]> git.lizzy.rs Git - rust.git/blob - src/librustc_trans/intrinsic.rs
Unignore u128 test for stage 0,1
[rust.git] / src / librustc_trans / intrinsic.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 #![allow(non_upper_case_globals)]
12
13 use intrinsics::{self, Intrinsic};
14 use libc;
15 use llvm;
16 use llvm::{ValueRef};
17 use abi::{Abi, FnType};
18 use adt;
19 use mir::lvalue::LvalueRef;
20 use base::*;
21 use common::*;
22 use declare;
23 use glue;
24 use type_of;
25 use machine;
26 use type_::Type;
27 use rustc::ty::{self, Ty};
28 use rustc::hir;
29 use syntax::ast;
30 use syntax::symbol::Symbol;
31 use builder::Builder;
32
33 use rustc::session::Session;
34 use syntax_pos::Span;
35
36 use std::cmp::Ordering;
37 use std::iter;
38
39 fn get_simple_intrinsic(ccx: &CrateContext, name: &str) -> Option<ValueRef> {
40     let llvm_name = match name {
41         "sqrtf32" => "llvm.sqrt.f32",
42         "sqrtf64" => "llvm.sqrt.f64",
43         "powif32" => "llvm.powi.f32",
44         "powif64" => "llvm.powi.f64",
45         "sinf32" => "llvm.sin.f32",
46         "sinf64" => "llvm.sin.f64",
47         "cosf32" => "llvm.cos.f32",
48         "cosf64" => "llvm.cos.f64",
49         "powf32" => "llvm.pow.f32",
50         "powf64" => "llvm.pow.f64",
51         "expf32" => "llvm.exp.f32",
52         "expf64" => "llvm.exp.f64",
53         "exp2f32" => "llvm.exp2.f32",
54         "exp2f64" => "llvm.exp2.f64",
55         "logf32" => "llvm.log.f32",
56         "logf64" => "llvm.log.f64",
57         "log10f32" => "llvm.log10.f32",
58         "log10f64" => "llvm.log10.f64",
59         "log2f32" => "llvm.log2.f32",
60         "log2f64" => "llvm.log2.f64",
61         "fmaf32" => "llvm.fma.f32",
62         "fmaf64" => "llvm.fma.f64",
63         "fabsf32" => "llvm.fabs.f32",
64         "fabsf64" => "llvm.fabs.f64",
65         "copysignf32" => "llvm.copysign.f32",
66         "copysignf64" => "llvm.copysign.f64",
67         "floorf32" => "llvm.floor.f32",
68         "floorf64" => "llvm.floor.f64",
69         "ceilf32" => "llvm.ceil.f32",
70         "ceilf64" => "llvm.ceil.f64",
71         "truncf32" => "llvm.trunc.f32",
72         "truncf64" => "llvm.trunc.f64",
73         "rintf32" => "llvm.rint.f32",
74         "rintf64" => "llvm.rint.f64",
75         "nearbyintf32" => "llvm.nearbyint.f32",
76         "nearbyintf64" => "llvm.nearbyint.f64",
77         "roundf32" => "llvm.round.f32",
78         "roundf64" => "llvm.round.f64",
79         "assume" => "llvm.assume",
80         "abort" => "llvm.trap",
81         _ => return None
82     };
83     Some(ccx.get_intrinsic(&llvm_name))
84 }
85
86 /// Remember to add all intrinsics here, in librustc_typeck/check/mod.rs,
87 /// and in libcore/intrinsics.rs; if you need access to any llvm intrinsics,
88 /// add them to librustc_trans/trans/context.rs
89 pub fn trans_intrinsic_call<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
90                                       callee_ty: Ty<'tcx>,
91                                       fn_ty: &FnType,
92                                       llargs: &[ValueRef],
93                                       llresult: ValueRef,
94                                       span: Span) {
95     let ccx = bcx.ccx;
96     let tcx = ccx.tcx();
97
98     let (def_id, substs, fty) = match callee_ty.sty {
99         ty::TyFnDef(def_id, substs, ref fty) => (def_id, substs, fty),
100         _ => bug!("expected fn item type, found {}", callee_ty)
101     };
102
103     let sig = tcx.erase_late_bound_regions_and_normalize(&fty.sig);
104     let arg_tys = sig.inputs();
105     let ret_ty = sig.output();
106     let name = &*tcx.item_name(def_id).as_str();
107
108     let llret_ty = type_of::type_of(ccx, ret_ty);
109
110     let simple = get_simple_intrinsic(ccx, name);
111     let llval = match name {
112         _ if simple.is_some() => {
113             bcx.call(simple.unwrap(), &llargs, None)
114         }
115         "unreachable" => {
116             return;
117         },
118         "likely" => {
119             let expect = ccx.get_intrinsic(&("llvm.expect.i1"));
120             bcx.call(expect, &[llargs[0], C_bool(ccx, true)], None)
121         }
122         "unlikely" => {
123             let expect = ccx.get_intrinsic(&("llvm.expect.i1"));
124             bcx.call(expect, &[llargs[0], C_bool(ccx, false)], None)
125         }
126         "try" => {
127             try_intrinsic(bcx, ccx, llargs[0], llargs[1], llargs[2], llresult);
128             C_nil(ccx)
129         }
130         "breakpoint" => {
131             let llfn = ccx.get_intrinsic(&("llvm.debugtrap"));
132             bcx.call(llfn, &[], None)
133         }
134         "size_of" => {
135             let tp_ty = substs.type_at(0);
136             let lltp_ty = type_of::type_of(ccx, tp_ty);
137             C_uint(ccx, machine::llsize_of_alloc(ccx, lltp_ty))
138         }
139         "size_of_val" => {
140             let tp_ty = substs.type_at(0);
141             if !bcx.ccx.shared().type_is_sized(tp_ty) {
142                 let (llsize, _) =
143                     glue::size_and_align_of_dst(bcx, tp_ty, llargs[1]);
144                 llsize
145             } else {
146                 let lltp_ty = type_of::type_of(ccx, tp_ty);
147                 C_uint(ccx, machine::llsize_of_alloc(ccx, lltp_ty))
148             }
149         }
150         "min_align_of" => {
151             let tp_ty = substs.type_at(0);
152             C_uint(ccx, type_of::align_of(ccx, tp_ty))
153         }
154         "min_align_of_val" => {
155             let tp_ty = substs.type_at(0);
156             if !bcx.ccx.shared().type_is_sized(tp_ty) {
157                 let (_, llalign) =
158                     glue::size_and_align_of_dst(bcx, tp_ty, llargs[1]);
159                 llalign
160             } else {
161                 C_uint(ccx, type_of::align_of(ccx, tp_ty))
162             }
163         }
164         "pref_align_of" => {
165             let tp_ty = substs.type_at(0);
166             let lltp_ty = type_of::type_of(ccx, tp_ty);
167             C_uint(ccx, machine::llalign_of_pref(ccx, lltp_ty))
168         }
169         "type_name" => {
170             let tp_ty = substs.type_at(0);
171             let ty_name = Symbol::intern(&tp_ty.to_string()).as_str();
172             C_str_slice(ccx, ty_name)
173         }
174         "type_id" => {
175             C_u64(ccx, ccx.tcx().type_id_hash(substs.type_at(0)))
176         }
177         "init" => {
178             let ty = substs.type_at(0);
179             if !type_is_zero_size(ccx, ty) {
180                 // Just zero out the stack slot.
