]> git.lizzy.rs Git - rust.git/blob - src/librustc_trans/trans/collector.rs
Refactor core specialization and subst translation code to avoid
[rust.git] / src / librustc_trans / trans / collector.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Translation Item Collection
12 //! ===========================
13 //!
14 //! This module is responsible for discovering all items that will contribute to
15 //! to code generation of the crate. The important part here is that it not only
16 //! needs to find syntax-level items (functions, structs, etc) but also all
17 //! their monomorphized instantiations. Every non-generic, non-const function
18 //! maps to one LLVM artifact. Every generic function can produce
19 //! from zero to N artifacts, depending on the sets of type arguments it
20 //! is instantiated with.
21 //! This also applies to generic items from other crates: A generic definition
22 //! in crate X might produce monomorphizations that are compiled into crate Y.
23 //! We also have to collect these here.
24 //!
25 //! The following kinds of "translation items" are handled here:
26 //!
27 //! - Functions
28 //! - Methods
29 //! - Closures
30 //! - Statics
31 //! - Drop glue
32 //!
33 //! The following things also result in LLVM artifacts, but are not collected
34 //! here, since we instantiate them locally on demand when needed in a given
35 //! codegen unit:
36 //!
37 //! - Constants
38 //! - Vtables
39 //! - Object Shims
40 //!
41 //!
42 //! General Algorithm
43 //! -----------------
44 //! Let's define some terms first:
45 //!
46 //! - A "translation item" is something that results in a function or global in
47 //!   the LLVM IR of a codegen unit. Translation items do not stand on their
48 //!   own, they can reference other translation items. For example, if function
49 //!   `foo()` calls function `bar()` then the translation item for `foo()`
50 //!   references the translation item for function `bar()`. In general, the
51 //!   definition for translation item A referencing a translation item B is that
52 //!   the LLVM artifact produced for A references the LLVM artifact produced
53 //!   for B.
54 //!
55 //! - Translation items and the references between them for a directed graph,
56 //!   where the translation items are the nodes and references form the edges.
57 //!   Let's call this graph the "translation item graph".
58 //!
59 //! - The translation item graph for a program contains all translation items
60 //!   that are needed in order to produce the complete LLVM IR of the program.
61 //!
62 //! The purpose of the algorithm implemented in this module is to build the
63 //! translation item graph for the current crate. It runs in two phases:
64 //!
65 //! 1. Discover the roots of the graph by traversing the HIR of the crate.
66 //! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
67 //!    representation of the item corresponding to a given node, until no more
68 //!    new nodes are found.
69 //!
70 //! ### Discovering roots
71 //!
72 //! The roots of the translation item graph correspond to the non-generic
73 //! syntactic items in the source code. We find them by walking the HIR of the
74 //! crate, and whenever we hit upon a function, method, or static item, we
75 //! create a translation item consisting of the items DefId and, since we only
76 //! consider non-generic items, an empty type-substitution set.
77 //!
78 //! ### Finding neighbor nodes
79 //! Given a translation item node, we can discover neighbors by inspecting its
80 //! MIR. We walk the MIR and any time we hit upon something that signifies a
81 //! reference to another translation item, we have found a neighbor. Since the
82 //! translation item we are currently at is always monomorphic, we also know the
83 //! concrete type arguments of its neighbors, and so all neighbors again will be
84 //! monomorphic. The specific forms a reference to a neighboring node can take
85 //! in MIR are quite diverse. Here is an overview:
86 //!
87 //! #### Calling Functions/Methods
88 //! The most obvious form of one translation item referencing another is a
89 //! function or method call (represented by a CALL terminator in MIR). But
90 //! calls are not the only thing that might introduce a reference between two
91 //! function translation items, and as we will see below, they are just a
92 //! specialized of the form described next, and consequently will don't get any
93 //! special treatment in the algorithm.
94 //!
95 //! #### Taking a reference to a function or method
96 //! A function does not need to actually be called in order to be a neighbor of
97 //! another function. It suffices to just take a reference in order to introduce
98 //! an edge. Consider the following example:
99 //!
100 //! ```rust
101 //! fn print_val<T: Display>(x: T) {
102 //!     println!("{}", x);
103 //! }
104 //!
105 //! fn call_fn(f: &Fn(i32), x: i32) {
106 //!     f(x);
107 //! }
108 //!
109 //! fn main() {
110 //!     let print_i32 = print_val::<i32>;
111 //!     call_fn(&print_i32, 0);
112 //! }
113 //! ```
114 //! The MIR of none of these functions will contain an explicit call to
115 //! `print_val::<i32>`. Nonetheless, in order to translate this program, we need
116 //! an instance of this function. Thus, whenever we encounter a function or
117 //! method in operand position, we treat it as a neighbor of the current
118 //! translation item. Calls are just a special case of that.
119 //!
120 //! #### Closures
121 //! In a way, closures are a simple case. Since every closure object needs to be
122 //! constructed somewhere, we can reliably discover them by observing
123 //! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
124 //! true for closures inlined from other crates.
125 //!
126 //! #### Drop glue
127 //! Drop glue translation items are introduced by MIR drop-statements. The
128 //! generated translation item will again have drop-glue item neighbors if the
129 //! type to be dropped contains nested values that also need to be dropped. It
130 //! might also have a function item neighbor for the explicit `Drop::drop`
131 //! implementation of its type.
132 //!
133 //! #### Unsizing Casts
134 //! A subtle way of introducing neighbor edges is by casting to a trait object.
135 //! Since the resulting fat-pointer contains a reference to a vtable, we need to
136 //! instantiate all object-save methods of the trait, as we need to store
137 //! pointers to these functions even if they never get called anywhere. This can
138 //! be seen as a special case of taking a function reference.
139 //!
140 //! #### Boxes
141 //! Since `Box` expression have special compiler support, no explicit calls to
142 //! `exchange_malloc()` and `exchange_free()` may show up in MIR, even if the
143 //! compiler will generate them. We have to observe `Rvalue::Box` expressions
144 //! and Box-typed drop-statements for that purpose.
145 //!
146 //!
147 //! Interaction with Cross-Crate Inlining
148 //! -------------------------------------
149 //! The binary of a crate will not only contain machine code for the items
150 //! defined in the source code of that crate. It will also contain monomorphic
151 //! instantiations of any extern generic functions and of functions marked with
152 //! #[inline].
153 //! The collection algorithm handles this more or less transparently. If it is
154 //! about to create a translation item for something with an external `DefId`,
155 //! it will take a look if the MIR for that item is available, and if so just
156 //! proceed normally. If the MIR is not available, it assumes that that item is
157 //! just linked to and no node is created; which is exactly what we want, since
158 //! no machine code should be generated in the current crate for such an item.
159 //!
160 //! Eager and Lazy Collection Mode
161 //! ------------------------------
162 //! Translation item collection can be performed in one of two modes:
163 //!
164 //! - Lazy mode means that items will only be instantiated when actually
165 //!   referenced. The goal is to produce the least amount of machine code
166 //!   possible.
167 //!
168 //! - Eager mode is meant to be used in conjunction with incremental compilation
169 //!   where a stable set of translation items is more important than a minimal
170 //!   one. Thus, eager mode will instantiate drop-glue for every drop-able type
171 //!   in the crate, even of no drop call for that type exists (yet). It will
172 //!   also instantiate default implementations of trait methods, something that
173 //!   otherwise is only done on demand.
174 //!
175 //!
176 //! Open Issues
177 //! -----------
178 //! Some things are not yet fully implemented in the current version of this
179 //! module.
