();
2019         }
2020
2021         bare_fn_ty
2022     }
2023
2024     /// Given the bounds on an object, determines what single region bound (if any) we can
2025     /// use to summarize this type. The basic idea is that we will use the bound the user
2026     /// provided, if they provided one, and otherwise search the supertypes of trait bounds
2027     /// for region bounds. It may be that we can derive no bound at all, in which case
2028     /// we return `None`.
2029     fn compute_object_lifetime_bound(&self,
2030         span: Span,
2031         existential_predicates: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>)
2032         -> Option<ty::Region<'tcx>> // if None, use the default
2033     {
2034         let tcx = self.tcx();
2035
2036         debug!("compute_opt_region_bound(existential_predicates={:?})",
2037                existential_predicates);
2038
2039         // No explicit region bound specified. Therefore, examine trait
2040         // bounds and see if we can derive region bounds from those.
2041         let derived_region_bounds =
2042             object_region_bounds(tcx, existential_predicates);
2043
2044         // If there are no derived region bounds, then report back that we
2045         // can find no region bound. The caller will use the default.
2046         if derived_region_bounds.is_empty() {
2047             return None;
2048         }
2049
2050         // If any of the derived region bounds are 'static, that is always
2051         // the best choice.
2052         if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
2053             return Some(tcx.types.re_static);
2054         }
2055
2056         // Determine whether there is exactly one unique region in the set
2057         // of derived region bounds. If so, use that. Otherwise, report an
2058         // error.
2059         let r = derived_region_bounds[0];
2060         if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
2061             span_err!(tcx.sess, span, E0227,
2062                       "ambiguous lifetime bound, explicit lifetime bound required");
2063         }
2064         return Some(r);
2065     }
2066 }
2067
2068 /// Divides a list of general trait bounds into two groups: auto traits (e.g., Sync and Send) and
2069 /// the remaining general trait bounds.
2070 fn split_auto_traits<'a, 'b, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
2071                                          trait_bounds: &'b [hir::PolyTraitRef])
2072     -> (Vec<DefId>, Vec<&'b hir::PolyTraitRef>)
2073 {
2074     let (auto_traits, trait_bounds): (Vec<_>, _) = trait_bounds.iter().partition(|bound| {
2075         // Checks whether `trait_did` is an auto trait and adds it to `auto_traits` if so.
2076         match bound.trait_ref.path.def {
2077             Def::Trait(trait_did) if tcx.trait_is_auto(trait_did) => {
2078                 true
2079             }
2080             _ => false
2081         }
2082     });
2083
2084     let auto_traits = auto_traits.into_iter().map(|tr| {
2085         if let Def::Trait(trait_did) = tr.trait_ref.path.def {
2086             trait_did
2087         } else {
2088             unreachable!()
2089         }
2090     }).collect::<Vec<_>>();
2091
2092     (auto_traits, trait_bounds)
2093 }
2094
2095 // A helper struct for conveniently grouping a set of bounds which we pass to
2096 // and return from functions in multiple places.
2097 #[derive(PartialEq, Eq, Clone, Debug)]
2098 pub struct Bounds<'tcx> {
2099     pub region_bounds: Vec<(ty::Region<'tcx>, Span)>,
2100     pub implicitly_sized: Option<Span>,
2101     pub trait_bounds: Vec<(ty::PolyTraitRef<'tcx>, Span)>,
2102     pub projection_bounds: Vec<(ty::PolyProjectionPredicate<'tcx>, Span)>,
2103 }
2104
2105 impl<'a, 'gcx, 'tcx> Bounds<'tcx> {
2106     pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, param_ty: Ty<'tcx>)
2107                       -> Vec<(ty::Predicate<'tcx>, Span)>
2108     {
2109         // If it could be sized, and is, add the sized predicate.
2110         let sized_predicate = self.implicitly_sized.and_then(|span| {
2111             tcx.lang_items().sized_trait().map(|sized| {
2112                 let trait_ref = ty::TraitRef {
2113                     def_id: sized,
2114                     substs: tcx.mk_substs_trait(param_ty, &[])
2115                 };
2116                 (trait_ref.to_predicate(), span)
2117             })
2118         });
2119
2120         sized_predicate.into_iter().chain(
2121             self.region_bounds.iter().map(|&(region_bound, span)| {
2122                 // Account for the binder being introduced below; no need to shift `param_ty`
2123                 // because, at present at least, it can only refer to early-bound regions.
2124                 let region_bound = ty::fold::shift_region(tcx, region_bound, 1);
2125                 let outlives = ty::OutlivesPredicate(param_ty, region_bound);
2126                 (ty::Binder::dummy(outlives).to_predicate(), span)
2127             }).chain(
2128                 self.trait_bounds.iter().map(|&(bound_trait_ref, span)| {
2129                     (bound_trait_ref.to_predicate(), span)
2130                 })
2131             ).chain(
2132                 self.projection_bounds.iter().map(|&(projection, span)| {
2133                     (projection.to_predicate(), span)
2134                 })
2135             )
2136         ).collect()
2137     }
2138 }