181                 // If we store a zero constant, LLVM will drown in vreg allocation for large data
182                 // structures, and the generated code will be awful. (A telltale sign of this is
183                 // large quantities of `mov [byte ptr foo],0` in the generated code.)
184                 memset_intrinsic(bcx, false, ty, llresult, C_u8(ccx, 0), C_uint(ccx, 1usize));
185             }
186             C_nil(ccx)
187         }
188         // Effectively no-ops
189         "uninit" | "forget" => {
190             C_nil(ccx)
191         }
192         "needs_drop" => {
193             let tp_ty = substs.type_at(0);
194
195             C_bool(ccx, bcx.ccx.shared().type_needs_drop(tp_ty))
196         }
197         "offset" => {
198             let ptr = llargs[0];
199             let offset = llargs[1];
200             bcx.inbounds_gep(ptr, &[offset])
201         }
202         "arith_offset" => {
203             let ptr = llargs[0];
204             let offset = llargs[1];
205             bcx.gep(ptr, &[offset])
206         }
207
208         "copy_nonoverlapping" => {
209             copy_intrinsic(bcx, false, false, substs.type_at(0), llargs[1], llargs[0], llargs[2])
210         }
211         "copy" => {
212             copy_intrinsic(bcx, true, false, substs.type_at(0), llargs[1], llargs[0], llargs[2])
213         }
214         "write_bytes" => {
215             memset_intrinsic(bcx, false, substs.type_at(0), llargs[0], llargs[1], llargs[2])
216         }
217
218         "volatile_copy_nonoverlapping_memory" => {
219             copy_intrinsic(bcx, false, true, substs.type_at(0), llargs[0], llargs[1], llargs[2])
220         }
221         "volatile_copy_memory" => {
222             copy_intrinsic(bcx, true, true, substs.type_at(0), llargs[0], llargs[1], llargs[2])
223         }
224         "volatile_set_memory" => {
225             memset_intrinsic(bcx, true, substs.type_at(0), llargs[0], llargs[1], llargs[2])
226         }
227         "volatile_load" => {
228             let tp_ty = substs.type_at(0);
229             let mut ptr = llargs[0];
230             if let Some(ty) = fn_ty.ret.cast {
231                 ptr = bcx.pointercast(ptr, ty.ptr_to());
232             }
233             let load = bcx.volatile_load(ptr);
234             unsafe {
235                 llvm::LLVMSetAlignment(load, type_of::align_of(ccx, tp_ty));
236             }
237             to_immediate(bcx, load, tp_ty)
238         },
239         "volatile_store" => {
240             let tp_ty = substs.type_at(0);
241             if type_is_fat_ptr(bcx.ccx, tp_ty) {
242                 bcx.volatile_store(llargs[1], get_dataptr(bcx, llargs[0]));
243                 bcx.volatile_store(llargs[2], get_meta(bcx, llargs[0]));
244             } else {
245                 let val = if fn_ty.args[1].is_indirect() {
246                     bcx.load(llargs[1])
247                 } else {
248                     from_immediate(bcx, llargs[1])
249                 };
250                 let ptr = bcx.pointercast(llargs[0], val_ty(val).ptr_to());
251                 let store = bcx.volatile_store(val, ptr);
252                 unsafe {
253                     llvm::LLVMSetAlignment(store, type_of::align_of(ccx, tp_ty));
254                 }
255             }
256             C_nil(ccx)
257         },
258
259         "ctlz" | "cttz" | "ctpop" | "bswap" |
260         "add_with_overflow" | "sub_with_overflow" | "mul_with_overflow" |
261         "overflowing_add" | "overflowing_sub" | "overflowing_mul" |
262         "unchecked_div" | "unchecked_rem" => {
263             let sty = &arg_tys[0].sty;
264             match int_type_width_signed(sty, ccx) {
265                 Some((width, signed)) =>
266                     match name {
267                         "ctlz" | "cttz" => {
268                             let y = C_bool(bcx.ccx, false);
269                             let llfn = ccx.get_intrinsic(&format!("llvm.{}.i{}", name, width));
270                             bcx.call(llfn, &[llargs[0], y], None)
271                         }
272                         "ctpop" => bcx.call(ccx.get_intrinsic(&format!("llvm.ctpop.i{}", width)),
273                                         &llargs, None),
274                         "bswap" => {
275                             if width == 8 {
276                                 llargs[0] // byte swap a u8/i8 is just a no-op
277                             } else {
278                                 bcx.call(ccx.get_intrinsic(&format!("llvm.bswap.i{}", width)),
279                                         &llargs, None)
280                             }
281                         }
282                         "add_with_overflow" | "sub_with_overflow" | "mul_with_overflow" => {
283                             let intrinsic = format!("llvm.{}{}.with.overflow.i{}",
284                                                     if signed { 's' } else { 'u' },
285                                                     &name[..3], width);
286                             let llfn = bcx.ccx.get_intrinsic(&intrinsic);
287
288                             // Convert `i1` to a `bool`, and write it to the out parameter
289                             let val = bcx.call(llfn, &[llargs[0], llargs[1]], None);
290                             let result = bcx.extract_value(val, 0);
291                             let overflow = bcx.zext(bcx.extract_value(val, 1), Type::bool(ccx));
292                             bcx.store(result, bcx.struct_gep(llresult, 0), None);
293                             bcx.store(overflow, bcx.struct_gep(llresult, 1), None);
294
295                             C_nil(bcx.ccx)
296                         },
297                         "overflowing_add" => bcx.add(llargs[0], llargs[1]),
298                         "overflowing_sub" => bcx.sub(llargs[0], llargs[1]),
299                         "overflowing_mul" => bcx.mul(llargs[0], llargs[1]),
300                         "unchecked_div" =>
301                             if signed {
302                                 bcx.sdiv(llargs[0], llargs[1])
303                             } else {
304                                 bcx.udiv(llargs[0], llargs[1])
305                             },
306                         "unchecked_rem" =>
307                             if signed {
308                                 bcx.srem(llargs[0], llargs[1])
309                             } else {
