]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/astconv.rs
rustc: arena-allocate the slice in `ty::GenericsPredicate`, not the whole struct.
[rust.git] / src / librustc_typeck / astconv.rs
1 //! Conversion from AST representation of types to the `ty.rs` representation.
2 //! The main routine here is `ast_ty_to_ty()`; each use is parameterized by an
3 //! instance of `AstConv`.
4
5 use errors::{Applicability, DiagnosticId};
6 use crate::hir::{self, GenericArg, GenericArgs, ExprKind};
7 use crate::hir::def::{CtorOf, Res, DefKind};
8 use crate::hir::def_id::DefId;
9 use crate::hir::HirVec;
10 use crate::hir::ptr::P;
11 use crate::lint;
12 use crate::middle::lang_items::SizedTraitLangItem;
13 use crate::middle::resolve_lifetime as rl;
14 use crate::namespace::Namespace;
15 use rustc::lint::builtin::AMBIGUOUS_ASSOCIATED_ITEMS;
16 use rustc::traits;
17 use rustc::ty::{self, DefIdTree, Ty, TyCtxt, Const, ToPredicate, TypeFoldable};
18 use rustc::ty::{GenericParamDef, GenericParamDefKind};
19 use rustc::ty::subst::{self, Subst, InternalSubsts, SubstsRef};
20 use rustc::ty::wf::object_region_bounds;
21 use rustc::mir::interpret::ConstValue;
22 use rustc_target::spec::abi;
23 use crate::require_c_abi_if_c_variadic;
24 use smallvec::SmallVec;
25 use syntax::ast;
26 use syntax::errors::pluralise;
27 use syntax::feature_gate::{GateIssue, emit_feature_err};
28 use syntax::util::lev_distance::find_best_match_for_name;
29 use syntax::symbol::sym;
30 use syntax_pos::{DUMMY_SP, Span, MultiSpan};
31 use crate::util::common::ErrorReported;
32 use crate::util::nodemap::FxHashMap;
33
34 use std::collections::BTreeSet;
35 use std::iter;
36 use std::slice;
37
38 use rustc_data_structures::fx::FxHashSet;
39
40 #[derive(Debug)]
41 pub struct PathSeg(pub DefId, pub usize);
42
43 pub trait AstConv<'tcx> {
44     fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
45
46     /// Returns predicates in scope of the form `X: Foo`, where `X` is
47     /// a type parameter `X` with the given id `def_id`. This is a
48     /// subset of the full set of predicates.
49     ///
50     /// This is used for one specific purpose: resolving "short-hand"
51     /// associated type references like `T::Item`. In principle, we
52     /// would do that by first getting the full set of predicates in
53     /// scope and then filtering down to find those that apply to `T`,
54     /// but this can lead to cycle errors. The problem is that we have
55     /// to do this resolution *in order to create the predicates in
56     /// the first place*. Hence, we have this "special pass".
57     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId) -> ty::GenericPredicates<'tcx>;
58
59     /// Returns the lifetime to use when a lifetime is omitted (and not elided).
60     fn re_infer(
61         &self,
62         param: Option<&ty::GenericParamDef>,
63         span: Span,
64     )
65                 -> Option<ty::Region<'tcx>>;
66
67     /// Returns the type to use when a type is omitted.
68     fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx>;
69
70     /// Returns the const to use when a const is omitted.
71     fn ct_infer(
72         &self,
73         ty: Ty<'tcx>,
74         param: Option<&ty::GenericParamDef>,
75         span: Span,
76     ) -> &'tcx Const<'tcx>;
77
78     /// Projecting an associated type from a (potentially)
79     /// higher-ranked trait reference is more complicated, because of
80     /// the possibility of late-bound regions appearing in the
81     /// associated type binding. This is not legal in function
82     /// signatures for that reason. In a function body, we can always
83     /// handle it because we can use inference variables to remove the
84     /// late-bound regions.
85     fn projected_ty_from_poly_trait_ref(&self,
86                                         span: Span,
87                                         item_def_id: DefId,
88                                         poly_trait_ref: ty::PolyTraitRef<'tcx>)
89                                         -> Ty<'tcx>;
90
91     /// Normalize an associated type coming from the user.
92     fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;
93
94     /// Invoked when we encounter an error from some prior pass
95     /// (e.g., resolve) that is translated into a ty-error. This is
96     /// used to help suppress derived errors typeck might otherwise
97     /// report.
98     fn set_tainted_by_errors(&self);
99
100     fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, span: Span);
101 }
102
103 pub enum SizedByDefault {
104     Yes,
105     No,
106 }
107
108 struct ConvertedBinding<'a, 'tcx> {
109     item_name: ast::Ident,
110     kind: ConvertedBindingKind<'a, 'tcx>,
111     span: Span,
112 }
113
114 enum ConvertedBindingKind<'a, 'tcx> {
115     Equality(Ty<'tcx>),
116     Constraint(&'a [hir::GenericBound]),
117 }
118
119 #[derive(PartialEq)]
120 enum GenericArgPosition {
121     Type,
122     Value, // e.g., functions
123     MethodCall,
124 }
125
126 impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
127     pub fn ast_region_to_region(&self,
128         lifetime: &hir::Lifetime,
129         def: Option<&ty::GenericParamDef>)
130         -> ty::Region<'tcx>
131     {
132         let tcx = self.tcx();
133         let lifetime_name = |def_id| {
134             tcx.hir().name(tcx.hir().as_local_hir_id(def_id).unwrap()).as_interned_str()
135         };
136
137         let r = match tcx.named_region(lifetime.hir_id) {
138             Some(rl::Region::Static) => {
139                 tcx.lifetimes.re_static
140             }
141
142             Some(rl::Region::LateBound(debruijn, id, _)) => {
143                 let name = lifetime_name(id);
144                 tcx.mk_region(ty::ReLateBound(debruijn,
145                     ty::BrNamed(id, name)))
146             }
147
148             Some(rl::Region::LateBoundAnon(debruijn, index)) => {
149                 tcx.mk_region(ty::ReLateBound(debruijn, ty::BrAnon(index)))
150             }
151
152             Some(rl::Region::EarlyBound(index, id, _)) => {
153                 let name = lifetime_name(id);
154                 tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
155                     def_id: id,
156                     index,
157                     name,
158                 }))
159             }
160
161             Some(rl::Region::Free(scope, id)) => {
162                 let name = lifetime_name(id);
163                 tcx.mk_region(ty::ReFree(ty::FreeRegion {
164                     scope,
165                     bound_region: ty::BrNamed(id, name)
166                 }))
167
168                 // (*) -- not late-bound, won't change
169             }
170
171             None => {
172                 self.re_infer(def, lifetime.span)
173                     .unwrap_or_else(|| {
174                         // This indicates an illegal lifetime
175                         // elision. `resolve_lifetime` should have
176                         // reported an error in this case -- but if
177                         // not, let's error out.
178                         tcx.sess.delay_span_bug(lifetime.span, "unelided lifetime in signature");
179
180                         // Supply some dummy value. We don't have an
181                         // `re_error`, annoyingly, so use `'static`.
182                         tcx.lifetimes.re_static
183                     })
184             }
185         };
186
187         debug!("ast_region_to_region(lifetime={:?}) yields {:?}",
188                lifetime,
189                r);
190
191         r
192     }
193
194     /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
195     /// returns an appropriate set of substitutions for this particular reference to `I`.
196     pub fn ast_path_substs_for_ty(&self,
197         span: Span,
198         def_id: DefId,
199         item_segment: &hir::PathSegment)
200         -> SubstsRef<'tcx>
201     {
202         let (substs, assoc_bindings, _) = self.create_substs_for_ast_path(
203             span,
204             def_id,
205             item_segment.generic_args(),
206             item_segment.infer_args,
207             None,
208         );
209
210         assoc_bindings.first().map(|b| Self::prohibit_assoc_ty_binding(self.tcx(), b.span));
211
212         substs
213     }
214
215     /// Report error if there is an explicit type parameter when using `impl Trait`.
216     fn check_impl_trait(
217         tcx: TyCtxt<'_>,
218         span: Span,
219         seg: &hir::PathSegment,
220         generics: &ty::Generics,
221     ) -> bool {
222         let explicit = !seg.infer_args;
223         let impl_trait = generics.params.iter().any(|param| match param.kind {
224             ty::GenericParamDefKind::Type {
225                 synthetic: Some(hir::SyntheticTyParamKind::ImplTrait), ..
226             } => true,
227             _ => false,
228         });
229
230         if explicit && impl_trait {
231             let mut err = struct_span_err! {
232                 tcx.sess,
233                 span,
234                 E0632,
235                 "cannot provide explicit type parameters when `impl Trait` is \
236                  used in argument position."
237             };
238
239             err.emit();
240         }
241
242         impl_trait
243     }
244
245     /// Checks that the correct number of generic arguments have been provided.
246     /// Used specifically for function calls.
247     pub fn check_generic_arg_count_for_call(
248         tcx: TyCtxt<'_>,
249         span: Span,
250         def: &ty::Generics,
251         seg: &hir::PathSegment,
252         is_method_call: bool,
253     ) -> bool {
254         let empty_args = P(hir::GenericArgs {
255             args: HirVec::new(), bindings: HirVec::new(), parenthesized: false,
256         });
257         let suppress_mismatch = Self::check_impl_trait(tcx, span, seg, &def);
258         Self::check_generic_arg_count(
259             tcx,
260             span,
261             def,
262             if let Some(ref args) = seg.args {
263                 args
264             } else {
265                 &empty_args
266             },
267             if is_method_call {
268                 GenericArgPosition::MethodCall
269             } else {
270                 GenericArgPosition::Value
271             },
272             def.parent.is_none() && def.has_self, // `has_self`
273             seg.infer_args || suppress_mismatch, // `infer_args`
274         ).0
275     }
276
277     /// Checks that the correct number of generic arguments have been provided.
278     /// This is used both for datatypes and function calls.
279     fn check_generic_arg_count(
280         tcx: TyCtxt<'_>,
281         span: Span,
282         def: &ty::Generics,
283         args: &hir::GenericArgs,
284         position: GenericArgPosition,
285         has_self: bool,
286         infer_args: bool,
287     ) -> (bool, Option<Vec<Span>>) {
288         // At this stage we are guaranteed that the generic arguments are in the correct order, e.g.
289         // that lifetimes will proceed types. So it suffices to check the number of each generic
290         // arguments in order to validate them with respect to the generic parameters.
291         let param_counts = def.own_counts();
292         let arg_counts = args.own_counts();
293         let infer_lifetimes = position != GenericArgPosition::Type && arg_counts.lifetimes == 0;
294
295         let mut defaults: ty::GenericParamCount = Default::default();
296         for param in &def.params {
297             match param.kind {
298                 GenericParamDefKind::Lifetime => {}
299                 GenericParamDefKind::Type { has_default, .. } => {
300                     defaults.types += has_default as usize
301                 }
302                 GenericParamDefKind::Const => {
303                     // FIXME(const_generics:defaults)
304                 }
305             };
306         }
307
308         if position != GenericArgPosition::Type && !args.bindings.is_empty() {
309             AstConv::prohibit_assoc_ty_binding(tcx, args.bindings[0].span);
310         }
311
312         // Prohibit explicit lifetime arguments if late-bound lifetime parameters are present.
313         let mut reported_late_bound_region_err = None;
314         if !infer_lifetimes {
315             if let Some(span_late) = def.has_late_bound_regions {
316                 let msg = "cannot specify lifetime arguments explicitly \
317                            if late bound lifetime parameters are present";
318                 let note = "the late bound lifetime parameter is introduced here";
319                 let span = args.args[0].span();
320                 if position == GenericArgPosition::Value
321                     && arg_counts.lifetimes != param_counts.lifetimes {
322                     let mut err = tcx.sess.struct_span_err(span, msg);
323                     err.span_note(span_late, note);
324                     err.emit();
325                     reported_late_bound_region_err = Some(true);
326                 } else {
327                     let mut multispan = MultiSpan::from_span(span);
328                     multispan.push_span_label(span_late, note.to_string());
329                     tcx.lint_hir(lint::builtin::LATE_BOUND_LIFETIME_ARGUMENTS,
330                                  args.args[0].id(), multispan, msg);
331                     reported_late_bound_region_err = Some(false);
332                 }
333             }
334         }
335
336         let check_kind_count = |kind, required, permitted, provided, offset| {
337             debug!(
338                 "check_kind_count: kind: {} required: {} permitted: {} provided: {} offset: {}",
339                 kind,
340                 required,
341                 permitted,
342                 provided,
343                 offset
344             );
345             // We enforce the following: `required` <= `provided` <= `permitted`.
