]> git.lizzy.rs Git - rust.git/blob - src/librustc_typeck/astconv.rs
introduce PredicateAtom
[rust.git] / src / librustc_typeck / astconv.rs
1 // ignore-tidy-filelength FIXME(#67418) Split up this file.
2 //! Conversion from AST representation of types to the `ty.rs` representation.
3 //! The main routine here is `ast_ty_to_ty()`; each use is parameterized by an
4 //! instance of `AstConv`.
5
6 // ignore-tidy-filelength
7
8 use crate::collect::PlaceholderHirTyCollector;
9 use crate::middle::resolve_lifetime as rl;
10 use crate::require_c_abi_if_c_variadic;
11 use rustc_ast::{ast::ParamKindOrd, util::lev_distance::find_best_match_for_name};
12 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
13 use rustc_errors::ErrorReported;
14 use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticId, FatalError};
15 use rustc_hir as hir;
16 use rustc_hir::def::{CtorOf, DefKind, Namespace, Res};
17 use rustc_hir::def_id::{DefId, LocalDefId};
18 use rustc_hir::intravisit::{walk_generics, Visitor as _};
19 use rustc_hir::lang_items::SizedTraitLangItem;
20 use rustc_hir::{Constness, GenericArg, GenericArgs};
21 use rustc_middle::ty::subst::{self, InternalSubsts, Subst, SubstsRef};
22 use rustc_middle::ty::{
23     self, Const, DefIdTree, ToPredicate, Ty, TyCtxt, TypeFoldable, WithConstness,
24 };
25 use rustc_middle::ty::{GenericParamDef, GenericParamDefKind};
26 use rustc_session::lint::builtin::{AMBIGUOUS_ASSOCIATED_ITEMS, LATE_BOUND_LIFETIME_ARGUMENTS};
27 use rustc_session::parse::feature_err;
28 use rustc_session::Session;
29 use rustc_span::symbol::{kw, sym, Ident, Symbol};
30 use rustc_span::{MultiSpan, Span, DUMMY_SP};
31 use rustc_target::spec::abi;
32 use rustc_trait_selection::traits;
33 use rustc_trait_selection::traits::astconv_object_safety_violations;
34 use rustc_trait_selection::traits::error_reporting::report_object_safety_error;
35 use rustc_trait_selection::traits::wf::object_region_bounds;
36
37 use smallvec::SmallVec;
38 use std::collections::BTreeSet;
39 use std::iter;
40 use std::slice;
41
42 #[derive(Debug)]
43 pub struct PathSeg(pub DefId, pub usize);
44
45 pub trait AstConv<'tcx> {
46     fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
47
48     fn item_def_id(&self) -> Option<DefId>;
49
50     fn default_constness_for_trait_bounds(&self) -> Constness;
51
52     /// Returns predicates in scope of the form `X: Foo`, where `X` is
53     /// a type parameter `X` with the given id `def_id`. This is a
54     /// subset of the full set of predicates.
55     ///
56     /// This is used for one specific purpose: resolving "short-hand"
57     /// associated type references like `T::Item`. In principle, we
58     /// would do that by first getting the full set of predicates in
59     /// scope and then filtering down to find those that apply to `T`,
60     /// but this can lead to cycle errors. The problem is that we have
61     /// to do this resolution *in order to create the predicates in
62     /// the first place*. Hence, we have this "special pass".
63     fn get_type_parameter_bounds(&self, span: Span, def_id: DefId) -> ty::GenericPredicates<'tcx>;
64
65     /// Returns the lifetime to use when a lifetime is omitted (and not elided).
66     fn re_infer(&self, param: Option<&ty::GenericParamDef>, span: Span)
67     -> Option<ty::Region<'tcx>>;
68
69     /// Returns the type to use when a type is omitted.
70     fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx>;
71
72     /// Returns `true` if `_` is allowed in type signatures in the current context.
73     fn allow_ty_infer(&self) -> bool;
74
75     /// Returns the const to use when a const is omitted.
76     fn ct_infer(
77         &self,
78         ty: Ty<'tcx>,
79         param: Option<&ty::GenericParamDef>,
80         span: Span,
81     ) -> &'tcx Const<'tcx>;
82
83     /// Projecting an associated type from a (potentially)
84     /// higher-ranked trait reference is more complicated, because of
85     /// the possibility of late-bound regions appearing in the
86     /// associated type binding. This is not legal in function
87     /// signatures for that reason. In a function body, we can always
88     /// handle it because we can use inference variables to remove the
89     /// late-bound regions.
90     fn projected_ty_from_poly_trait_ref(
91         &self,
92         span: Span,
93         item_def_id: DefId,
94         item_segment: &hir::PathSegment<'_>,
95         poly_trait_ref: ty::PolyTraitRef<'tcx>,
96     ) -> Ty<'tcx>;
97
98     /// Normalize an associated type coming from the user.
99     fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;
100
101     /// Invoked when we encounter an error from some prior pass
102     /// (e.g., resolve) that is translated into a ty-error. This is
103     /// used to help suppress derived errors typeck might otherwise
104     /// report.
105     fn set_tainted_by_errors(&self);
106
107     fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, span: Span);
108 }
109
110 pub enum SizedByDefault {
111     Yes,
112     No,
113 }
114
115 struct ConvertedBinding<'a, 'tcx> {
116     item_name: Ident,
117     kind: ConvertedBindingKind<'a, 'tcx>,
118     span: Span,
119 }
120
121 enum ConvertedBindingKind<'a, 'tcx> {
122     Equality(Ty<'tcx>),
123     Constraint(&'a [hir::GenericBound<'a>]),
124 }
125
126 /// New-typed boolean indicating whether explicit late-bound lifetimes
127 /// are present in a set of generic arguments.
128 ///
129 /// For example if we have some method `fn f<'a>(&'a self)` implemented
130 /// for some type `T`, although `f` is generic in the lifetime `'a`, `'a`
131 /// is late-bound so should not be provided explicitly. Thus, if `f` is
132 /// instantiated with some generic arguments providing `'a` explicitly,
133 /// we taint those arguments with `ExplicitLateBound::Yes` so that we
134 /// can provide an appropriate diagnostic later.
135 #[derive(Copy, Clone, PartialEq)]
136 pub enum ExplicitLateBound {
137     Yes,
138     No,
139 }
140
141 #[derive(Copy, Clone, PartialEq)]
142 enum GenericArgPosition {
143     Type,
144     Value, // e.g., functions
145     MethodCall,
146 }
147
148 /// A marker denoting that the generic arguments that were
149 /// provided did not match the respective generic parameters.
150 #[derive(Clone, Default)]
151 pub struct GenericArgCountMismatch {
152     /// Indicates whether a fatal error was reported (`Some`), or just a lint (`None`).
153     pub reported: Option<ErrorReported>,
154     /// A list of spans of arguments provided that were not valid.
155     pub invalid_args: Vec<Span>,
156 }
157
158 /// Decorates the result of a generic argument count mismatch
159 /// check with whether explicit late bounds were provided.
160 #[derive(Clone)]
161 pub struct GenericArgCountResult {
162     pub explicit_late_bound: ExplicitLateBound,
163     pub correct: Result<(), GenericArgCountMismatch>,
164 }
165
166 impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
167     pub fn ast_region_to_region(
168         &self,
169         lifetime: &hir::Lifetime,
170         def: Option<&ty::GenericParamDef>,
171     ) -> ty::Region<'tcx> {
172         let tcx = self.tcx();
173         let lifetime_name = |def_id| tcx.hir().name(tcx.hir().as_local_hir_id(def_id));
174
175         let r = match tcx.named_region(lifetime.hir_id) {
176             Some(rl::Region::Static) => tcx.lifetimes.re_static,
177
178             Some(rl::Region::LateBound(debruijn, id, _)) => {
179                 let name = lifetime_name(id.expect_local());
180                 tcx.mk_region(ty::ReLateBound(debruijn, ty::BrNamed(id, name)))
181             }
182
183             Some(rl::Region::LateBoundAnon(debruijn, index)) => {
184                 tcx.mk_region(ty::ReLateBound(debruijn, ty::BrAnon(index)))
185             }
186
187             Some(rl::Region::EarlyBound(index, id, _)) => {
188                 let name = lifetime_name(id.expect_local());
189                 tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion { def_id: id, index, name }))
190             }
191
192             Some(rl::Region::Free(scope, id)) => {
193                 let name = lifetime_name(id.expect_local());
194                 tcx.mk_region(ty::ReFree(ty::FreeRegion {
195                     scope,
196                     bound_region: ty::BrNamed(id, name),
197                 }))
198
199                 // (*) -- not late-bound, won't change
200             }
201
202             None => {
203                 self.re_infer(def, lifetime.span).unwrap_or_else(|| {
204                     // This indicates an illegal lifetime
205                     // elision. `resolve_lifetime` should have
206                     // reported an error in this case -- but if
207                     // not, let's error out.
208                     tcx.sess.delay_span_bug(lifetime.span, "unelided lifetime in signature");
209
210                     // Supply some dummy value. We don't have an
211                     // `re_error`, annoyingly, so use `'static`.
212                     tcx.lifetimes.re_static
213                 })
214             }
215         };
216
217         debug!("ast_region_to_region(lifetime={:?}) yields {:?}", lifetime, r);
218
219         r
220     }
221
222     /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
223     /// returns an appropriate set of substitutions for this particular reference to `I`.
224     pub fn ast_path_substs_for_ty(
225         &self,
226         span: Span,
227         def_id: DefId,
228         item_segment: &hir::PathSegment<'_>,
229     ) -> SubstsRef<'tcx> {
230         let (substs, assoc_bindings, _) = self.create_substs_for_ast_path(
231             span,
232             def_id,
233             &[],
234             item_segment.generic_args(),
235             item_segment.infer_args,
236             None,
237         );
238
239         if let Some(b) = assoc_bindings.first() {
240             Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
241         }
242
243         substs
244     }
245
246     /// Report error if there is an explicit type parameter when using `impl Trait`.
247     fn check_impl_trait(
248         tcx: TyCtxt<'_>,
249         seg: &hir::PathSegment<'_>,
250         generics: &ty::Generics,
251     ) -> bool {
252         let explicit = !seg.infer_args;
253         let impl_trait = generics.params.iter().any(|param| match param.kind {
254             ty::GenericParamDefKind::Type {
255                 synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
256                 ..
257             } => true,
258             _ => false,
259         });
260
261         if explicit && impl_trait {
262             let spans = seg
263                 .generic_args()
264                 .args
265                 .iter()
266                 .filter_map(|arg| match arg {
267                     GenericArg::Type(_) => Some(arg.span()),
268                     _ => None,
269                 })
270                 .collect::<Vec<_>>();
271
272             let mut err = struct_span_err! {
273                 tcx.sess,
274                 spans.clone(),
275                 E0632,
276                 "cannot provide explicit generic arguments when `impl Trait` is \
277                 used in argument position"
278             };
279
280             for span in spans {
281                 err.span_label(span, "explicit generic argument not allowed");
282             }
283
284             err.emit();
285         }
286
287         impl_trait
288     }
289
290     /// Checks that the correct number of generic arguments have been provided.
291     /// Used specifically for function calls.
292     pub fn check_generic_arg_count_for_call(
293         tcx: TyCtxt<'_>,
294         span: Span,
295         def: &ty::Generics,
296         seg: &hir::PathSegment<'_>,
297         is_method_call: bool,
298     ) -> GenericArgCountResult {
299         let empty_args = hir::GenericArgs::none();
300         let suppress_mismatch = Self::check_impl_trait(tcx, seg, &def);
301         Self::check_generic_arg_count(
302             tcx,
303             span,
304             def,
305             if let Some(ref args) = seg.args { args } else { &empty_args },
306             if is_method_call { GenericArgPosition::MethodCall } else { GenericArgPosition::Value },
307             def.parent.is_none() && def.has_self, // `has_self`
308             seg.infer_args || suppress_mismatch,  // `infer_args`
309         )
310     }
311
312     /// Checks that the correct number of generic arguments have been provided.
313     /// This is used both for datatypes and function calls.
314     fn check_generic_arg_count(
315         tcx: TyCtxt<'_>,
316         span: Span,
317         def: &ty::Generics,
318         args: &hir::GenericArgs<'_>,
319         position: GenericArgPosition,
320         has_self: bool,
321         infer_args: bool,
322     ) -> GenericArgCountResult {
323         // At this stage we are guaranteed that the generic arguments are in the correct order, e.g.
324         // that lifetimes will proceed types. So it suffices to check the number of each generic
325         // arguments in order to validate them with respect to the generic parameters.
326         let param_counts = def.own_counts();
327         let arg_counts = args.own_counts();
328         let infer_lifetimes = position != GenericArgPosition::Type && arg_counts.lifetimes == 0;
329
330         let mut defaults: ty::GenericParamCount = Default::default();
331         for param in &def.params {
332             match param.kind {
333                 GenericParamDefKind::Lifetime => {}
334                 GenericParamDefKind::Type { has_default, .. } => {
335                     defaults.types += has_default as usize
336                 }
337                 GenericParamDefKind::Const => {
338                     // FIXME(const_generics:defaults)
339                 }
340             };
341         }
342
343         if position != GenericArgPosition::Type && !args.bindings.is_empty() {
344             AstConv::prohibit_assoc_ty_binding(tcx, args.bindings[0].span);
345         }
346
347         let explicit_late_bound =
348             Self::prohibit_explicit_late_bound_lifetimes(tcx, def, args, position);
349
350         let check_kind_count = |kind,
351                                 required,
352                                 permitted,
353                                 provided,
354                                 offset,
355                                 unexpected_spans: &mut Vec<Span>,
356                                 silent| {
357             debug!(
358                 "check_kind_count: kind: {} required: {} permitted: {} provided: {} offset: {}",
359                 kind, required, permitted, provided, offset
360             );
361             // We enforce the following: `required` <= `provided` <= `permitted`.
362             // For kinds without defaults (e.g.., lifetimes), `required == permitted`.
363             // For other kinds (i.e., types), `permitted` may be greater than `required`.
364             if required <= provided && provided <= permitted {
365                 return Ok(());
366             }
367
368             if silent {
369                 return Err(true);
370             }
371
372             // Unfortunately lifetime and type parameter mismatches are typically styled
373             // differently in diagnostics, which means we have a few cases to consider here.
374             let (bound, quantifier) = if required != permitted {
375                 if provided < required {
376                     (required, "at least ")
377                 } else {
378                     // provided > permitted
379                     (permitted, "at most ")
380                 }
381             } else {
382                 (required, "")
383             };
384
385             let (spans, label) = if required == permitted && provided > permitted {
386                 // In the case when the user has provided too many arguments,
387                 // we want to point to the unexpected arguments.
388                 let spans: Vec<Span> = args.args[offset + permitted..offset + provided]
389                     .iter()
390                     .map(|arg| arg.span())
391                     .collect();
392                 unexpected_spans.extend(spans.clone());
393                 (spans, format!("unexpected {} argument", kind))
394             } else {
395                 (
396                     vec![span],
397                     format!(
398                         "expected {}{} {} argument{}",
399                         quantifier,
400                         bound,
401                         kind,
402                         pluralize!(bound),
403                     ),
404                 )
405             };
406
407             let mut err = tcx.sess.struct_span_err_with_code(
408                 spans.clone(),
409                 &format!(
410                     "wrong number of {} arguments: expected {}{}, found {}",
411                     kind, quantifier, bound, provided,
412                 ),
413                 DiagnosticId::Error("E0107".into()),
414             );
415             for span in spans {
416                 err.span_label(span, label.as_str());
417             }
418             err.emit();
419
420             Err(true)
421         };
422
423         let mut arg_count_correct = Ok(());
424         let mut unexpected_spans = vec![];
425
426         if !infer_lifetimes || arg_counts.lifetimes > param_counts.lifetimes {
427             arg_count_correct = check_kind_count(
428                 "lifetime",
429                 param_counts.lifetimes,
430                 param_counts.lifetimes,
431                 arg_counts.lifetimes,
432                 0,
433                 &mut unexpected_spans,
434                 explicit_late_bound == ExplicitLateBound::Yes,
435             )
436             .and(arg_count_correct);
437         }
438         // FIXME(const_generics:defaults)
439         if !infer_args || arg_counts.consts > param_counts.consts {
440             arg_count_correct = check_kind_count(
441                 "const",
442                 param_counts.consts,
443                 param_counts.consts,
444                 arg_counts.consts,
445                 arg_counts.lifetimes + arg_counts.types,
446                 &mut unexpected_spans,
447                 false,
448             )
449             .and(arg_count_correct);
450         }
451         // Note that type errors are currently be emitted *after* const errors.