180 //!
181 //! ### Initializers of Constants and Statics
182 //! Since no MIR is constructed yet for initializer expressions of constants and
183 //! statics we cannot inspect these properly.
184 //!
185 //! ### Const Fns
186 //! Ideally, no translation item should be generated for const fns unless there
187 //! is a call to them that cannot be evaluated at compile time. At the moment
188 //! this is not implemented however: a translation item will be produced
189 //! regardless of whether it is actually needed or not.
190
191 use rustc_front::hir;
192 use rustc_front::intravisit as hir_visit;
193
194 use rustc::front::map as hir_map;
195 use rustc::middle::def_id::DefId;
196 use rustc::middle::lang_items::{ExchangeFreeFnLangItem, ExchangeMallocFnLangItem};
197 use rustc::middle::{ty, traits};
198 use rustc::middle::subst::{self, Substs, Subst};
199 use rustc::middle::ty::adjustment::CustomCoerceUnsized;
200 use rustc::middle::ty::fold::TypeFoldable;
201 use rustc::mir::repr as mir;
202 use rustc::mir::visit as mir_visit;
203 use rustc::mir::visit::Visitor as MirVisitor;
204
205 use syntax::ast::{self, NodeId};
206 use syntax::codemap::DUMMY_SP;
207 use syntax::errors;
208 use syntax::parse::token;
209
210 use trans::base::custom_coerce_unsize_info;
211 use trans::context::CrateContext;
212 use trans::common::{fulfill_obligation, normalize_and_test_predicates,
213                     type_is_sized};
214 use trans::glue;
215 use trans::meth;
216 use trans::monomorphize;
217 use util::nodemap::{FnvHashSet, FnvHashMap, DefIdMap};
218
219 use std::hash::{Hash, Hasher};
220 use std::rc::Rc;
221
222 #[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)]
223 pub enum TransItemCollectionMode {
224     Eager,
225     Lazy
226 }
227
228 #[derive(Eq, Clone, Copy, Debug)]
229 pub enum TransItem<'tcx> {
230     DropGlue(ty::Ty<'tcx>),
231     Fn {
232         def_id: DefId,
233         substs: &'tcx Substs<'tcx>
234     },
235     Static(NodeId)
236 }
237
238 impl<'tcx> Hash for TransItem<'tcx> {
239     fn hash<H: Hasher>(&self, s: &mut H) {
240         match *self {
241             TransItem::DropGlue(t) => {
242                 0u8.hash(s);
243                 t.hash(s);
244             },
245             TransItem::Fn { def_id, substs } => {
246                 1u8.hash(s);
247                 def_id.hash(s);
248                 (substs as *const Substs<'tcx> as usize).hash(s);
249             }
250             TransItem::Static(node_id) => {
251                 3u8.hash(s);
252                 node_id.hash(s);
253             }
254         };
255     }
256 }
257
258 impl<'tcx> PartialEq for TransItem<'tcx> {
259     fn eq(&self, other: &Self) -> bool {
260         match (*self, *other) {
261             (TransItem::DropGlue(t1), TransItem::DropGlue(t2)) => t1 == t2,
262             (TransItem::Fn { def_id: def_id1, substs: substs1 },
263              TransItem::Fn { def_id: def_id2, substs: substs2 }) => {
264                 def_id1 == def_id2 && substs1 == substs2
265             },
266             (TransItem::Static(node_id1), TransItem::Static(node_id2)) => {
267                 node_id1 == node_id2
268             },
269             _ => false
270         }
271     }
272 }
273
274 pub fn collect_crate_translation_items<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
275                                                  mode: TransItemCollectionMode)
276                                                  -> FnvHashSet<TransItem<'tcx>> {
277     // We are not tracking dependencies of this pass as it has to be re-executed
278     // every time no matter what.
279     ccx.tcx().dep_graph.with_ignore(|| {
280         let roots = collect_roots(ccx, mode);
281
282         debug!("Building translation item graph, beginning at roots");
283         let mut visited = FnvHashSet();
284         let mut recursion_depths = DefIdMap();
285         let mut mir_cache = DefIdMap();
286
287         for root in roots {
288             collect_items_rec(ccx,
289                               root,
290                               &mut visited,
291                               &mut recursion_depths,
292                               &mut mir_cache);
293         }
294
295         visited
296     })
297 }
298
299 // Find all non-generic items by walking the HIR. These items serve as roots to
300 // start monomorphizing from.
301 fn collect_roots<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
302                            mode: TransItemCollectionMode)
303                            -> Vec<TransItem<'tcx>> {
304     debug!("Collecting roots");
305     let mut roots = Vec::new();
306
307     {
308         let mut visitor = RootCollector {
309             ccx: ccx,
310             mode: mode,
311             output: &mut roots,
312             enclosing_item: None,
313             trans_empty_substs: ccx.tcx().mk_substs(Substs::trans_empty()),
314         };
315
316         ccx.tcx().map.krate().visit_all_items(&mut visitor);
317     }
318
319     roots
320 }
321
322 #[derive(Clone)]
323 enum CachedMir<'mir, 'tcx: 'mir> {
324     Ref(&'mir mir::Mir<'tcx>),
325     Owned(Rc<mir::Mir<'tcx>>)
326 }
327
328 impl<'mir, 'tcx: 'mir> CachedMir<'mir, 'tcx> {
329     fn get_ref<'a>(&'a self) -> &'a mir::Mir<'tcx> {
330         match *self {
331             CachedMir::Ref(r) => r,
332             CachedMir::Owned(ref rc) => &rc,
333         }
334     }
335 }
336
337 // Collect all monomorphized translation items reachable from `starting_point`
338 fn collect_items_rec<'a, 'tcx: 'a>(ccx: &CrateContext<'a, 'tcx>,
339                                    starting_point: TransItem<'tcx>,
340                                    visited: &mut FnvHashSet<TransItem<'tcx>>,
341                                    recursion_depths: &mut DefIdMap<usize>,
342                                    mir_cache: &mut DefIdMap<CachedMir<'a, 'tcx>>) {
343     if !visited.insert(starting_point.clone()) {
344         // We've been here already, no need to search again.