346             // For kinds without defaults (e.g.., lifetimes), `required == permitted`.
347             // For other kinds (i.e., types), `permitted` may be greater than `required`.
348             if required <= provided && provided <= permitted {
349                 return (reported_late_bound_region_err.unwrap_or(false), None);
350             }
351
352             // Unfortunately lifetime and type parameter mismatches are typically styled
353             // differently in diagnostics, which means we have a few cases to consider here.
354             let (bound, quantifier) = if required != permitted {
355                 if provided < required {
356                     (required, "at least ")
357                 } else { // provided > permitted
358                     (permitted, "at most ")
359                 }
360             } else {
361                 (required, "")
362             };
363
364             let mut potential_assoc_types: Option<Vec<Span>> = None;
365             let (spans, label) = if required == permitted && provided > permitted {
366                 // In the case when the user has provided too many arguments,
367                 // we want to point to the unexpected arguments.
368                 let spans: Vec<Span> = args.args[offset+permitted .. offset+provided]
369                         .iter()
370                         .map(|arg| arg.span())
371                         .collect();
372                 potential_assoc_types = Some(spans.clone());
373                 (spans, format!( "unexpected {} argument", kind))
374             } else {
375                 (vec![span], format!(
376                     "expected {}{} {} argument{}",
377                     quantifier,
378                     bound,
379                     kind,
380                     pluralise!(bound),
381                 ))
382             };
383
384             let mut err = tcx.sess.struct_span_err_with_code(
385                 spans.clone(),
386                 &format!(
387                     "wrong number of {} arguments: expected {}{}, found {}",
388                     kind,
389                     quantifier,
390                     bound,
391                     provided,
392                 ),
393                 DiagnosticId::Error("E0107".into())
394             );
395             for span in spans {
396                 err.span_label(span, label.as_str());
397             }
398             err.emit();
399
400             (
401                 provided > required, // `suppress_error`
402                 potential_assoc_types,
403             )
404         };
405
406         if reported_late_bound_region_err.is_none()
407             && (!infer_lifetimes || arg_counts.lifetimes > param_counts.lifetimes) {
408             check_kind_count(
409                 "lifetime",
410                 param_counts.lifetimes,
411                 param_counts.lifetimes,
412                 arg_counts.lifetimes,
413                 0,
414             );
415         }
416         // FIXME(const_generics:defaults)
417         if !infer_args || arg_counts.consts > param_counts.consts {
418             check_kind_count(
419                 "const",
420                 param_counts.consts,
421                 param_counts.consts,
422                 arg_counts.consts,
423                 arg_counts.lifetimes + arg_counts.types,
424             );
425         }
426         // Note that type errors are currently be emitted *after* const errors.
427         if !infer_args
428             || arg_counts.types > param_counts.types - defaults.types - has_self as usize {
429             check_kind_count(
430                 "type",
431                 param_counts.types - defaults.types - has_self as usize,
432                 param_counts.types - has_self as usize,
433                 arg_counts.types,
434                 arg_counts.lifetimes,
435             )
436         } else {
437             (reported_late_bound_region_err.unwrap_or(false), None)
438         }
439     }
440
441     /// Creates the relevant generic argument substitutions
442     /// corresponding to a set of generic parameters. This is a
443     /// rather complex function. Let us try to explain the role
444     /// of each of its parameters:
445     ///
446     /// To start, we are given the `def_id` of the thing we are
447     /// creating the substitutions for, and a partial set of
448     /// substitutions `parent_substs`. In general, the substitutions
449     /// for an item begin with substitutions for all the "parents" of
450     /// that item -- e.g., for a method it might include the
451     /// parameters from the impl.
452     ///
453     /// Therefore, the method begins by walking down these parents,
454     /// starting with the outermost parent and proceed inwards until
455     /// it reaches `def_id`. For each parent `P`, it will check `parent_substs`
456     /// first to see if the parent's substitutions are listed in there. If so,
457     /// we can append those and move on. Otherwise, it invokes the
458     /// three callback functions:
459     ///
460     /// - `args_for_def_id`: given the `DefId` `P`, supplies back the
461     ///   generic arguments that were given to that parent from within
462     ///   the path; so e.g., if you have `<T as Foo>::Bar`, the `DefId`
463     ///   might refer to the trait `Foo`, and the arguments might be
464     ///   `[T]`. The boolean value indicates whether to infer values
465     ///   for arguments whose values were not explicitly provided.
466     /// - `provided_kind`: given the generic parameter and the value from `args_for_def_id`,
467     ///   instantiate a `GenericArg`.
468     /// - `inferred_kind`: if no parameter was provided, and inference is enabled, then
469     ///   creates a suitable inference variable.
470     pub fn create_substs_for_generic_args<'b>(
471         tcx: TyCtxt<'tcx>,
472         def_id: DefId,
473         parent_substs: &[subst::GenericArg<'tcx>],
474         has_self: bool,
475         self_ty: Option<Ty<'tcx>>,
476         args_for_def_id: impl Fn(DefId) -> (Option<&'b GenericArgs>, bool),
477         provided_kind: impl Fn(&GenericParamDef, &GenericArg) -> subst::GenericArg<'tcx>,
478         inferred_kind: impl Fn(Option<&[subst::GenericArg<'tcx>]>, &GenericParamDef, bool)
479             -> subst::GenericArg<'tcx>,
480     ) -> SubstsRef<'tcx> {
481         // Collect the segments of the path; we need to substitute arguments
482         // for parameters throughout the entire path (wherever there are
483         // generic parameters).
484         let mut parent_defs = tcx.generics_of(def_id);
485         let count = parent_defs.count();
486         let mut stack = vec![(def_id, parent_defs)];
487         while let Some(def_id) = parent_defs.parent {
488             parent_defs = tcx.generics_of(def_id);
489             stack.push((def_id, parent_defs));
490         }
491
492         // We manually build up the substitution, rather than using convenience
493         // methods in `subst.rs`, so that we can iterate over the arguments and
494         // parameters in lock-step linearly, instead of trying to match each pair.
495         let mut substs: SmallVec<[subst::GenericArg<'tcx>; 8]> = SmallVec::with_capacity(count);
496
497         // Iterate over each segment of the path.
498         while let Some((def_id, defs)) = stack.pop() {
499             let mut params = defs.params.iter().peekable();
500
501             // If we have already computed substitutions for parents, we can use those directly.
502             while let Some(&param) = params.peek() {
503                 if let Some(&kind) = parent_substs.get(param.index as usize) {
504                     substs.push(kind);
505                     params.next();
506                 } else {
507                     break;
508                 }
509             }
510
511             // `Self` is handled first, unless it's been handled in `parent_substs`.
512             if has_self {
513                 if let Some(&param) = params.peek() {
514                     if param.index == 0 {
515                         if let GenericParamDefKind::Type { .. } = param.kind {
516                             substs.push(self_ty.map(|ty| ty.into())
517                                 .unwrap_or_else(|| inferred_kind(None, param, true)));
518                             params.next();
519                         }
520                     }
521                 }
522             }
523
524             // Check whether this segment takes generic arguments and the user has provided any.
525             let (generic_args, infer_args) = args_for_def_id(def_id);
526
527             let mut args = generic_args.iter().flat_map(|generic_args| generic_args.args.iter())
528                 .peekable();
529
530             loop {
531                 // We're going to iterate through the generic arguments that the user
532                 // provided, matching them with the generic parameters we expect.
533                 // Mismatches can occur as a result of elided lifetimes, or for malformed
534                 // input. We try to handle both sensibly.
535                 match (args.peek(), params.peek()) {
536                     (Some(&arg), Some(&param)) => {
537                         match (arg, &param.kind) {
538                             (GenericArg::Lifetime(_), GenericParamDefKind::Lifetime)
539                             | (GenericArg::Type(_), GenericParamDefKind::Type { .. })
540                             | (GenericArg::Const(_), GenericParamDefKind::Const) => {
541                                 substs.push(provided_kind(param, arg));
542                                 args.next();
543                                 params.next();
544                             }
545                             (GenericArg::Type(_), GenericParamDefKind::Lifetime)
546                             | (GenericArg::Const(_), GenericParamDefKind::Lifetime) => {
547                                 // We expected a lifetime argument, but got a type or const
548                                 // argument. That means we're inferring the lifetimes.
549                                 substs.push(inferred_kind(None, param, infer_args));
550                                 params.next();
551                             }
552                             (_, _) => {
553                                 // We expected one kind of parameter, but the user provided
554                                 // another. This is an error, but we need to handle it
555                                 // gracefully so we can report sensible errors.
556                                 // In this case, we're simply going to infer this argument.
557                                 args.next();
558                             }
559                         }
560                     }
561                     (Some(_), None) => {
562                         // We should never be able to reach this point with well-formed input.
563                         // Getting to this point means the user supplied more arguments than
564                         // there are parameters.
565                         args.next();
566                     }
567                     (None, Some(&param)) => {
568                         // If there are fewer arguments than parameters, it means
569                         // we're inferring the remaining arguments.
570                         substs.push(inferred_kind(Some(&substs), param, infer_args));
571                         args.next();
572                         params.next();
573                     }
574                     (None, None) => break,
575                 }
576             }
577         }
578
579         tcx.intern_substs(&substs)
580     }
581
582     /// Given the type/lifetime/const arguments provided to some path (along with
583     /// an implicit `Self`, if this is a trait reference), returns the complete
584     /// set of substitutions. This may involve applying defaulted type parameters.
585     /// Also returns back constriants on associated types.
586     ///
587     /// Example:
588     ///
589     /// ```
590     /// T: std::ops::Index<usize, Output = u32>
591     /// ^1 ^^^^^^^^^^^^^^2 ^^^^3  ^^^^^^^^^^^4
592     /// ```
593     ///
594     /// 1. The `self_ty` here would refer to the type `T`.
595     /// 2. The path in question is the path to the trait `std::ops::Index`,
596     ///    which will have been resolved to a `def_id`
597     /// 3. The `generic_args` contains info on the `<...>` contents. The `usize` type
598     ///    parameters are returned in the `SubstsRef`, the associated type bindings like
599     ///    `Output = u32` are returned in the `Vec<ConvertedBinding...>` result.
600     ///
601     /// Note that the type listing given here is *exactly* what the user provided.
602     fn create_substs_for_ast_path<'a>(&self,
603         span: Span,
604         def_id: DefId,
605         generic_args: &'a hir::GenericArgs,
606         infer_args: bool,
607         self_ty: Option<Ty<'tcx>>)
608         -> (SubstsRef<'tcx>, Vec<ConvertedBinding<'a, 'tcx>>, Option<Vec<Span>>)
609     {
610         // If the type is parameterized by this region, then replace this
611         // region with the current anon region binding (in other words,
612         // whatever & would get replaced with).
613         debug!("create_substs_for_ast_path(def_id={:?}, self_ty={:?}, \
614                 generic_args={:?})",
615                def_id, self_ty, generic_args);
616
617         let tcx = self.tcx();
618         let generic_params = tcx.generics_of(def_id);
619
620         // If a self-type was declared, one should be provided.
621         assert_eq!(generic_params.has_self, self_ty.is_some());
622
623         let has_self = generic_params.has_self;
624         let (_, potential_assoc_types) = Self::check_generic_arg_count(
625             tcx,
626             span,
627             &generic_params,
628             &generic_args,
629             GenericArgPosition::Type,
630             has_self,
631             infer_args,
632         );
633
634         let is_object = self_ty.map_or(false, |ty| {
635             ty == self.tcx().types.trait_object_dummy_self
636         });
637         let default_needs_object_self = |param: &ty::GenericParamDef| {
638             if let GenericParamDefKind::Type { has_default, .. } = param.kind {
639                 if is_object && has_default && has_self {
640                     let self_param = tcx.types.self_param;
641                     if tcx.at(span).type_of(param.def_id).walk().any(|ty| ty == self_param) {
642                         // There is no suitable inference default for a type parameter
643                         // that references self, in an object type.
644                         return true;
645                     }
646                 }
647             }
648
649             false
650         };
651
652         let substs = Self::create_substs_for_generic_args(
653             tcx,
654             def_id,
655             &[][..],
656             self_ty.is_some(),
657             self_ty,
658             // Provide the generic args, and whether types should be inferred.