452         if !infer_args || arg_counts.types > param_counts.types - defaults.types - has_self as usize
453         {
454             arg_count_correct = check_kind_count(
455                 "type",
456                 param_counts.types - defaults.types - has_self as usize,
457                 param_counts.types - has_self as usize,
458                 arg_counts.types,
459                 arg_counts.lifetimes,
460                 &mut unexpected_spans,
461                 false,
462             )
463             .and(arg_count_correct);
464         }
465
466         GenericArgCountResult {
467             explicit_late_bound,
468             correct: arg_count_correct.map_err(|reported_err| GenericArgCountMismatch {
469                 reported: if reported_err { Some(ErrorReported) } else { None },
470                 invalid_args: unexpected_spans,
471             }),
472         }
473     }
474
475     /// Report an error that a generic argument did not match the generic parameter that was
476     /// expected.
477     fn generic_arg_mismatch_err(
478         sess: &Session,
479         arg: &GenericArg<'_>,
480         kind: &'static str,
481         help: Option<&str>,
482     ) {
483         let mut err = struct_span_err!(
484             sess,
485             arg.span(),
486             E0747,
487             "{} provided when a {} was expected",
488             arg.descr(),
489             kind,
490         );
491
492         let kind_ord = match kind {
493             "lifetime" => ParamKindOrd::Lifetime,
494             "type" => ParamKindOrd::Type,
495             "constant" => ParamKindOrd::Const,
496             // It's more concise to match on the string representation, though it means
497             // the match is non-exhaustive.
498             _ => bug!("invalid generic parameter kind {}", kind),
499         };
500         let arg_ord = match arg {
501             GenericArg::Lifetime(_) => ParamKindOrd::Lifetime,
502             GenericArg::Type(_) => ParamKindOrd::Type,
503             GenericArg::Const(_) => ParamKindOrd::Const,
504         };
505
506         // This note will be true as long as generic parameters are strictly ordered by their kind.
507         let (first, last) =
508             if kind_ord < arg_ord { (kind, arg.descr()) } else { (arg.descr(), kind) };
509         err.note(&format!("{} arguments must be provided before {} arguments", first, last));
510
511         if let Some(help) = help {
512             err.help(help);
513         }
514         err.emit();
515     }
516
517     /// Creates the relevant generic argument substitutions
518     /// corresponding to a set of generic parameters. This is a
519     /// rather complex function. Let us try to explain the role
520     /// of each of its parameters:
521     ///
522     /// To start, we are given the `def_id` of the thing we are
523     /// creating the substitutions for, and a partial set of
524     /// substitutions `parent_substs`. In general, the substitutions
525     /// for an item begin with substitutions for all the "parents" of
526     /// that item -- e.g., for a method it might include the
527     /// parameters from the impl.
528     ///
529     /// Therefore, the method begins by walking down these parents,
530     /// starting with the outermost parent and proceed inwards until
531     /// it reaches `def_id`. For each parent `P`, it will check `parent_substs`
532     /// first to see if the parent's substitutions are listed in there. If so,
533     /// we can append those and move on. Otherwise, it invokes the
534     /// three callback functions:
535     ///
536     /// - `args_for_def_id`: given the `DefId` `P`, supplies back the
537     ///   generic arguments that were given to that parent from within
538     ///   the path; so e.g., if you have `<T as Foo>::Bar`, the `DefId`
539     ///   might refer to the trait `Foo`, and the arguments might be
540     ///   `[T]`. The boolean value indicates whether to infer values
541     ///   for arguments whose values were not explicitly provided.
542     /// - `provided_kind`: given the generic parameter and the value from `args_for_def_id`,
543     ///   instantiate a `GenericArg`.
544     /// - `inferred_kind`: if no parameter was provided, and inference is enabled, then
545     ///   creates a suitable inference variable.
546     pub fn create_substs_for_generic_args<'b>(
547         tcx: TyCtxt<'tcx>,
548         def_id: DefId,
549         parent_substs: &[subst::GenericArg<'tcx>],
550         has_self: bool,
551         self_ty: Option<Ty<'tcx>>,
552         arg_count: GenericArgCountResult,
553         args_for_def_id: impl Fn(DefId) -> (Option<&'b GenericArgs<'b>>, bool),
554         mut provided_kind: impl FnMut(&GenericParamDef, &GenericArg<'_>) -> subst::GenericArg<'tcx>,
555         mut inferred_kind: impl FnMut(
556             Option<&[subst::GenericArg<'tcx>]>,
557             &GenericParamDef,
558             bool,
559         ) -> subst::GenericArg<'tcx>,
560     ) -> SubstsRef<'tcx> {
561         // Collect the segments of the path; we need to substitute arguments
562         // for parameters throughout the entire path (wherever there are
563         // generic parameters).
564         let mut parent_defs = tcx.generics_of(def_id);
565         let count = parent_defs.count();
566         let mut stack = vec![(def_id, parent_defs)];
567         while let Some(def_id) = parent_defs.parent {
568             parent_defs = tcx.generics_of(def_id);
569             stack.push((def_id, parent_defs));
570         }
571
572         // We manually build up the substitution, rather than using convenience
573         // methods in `subst.rs`, so that we can iterate over the arguments and
574         // parameters in lock-step linearly, instead of trying to match each pair.
575         let mut substs: SmallVec<[subst::GenericArg<'tcx>; 8]> = SmallVec::with_capacity(count);
576         // Iterate over each segment of the path.
577         while let Some((def_id, defs)) = stack.pop() {
578             let mut params = defs.params.iter().peekable();
579
580             // If we have already computed substitutions for parents, we can use those directly.
581             while let Some(&param) = params.peek() {
582                 if let Some(&kind) = parent_substs.get(param.index as usize) {
583                     substs.push(kind);
584                     params.next();
585                 } else {
586                     break;
587                 }
588             }
589
590             // `Self` is handled first, unless it's been handled in `parent_substs`.
591             if has_self {
592                 if let Some(&param) = params.peek() {
593                     if param.index == 0 {
594                         if let GenericParamDefKind::Type { .. } = param.kind {
595                             substs.push(
596                                 self_ty
597                                     .map(|ty| ty.into())
598                                     .unwrap_or_else(|| inferred_kind(None, param, true)),
599                             );
600                             params.next();
601                         }
602                     }
603                 }
604             }
605
606             // Check whether this segment takes generic arguments and the user has provided any.
607             let (generic_args, infer_args) = args_for_def_id(def_id);
608
609             let mut args =
610                 generic_args.iter().flat_map(|generic_args| generic_args.args.iter()).peekable();
611
612             // If we encounter a type or const when we expect a lifetime, we infer the lifetimes.
613             // If we later encounter a lifetime, we know that the arguments were provided in the
614             // wrong order. `force_infer_lt` records the type or const that forced lifetimes to be
615             // inferred, so we can use it for diagnostics later.
616             let mut force_infer_lt = None;
617
618             loop {
619                 // We're going to iterate through the generic arguments that the user
620                 // provided, matching them with the generic parameters we expect.
621                 // Mismatches can occur as a result of elided lifetimes, or for malformed
622                 // input. We try to handle both sensibly.
623                 match (args.peek(), params.peek()) {
624                     (Some(&arg), Some(&param)) => {
625                         match (arg, &param.kind, arg_count.explicit_late_bound) {
626                             (GenericArg::Lifetime(_), GenericParamDefKind::Lifetime, _)
627                             | (GenericArg::Type(_), GenericParamDefKind::Type { .. }, _)
628                             | (GenericArg::Const(_), GenericParamDefKind::Const, _) => {
629                                 substs.push(provided_kind(param, arg));
630                                 args.next();
631                                 params.next();
632                             }
633                             (
634                                 GenericArg::Type(_) | GenericArg::Const(_),
635                                 GenericParamDefKind::Lifetime,
636                                 _,
637                             ) => {
638                                 // We expected a lifetime argument, but got a type or const
639                                 // argument. That means we're inferring the lifetimes.
640                                 substs.push(inferred_kind(None, param, infer_args));
641                                 force_infer_lt = Some(arg);
642                                 params.next();
643                             }
644                             (GenericArg::Lifetime(_), _, ExplicitLateBound::Yes) => {
645                                 // We've come across a lifetime when we expected something else in
646                                 // the presence of explicit late bounds. This is most likely
647                                 // due to the presence of the explicit bound so we're just going to
648                                 // ignore it.
649                                 args.next();
650                             }
651                             (_, kind, _) => {
652                                 // We expected one kind of parameter, but the user provided
653                                 // another. This is an error. However, if we already know that
654                                 // the arguments don't match up with the parameters, we won't issue
655                                 // an additional error, as the user already knows what's wrong.
656                                 if arg_count.correct.is_ok()
657                                     && arg_count.explicit_late_bound == ExplicitLateBound::No
658                                 {
659                                     // We're going to iterate over the parameters to sort them out, and
660                                     // show that order to the user as a possible order for the parameters
661                                     let mut param_types_present = defs
662                                         .params
663                                         .clone()
664                                         .into_iter()
665                                         .map(|param| {
666                                             (
667                                                 match param.kind {
668                                                     GenericParamDefKind::Lifetime => {
669                                                         ParamKindOrd::Lifetime
670                                                     }
671                                                     GenericParamDefKind::Type { .. } => {
672                                                         ParamKindOrd::Type
673                                                     }
674                                                     GenericParamDefKind::Const => {
675                                                         ParamKindOrd::Const
676                                                     }
677                                                 },
678                                                 param,
679                                             )
680                                         })
681                                         .collect::<Vec<(ParamKindOrd, GenericParamDef)>>();
682                                     param_types_present.sort_by_key(|(ord, _)| *ord);
683                                     let (mut param_types_present, ordered_params): (
684                                         Vec<ParamKindOrd>,
685                                         Vec<GenericParamDef>,
686                                     ) = param_types_present.into_iter().unzip();
687                                     param_types_present.dedup();
688
689                                     Self::generic_arg_mismatch_err(
690                                         tcx.sess,
691                                         arg,
692                                         kind.descr(),
693                                         Some(&format!(
694                                             "reorder the arguments: {}: `<{}>`",
695                                             param_types_present
696                                                 .into_iter()
697                                                 .map(|ord| format!("{}s", ord.to_string()))
698                                                 .collect::<Vec<String>>()
699                                                 .join(", then "),
700                                             ordered_params
701                                                 .into_iter()
702                                                 .filter_map(|param| {
703                                                     if param.name == kw::SelfUpper {
704                                                         None
705                                                     } else {
706                                                         Some(param.name.to_string())
707                                                     }
708                                                 })
709                                                 .collect::<Vec<String>>()
710                                                 .join(", ")
711                                         )),
712                                     );
713                                 }
714
715                                 // We've reported the error, but we want to make sure that this
716                                 // problem doesn't bubble down and create additional, irrelevant
717                                 // errors. In this case, we're simply going to ignore the argument
718                                 // and any following arguments. The rest of the parameters will be
719                                 // inferred.
720                                 while args.next().is_some() {}
721                             }
722                         }
723                     }
724
725                     (Some(&arg), None) => {
726                         // We should never be able to reach this point with well-formed input.
727                         // There are three situations in which we can encounter this issue.
728                         //
729                         //  1.  The number of arguments is incorrect. In this case, an error
730                         //      will already have been emitted, and we can ignore it.
731                         //  2.  There are late-bound lifetime parameters present, yet the
732                         //      lifetime arguments have also been explicitly specified by the
733                         //      user.
734                         //  3.  We've inferred some lifetimes, which have been provided later (i.e.
735                         //      after a type or const). We want to throw an error in this case.
736
737                         if arg_count.correct.is_ok()
738                             && arg_count.explicit_late_bound == ExplicitLateBound::No
739                         {
740                             let kind = arg.descr();
741                             assert_eq!(kind, "lifetime");
742                             let provided =
743                                 force_infer_lt.expect("lifetimes ought to have been inferred");
744                             Self::generic_arg_mismatch_err(tcx.sess, provided, kind, None);
745                         }
746
747                         break;
748                     }
749
750                     (None, Some(&param)) => {
751                         // If there are fewer arguments than parameters, it means
752                         // we're inferring the remaining arguments.
753                         substs.push(inferred_kind(Some(&substs), param, infer_args));
754                         params.next();
755                     }
756
757                     (None, None) => break,
758                 }
759             }
760         }
761
762         tcx.intern_substs(&substs)
763     }
764
765     /// Given the type/lifetime/const arguments provided to some path (along with
766     /// an implicit `Self`, if this is a trait reference), returns the complete
767     /// set of substitutions. This may involve applying defaulted type parameters.
768     /// Also returns back constraints on associated types.
769     ///
770     /// Example:
771     ///
772     /// ```
773     /// T: std::ops::Index<usize, Output = u32>
774     /// ^1 ^^^^^^^^^^^^^^2 ^^^^3  ^^^^^^^^^^^4
775     /// ```
776     ///
777     /// 1. The `self_ty` here would refer to the type `T`.
778     /// 2. The path in question is the path to the trait `std::ops::Index`,
779     ///    which will have been resolved to a `def_id`
780     /// 3. The `generic_args` contains info on the `<...>` contents. The `usize` type
781     ///    parameters are returned in the `SubstsRef`, the associated type bindings like
782     ///    `Output = u32` are returned in the `Vec<ConvertedBinding...>` result.
783     ///
784     /// Note that the type listing given here is *exactly* what the user provided.
785     ///
786     /// For (generic) associated types
787     ///
788     /// ```
789     /// <Vec<u8> as Iterable<u8>>::Iter::<'a>
790     /// ```
791     ///
792     /// We have the parent substs are the substs for the parent trait:
793     /// `[Vec<u8>, u8]` and `generic_args` are the arguments for the associated
794     /// type itself: `['a]`. The returned `SubstsRef` concatenates these two
795     /// lists: `[Vec<u8>, u8, 'a]`.
796     fn create_substs_for_ast_path<'a>(
797         &self,
798         span: Span,
799         def_id: DefId,
800         parent_substs: &[subst::GenericArg<'tcx>],
801         generic_args: &'a hir::GenericArgs<'_>,
802         infer_args: bool,
803         self_ty: Option<Ty<'tcx>>,
804     ) -> (SubstsRef<'tcx>, Vec<ConvertedBinding<'a, 'tcx>>, GenericArgCountResult) {
805         // If the type is parameterized by this region, then replace this
806         // region with the current anon region binding (in other words,
807         // whatever & would get replaced with).
808         debug!(
809             "create_substs_for_ast_path(def_id={:?}, self_ty={:?}, \
810                 generic_args={:?})",
811             def_id, self_ty, generic_args
812         );
813
814         let tcx = self.tcx();
815         let generic_params = tcx.generics_of(def_id);
816
817         if generic_params.has_self {
818             if generic_params.parent.is_some() {
819                 // The parent is a trait so it should have at least one subst
820                 // for the `Self` type.
821                 assert!(!parent_substs.is_empty())
822             } else {
823                 // This item (presumably a trait) needs a self-type.