310                                 bcx.urem(llargs[0], llargs[1])
311                             },
312                         _ => bug!(),
313                     },
314                 None => {
315                     span_invalid_monomorphization_error(
316                         tcx.sess, span,
317                         &format!("invalid monomorphization of `{}` intrinsic: \
318                                   expected basic integer type, found `{}`", name, sty));
319                         C_nil(ccx)
320                 }
321             }
322
323         },
324         "fadd_fast" | "fsub_fast" | "fmul_fast" | "fdiv_fast" | "frem_fast" => {
325             let sty = &arg_tys[0].sty;
326             match float_type_width(sty) {
327                 Some(_width) =>
328                     match name {
329                         "fadd_fast" => bcx.fadd_fast(llargs[0], llargs[1]),
330                         "fsub_fast" => bcx.fsub_fast(llargs[0], llargs[1]),
331                         "fmul_fast" => bcx.fmul_fast(llargs[0], llargs[1]),
332                         "fdiv_fast" => bcx.fdiv_fast(llargs[0], llargs[1]),
333                         "frem_fast" => bcx.frem_fast(llargs[0], llargs[1]),
334                         _ => bug!(),
335                     },
336                 None => {
337                     span_invalid_monomorphization_error(
338                         tcx.sess, span,
339                         &format!("invalid monomorphization of `{}` intrinsic: \
340                                   expected basic float type, found `{}`", name, sty));
341                         C_nil(ccx)
342                 }
343             }
344
345         },
346
347         "discriminant_value" => {
348             let val_ty = substs.type_at(0);
349             match val_ty.sty {
350                 ty::TyAdt(adt, ..) if adt.is_enum() => {
351                     adt::trans_get_discr(bcx, val_ty, llargs[0],
352                                          Some(llret_ty), true)
353                 }
354                 _ => C_null(llret_ty)
355             }
356         }
357         name if name.starts_with("simd_") => {
358             generic_simd_intrinsic(bcx, name,
359                                    callee_ty,
360                                    &llargs,
361                                    ret_ty, llret_ty,
362                                    span)
363         }
364         // This requires that atomic intrinsics follow a specific naming pattern:
365         // "atomic_<operation>[_<ordering>]", and no ordering means SeqCst
366         name if name.starts_with("atomic_") => {
367             use llvm::AtomicOrdering::*;
368
369             let split: Vec<&str> = name.split('_').collect();
370
371             let is_cxchg = split[1] == "cxchg" || split[1] == "cxchgweak";
372             let (order, failorder) = match split.len() {
373                 2 => (SequentiallyConsistent, SequentiallyConsistent),
374                 3 => match split[2] {
375                     "unordered" => (Unordered, Unordered),
376                     "relaxed" => (Monotonic, Monotonic),
377                     "acq"     => (Acquire, Acquire),
378                     "rel"     => (Release, Monotonic),
379                     "acqrel"  => (AcquireRelease, Acquire),
380                     "failrelaxed" if is_cxchg =>
381                         (SequentiallyConsistent, Monotonic),
382                     "failacq" if is_cxchg =>
383                         (SequentiallyConsistent, Acquire),
384                     _ => ccx.sess().fatal("unknown ordering in atomic intrinsic")
385                 },
386                 4 => match (split[2], split[3]) {
387                     ("acq", "failrelaxed") if is_cxchg =>
388                         (Acquire, Monotonic),
389                     ("acqrel", "failrelaxed") if is_cxchg =>
390                         (AcquireRelease, Monotonic),
391                     _ => ccx.sess().fatal("unknown ordering in atomic intrinsic")
392                 },
393                 _ => ccx.sess().fatal("Atomic intrinsic not in correct format"),
394             };
395
396             let invalid_monomorphization = |sty| {
397                 span_invalid_monomorphization_error(tcx.sess, span,
398                     &format!("invalid monomorphization of `{}` intrinsic: \
399                               expected basic integer type, found `{}`", name, sty));
400             };
401
402             match split[1] {
403                 "cxchg" | "cxchgweak" => {
404                     let sty = &substs.type_at(0).sty;
405                     if int_type_width_signed(sty, ccx).is_some() {
406                         let weak = if split[1] == "cxchgweak" { llvm::True } else { llvm::False };
407                         let val = bcx.atomic_cmpxchg(llargs[0], llargs[1], llargs[2], order,
408                             failorder, weak);
409                         let result = bcx.extract_value(val, 0);
410                         let success = bcx.zext(bcx.extract_value(val, 1), Type::bool(bcx.ccx));
411                         bcx.store(result, bcx.struct_gep(llresult, 0), None);
412                         bcx.store(success, bcx.struct_gep(llresult, 1), None);
413                     } else {
414                         invalid_monomorphization(sty);
415                     }
416                     C_nil(ccx)
417                 }
418
419                 "load" => {
420                     let sty = &substs.type_at(0).sty;
421                     if int_type_width_signed(sty, ccx).is_some() {
422                         bcx.atomic_load(llargs[0], order)
423                     } else {
424                         invalid_monomorphization(sty);
425                         C_nil(ccx)
426                     }
427                 }
428
429                 "store" => {
430                     let sty = &substs.type_at(0).sty;
431                     if int_type_width_signed(sty, ccx).is_some() {
432                         bcx.atomic_store(llargs[1], llargs[0], order);
433                     } else {
434                         invalid_monomorphization(sty);
435                     }
436                     C_nil(ccx)
437                 }
438
439                 "fence" => {
440                     bcx.atomic_fence(order, llvm::SynchronizationScope::CrossThread);
441                     C_nil(ccx)