659             |_| (Some(generic_args), infer_args),
660             // Provide substitutions for parameters for which (valid) arguments have been provided.
661             |param, arg| {
662                 match (&param.kind, arg) {
663                     (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
664                         self.ast_region_to_region(&lt, Some(param)).into()
665                     }
666                     (GenericParamDefKind::Type { .. }, GenericArg::Type(ty)) => {
667                         self.ast_ty_to_ty(&ty).into()
668                     }
669                     (GenericParamDefKind::Const, GenericArg::Const(ct)) => {
670                         self.ast_const_to_const(&ct.value, tcx.type_of(param.def_id)).into()
671                     }
672                     _ => unreachable!(),
673                 }
674             },
675             // Provide substitutions for parameters for which arguments are inferred.
676             |substs, param, infer_args| {
677                 match param.kind {
678                     GenericParamDefKind::Lifetime => tcx.lifetimes.re_static.into(),
679                     GenericParamDefKind::Type { has_default, .. } => {
680                         if !infer_args && has_default {
681                             // No type parameter provided, but a default exists.
682
683                             // If we are converting an object type, then the
684                             // `Self` parameter is unknown. However, some of the
685                             // other type parameters may reference `Self` in their
686                             // defaults. This will lead to an ICE if we are not
687                             // careful!
688                             if default_needs_object_self(param) {
689                                 struct_span_err!(tcx.sess, span, E0393,
690                                     "the type parameter `{}` must be explicitly specified",
691                                     param.name
692                                 )
693                                     .span_label(span, format!(
694                                         "missing reference to `{}`", param.name))
695                                     .note(&format!(
696                                         "because of the default `Self` reference, type parameters \
697                                          must be specified on object types"))
698                                     .emit();
699                                 tcx.types.err.into()
700                             } else {
701                                 // This is a default type parameter.
702                                 self.normalize_ty(
703                                     span,
704                                     tcx.at(span).type_of(param.def_id)
705                                        .subst_spanned(tcx, substs.unwrap(), Some(span))
706                                 ).into()
707                             }
708                         } else if infer_args {
709                             // No type parameters were provided, we can infer all.
710                             let param = if !default_needs_object_self(param) {
711                                 Some(param)
712                             } else {
713                                 None
714                             };
715                             self.ty_infer(param, span).into()
716                         } else {
717                             // We've already errored above about the mismatch.
718                             tcx.types.err.into()
719                         }
720                     }
721                     GenericParamDefKind::Const => {
722                         // FIXME(const_generics:defaults)
723                         if infer_args {
724                             // No const parameters were provided, we can infer all.
725                             let ty = tcx.at(span).type_of(param.def_id);
726                             self.ct_infer(ty, Some(param), span).into()
727                         } else {
728                             // We've already errored above about the mismatch.
729                             tcx.consts.err.into()
730                         }
731                     }
732                 }
733             },
734         );
735
736         // Convert associated-type bindings or constraints into a separate vector.
737         // Example: Given this:
738         //
739         //     T: Iterator<Item = u32>
740         //
741         // The `T` is passed in as a self-type; the `Item = u32` is
742         // not a "type parameter" of the `Iterator` trait, but rather
743         // a restriction on `<T as Iterator>::Item`, so it is passed
744         // back separately.
745         let assoc_bindings = generic_args.bindings.iter()
746             .map(|binding| {
747                 let kind = match binding.kind {
748                     hir::TypeBindingKind::Equality { ref ty } =>
749                         ConvertedBindingKind::Equality(self.ast_ty_to_ty(ty)),
750                     hir::TypeBindingKind::Constraint { ref bounds } =>
751                         ConvertedBindingKind::Constraint(bounds),
752                 };
753                 ConvertedBinding {
754                     item_name: binding.ident,
755                     kind,
756                     span: binding.span,
757                 }
758             })
759             .collect();
760
761         debug!("create_substs_for_ast_path(generic_params={:?}, self_ty={:?}) -> {:?}",
762                generic_params, self_ty, substs);
763
764         (substs, assoc_bindings, potential_assoc_types)
765     }
766
767     /// Instantiates the path for the given trait reference, assuming that it's
768     /// bound to a valid trait type. Returns the `DefId` of the defining trait.
769     /// The type _cannot_ be a type other than a trait type.
770     ///
771     /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T = X>`
772     /// are disallowed. Otherwise, they are pushed onto the vector given.
773     pub fn instantiate_mono_trait_ref(&self,
774         trait_ref: &hir::TraitRef,
775         self_ty: Ty<'tcx>
776     ) -> ty::TraitRef<'tcx>
777     {
778         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
779
780         self.ast_path_to_mono_trait_ref(trait_ref.path.span,
781                                         trait_ref.trait_def_id(),
782                                         self_ty,
783                                         trait_ref.path.segments.last().unwrap())
784     }
785
786     /// The given trait-ref must actually be a trait.
787     pub(super) fn instantiate_poly_trait_ref_inner(&self,
788         trait_ref: &hir::TraitRef,
789         span: Span,
790         self_ty: Ty<'tcx>,
791         bounds: &mut Bounds<'tcx>,
792         speculative: bool,
793     ) -> Option<Vec<Span>> {
794         let trait_def_id = trait_ref.trait_def_id();
795
796         debug!("instantiate_poly_trait_ref({:?}, def_id={:?})", trait_ref, trait_def_id);
797
798         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
799
800         let (substs, assoc_bindings, potential_assoc_types) = self.create_substs_for_ast_trait_ref(
801             trait_ref.path.span,
802             trait_def_id,
803             self_ty,
804             trait_ref.path.segments.last().unwrap(),
805         );
806         let poly_trait_ref = ty::Binder::bind(ty::TraitRef::new(trait_def_id, substs));
807
808         bounds.trait_bounds.push((poly_trait_ref, span));
809
810         let mut dup_bindings = FxHashMap::default();
811         for binding in &assoc_bindings {
812             // Specify type to assert that error was already reported in `Err` case.
813             let _: Result<_, ErrorReported> =
814                 self.add_predicates_for_ast_type_binding(
815                     trait_ref.hir_ref_id,
816                     poly_trait_ref,
817                     binding,
818                     bounds,
819                     speculative,
820                     &mut dup_bindings,
821                 );
822             // Okay to ignore `Err` because of `ErrorReported` (see above).
823         }
824
825         debug!("instantiate_poly_trait_ref({:?}, bounds={:?}) -> {:?}",
826                trait_ref, bounds, poly_trait_ref);
827         potential_assoc_types
828     }
829
830     /// Given a trait bound like `Debug`, applies that trait bound the given self-type to construct
831     /// a full trait reference. The resulting trait reference is returned. This may also generate
832     /// auxiliary bounds, which are added to `bounds`.
833     ///
834     /// Example:
835     ///
836     /// ```
837     /// poly_trait_ref = Iterator<Item = u32>
838     /// self_ty = Foo
839     /// ```
840     ///
841     /// this would return `Foo: Iterator` and add `<Foo as Iterator>::Item = u32` into `bounds`.
842     ///
843     /// **A note on binders:** against our usual convention, there is an implied bounder around
844     /// the `self_ty` and `poly_trait_ref` parameters here. So they may reference bound regions.
845     /// If for example you had `for<'a> Foo<'a>: Bar<'a>`, then the `self_ty` would be `Foo<'a>`
846     /// where `'a` is a bound region at depth 0. Similarly, the `poly_trait_ref` would be
847     /// `Bar<'a>`. The returned poly-trait-ref will have this binder instantiated explicitly,
848     /// however.
849     pub fn instantiate_poly_trait_ref(&self,
850         poly_trait_ref: &hir::PolyTraitRef,
851         self_ty: Ty<'tcx>,
852         bounds: &mut Bounds<'tcx>,
853     ) -> Option<Vec<Span>> {
854         self.instantiate_poly_trait_ref_inner(
855             &poly_trait_ref.trait_ref,
856             poly_trait_ref.span,
857             self_ty,
858             bounds,
859             false,
860         )
861     }
862
863     fn ast_path_to_mono_trait_ref(&self,
864         span: Span,
865         trait_def_id: DefId,
866         self_ty: Ty<'tcx>,
867         trait_segment: &hir::PathSegment
868     ) -> ty::TraitRef<'tcx>
869     {
870         let (substs, assoc_bindings, _) =
871             self.create_substs_for_ast_trait_ref(span,
872                                                  trait_def_id,
873                                                  self_ty,
874                                                  trait_segment);
875         assoc_bindings.first().map(|b| AstConv::prohibit_assoc_ty_binding(self.tcx(), b.span));
876         ty::TraitRef::new(trait_def_id, substs)
877     }
878
879     fn create_substs_for_ast_trait_ref<'a>(
880         &self,
881         span: Span,
882         trait_def_id: DefId,
883         self_ty: Ty<'tcx>,
884         trait_segment: &'a hir::PathSegment,
885     ) -> (SubstsRef<'tcx>, Vec<ConvertedBinding<'a, 'tcx>>, Option<Vec<Span>>) {
886         debug!("create_substs_for_ast_trait_ref(trait_segment={:?})",
887                trait_segment);
888
889         let trait_def = self.tcx().trait_def(trait_def_id);
890
891         if !self.tcx().features().unboxed_closures &&
892             trait_segment.generic_args().parenthesized != trait_def.paren_sugar
893         {
894             // For now, require that parenthetical notation be used only with `Fn()` etc.
895             let msg = if trait_def.paren_sugar {
896                 "the precise format of `Fn`-family traits' type parameters is subject to change. \
897                  Use parenthetical notation (Fn(Foo, Bar) -> Baz) instead"
898             } else {
899                 "parenthetical notation is only stable when used with `Fn`-family traits"
900             };
901             emit_feature_err(&self.tcx().sess.parse_sess, sym::unboxed_closures,
902                              span, GateIssue::Language, msg);
903         }
904
905         self.create_substs_for_ast_path(span,
906                                         trait_def_id,
907                                         trait_segment.generic_args(),
908                                         trait_segment.infer_args,
909                                         Some(self_ty))
910     }
911
912     fn trait_defines_associated_type_named(&self,
913                                            trait_def_id: DefId,
914                                            assoc_name: ast::Ident)
915                                            -> bool
916     {
917         self.tcx().associated_items(trait_def_id).any(|item| {
918             item.kind == ty::AssocKind::Type &&
919             self.tcx().hygienic_eq(assoc_name, item.ident, trait_def_id)
920         })
921     }
922
923     // Returns `true` if a bounds list includes `?Sized`.
924     pub fn is_unsized(&self, ast_bounds: &[hir::GenericBound], span: Span) -> bool {
925         let tcx = self.tcx();
926
927         // Try to find an unbound in bounds.
928         let mut unbound = None;
929         for ab in ast_bounds {
930             if let &hir::GenericBound::Trait(ref ptr, hir::TraitBoundModifier::Maybe) = ab {
931                 if unbound.is_none() {
932                     unbound = Some(&ptr.trait_ref);
933                 } else {
934                     span_err!(
935                         tcx.sess,
936                         span,
937                         E0203,
938                         "type parameter has more than one relaxed default \
939                         bound, only one is supported"
940                     );
941                 }
942             }
943         }
944
945         let kind_id = tcx.lang_items().require(SizedTraitLangItem);
946         match unbound {
947             Some(tpb) => {
948                 // FIXME(#8559) currently requires the unbound to be built-in.
949                 if let Ok(kind_id) = kind_id {
950                     if tpb.path.res != Res::Def(DefKind::Trait, kind_id) {
951                         tcx.sess.span_warn(
952                             span,
953                             "default bound relaxed for a type parameter, but \
954                              this does nothing because the given bound is not \
955                              a default; only `?Sized` is supported",
956                         );
957                     }
958                 }
959             }
960             _ if kind_id.is_ok() => {
961                 return false;
962             }
963             // No lang item for `Sized`, so we can't add it as a bound.
964             None => {}
965         }
966
967         true
968     }
969
970     /// This helper takes a *converted* parameter type (`param_ty`)
971     /// and an *unconverted* list of bounds:
972     ///
973     /// ```
974     /// fn foo<T: Debug>
975     ///        ^  ^^^^^ `ast_bounds` parameter, in HIR form
976     ///        |
977     ///        `param_ty`, in ty form
978     /// ```
979     ///
980     /// It adds these `ast_bounds` into the `bounds` structure.