824                 assert!(self_ty.is_some());
825             }
826         } else {
827             assert!(self_ty.is_none() && parent_substs.is_empty());
828         }
829
830         let arg_count = Self::check_generic_arg_count(
831             tcx,
832             span,
833             &generic_params,
834             &generic_args,
835             GenericArgPosition::Type,
836             self_ty.is_some(),
837             infer_args,
838         );
839
840         let is_object = self_ty.map_or(false, |ty| ty == self.tcx().types.trait_object_dummy_self);
841         let default_needs_object_self = |param: &ty::GenericParamDef| {
842             if let GenericParamDefKind::Type { has_default, .. } = param.kind {
843                 if is_object && has_default {
844                     let default_ty = tcx.at(span).type_of(param.def_id);
845                     let self_param = tcx.types.self_param;
846                     if default_ty.walk().any(|arg| arg == self_param.into()) {
847                         // There is no suitable inference default for a type parameter
848                         // that references self, in an object type.
849                         return true;
850                     }
851                 }
852             }
853
854             false
855         };
856
857         let mut missing_type_params = vec![];
858         let mut inferred_params = vec![];
859         let substs = Self::create_substs_for_generic_args(
860             tcx,
861             def_id,
862             parent_substs,
863             self_ty.is_some(),
864             self_ty,
865             arg_count.clone(),
866             // Provide the generic args, and whether types should be inferred.
867             |did| {
868                 if did == def_id {
869                     (Some(generic_args), infer_args)
870                 } else {
871                     // The last component of this tuple is unimportant.
872                     (None, false)
873                 }
874             },
875             // Provide substitutions for parameters for which (valid) arguments have been provided.
876             |param, arg| match (&param.kind, arg) {
877                 (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
878                     self.ast_region_to_region(&lt, Some(param)).into()
879                 }
880                 (GenericParamDefKind::Type { .. }, GenericArg::Type(ty)) => {
881                     if let (hir::TyKind::Infer, false) = (&ty.kind, self.allow_ty_infer()) {
882                         inferred_params.push(ty.span);
883                         tcx.ty_error().into()
884                     } else {
885                         self.ast_ty_to_ty(&ty).into()
886                     }
887                 }
888                 (GenericParamDefKind::Const, GenericArg::Const(ct)) => {
889                     ty::Const::from_opt_const_arg_anon_const(
890                         tcx,
891                         ty::WithOptConstParam {
892                             did: tcx.hir().local_def_id(ct.value.hir_id),
893                             const_param_did: Some(param.def_id),
894                         },
895                     )
896                     .into()
897                 }
898                 _ => unreachable!(),
899             },
900             // Provide substitutions for parameters for which arguments are inferred.
901             |substs, param, infer_args| {
902                 match param.kind {
903                     GenericParamDefKind::Lifetime => tcx.lifetimes.re_static.into(),
904                     GenericParamDefKind::Type { has_default, .. } => {
905                         if !infer_args && has_default {
906                             // No type parameter provided, but a default exists.
907
908                             // If we are converting an object type, then the
909                             // `Self` parameter is unknown. However, some of the
910                             // other type parameters may reference `Self` in their
911                             // defaults. This will lead to an ICE if we are not
912                             // careful!
913                             if default_needs_object_self(param) {
914                                 missing_type_params.push(param.name.to_string());
915                                 tcx.ty_error().into()
916                             } else {
917                                 // This is a default type parameter.
918                                 self.normalize_ty(
919                                     span,
920                                     tcx.at(span).type_of(param.def_id).subst_spanned(
921                                         tcx,
922                                         substs.unwrap(),
923                                         Some(span),
924                                     ),
925                                 )
926                                 .into()
927                             }
928                         } else if infer_args {
929                             // No type parameters were provided, we can infer all.
930                             let param =
931                                 if !default_needs_object_self(param) { Some(param) } else { None };
932                             self.ty_infer(param, span).into()
933                         } else {
934                             // We've already errored above about the mismatch.
935                             tcx.ty_error().into()
936                         }
937                     }
938                     GenericParamDefKind::Const => {
939                         let ty = tcx.at(span).type_of(param.def_id);
940                         // FIXME(const_generics:defaults)
941                         if infer_args {
942                             // No const parameters were provided, we can infer all.
943                             self.ct_infer(ty, Some(param), span).into()
944                         } else {
945                             // We've already errored above about the mismatch.
946                             tcx.const_error(ty).into()
947                         }
948                     }
949                 }
950             },
951         );
952
953         self.complain_about_missing_type_params(
954             missing_type_params,
955             def_id,
956             span,
957             generic_args.args.is_empty(),
958         );
959
960         // Convert associated-type bindings or constraints into a separate vector.
961         // Example: Given this:
962         //
963         //     T: Iterator<Item = u32>
964         //
965         // The `T` is passed in as a self-type; the `Item = u32` is
966         // not a "type parameter" of the `Iterator` trait, but rather
967         // a restriction on `<T as Iterator>::Item`, so it is passed
968         // back separately.
969         let assoc_bindings = generic_args
970             .bindings
971             .iter()
972             .map(|binding| {
973                 let kind = match binding.kind {
974                     hir::TypeBindingKind::Equality { ref ty } => {
975                         ConvertedBindingKind::Equality(self.ast_ty_to_ty(ty))
976                     }
977                     hir::TypeBindingKind::Constraint { ref bounds } => {
978                         ConvertedBindingKind::Constraint(bounds)
979                     }
980                 };
981                 ConvertedBinding { item_name: binding.ident, kind, span: binding.span }
982             })
983             .collect();
984
985         debug!(
986             "create_substs_for_ast_path(generic_params={:?}, self_ty={:?}) -> {:?}",
987             generic_params, self_ty, substs
988         );
989
990         (substs, assoc_bindings, arg_count)
991     }
992
993     crate fn create_substs_for_associated_item(
994         &self,
995         tcx: TyCtxt<'tcx>,
996         span: Span,
997         item_def_id: DefId,
998         item_segment: &hir::PathSegment<'_>,
999         parent_substs: SubstsRef<'tcx>,
1000     ) -> SubstsRef<'tcx> {
1001         if tcx.generics_of(item_def_id).params.is_empty() {
1002             self.prohibit_generics(slice::from_ref(item_segment));
1003
1004             parent_substs
1005         } else {
1006             self.create_substs_for_ast_path(
1007                 span,
1008                 item_def_id,
1009                 parent_substs,
1010                 item_segment.generic_args(),
1011                 item_segment.infer_args,
1012                 None,
1013             )
1014             .0
1015         }
1016     }
1017
1018     /// On missing type parameters, emit an E0393 error and provide a structured suggestion using
1019     /// the type parameter's name as a placeholder.
1020     fn complain_about_missing_type_params(
1021         &self,
1022         missing_type_params: Vec<String>,
1023         def_id: DefId,
1024         span: Span,
1025         empty_generic_args: bool,
1026     ) {
1027         if missing_type_params.is_empty() {
1028             return;
1029         }
1030         let display =
1031             missing_type_params.iter().map(|n| format!("`{}`", n)).collect::<Vec<_>>().join(", ");
1032         let mut err = struct_span_err!(
1033             self.tcx().sess,
1034             span,
1035             E0393,
1036             "the type parameter{} {} must be explicitly specified",
1037             pluralize!(missing_type_params.len()),
1038             display,
1039         );
1040         err.span_label(
1041             self.tcx().def_span(def_id),
1042             &format!(
1043                 "type parameter{} {} must be specified for this",
1044                 pluralize!(missing_type_params.len()),
1045                 display,
1046             ),
1047         );
1048         let mut suggested = false;
1049         if let (Ok(snippet), true) = (
1050             self.tcx().sess.source_map().span_to_snippet(span),
1051             // Don't suggest setting the type params if there are some already: the order is
1052             // tricky to get right and the user will already know what the syntax is.
1053             empty_generic_args,
1054         ) {
1055             if snippet.ends_with('>') {
1056                 // The user wrote `Trait<'a, T>` or similar. To provide an accurate suggestion
1057                 // we would have to preserve the right order. For now, as clearly the user is
1058                 // aware of the syntax, we do nothing.
1059             } else {
1060                 // The user wrote `Iterator`, so we don't have a type we can suggest, but at
1061                 // least we can clue them to the correct syntax `Iterator<Type>`.
1062                 err.span_suggestion(
1063                     span,
1064                     &format!(
1065                         "set the type parameter{plural} to the desired type{plural}",
1066                         plural = pluralize!(missing_type_params.len()),
1067                     ),
1068                     format!("{}<{}>", snippet, missing_type_params.join(", ")),
1069                     Applicability::HasPlaceholders,
1070                 );
1071                 suggested = true;
1072             }
1073         }
1074         if !suggested {
1075             err.span_label(
1076                 span,
1077                 format!(
1078                     "missing reference{} to {}",
1079                     pluralize!(missing_type_params.len()),
1080                     display,
1081                 ),
1082             );
1083         }
1084         err.note(
1085             "because of the default `Self` reference, type parameters must be \
1086                   specified on object types",
1087         );
1088         err.emit();
1089     }
1090
1091     /// Instantiates the path for the given trait reference, assuming that it's
1092     /// bound to a valid trait type. Returns the `DefId` of the defining trait.
1093     /// The type _cannot_ be a type other than a trait type.
1094     ///
1095     /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T = X>`
1096     /// are disallowed. Otherwise, they are pushed onto the vector given.
1097     pub fn instantiate_mono_trait_ref(
1098         &self,
1099         trait_ref: &hir::TraitRef<'_>,
1100         self_ty: Ty<'tcx>,
1101     ) -> ty::TraitRef<'tcx> {
1102         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
1103
1104         self.ast_path_to_mono_trait_ref(
1105             trait_ref.path.span,
1106             trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
1107             self_ty,
1108             trait_ref.path.segments.last().unwrap(),
1109         )
1110     }
1111
1112     /// The given trait-ref must actually be a trait.
1113     pub(super) fn instantiate_poly_trait_ref_inner(
1114         &self,
1115         trait_ref: &hir::TraitRef<'_>,
1116         span: Span,
1117         constness: Constness,
1118         self_ty: Ty<'tcx>,
1119         bounds: &mut Bounds<'tcx>,
1120         speculative: bool,
1121     ) -> GenericArgCountResult {
1122         let trait_def_id = trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise());
1123
1124         debug!("instantiate_poly_trait_ref({:?}, def_id={:?})", trait_ref, trait_def_id);
1125
1126         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
1127
1128         let (substs, assoc_bindings, arg_count) = self.create_substs_for_ast_trait_ref(
1129             trait_ref.path.span,
1130             trait_def_id,
1131             self_ty,
1132             trait_ref.path.segments.last().unwrap(),
1133         );
1134         let poly_trait_ref = ty::Binder::bind(ty::TraitRef::new(trait_def_id, substs));
1135
1136         bounds.trait_bounds.push((poly_trait_ref, span, constness));
1137
1138         let mut dup_bindings = FxHashMap::default();
1139         for binding in &assoc_bindings {
1140             // Specify type to assert that error was already reported in `Err` case.
1141             let _: Result<_, ErrorReported> = self.add_predicates_for_ast_type_binding(
1142                 trait_ref.hir_ref_id,
1143                 poly_trait_ref,
1144                 binding,
1145                 bounds,
1146                 speculative,
1147                 &mut dup_bindings,
1148                 binding.span,
1149             );
1150             // Okay to ignore `Err` because of `ErrorReported` (see above).
1151         }
1152
1153         debug!(
1154             "instantiate_poly_trait_ref({:?}, bounds={:?}) -> {:?}",
1155             trait_ref, bounds, poly_trait_ref
1156         );
1157
1158         arg_count
1159     }
1160
1161     /// Given a trait bound like `Debug`, applies that trait bound the given self-type to construct
1162     /// a full trait reference. The resulting trait reference is returned. This may also generate
1163     /// auxiliary bounds, which are added to `bounds`.
1164     ///
1165     /// Example:
1166     ///
1167     /// ```
1168     /// poly_trait_ref = Iterator<Item = u32>
1169     /// self_ty = Foo
1170     /// ```
1171     ///
1172     /// this would return `Foo: Iterator` and add `<Foo as Iterator>::Item = u32` into `bounds`.
1173     ///
1174     /// **A note on binders:** against our usual convention, there is an implied bounder around
1175     /// the `self_ty` and `poly_trait_ref` parameters here. So they may reference bound regions.
1176     /// If for example you had `for<'a> Foo<'a>: Bar<'a>`, then the `self_ty` would be `Foo<'a>`
1177     /// where `'a` is a bound region at depth 0. Similarly, the `poly_trait_ref` would be
1178     /// `Bar<'a>`. The returned poly-trait-ref will have this binder instantiated explicitly,
1179     /// however.
1180     pub fn instantiate_poly_trait_ref(
1181         &self,
1182         poly_trait_ref: &hir::PolyTraitRef<'_>,
1183         constness: Constness,
1184         self_ty: Ty<'tcx>,
1185         bounds: &mut Bounds<'tcx>,
1186     ) -> GenericArgCountResult {
1187         self.instantiate_poly_trait_ref_inner(
1188             &poly_trait_ref.trait_ref,
1189             poly_trait_ref.span,
1190             constness,
1191             self_ty,
1192             bounds,
1193             false,
1194         )
1195     }
1196
1197     fn ast_path_to_mono_trait_ref(
1198         &self,
1199         span: Span,
1200         trait_def_id: DefId,
1201         self_ty: Ty<'tcx>,
1202         trait_segment: &hir::PathSegment<'_>,
1203     ) -> ty::TraitRef<'tcx> {
1204         let (substs, assoc_bindings, _) =
1205             self.create_substs_for_ast_trait_ref(span, trait_def_id, self_ty, trait_segment);
1206         if let Some(b) = assoc_bindings.first() {
1207             AstConv::prohibit_assoc_ty_binding(self.tcx(), b.span);
1208         }
1209         ty::TraitRef::new(trait_def_id, substs)
1210     }
1211
1212     /// When the code is using the `Fn` traits directly, instead of the `Fn(A) -> B` syntax, emit
1213     /// an error and attempt to build a reasonable structured suggestion.
1214     fn complain_about_internal_fn_trait(
1215         &self,
1216         span: Span,
1217         trait_def_id: DefId,
1218         trait_segment: &'a hir::PathSegment<'a>,
1219     ) {
1220         let trait_def = self.tcx().trait_def(trait_def_id);
1221
1222         if !self.tcx().features().unboxed_closures
1223             && trait_segment.generic_args().parenthesized != trait_def.paren_sugar
1224         {
1225             let sess = &self.tcx().sess.parse_sess;
1226             // For now, require that parenthetical notation be used only with `Fn()` etc.
1227             let (msg, sugg) = if trait_def.paren_sugar {
1228                 (
1229                     "the precise format of `Fn`-family traits' type parameters is subject to \
1230                      change",
1231                     Some(format!(
1232                         "{}{} -> {}",
1233                         trait_segment.ident,
1234                         trait_segment
1235                             .args
1236                             .as_ref()
1237                             .and_then(|args| args.args.get(0))
1238                             .and_then(|arg| match arg {
1239                                 hir::GenericArg::Type(ty) => match ty.kind {
1240                                     hir::TyKind::Tup(t) => t
1241                                         .iter()
1242                                         .map(|e| sess.source_map().span_to_snippet(e.span))
1243                                         .collect::<Result<Vec<_>, _>>()
1244                                         .map(|a| a.join(", ")),
1245                                     _ => sess.source_map().span_to_snippet(ty.span),
1246                                 }
1247                                 .map(|s| format!("({})", s))
1248                                 .ok(),
1249                                 _ => None,
1250                             })
1251                             .unwrap_or_else(|| "()".to_string()),
1252                         trait_segment
1253                             .generic_args()
1254                             .bindings
1255                             .iter()
1256                             .find_map(|b| match (b.ident.name == sym::Output, &b.kind) {
1257                                 (true, hir::TypeBindingKind::Equality { ty }) => {
1258                                     sess.source_map().span_to_snippet(ty.span).ok()
1259                                 }
1260                                 _ => None,
1261                             })
1262                             .unwrap_or_else(|| "()".to_string()),
1263                     )),
1264                 )
1265             } else {
1266                 ("parenthetical notation is only stable when used with `Fn`-family traits", None)
1267             };
1268             let mut err = feature_err(sess, sym::unboxed_closures, span, msg);
1269             if let Some(sugg) = sugg {
1270                 let msg = "use parenthetical notation instead";
1271                 err.span_suggestion(span, msg, sugg, Applicability::MaybeIncorrect);
1272             }
1273             err.emit();
1274         }
1275     }
1276
1277     fn create_substs_for_ast_trait_ref<'a>(
1278         &self,
1279         span: Span,
1280         trait_def_id: DefId,
1281         self_ty: Ty<'tcx>,
1282         trait_segment: &'a hir::PathSegment<'a>,
1283     ) -> (SubstsRef<'tcx>, Vec<ConvertedBinding<'a, 'tcx>>, GenericArgCountResult) {
1284         debug!("create_substs_for_ast_trait_ref(trait_segment={:?})", trait_segment);
1285
1286         self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment);
1287
1288         self.create_substs_for_ast_path(
1289             span,
1290             trait_def_id,
1291             &[],
1292             trait_segment.generic_args(),
1293             trait_segment.infer_args,
1294             Some(self_ty),
1295         )
1296     }
1297
1298     fn trait_defines_associated_type_named(&self, trait_def_id: DefId, assoc_name: Ident) -> bool {
1299         self.tcx()
1300             .associated_items(trait_def_id)
1301             .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, trait_def_id)
1302             .is_some()
1303     }
1304
1305     // Returns `true` if a bounds list includes `?Sized`.