442                 }
443
444                 "singlethreadfence" => {
445                     bcx.atomic_fence(order, llvm::SynchronizationScope::SingleThread);
446                     C_nil(ccx)
447                 }
448
449                 // These are all AtomicRMW ops
450                 op => {
451                     let atom_op = match op {
452                         "xchg"  => llvm::AtomicXchg,
453                         "xadd"  => llvm::AtomicAdd,
454                         "xsub"  => llvm::AtomicSub,
455                         "and"   => llvm::AtomicAnd,
456                         "nand"  => llvm::AtomicNand,
457                         "or"    => llvm::AtomicOr,
458                         "xor"   => llvm::AtomicXor,
459                         "max"   => llvm::AtomicMax,
460                         "min"   => llvm::AtomicMin,
461                         "umax"  => llvm::AtomicUMax,
462                         "umin"  => llvm::AtomicUMin,
463                         _ => ccx.sess().fatal("unknown atomic operation")
464                     };
465
466                     let sty = &substs.type_at(0).sty;
467                     if int_type_width_signed(sty, ccx).is_some() {
468                         bcx.atomic_rmw(atom_op, llargs[0], llargs[1], order)
469                     } else {
470                         invalid_monomorphization(sty);
471                         C_nil(ccx)
472                     }
473                 }
474             }
475         }
476
477         _ => {
478             let intr = match Intrinsic::find(&name) {
479                 Some(intr) => intr,
480                 None => bug!("unknown intrinsic '{}'", name),
481             };
482             fn one<T>(x: Vec<T>) -> T {
483                 assert_eq!(x.len(), 1);
484                 x.into_iter().next().unwrap()
485             }
486             fn ty_to_type(ccx: &CrateContext, t: &intrinsics::Type,
487                           any_changes_needed: &mut bool) -> Vec<Type> {
488                 use intrinsics::Type::*;
489                 match *t {
490                     Void => vec![Type::void(ccx)],
491                     Integer(_signed, width, llvm_width) => {
492                         *any_changes_needed |= width != llvm_width;
493                         vec![Type::ix(ccx, llvm_width as u64)]
494                     }
495                     Float(x) => {
496                         match x {
497                             32 => vec![Type::f32(ccx)],
498                             64 => vec![Type::f64(ccx)],
499                             _ => bug!()
500                         }
501                     }
502                     Pointer(ref t, ref llvm_elem, _const) => {
503                         *any_changes_needed |= llvm_elem.is_some();
504
505                         let t = llvm_elem.as_ref().unwrap_or(t);
506                         let elem = one(ty_to_type(ccx, t, any_changes_needed));
507                         vec![elem.ptr_to()]
508                     }
509                     Vector(ref t, ref llvm_elem, length) => {
510                         *any_changes_needed |= llvm_elem.is_some();
511
512                         let t = llvm_elem.as_ref().unwrap_or(t);
513                         let elem = one(ty_to_type(ccx, t, any_changes_needed));
514                         vec![Type::vector(&elem, length as u64)]
515                     }
516                     Aggregate(false, ref contents) => {
517                         let elems = contents.iter()
518                                             .map(|t| one(ty_to_type(ccx, t, any_changes_needed)))
519                                             .collect::<Vec<_>>();
520                         vec![Type::struct_(ccx, &elems, false)]
521                     }
522                     Aggregate(true, ref contents) => {
523                         *any_changes_needed = true;
524                         contents.iter()
525                                 .flat_map(|t| ty_to_type(ccx, t, any_changes_needed))
526                                 .collect()
527                     }
528                 }
529             }
530
531             // This allows an argument list like `foo, (bar, baz),
532             // qux` to be converted into `foo, bar, baz, qux`, integer
533             // arguments to be truncated as needed and pointers to be
534             // cast.
535             fn modify_as_needed<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
536                                           t: &intrinsics::Type,
537                                           arg_type: Ty<'tcx>,
538                                           llarg: ValueRef)
539                                           -> Vec<ValueRef>
540             {
541                 match *t {
542                     intrinsics::Type::Aggregate(true, ref contents) => {
543                         // We found a tuple that needs squishing! So
544                         // run over the tuple and load each field.
545                         //
546                         // This assumes the type is "simple", i.e. no
547                         // destructors, and the contents are SIMD
548                         // etc.
549                         assert!(!bcx.ccx.shared().type_needs_drop(arg_type));
550                         let arg = LvalueRef::new_sized_ty(llarg, arg_type);
551                         (0..contents.len()).map(|i| bcx.load(arg.trans_field_ptr(bcx, i))).collect()
552                     }
553                     intrinsics::Type::Pointer(_, Some(ref llvm_elem), _) => {
554                         let llvm_elem = one(ty_to_type(bcx.ccx, llvm_elem, &mut false));
555                         vec![bcx.pointercast(llarg, llvm_elem.ptr_to())]
556                     }
557                     intrinsics::Type::Vector(_, Some(ref llvm_elem), length) => {
558                         let llvm_elem = one(ty_to_type(bcx.ccx, llvm_elem, &mut false));
559                         vec![bcx.bitcast(llarg, Type::vector(&llvm_elem, length as u64))]
560                     }
561                     intrinsics::Type::Integer(_, width, llvm_width) if width != llvm_width => {
562                         // the LLVM intrinsic uses a smaller integer
563                         // size than the C intrinsic's signature, so
564                         // we have to trim it down here.