981     ///
982     /// **A note on binders:** there is an implied binder around
983     /// `param_ty` and `ast_bounds`. See `instantiate_poly_trait_ref`
984     /// for more details.
985     fn add_bounds(&self,
986         param_ty: Ty<'tcx>,
987         ast_bounds: &[hir::GenericBound],
988         bounds: &mut Bounds<'tcx>,
989     ) {
990         let mut trait_bounds = Vec::new();
991         let mut region_bounds = Vec::new();
992
993         for ast_bound in ast_bounds {
994             match *ast_bound {
995                 hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::None) =>
996                     trait_bounds.push(b),
997                 hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => {}
998                 hir::GenericBound::Outlives(ref l) =>
999                     region_bounds.push(l),
1000             }
1001         }
1002
1003         for bound in trait_bounds {
1004             let _ = self.instantiate_poly_trait_ref(
1005                 bound,
1006                 param_ty,
1007                 bounds,
1008             );
1009         }
1010
1011         bounds.region_bounds.extend(region_bounds
1012             .into_iter()
1013             .map(|r| (self.ast_region_to_region(r, None), r.span))
1014         );
1015     }
1016
1017     /// Translates a list of bounds from the HIR into the `Bounds` data structure.
1018     /// The self-type for the bounds is given by `param_ty`.
1019     ///
1020     /// Example:
1021     ///
1022     /// ```
1023     /// fn foo<T: Bar + Baz>() { }
1024     ///        ^  ^^^^^^^^^ ast_bounds
1025     ///        param_ty
1026     /// ```
1027     ///
1028     /// The `sized_by_default` parameter indicates if, in this context, the `param_ty` should be
1029     /// considered `Sized` unless there is an explicit `?Sized` bound.  This would be true in the
1030     /// example above, but is not true in supertrait listings like `trait Foo: Bar + Baz`.
1031     ///
1032     /// `span` should be the declaration size of the parameter.
1033     pub fn compute_bounds(&self,
1034         param_ty: Ty<'tcx>,
1035         ast_bounds: &[hir::GenericBound],
1036         sized_by_default: SizedByDefault,
1037         span: Span,
1038     ) -> Bounds<'tcx> {
1039         let mut bounds = Bounds::default();
1040
1041         self.add_bounds(param_ty, ast_bounds, &mut bounds);
1042         bounds.trait_bounds.sort_by_key(|(t, _)| t.def_id());
1043
1044         bounds.implicitly_sized = if let SizedByDefault::Yes = sized_by_default {
1045             if !self.is_unsized(ast_bounds, span) {
1046                 Some(span)
1047             } else {
1048                 None
1049             }
1050         } else {
1051             None
1052         };
1053
1054         bounds
1055     }
1056
1057     /// Given an HIR binding like `Item = Foo` or `Item: Foo`, pushes the corresponding predicates
1058     /// onto `bounds`.
1059     ///
1060     /// **A note on binders:** given something like `T: for<'a> Iterator<Item = &'a u32>`, the
1061     /// `trait_ref` here will be `for<'a> T: Iterator`. The `binding` data however is from *inside*
1062     /// the binder (e.g., `&'a u32`) and hence may reference bound regions.
1063     fn add_predicates_for_ast_type_binding(
1064         &self,
1065         hir_ref_id: hir::HirId,
1066         trait_ref: ty::PolyTraitRef<'tcx>,
1067         binding: &ConvertedBinding<'_, 'tcx>,
1068         bounds: &mut Bounds<'tcx>,
1069         speculative: bool,
1070         dup_bindings: &mut FxHashMap<DefId, Span>,
1071     ) -> Result<(), ErrorReported> {
1072         let tcx = self.tcx();
1073
1074         if !speculative {
1075             // Given something like `U: SomeTrait<T = X>`, we want to produce a
1076             // predicate like `<U as SomeTrait>::T = X`. This is somewhat
1077             // subtle in the event that `T` is defined in a supertrait of
1078             // `SomeTrait`, because in that case we need to upcast.
1079             //
1080             // That is, consider this case:
1081             //
1082             // ```
1083             // trait SubTrait: SuperTrait<int> { }
1084             // trait SuperTrait<A> { type T; }
1085             //
1086             // ... B: SubTrait<T = foo> ...
1087             // ```
1088             //
1089             // We want to produce `<B as SuperTrait<int>>::T == foo`.
1090
1091             // Find any late-bound regions declared in `ty` that are not
1092             // declared in the trait-ref. These are not well-formed.
1093             //
1094             // Example:
1095             //
1096             //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
1097             //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
1098             if let ConvertedBindingKind::Equality(ty) = binding.kind {
1099                 let late_bound_in_trait_ref =
1100                     tcx.collect_constrained_late_bound_regions(&trait_ref);
1101                 let late_bound_in_ty =
1102                     tcx.collect_referenced_late_bound_regions(&ty::Binder::bind(ty));
1103                 debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
1104                 debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
1105                 for br in late_bound_in_ty.difference(&late_bound_in_trait_ref) {
1106                     let br_name = match *br {
1107                         ty::BrNamed(_, name) => name,
1108                         _ => {
1109                             span_bug!(
1110                                 binding.span,
1111                                 "anonymous bound region {:?} in binding but not trait ref",
1112                                 br);
1113                         }
1114                     };
1115                     struct_span_err!(tcx.sess,
1116                                     binding.span,
1117                                     E0582,
1118                                     "binding for associated type `{}` references lifetime `{}`, \
1119                                      which does not appear in the trait input types",
1120                                     binding.item_name, br_name)
1121                         .emit();
1122                 }
1123             }
1124         }
1125
1126         let candidate = if self.trait_defines_associated_type_named(trait_ref.def_id(),
1127                                                                     binding.item_name) {
1128             // Simple case: X is defined in the current trait.
1129             Ok(trait_ref)
1130         } else {
1131             // Otherwise, we have to walk through the supertraits to find
1132             // those that do.
1133             let candidates = traits::supertraits(tcx, trait_ref).filter(|r| {
1134                 self.trait_defines_associated_type_named(r.def_id(), binding.item_name)
1135             });
1136             self.one_bound_for_assoc_type(candidates, &trait_ref.to_string(),
1137                                           binding.item_name, binding.span)
1138         }?;
1139
1140         let (assoc_ident, def_scope) =
1141             tcx.adjust_ident_and_get_scope(binding.item_name, candidate.def_id(), hir_ref_id);
1142         let assoc_ty = tcx.associated_items(candidate.def_id()).find(|i| {
1143             i.kind == ty::AssocKind::Type && i.ident.modern() == assoc_ident
1144         }).expect("missing associated type");
1145
1146         if !assoc_ty.vis.is_accessible_from(def_scope, tcx) {
1147             let msg = format!("associated type `{}` is private", binding.item_name);
1148             tcx.sess.span_err(binding.span, &msg);
1149         }
1150         tcx.check_stability(assoc_ty.def_id, Some(hir_ref_id), binding.span);
1151
1152         if !speculative {
1153             dup_bindings.entry(assoc_ty.def_id)
1154                 .and_modify(|prev_span| {
1155                     struct_span_err!(self.tcx().sess, binding.span, E0719,
1156                                      "the value of the associated type `{}` (from the trait `{}`) \
1157                                       is already specified",
1158                                      binding.item_name,
1159                                      tcx.def_path_str(assoc_ty.container.id()))
1160                         .span_label(binding.span, "re-bound here")
1161                         .span_label(*prev_span, format!("`{}` bound here first", binding.item_name))
1162                         .emit();
1163                 })
1164                 .or_insert(binding.span);
1165         }
1166
1167         match binding.kind {
1168             ConvertedBindingKind::Equality(ref ty) => {
1169                 // "Desugar" a constraint like `T: Iterator<Item = u32>` this to
1170                 // the "projection predicate" for:
1171                 //
1172                 // `<T as Iterator>::Item = u32`
1173                 bounds.projection_bounds.push((candidate.map_bound(|trait_ref| {
1174                     ty::ProjectionPredicate {
1175                         projection_ty: ty::ProjectionTy::from_ref_and_name(
1176                             tcx,
1177                             trait_ref,
1178                             binding.item_name,
1179                         ),
1180                         ty,
1181                     }
1182                 }), binding.span));
1183             }
1184             ConvertedBindingKind::Constraint(ast_bounds) => {
1185                 // "Desugar" a constraint like `T: Iterator<Item: Debug>` to
1186                 //
1187                 // `<T as Iterator>::Item: Debug`
1188                 //
1189                 // Calling `skip_binder` is okay, because `add_bounds` expects the `param_ty`
1190                 // parameter to have a skipped binder.
1191                 let param_ty = tcx.mk_projection(assoc_ty.def_id, candidate.skip_binder().substs);
1192                 self.add_bounds(param_ty, ast_bounds, bounds);
1193             }
1194         }
1195         Ok(())
1196     }
1197
1198     fn ast_path_to_ty(&self,
1199         span: Span,
1200         did: DefId,
1201         item_segment: &hir::PathSegment)
1202         -> Ty<'tcx>
1203     {
1204         let substs = self.ast_path_substs_for_ty(span, did, item_segment);
1205         self.normalize_ty(
1206             span,
1207             self.tcx().at(span).type_of(did).subst(self.tcx(), substs)
1208         )
1209     }
1210
1211     /// Transform a `PolyTraitRef` into a `PolyExistentialTraitRef` by
1212     /// removing the dummy `Self` type (`trait_object_dummy_self`).
1213     fn trait_ref_to_existential(&self, trait_ref: ty::TraitRef<'tcx>)
1214                                 -> ty::ExistentialTraitRef<'tcx> {
1215         if trait_ref.self_ty() != self.tcx().types.trait_object_dummy_self {
1216             bug!("trait_ref_to_existential called on {:?} with non-dummy Self", trait_ref);
1217         }
1218         ty::ExistentialTraitRef::erase_self_ty(self.tcx(), trait_ref)
1219     }
1220
1221     fn conv_object_ty_poly_trait_ref(&self,
1222         span: Span,
1223         trait_bounds: &[hir::PolyTraitRef],
1224         lifetime: &hir::Lifetime)
1225         -> Ty<'tcx>
1226     {
1227         let tcx = self.tcx();
1228
1229         let mut bounds = Bounds::default();
1230         let mut potential_assoc_types = Vec::new();
1231         let dummy_self = self.tcx().types.trait_object_dummy_self;
1232         for trait_bound in trait_bounds.iter().rev() {
1233             let cur_potential_assoc_types = self.instantiate_poly_trait_ref(
1234                 trait_bound,
1235                 dummy_self,
1236                 &mut bounds,
1237             );
1238             potential_assoc_types.extend(cur_potential_assoc_types.into_iter().flatten());
1239         }
1240
1241         // Expand trait aliases recursively and check that only one regular (non-auto) trait
1242         // is used and no 'maybe' bounds are used.
1243         let expanded_traits =
1244             traits::expand_trait_aliases(tcx, bounds.trait_bounds.iter().cloned());
1245         let (mut auto_traits, regular_traits): (Vec<_>, Vec<_>) =
1246             expanded_traits.partition(|i| tcx.trait_is_auto(i.trait_ref().def_id()));
1247         if regular_traits.len() > 1 {
1248             let first_trait = &regular_traits[0];
1249             let additional_trait = &regular_traits[1];
1250             let mut err = struct_span_err!(tcx.sess, additional_trait.bottom().1, E0225,
1251                 "only auto traits can be used as additional traits in a trait object"
1252             );
1253             additional_trait.label_with_exp_info(&mut err,
1254                 "additional non-auto trait", "additional use");
1255             first_trait.label_with_exp_info(&mut err,
1256                 "first non-auto trait", "first use");
1257             err.emit();
1258         }
1259
1260         if regular_traits.is_empty() && auto_traits.is_empty() {
1261             span_err!(tcx.sess, span, E0224,
1262                 "at least one trait is required for an object type");
1263             return tcx.types.err;
1264         }
1265
1266         // Check that there are no gross object safety violations;
1267         // most importantly, that the supertraits don't contain `Self`,
1268         // to avoid ICEs.
1269         for item in &regular_traits {
1270             let object_safety_violations =
1271                 tcx.astconv_object_safety_violations(item.trait_ref().def_id());
1272             if !object_safety_violations.is_empty() {
1273                 tcx.report_object_safety_error(
1274                     span,
1275                     item.trait_ref().def_id(),
1276                     object_safety_violations
1277                 )
1278                     .map(|mut err| err.emit());
1279                 return tcx.types.err;
1280             }
1281         }
1282
1283         // Use a `BTreeSet` to keep output in a more consistent order.