1306     pub fn is_unsized(&self, ast_bounds: &[hir::GenericBound<'_>], span: Span) -> bool {
1307         let tcx = self.tcx();
1308
1309         // Try to find an unbound in bounds.
1310         let mut unbound = None;
1311         for ab in ast_bounds {
1312             if let &hir::GenericBound::Trait(ref ptr, hir::TraitBoundModifier::Maybe) = ab {
1313                 if unbound.is_none() {
1314                     unbound = Some(&ptr.trait_ref);
1315                 } else {
1316                     struct_span_err!(
1317                         tcx.sess,
1318                         span,
1319                         E0203,
1320                         "type parameter has more than one relaxed default \
1321                         bound, only one is supported"
1322                     )
1323                     .emit();
1324                 }
1325             }
1326         }
1327
1328         let kind_id = tcx.lang_items().require(SizedTraitLangItem);
1329         match unbound {
1330             Some(tpb) => {
1331                 // FIXME(#8559) currently requires the unbound to be built-in.
1332                 if let Ok(kind_id) = kind_id {
1333                     if tpb.path.res != Res::Def(DefKind::Trait, kind_id) {
1334                         tcx.sess.span_warn(
1335                             span,
1336                             "default bound relaxed for a type parameter, but \
1337                              this does nothing because the given bound is not \
1338                              a default; only `?Sized` is supported",
1339                         );
1340                     }
1341                 }
1342             }
1343             _ if kind_id.is_ok() => {
1344                 return false;
1345             }
1346             // No lang item for `Sized`, so we can't add it as a bound.
1347             None => {}
1348         }
1349
1350         true
1351     }
1352
1353     /// This helper takes a *converted* parameter type (`param_ty`)
1354     /// and an *unconverted* list of bounds:
1355     ///
1356     /// ```text
1357     /// fn foo<T: Debug>
1358     ///        ^  ^^^^^ `ast_bounds` parameter, in HIR form
1359     ///        |
1360     ///        `param_ty`, in ty form
1361     /// ```
1362     ///
1363     /// It adds these `ast_bounds` into the `bounds` structure.
1364     ///
1365     /// **A note on binders:** there is an implied binder around
1366     /// `param_ty` and `ast_bounds`. See `instantiate_poly_trait_ref`
1367     /// for more details.
1368     fn add_bounds(
1369         &self,
1370         param_ty: Ty<'tcx>,
1371         ast_bounds: &[hir::GenericBound<'_>],
1372         bounds: &mut Bounds<'tcx>,
1373     ) {
1374         let mut trait_bounds = Vec::new();
1375         let mut region_bounds = Vec::new();
1376
1377         let constness = self.default_constness_for_trait_bounds();
1378         for ast_bound in ast_bounds {
1379             match *ast_bound {
1380                 hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::None) => {
1381                     trait_bounds.push((b, constness))
1382                 }
1383                 hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::MaybeConst) => {
1384                     trait_bounds.push((b, Constness::NotConst))
1385                 }
1386                 hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => {}
1387                 hir::GenericBound::Outlives(ref l) => region_bounds.push(l),
1388             }
1389         }
1390
1391         for (bound, constness) in trait_bounds {
1392             let _ = self.instantiate_poly_trait_ref(bound, constness, param_ty, bounds);
1393         }
1394
1395         bounds.region_bounds.extend(
1396             region_bounds.into_iter().map(|r| (self.ast_region_to_region(r, None), r.span)),
1397         );
1398     }
1399
1400     /// Translates a list of bounds from the HIR into the `Bounds` data structure.
1401     /// The self-type for the bounds is given by `param_ty`.
1402     ///
1403     /// Example:
1404     ///
1405     /// ```
1406     /// fn foo<T: Bar + Baz>() { }
1407     ///        ^  ^^^^^^^^^ ast_bounds
1408     ///        param_ty
1409     /// ```
1410     ///
1411     /// The `sized_by_default` parameter indicates if, in this context, the `param_ty` should be
1412     /// considered `Sized` unless there is an explicit `?Sized` bound.  This would be true in the
1413     /// example above, but is not true in supertrait listings like `trait Foo: Bar + Baz`.
1414     ///
1415     /// `span` should be the declaration size of the parameter.
1416     pub fn compute_bounds(
1417         &self,
1418         param_ty: Ty<'tcx>,
1419         ast_bounds: &[hir::GenericBound<'_>],
1420         sized_by_default: SizedByDefault,
1421         span: Span,
1422     ) -> Bounds<'tcx> {
1423         let mut bounds = Bounds::default();
1424
1425         self.add_bounds(param_ty, ast_bounds, &mut bounds);
1426         bounds.trait_bounds.sort_by_key(|(t, _, _)| t.def_id());
1427
1428         bounds.implicitly_sized = if let SizedByDefault::Yes = sized_by_default {
1429             if !self.is_unsized(ast_bounds, span) { Some(span) } else { None }
1430         } else {
1431             None
1432         };
1433
1434         bounds
1435     }
1436
1437     /// Given an HIR binding like `Item = Foo` or `Item: Foo`, pushes the corresponding predicates
1438     /// onto `bounds`.
1439     ///
1440     /// **A note on binders:** given something like `T: for<'a> Iterator<Item = &'a u32>`, the
1441     /// `trait_ref` here will be `for<'a> T: Iterator`. The `binding` data however is from *inside*
1442     /// the binder (e.g., `&'a u32`) and hence may reference bound regions.
1443     fn add_predicates_for_ast_type_binding(
1444         &self,
1445         hir_ref_id: hir::HirId,
1446         trait_ref: ty::PolyTraitRef<'tcx>,
1447         binding: &ConvertedBinding<'_, 'tcx>,
1448         bounds: &mut Bounds<'tcx>,
1449         speculative: bool,
1450         dup_bindings: &mut FxHashMap<DefId, Span>,
1451         path_span: Span,
1452     ) -> Result<(), ErrorReported> {
1453         let tcx = self.tcx();
1454
1455         if !speculative {
1456             // Given something like `U: SomeTrait<T = X>`, we want to produce a
1457             // predicate like `<U as SomeTrait>::T = X`. This is somewhat
1458             // subtle in the event that `T` is defined in a supertrait of
1459             // `SomeTrait`, because in that case we need to upcast.
1460             //
1461             // That is, consider this case:
1462             //
1463             // ```
1464             // trait SubTrait: SuperTrait<i32> { }
1465             // trait SuperTrait<A> { type T; }
1466             //
1467             // ... B: SubTrait<T = foo> ...
1468             // ```
1469             //
1470             // We want to produce `<B as SuperTrait<i32>>::T == foo`.
1471
1472             // Find any late-bound regions declared in `ty` that are not
1473             // declared in the trait-ref. These are not well-formed.
1474             //
1475             // Example:
1476             //
1477             //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
1478             //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
1479             if let ConvertedBindingKind::Equality(ty) = binding.kind {
1480                 let late_bound_in_trait_ref =
1481                     tcx.collect_constrained_late_bound_regions(&trait_ref);
1482                 let late_bound_in_ty =
1483                     tcx.collect_referenced_late_bound_regions(&ty::Binder::bind(ty));
1484                 debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
1485                 debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
1486
1487                 // FIXME: point at the type params that don't have appropriate lifetimes:
1488                 // struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
1489                 //                         ----  ----     ^^^^^^^
1490                 self.validate_late_bound_regions(
1491                     late_bound_in_trait_ref,
1492                     late_bound_in_ty,
1493                     |br_name| {
1494                         struct_span_err!(
1495                             tcx.sess,
1496                             binding.span,
1497                             E0582,
1498                             "binding for associated type `{}` references {}, \
1499                              which does not appear in the trait input types",
1500                             binding.item_name,
1501                             br_name
1502                         )
1503                     },
1504                 );
1505             }
1506         }
1507
1508         let candidate =
1509             if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
1510                 // Simple case: X is defined in the current trait.
1511                 trait_ref
1512             } else {
1513                 // Otherwise, we have to walk through the supertraits to find
1514                 // those that do.
1515                 self.one_bound_for_assoc_type(
1516                     || traits::supertraits(tcx, trait_ref),
1517                     || trait_ref.print_only_trait_path().to_string(),
1518                     binding.item_name,
1519                     path_span,
1520                     || match binding.kind {
1521                         ConvertedBindingKind::Equality(ty) => Some(ty.to_string()),
1522                         _ => None,
1523                     },
1524                 )?
1525             };
1526
1527         let (assoc_ident, def_scope) =
1528             tcx.adjust_ident_and_get_scope(binding.item_name, candidate.def_id(), hir_ref_id);
1529
1530         // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
1531         // of calling `filter_by_name_and_kind`.
1532         let assoc_ty = tcx
1533             .associated_items(candidate.def_id())
1534             .filter_by_name_unhygienic(assoc_ident.name)
1535             .find(|i| {
1536                 i.kind == ty::AssocKind::Type && i.ident.normalize_to_macros_2_0() == assoc_ident
1537             })
1538             .expect("missing associated type");
1539
1540         if !assoc_ty.vis.is_accessible_from(def_scope, tcx) {
1541             tcx.sess
1542                 .struct_span_err(
1543                     binding.span,
1544                     &format!("associated type `{}` is private", binding.item_name),
1545                 )
1546                 .span_label(binding.span, "private associated type")
1547                 .emit();
1548         }
1549         tcx.check_stability(assoc_ty.def_id, Some(hir_ref_id), binding.span);
1550
1551         if !speculative {
1552             dup_bindings
1553                 .entry(assoc_ty.def_id)
1554                 .and_modify(|prev_span| {
1555                     struct_span_err!(
1556                         self.tcx().sess,
1557                         binding.span,
1558                         E0719,
1559                         "the value of the associated type `{}` (from trait `{}`) \
1560                          is already specified",
1561                         binding.item_name,
1562                         tcx.def_path_str(assoc_ty.container.id())
1563                     )
1564                     .span_label(binding.span, "re-bound here")
1565                     .span_label(*prev_span, format!("`{}` bound here first", binding.item_name))
1566                     .emit();
1567                 })
1568                 .or_insert(binding.span);
1569         }
1570
1571         match binding.kind {
1572             ConvertedBindingKind::Equality(ref ty) => {
1573                 // "Desugar" a constraint like `T: Iterator<Item = u32>` this to
1574                 // the "projection predicate" for:
1575                 //
1576                 // `<T as Iterator>::Item = u32`
1577                 bounds.projection_bounds.push((
1578                     candidate.map_bound(|trait_ref| ty::ProjectionPredicate {
1579                         projection_ty: ty::ProjectionTy::from_ref_and_name(
1580                             tcx,
1581                             trait_ref,
1582                             binding.item_name,
1583                         ),
1584                         ty,
1585                     }),
1586                     binding.span,
1587                 ));
1588             }
1589             ConvertedBindingKind::Constraint(ast_bounds) => {
1590                 // "Desugar" a constraint like `T: Iterator<Item: Debug>` to
1591                 //
1592                 // `<T as Iterator>::Item: Debug`
1593                 //
1594                 // Calling `skip_binder` is okay, because `add_bounds` expects the `param_ty`
1595                 // parameter to have a skipped binder.
1596                 let param_ty = tcx.mk_projection(assoc_ty.def_id, candidate.skip_binder().substs);
1597                 self.add_bounds(param_ty, ast_bounds, bounds);
1598             }
1599         }
1600         Ok(())
1601     }
1602
1603     fn ast_path_to_ty(
1604         &self,
1605         span: Span,
1606         did: DefId,
1607         item_segment: &hir::PathSegment<'_>,
1608     ) -> Ty<'tcx> {
1609         let substs = self.ast_path_substs_for_ty(span, did, item_segment);
1610         self.normalize_ty(span, self.tcx().at(span).type_of(did).subst(self.tcx(), substs))
1611     }
1612
1613     fn conv_object_ty_poly_trait_ref(
1614         &self,
1615         span: Span,
1616         trait_bounds: &[hir::PolyTraitRef<'_>],
1617         lifetime: &hir::Lifetime,
1618     ) -> Ty<'tcx> {
1619         let tcx = self.tcx();
1620
1621         let mut bounds = Bounds::default();
1622         let mut potential_assoc_types = Vec::new();
1623         let dummy_self = self.tcx().types.trait_object_dummy_self;
1624         for trait_bound in trait_bounds.iter().rev() {
1625             if let GenericArgCountResult {
1626                 correct:
1627                     Err(GenericArgCountMismatch { invalid_args: cur_potential_assoc_types, .. }),
1628                 ..
1629             } = self.instantiate_poly_trait_ref(
1630                 trait_bound,
1631                 Constness::NotConst,
1632                 dummy_self,
1633                 &mut bounds,
1634             ) {
1635                 potential_assoc_types.extend(cur_potential_assoc_types.into_iter());
1636             }
1637         }
1638
1639         // Expand trait aliases recursively and check that only one regular (non-auto) trait
1640         // is used and no 'maybe' bounds are used.
1641         let expanded_traits =
1642             traits::expand_trait_aliases(tcx, bounds.trait_bounds.iter().map(|&(a, b, _)| (a, b)));
1643         let (mut auto_traits, regular_traits): (Vec<_>, Vec<_>) =
1644             expanded_traits.partition(|i| tcx.trait_is_auto(i.trait_ref().def_id()));
1645         if regular_traits.len() > 1 {
1646             let first_trait = &regular_traits[0];
1647             let additional_trait = &regular_traits[1];
1648             let mut err = struct_span_err!(
1649                 tcx.sess,
1650                 additional_trait.bottom().1,
1651                 E0225,
1652                 "only auto traits can be used as additional traits in a trait object"
1653             );
1654             additional_trait.label_with_exp_info(
1655                 &mut err,
1656                 "additional non-auto trait",
1657                 "additional use",
1658             );
1659             first_trait.label_with_exp_info(&mut err, "first non-auto trait", "first use");
1660             err.emit();
1661         }
1662
1663         if regular_traits.is_empty() && auto_traits.is_empty() {
1664             struct_span_err!(
1665                 tcx.sess,
1666                 span,
1667                 E0224,
1668                 "at least one trait is required for an object type"
1669             )
1670             .emit();
1671             return tcx.ty_error();
1672         }
1673
1674         // Check that there are no gross object safety violations;
1675         // most importantly, that the supertraits don't contain `Self`,
1676         // to avoid ICEs.
1677         for item in &regular_traits {
1678             let object_safety_violations =
1679                 astconv_object_safety_violations(tcx, item.trait_ref().def_id());
1680             if !object_safety_violations.is_empty() {
1681                 report_object_safety_error(
1682                     tcx,
1683                     span,
1684                     item.trait_ref().def_id(),
1685                     &object_safety_violations[..],
1686                 )
1687                 .emit();
1688                 return tcx.ty_error();
1689             }
1690         }
1691
1692         // Use a `BTreeSet` to keep output in a more consistent order.