565                         vec![bcx.trunc(llarg, Type::ix(bcx.ccx, llvm_width as u64))]
566                     }
567                     _ => vec![llarg],
568                 }
569             }
570
571
572             let mut any_changes_needed = false;
573             let inputs = intr.inputs.iter()
574                                     .flat_map(|t| ty_to_type(ccx, t, &mut any_changes_needed))
575                                     .collect::<Vec<_>>();
576
577             let mut out_changes = false;
578             let outputs = one(ty_to_type(ccx, &intr.output, &mut out_changes));
579             // outputting a flattened aggregate is nonsense
580             assert!(!out_changes);
581
582             let llargs = if !any_changes_needed {
583                 // no aggregates to flatten, so no change needed
584                 llargs.to_vec()
585             } else {
586                 // there are some aggregates that need to be flattened
587                 // in the LLVM call, so we need to run over the types
588                 // again to find them and extract the arguments
589                 intr.inputs.iter()
590                            .zip(llargs)
591                            .zip(arg_tys)
592                            .flat_map(|((t, llarg), ty)| modify_as_needed(bcx, t, ty, *llarg))
593                            .collect()
594             };
595             assert_eq!(inputs.len(), llargs.len());
596
597             let val = match intr.definition {
598                 intrinsics::IntrinsicDef::Named(name) => {
599                     let f = declare::declare_cfn(ccx,
600                                                  name,
601                                                  Type::func(&inputs, &outputs));
602                     bcx.call(f, &llargs, None)
603                 }
604             };
605
606             match *intr.output {
607                 intrinsics::Type::Aggregate(flatten, ref elems) => {
608                     // the output is a tuple so we need to munge it properly
609                     assert!(!flatten);
610
611                     for i in 0..elems.len() {
612                         let val = bcx.extract_value(val, i);
613                         bcx.store(val, bcx.struct_gep(llresult, i), None);
614                     }
615                     C_nil(ccx)
616                 }
617                 _ => val,
618             }
619         }
620     };
621
622     if val_ty(llval) != Type::void(ccx) && machine::llsize_of_alloc(ccx, val_ty(llval)) != 0 {
623         if let Some(ty) = fn_ty.ret.cast {
624             let ptr = bcx.pointercast(llresult, ty.ptr_to());
625             bcx.store(llval, ptr, Some(type_of::align_of(ccx, ret_ty)));
626         } else {
627             store_ty(bcx, llval, llresult, ret_ty);
628         }
629     }
630 }
631
632 fn copy_intrinsic<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
633                             allow_overlap: bool,
634                             volatile: bool,
635                             tp_ty: Ty<'tcx>,
636                             dst: ValueRef,
637                             src: ValueRef,
638                             count: ValueRef)
639                             -> ValueRef {
640     let ccx = bcx.ccx;
641     let lltp_ty = type_of::type_of(ccx, tp_ty);
642     let align = C_i32(ccx, type_of::align_of(ccx, tp_ty) as i32);
643     let size = machine::llsize_of(ccx, lltp_ty);
644     let int_size = machine::llbitsize_of_real(ccx, ccx.int_type());
645
646     let operation = if allow_overlap {
647         "memmove"
648     } else {
649         "memcpy"
650     };
651
652     let name = format!("llvm.{}.p0i8.p0i8.i{}", operation, int_size);
653
654     let dst_ptr = bcx.pointercast(dst, Type::i8p(ccx));
655     let src_ptr = bcx.pointercast(src, Type::i8p(ccx));
656     let llfn = ccx.get_intrinsic(&name);
657
658     bcx.call(llfn,
659         &[dst_ptr,
660         src_ptr,
661         bcx.mul(size, count),
662         align,
663         C_bool(ccx, volatile)],
664         None)
665 }
666
667 fn memset_intrinsic<'a, 'tcx>(
668     bcx: &Builder<'a, 'tcx>,
669     volatile: bool,
670     ty: Ty<'tcx>,
671     dst: ValueRef,
672     val: ValueRef,
673     count: ValueRef
674 ) -> ValueRef {
675     let ccx = bcx.ccx;
676     let align = C_i32(ccx, type_of::align_of(ccx, ty) as i32);
677     let lltp_ty = type_of::type_of(ccx, ty);
678     let size = machine::llsize_of(ccx, lltp_ty);
679     let dst = bcx.pointercast(dst, Type::i8p(ccx));
680     call_memset(bcx, dst, val, bcx.mul(size, count), align, volatile)
681 }
682
683 fn try_intrinsic<'a, 'tcx>(
684     bcx: &Builder<'a, 'tcx>,
685     ccx: &CrateContext,
686     func: ValueRef,
687     data: ValueRef,
688     local_ptr: ValueRef,
689     dest: ValueRef,
690 ) {
691     if bcx.sess().no_landing_pads() {
692         bcx.call(func, &[data], None);
693         bcx.store(C_null(Type::i8p(&bcx.ccx)), dest, None);
694     } else if wants_msvc_seh(bcx.sess()) {
695         trans_msvc_try(bcx, ccx, func, data, local_ptr, dest);
696     } else {
697         trans_gnu_try(bcx, ccx, func, data, local_ptr, dest);
698     }
699 }
700
701 // MSVC's definition of the `rust_try` function.
702 //
703 // This implementation uses the new exception handling instructions in LLVM
704 // which have support in LLVM for SEH on MSVC targets. Although these
705 // instructions are meant to work for all targets, as of the time of this
706 // writing, however, LLVM does not recommend the usage of these new instructions
707 // as the old ones are still more optimized.
708 fn trans_msvc_try<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
709                             ccx: &CrateContext,
710                             func: ValueRef,
711                             data: ValueRef,
712                             local_ptr: ValueRef,
713                             dest: ValueRef) {
714     let llfn = get_rust_try_fn(ccx, &mut |bcx| {
715         let ccx = bcx.ccx;
716
717         bcx.set_personality_fn(bcx.ccx.eh_personality());
718
719         let normal = bcx.build_sibling_block("normal");
720         let catchswitch = bcx.build_sibling_block("catchswitch");
721         let catchpad = bcx.build_sibling_block("catchpad");
722         let caught = bcx.build_sibling_block("caught");
723
724         let func = llvm::get_param(bcx.llfn(), 0);
725         let data = llvm::get_param(bcx.llfn(), 1);
726         let local_ptr = llvm::get_param(bcx.llfn(), 2);
727
728         // We're generating an IR snippet that looks like:
729         //
730         //   declare i32 @rust_try(%func, %data, %ptr) {
731         //      %slot = alloca i64*
732         //      invoke %func(%data) to label %normal unwind label %catchswitch
733         //
734         //   normal:
735         //      ret i32 0
736         //
737         //   catchswitch:
738         //      %cs = catchswitch within none [%catchpad] unwind to caller
739         //
740         //   catchpad:
741         //      %tok = catchpad within %cs [%type_descriptor, 0, %slot]
742         //      %ptr[0] = %slot[0]
743         //      %ptr[1] = %slot[1]
744         //      catchret from %tok to label %caught
745         //
746         //   caught:
747         //      ret i32 1
748         //   }
749         //
750         // This structure follows the basic usage of throw/try/catch in LLVM.