1284         let mut associated_types = BTreeSet::default();
1285
1286         let regular_traits_refs = bounds.trait_bounds
1287             .into_iter()
1288             .filter(|(trait_ref, _)| !tcx.trait_is_auto(trait_ref.def_id()))
1289             .map(|(trait_ref, _)| trait_ref);
1290         for trait_ref in traits::elaborate_trait_refs(tcx, regular_traits_refs) {
1291             debug!("conv_object_ty_poly_trait_ref: observing object predicate `{:?}`", trait_ref);
1292             match trait_ref {
1293                 ty::Predicate::Trait(pred) => {
1294                     associated_types
1295                         .extend(tcx.associated_items(pred.def_id())
1296                         .filter(|item| item.kind == ty::AssocKind::Type)
1297                         .map(|item| item.def_id));
1298                 }
1299                 ty::Predicate::Projection(pred) => {
1300                     // A `Self` within the original bound will be substituted with a
1301                     // `trait_object_dummy_self`, so check for that.
1302                     let references_self =
1303                         pred.skip_binder().ty.walk().any(|t| t == dummy_self);
1304
1305                     // If the projection output contains `Self`, force the user to
1306                     // elaborate it explicitly to avoid a lot of complexity.
1307                     //
1308                     // The "classicaly useful" case is the following:
1309                     // ```
1310                     //     trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
1311                     //         type MyOutput;
1312                     //     }
1313                     // ```
1314                     //
1315                     // Here, the user could theoretically write `dyn MyTrait<Output = X>`,
1316                     // but actually supporting that would "expand" to an infinitely-long type
1317                     // `fix $ Ï„ â†’ dyn MyTrait<MyOutput = X, Output = <Ï„ as MyTrait>::MyOutput`.
1318                     //
1319                     // Instead, we force the user to write `dyn MyTrait<MyOutput = X, Output = X>`,
1320                     // which is uglier but works. See the discussion in #56288 for alternatives.
1321                     if !references_self {
1322                         // Include projections defined on supertraits.
1323                         bounds.projection_bounds.push((pred, DUMMY_SP))
1324                     }
1325                 }
1326                 _ => ()
1327             }
1328         }
1329
1330         for (projection_bound, _) in &bounds.projection_bounds {
1331             associated_types.remove(&projection_bound.projection_def_id());
1332         }
1333
1334         if !associated_types.is_empty() {
1335             let names = associated_types.iter().map(|item_def_id| {
1336                 let assoc_item = tcx.associated_item(*item_def_id);
1337                 let trait_def_id = assoc_item.container.id();
1338                 format!(
1339                     "`{}` (from the trait `{}`)",
1340                     assoc_item.ident,
1341                     tcx.def_path_str(trait_def_id),
1342                 )
1343             }).collect::<Vec<_>>().join(", ");
1344             let mut err = struct_span_err!(
1345                 tcx.sess,
1346                 span,
1347                 E0191,
1348                 "the value of the associated type{} {} must be specified",
1349                 pluralise!(associated_types.len()),
1350                 names,
1351             );
1352             let (suggest, potential_assoc_types_spans) =
1353                 if potential_assoc_types.len() == associated_types.len() {
1354                     // Only suggest when the amount of missing associated types equals the number of
1355                     // extra type arguments present, as that gives us a relatively high confidence
1356                     // that the user forgot to give the associtated type's name. The canonical
1357                     // example would be trying to use `Iterator<isize>` instead of
1358                     // `Iterator<Item = isize>`.
1359                     (true, potential_assoc_types)
1360                 } else {
1361                     (false, Vec::new())
1362                 };
1363             let mut suggestions = Vec::new();
1364             for (i, item_def_id) in associated_types.iter().enumerate() {
1365                 let assoc_item = tcx.associated_item(*item_def_id);
1366                 err.span_label(
1367                     span,
1368                     format!("associated type `{}` must be specified", assoc_item.ident),
1369                 );
1370                 if let Some(sp) = tcx.hir().span_if_local(*item_def_id) {
1371                     err.span_label(sp, format!("`{}` defined here", assoc_item.ident));
1372                 }
1373                 if suggest {
1374                     if let Ok(snippet) = tcx.sess.source_map().span_to_snippet(
1375                         potential_assoc_types_spans[i],
1376                     ) {
1377                         suggestions.push((
1378                             potential_assoc_types_spans[i],
1379                             format!("{} = {}", assoc_item.ident, snippet),
1380                         ));
1381                     }
1382                 }
1383             }
1384             if !suggestions.is_empty() {
1385                 let msg = format!("if you meant to specify the associated {}, write",
1386                     if suggestions.len() == 1 { "type" } else { "types" });
1387                 err.multipart_suggestion(
1388                     &msg,
1389                     suggestions,
1390                     Applicability::MaybeIncorrect,
1391                 );
1392             }
1393             err.emit();
1394         }
1395
1396         // De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
1397         // `dyn Trait + Send`.
1398         auto_traits.sort_by_key(|i| i.trait_ref().def_id());
1399         auto_traits.dedup_by_key(|i| i.trait_ref().def_id());
1400         debug!("regular_traits: {:?}", regular_traits);
1401         debug!("auto_traits: {:?}", auto_traits);
1402
1403         // Erase the `dummy_self` (`trait_object_dummy_self`) used above.
1404         let existential_trait_refs = regular_traits.iter().map(|i| {
1405             i.trait_ref().map_bound(|trait_ref| self.trait_ref_to_existential(trait_ref))
1406         });
1407         let existential_projections = bounds.projection_bounds.iter().map(|(bound, _)| {
1408             bound.map_bound(|b| {
1409                 let trait_ref = self.trait_ref_to_existential(b.projection_ty.trait_ref(tcx));
1410                 ty::ExistentialProjection {
1411                     ty: b.ty,
1412                     item_def_id: b.projection_ty.item_def_id,
1413                     substs: trait_ref.substs,
1414                 }
1415             })
1416         });
1417
1418         // Calling `skip_binder` is okay because the predicates are re-bound.
1419         let regular_trait_predicates = existential_trait_refs.map(
1420             |trait_ref| ty::ExistentialPredicate::Trait(*trait_ref.skip_binder()));
1421         let auto_trait_predicates = auto_traits.into_iter().map(
1422             |trait_ref| ty::ExistentialPredicate::AutoTrait(trait_ref.trait_ref().def_id()));
1423         let mut v =
1424             regular_trait_predicates
1425             .chain(auto_trait_predicates)
1426             .chain(existential_projections
1427                 .map(|x| ty::ExistentialPredicate::Projection(*x.skip_binder())))
1428             .collect::<SmallVec<[_; 8]>>();
1429         v.sort_by(|a, b| a.stable_cmp(tcx, b));
1430         v.dedup();
1431         let existential_predicates = ty::Binder::bind(tcx.mk_existential_predicates(v.into_iter()));
1432
1433         // Use explicitly-specified region bound.
1434         let region_bound = if !lifetime.is_elided() {
1435             self.ast_region_to_region(lifetime, None)
1436         } else {
1437             self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
1438                 if tcx.named_region(lifetime.hir_id).is_some() {
1439                     self.ast_region_to_region(lifetime, None)
1440                 } else {
1441                     self.re_infer(None, span).unwrap_or_else(|| {
1442                         span_err!(tcx.sess, span, E0228,
1443                             "the lifetime bound for this object type cannot be deduced \
1444                              from context; please supply an explicit bound");
1445                         tcx.lifetimes.re_static
1446                     })
1447                 }
1448             })
1449         };
1450         debug!("region_bound: {:?}", region_bound);
1451
1452         let ty = tcx.mk_dynamic(existential_predicates, region_bound);
1453         debug!("trait_object_type: {:?}", ty);
1454         ty
1455     }
1456
1457     fn report_ambiguous_associated_type(
1458         &self,
1459         span: Span,
1460         type_str: &str,
1461         trait_str: &str,
1462         name: ast::Name,
1463     ) {
1464         let mut err = struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type");
1465         if let (Some(_), Ok(snippet)) = (
1466             self.tcx().sess.confused_type_with_std_module.borrow().get(&span),
1467             self.tcx().sess.source_map().span_to_snippet(span),
1468          ) {
1469             err.span_suggestion(
1470                 span,
1471                 "you are looking for the module in `std`, not the primitive type",
1472                 format!("std::{}", snippet),
1473                 Applicability::MachineApplicable,
1474             );
1475         } else {
1476             err.span_suggestion(
1477                     span,
1478                     "use fully-qualified syntax",
1479                     format!("<{} as {}>::{}", type_str, trait_str, name),
1480                     Applicability::HasPlaceholders
1481             );
1482         }
1483         err.emit();
1484     }
1485
1486     // Search for a bound on a type parameter which includes the associated item
1487     // given by `assoc_name`. `ty_param_def_id` is the `DefId` of the type parameter
1488     // This function will fail if there are no suitable bounds or there is
1489     // any ambiguity.
1490     fn find_bound_for_assoc_item(&self,
1491                                  ty_param_def_id: DefId,
1492                                  assoc_name: ast::Ident,
1493                                  span: Span)
1494                                  -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
1495     {
1496         let tcx = self.tcx();
1497
1498         debug!(
1499             "find_bound_for_assoc_item(ty_param_def_id={:?}, assoc_name={:?}, span={:?})",
1500             ty_param_def_id,
1501             assoc_name,
1502             span,
1503         );
1504
1505         let predicates = &self.get_type_parameter_bounds(span, ty_param_def_id).predicates;
1506
1507         debug!("find_bound_for_assoc_item: predicates={:#?}", predicates);
1508
1509         let bounds = predicates.iter().filter_map(|(p, _)| p.to_opt_poly_trait_ref());
1510
1511         // Check that there is exactly one way to find an associated type with the
1512         // correct name.
1513         let suitable_bounds = traits::transitive_bounds(tcx, bounds)
1514             .filter(|b| self.trait_defines_associated_type_named(b.def_id(), assoc_name));
1515
1516         let param_hir_id = tcx.hir().as_local_hir_id(ty_param_def_id).unwrap();
1517         let param_name = tcx.hir().ty_param_name(param_hir_id);
1518         self.one_bound_for_assoc_type(suitable_bounds,
1519                                       &param_name.as_str(),
1520                                       assoc_name,
1521                                       span)
1522     }
1523
1524     // Checks that `bounds` contains exactly one element and reports appropriate
1525     // errors otherwise.
1526     fn one_bound_for_assoc_type<I>(&self,
1527                                    mut bounds: I,
1528                                    ty_param_name: &str,
1529                                    assoc_name: ast::Ident,
1530                                    span: Span)
1531         -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
1532         where I: Iterator<Item = ty::PolyTraitRef<'tcx>>
1533     {
1534         let bound = match bounds.next() {
1535             Some(bound) => bound,
1536             None => {
1537                 struct_span_err!(self.tcx().sess, span, E0220,
1538                                  "associated type `{}` not found for `{}`",
1539                                  assoc_name,
1540                                  ty_param_name)
1541                     .span_label(span, format!("associated type `{}` not found", assoc_name))
1542                     .emit();
1543                 return Err(ErrorReported);
1544             }
1545         };
1546
1547         debug!("one_bound_for_assoc_type: bound = {:?}", bound);
1548
1549         if let Some(bound2) = bounds.next() {
1550             debug!("one_bound_for_assoc_type: bound2 = {:?}", bound2);
1551
1552             let bounds = iter::once(bound).chain(iter::once(bound2)).chain(bounds);
1553             let mut err = struct_span_err!(
1554                 self.tcx().sess, span, E0221,
1555                 "ambiguous associated type `{}` in bounds of `{}`",
1556                 assoc_name,
1557                 ty_param_name);
1558             err.span_label(span, format!("ambiguous associated type `{}`", assoc_name));
1559
1560             for bound in bounds {
1561                 let bound_span = self.tcx().associated_items(bound.def_id()).find(|item| {
1562                     item.kind == ty::AssocKind::Type &&
1563                         self.tcx().hygienic_eq(assoc_name, item.ident, bound.def_id())
1564                 })
1565                     .and_then(|item| self.tcx().hir().span_if_local(item.def_id));
1566
1567                 if let Some(span) = bound_span {
1568                     err.span_label(span, format!("ambiguous `{}` from `{}`",
1569                                                  assoc_name,
1570                                                  bound));
1571                 } else {
1572                     span_note!(&mut err, span,
1573                                "associated type `{}` could derive from `{}`",
1574                                ty_param_name,
1575                                bound);
1576                 }
1577             }
1578             err.emit();
1579         }
1580
1581         return Ok(bound);
1582     }
1583
1584     // Create a type from a path to an associated type.