1693         let mut associated_types: FxHashMap<Span, BTreeSet<DefId>> = FxHashMap::default();
1694
1695         let regular_traits_refs_spans = bounds
1696             .trait_bounds
1697             .into_iter()
1698             .filter(|(trait_ref, _, _)| !tcx.trait_is_auto(trait_ref.def_id()));
1699
1700         for (base_trait_ref, span, constness) in regular_traits_refs_spans {
1701             assert_eq!(constness, Constness::NotConst);
1702
1703             for obligation in traits::elaborate_trait_ref(tcx, base_trait_ref) {
1704                 debug!(
1705                     "conv_object_ty_poly_trait_ref: observing object predicate `{:?}`",
1706                     obligation.predicate
1707                 );
1708
1709                 match obligation.predicate.skip_binders() {
1710                     ty::PredicateAtom::Trait(pred, _) => {
1711                         let pred = ty::Binder::bind(pred);
1712                         associated_types.entry(span).or_default().extend(
1713                             tcx.associated_items(pred.def_id())
1714                                 .in_definition_order()
1715                                 .filter(|item| item.kind == ty::AssocKind::Type)
1716                                 .map(|item| item.def_id),
1717                         );
1718                     }
1719                     ty::PredicateAtom::Projection(pred) => {
1720                         let pred = ty::Binder::bind(pred);
1721                         // A `Self` within the original bound will be substituted with a
1722                         // `trait_object_dummy_self`, so check for that.
1723                         let references_self =
1724                             pred.skip_binder().ty.walk().any(|arg| arg == dummy_self.into());
1725
1726                         // If the projection output contains `Self`, force the user to
1727                         // elaborate it explicitly to avoid a lot of complexity.
1728                         //
1729                         // The "classicaly useful" case is the following:
1730                         // ```
1731                         //     trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
1732                         //         type MyOutput;
1733                         //     }
1734                         // ```
1735                         //
1736                         // Here, the user could theoretically write `dyn MyTrait<Output = X>`,
1737                         // but actually supporting that would "expand" to an infinitely-long type
1738                         // `fix $ Ï„ â†’ dyn MyTrait<MyOutput = X, Output = <Ï„ as MyTrait>::MyOutput`.
1739                         //
1740                         // Instead, we force the user to write
1741                         // `dyn MyTrait<MyOutput = X, Output = X>`, which is uglier but works. See
1742                         // the discussion in #56288 for alternatives.
1743                         if !references_self {
1744                             // Include projections defined on supertraits.
1745                             bounds.projection_bounds.push((pred, span));
1746                         }
1747                     }
1748                     _ => (),
1749                 }
1750             }
1751         }
1752
1753         for (projection_bound, _) in &bounds.projection_bounds {
1754             for def_ids in associated_types.values_mut() {
1755                 def_ids.remove(&projection_bound.projection_def_id());
1756             }
1757         }
1758
1759         self.complain_about_missing_associated_types(
1760             associated_types,
1761             potential_assoc_types,
1762             trait_bounds,
1763         );
1764
1765         // De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
1766         // `dyn Trait + Send`.
1767         auto_traits.sort_by_key(|i| i.trait_ref().def_id());
1768         auto_traits.dedup_by_key(|i| i.trait_ref().def_id());
1769         debug!("regular_traits: {:?}", regular_traits);
1770         debug!("auto_traits: {:?}", auto_traits);
1771
1772         // Transform a `PolyTraitRef` into a `PolyExistentialTraitRef` by
1773         // removing the dummy `Self` type (`trait_object_dummy_self`).
1774         let trait_ref_to_existential = |trait_ref: ty::TraitRef<'tcx>| {
1775             if trait_ref.self_ty() != dummy_self {
1776                 // FIXME: There appears to be a missing filter on top of `expand_trait_aliases`,
1777                 // which picks up non-supertraits where clauses - but also, the object safety
1778                 // completely ignores trait aliases, which could be object safety hazards. We
1779                 // `delay_span_bug` here to avoid an ICE in stable even when the feature is
1780                 // disabled. (#66420)
1781                 tcx.sess.delay_span_bug(
1782                     DUMMY_SP,
1783                     &format!(
1784                         "trait_ref_to_existential called on {:?} with non-dummy Self",
1785                         trait_ref,
1786                     ),
1787                 );
1788             }
1789             ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
1790         };
1791
1792         // Erase the `dummy_self` (`trait_object_dummy_self`) used above.
1793         let existential_trait_refs =
1794             regular_traits.iter().map(|i| i.trait_ref().map_bound(trait_ref_to_existential));
1795         let existential_projections = bounds.projection_bounds.iter().map(|(bound, _)| {
1796             bound.map_bound(|b| {
1797                 let trait_ref = trait_ref_to_existential(b.projection_ty.trait_ref(tcx));
1798                 ty::ExistentialProjection {
1799                     ty: b.ty,
1800                     item_def_id: b.projection_ty.item_def_id,
1801                     substs: trait_ref.substs,
1802                 }
1803             })
1804         });
1805
1806         // Calling `skip_binder` is okay because the predicates are re-bound.
1807         let regular_trait_predicates = existential_trait_refs
1808             .map(|trait_ref| ty::ExistentialPredicate::Trait(trait_ref.skip_binder()));
1809         let auto_trait_predicates = auto_traits
1810             .into_iter()
1811             .map(|trait_ref| ty::ExistentialPredicate::AutoTrait(trait_ref.trait_ref().def_id()));
1812         let mut v = regular_trait_predicates
1813             .chain(auto_trait_predicates)
1814             .chain(
1815                 existential_projections
1816                     .map(|x| ty::ExistentialPredicate::Projection(x.skip_binder())),
1817             )
1818             .collect::<SmallVec<[_; 8]>>();
1819         v.sort_by(|a, b| a.stable_cmp(tcx, b));
1820         v.dedup();
1821         let existential_predicates = ty::Binder::bind(tcx.mk_existential_predicates(v.into_iter()));
1822
1823         // Use explicitly-specified region bound.
1824         let region_bound = if !lifetime.is_elided() {
1825             self.ast_region_to_region(lifetime, None)
1826         } else {
1827             self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
1828                 if tcx.named_region(lifetime.hir_id).is_some() {
1829                     self.ast_region_to_region(lifetime, None)
1830                 } else {
1831                     self.re_infer(None, span).unwrap_or_else(|| {
1832                         // FIXME: these can be redundant with E0106, but not always.
1833                         struct_span_err!(
1834                             tcx.sess,
1835                             span,
1836                             E0228,
1837                             "the lifetime bound for this object type cannot be deduced \
1838                              from context; please supply an explicit bound"
1839                         )
1840                         .emit();
1841                         tcx.lifetimes.re_static
1842                     })
1843                 }
1844             })
1845         };
1846         debug!("region_bound: {:?}", region_bound);
1847
1848         let ty = tcx.mk_dynamic(existential_predicates, region_bound);
1849         debug!("trait_object_type: {:?}", ty);
1850         ty
1851     }
1852
1853     /// When there are any missing associated types, emit an E0191 error and attempt to supply a
1854     /// reasonable suggestion on how to write it. For the case of multiple associated types in the
1855     /// same trait bound have the same name (as they come from different super-traits), we instead
1856     /// emit a generic note suggesting using a `where` clause to constraint instead.
1857     fn complain_about_missing_associated_types(
1858         &self,
1859         associated_types: FxHashMap<Span, BTreeSet<DefId>>,
1860         potential_assoc_types: Vec<Span>,
1861         trait_bounds: &[hir::PolyTraitRef<'_>],
1862     ) {
1863         if associated_types.values().all(|v| v.is_empty()) {
1864             return;
1865         }
1866         let tcx = self.tcx();
1867         // FIXME: Marked `mut` so that we can replace the spans further below with a more
1868         // appropriate one, but this should be handled earlier in the span assignment.
1869         let mut associated_types: FxHashMap<Span, Vec<_>> = associated_types
1870             .into_iter()
1871             .map(|(span, def_ids)| {
1872                 (span, def_ids.into_iter().map(|did| tcx.associated_item(did)).collect())
1873             })
1874             .collect();
1875         let mut names = vec![];
1876
1877         // Account for things like `dyn Foo + 'a`, like in tests `issue-22434.rs` and
1878         // `issue-22560.rs`.
1879         let mut trait_bound_spans: Vec<Span> = vec![];
1880         for (span, items) in &associated_types {
1881             if !items.is_empty() {
1882                 trait_bound_spans.push(*span);
1883             }
1884             for assoc_item in items {
1885                 let trait_def_id = assoc_item.container.id();
1886                 names.push(format!(
1887                     "`{}` (from trait `{}`)",
1888                     assoc_item.ident,
1889                     tcx.def_path_str(trait_def_id),
1890                 ));
1891             }
1892         }
1893         if let ([], [bound]) = (&potential_assoc_types[..], &trait_bounds) {
1894             match &bound.trait_ref.path.segments[..] {
1895                 // FIXME: `trait_ref.path.span` can point to a full path with multiple
1896                 // segments, even though `trait_ref.path.segments` is of length `1`. Work
1897                 // around that bug here, even though it should be fixed elsewhere.
1898                 // This would otherwise cause an invalid suggestion. For an example, look at
1899                 // `src/test/ui/issues/issue-28344.rs` where instead of the following:
1900                 //
1901                 //   error[E0191]: the value of the associated type `Output`
1902                 //                 (from trait `std::ops::BitXor`) must be specified
1903                 //   --> $DIR/issue-28344.rs:4:17
1904                 //    |
1905                 // LL |     let x: u8 = BitXor::bitor(0 as u8, 0 as u8);
1906                 //    |                 ^^^^^^ help: specify the associated type:
1907                 //    |                              `BitXor<Output = Type>`
1908                 //
1909                 // we would output:
1910                 //
1911                 //   error[E0191]: the value of the associated type `Output`
1912                 //                 (from trait `std::ops::BitXor`) must be specified
1913                 //   --> $DIR/issue-28344.rs:4:17
1914                 //    |
1915                 // LL |     let x: u8 = BitXor::bitor(0 as u8, 0 as u8);
1916                 //    |                 ^^^^^^^^^^^^^ help: specify the associated type:
1917                 //    |                                     `BitXor::bitor<Output = Type>`
1918                 [segment] if segment.args.is_none() => {
1919                     trait_bound_spans = vec![segment.ident.span];
1920                     associated_types = associated_types
1921                         .into_iter()
1922                         .map(|(_, items)| (segment.ident.span, items))
1923                         .collect();
1924                 }
1925                 _ => {}
1926             }
1927         }
1928         names.sort();
1929         trait_bound_spans.sort();
1930         let mut err = struct_span_err!(
1931             tcx.sess,
1932             trait_bound_spans,
1933             E0191,
1934             "the value of the associated type{} {} must be specified",
1935             pluralize!(names.len()),
1936             names.join(", "),
1937         );
1938         let mut suggestions = vec![];
1939         let mut types_count = 0;
1940         let mut where_constraints = vec![];
1941         for (span, assoc_items) in &associated_types {
1942             let mut names: FxHashMap<_, usize> = FxHashMap::default();
1943             for item in assoc_items {
1944                 types_count += 1;
1945                 *names.entry(item.ident.name).or_insert(0) += 1;
1946             }
1947             let mut dupes = false;
1948             for item in assoc_items {
1949                 let prefix = if names[&item.ident.name] > 1 {
1950                     let trait_def_id = item.container.id();
1951                     dupes = true;
1952                     format!("{}::", tcx.def_path_str(trait_def_id))
1953                 } else {
1954                     String::new()
1955                 };
1956                 if let Some(sp) = tcx.hir().span_if_local(item.def_id) {
1957                     err.span_label(sp, format!("`{}{}` defined here", prefix, item.ident));
1958                 }
1959             }
1960             if potential_assoc_types.len() == assoc_items.len() {
1961                 // Only suggest when the amount of missing associated types equals the number of
1962                 // extra type arguments present, as that gives us a relatively high confidence
1963                 // that the user forgot to give the associtated type's name. The canonical
1964                 // example would be trying to use `Iterator<isize>` instead of
1965                 // `Iterator<Item = isize>`.
1966                 for (potential, item) in potential_assoc_types.iter().zip(assoc_items.iter()) {
1967                     if let Ok(snippet) = tcx.sess.source_map().span_to_snippet(*potential) {
1968                         suggestions.push((*potential, format!("{} = {}", item.ident, snippet)));
1969                     }
1970                 }
1971             } else if let (Ok(snippet), false) =
1972                 (tcx.sess.source_map().span_to_snippet(*span), dupes)
1973             {
1974                 let types: Vec<_> =
1975                     assoc_items.iter().map(|item| format!("{} = Type", item.ident)).collect();
1976                 let code = if snippet.ends_with('>') {
1977                     // The user wrote `Trait<'a>` or similar and we don't have a type we can
1978                     // suggest, but at least we can clue them to the correct syntax
1979                     // `Trait<'a, Item = Type>` while accounting for the `<'a>` in the
1980                     // suggestion.
1981                     format!("{}, {}>", &snippet[..snippet.len() - 1], types.join(", "))
1982                 } else {
1983                     // The user wrote `Iterator`, so we don't have a type we can suggest, but at
1984                     // least we can clue them to the correct syntax `Iterator<Item = Type>`.
1985                     format!("{}<{}>", snippet, types.join(", "))
1986                 };
1987                 suggestions.push((*span, code));
1988             } else if dupes {
1989                 where_constraints.push(*span);
1990             }
1991         }
1992         let where_msg = "consider introducing a new type parameter, adding `where` constraints \
1993                          using the fully-qualified path to the associated types";
1994         if !where_constraints.is_empty() && suggestions.is_empty() {
1995             // If there are duplicates associated type names and a single trait bound do not
1996             // use structured suggestion, it means that there are multiple super-traits with
1997             // the same associated type name.
1998             err.help(where_msg);
1999         }
2000         if suggestions.len() != 1 {
2001             // We don't need this label if there's an inline suggestion, show otherwise.
2002             for (span, assoc_items) in &associated_types {
2003                 let mut names: FxHashMap<_, usize> = FxHashMap::default();
2004                 for item in assoc_items {
2005                     types_count += 1;
2006                     *names.entry(item.ident.name).or_insert(0) += 1;
2007                 }
2008                 let mut label = vec![];
2009                 for item in assoc_items {
2010                     let postfix = if names[&item.ident.name] > 1 {
2011                         let trait_def_id = item.container.id();
2012                         format!(" (from trait `{}`)", tcx.def_path_str(trait_def_id))
2013                     } else {
2014                         String::new()
2015                     };
2016                     label.push(format!("`{}`{}", item.ident, postfix));
2017                 }
2018                 if !label.is_empty() {
2019                     err.span_label(
2020                         *span,
2021                         format!(
2022                             "associated type{} {} must be specified",
2023                             pluralize!(label.len()),
2024                             label.join(", "),
2025                         ),
2026                     );
2027                 }
2028             }
2029         }
2030         if !suggestions.is_empty() {
2031             err.multipart_suggestion(
2032                 &format!("specify the associated type{}", pluralize!(types_count)),
2033                 suggestions,
2034                 Applicability::HasPlaceholders,
2035             );
2036             if !where_constraints.is_empty() {
2037                 err.span_help(where_constraints, where_msg);
2038             }
2039         }
2040         err.emit();
2041     }
2042
2043     fn report_ambiguous_associated_type(
2044         &self,
2045         span: Span,
2046         type_str: &str,
2047         trait_str: &str,
2048         name: Symbol,
2049     ) {
2050         let mut err = struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type");
2051         if let (Some(_), Ok(snippet)) = (
2052             self.tcx().sess.confused_type_with_std_module.borrow().get(&span),
2053             self.tcx().sess.source_map().span_to_snippet(span),
2054         ) {
2055             err.span_suggestion(
2056                 span,
2057                 "you are looking for the module in `std`, not the primitive type",
2058                 format!("std::{}", snippet),
2059                 Applicability::MachineApplicable,
2060             );
2061         } else {
2062             err.span_suggestion(
2063                 span,
2064                 "use fully-qualified syntax",
2065                 format!("<{} as {}>::{}", type_str, trait_str, name),
2066                 Applicability::HasPlaceholders,
2067             );
2068         }
2069         err.emit();
2070     }
2071
2072     // Search for a bound on a type parameter which includes the associated item
2073     // given by `assoc_name`. `ty_param_def_id` is the `DefId` of the type parameter
2074     // This function will fail if there are no suitable bounds or there is
2075     // any ambiguity.