751         // For example, compile this C++ snippet to see what LLVM generates:
752         //
753         //      #include <stdint.h>
754         //
755         //      int bar(void (*foo)(void), uint64_t *ret) {
756         //          try {
757         //              foo();
758         //              return 0;
759         //          } catch(uint64_t a[2]) {
760         //              ret[0] = a[0];
761         //              ret[1] = a[1];
762         //              return 1;
763         //          }
764         //      }
765         //
766         // More information can be found in libstd's seh.rs implementation.
767         let i64p = Type::i64(ccx).ptr_to();
768         let slot = bcx.alloca(i64p, "slot");
769         bcx.invoke(func, &[data], normal.llbb(), catchswitch.llbb(),
770             None);
771
772         normal.ret(C_i32(ccx, 0));
773
774         let cs = catchswitch.catch_switch(None, None, 1);
775         catchswitch.add_handler(cs, catchpad.llbb());
776
777         let tcx = ccx.tcx();
778         let tydesc = match tcx.lang_items.msvc_try_filter() {
779             Some(did) => ::consts::get_static(ccx, did),
780             None => bug!("msvc_try_filter not defined"),
781         };
782         let tok = catchpad.catch_pad(cs, &[tydesc, C_i32(ccx, 0), slot]);
783         let addr = catchpad.load(slot);
784         let arg1 = catchpad.load(addr);
785         let val1 = C_i32(ccx, 1);
786         let arg2 = catchpad.load(catchpad.inbounds_gep(addr, &[val1]));
787         let local_ptr = catchpad.bitcast(local_ptr, i64p);
788         catchpad.store(arg1, local_ptr, None);
789         catchpad.store(arg2, catchpad.inbounds_gep(local_ptr, &[val1]), None);
790         catchpad.catch_ret(tok, caught.llbb());
791
792         caught.ret(C_i32(ccx, 1));
793     });
794
795     // Note that no invoke is used here because by definition this function
796     // can't panic (that's what it's catching).
797     let ret = bcx.call(llfn, &[func, data, local_ptr], None);
798     bcx.store(ret, dest, None);
799 }
800
801 // Definition of the standard "try" function for Rust using the GNU-like model
802 // of exceptions (e.g. the normal semantics of LLVM's landingpad and invoke
803 // instructions).
804 //
805 // This translation is a little surprising because we always call a shim
806 // function instead of inlining the call to `invoke` manually here. This is done
807 // because in LLVM we're only allowed to have one personality per function
808 // definition. The call to the `try` intrinsic is being inlined into the
809 // function calling it, and that function may already have other personality
810 // functions in play. By calling a shim we're guaranteed that our shim will have
811 // the right personality function.
812 fn trans_gnu_try<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
813                            ccx: &CrateContext,
814                            func: ValueRef,
815                            data: ValueRef,
816                            local_ptr: ValueRef,
817                            dest: ValueRef) {
818     let llfn = get_rust_try_fn(ccx, &mut |bcx| {
819         let ccx = bcx.ccx;
820
821         // Translates the shims described above:
822         //
823         //   bcx:
824         //      invoke %func(%args...) normal %normal unwind %catch
825         //
826         //   normal:
827         //      ret 0
828         //
829         //   catch:
830         //      (ptr, _) = landingpad
831         //      store ptr, %local_ptr
832         //      ret 1
833         //
834         // Note that the `local_ptr` data passed into the `try` intrinsic is
835         // expected to be `*mut *mut u8` for this to actually work, but that's
836         // managed by the standard library.
837
838         let then = bcx.build_sibling_block("then");
839         let catch = bcx.build_sibling_block("catch");
840
841         let func = llvm::get_param(bcx.llfn(), 0);
842         let data = llvm::get_param(bcx.llfn(), 1);
843         let local_ptr = llvm::get_param(bcx.llfn(), 2);
844         bcx.invoke(func, &[data], then.llbb(), catch.llbb(), None);
845         then.ret(C_i32(ccx, 0));
846
847         // Type indicator for the exception being thrown.
848         //
849         // The first value in this tuple is a pointer to the exception object
850         // being thrown.  The second value is a "selector" indicating which of
851         // the landing pad clauses the exception's type had been matched to.
852         // rust_try ignores the selector.
853         let lpad_ty = Type::struct_(ccx, &[Type::i8p(ccx), Type::i32(ccx)],
854                                     false);
855         let vals = catch.landing_pad(lpad_ty, bcx.ccx.eh_personality(), 1, catch.llfn());
856         catch.add_clause(vals, C_null(Type::i8p(ccx)));
857         let ptr = catch.extract_value(vals, 0);
858         catch.store(ptr, catch.bitcast(local_ptr, Type::i8p(ccx).ptr_to()), None);
859         catch.ret(C_i32(ccx, 1));
860     });
861
862     // Note that no invoke is used here because by definition this function
863     // can't panic (that's what it's catching).
864     let ret = bcx.call(llfn, &[func, data, local_ptr], None);
865     bcx.store(ret, dest, None);
866 }
867
868 // Helper function to give a Block to a closure to translate a shim function.
869 // This is currently primarily used for the `try` intrinsic functions above.
870 fn gen_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
871                     name: &str,
872                     inputs: Vec<Ty<'tcx>>,
873                     output: Ty<'tcx>,
874                     trans: &mut for<'b> FnMut(Builder<'b, 'tcx>))
875                     -> ValueRef {
876     let sig = ccx.tcx().mk_fn_sig(inputs.into_iter(), output, false);
877
878     let rust_fn_ty = ccx.tcx().mk_fn_ptr(ccx.tcx().mk_bare_fn(ty::BareFnTy {
879         unsafety: hir::Unsafety::Unsafe,
880         abi: Abi::Rust,
881         sig: ty::Binder(sig)
882     }));
883     let llfn = declare::define_internal_fn(ccx, name, rust_fn_ty);
884     let bcx = Builder::new_block(ccx, llfn, "entry-block");
885     trans(bcx);
886     llfn
887 }
888
889 // Helper function used to get a handle to the `__rust_try` function used to
890 // catch exceptions.
891 //
892 // This function is only generated once and is then cached.
893 fn get_rust_try_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
894                              trans: &mut for<'b> FnMut(Builder<'b, 'tcx>))
895                              -> ValueRef {
896     if let Some(llfn) = ccx.rust_try_fn().get() {
897         return llfn;
898     }
899
900     // Define the type up front for the signature of the rust_try function.