345         return;
346     }
347     debug!("BEGIN collect_items_rec({})", starting_point.to_string(ccx));
348
349     let mut neighbors = Vec::new();
350     let recursion_depth_reset;
351
352     match starting_point {
353         TransItem::DropGlue(t) => {
354             find_drop_glue_neighbors(ccx, t, &mut neighbors);
355             recursion_depth_reset = None;
356         }
357         TransItem::Static(_) => {
358             recursion_depth_reset = None;
359         }
360         TransItem::Fn { def_id, substs: ref param_substs } => {
361             // Keep track of the monomorphization recursion depth
362             recursion_depth_reset = Some(check_recursion_limit(ccx,
363                                                                def_id,
364                                                                recursion_depths));
365
366             // Scan the MIR in order to find function calls, closures, and
367             // drop-glue
368             let mir = load_mir(ccx, def_id, mir_cache);
369
370             let mut visitor = MirNeighborCollector {
371                 ccx: ccx,
372                 mir: mir.get_ref(),
373                 output: &mut neighbors,
374                 param_substs: param_substs
375             };
376
377             visitor.visit_mir(mir.get_ref());
378         }
379     }
380
381     for neighbour in neighbors {
382         collect_items_rec(ccx, neighbour, visited, recursion_depths, mir_cache);
383     }
384
385     if let Some((def_id, depth)) = recursion_depth_reset {
386         recursion_depths.insert(def_id, depth);
387     }
388
389     debug!("END collect_items_rec({})", starting_point.to_string(ccx));
390 }
391
392 fn load_mir<'a, 'tcx: 'a>(ccx: &CrateContext<'a, 'tcx>,
393                           def_id: DefId,
394                           mir_cache: &mut DefIdMap<CachedMir<'a, 'tcx>>)
395                           -> CachedMir<'a, 'tcx> {
396     let mir_not_found_error_message = || {
397         format!("Could not find MIR for function: {}",
398                 ccx.tcx().item_path_str(def_id))
399     };
400
401     if def_id.is_local() {
402         let node_id = ccx.tcx().map.as_local_node_id(def_id).unwrap();
403         let mir_opt = ccx.mir_map().map.get(&node_id);
404         let mir = errors::expect(ccx.sess().diagnostic(),
405                              mir_opt,
406                              mir_not_found_error_message);
407         CachedMir::Ref(mir)
408     } else {
409         if let Some(mir) = mir_cache.get(&def_id) {
410             return mir.clone();
411         }
412
413         let mir_opt = ccx.sess().cstore.maybe_get_item_mir(ccx.tcx(), def_id);
414         let mir = errors::expect(ccx.sess().diagnostic(),
415                                  mir_opt,
416                                  mir_not_found_error_message);
417         let cached = CachedMir::Owned(Rc::new(mir));
418         mir_cache.insert(def_id, cached.clone());
419         cached
420     }
421 }
422
423 fn check_recursion_limit<'a, 'tcx: 'a>(ccx: &CrateContext<'a, 'tcx>,
424                                        def_id: DefId,
425                                        recursion_depths: &mut DefIdMap<usize>)
426                                        -> (DefId, usize) {
427     let recursion_depth = recursion_depths.get(&def_id)
428                                           .map(|x| *x)
429                                           .unwrap_or(0);
430     debug!(" => recursion depth={}", recursion_depth);
431
432     // Code that needs to instantiate the same function recursively
433     // more than the recursion limit is assumed to be causing an
434     // infinite expansion.
435     if recursion_depth > ccx.sess().recursion_limit.get() {
436         if let Some(node_id) = ccx.tcx().map.as_local_node_id(def_id) {
437             ccx.sess().span_fatal(ccx.tcx().map.span(node_id),
438                 "reached the recursion limit during monomorphization");
439         } else {
440             let error = format!("reached the recursion limit during \
441                                 monomorphization of '{}'",
442                                 ccx.tcx().item_path_str(def_id));
443             ccx.sess().fatal(&error[..]);
444         }
445     }
446
447     recursion_depths.insert(def_id, recursion_depth + 1);
448
449     (def_id, recursion_depth)
450 }
451
452 struct MirNeighborCollector<'a, 'tcx: 'a> {
453     ccx: &'a CrateContext<'a, 'tcx>,
454     mir: &'a mir::Mir<'tcx>,
455     output: &'a mut Vec<TransItem<'tcx>>,
456     param_substs: &'tcx Substs<'tcx>
457 }
458
459 impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
460
461     fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>) {
462         debug!("visiting rvalue {:?}", *rvalue);
463
464         match *rvalue {
465             mir::Rvalue::Aggregate(mir::AggregateKind::Closure(def_id,
466                                                                ref substs), _) => {
467                 assert!(can_have_local_instance(self.ccx, def_id));
468                 let trans_item = create_fn_trans_item(self.ccx,
469                                                       def_id,
470                                                       substs.func_substs,
471                                                       self.param_substs);
472                 self.output.push(trans_item);
473             }
474             // When doing an cast from a regular pointer to a fat pointer, we
475             // have to instantiate all methods of the trait being cast to, so we
476             // can build the appropriate vtable.
477             mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, target_ty) => {
478                 let target_ty = monomorphize::apply_param_substs(self.ccx.tcx(),
479                                                                  self.param_substs,
480                                                                  &target_ty);
481                 let source_ty = self.mir.operand_ty(self.ccx.tcx(), operand);
482                 let source_ty = monomorphize::apply_param_substs(self.ccx.tcx(),
483                                                                  self.param_substs,
484                                                                  &source_ty);
485                 let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.ccx,
486                                                                             source_ty,
487                                                                             target_ty);
488                 // This could also be a different Unsize instruction, like
489                 // from a fixed sized array to a slice. But we are only
490                 // interested in things that produce a vtable.
491                 if target_ty.is_trait() && !source_ty.is_trait() {
492                     create_trans_items_for_vtable_methods(self.ccx,
493                                                           target_ty,
494                                                           source_ty,
495                                                           self.output);
496                 }
497             }
498             mir::Rvalue::Box(_) => {
499                 let exchange_malloc_fn_def_id =
500                     self.ccx
501                         .tcx()
502                         .lang_items
503                         .require(ExchangeMallocFnLangItem)
504                         .unwrap_or_else(|e| self.ccx.sess().fatal(&e));
505
506                 assert!(can_have_local_instance(self.ccx, exchange_malloc_fn_def_id));
507                 let exchange_malloc_fn_trans_item =
508                     create_fn_trans_item(self.ccx,
509                                          exchange_malloc_fn_def_id,
510                                          &Substs::trans_empty(),
511                                          self.param_substs);
512
513                 self.output.push(exchange_malloc_fn_trans_item);
514             }
515             _ => { /* not interesting */ }
516         }
517
518         self.super_rvalue(rvalue);
519     }
520
521     fn visit_lvalue(&mut self,
522                     lvalue: &mir::Lvalue<'tcx>,
523                     context: mir_visit::LvalueContext) {
524         debug!("visiting lvalue {:?}", *lvalue);
525
526         if let mir_visit::LvalueContext::Drop = context {
527             let ty = self.mir.lvalue_ty(self.ccx.tcx(), lvalue)
528                              .to_ty(self.ccx.tcx());
529
530             let ty = monomorphize::apply_param_substs(self.ccx.tcx(),
531                                                       self.param_substs,
532                                                       &ty);
533             let ty = self.ccx.tcx().erase_regions(&ty);
534             let ty = glue::get_drop_glue_type(self.ccx, ty);
535             self.output.push(TransItem::DropGlue(ty));
536         }
537
538         self.super_lvalue(lvalue, context);
539     }
540
541     fn visit_operand(&mut self, operand: &mir::Operand<'tcx>) {
542         debug!("visiting operand {:?}", *operand);
543
544         let callee = match *operand {
545             mir::Operand::Constant(mir::Constant { ty: &ty::TyS {
546                 sty: ty::TyFnDef(def_id, substs, _), ..
547             }, .. }) => Some((def_id, substs)),
548             _ => None
549         };
550
551         if let Some((callee_def_id, callee_substs)) = callee {
552             debug!(" => operand is callable");
553
554             // `callee_def_id` might refer to a trait method instead of a
555             // concrete implementation, so we have to find the actual
556             // implementation. For example, the call might look like
557             //
558             // std::cmp::partial_cmp(0i32, 1i32)
559             //
560             // Calling do_static_dispatch() here will map the def_id of
561             // `std::cmp::partial_cmp` to the def_id of `i32::partial_cmp<i32>`
562             let dispatched = do_static_dispatch(self.ccx,
563                                                 callee_def_id,
564                                                 callee_substs,
565                                                 self.param_substs);
566
567             if let Some((callee_def_id, callee_substs)) = dispatched {
568                 // if we have a concrete impl (which we might not have
569                 // in the case of something compiler generated like an
570                 // object shim or a closure that is handled differently),
571                 // we check if the callee is something that will actually
572                 // result in a translation item ...