2076     fn find_bound_for_assoc_item(
2077         &self,
2078         ty_param_def_id: LocalDefId,
2079         assoc_name: Ident,
2080         span: Span,
2081     ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported> {
2082         let tcx = self.tcx();
2083
2084         debug!(
2085             "find_bound_for_assoc_item(ty_param_def_id={:?}, assoc_name={:?}, span={:?})",
2086             ty_param_def_id, assoc_name, span,
2087         );
2088
2089         let predicates =
2090             &self.get_type_parameter_bounds(span, ty_param_def_id.to_def_id()).predicates;
2091
2092         debug!("find_bound_for_assoc_item: predicates={:#?}", predicates);
2093
2094         let param_hir_id = tcx.hir().as_local_hir_id(ty_param_def_id);
2095         let param_name = tcx.hir().ty_param_name(param_hir_id);
2096         self.one_bound_for_assoc_type(
2097             || {
2098                 traits::transitive_bounds(
2099                     tcx,
2100                     predicates.iter().filter_map(|(p, _)| p.to_opt_poly_trait_ref()),
2101                 )
2102             },
2103             || param_name.to_string(),
2104             assoc_name,
2105             span,
2106             || None,
2107         )
2108     }
2109
2110     // Checks that `bounds` contains exactly one element and reports appropriate
2111     // errors otherwise.
2112     fn one_bound_for_assoc_type<I>(
2113         &self,
2114         all_candidates: impl Fn() -> I,
2115         ty_param_name: impl Fn() -> String,
2116         assoc_name: Ident,
2117         span: Span,
2118         is_equality: impl Fn() -> Option<String>,
2119     ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
2120     where
2121         I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
2122     {
2123         let mut matching_candidates = all_candidates()
2124             .filter(|r| self.trait_defines_associated_type_named(r.def_id(), assoc_name));
2125
2126         let bound = match matching_candidates.next() {
2127             Some(bound) => bound,
2128             None => {
2129                 self.complain_about_assoc_type_not_found(
2130                     all_candidates,
2131                     &ty_param_name(),
2132                     assoc_name,
2133                     span,
2134                 );
2135                 return Err(ErrorReported);
2136             }
2137         };
2138
2139         debug!("one_bound_for_assoc_type: bound = {:?}", bound);
2140
2141         if let Some(bound2) = matching_candidates.next() {
2142             debug!("one_bound_for_assoc_type: bound2 = {:?}", bound2);
2143
2144             let is_equality = is_equality();
2145             let bounds = iter::once(bound).chain(iter::once(bound2)).chain(matching_candidates);
2146             let mut err = if is_equality.is_some() {
2147                 // More specific Error Index entry.
2148                 struct_span_err!(
2149                     self.tcx().sess,
2150                     span,
2151                     E0222,
2152                     "ambiguous associated type `{}` in bounds of `{}`",
2153                     assoc_name,
2154                     ty_param_name()
2155                 )
2156             } else {
2157                 struct_span_err!(
2158                     self.tcx().sess,
2159                     span,
2160                     E0221,
2161                     "ambiguous associated type `{}` in bounds of `{}`",
2162                     assoc_name,
2163                     ty_param_name()
2164                 )
2165             };
2166             err.span_label(span, format!("ambiguous associated type `{}`", assoc_name));
2167
2168             let mut where_bounds = vec![];
2169             for bound in bounds {
2170                 let bound_id = bound.def_id();
2171                 let bound_span = self
2172                     .tcx()
2173                     .associated_items(bound_id)
2174                     .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, bound_id)
2175                     .and_then(|item| self.tcx().hir().span_if_local(item.def_id));
2176
2177                 if let Some(bound_span) = bound_span {
2178                     err.span_label(
2179                         bound_span,
2180                         format!(
2181                             "ambiguous `{}` from `{}`",
2182                             assoc_name,
2183                             bound.print_only_trait_path(),
2184                         ),
2185                     );
2186                     if let Some(constraint) = &is_equality {
2187                         where_bounds.push(format!(
2188                             "        T: {trait}::{assoc} = {constraint}",
2189                             trait=bound.print_only_trait_path(),
2190                             assoc=assoc_name,
2191                             constraint=constraint,
2192                         ));
2193                     } else {
2194                         err.span_suggestion(
2195                             span,
2196                             "use fully qualified syntax to disambiguate",
2197                             format!(
2198                                 "<{} as {}>::{}",
2199                                 ty_param_name(),
2200                                 bound.print_only_trait_path(),
2201                                 assoc_name,
2202                             ),
2203                             Applicability::MaybeIncorrect,
2204                         );
2205                     }
2206                 } else {
2207                     err.note(&format!(
2208                         "associated type `{}` could derive from `{}`",
2209                         ty_param_name(),
2210                         bound.print_only_trait_path(),
2211                     ));
2212                 }
2213             }
2214             if !where_bounds.is_empty() {
2215                 err.help(&format!(
2216                     "consider introducing a new type parameter `T` and adding `where` constraints:\
2217                      \n    where\n        T: {},\n{}",
2218                     ty_param_name(),
2219                     where_bounds.join(",\n"),
2220                 ));
2221             }
2222             err.emit();
2223             if !where_bounds.is_empty() {
2224                 return Err(ErrorReported);
2225             }
2226         }
2227         Ok(bound)
2228     }
2229
2230     fn complain_about_assoc_type_not_found<I>(
2231         &self,
2232         all_candidates: impl Fn() -> I,
2233         ty_param_name: &str,
2234         assoc_name: Ident,
2235         span: Span,
2236     ) where
2237         I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
2238     {
2239         // The fallback span is needed because `assoc_name` might be an `Fn()`'s `Output` without a
2240         // valid span, so we point at the whole path segment instead.
2241         let span = if assoc_name.span != DUMMY_SP { assoc_name.span } else { span };
2242         let mut err = struct_span_err!(
2243             self.tcx().sess,
2244             span,
2245             E0220,
2246             "associated type `{}` not found for `{}`",
2247             assoc_name,
2248             ty_param_name
2249         );
2250
2251         let all_candidate_names: Vec<_> = all_candidates()
2252             .map(|r| self.tcx().associated_items(r.def_id()).in_definition_order())
2253             .flatten()
2254             .filter_map(
2255                 |item| if item.kind == ty::AssocKind::Type { Some(item.ident.name) } else { None },
2256             )
2257             .collect();
2258
2259         if let (Some(suggested_name), true) = (
2260             find_best_match_for_name(all_candidate_names.iter(), assoc_name.name, None),
2261             assoc_name.span != DUMMY_SP,
2262         ) {
2263             err.span_suggestion(
2264                 assoc_name.span,
2265                 "there is an associated type with a similar name",
2266                 suggested_name.to_string(),
2267                 Applicability::MaybeIncorrect,
2268             );
2269         } else {
2270             err.span_label(span, format!("associated type `{}` not found", assoc_name));
2271         }
2272
2273         err.emit();
2274     }
2275
2276     // Create a type from a path to an associated type.
2277     // For a path `A::B::C::D`, `qself_ty` and `qself_def` are the type and def for `A::B::C`
2278     // and item_segment is the path segment for `D`. We return a type and a def for
2279     // the whole path.
2280     // Will fail except for `T::A` and `Self::A`; i.e., if `qself_ty`/`qself_def` are not a type
2281     // parameter or `Self`.
2282     pub fn associated_path_to_ty(
2283         &self,
2284         hir_ref_id: hir::HirId,
2285         span: Span,
2286         qself_ty: Ty<'tcx>,
2287         qself_res: Res,
2288         assoc_segment: &hir::PathSegment<'_>,
2289         permit_variants: bool,
2290     ) -> Result<(Ty<'tcx>, DefKind, DefId), ErrorReported> {
2291         let tcx = self.tcx();
2292         let assoc_ident = assoc_segment.ident;
2293
2294         debug!("associated_path_to_ty: {:?}::{}", qself_ty, assoc_ident);
2295
2296         // Check if we have an enum variant.
2297         let mut variant_resolution = None;
2298         if let ty::Adt(adt_def, _) = qself_ty.kind {
2299             if adt_def.is_enum() {
2300                 let variant_def = adt_def
2301                     .variants
2302                     .iter()
2303                     .find(|vd| tcx.hygienic_eq(assoc_ident, vd.ident, adt_def.did));
2304                 if let Some(variant_def) = variant_def {
2305                     if permit_variants {
2306                         tcx.check_stability(variant_def.def_id, Some(hir_ref_id), span);
2307                         self.prohibit_generics(slice::from_ref(assoc_segment));
2308                         return Ok((qself_ty, DefKind::Variant, variant_def.def_id));
2309                     } else {
2310                         variant_resolution = Some(variant_def.def_id);
2311                     }
2312                 }
2313             }
2314         }
2315
2316         // Find the type of the associated item, and the trait where the associated
2317         // item is declared.
2318         let bound = match (&qself_ty.kind, qself_res) {
2319             (_, Res::SelfTy(Some(_), Some(impl_def_id))) => {
2320                 // `Self` in an impl of a trait -- we have a concrete self type and a
2321                 // trait reference.
2322                 let trait_ref = match tcx.impl_trait_ref(impl_def_id) {
2323                     Some(trait_ref) => trait_ref,
2324                     None => {
2325                         // A cycle error occurred, most likely.
2326                         return Err(ErrorReported);
2327                     }
2328                 };
2329
2330                 self.one_bound_for_assoc_type(
2331                     || traits::supertraits(tcx, ty::Binder::bind(trait_ref)),
2332                     || "Self".to_string(),
2333                     assoc_ident,
2334                     span,
2335                     || None,
2336                 )?
2337             }
2338             (
2339                 &ty::Param(_),
2340                 Res::SelfTy(Some(param_did), None) | Res::Def(DefKind::TyParam, param_did),
2341             ) => self.find_bound_for_assoc_item(param_did.expect_local(), assoc_ident, span)?,
2342             _ => {
2343                 if variant_resolution.is_some() {
2344                     // Variant in type position
2345                     let msg = format!("expected type, found variant `{}`", assoc_ident);
2346                     tcx.sess.span_err(span, &msg);
2347                 } else if qself_ty.is_enum() {
2348                     let mut err = struct_span_err!(
2349                         tcx.sess,
2350                         assoc_ident.span,
2351                         E0599,
2352                         "no variant named `{}` found for enum `{}`",
2353                         assoc_ident,
2354                         qself_ty,
2355                     );
2356
2357                     let adt_def = qself_ty.ty_adt_def().expect("enum is not an ADT");
2358                     if let Some(suggested_name) = find_best_match_for_name(
2359                         adt_def.variants.iter().map(|variant| &variant.ident.name),
2360                         assoc_ident.name,
2361                         None,
2362                     ) {
2363                         err.span_suggestion(
2364                             assoc_ident.span,
2365                             "there is a variant with a similar name",
2366                             suggested_name.to_string(),
2367                             Applicability::MaybeIncorrect,
2368                         );
2369                     } else {
2370                         err.span_label(
2371                             assoc_ident.span,
2372                             format!("variant not found in `{}`", qself_ty),
2373                         );
2374                     }
2375
2376                     if let Some(sp) = tcx.hir().span_if_local(adt_def.did) {
2377                         let sp = tcx.sess.source_map().guess_head_span(sp);
2378                         err.span_label(sp, format!("variant `{}` not found here", assoc_ident));
2379                     }
2380
2381                     err.emit();
2382                 } else if !qself_ty.references_error() {
2383                     // Don't print `TyErr` to the user.
2384                     self.report_ambiguous_associated_type(
2385                         span,
2386                         &qself_ty.to_string(),
2387                         "Trait",
2388                         assoc_ident.name,
2389                     );
2390                 }
2391                 return Err(ErrorReported);
2392             }
2393         };
2394
2395         let trait_did = bound.def_id();
2396         let (assoc_ident, def_scope) =
2397             tcx.adjust_ident_and_get_scope(assoc_ident, trait_did, hir_ref_id);
2398
2399         // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
2400         // of calling `filter_by_name_and_kind`.
2401         let item = tcx
2402             .associated_items(trait_did)
2403             .in_definition_order()
2404             .find(|i| {
2405                 i.kind.namespace() == Namespace::TypeNS
2406                     && i.ident.normalize_to_macros_2_0() == assoc_ident
2407             })
2408             .expect("missing associated type");
2409
2410         let ty = self.projected_ty_from_poly_trait_ref(span, item.def_id, assoc_segment, bound);
2411         let ty = self.normalize_ty(span, ty);
2412
2413         let kind = DefKind::AssocTy;
2414         if !item.vis.is_accessible_from(def_scope, tcx) {
2415             let kind = kind.descr(item.def_id);
2416             let msg = format!("{} `{}` is private", kind, assoc_ident);
2417             tcx.sess
2418                 .struct_span_err(span, &msg)
2419                 .span_label(span, &format!("private {}", kind))
2420                 .emit();
2421         }
2422         tcx.check_stability(item.def_id, Some(hir_ref_id), span);
2423
2424         if let Some(variant_def_id) = variant_resolution {
2425             tcx.struct_span_lint_hir(AMBIGUOUS_ASSOCIATED_ITEMS, hir_ref_id, span, |lint| {
2426                 let mut err = lint.build("ambiguous associated item");
2427                 let mut could_refer_to = |kind: DefKind, def_id, also| {
2428                     let note_msg = format!(
2429                         "`{}` could{} refer to the {} defined here",
2430                         assoc_ident,
2431                         also,
2432                         kind.descr(def_id)
2433                     );
2434                     err.span_note(tcx.def_span(def_id), &note_msg);
2435                 };
2436
2437                 could_refer_to(DefKind::Variant, variant_def_id, "");
2438                 could_refer_to(kind, item.def_id, " also");
2439
2440                 err.span_suggestion(
2441                     span,
2442                     "use fully-qualified syntax",
2443                     format!("<{} as {}>::{}", qself_ty, tcx.item_name(trait_did), assoc_ident),
2444                     Applicability::MachineApplicable,
2445                 );
2446
2447                 err.emit();
2448             });
2449         }
2450         Ok((ty, kind, item.def_id))
2451     }
2452
2453     fn qpath_to_ty(
2454         &self,
2455         span: Span,
2456         opt_self_ty: Option<Ty<'tcx>>,
2457         item_def_id: DefId,
2458         trait_segment: &hir::PathSegment<'_>,
2459         item_segment: &hir::PathSegment<'_>,
2460     ) -> Ty<'tcx> {
2461         let tcx = self.tcx();
2462
2463         let trait_def_id = tcx.parent(item_def_id).unwrap();
2464
2465         debug!("qpath_to_ty: trait_def_id={:?}", trait_def_id);
2466
2467         let self_ty = if let Some(ty) = opt_self_ty {
2468             ty
2469         } else {
2470             let path_str = tcx.def_path_str(trait_def_id);
2471
2472             let def_id = self.item_def_id();
2473
2474             debug!("qpath_to_ty: self.item_def_id()={:?}", def_id);
2475
2476             let parent_def_id = def_id
2477                 .and_then(|def_id| {
2478                     def_id.as_local().map(|def_id| tcx.hir().as_local_hir_id(def_id))
2479                 })
2480                 .map(|hir_id| tcx.hir().get_parent_did(hir_id).to_def_id());
2481
2482             debug!("qpath_to_ty: parent_def_id={:?}", parent_def_id);
2483
2484             // If the trait in segment is the same as the trait defining the item,
2485             // use the `<Self as ..>` syntax in the error.
