]> git.lizzy.rs Git - rust.git/blob - src/librustc_trans/collector.rs
translate closure shims using MIR
[rust.git] / src / librustc_trans / collector.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Translation Item Collection
12 //! ===========================
13 //!
14 //! This module is responsible for discovering all items that will contribute to
15 //! to code generation of the crate. The important part here is that it not only
16 //! needs to find syntax-level items (functions, structs, etc) but also all
17 //! their monomorphized instantiations. Every non-generic, non-const function
18 //! maps to one LLVM artifact. Every generic function can produce
19 //! from zero to N artifacts, depending on the sets of type arguments it
20 //! is instantiated with.
21 //! This also applies to generic items from other crates: A generic definition
22 //! in crate X might produce monomorphizations that are compiled into crate Y.
23 //! We also have to collect these here.
24 //!
25 //! The following kinds of "translation items" are handled here:
26 //!
27 //! - Functions
28 //! - Methods
29 //! - Closures
30 //! - Statics
31 //! - Drop glue
32 //!
33 //! The following things also result in LLVM artifacts, but are not collected
34 //! here, since we instantiate them locally on demand when needed in a given
35 //! codegen unit:
36 //!
37 //! - Constants
38 //! - Vtables
39 //! - Object Shims
40 //!
41 //!
42 //! General Algorithm
43 //! -----------------
44 //! Let's define some terms first:
45 //!
46 //! - A "translation item" is something that results in a function or global in
47 //!   the LLVM IR of a codegen unit. Translation items do not stand on their
48 //!   own, they can reference other translation items. For example, if function
49 //!   `foo()` calls function `bar()` then the translation item for `foo()`
50 //!   references the translation item for function `bar()`. In general, the
51 //!   definition for translation item A referencing a translation item B is that
52 //!   the LLVM artifact produced for A references the LLVM artifact produced
53 //!   for B.
54 //!
55 //! - Translation items and the references between them form a directed graph,
56 //!   where the translation items are the nodes and references form the edges.
57 //!   Let's call this graph the "translation item graph".
58 //!
59 //! - The translation item graph for a program contains all translation items
60 //!   that are needed in order to produce the complete LLVM IR of the program.
61 //!
62 //! The purpose of the algorithm implemented in this module is to build the
63 //! translation item graph for the current crate. It runs in two phases:
64 //!
65 //! 1. Discover the roots of the graph by traversing the HIR of the crate.
66 //! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
67 //!    representation of the item corresponding to a given node, until no more
68 //!    new nodes are found.
69 //!
70 //! ### Discovering roots
71 //!
72 //! The roots of the translation item graph correspond to the non-generic
73 //! syntactic items in the source code. We find them by walking the HIR of the
74 //! crate, and whenever we hit upon a function, method, or static item, we
75 //! create a translation item consisting of the items DefId and, since we only
76 //! consider non-generic items, an empty type-substitution set.
77 //!
78 //! ### Finding neighbor nodes
79 //! Given a translation item node, we can discover neighbors by inspecting its
80 //! MIR. We walk the MIR and any time we hit upon something that signifies a
81 //! reference to another translation item, we have found a neighbor. Since the
82 //! translation item we are currently at is always monomorphic, we also know the
83 //! concrete type arguments of its neighbors, and so all neighbors again will be
84 //! monomorphic. The specific forms a reference to a neighboring node can take
85 //! in MIR are quite diverse. Here is an overview:
86 //!
87 //! #### Calling Functions/Methods
88 //! The most obvious form of one translation item referencing another is a
89 //! function or method call (represented by a CALL terminator in MIR). But
90 //! calls are not the only thing that might introduce a reference between two
91 //! function translation items, and as we will see below, they are just a
92 //! specialized of the form described next, and consequently will don't get any
93 //! special treatment in the algorithm.
94 //!
95 //! #### Taking a reference to a function or method
96 //! A function does not need to actually be called in order to be a neighbor of
97 //! another function. It suffices to just take a reference in order to introduce
98 //! an edge. Consider the following example:
99 //!