573                 if can_result_in_trans_item(self.ccx, callee_def_id) {
574                     // ... and create one if it does.
575                     let trans_item = create_fn_trans_item(self.ccx,
576                                                           callee_def_id,
577                                                           callee_substs,
578                                                           self.param_substs);
579                     self.output.push(trans_item);
580                 }
581             }
582         }
583
584         self.super_operand(operand);
585
586         fn can_result_in_trans_item<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
587                                               def_id: DefId)
588                                               -> bool {
589             if !match ccx.tcx().lookup_item_type(def_id).ty.sty {
590                 ty::TyFnDef(def_id, _, _) => {
591                     // Some constructors also have type TyFnDef but they are
592                     // always instantiated inline and don't result in
593                     // translation item. Same for FFI functions.
594                     match ccx.tcx().map.get_if_local(def_id) {
595                         Some(hir_map::NodeVariant(_))    |
596                         Some(hir_map::NodeStructCtor(_)) |
597                         Some(hir_map::NodeForeignItem(_)) => false,
598                         Some(_) => true,
599                         None => {
600                             ccx.sess().cstore.variant_kind(def_id).is_none()
601                         }
602                     }
603                 }
604                 ty::TyClosure(..) => true,
605                 _ => false
606             } {
607                 return false;
608             }
609
610             can_have_local_instance(ccx, def_id)
611         }
612     }
613 }
614
615 fn can_have_local_instance<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
616                                      def_id: DefId)
617                                      -> bool {
618     // Take a look if we have the definition available. If not, we
619     // will not emit code for this item in the local crate, and thus
620     // don't create a translation item for it.
621     def_id.is_local() || ccx.sess().cstore.is_item_mir_available(def_id)
622 }
623
624 fn find_drop_glue_neighbors<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
625                                       ty: ty::Ty<'tcx>,
626                                       output: &mut Vec<TransItem<'tcx>>)
627 {
628     debug!("find_drop_glue_neighbors: {}", type_to_string(ccx, ty));
629
630     // Make sure the exchange_free_fn() lang-item gets translated if
631     // there is a boxed value.
632     if let ty::TyBox(_) = ty.sty {
633         let exchange_free_fn_def_id = ccx.tcx()
634                                          .lang_items
635                                          .require(ExchangeFreeFnLangItem)
636                                          .unwrap_or_else(|e| ccx.sess().fatal(&e));
637
638         assert!(can_have_local_instance(ccx, exchange_free_fn_def_id));
639         let exchange_free_fn_trans_item =
640             create_fn_trans_item(ccx,
641                                  exchange_free_fn_def_id,
642                                  &Substs::trans_empty(),
643                                  &Substs::trans_empty());
644
645         output.push(exchange_free_fn_trans_item);
646     }
647
648     // If the type implements Drop, also add a translation item for the
649     // monomorphized Drop::drop() implementation.
650     let destructor_did = match ty.sty {
651         ty::TyStruct(def, _) |
652         ty::TyEnum(def, _)   => def.destructor(),
653         _ => None
654     };
655
656     if let Some(destructor_did) = destructor_did {
657         use rustc::middle::ty::ToPolyTraitRef;
658
659         let drop_trait_def_id = ccx.tcx()
660                                    .lang_items
661                                    .drop_trait()
662                                    .unwrap();
663
664         let self_type_substs = ccx.tcx().mk_substs(
665             Substs::trans_empty().with_self_ty(ty));
666
667         let trait_ref = ty::TraitRef {
668             def_id: drop_trait_def_id,
669             substs: self_type_substs,
670         }.to_poly_trait_ref();
671
672         let substs = match fulfill_obligation(ccx, DUMMY_SP, trait_ref) {
673             traits::VtableImpl(data) => data.substs,
674             _ => unreachable!()
675         };
676
677         if can_have_local_instance(ccx, destructor_did) {
678             let trans_item = create_fn_trans_item(ccx,
679                                                   destructor_did,
680                                                   substs,
681                                                   &Substs::trans_empty());
682             output.push(trans_item);
683         }
684     }
685
686     // Finally add the types of nested values
687     match ty.sty {
688         ty::TyBool      |
689         ty::TyChar      |
690         ty::TyInt(_)    |
691         ty::TyUint(_)   |
692         ty::TyStr       |
693         ty::TyFloat(_)  |
694         ty::TyRawPtr(_) |
695         ty::TyRef(..)   |
696         ty::TyFnDef(..) |
697         ty::TyFnPtr(_)  |
698         ty::TySlice(_)  |
699         ty::TyTrait(_)  => {
700             /* nothing to do */
701         }
702         ty::TyStruct(ref adt_def, substs) |
703         ty::TyEnum(ref adt_def, substs) => {
704             for field in adt_def.all_fields() {
705                 let field_type = monomorphize::apply_param_substs(ccx.tcx(),
706                                                                   substs,
707                                                                   &field.unsubst_ty());
708                 let field_type = glue::get_drop_glue_type(ccx, field_type);
709
710                 if glue::type_needs_drop(ccx.tcx(), field_type) {
711                     output.push(TransItem::DropGlue(field_type));
712                 }
713             }
714         }
715         ty::TyClosure(_, ref substs) => {
716             for upvar_ty in &substs.upvar_tys {
717                 let upvar_ty = glue::get_drop_glue_type(ccx, upvar_ty);
718                 if glue::type_needs_drop(ccx.tcx(), upvar_ty) {
719                     output.push(TransItem::DropGlue(upvar_ty));
720                 }
721             }
722         }
723         ty::TyBox(inner_type)      |
724         ty::TyArray(inner_type, _) => {
725             let inner_type = glue::get_drop_glue_type(ccx, inner_type);
726             if glue::type_needs_drop(ccx.tcx(), inner_type) {
727                 output.push(TransItem::DropGlue(inner_type));
728             }
729         }
730         ty::TyTuple(ref args) => {
731             for arg in args {
732                 let arg = glue::get_drop_glue_type(ccx, arg);
733                 if glue::type_needs_drop(ccx.tcx(), arg) {
734                     output.push(TransItem::DropGlue(arg));
735                 }
736             }
737         }
738         ty::TyProjection(_) |
739         ty::TyParam(_)      |
740         ty::TyInfer(_)      |
741         ty::TyError         => {
742             ccx.sess().bug("encountered unexpected type");
743         }
744     }
745 }
746
747 fn do_static_dispatch<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
748                                 fn_def_id: DefId,
749                                 fn_substs: &'tcx Substs<'tcx>,
750                                 param_substs: &'tcx Substs<'tcx>)
751                                 -> Option<(DefId, &'tcx Substs<'tcx>)> {
752     debug!("do_static_dispatch(fn_def_id={}, fn_substs={:?}, param_substs={:?})",
753            def_id_to_string(ccx, fn_def_id, None),
754            fn_substs,
755            param_substs);
756
757     let is_trait_method = ccx.tcx().trait_of_item(fn_def_id).is_some();
758
759     if is_trait_method {
760         match ccx.tcx().impl_or_trait_item(fn_def_id) {
761             ty::MethodTraitItem(ref method) => {
762                 match method.container {
763                     ty::TraitContainer(trait_def_id) => {
764                         debug!(" => trait method, attempting to find impl");
765                         do_static_trait_method_dispatch(ccx,
766                                                         method,
767                                                         trait_def_id,
768                                                         fn_substs,
769                                                         param_substs)
770                     }
771                     ty::ImplContainer(_) => {
772                         // This is already a concrete implementation
773                         debug!(" => impl method");
774                         Some((fn_def_id, fn_substs))
775                     }
776                 }
777             }
778             _ => unreachable!()
779         }
780     } else {
781         debug!(" => regular function");
782         // The function is not part of an impl or trait, no dispatching
783         // to be done
784         Some((fn_def_id, fn_substs))
785     }
786 }
787
788 // Given a trait-method and substitution information, find out the actual
789 // implementation of the trait method.