901     let tcx = ccx.tcx();
902     let i8p = tcx.mk_mut_ptr(tcx.types.i8);
903     let fn_ty = tcx.mk_fn_ptr(tcx.mk_bare_fn(ty::BareFnTy {
904         unsafety: hir::Unsafety::Unsafe,
905         abi: Abi::Rust,
906         sig: ty::Binder(tcx.mk_fn_sig(iter::once(i8p), tcx.mk_nil(), false)),
907     }));
908     let output = tcx.types.i32;
909     let rust_try = gen_fn(ccx, "__rust_try", vec![fn_ty, i8p, i8p], output, trans);
910     ccx.rust_try_fn().set(Some(rust_try));
911     return rust_try
912 }
913
914 fn span_invalid_monomorphization_error(a: &Session, b: Span, c: &str) {
915     span_err!(a, b, E0511, "{}", c);
916 }
917
918 fn generic_simd_intrinsic<'a, 'tcx>(
919     bcx: &Builder<'a, 'tcx>,
920     name: &str,
921     callee_ty: Ty<'tcx>,
922     llargs: &[ValueRef],
923     ret_ty: Ty<'tcx>,
924     llret_ty: Type,
925     span: Span
926 ) -> ValueRef {
927     // macros for error handling:
928     macro_rules! emit_error {
929         ($msg: tt) => {
930             emit_error!($msg, )
931         };
932         ($msg: tt, $($fmt: tt)*) => {
933             span_invalid_monomorphization_error(
934                 bcx.sess(), span,
935                 &format!(concat!("invalid monomorphization of `{}` intrinsic: ",
936                                  $msg),
937                          name, $($fmt)*));
938         }
939     }
940     macro_rules! require {
941         ($cond: expr, $($fmt: tt)*) => {
942             if !$cond {
943                 emit_error!($($fmt)*);
944                 return C_nil(bcx.ccx)
945             }
946         }
947     }
948     macro_rules! require_simd {
949         ($ty: expr, $position: expr) => {
950             require!($ty.is_simd(), "expected SIMD {} type, found non-SIMD `{}`", $position, $ty)
951         }
952     }
953
954
955
956     let tcx = bcx.tcx();
957     let sig = tcx.erase_late_bound_regions_and_normalize(callee_ty.fn_sig());
958     let arg_tys = sig.inputs();
959
960     // every intrinsic takes a SIMD vector as its first argument
961     require_simd!(arg_tys[0], "input");
962     let in_ty = arg_tys[0];
963     let in_elem = arg_tys[0].simd_type(tcx);
964     let in_len = arg_tys[0].simd_size(tcx);
965
966     let comparison = match name {
967         "simd_eq" => Some(hir::BiEq),
968         "simd_ne" => Some(hir::BiNe),
969         "simd_lt" => Some(hir::BiLt),
970         "simd_le" => Some(hir::BiLe),
971         "simd_gt" => Some(hir::BiGt),
972         "simd_ge" => Some(hir::BiGe),
973         _ => None
974     };
975
976     if let Some(cmp_op) = comparison {
977         require_simd!(ret_ty, "return");
978
979         let out_len = ret_ty.simd_size(tcx);
980         require!(in_len == out_len,
981                  "expected return type with length {} (same as input type `{}`), \
982                   found `{}` with length {}",
983                  in_len, in_ty,
984                  ret_ty, out_len);
985         require!(llret_ty.element_type().kind() == llvm::Integer,
986                  "expected return type with integer elements, found `{}` with non-integer `{}`",
987                  ret_ty,
988                  ret_ty.simd_type(tcx));
989
990         return compare_simd_types(bcx,
991                                   llargs[0],
992                                   llargs[1],
993                                   in_elem,
994                                   llret_ty,
995                                   cmp_op)
996     }
997
998     if name.starts_with("simd_shuffle") {
999         let n: usize = match name["simd_shuffle".len()..].parse() {
1000             Ok(n) => n,
1001             Err(_) => span_bug!(span,
1002                                 "bad `simd_shuffle` instruction only caught in trans?")
1003         };
1004
1005         require_simd!(ret_ty, "return");
1006
1007         let out_len = ret_ty.simd_size(tcx);
1008         require!(out_len == n,
1009                  "expected return type of length {}, found `{}` with length {}",
1010                  n, ret_ty, out_len);
1011         require!(in_elem == ret_ty.simd_type(tcx),
1012                  "expected return element type `{}` (element of input `{}`), \
1013                   found `{}` with element type `{}`",
1014                  in_elem, in_ty,
1015                  ret_ty, ret_ty.simd_type(tcx));
1016
1017         let total_len = in_len as u128 * 2;
1018
1019         let vector = llargs[2];
1020
1021         let indices: Option<Vec<_>> = (0..n)
1022             .map(|i| {
1023                 let arg_idx = i;
1024                 let val = const_get_elt(vector, &[i as libc::c_uint]);
1025                 match const_to_opt_u128(val, true) {
1026                     None => {
1027                         emit_error!("shuffle index #{} is not a constant", arg_idx);
1028                         None
1029                     }
1030                     Some(idx) if idx >= total_len => {
1031                         emit_error!("shuffle index #{} is out of bounds (limit {})",
1032                                     arg_idx, total_len);
1033                         None
1034                     }
1035                     Some(idx) => Some(C_i32(bcx.ccx, idx as i32)),
1036                 }
1037             })
1038             .collect();
1039         let indices = match indices {
1040             Some(i) => i,
1041             None => return C_null(llret_ty)
1042         };
1043
1044         return bcx.shuffle_vector(llargs[0], llargs[1], C_vector(&indices))
1045     }
1046
1047     if name == "simd_insert" {
1048         require!(in_elem == arg_tys[2],
1049                  "expected inserted type `{}` (element of input `{}`), found `{}`",
1050                  in_elem, in_ty, arg_tys[2]);
1051         return bcx.insert_element(llargs[0], llargs[2], llargs[1])
1052     }
1053     if name == "simd_extract" {
1054         require!(ret_ty == in_elem,
1055                  "expected return type `{}` (element of input `{}`), found `{}`",
1056                  in_elem, in_ty, ret_ty);
1057         return bcx.extract_element(llargs[0], llargs[1])
1058     }
1059
1060     if name == "simd_cast" {
1061         require_simd!(ret_ty, "return");
1062         let out_len = ret_ty.simd_size(tcx);
1063         require!(in_len == out_len,
1064                  "expected return type with length {} (same as input type `{}`), \
1065                   found `{}` with length {}",
1066                  in_len, in_ty,
1067                  ret_ty, out_len);
1068         // casting cares about nominal type, not just structural type
1069         let out_elem = ret_ty.simd_type(tcx);
1070
1071         if in_elem == out_elem { return llargs[0]; }
1072
1073         enum Style { Float, Int(/* is signed? */ bool), Unsupported }
1074
1075         let (in_style, in_width) = match in_elem.sty {
1076             // vectors of pointer-sized integers should've been
1077             // disallowed before here, so this unwrap is safe.