100 //! ```rust
101 //! fn print_val<T: Display>(x: T) {
102 //!     println!("{}", x);
103 //! }
104 //!
105 //! fn call_fn(f: &Fn(i32), x: i32) {
106 //!     f(x);
107 //! }
108 //!
109 //! fn main() {
110 //!     let print_i32 = print_val::<i32>;
111 //!     call_fn(&print_i32, 0);
112 //! }
113 //! ```
114 //! The MIR of none of these functions will contain an explicit call to
115 //! `print_val::<i32>`. Nonetheless, in order to translate this program, we need
116 //! an instance of this function. Thus, whenever we encounter a function or
117 //! method in operand position, we treat it as a neighbor of the current
118 //! translation item. Calls are just a special case of that.
119 //!
120 //! #### Closures
121 //! In a way, closures are a simple case. Since every closure object needs to be
122 //! constructed somewhere, we can reliably discover them by observing
123 //! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
124 //! true for closures inlined from other crates.
125 //!
126 //! #### Drop glue
127 //! Drop glue translation items are introduced by MIR drop-statements. The
128 //! generated translation item will again have drop-glue item neighbors if the
129 //! type to be dropped contains nested values that also need to be dropped. It
130 //! might also have a function item neighbor for the explicit `Drop::drop`
131 //! implementation of its type.
132 //!
133 //! #### Unsizing Casts
134 //! A subtle way of introducing neighbor edges is by casting to a trait object.
135 //! Since the resulting fat-pointer contains a reference to a vtable, we need to
136 //! instantiate all object-save methods of the trait, as we need to store
137 //! pointers to these functions even if they never get called anywhere. This can
138 //! be seen as a special case of taking a function reference.
139 //!
140 //! #### Boxes
141 //! Since `Box` expression have special compiler support, no explicit calls to
142 //! `exchange_malloc()` and `exchange_free()` may show up in MIR, even if the
143 //! compiler will generate them. We have to observe `Rvalue::Box` expressions
144 //! and Box-typed drop-statements for that purpose.
145 //!
146 //!
147 //! Interaction with Cross-Crate Inlining
148 //! -------------------------------------
149 //! The binary of a crate will not only contain machine code for the items
150 //! defined in the source code of that crate. It will also contain monomorphic
151 //! instantiations of any extern generic functions and of functions marked with
152 //! #[inline].
153 //! The collection algorithm handles this more or less transparently. If it is
154 //! about to create a translation item for something with an external `DefId`,
155 //! it will take a look if the MIR for that item is available, and if so just
156 //! proceed normally. If the MIR is not available, it assumes that the item is
157 //! just linked to and no node is created; which is exactly what we want, since
158 //! no machine code should be generated in the current crate for such an item.
159 //!
160 //! Eager and Lazy Collection Mode
161 //! ------------------------------
162 //! Translation item collection can be performed in one of two modes:
163 //!
164 //! - Lazy mode means that items will only be instantiated when actually
165 //!   referenced. The goal is to produce the least amount of machine code
166 //!   possible.
167 //!
168 //! - Eager mode is meant to be used in conjunction with incremental compilation
169 //!   where a stable set of translation items is more important than a minimal
170 //!   one. Thus, eager mode will instantiate drop-glue for every drop-able type
171 //!   in the crate, even of no drop call for that type exists (yet). It will
172 //!   also instantiate default implementations of trait methods, something that
173 //!   otherwise is only done on demand.
174 //!
175 //!
176 //! Open Issues
177 //! -----------
178 //! Some things are not yet fully implemented in the current version of this
179 //! module.
180 //!
181 //! ### Initializers of Constants and Statics
182 //! Since no MIR is constructed yet for initializer expressions of constants and
183 //! statics we cannot inspect these properly.
184 //!
185 //! ### Const Fns
186 //! Ideally, no translation item should be generated for const fns unless there
187 //! is a call to them that cannot be evaluated at compile time. At the moment
188 //! this is not implemented however: a translation item will be produced
189 //! regardless of whether it is actually needed or not.