1585     // For a path `A::B::C::D`, `qself_ty` and `qself_def` are the type and def for `A::B::C`
1586     // and item_segment is the path segment for `D`. We return a type and a def for
1587     // the whole path.
1588     // Will fail except for `T::A` and `Self::A`; i.e., if `qself_ty`/`qself_def` are not a type
1589     // parameter or `Self`.
1590     pub fn associated_path_to_ty(
1591         &self,
1592         hir_ref_id: hir::HirId,
1593         span: Span,
1594         qself_ty: Ty<'tcx>,
1595         qself_res: Res,
1596         assoc_segment: &hir::PathSegment,
1597         permit_variants: bool,
1598     ) -> Result<(Ty<'tcx>, DefKind, DefId), ErrorReported> {
1599         let tcx = self.tcx();
1600         let assoc_ident = assoc_segment.ident;
1601
1602         debug!("associated_path_to_ty: {:?}::{}", qself_ty, assoc_ident);
1603
1604         self.prohibit_generics(slice::from_ref(assoc_segment));
1605
1606         // Check if we have an enum variant.
1607         let mut variant_resolution = None;
1608         if let ty::Adt(adt_def, _) = qself_ty.kind {
1609             if adt_def.is_enum() {
1610                 let variant_def = adt_def.variants.iter().find(|vd| {
1611                     tcx.hygienic_eq(assoc_ident, vd.ident, adt_def.did)
1612                 });
1613                 if let Some(variant_def) = variant_def {
1614                     if permit_variants {
1615                         tcx.check_stability(variant_def.def_id, Some(hir_ref_id), span);
1616                         return Ok((qself_ty, DefKind::Variant, variant_def.def_id));
1617                     } else {
1618                         variant_resolution = Some(variant_def.def_id);
1619                     }
1620                 }
1621             }
1622         }
1623
1624         // Find the type of the associated item, and the trait where the associated
1625         // item is declared.
1626         let bound = match (&qself_ty.kind, qself_res) {
1627             (_, Res::SelfTy(Some(_), Some(impl_def_id))) => {
1628                 // `Self` in an impl of a trait -- we have a concrete self type and a
1629                 // trait reference.
1630                 let trait_ref = match tcx.impl_trait_ref(impl_def_id) {
1631                     Some(trait_ref) => trait_ref,
1632                     None => {
1633                         // A cycle error occurred, most likely.
1634                         return Err(ErrorReported);
1635                     }
1636                 };
1637
1638                 let candidates = traits::supertraits(tcx, ty::Binder::bind(trait_ref))
1639                     .filter(|r| self.trait_defines_associated_type_named(r.def_id(), assoc_ident));
1640
1641                 self.one_bound_for_assoc_type(candidates, "Self", assoc_ident, span)?
1642             }
1643             (&ty::Param(_), Res::SelfTy(Some(param_did), None)) |
1644             (&ty::Param(_), Res::Def(DefKind::TyParam, param_did)) => {
1645                 self.find_bound_for_assoc_item(param_did, assoc_ident, span)?
1646             }
1647             _ => {
1648                 if variant_resolution.is_some() {
1649                     // Variant in type position
1650                     let msg = format!("expected type, found variant `{}`", assoc_ident);
1651                     tcx.sess.span_err(span, &msg);
1652                 } else if qself_ty.is_enum() {
1653                     let mut err = tcx.sess.struct_span_err(
1654                         assoc_ident.span,
1655                         &format!("no variant `{}` in enum `{}`", assoc_ident, qself_ty),
1656                     );
1657
1658                     let adt_def = qself_ty.ty_adt_def().expect("enum is not an ADT");
1659                     if let Some(suggested_name) = find_best_match_for_name(
1660                         adt_def.variants.iter().map(|variant| &variant.ident.name),
1661                         &assoc_ident.as_str(),
1662                         None,
1663                     ) {
1664                         err.span_suggestion(
1665                             assoc_ident.span,
1666                             "there is a variant with a similar name",
1667                             suggested_name.to_string(),
1668                             Applicability::MaybeIncorrect,
1669                         );
1670                     } else {
1671                         err.span_label(
1672                             assoc_ident.span,
1673                             format!("variant not found in `{}`", qself_ty),
1674                         );
1675                     }
1676
1677                     if let Some(sp) = tcx.hir().span_if_local(adt_def.did) {
1678                         let sp = tcx.sess.source_map().def_span(sp);
1679                         err.span_label(sp, format!("variant `{}` not found here", assoc_ident));
1680                     }
1681
1682                     err.emit();
1683                 } else if !qself_ty.references_error() {
1684                     // Don't print `TyErr` to the user.
1685                     self.report_ambiguous_associated_type(
1686                         span,
1687                         &qself_ty.to_string(),
1688                         "Trait",
1689                         assoc_ident.name,
1690                     );
1691                 }
1692                 return Err(ErrorReported);
1693             }
1694         };
1695
1696         let trait_did = bound.def_id();
1697         let (assoc_ident, def_scope) =
1698             tcx.adjust_ident_and_get_scope(assoc_ident, trait_did, hir_ref_id);
1699         let item = tcx.associated_items(trait_did).find(|i| {
1700             Namespace::from(i.kind) == Namespace::Type &&
1701                 i.ident.modern() == assoc_ident
1702         }).expect("missing associated type");
1703
1704         let ty = self.projected_ty_from_poly_trait_ref(span, item.def_id, bound);
1705         let ty = self.normalize_ty(span, ty);
1706
1707         let kind = DefKind::AssocTy;
1708         if !item.vis.is_accessible_from(def_scope, tcx) {
1709             let msg = format!("{} `{}` is private", kind.descr(item.def_id), assoc_ident);
1710             tcx.sess.span_err(span, &msg);
1711         }
1712         tcx.check_stability(item.def_id, Some(hir_ref_id), span);
1713
1714         if let Some(variant_def_id) = variant_resolution {
1715             let mut err = tcx.struct_span_lint_hir(
1716                 AMBIGUOUS_ASSOCIATED_ITEMS,
1717                 hir_ref_id,
1718                 span,
1719                 "ambiguous associated item",
1720             );
1721
1722             let mut could_refer_to = |kind: DefKind, def_id, also| {
1723                 let note_msg = format!("`{}` could{} refer to {} defined here",
1724                                        assoc_ident, also, kind.descr(def_id));
1725                 err.span_note(tcx.def_span(def_id), &note_msg);
1726             };
1727             could_refer_to(DefKind::Variant, variant_def_id, "");
1728             could_refer_to(kind, item.def_id, " also");
1729
1730             err.span_suggestion(
1731                 span,
1732                 "use fully-qualified syntax",
1733                 format!("<{} as {}>::{}", qself_ty, tcx.item_name(trait_did), assoc_ident),
1734                 Applicability::MachineApplicable,
1735             ).emit();
1736         }
1737
1738         Ok((ty, kind, item.def_id))
1739     }
1740
1741     fn qpath_to_ty(&self,
1742                    span: Span,
1743                    opt_self_ty: Option<Ty<'tcx>>,
1744                    item_def_id: DefId,
1745                    trait_segment: &hir::PathSegment,
1746                    item_segment: &hir::PathSegment)
1747                    -> Ty<'tcx>
1748     {
1749         let tcx = self.tcx();
1750         let trait_def_id = tcx.parent(item_def_id).unwrap();
1751
1752         self.prohibit_generics(slice::from_ref(item_segment));
1753
1754         let self_ty = if let Some(ty) = opt_self_ty {
1755             ty
1756         } else {
1757             let path_str = tcx.def_path_str(trait_def_id);
1758             self.report_ambiguous_associated_type(
1759                 span,
1760                 "Type",
1761                 &path_str,
1762                 item_segment.ident.name,
1763             );
1764             return tcx.types.err;
1765         };
1766
1767         debug!("qpath_to_ty: self_type={:?}", self_ty);
1768
1769         let trait_ref = self.ast_path_to_mono_trait_ref(span,
1770                                                         trait_def_id,
1771                                                         self_ty,
1772                                                         trait_segment);
1773
1774         debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
1775
1776         self.normalize_ty(span, tcx.mk_projection(item_def_id, trait_ref.substs))
1777     }
1778
1779     pub fn prohibit_generics<'a, T: IntoIterator<Item = &'a hir::PathSegment>>(
1780             &self, segments: T) -> bool {
1781         let mut has_err = false;
1782         for segment in segments {
1783             let (mut err_for_lt, mut err_for_ty, mut err_for_ct) = (false, false, false);
1784             for arg in &segment.generic_args().args {
1785                 let (span, kind) = match arg {
1786                     hir::GenericArg::Lifetime(lt) => {
1787                         if err_for_lt { continue }
1788                         err_for_lt = true;
1789                         has_err = true;
1790                         (lt.span, "lifetime")
1791                     }
1792                     hir::GenericArg::Type(ty) => {
1793                         if err_for_ty { continue }
1794                         err_for_ty = true;
1795                         has_err = true;
1796                         (ty.span, "type")
1797                     }
1798                     hir::GenericArg::Const(ct) => {
1799                         if err_for_ct { continue }
1800                         err_for_ct = true;
1801                         (ct.span, "const")
1802                     }
1803                 };
1804                 let mut err = struct_span_err!(
1805                     self.tcx().sess,
1806                     span,
1807                     E0109,
1808                     "{} arguments are not allowed for this type",
1809                     kind,
1810                 );
1811                 err.span_label(span, format!("{} argument not allowed", kind));
1812                 err.emit();
1813                 if err_for_lt && err_for_ty && err_for_ct {
1814                     break;
1815                 }
1816             }
1817             for binding in &segment.generic_args().bindings {
1818                 has_err = true;
1819                 Self::prohibit_assoc_ty_binding(self.tcx(), binding.span);
1820                 break;
1821             }
1822         }
1823         has_err
1824     }
1825
1826     pub fn prohibit_assoc_ty_binding(tcx: TyCtxt<'_>, span: Span) {
1827         let mut err = struct_span_err!(tcx.sess, span, E0229,
1828                                        "associated type bindings are not allowed here");
1829         err.span_label(span, "associated type not allowed here").emit();
1830     }
1831
1832     // FIXME(eddyb, varkor) handle type paths here too, not just value ones.
1833     pub fn def_ids_for_value_path_segments(
1834         &self,
1835         segments: &[hir::PathSegment],
1836         self_ty: Option<Ty<'tcx>>,
1837         kind: DefKind,
1838         def_id: DefId,
1839     ) -> Vec<PathSeg> {
1840         // We need to extract the type parameters supplied by the user in
1841         // the path `path`. Due to the current setup, this is a bit of a
1842         // tricky-process; the problem is that resolve only tells us the
1843         // end-point of the path resolution, and not the intermediate steps.
1844         // Luckily, we can (at least for now) deduce the intermediate steps
1845         // just from the end-point.
1846         //
1847         // There are basically five cases to consider:
1848         //
1849         // 1. Reference to a constructor of a struct:
1850         //
1851         //        struct Foo<T>(...)
1852         //
1853         //    In this case, the parameters are declared in the type space.
1854         //
1855         // 2. Reference to a constructor of an enum variant:
1856         //
1857         //        enum E<T> { Foo(...) }
1858         //
1859         //    In this case, the parameters are defined in the type space,
1860         //    but may be specified either on the type or the variant.
1861         //
1862         // 3. Reference to a fn item or a free constant:
1863         //
1864         //        fn foo<T>() { }
1865         //
1866         //    In this case, the path will again always have the form
1867         //    `a::b::foo::<T>` where only the final segment should have
1868         //    type parameters. However, in this case, those parameters are
1869         //    declared on a value, and hence are in the `FnSpace`.
1870         //
1871         // 4. Reference to a method or an associated constant:
1872         //
1873         //        impl<A> SomeStruct<A> {
1874         //            fn foo<B>(...)
1875         //        }
1876         //
1877         //    Here we can have a path like
1878         //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
1879         //    may appear in two places. The penultimate segment,
1880         //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
1881         //    final segment, `foo::<B>` contains parameters in fn space.
1882         //
1883         // The first step then is to categorize the segments appropriately.