1078             ty::TyInt(i) => (Style::Int(true), i.bit_width().unwrap()),
1079             ty::TyUint(u) => (Style::Int(false), u.bit_width().unwrap()),
1080             ty::TyFloat(f) => (Style::Float, f.bit_width()),
1081             _ => (Style::Unsupported, 0)
1082         };
1083         let (out_style, out_width) = match out_elem.sty {
1084             ty::TyInt(i) => (Style::Int(true), i.bit_width().unwrap()),
1085             ty::TyUint(u) => (Style::Int(false), u.bit_width().unwrap()),
1086             ty::TyFloat(f) => (Style::Float, f.bit_width()),
1087             _ => (Style::Unsupported, 0)
1088         };
1089
1090         match (in_style, out_style) {
1091             (Style::Int(in_is_signed), Style::Int(_)) => {
1092                 return match in_width.cmp(&out_width) {
1093                     Ordering::Greater => bcx.trunc(llargs[0], llret_ty),
1094                     Ordering::Equal => llargs[0],
1095                     Ordering::Less => if in_is_signed {
1096                         bcx.sext(llargs[0], llret_ty)
1097                     } else {
1098                         bcx.zext(llargs[0], llret_ty)
1099                     }
1100                 }
1101             }
1102             (Style::Int(in_is_signed), Style::Float) => {
1103                 return if in_is_signed {
1104                     bcx.sitofp(llargs[0], llret_ty)
1105                 } else {
1106                     bcx.uitofp(llargs[0], llret_ty)
1107                 }
1108             }
1109             (Style::Float, Style::Int(out_is_signed)) => {
1110                 return if out_is_signed {
1111                     bcx.fptosi(llargs[0], llret_ty)
1112                 } else {
1113                     bcx.fptoui(llargs[0], llret_ty)
1114                 }
1115             }
1116             (Style::Float, Style::Float) => {
1117                 return match in_width.cmp(&out_width) {
1118                     Ordering::Greater => bcx.fptrunc(llargs[0], llret_ty),
1119                     Ordering::Equal => llargs[0],
1120                     Ordering::Less => bcx.fpext(llargs[0], llret_ty)
1121                 }
1122             }
1123             _ => {/* Unsupported. Fallthrough. */}
1124         }
1125         require!(false,
1126                  "unsupported cast from `{}` with element `{}` to `{}` with element `{}`",
1127                  in_ty, in_elem,
1128                  ret_ty, out_elem);
1129     }
1130     macro_rules! arith {
1131         ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => {
1132             $(
1133                 if name == stringify!($name) {
1134                     match in_elem.sty {
1135                         $(
1136                             $(ty::$p(_))|* => {
1137                                 return bcx.$call(llargs[0], llargs[1])
1138                             }
1139                             )*
1140                         _ => {},
1141                     }
1142                     require!(false,
1143                              "unsupported operation on `{}` with element `{}`",
1144                              in_ty,
1145                              in_elem)
1146                 })*
1147         }
1148     }
1149     arith! {
1150         simd_add: TyUint, TyInt => add, TyFloat => fadd;
1151         simd_sub: TyUint, TyInt => sub, TyFloat => fsub;
1152         simd_mul: TyUint, TyInt => mul, TyFloat => fmul;
1153         simd_div: TyFloat => fdiv;
1154         simd_shl: TyUint, TyInt => shl;
1155         simd_shr: TyUint => lshr, TyInt => ashr;
1156         simd_and: TyUint, TyInt => and;
1157         simd_or: TyUint, TyInt => or;
1158         simd_xor: TyUint, TyInt => xor;
1159     }
1160     span_bug!(span, "unknown SIMD intrinsic");
1161 }
1162
1163 // Returns the width of an int TypeVariant, and if it's signed or not
1164 // Returns None if the type is not an integer
1165 // FIXME: there’s multiple of this functions, investigate using some of the already existing
1166 // stuffs.
1167 fn int_type_width_signed<'tcx>(sty: &ty::TypeVariants<'tcx>, ccx: &CrateContext)
1168         -> Option<(u64, bool)> {
1169     use rustc::ty::{TyInt, TyUint};
1170     match *sty {
1171         TyInt(t) => Some((match t {
1172             ast::IntTy::Is => {
1173                 match &ccx.tcx().sess.target.target.target_pointer_width[..] {
1174                     "16" => 16,
1175                     "32" => 32,
1176                     "64" => 64,
1177                     tws => bug!("Unsupported target word size for isize: {}", tws),
1178                 }
1179             },
1180             ast::IntTy::I8 => 8,
1181             ast::IntTy::I16 => 16,
1182             ast::IntTy::I32 => 32,
1183             ast::IntTy::I64 => 64,
1184             ast::IntTy::I128 => 128,
1185         }, true)),
1186         TyUint(t) => Some((match t {
1187             ast::UintTy::Us => {
1188                 match &ccx.tcx().sess.target.target.target_pointer_width[..] {
1189                     "16" => 16,
1190                     "32" => 32,
1191                     "64" => 64,
1192                     tws => bug!("Unsupported target word size for usize: {}", tws),
1193                 }
1194             },
1195             ast::UintTy::U8 => 8,
1196             ast::UintTy::U16 => 16,
1197             ast::UintTy::U32 => 32,
1198             ast::UintTy::U64 => 64,
1199             ast::UintTy::U128 => 128,
1200         }, false)),
1201         _ => None,
1202     }
1203 }
1204
1205 // Returns the width of a float TypeVariant
1206 // Returns None if the type is not a float
1207 fn float_type_width<'tcx>(sty: &ty::TypeVariants<'tcx>)
1208         -> Option<u64> {
1209     use rustc::ty::TyFloat;
1210     match *sty {
1211         TyFloat(t) => Some(match t {
1212             ast::FloatTy::F32 => 32,
1213             ast::FloatTy::F64 => 64,
1214         }),
1215         _ => None,
1216     }
1217 }