2486             let is_part_of_self_trait_constraints = def_id == Some(trait_def_id);
2487             let is_part_of_fn_in_self_trait = parent_def_id == Some(trait_def_id);
2488
2489             let type_name = if is_part_of_self_trait_constraints || is_part_of_fn_in_self_trait {
2490                 "Self"
2491             } else {
2492                 "Type"
2493             };
2494
2495             self.report_ambiguous_associated_type(
2496                 span,
2497                 type_name,
2498                 &path_str,
2499                 item_segment.ident.name,
2500             );
2501             return tcx.ty_error();
2502         };
2503
2504         debug!("qpath_to_ty: self_type={:?}", self_ty);
2505
2506         let trait_ref = self.ast_path_to_mono_trait_ref(span, trait_def_id, self_ty, trait_segment);
2507
2508         let item_substs = self.create_substs_for_associated_item(
2509             tcx,
2510             span,
2511             item_def_id,
2512             item_segment,
2513             trait_ref.substs,
2514         );
2515
2516         debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
2517
2518         self.normalize_ty(span, tcx.mk_projection(item_def_id, item_substs))
2519     }
2520
2521     pub fn prohibit_generics<'a, T: IntoIterator<Item = &'a hir::PathSegment<'a>>>(
2522         &self,
2523         segments: T,
2524     ) -> bool {
2525         let mut has_err = false;
2526         for segment in segments {
2527             let (mut err_for_lt, mut err_for_ty, mut err_for_ct) = (false, false, false);
2528             for arg in segment.generic_args().args {
2529                 let (span, kind) = match arg {
2530                     hir::GenericArg::Lifetime(lt) => {
2531                         if err_for_lt {
2532                             continue;
2533                         }
2534                         err_for_lt = true;
2535                         has_err = true;
2536                         (lt.span, "lifetime")
2537                     }
2538                     hir::GenericArg::Type(ty) => {
2539                         if err_for_ty {
2540                             continue;
2541                         }
2542                         err_for_ty = true;
2543                         has_err = true;
2544                         (ty.span, "type")
2545                     }
2546                     hir::GenericArg::Const(ct) => {
2547                         if err_for_ct {
2548                             continue;
2549                         }
2550                         err_for_ct = true;
2551                         has_err = true;
2552                         (ct.span, "const")
2553                     }
2554                 };
2555                 let mut err = struct_span_err!(
2556                     self.tcx().sess,
2557                     span,
2558                     E0109,
2559                     "{} arguments are not allowed for this type",
2560                     kind,
2561                 );
2562                 err.span_label(span, format!("{} argument not allowed", kind));
2563                 err.emit();
2564                 if err_for_lt && err_for_ty && err_for_ct {
2565                     break;
2566                 }
2567             }
2568
2569             // Only emit the first error to avoid overloading the user with error messages.
2570             if let [binding, ..] = segment.generic_args().bindings {
2571                 has_err = true;
2572                 Self::prohibit_assoc_ty_binding(self.tcx(), binding.span);
2573             }
2574         }
2575         has_err
2576     }
2577
2578     pub fn prohibit_assoc_ty_binding(tcx: TyCtxt<'_>, span: Span) {
2579         let mut err = struct_span_err!(
2580             tcx.sess,
2581             span,
2582             E0229,
2583             "associated type bindings are not allowed here"
2584         );
2585         err.span_label(span, "associated type not allowed here").emit();
2586     }
2587
2588     /// Prohibits explicit lifetime arguments if late-bound lifetime parameters
2589     /// are present. This is used both for datatypes and function calls.
2590     fn prohibit_explicit_late_bound_lifetimes(
2591         tcx: TyCtxt<'_>,
2592         def: &ty::Generics,
2593         args: &hir::GenericArgs<'_>,
2594         position: GenericArgPosition,
2595     ) -> ExplicitLateBound {
2596         let param_counts = def.own_counts();
2597         let arg_counts = args.own_counts();
2598         let infer_lifetimes = position != GenericArgPosition::Type && arg_counts.lifetimes == 0;
2599
2600         if infer_lifetimes {
2601             ExplicitLateBound::No
2602         } else if let Some(span_late) = def.has_late_bound_regions {
2603             let msg = "cannot specify lifetime arguments explicitly \
2604                        if late bound lifetime parameters are present";
2605             let note = "the late bound lifetime parameter is introduced here";
2606             let span = args.args[0].span();
2607             if position == GenericArgPosition::Value
2608                 && arg_counts.lifetimes != param_counts.lifetimes
2609             {
2610                 let mut err = tcx.sess.struct_span_err(span, msg);
2611                 err.span_note(span_late, note);
2612                 err.emit();
2613             } else {
2614                 let mut multispan = MultiSpan::from_span(span);
2615                 multispan.push_span_label(span_late, note.to_string());
2616                 tcx.struct_span_lint_hir(
2617                     LATE_BOUND_LIFETIME_ARGUMENTS,
2618                     args.args[0].id(),
2619                     multispan,
2620                     |lint| lint.build(msg).emit(),
2621                 );
2622             }
2623             ExplicitLateBound::Yes
2624         } else {
2625             ExplicitLateBound::No
2626         }
2627     }
2628
2629     // FIXME(eddyb, varkor) handle type paths here too, not just value ones.
2630     pub fn def_ids_for_value_path_segments(
2631         &self,
2632         segments: &[hir::PathSegment<'_>],
2633         self_ty: Option<Ty<'tcx>>,
2634         kind: DefKind,
2635         def_id: DefId,
2636     ) -> Vec<PathSeg> {
2637         // We need to extract the type parameters supplied by the user in
2638         // the path `path`. Due to the current setup, this is a bit of a
2639         // tricky-process; the problem is that resolve only tells us the
2640         // end-point of the path resolution, and not the intermediate steps.
2641         // Luckily, we can (at least for now) deduce the intermediate steps
2642         // just from the end-point.
2643         //
2644         // There are basically five cases to consider:
2645         //
2646         // 1. Reference to a constructor of a struct:
2647         //
2648         //        struct Foo<T>(...)
2649         //
2650         //    In this case, the parameters are declared in the type space.
2651         //
2652         // 2. Reference to a constructor of an enum variant:
2653         //
2654         //        enum E<T> { Foo(...) }
2655         //
2656         //    In this case, the parameters are defined in the type space,
2657         //    but may be specified either on the type or the variant.
2658         //
2659         // 3. Reference to a fn item or a free constant:
2660         //
2661         //        fn foo<T>() { }
2662         //
2663         //    In this case, the path will again always have the form
2664         //    `a::b::foo::<T>` where only the final segment should have
2665         //    type parameters. However, in this case, those parameters are
2666         //    declared on a value, and hence are in the `FnSpace`.
2667         //
2668         // 4. Reference to a method or an associated constant:
2669         //
2670         //        impl<A> SomeStruct<A> {
2671         //            fn foo<B>(...)
2672         //        }
2673         //
2674         //    Here we can have a path like
2675         //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
2676         //    may appear in two places. The penultimate segment,
2677         //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
2678         //    final segment, `foo::<B>` contains parameters in fn space.
2679         //
2680         // The first step then is to categorize the segments appropriately.
2681
2682         let tcx = self.tcx();
2683
2684         assert!(!segments.is_empty());
2685         let last = segments.len() - 1;
2686
2687         let mut path_segs = vec![];
2688
2689         match kind {
2690             // Case 1. Reference to a struct constructor.
2691             DefKind::Ctor(CtorOf::Struct, ..) => {
2692                 // Everything but the final segment should have no
2693                 // parameters at all.
2694                 let generics = tcx.generics_of(def_id);
2695                 // Variant and struct constructors use the
2696                 // generics of their parent type definition.
2697                 let generics_def_id = generics.parent.unwrap_or(def_id);
2698                 path_segs.push(PathSeg(generics_def_id, last));
2699             }
2700
2701             // Case 2. Reference to a variant constructor.
2702             DefKind::Ctor(CtorOf::Variant, ..) | DefKind::Variant => {
2703                 let adt_def = self_ty.map(|t| t.ty_adt_def().unwrap());
2704                 let (generics_def_id, index) = if let Some(adt_def) = adt_def {
2705                     debug_assert!(adt_def.is_enum());
2706                     (adt_def.did, last)
2707                 } else if last >= 1 && segments[last - 1].args.is_some() {
2708                     // Everything but the penultimate segment should have no
2709                     // parameters at all.
2710                     let mut def_id = def_id;
2711
2712                     // `DefKind::Ctor` -> `DefKind::Variant`
2713                     if let DefKind::Ctor(..) = kind {
2714                         def_id = tcx.parent(def_id).unwrap()
2715                     }
2716
2717                     // `DefKind::Variant` -> `DefKind::Enum`
2718                     let enum_def_id = tcx.parent(def_id).unwrap();
2719                     (enum_def_id, last - 1)
2720                 } else {
2721                     // FIXME: lint here recommending `Enum::<...>::Variant` form
2722                     // instead of `Enum::Variant::<...>` form.
2723
2724                     // Everything but the final segment should have no
2725                     // parameters at all.
2726                     let generics = tcx.generics_of(def_id);
2727                     // Variant and struct constructors use the
2728                     // generics of their parent type definition.
2729                     (generics.parent.unwrap_or(def_id), last)
2730                 };
2731                 path_segs.push(PathSeg(generics_def_id, index));
2732             }
2733
2734             // Case 3. Reference to a top-level value.
2735             DefKind::Fn | DefKind::Const | DefKind::ConstParam | DefKind::Static => {
2736                 path_segs.push(PathSeg(def_id, last));
2737             }
2738
2739             // Case 4. Reference to a method or associated const.
2740             DefKind::AssocFn | DefKind::AssocConst => {
2741                 if segments.len() >= 2 {
2742                     let generics = tcx.generics_of(def_id);
2743                     path_segs.push(PathSeg(generics.parent.unwrap(), last - 1));
2744                 }
2745                 path_segs.push(PathSeg(def_id, last));
2746             }
2747
2748             kind => bug!("unexpected definition kind {:?} for {:?}", kind, def_id),
2749         }
2750
2751         debug!("path_segs = {:?}", path_segs);
2752
2753         path_segs
2754     }
2755
2756     // Check a type `Path` and convert it to a `Ty`.
2757     pub fn res_to_ty(
2758         &self,
2759         opt_self_ty: Option<Ty<'tcx>>,
2760         path: &hir::Path<'_>,
2761         permit_variants: bool,
2762     ) -> Ty<'tcx> {
2763         let tcx = self.tcx();
2764
2765         debug!(
2766             "res_to_ty(res={:?}, opt_self_ty={:?}, path_segments={:?})",
2767             path.res, opt_self_ty, path.segments
2768         );
2769
2770         let span = path.span;
2771         match path.res {
2772             Res::Def(DefKind::OpaqueTy, did) => {
2773                 // Check for desugared `impl Trait`.
2774                 assert!(ty::is_impl_trait_defn(tcx, did).is_none());
2775                 let item_segment = path.segments.split_last().unwrap();
2776                 self.prohibit_generics(item_segment.1);
2777                 let substs = self.ast_path_substs_for_ty(span, did, item_segment.0);
2778                 self.normalize_ty(span, tcx.mk_opaque(did, substs))
2779             }
2780             Res::Def(
2781                 DefKind::Enum
2782                 | DefKind::TyAlias
2783                 | DefKind::Struct
2784                 | DefKind::Union
2785                 | DefKind::ForeignTy,
2786                 did,
2787             ) => {
2788                 assert_eq!(opt_self_ty, None);
2789                 self.prohibit_generics(path.segments.split_last().unwrap().1);
2790                 self.ast_path_to_ty(span, did, path.segments.last().unwrap())
2791             }
2792             Res::Def(kind @ DefKind::Variant, def_id) if permit_variants => {
2793                 // Convert "variant type" as if it were a real type.
2794                 // The resulting `Ty` is type of the variant's enum for now.
2795                 assert_eq!(opt_self_ty, None);
2796
2797                 let path_segs =
2798                     self.def_ids_for_value_path_segments(&path.segments, None, kind, def_id);
2799                 let generic_segs: FxHashSet<_> =
2800                     path_segs.iter().map(|PathSeg(_, index)| index).collect();
2801                 self.prohibit_generics(path.segments.iter().enumerate().filter_map(
2802                     |(index, seg)| {
2803                         if !generic_segs.contains(&index) { Some(seg) } else { None }
2804                     },
2805                 ));
2806
2807                 let PathSeg(def_id, index) = path_segs.last().unwrap();
2808                 self.ast_path_to_ty(span, *def_id, &path.segments[*index])
2809             }
2810             Res::Def(DefKind::TyParam, def_id) => {
2811                 assert_eq!(opt_self_ty, None);
2812                 self.prohibit_generics(path.segments);
2813
2814                 let hir_id = tcx.hir().as_local_hir_id(def_id.expect_local());
2815                 let item_id = tcx.hir().get_parent_node(hir_id);
2816                 let item_def_id = tcx.hir().local_def_id(item_id);
2817                 let generics = tcx.generics_of(item_def_id);
2818                 let index = generics.param_def_id_to_index[&def_id];
2819                 tcx.mk_ty_param(index, tcx.hir().name(hir_id))
2820             }
2821             Res::SelfTy(Some(_), None) => {
2822                 // `Self` in trait or type alias.
2823                 assert_eq!(opt_self_ty, None);
2824                 self.prohibit_generics(path.segments);
2825                 tcx.types.self_param
2826             }
2827             Res::SelfTy(_, Some(def_id)) => {
2828                 // `Self` in impl (we know the concrete type).
2829                 assert_eq!(opt_self_ty, None);
2830                 self.prohibit_generics(path.segments);
2831                 // Try to evaluate any array length constants.
2832                 self.normalize_ty(span, tcx.at(span).type_of(def_id))
2833             }
2834             Res::Def(DefKind::AssocTy, def_id) => {
2835                 debug_assert!(path.segments.len() >= 2);
2836                 self.prohibit_generics(&path.segments[..path.segments.len() - 2]);
2837                 self.qpath_to_ty(
2838                     span,
2839                     opt_self_ty,
2840                     def_id,
2841                     &path.segments[path.segments.len() - 2],
2842                     path.segments.last().unwrap(),
2843                 )
2844             }
2845             Res::PrimTy(prim_ty) => {
2846                 assert_eq!(opt_self_ty, None);
2847                 self.prohibit_generics(path.segments);
2848                 match prim_ty {
2849                     hir::PrimTy::Bool => tcx.types.bool,
2850                     hir::PrimTy::Char => tcx.types.char,
2851                     hir::PrimTy::Int(it) => tcx.mk_mach_int(it),
2852                     hir::PrimTy::Uint(uit) => tcx.mk_mach_uint(uit),
2853                     hir::PrimTy::Float(ft) => tcx.mk_mach_float(ft),
2854                     hir::PrimTy::Str => tcx.types.str_,
2855                 }
2856             }
2857             Res::Err => {
2858                 self.set_tainted_by_errors();
2859                 self.tcx().ty_error()
2860             }
2861             _ => span_bug!(span, "unexpected resolution: {:?}", path.res),
2862         }
2863     }
2864
2865     /// Parses the programmer's textual representation of a type into our
2866     /// internal notion of a type.