1884
1885         let tcx = self.tcx();
1886
1887         assert!(!segments.is_empty());
1888         let last = segments.len() - 1;
1889
1890         let mut path_segs = vec![];
1891
1892         match kind {
1893             // Case 1. Reference to a struct constructor.
1894             DefKind::Ctor(CtorOf::Struct, ..) => {
1895                 // Everything but the final segment should have no
1896                 // parameters at all.
1897                 let generics = tcx.generics_of(def_id);
1898                 // Variant and struct constructors use the
1899                 // generics of their parent type definition.
1900                 let generics_def_id = generics.parent.unwrap_or(def_id);
1901                 path_segs.push(PathSeg(generics_def_id, last));
1902             }
1903
1904             // Case 2. Reference to a variant constructor.
1905             DefKind::Ctor(CtorOf::Variant, ..)
1906             | DefKind::Variant => {
1907                 let adt_def = self_ty.map(|t| t.ty_adt_def().unwrap());
1908                 let (generics_def_id, index) = if let Some(adt_def) = adt_def {
1909                     debug_assert!(adt_def.is_enum());
1910                     (adt_def.did, last)
1911                 } else if last >= 1 && segments[last - 1].args.is_some() {
1912                     // Everything but the penultimate segment should have no
1913                     // parameters at all.
1914                     let mut def_id = def_id;
1915
1916                     // `DefKind::Ctor` -> `DefKind::Variant`
1917                     if let DefKind::Ctor(..) = kind {
1918                         def_id = tcx.parent(def_id).unwrap()
1919                     }
1920
1921                     // `DefKind::Variant` -> `DefKind::Enum`
1922                     let enum_def_id = tcx.parent(def_id).unwrap();
1923                     (enum_def_id, last - 1)
1924                 } else {
1925                     // FIXME: lint here recommending `Enum::<...>::Variant` form
1926                     // instead of `Enum::Variant::<...>` form.
1927
1928                     // Everything but the final segment should have no
1929                     // parameters at all.
1930                     let generics = tcx.generics_of(def_id);
1931                     // Variant and struct constructors use the
1932                     // generics of their parent type definition.
1933                     (generics.parent.unwrap_or(def_id), last)
1934                 };
1935                 path_segs.push(PathSeg(generics_def_id, index));
1936             }
1937
1938             // Case 3. Reference to a top-level value.
1939             DefKind::Fn
1940             | DefKind::Const
1941             | DefKind::ConstParam
1942             | DefKind::Static => {
1943                 path_segs.push(PathSeg(def_id, last));
1944             }
1945
1946             // Case 4. Reference to a method or associated const.
1947             DefKind::Method
1948             | DefKind::AssocConst => {
1949                 if segments.len() >= 2 {
1950                     let generics = tcx.generics_of(def_id);
1951                     path_segs.push(PathSeg(generics.parent.unwrap(), last - 1));
1952                 }
1953                 path_segs.push(PathSeg(def_id, last));
1954             }
1955
1956             kind => bug!("unexpected definition kind {:?} for {:?}", kind, def_id),
1957         }
1958
1959         debug!("path_segs = {:?}", path_segs);
1960
1961         path_segs
1962     }
1963
1964     // Check a type `Path` and convert it to a `Ty`.
1965     pub fn res_to_ty(&self,
1966                      opt_self_ty: Option<Ty<'tcx>>,
1967                      path: &hir::Path,
1968                      permit_variants: bool)
1969                      -> Ty<'tcx> {
1970         let tcx = self.tcx();
1971
1972         debug!("res_to_ty(res={:?}, opt_self_ty={:?}, path_segments={:?})",
1973                path.res, opt_self_ty, path.segments);
1974
1975         let span = path.span;
1976         match path.res {
1977             Res::Def(DefKind::OpaqueTy, did) => {
1978                 // Check for desugared `impl Trait`.
1979                 assert!(ty::is_impl_trait_defn(tcx, did).is_none());
1980                 let item_segment = path.segments.split_last().unwrap();
1981                 self.prohibit_generics(item_segment.1);
1982                 let substs = self.ast_path_substs_for_ty(span, did, item_segment.0);
1983                 self.normalize_ty(
1984                     span,
1985                     tcx.mk_opaque(did, substs),
1986                 )
1987             }
1988             Res::Def(DefKind::Enum, did)
1989             | Res::Def(DefKind::TyAlias, did)
1990             | Res::Def(DefKind::Struct, did)
1991             | Res::Def(DefKind::Union, did)
1992             | Res::Def(DefKind::ForeignTy, did) => {
1993                 assert_eq!(opt_self_ty, None);
1994                 self.prohibit_generics(path.segments.split_last().unwrap().1);
1995                 self.ast_path_to_ty(span, did, path.segments.last().unwrap())
1996             }
1997             Res::Def(kind @ DefKind::Variant, def_id) if permit_variants => {
1998                 // Convert "variant type" as if it were a real type.
1999                 // The resulting `Ty` is type of the variant's enum for now.
2000                 assert_eq!(opt_self_ty, None);
2001
2002                 let path_segs =
2003                     self.def_ids_for_value_path_segments(&path.segments, None, kind, def_id);
2004                 let generic_segs: FxHashSet<_> =
2005                     path_segs.iter().map(|PathSeg(_, index)| index).collect();
2006                 self.prohibit_generics(path.segments.iter().enumerate().filter_map(|(index, seg)| {
2007                     if !generic_segs.contains(&index) {
2008                         Some(seg)
2009                     } else {
2010                         None
2011                     }
2012                 }));
2013
2014                 let PathSeg(def_id, index) = path_segs.last().unwrap();
2015                 self.ast_path_to_ty(span, *def_id, &path.segments[*index])
2016             }
2017             Res::Def(DefKind::TyParam, def_id) => {
2018                 assert_eq!(opt_self_ty, None);
2019                 self.prohibit_generics(&path.segments);
2020
2021                 let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
2022                 let item_id = tcx.hir().get_parent_node(hir_id);
2023                 let item_def_id = tcx.hir().local_def_id(item_id);
2024                 let generics = tcx.generics_of(item_def_id);
2025                 let index = generics.param_def_id_to_index[&def_id];
2026                 tcx.mk_ty_param(index, tcx.hir().name(hir_id).as_interned_str())
2027             }
2028             Res::SelfTy(Some(_), None) => {
2029                 // `Self` in trait or type alias.
2030                 assert_eq!(opt_self_ty, None);
2031                 self.prohibit_generics(&path.segments);
2032                 tcx.types.self_param
2033             }
2034             Res::SelfTy(_, Some(def_id)) => {
2035                 // `Self` in impl (we know the concrete type).
2036                 assert_eq!(opt_self_ty, None);
2037                 self.prohibit_generics(&path.segments);
2038                 // Try to evaluate any array length constants.
2039                 self.normalize_ty(span, tcx.at(span).type_of(def_id))
2040             }
2041             Res::Def(DefKind::AssocTy, def_id) => {
2042                 debug_assert!(path.segments.len() >= 2);
2043                 self.prohibit_generics(&path.segments[..path.segments.len() - 2]);
2044                 self.qpath_to_ty(span,
2045                                  opt_self_ty,
2046                                  def_id,
2047                                  &path.segments[path.segments.len() - 2],
2048                                  path.segments.last().unwrap())
2049             }
2050             Res::PrimTy(prim_ty) => {
2051                 assert_eq!(opt_self_ty, None);
2052                 self.prohibit_generics(&path.segments);
2053                 match prim_ty {
2054                     hir::Bool => tcx.types.bool,
2055                     hir::Char => tcx.types.char,
2056                     hir::Int(it) => tcx.mk_mach_int(it),
2057                     hir::Uint(uit) => tcx.mk_mach_uint(uit),
2058                     hir::Float(ft) => tcx.mk_mach_float(ft),
2059                     hir::Str => tcx.mk_str()
2060                 }
2061             }
2062             Res::Err => {
2063                 self.set_tainted_by_errors();
2064                 return self.tcx().types.err;
2065             }
2066             _ => span_bug!(span, "unexpected resolution: {:?}", path.res)
2067         }
2068     }
2069
2070     /// Parses the programmer's textual representation of a type into our
2071     /// internal notion of a type.
2072     pub fn ast_ty_to_ty(&self, ast_ty: &hir::Ty) -> Ty<'tcx> {
2073         debug!("ast_ty_to_ty(id={:?}, ast_ty={:?} ty_ty={:?})",
2074                ast_ty.hir_id, ast_ty, ast_ty.kind);
2075
2076         let tcx = self.tcx();
2077
2078         let result_ty = match ast_ty.kind {
2079             hir::TyKind::Slice(ref ty) => {
2080                 tcx.mk_slice(self.ast_ty_to_ty(&ty))
2081             }
2082             hir::TyKind::Ptr(ref mt) => {
2083                 tcx.mk_ptr(ty::TypeAndMut {
2084                     ty: self.ast_ty_to_ty(&mt.ty),
2085                     mutbl: mt.mutbl
2086                 })
2087             }
2088             hir::TyKind::Rptr(ref region, ref mt) => {
2089                 let r = self.ast_region_to_region(region, None);
2090                 debug!("ast_ty_to_ty: r={:?}", r);
2091                 let t = self.ast_ty_to_ty(&mt.ty);
2092                 tcx.mk_ref(r, ty::TypeAndMut {ty: t, mutbl: mt.mutbl})
2093             }
2094             hir::TyKind::Never => {
2095                 tcx.types.never
2096             },
2097             hir::TyKind::Tup(ref fields) => {
2098                 tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(&t)))
2099             }
2100             hir::TyKind::BareFn(ref bf) => {
2101                 require_c_abi_if_c_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
2102                 tcx.mk_fn_ptr(self.ty_of_fn(bf.unsafety, bf.abi, &bf.decl))
2103             }
2104             hir::TyKind::TraitObject(ref bounds, ref lifetime) => {
2105                 self.conv_object_ty_poly_trait_ref(ast_ty.span, bounds, lifetime)
2106             }
2107             hir::TyKind::Path(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
2108                 debug!("ast_ty_to_ty: maybe_qself={:?} path={:?}", maybe_qself, path);
2109                 let opt_self_ty = maybe_qself.as_ref().map(|qself| {
2110                     self.ast_ty_to_ty(qself)
2111                 });
2112                 self.res_to_ty(opt_self_ty, path, false)
2113             }
2114             hir::TyKind::Def(item_id, ref lifetimes) => {
2115                 let did = tcx.hir().local_def_id(item_id.id);
2116                 self.impl_trait_ty_to_ty(did, lifetimes)
2117             }
2118             hir::TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
2119                 debug!("ast_ty_to_ty: qself={:?} segment={:?}", qself, segment);
2120                 let ty = self.ast_ty_to_ty(qself);
2121
2122                 let res = if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = qself.kind {
2123                     path.res
2124                 } else {
2125                     Res::Err
2126                 };
2127                 self.associated_path_to_ty(ast_ty.hir_id, ast_ty.span, ty, res, segment, false)
2128                     .map(|(ty, _, _)| ty).unwrap_or(tcx.types.err)
2129             }
2130             hir::TyKind::Array(ref ty, ref length) => {
2131                 let length = self.ast_const_to_const(length, tcx.types.usize);
2132                 let array_ty = tcx.mk_ty(ty::Array(self.ast_ty_to_ty(&ty), length));
2133                 self.normalize_ty(ast_ty.span, array_ty)
2134             }
2135             hir::TyKind::Typeof(ref _e) => {
2136                 struct_span_err!(tcx.sess, ast_ty.span, E0516,
2137                                  "`typeof` is a reserved keyword but unimplemented")
2138                     .span_label(ast_ty.span, "reserved keyword")
2139                     .emit();
2140
2141                 tcx.types.err
2142             }
2143             hir::TyKind::Infer => {
2144                 // Infer also appears as the type of arguments or return
2145                 // values in a ExprKind::Closure, or as
2146                 // the type of local variables. Both of these cases are
2147                 // handled specially and will not descend into this routine.
2148                 self.ty_infer(None, ast_ty.span)
2149             }
2150             hir::TyKind::Err => {
2151                 tcx.types.err
2152             }
2153         };
2154
2155         debug!("ast_ty_to_ty: result_ty={:?}", result_ty);
2156
2157         self.record_ty(ast_ty.hir_id, result_ty, ast_ty.span);
2158         result_ty
2159     }
2160
2161     /// Returns the `DefId` of the constant parameter that the provided expression is a path to.