790 fn do_static_trait_method_dispatch<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
791                                              trait_method: &ty::Method,
792                                              trait_id: DefId,
793                                              callee_substs: &'tcx Substs<'tcx>,
794                                              param_substs: &'tcx Substs<'tcx>)
795                                              -> Option<(DefId, &'tcx Substs<'tcx>)> {
796     let tcx = ccx.tcx();
797     debug!("do_static_trait_method_dispatch(trait_method={}, \
798                                             trait_id={}, \
799                                             callee_substs={:?}, \
800                                             param_substs={:?}",
801            def_id_to_string(ccx, trait_method.def_id, None),
802            def_id_to_string(ccx, trait_id, None),
803            callee_substs,
804            param_substs);
805
806     let rcvr_substs = monomorphize::apply_param_substs(tcx,
807                                                        param_substs,
808                                                        callee_substs);
809
810     let trait_ref = ty::Binder(rcvr_substs.to_trait_ref(tcx, trait_id));
811     let vtbl = fulfill_obligation(ccx, DUMMY_SP, trait_ref);
812
813     // Now that we know which impl is being used, we can dispatch to
814     // the actual function:
815     match vtbl {
816         traits::VtableImpl(traits::VtableImplData {
817             impl_def_id: impl_did,
818             substs: impl_substs,
819             nested: _ }) =>
820         {
821             let callee_substs = impl_substs.with_method_from(&rcvr_substs);
822             let impl_method = meth::get_impl_method(tcx,
823                                                     impl_did,
824                                                     tcx.mk_substs(callee_substs),
825                                                     trait_method.name);
826             Some((impl_method.method.def_id, impl_method.substs))
827         }
828         // If we have a closure or a function pointer, we will also encounter
829         // the concrete closure/function somewhere else (during closure or fn
830         // pointer construction). That's where we track those things.
831         traits::VtableClosure(..) |
832         traits::VtableFnPointer(..) |
833         traits::VtableObject(..) => {
834             None
835         }
836         _ => {
837             tcx.sess.bug(&format!("static call to invalid vtable: {:?}", vtbl))
838         }
839     }
840 }
841
842 /// For given pair of source and target type that occur in an unsizing coercion,
843 /// this function finds the pair of types that determines the vtable linking
844 /// them.
845 ///
846 /// For example, the source type might be `&SomeStruct` and the target type\
847 /// might be `&SomeTrait` in a cast like:
848 ///
849 /// let src: &SomeStruct = ...;
850 /// let target = src as &SomeTrait;
851 ///
852 /// Then the output of this function would be (SomeStruct, SomeTrait) since for
853 /// constructing the `target` fat-pointer we need the vtable for that pair.
854 ///
855 /// Things can get more complicated though because there's also the case where
856 /// the unsized type occurs as a field:
857 ///
858 /// ```rust
859 /// struct ComplexStruct<T: ?Sized> {
860 ///    a: u32,
861 ///    b: f64,
862 ///    c: T
863 /// }
864 /// ```
865 ///
866 /// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
867 /// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
868 /// for the pair of `T` (which is a trait) and the concrete type that `T` was
869 /// originally coerced from:
870 ///
871 /// let src: &ComplexStruct<SomeStruct> = ...;
872 /// let target = src as &ComplexStruct<SomeTrait>;
873 ///
874 /// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
875 /// `(SomeStruct, SomeTrait)`.
876 ///
877 /// Finally, there is also the case of custom unsizing coercions, e.g. for
878 /// smart pointers such as `Rc` and `Arc`.
879 fn find_vtable_types_for_unsizing<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
880                                             source_ty: ty::Ty<'tcx>,
881                                             target_ty: ty::Ty<'tcx>)
882                                             -> (ty::Ty<'tcx>, ty::Ty<'tcx>) {
883     match (&source_ty.sty, &target_ty.sty) {
884         (&ty::TyBox(a), &ty::TyBox(b)) |
885         (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
886          &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
887         (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
888          &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
889         (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
890          &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
891             let (inner_source, inner_target) = (a, b);
892
893             if !type_is_sized(ccx.tcx(), inner_source) {
894                 (inner_source, inner_target)
895             } else {
896                 ccx.tcx().struct_lockstep_tails(inner_source, inner_target)
897             }
898         }
899
900         (&ty::TyStruct(source_adt_def, source_substs),
901          &ty::TyStruct(target_adt_def, target_substs)) => {
902             assert_eq!(source_adt_def, target_adt_def);
903
904             let kind = custom_coerce_unsize_info(ccx, source_ty, target_ty);
905
906             let coerce_index = match kind {
907                 CustomCoerceUnsized::Struct(i) => i
908             };
909
910             let source_fields = &source_adt_def.struct_variant().fields;
911             let target_fields = &target_adt_def.struct_variant().fields;
912
913             assert!(coerce_index < source_fields.len() &&
914                     source_fields.len() == target_fields.len());
915
916             find_vtable_types_for_unsizing(ccx,
917                                            source_fields[coerce_index].ty(ccx.tcx(),
918                                                                           source_substs),
919                                            target_fields[coerce_index].ty(ccx.tcx(),
920                                                                           target_substs))
921         }
922         _ => ccx.sess()
923                 .bug(&format!("find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
924                                source_ty,
925                                target_ty))
926     }
927 }
928
929 fn create_fn_trans_item<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
930                                   def_id: DefId,
931                                   fn_substs: &Substs<'tcx>,
932                                   param_substs: &Substs<'tcx>)
933                                   -> TransItem<'tcx>
934 {
935     debug!("create_fn_trans_item(def_id={}, fn_substs={:?}, param_substs={:?})",
936             def_id_to_string(ccx, def_id, None),
937             fn_substs,
938             param_substs);
939
940     // We only get here, if fn_def_id either designates a local item or
941     // an inlineable external item. Non-inlineable external items are
942     // ignored because we don't want to generate any code for them.
943     let concrete_substs = monomorphize::apply_param_substs(ccx.tcx(),
944                                                            param_substs,
945                                                            fn_substs);
946     let concrete_substs = ccx.tcx().erase_regions(&concrete_substs);
947
948     let trans_item = TransItem::Fn {
949         def_id: def_id,
950         substs: ccx.tcx().mk_substs(concrete_substs),
951     };
952
953     return trans_item;
954 }
955
956 /// Creates a `TransItem` for each method that is referenced by the vtable for
957 /// the given trait/impl pair.