2867     pub fn ast_ty_to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
2868         debug!("ast_ty_to_ty(id={:?}, ast_ty={:?} ty_ty={:?})", ast_ty.hir_id, ast_ty, ast_ty.kind);
2869
2870         let tcx = self.tcx();
2871
2872         let result_ty = match ast_ty.kind {
2873             hir::TyKind::Slice(ref ty) => tcx.mk_slice(self.ast_ty_to_ty(&ty)),
2874             hir::TyKind::Ptr(ref mt) => {
2875                 tcx.mk_ptr(ty::TypeAndMut { ty: self.ast_ty_to_ty(&mt.ty), mutbl: mt.mutbl })
2876             }
2877             hir::TyKind::Rptr(ref region, ref mt) => {
2878                 let r = self.ast_region_to_region(region, None);
2879                 debug!("ast_ty_to_ty: r={:?}", r);
2880                 let t = self.ast_ty_to_ty(&mt.ty);
2881                 tcx.mk_ref(r, ty::TypeAndMut { ty: t, mutbl: mt.mutbl })
2882             }
2883             hir::TyKind::Never => tcx.types.never,
2884             hir::TyKind::Tup(ref fields) => {
2885                 tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(&t)))
2886             }
2887             hir::TyKind::BareFn(ref bf) => {
2888                 require_c_abi_if_c_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
2889                 tcx.mk_fn_ptr(self.ty_of_fn(
2890                     bf.unsafety,
2891                     bf.abi,
2892                     &bf.decl,
2893                     &hir::Generics::empty(),
2894                     None,
2895                 ))
2896             }
2897             hir::TyKind::TraitObject(ref bounds, ref lifetime) => {
2898                 self.conv_object_ty_poly_trait_ref(ast_ty.span, bounds, lifetime)
2899             }
2900             hir::TyKind::Path(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
2901                 debug!("ast_ty_to_ty: maybe_qself={:?} path={:?}", maybe_qself, path);
2902                 let opt_self_ty = maybe_qself.as_ref().map(|qself| self.ast_ty_to_ty(qself));
2903                 self.res_to_ty(opt_self_ty, path, false)
2904             }
2905             hir::TyKind::OpaqueDef(item_id, ref lifetimes) => {
2906                 let opaque_ty = tcx.hir().expect_item(item_id.id);
2907                 let def_id = tcx.hir().local_def_id(item_id.id).to_def_id();
2908
2909                 match opaque_ty.kind {
2910                     hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => {
2911                         self.impl_trait_ty_to_ty(def_id, lifetimes, impl_trait_fn.is_some())
2912                     }
2913                     ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
2914                 }
2915             }
2916             hir::TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
2917                 debug!("ast_ty_to_ty: qself={:?} segment={:?}", qself, segment);
2918                 let ty = self.ast_ty_to_ty(qself);
2919
2920                 let res = if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = qself.kind {
2921                     path.res
2922                 } else {
2923                     Res::Err
2924                 };
2925                 self.associated_path_to_ty(ast_ty.hir_id, ast_ty.span, ty, res, segment, false)
2926                     .map(|(ty, _, _)| ty)
2927                     .unwrap_or_else(|_| tcx.ty_error())
2928             }
2929             hir::TyKind::Array(ref ty, ref length) => {
2930                 let length_def_id = tcx.hir().local_def_id(length.hir_id);
2931                 let length = ty::Const::from_anon_const(tcx, length_def_id);
2932                 let array_ty = tcx.mk_ty(ty::Array(self.ast_ty_to_ty(&ty), length));
2933                 self.normalize_ty(ast_ty.span, array_ty)
2934             }
2935             hir::TyKind::Typeof(ref _e) => {
2936                 struct_span_err!(
2937                     tcx.sess,
2938                     ast_ty.span,
2939                     E0516,
2940                     "`typeof` is a reserved keyword but unimplemented"
2941                 )
2942                 .span_label(ast_ty.span, "reserved keyword")
2943                 .emit();
2944
2945                 tcx.ty_error()
2946             }
2947             hir::TyKind::Infer => {
2948                 // Infer also appears as the type of arguments or return
2949                 // values in a ExprKind::Closure, or as
2950                 // the type of local variables. Both of these cases are
2951                 // handled specially and will not descend into this routine.
2952                 self.ty_infer(None, ast_ty.span)
2953             }
2954             hir::TyKind::Err => tcx.ty_error(),
2955         };
2956
2957         debug!("ast_ty_to_ty: result_ty={:?}", result_ty);
2958
2959         self.record_ty(ast_ty.hir_id, result_ty, ast_ty.span);
2960         result_ty
2961     }
2962
2963     pub fn impl_trait_ty_to_ty(
2964         &self,
2965         def_id: DefId,
2966         lifetimes: &[hir::GenericArg<'_>],
2967         replace_parent_lifetimes: bool,
2968     ) -> Ty<'tcx> {
2969         debug!("impl_trait_ty_to_ty(def_id={:?}, lifetimes={:?})", def_id, lifetimes);
2970         let tcx = self.tcx();
2971
2972         let generics = tcx.generics_of(def_id);
2973
2974         debug!("impl_trait_ty_to_ty: generics={:?}", generics);
2975         let substs = InternalSubsts::for_item(tcx, def_id, |param, _| {
2976             if let Some(i) = (param.index as usize).checked_sub(generics.parent_count) {
2977                 // Our own parameters are the resolved lifetimes.
2978                 match param.kind {
2979                     GenericParamDefKind::Lifetime => {
2980                         if let hir::GenericArg::Lifetime(lifetime) = &lifetimes[i] {
2981                             self.ast_region_to_region(lifetime, None).into()
2982                         } else {
2983                             bug!()
2984                         }
2985                     }
2986                     _ => bug!(),
2987                 }
2988             } else {
2989                 match param.kind {
2990                     // For RPIT (return position impl trait), only lifetimes
2991                     // mentioned in the impl Trait predicate are captured by
2992                     // the opaque type, so the lifetime parameters from the
2993                     // parent item need to be replaced with `'static`.
2994                     //
2995                     // For `impl Trait` in the types of statics, constants,
2996                     // locals and type aliases. These capture all parent
2997                     // lifetimes, so they can use their identity subst.
2998                     GenericParamDefKind::Lifetime if replace_parent_lifetimes => {
2999                         tcx.lifetimes.re_static.into()
3000                     }
3001                     _ => tcx.mk_param_from_def(param),
3002                 }
3003             }
3004         });
3005         debug!("impl_trait_ty_to_ty: substs={:?}", substs);
3006
3007         let ty = tcx.mk_opaque(def_id, substs);
3008         debug!("impl_trait_ty_to_ty: {}", ty);
3009         ty
3010     }
3011
3012     pub fn ty_of_arg(&self, ty: &hir::Ty<'_>, expected_ty: Option<Ty<'tcx>>) -> Ty<'tcx> {
3013         match ty.kind {
3014             hir::TyKind::Infer if expected_ty.is_some() => {
3015                 self.record_ty(ty.hir_id, expected_ty.unwrap(), ty.span);
3016                 expected_ty.unwrap()
3017             }
3018             _ => self.ast_ty_to_ty(ty),
3019         }
3020     }
3021
3022     pub fn ty_of_fn(
3023         &self,
3024         unsafety: hir::Unsafety,
3025         abi: abi::Abi,
3026         decl: &hir::FnDecl<'_>,
3027         generics: &hir::Generics<'_>,
3028         ident_span: Option<Span>,
3029     ) -> ty::PolyFnSig<'tcx> {
3030         debug!("ty_of_fn");
3031
3032         let tcx = self.tcx();
3033
3034         // We proactively collect all the inferred type params to emit a single error per fn def.
3035         let mut visitor = PlaceholderHirTyCollector::default();
3036         for ty in decl.inputs {
3037             visitor.visit_ty(ty);
3038         }
3039         walk_generics(&mut visitor, generics);
3040
3041         let input_tys = decl.inputs.iter().map(|a| self.ty_of_arg(a, None));
3042         let output_ty = match decl.output {
3043             hir::FnRetTy::Return(ref output) => {
3044                 visitor.visit_ty(output);
3045                 self.ast_ty_to_ty(output)
3046             }
3047             hir::FnRetTy::DefaultReturn(..) => tcx.mk_unit(),
3048         };
3049
3050         debug!("ty_of_fn: output_ty={:?}", output_ty);
3051
3052         let bare_fn_ty =
3053             ty::Binder::bind(tcx.mk_fn_sig(input_tys, output_ty, decl.c_variadic, unsafety, abi));
3054
3055         if !self.allow_ty_infer() {
3056             // We always collect the spans for placeholder types when evaluating `fn`s, but we
3057             // only want to emit an error complaining about them if infer types (`_`) are not
3058             // allowed. `allow_ty_infer` gates this behavior. We check for the presence of
3059             // `ident_span` to not emit an error twice when we have `fn foo(_: fn() -> _)`.
3060             crate::collect::placeholder_type_error(
3061                 tcx,
3062                 ident_span.map(|sp| sp.shrink_to_hi()),
3063                 &generics.params[..],
3064                 visitor.0,
3065                 true,
3066             );
3067         }
3068
3069         // Find any late-bound regions declared in return type that do
3070         // not appear in the arguments. These are not well-formed.
3071         //
3072         // Example:
3073         //     for<'a> fn() -> &'a str <-- 'a is bad
3074         //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
3075         let inputs = bare_fn_ty.inputs();
3076         let late_bound_in_args =
3077             tcx.collect_constrained_late_bound_regions(&inputs.map_bound(|i| i.to_owned()));
3078         let output = bare_fn_ty.output();
3079         let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
3080
3081         self.validate_late_bound_regions(late_bound_in_args, late_bound_in_ret, |br_name| {
3082             struct_span_err!(
3083                 tcx.sess,
3084                 decl.output.span(),
3085                 E0581,
3086                 "return type references {}, which is not constrained by the fn input types",
3087                 br_name
3088             )
3089         });
3090
3091         bare_fn_ty
3092     }
3093
3094     fn validate_late_bound_regions(
3095         &self,
3096         constrained_regions: FxHashSet<ty::BoundRegion>,
3097         referenced_regions: FxHashSet<ty::BoundRegion>,
3098         generate_err: impl Fn(&str) -> rustc_errors::DiagnosticBuilder<'tcx>,
3099     ) {
3100         for br in referenced_regions.difference(&constrained_regions) {
3101             let br_name = match *br {
3102                 ty::BrNamed(_, name) => format!("lifetime `{}`", name),
3103                 ty::BrAnon(_) | ty::BrEnv => "an anonymous lifetime".to_string(),
3104             };
3105
3106             let mut err = generate_err(&br_name);
3107
3108             if let ty::BrAnon(_) = *br {
3109                 // The only way for an anonymous lifetime to wind up
3110                 // in the return type but **also** be unconstrained is
3111                 // if it only appears in "associated types" in the
3112                 // input. See #47511 and #62200 for examples. In this case,
3113                 // though we can easily give a hint that ought to be
3114                 // relevant.
3115                 err.note(
3116                     "lifetimes appearing in an associated type are not considered constrained",
3117                 );
3118             }
3119
3120             err.emit();
3121         }
3122     }
3123
3124     /// Given the bounds on an object, determines what single region bound (if any) we can
3125     /// use to summarize this type. The basic idea is that we will use the bound the user
3126     /// provided, if they provided one, and otherwise search the supertypes of trait bounds
3127     /// for region bounds. It may be that we can derive no bound at all, in which case
3128     /// we return `None`.
3129     fn compute_object_lifetime_bound(
3130         &self,
3131         span: Span,
3132         existential_predicates: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
3133     ) -> Option<ty::Region<'tcx>> // if None, use the default
3134     {
3135         let tcx = self.tcx();
3136
3137         debug!("compute_opt_region_bound(existential_predicates={:?})", existential_predicates);
3138
3139         // No explicit region bound specified. Therefore, examine trait
3140         // bounds and see if we can derive region bounds from those.
3141         let derived_region_bounds = object_region_bounds(tcx, existential_predicates);
3142
3143         // If there are no derived region bounds, then report back that we
3144         // can find no region bound. The caller will use the default.
3145         if derived_region_bounds.is_empty() {
3146             return None;
3147         }
3148
3149         // If any of the derived region bounds are 'static, that is always
3150         // the best choice.
3151         if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
3152             return Some(tcx.lifetimes.re_static);
3153         }
3154
3155         // Determine whether there is exactly one unique region in the set
3156         // of derived region bounds. If so, use that. Otherwise, report an
3157         // error.
3158         let r = derived_region_bounds[0];
3159         if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
3160             struct_span_err!(
3161                 tcx.sess,
3162                 span,
3163                 E0227,
3164                 "ambiguous lifetime bound, explicit lifetime bound required"
3165             )
3166             .emit();
3167         }
3168         Some(r)
3169     }
3170 }
3171
3172 /// Collects together a list of bounds that are applied to some type,
3173 /// after they've been converted into `ty` form (from the HIR
3174 /// representations). These lists of bounds occur in many places in
3175 /// Rust's syntax:
3176 ///
3177 /// ```text
3178 /// trait Foo: Bar + Baz { }
3179 ///            ^^^^^^^^^ supertrait list bounding the `Self` type parameter
3180 ///
3181 /// fn foo<T: Bar + Baz>() { }
3182 ///           ^^^^^^^^^ bounding the type parameter `T`
3183 ///
3184 /// impl dyn Bar + Baz
3185 ///          ^^^^^^^^^ bounding the forgotten dynamic type
3186 /// ```
3187 ///
3188 /// Our representation is a bit mixed here -- in some cases, we
3189 /// include the self type (e.g., `trait_bounds`) but in others we do
3190 #[derive(Default, PartialEq, Eq, Clone, Debug)]
3191 pub struct Bounds<'tcx> {
3192     /// A list of region bounds on the (implicit) self type. So if you
3193     /// had `T: 'a + 'b` this might would be a list `['a, 'b]` (but
3194     /// the `T` is not explicitly included).
3195     pub region_bounds: Vec<(ty::Region<'tcx>, Span)>,
3196
3197     /// A list of trait bounds. So if you had `T: Debug` this would be
3198     /// `T: Debug`. Note that the self-type is explicit here.
3199     pub trait_bounds: Vec<(ty::PolyTraitRef<'tcx>, Span, Constness)>,
3200
3201     /// A list of projection equality bounds. So if you had `T:
3202     /// Iterator<Item = u32>` this would include `<T as
3203     /// Iterator>::Item => u32`. Note that the self-type is explicit
3204     /// here.
3205     pub projection_bounds: Vec<(ty::PolyProjectionPredicate<'tcx>, Span)>,
3206
3207     /// `Some` if there is *no* `?Sized` predicate. The `span`
3208     /// is the location in the source of the `T` declaration which can
3209     /// be cited as the source of the `T: Sized` requirement.
3210     pub implicitly_sized: Option<Span>,
3211 }
3212
3213 impl<'tcx> Bounds<'tcx> {
3214     /// Converts a bounds list into a flat set of predicates (like
3215     /// where-clauses). Because some of our bounds listings (e.g.,
3216     /// regions) don't include the self-type, you must supply the
3217     /// self-type here (the `param_ty` parameter).
3218     pub fn predicates(
3219         &self,
3220         tcx: TyCtxt<'tcx>,
3221         param_ty: Ty<'tcx>,
3222     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
3223         // If it could be sized, and is, add the `Sized` predicate.
3224         let sized_predicate = self.implicitly_sized.and_then(|span| {
3225             tcx.lang_items().sized_trait().map(|sized| {
3226                 let trait_ref = ty::Binder::bind(ty::TraitRef {
3227                     def_id: sized,
3228                     substs: tcx.mk_substs_trait(param_ty, &[]),
3229                 });
3230                 (trait_ref.without_const().to_predicate(tcx), span)
3231             })
3232         });
3233
3234         sized_predicate
3235             .into_iter()
3236             .chain(
3237                 self.region_bounds
3238                     .iter()
3239                     .map(|&(region_bound, span)| {
3240                         // Account for the binder being introduced below; no need to shift `param_ty`
3241                         // because, at present at least, it either only refers to early-bound regions,
3242                         // or it's a generic associated type that deliberately has escaping bound vars.
3243                         let region_bound = ty::fold::shift_region(tcx, region_bound, 1);
3244                         let outlives = ty::OutlivesPredicate(param_ty, region_bound);
3245                         (ty::Binder::bind(outlives).to_predicate(tcx), span)
3246                     })
3247                     .chain(self.trait_bounds.iter().map(|&(bound_trait_ref, span, constness)| {
3248                         let predicate = bound_trait_ref.with_constness(constness).to_predicate(tcx);
3249                         (predicate, span)
3250                     }))
3251                     .chain(
3252                         self.projection_bounds
3253                             .iter()
3254                             .map(|&(projection, span)| (projection.to_predicate(tcx), span)),
3255                     ),
3256             )
3257             .collect()
3258     }
3259 }