2162     pub fn const_param_def_id(&self, expr: &hir::Expr) -> Option<DefId> {
2163         // Unwrap a block, so that e.g. `{ P }` is recognised as a parameter. Const arguments
2164         // currently have to be wrapped in curly brackets, so it's necessary to special-case.
2165         let expr = match &expr.kind {
2166             ExprKind::Block(block, _) if block.stmts.is_empty() && block.expr.is_some() =>
2167                 block.expr.as_ref().unwrap(),
2168             _ => expr,
2169         };
2170
2171         match &expr.kind {
2172             ExprKind::Path(hir::QPath::Resolved(_, path)) => match path.res {
2173                 Res::Def(DefKind::ConstParam, did) => Some(did),
2174                 _ => None,
2175             },
2176             _ => None,
2177         }
2178     }
2179
2180     pub fn ast_const_to_const(
2181         &self,
2182         ast_const: &hir::AnonConst,
2183         ty: Ty<'tcx>
2184     ) -> &'tcx ty::Const<'tcx> {
2185         debug!("ast_const_to_const(id={:?}, ast_const={:?})", ast_const.hir_id, ast_const);
2186
2187         let tcx = self.tcx();
2188         let def_id = tcx.hir().local_def_id(ast_const.hir_id);
2189
2190         let mut const_ = ty::Const {
2191             val: ConstValue::Unevaluated(
2192                 def_id,
2193                 InternalSubsts::identity_for_item(tcx, def_id),
2194             ),
2195             ty,
2196         };
2197
2198         let expr = &tcx.hir().body(ast_const.body).value;
2199         if let Some(def_id) = self.const_param_def_id(expr) {
2200             // Find the name and index of the const parameter by indexing the generics of the
2201             // parent item and construct a `ParamConst`.
2202             let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
2203             let item_id = tcx.hir().get_parent_node(hir_id);
2204             let item_def_id = tcx.hir().local_def_id(item_id);
2205             let generics = tcx.generics_of(item_def_id);
2206             let index = generics.param_def_id_to_index[&tcx.hir().local_def_id(hir_id)];
2207             let name = tcx.hir().name(hir_id).as_interned_str();
2208             const_.val = ConstValue::Param(ty::ParamConst::new(index, name));
2209         }
2210
2211         tcx.mk_const(const_)
2212     }
2213
2214     pub fn impl_trait_ty_to_ty(
2215         &self,
2216         def_id: DefId,
2217         lifetimes: &[hir::GenericArg],
2218     ) -> Ty<'tcx> {
2219         debug!("impl_trait_ty_to_ty(def_id={:?}, lifetimes={:?})", def_id, lifetimes);
2220         let tcx = self.tcx();
2221
2222         let generics = tcx.generics_of(def_id);
2223
2224         debug!("impl_trait_ty_to_ty: generics={:?}", generics);
2225         let substs = InternalSubsts::for_item(tcx, def_id, |param, _| {
2226             if let Some(i) = (param.index as usize).checked_sub(generics.parent_count) {
2227                 // Our own parameters are the resolved lifetimes.
2228                 match param.kind {
2229                     GenericParamDefKind::Lifetime => {
2230                         if let hir::GenericArg::Lifetime(lifetime) = &lifetimes[i] {
2231                             self.ast_region_to_region(lifetime, None).into()
2232                         } else {
2233                             bug!()
2234                         }
2235                     }
2236                     _ => bug!()
2237                 }
2238             } else {
2239                 // Replace all parent lifetimes with `'static`.
2240                 match param.kind {
2241                     GenericParamDefKind::Lifetime => {
2242                         tcx.lifetimes.re_static.into()
2243                     }
2244                     _ => tcx.mk_param_from_def(param)
2245                 }
2246             }
2247         });
2248         debug!("impl_trait_ty_to_ty: substs={:?}", substs);
2249
2250         let ty = tcx.mk_opaque(def_id, substs);
2251         debug!("impl_trait_ty_to_ty: {}", ty);
2252         ty
2253     }
2254
2255     pub fn ty_of_arg(&self,
2256                      ty: &hir::Ty,
2257                      expected_ty: Option<Ty<'tcx>>)
2258                      -> Ty<'tcx>
2259     {
2260         match ty.kind {
2261             hir::TyKind::Infer if expected_ty.is_some() => {
2262                 self.record_ty(ty.hir_id, expected_ty.unwrap(), ty.span);
2263                 expected_ty.unwrap()
2264             }
2265             _ => self.ast_ty_to_ty(ty),
2266         }
2267     }
2268
2269     pub fn ty_of_fn(&self,
2270                     unsafety: hir::Unsafety,
2271                     abi: abi::Abi,
2272                     decl: &hir::FnDecl)
2273                     -> ty::PolyFnSig<'tcx> {
2274         debug!("ty_of_fn");
2275
2276         let tcx = self.tcx();
2277         let input_tys =
2278             decl.inputs.iter().map(|a| self.ty_of_arg(a, None));
2279
2280         let output_ty = match decl.output {
2281             hir::Return(ref output) => self.ast_ty_to_ty(output),
2282             hir::DefaultReturn(..) => tcx.mk_unit(),
2283         };
2284
2285         debug!("ty_of_fn: output_ty={:?}", output_ty);
2286
2287         let bare_fn_ty = ty::Binder::bind(tcx.mk_fn_sig(
2288             input_tys,
2289             output_ty,
2290             decl.c_variadic,
2291             unsafety,
2292             abi
2293         ));
2294
2295         // Find any late-bound regions declared in return type that do
2296         // not appear in the arguments. These are not well-formed.
2297         //
2298         // Example:
2299         //     for<'a> fn() -> &'a str <-- 'a is bad
2300         //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
2301         let inputs = bare_fn_ty.inputs();
2302         let late_bound_in_args = tcx.collect_constrained_late_bound_regions(
2303             &inputs.map_bound(|i| i.to_owned()));
2304         let output = bare_fn_ty.output();
2305         let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
2306         for br in late_bound_in_ret.difference(&late_bound_in_args) {
2307             let lifetime_name = match *br {
2308                 ty::BrNamed(_, name) => format!("lifetime `{}`,", name),
2309                 ty::BrAnon(_) | ty::BrEnv => "an anonymous lifetime".to_string(),
2310             };
2311             let mut err = struct_span_err!(tcx.sess,
2312                                            decl.output.span(),
2313                                            E0581,
2314                                            "return type references {} \
2315                                             which is not constrained by the fn input types",
2316                                            lifetime_name);
2317             if let ty::BrAnon(_) = *br {
2318                 // The only way for an anonymous lifetime to wind up
2319                 // in the return type but **also** be unconstrained is
2320                 // if it only appears in "associated types" in the
2321                 // input. See #47511 for an example. In this case,
2322                 // though we can easily give a hint that ought to be
2323                 // relevant.
2324                 err.note("lifetimes appearing in an associated type \
2325                           are not considered constrained");
2326             }
2327             err.emit();
2328         }
2329
2330         bare_fn_ty
2331     }
2332
2333     /// Given the bounds on an object, determines what single region bound (if any) we can
2334     /// use to summarize this type. The basic idea is that we will use the bound the user
2335     /// provided, if they provided one, and otherwise search the supertypes of trait bounds
2336     /// for region bounds. It may be that we can derive no bound at all, in which case
2337     /// we return `None`.
2338     fn compute_object_lifetime_bound(&self,
2339         span: Span,
2340         existential_predicates: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>)
2341         -> Option<ty::Region<'tcx>> // if None, use the default
2342     {
2343         let tcx = self.tcx();
2344
2345         debug!("compute_opt_region_bound(existential_predicates={:?})",
2346                existential_predicates);
2347
2348         // No explicit region bound specified. Therefore, examine trait
2349         // bounds and see if we can derive region bounds from those.
2350         let derived_region_bounds =
2351             object_region_bounds(tcx, existential_predicates);
2352
2353         // If there are no derived region bounds, then report back that we
2354         // can find no region bound. The caller will use the default.
2355         if derived_region_bounds.is_empty() {
2356             return None;
2357         }
2358
2359         // If any of the derived region bounds are 'static, that is always
2360         // the best choice.
2361         if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
2362             return Some(tcx.lifetimes.re_static);
2363         }
2364
2365         // Determine whether there is exactly one unique region in the set
2366         // of derived region bounds. If so, use that. Otherwise, report an
2367         // error.
2368         let r = derived_region_bounds[0];
2369         if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
2370             span_err!(tcx.sess, span, E0227,
2371                       "ambiguous lifetime bound, explicit lifetime bound required");
2372         }
2373         return Some(r);
2374     }
2375 }
2376
2377 /// Collects together a list of bounds that are applied to some type,
2378 /// after they've been converted into `ty` form (from the HIR
2379 /// representations). These lists of bounds occur in many places in
2380 /// Rust's syntax:
2381 ///
2382 /// ```
2383 /// trait Foo: Bar + Baz { }
2384 ///            ^^^^^^^^^ supertrait list bounding the `Self` type parameter
2385 ///
2386 /// fn foo<T: Bar + Baz>() { }
2387 ///           ^^^^^^^^^ bounding the type parameter `T`
2388 ///
2389 /// impl dyn Bar + Baz
2390 ///          ^^^^^^^^^ bounding the forgotten dynamic type
2391 /// ```
2392 ///
2393 /// Our representation is a bit mixed here -- in some cases, we
2394 /// include the self type (e.g., `trait_bounds`) but in others we do
2395 #[derive(Default, PartialEq, Eq, Clone, Debug)]
2396 pub struct Bounds<'tcx> {
2397     /// A list of region bounds on the (implicit) self type. So if you
2398     /// had `T: 'a + 'b` this might would be a list `['a, 'b]` (but
2399     /// the `T` is not explicitly included).
2400     pub region_bounds: Vec<(ty::Region<'tcx>, Span)>,
2401
2402     /// A list of trait bounds. So if you had `T: Debug` this would be
2403     /// `T: Debug`. Note that the self-type is explicit here.
2404     pub trait_bounds: Vec<(ty::PolyTraitRef<'tcx>, Span)>,
2405
2406     /// A list of projection equality bounds. So if you had `T:
2407     /// Iterator<Item = u32>` this would include `<T as
2408     /// Iterator>::Item => u32`. Note that the self-type is explicit
2409     /// here.
2410     pub projection_bounds: Vec<(ty::PolyProjectionPredicate<'tcx>, Span)>,
2411
2412     /// `Some` if there is *no* `?Sized` predicate. The `span`
2413     /// is the location in the source of the `T` declaration which can
2414     /// be cited as the source of the `T: Sized` requirement.
2415     pub implicitly_sized: Option<Span>,
2416 }
2417
2418 impl<'tcx> Bounds<'tcx> {
2419     /// Converts a bounds list into a flat set of predicates (like
2420     /// where-clauses). Because some of our bounds listings (e.g.,
2421     /// regions) don't include the self-type, you must supply the
2422     /// self-type here (the `param_ty` parameter).
2423     pub fn predicates(
2424         &self,
2425         tcx: TyCtxt<'tcx>,
2426         param_ty: Ty<'tcx>,
2427     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2428         // If it could be sized, and is, add the `Sized` predicate.
2429         let sized_predicate = self.implicitly_sized.and_then(|span| {
2430             tcx.lang_items().sized_trait().map(|sized| {
2431                 let trait_ref = ty::TraitRef {
2432                     def_id: sized,
2433                     substs: tcx.mk_substs_trait(param_ty, &[])
2434                 };
2435                 (trait_ref.to_predicate(), span)
2436             })
2437         });
2438
2439         sized_predicate.into_iter().chain(
2440             self.region_bounds.iter().map(|&(region_bound, span)| {
2441                 // Account for the binder being introduced below; no need to shift `param_ty`
2442                 // because, at present at least, it can only refer to early-bound regions.
2443                 let region_bound = ty::fold::shift_region(tcx, region_bound, 1);
2444                 let outlives = ty::OutlivesPredicate(param_ty, region_bound);
2445                 (ty::Binder::dummy(outlives).to_predicate(), span)
2446             }).chain(
2447                 self.trait_bounds.iter().map(|&(bound_trait_ref, span)| {
2448                     (bound_trait_ref.to_predicate(), span)
2449                 })
2450             ).chain(
2451                 self.projection_bounds.iter().map(|&(projection, span)| {
2452                     (projection.to_predicate(), span)
2453                 })
2454             )
2455         ).collect()
2456     }
2457 }