958 fn create_trans_items_for_vtable_methods<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
959                                                    trait_ty: ty::Ty<'tcx>,
960                                                    impl_ty: ty::Ty<'tcx>,
961                                                    output: &mut Vec<TransItem<'tcx>>) {
962     assert!(!trait_ty.needs_subst() && !impl_ty.needs_subst());
963
964     if let ty::TyTrait(ref trait_ty) = trait_ty.sty {
965         let poly_trait_ref = trait_ty.principal_trait_ref_with_self_ty(ccx.tcx(),
966                                                                        impl_ty);
967
968         // Walk all methods of the trait, including those of its supertraits
969         for trait_ref in traits::supertraits(ccx.tcx(), poly_trait_ref) {
970             let vtable = fulfill_obligation(ccx, DUMMY_SP, trait_ref);
971             match vtable {
972                 traits::VtableImpl(
973                     traits::VtableImplData {
974                         impl_def_id,
975                         substs,
976                         nested: _ }) => {
977                     let items = meth::get_vtable_methods(ccx, impl_def_id, substs)
978                         .into_iter()
979                         // filter out None values
980                         .filter_map(|opt_impl_method| opt_impl_method)
981                         // create translation items
982                         .filter_map(|impl_method| {
983                             if can_have_local_instance(ccx, impl_method.method.def_id) {
984                                 Some(create_fn_trans_item(ccx,
985                                                           impl_method.method.def_id,
986                                                           impl_method.substs,
987                                                           &Substs::trans_empty()))
988                             } else {
989                                 None
990                             }
991                         })
992                         .collect::<Vec<_>>();
993
994                     output.extend(items.into_iter());
995                 }
996                 _ => { /* */ }
997             }
998         }
999     }
1000 }
1001
1002 //=-----------------------------------------------------------------------------
1003 // Root Collection
1004 //=-----------------------------------------------------------------------------
1005
1006 struct RootCollector<'b, 'a: 'b, 'tcx: 'a + 'b> {
1007     ccx: &'b CrateContext<'a, 'tcx>,
1008     mode: TransItemCollectionMode,
1009     output: &'b mut Vec<TransItem<'tcx>>,
1010     enclosing_item: Option<&'tcx hir::Item>,
1011     trans_empty_substs: &'tcx Substs<'tcx>
1012 }
1013
1014 impl<'b, 'a, 'v> hir_visit::Visitor<'v> for RootCollector<'b, 'a, 'v> {
1015     fn visit_item(&mut self, item: &'v hir::Item) {
1016         let old_enclosing_item = self.enclosing_item;
1017         self.enclosing_item = Some(item);
1018
1019         match item.node {
1020             hir::ItemExternCrate(..) |
1021             hir::ItemUse(..)         |
1022             hir::ItemForeignMod(..)  |
1023             hir::ItemTy(..)          |
1024             hir::ItemDefaultImpl(..) |
1025             hir::ItemTrait(..)       |
1026             hir::ItemConst(..)       |
1027             hir::ItemMod(..)         => {
1028                 // Nothing to do, just keep recursing...
1029             }
1030
1031             hir::ItemImpl(..) => {
1032                 if self.mode == TransItemCollectionMode::Eager {
1033                     create_trans_items_for_default_impls(self.ccx,
1034                                                          item,
1035                                                          self.trans_empty_substs,
1036                                                          self.output);
1037                 }
1038             }
1039
1040             hir::ItemEnum(_, ref generics)        |
1041             hir::ItemStruct(_, ref generics)      => {
1042                 if !generics.is_parameterized() {
1043                     let ty = {
1044                         let tables = self.ccx.tcx().tables.borrow();
1045                         tables.node_types[&item.id]
1046                     };
1047
1048                     if self.mode == TransItemCollectionMode::Eager {
1049                         debug!("RootCollector: ADT drop-glue for {}",
1050                                def_id_to_string(self.ccx,
1051                                                 self.ccx.tcx().map.local_def_id(item.id),
1052                                                 None));
1053
1054                         let ty = glue::get_drop_glue_type(self.ccx, ty);
1055                         self.output.push(TransItem::DropGlue(ty));
1056                     }
1057                 }
1058             }
1059             hir::ItemStatic(..) => {
1060                 debug!("RootCollector: ItemStatic({})",
1061                        def_id_to_string(self.ccx,
1062                                         self.ccx.tcx().map.local_def_id(item.id),
1063                                         None));
1064                 self.output.push(TransItem::Static(item.id));
1065             }
1066             hir::ItemFn(_, _, constness, _, ref generics, _) => {
1067                 if !generics.is_type_parameterized() &&
1068                    constness == hir::Constness::NotConst {
1069                     let def_id = self.ccx.tcx().map.local_def_id(item.id);
1070
1071                     debug!("RootCollector: ItemFn({})",
1072                            def_id_to_string(self.ccx, def_id, None));
1073
1074                     self.output.push(TransItem::Fn {
1075                         def_id: def_id,
1076                         substs: self.trans_empty_substs
1077                     });
1078                 }
1079             }
1080         }
1081
1082         hir_visit::walk_item(self, item);
1083         self.enclosing_item = old_enclosing_item;
1084     }
1085
1086     fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) {
1087         match ii.node {
1088             hir::ImplItemKind::Method(hir::MethodSig {
1089                 ref generics,
1090                 constness,
1091                 ..
1092             }, _) if constness == hir::Constness::NotConst => {
1093                 let hir_map = &self.ccx.tcx().map;
1094                 let parent_node_id = hir_map.get_parent_node(ii.id);
1095                 let is_impl_generic = match hir_map.expect_item(parent_node_id) {
1096                     &hir::Item {
1097                         node: hir::ItemImpl(_, _, ref generics, _, _, _),
1098                         ..
1099                     } => {
1100                         generics.is_type_parameterized()
1101                     }
1102                     _ => {
1103                         unreachable!()
1104                     }
1105                 };
1106
1107                 if !generics.is_type_parameterized() && !is_impl_generic {
1108                     let def_id = self.ccx.tcx().map.local_def_id(ii.id);
1109
1110                     debug!("RootCollector: MethodImplItem({})",
1111                            def_id_to_string(self.ccx, def_id, None));
1112
1113                     self.output.push(TransItem::Fn {
1114                         def_id: def_id,
1115                         substs: self.trans_empty_substs
1116                     });
1117                 }
1118             }
1119             _ => { /* Nothing to do here */ }
1120         }
1121
1122         hir_visit::walk_impl_item(self, ii)
1123     }
1124 }
1125
1126 fn create_trans_items_for_default_impls<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
1127                                                   item: &'tcx hir::Item,
1128                                                   trans_empty_substs: &'tcx Substs<'tcx>,
1129                                                   output: &mut Vec<TransItem<'tcx>>) {
1130     match item.node {
1131         hir::ItemImpl(_,
1132                       _,
1133                       ref generics,
1134                       _,
1135                       _,
1136                       ref items) => {
1137             if generics.is_type_parameterized() {
1138                 return
1139             }
1140
1141             let tcx = ccx.tcx();
1142             let impl_def_id = tcx.map.local_def_id(item.id);
1143
1144             debug!("create_trans_items_for_default_impls(item={})",
1145                    def_id_to_string(ccx, impl_def_id, None));
1146
1147             if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) {
1148                 let default_impls = tcx.provided_trait_methods(trait_ref.def_id);
1149                 let callee_substs = tcx.mk_substs(tcx.erase_regions(trait_ref.substs));
1150                 let overridden_methods: FnvHashSet<_> = items.iter()
1151                                                              .map(|item| item.name)
1152                                                              .collect();
1153                 for default_impl in default_impls {
1154                     if overridden_methods.contains(&default_impl.name) {
1155                         continue;
1156                     }
1157
1158                     if default_impl.generics.has_type_params(subst::FnSpace) {
1159                         continue;
1160                     }
1161
1162                     // The substitutions we have are on the impl, so we grab
1163                     // the method type from the impl to substitute into.
1164                     let mth = meth::get_impl_method(tcx,
1165                                                     impl_def_id,
1166                                                     callee_substs.clone(),
1167                                                     default_impl.name);
1168
1169                     assert!(mth.is_provided);
1170
1171                     let predicates = mth.method.predicates.predicates.subst(tcx, mth.substs);
1172                     if !normalize_and_test_predicates(ccx, predicates.into_vec()) {
1173                         continue;
1174                     }
1175
1176                     if can_have_local_instance(ccx, default_impl.def_id) {
1177                         let item = create_fn_trans_item(ccx,
1178                                                         default_impl.def_id,
1179                                                         callee_substs,
1180                                                         trans_empty_substs);
1181                         output.push(item);
1182                     }
1183                 }
1184             }
1185         }
1186         _ => {
1187             unreachable!()
1188         }
1189     }
1190 }
1191
1192 //=-----------------------------------------------------------------------------
1193 // TransItem String Keys
1194 //=-----------------------------------------------------------------------------
1195
1196 // The code below allows for producing a unique string key for a trans item.
1197 // These keys are used by the handwritten auto-tests, so they need to be
1198 // predictable and human-readable.
1199 //
1200 // Note: A lot of this could looks very similar to what's already in the
1201 //       ppaux module. It would be good to refactor things so we only have one
1202 //       parameterizable implementation for printing types.
1203
1204 /// Same as `unique_type_name()` but with the result pushed onto the given
1205 /// `output` parameter.
1206 pub fn push_unique_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
1207                                        t: ty::Ty<'tcx>,
1208                                        output: &mut String) {
1209     match t.sty {
1210         ty::TyBool              => output.push_str("bool"),
1211         ty::TyChar              => output.push_str("char"),
1212         ty::TyStr               => output.push_str("str"),
1213         ty::TyInt(ast::IntTy::Is)    => output.push_str("isize"),
1214         ty::TyInt(ast::IntTy::I8)    => output.push_str("i8"),
1215         ty::TyInt(ast::IntTy::I16)   => output.push_str("i16"),
1216         ty::TyInt(ast::IntTy::I32)   => output.push_str("i32"),
1217         ty::TyInt(ast::IntTy::I64)   => output.push_str("i64"),
1218         ty::TyUint(ast::UintTy::Us)   => output.push_str("usize"),
1219         ty::TyUint(ast::UintTy::U8)   => output.push_str("u8"),
1220         ty::TyUint(ast::UintTy::U16)  => output.push_str("u16"),
1221         ty::TyUint(ast::UintTy::U32)  => output.push_str("u32"),
1222         ty::TyUint(ast::UintTy::U64)  => output.push_str("u64"),
1223         ty::TyFloat(ast::FloatTy::F32) => output.push_str("f32"),
1224         ty::TyFloat(ast::FloatTy::F64) => output.push_str("f64"),
1225         ty::TyStruct(adt_def, substs) |
1226         ty::TyEnum(adt_def, substs) => {
1227             push_item_name(cx, adt_def.did, output);
1228             push_type_params(cx, substs, &[], output);
1229         },
1230         ty::TyTuple(ref component_types) => {
1231             output.push('(');
1232             for &component_type in component_types {
1233                 push_unique_type_name(cx, component_type, output);
1234                 output.push_str(", ");
1235             }
1236             if !component_types.is_empty() {
1237                 output.pop();
1238                 output.pop();
1239             }
1240             output.push(')');
1241         },
1242         ty::TyBox(inner_type) => {
1243             output.push_str("Box<");
1244             push_unique_type_name(cx, inner_type, output);
1245             output.push('>');
1246         },
1247         ty::TyRawPtr(ty::TypeAndMut { ty: inner_type, mutbl } ) => {
1248             output.push('*');
1249             match mutbl {
1250                 hir::MutImmutable => output.push_str("const "),
1251                 hir::MutMutable => output.push_str("mut "),
1252             }
1253
1254             push_unique_type_name(cx, inner_type, output);
1255         },
1256         ty::TyRef(_, ty::TypeAndMut { ty: inner_type, mutbl }) => {
1257             output.push('&');
1258             if mutbl == hir::MutMutable {
1259                 output.push_str("mut ");
1260             }
1261
1262             push_unique_type_name(cx, inner_type, output);
1263         },
1264         ty::TyArray(inner_type, len) => {
1265             output.push('[');
1266             push_unique_type_name(cx, inner_type, output);
1267             output.push_str(&format!("; {}", len));
1268             output.push(']');
1269         },
1270         ty::TySlice(inner_type) => {
1271             output.push('[');
1272             push_unique_type_name(cx, inner_type, output);
1273             output.push(']');
1274         },
1275         ty::TyTrait(ref trait_data) => {
1276             push_item_name(cx, trait_data.principal.skip_binder().def_id, output);
1277             push_type_params(cx,
1278                              &trait_data.principal.skip_binder().substs,
1279                              &trait_data.bounds.projection_bounds,
1280                              output);
1281         },
1282         ty::TyFnDef(_, _, &ty::BareFnTy{ unsafety, abi, ref sig } ) |
1283         ty::TyFnPtr(&ty::BareFnTy{ unsafety, abi, ref sig } ) => {
1284             if unsafety == hir::Unsafety::Unsafe {
1285                 output.push_str("unsafe ");
1286             }
1287
1288             if abi != ::syntax::abi::Abi::Rust {
1289                 output.push_str("extern \"");
1290                 output.push_str(abi.name());
1291                 output.push_str("\" ");
1292             }
1293
1294             output.push_str("fn(");
1295
1296             let sig = cx.tcx().erase_late_bound_regions(sig);
1297             if !sig.inputs.is_empty() {
1298                 for &parameter_type in &sig.inputs {
1299                     push_unique_type_name(cx, parameter_type, output);
1300                     output.push_str(", ");
1301                 }
1302                 output.pop();
1303                 output.pop();
1304             }
1305
1306             if sig.variadic {
1307                 if !sig.inputs.is_empty() {
1308                     output.push_str(", ...");
1309                 } else {
1310                     output.push_str("...");
1311                 }
1312             }
1313
1314             output.push(')');
1315
1316             match sig.output {
1317                 ty::FnConverging(result_type) if result_type.is_nil() => {}
1318                 ty::FnConverging(result_type) => {
1319                     output.push_str(" -> ");
1320                     push_unique_type_name(cx, result_type, output);
1321                 }
1322                 ty::FnDiverging => {
1323                     output.push_str(" -> !");
1324                 }
1325             }
1326         },
1327         ty::TyClosure(def_id, ref closure_substs) => {
1328             push_item_name(cx, def_id, output);
1329             output.push_str("{");
1330             output.push_str(&format!("{}:{}", def_id.krate, def_id.index.as_usize()));
1331             output.push_str("}");
1332             push_type_params(cx, closure_substs.func_substs, &[], output);
1333         }
1334         ty::TyError |
1335         ty::TyInfer(_) |
1336         ty::TyProjection(..) |
1337         ty::TyParam(_) => {
1338             cx.sess().bug(&format!("debuginfo: Trying to create type name for \
1339                 unexpected type: {:?}", t));
1340         }
1341     }
1342 }
1343
1344 fn push_item_name(ccx: &CrateContext,
1345                   def_id: DefId,
1346                   output: &mut String) {
1347     if def_id.is_local() {
1348         let node_id = ccx.tcx().map.as_local_node_id(def_id).unwrap();
1349         let inlined_from = ccx.external_srcs()
1350                               .borrow()
1351                               .get(&node_id)
1352                               .map(|def_id| *def_id);
1353
1354         if let Some(extern_def_id) = inlined_from {
1355             push_item_name(ccx, extern_def_id, output);
1356             return;
1357         }
1358
1359         output.push_str(&ccx.link_meta().crate_name);
1360         output.push_str("::");
1361     }
1362
1363     for part in ccx.tcx().def_path(def_id) {
1364         output.push_str(&format!("{}[{}]::",
1365                         part.data.as_interned_str(),
1366                         part.disambiguator));
1367     }
1368
1369     output.pop();
1370     output.pop();
1371 }
1372
1373 fn push_type_params<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
1374                               substs: &Substs<'tcx>,
1375                               projections: &[ty::PolyProjectionPredicate<'tcx>],
1376                               output: &mut String) {
1377     if substs.types.is_empty() && projections.is_empty() {
1378         return;
1379     }
1380
1381     output.push('<');
1382
1383     for &type_parameter in &substs.types {
1384         push_unique_type_name(cx, type_parameter, output);
1385         output.push_str(", ");
1386     }
1387
1388     for projection in projections {
1389         let projection = projection.skip_binder();
1390         let name = token::get_ident_interner().get(projection.projection_ty.item_name);
1391         output.push_str(&name[..]);
1392         output.push_str("=");
1393         push_unique_type_name(cx, projection.ty, output);
1394         output.push_str(", ");
1395     }
1396
1397     output.pop();
1398     output.pop();
1399
1400     output.push('>');
1401 }
1402
1403 fn push_def_id_as_string<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
1404                               def_id: DefId,
1405                               substs: Option<&Substs<'tcx>>,
1406                               output: &mut String) {
1407     push_item_name(ccx, def_id, output);
1408
1409     if let Some(substs) = substs {
1410         push_type_params(ccx, substs, &[], output);
1411     }
1412 }
1413
1414 fn def_id_to_string<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
1415                               def_id: DefId,
1416                               substs: Option<&Substs<'tcx>>)
1417                               -> String {
1418     let mut output = String::new();
1419     push_def_id_as_string(ccx, def_id, substs, &mut output);
1420     output
1421 }
1422
1423 fn type_to_string<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
1424                             ty: ty::Ty<'tcx>)
1425                             -> String {
1426     let mut output = String::new();
1427     push_unique_type_name(ccx, ty, &mut output);
1428     output
1429 }
1430
1431 impl<'tcx> TransItem<'tcx> {
1432
1433     pub fn to_string<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> String {
1434         let hir_map = &ccx.tcx().map;
1435
1436         return match *self {
1437             TransItem::DropGlue(t) => {
1438                 let mut s = String::with_capacity(32);
1439                 s.push_str("drop-glue ");
1440                 push_unique_type_name(ccx, t, &mut s);
1441                 s
1442             }
1443             TransItem::Fn { def_id, ref substs } => {
1444                 to_string_internal(ccx, "fn ", def_id, Some(substs))
1445             },
1446             TransItem::Static(node_id) => {
1447                 let def_id = hir_map.local_def_id(node_id);
1448                 to_string_internal(ccx, "static ", def_id, None)
1449             },
1450         };
1451
1452         fn to_string_internal<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
1453                                         prefix: &str,
1454                                         def_id: DefId,
1455                                         substs: Option<&Substs<'tcx>>)
1456                                         -> String {
1457             let mut result = String::with_capacity(32);
1458             result.push_str(prefix);
1459             push_def_id_as_string(ccx, def_id, substs, &mut result);
1460             result
1461         }
1462     }
1463
1464     fn to_raw_string(&self) -> String {
1465         match *self {
1466             TransItem::DropGlue(t) => {
1467                 format!("DropGlue({})", t as *const _ as usize)
1468             }
1469             TransItem::Fn { def_id, substs } => {
1470                 format!("Fn({:?}, {})",
1471                          def_id,
1472                          substs as *const _ as usize)
1473             }
1474             TransItem::Static(id) => {
1475                 format!("Static({:?})", id)
1476             }
1477         }
1478     }
1479 }
1480
1481 #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
1482 pub enum TransItemState {
1483     PredictedAndGenerated,
1484     PredictedButNotGenerated,
1485     NotPredictedButGenerated,
1486 }
1487
1488 pub fn collecting_debug_information(ccx: &CrateContext) -> bool {
1489     return cfg!(debug_assertions) &&
1490            ccx.sess().opts.debugging_opts.print_trans_items.is_some();
1491 }
1492
1493 pub fn print_collection_results<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>) {
1494     use std::hash::{Hash, SipHasher, Hasher};
1495
1496     if !collecting_debug_information(ccx) {
1497         return;
1498     }
1499
1500     fn hash<T: Hash>(t: &T) -> u64 {
1501         let mut s = SipHasher::new();
1502         t.hash(&mut s);
1503         s.finish()
1504     }
1505
1506     let trans_items = ccx.translation_items().borrow();
1507
1508     {
1509         // Check for duplicate item keys
1510         let mut item_keys = FnvHashMap();
1511
1512         for (item, item_state) in trans_items.iter() {
1513             let k = item.to_string(&ccx);
1514
1515             if item_keys.contains_key(&k) {
1516                 let prev: (TransItem, TransItemState) = item_keys[&k];
1517                 debug!("DUPLICATE KEY: {}", k);
1518                 debug!(" (1) {:?}, {:?}, hash: {}, raw: {}",
1519                        prev.0,
1520                        prev.1,
1521                        hash(&prev.0),
1522                        prev.0.to_raw_string());
1523
1524                 debug!(" (2) {:?}, {:?}, hash: {}, raw: {}",
1525                        *item,
1526                        *item_state,
1527                        hash(item),
1528                        item.to_raw_string());
1529             } else {
1530                 item_keys.insert(k, (*item, *item_state));
1531             }
1532         }
1533     }
1534
1535     let mut predicted_but_not_generated = FnvHashSet();
1536     let mut not_predicted_but_generated = FnvHashSet();
1537     let mut predicted = FnvHashSet();
1538     let mut generated = FnvHashSet();
1539
1540     for (item, item_state) in trans_items.iter() {
1541         let item_key = item.to_string(&ccx);
1542
1543         match *item_state {
1544             TransItemState::PredictedAndGenerated => {
1545                 predicted.insert(item_key.clone());
1546                 generated.insert(item_key);
1547             }
1548             TransItemState::PredictedButNotGenerated => {
1549                 predicted_but_not_generated.insert(item_key.clone());
1550                 predicted.insert(item_key);
1551             }
1552             TransItemState::NotPredictedButGenerated => {
1553                 not_predicted_but_generated.insert(item_key.clone());
1554                 generated.insert(item_key);
1555             }
1556         }
1557     }
1558
1559     debug!("Total number of translation items predicted: {}", predicted.len());
1560     debug!("Total number of translation items generated: {}", generated.len());
1561     debug!("Total number of translation items predicted but not generated: {}",
1562            predicted_but_not_generated.len());
1563     debug!("Total number of translation items not predicted but generated: {}",
1564            not_predicted_but_generated.len());
1565
1566     if generated.len() > 0 {
1567         debug!("Failed to predict {}% of translation items",
1568                (100 * not_predicted_but_generated.len()) / generated.len());
1569     }
1570     if generated.len() > 0 {
1571         debug!("Predict {}% too many translation items",
1572                (100 * predicted_but_not_generated.len()) / generated.len());
1573     }
1574
1575     debug!("");
1576     debug!("Not predicted but generated:");
1577     debug!("============================");
1578     for item in not_predicted_but_generated {
1579         debug!(" - {}", item);
1580     }
1581
1582     debug!("");
1583     debug!("Predicted but not generated:");
1584     debug!("============================");
1585     for item in predicted_but_not_generated {
1586         debug!(" - {}", item);
1587     }
1588 }