190
191 use rustc::hir;
192 use rustc::hir::itemlikevisit::ItemLikeVisitor;
193
194 use rustc::hir::map as hir_map;
195 use rustc::hir::def_id::DefId;
196 use rustc::middle::lang_items::{BoxFreeFnLangItem, ExchangeMallocFnLangItem};
197 use rustc::traits;
198 use rustc::ty::subst::{Kind, Substs, Subst};
199 use rustc::ty::{self, TypeFoldable, TyCtxt};
200 use rustc::ty::adjustment::CustomCoerceUnsized;
201 use rustc::mir::{self, Location};
202 use rustc::mir::visit as mir_visit;
203 use rustc::mir::visit::Visitor as MirVisitor;
204
205 use context::SharedCrateContext;
206 use common::{def_ty, instance_ty};
207 use glue::{self, DropGlueKind};
208 use monomorphize::{self, Instance};
209 use util::nodemap::{FxHashSet, FxHashMap, DefIdMap};
210
211 use trans_item::{TransItem, DefPathBasedNames, InstantiationMode};
212
213 use std::iter;
214
215 #[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)]
216 pub enum TransItemCollectionMode {
217     Eager,
218     Lazy
219 }
220
221 /// Maps every translation item to all translation items it references in its
222 /// body.
223 pub struct InliningMap<'tcx> {
224     // Maps a source translation item to a range of target translation items
225     // that are potentially inlined by LLVM into the source.
226     // The two numbers in the tuple are the start (inclusive) and
227     // end index (exclusive) within the `targets` vecs.
228     index: FxHashMap<TransItem<'tcx>, (usize, usize)>,
229     targets: Vec<TransItem<'tcx>>,
230 }
231
232 impl<'tcx> InliningMap<'tcx> {
233
234     fn new() -> InliningMap<'tcx> {
235         InliningMap {
236             index: FxHashMap(),
237             targets: Vec::new(),
238         }
239     }
240
241     fn record_inlining_canditates<I>(&mut self,
242                                      source: TransItem<'tcx>,
243                                      targets: I)
244         where I: Iterator<Item=TransItem<'tcx>>
245     {
246         assert!(!self.index.contains_key(&source));
247
248         let start_index = self.targets.len();
249         self.targets.extend(targets);
250         let end_index = self.targets.len();
251         self.index.insert(source, (start_index, end_index));
252     }
253
254     // Internally iterate over all items referenced by `source` which will be
255     // made available for inlining.
256     pub fn with_inlining_candidates<F>(&self, source: TransItem<'tcx>, mut f: F)
257         where F: FnMut(TransItem<'tcx>) {
258         if let Some(&(start_index, end_index)) = self.index.get(&source)
259         {
260             for candidate in &self.targets[start_index .. end_index] {
261                 f(*candidate)
262             }
263         }
264     }
265 }
266
267 pub fn collect_crate_translation_items<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
268                                                  mode: TransItemCollectionMode)
269                                                  -> (FxHashSet<TransItem<'tcx>>,
270                                                      InliningMap<'tcx>) {
271     // We are not tracking dependencies of this pass as it has to be re-executed
272     // every time no matter what.
273     scx.tcx().dep_graph.with_ignore(|| {
274         let roots = collect_roots(scx, mode);
275
276         debug!("Building translation item graph, beginning at roots");
277         let mut visited = FxHashSet();
278         let mut recursion_depths = DefIdMap();
279         let mut inlining_map = InliningMap::new();
280
281         for root in roots {
282             collect_items_rec(scx,
283                               root,
284                               &mut visited,
285                               &mut recursion_depths,
286                               &mut inlining_map);
287         }
288
289         (visited, inlining_map)
290     })
291 }
292
293 // Find all non-generic items by walking the HIR. These items serve as roots to
294 // start monomorphizing from.
295 fn collect_roots<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
296                            mode: TransItemCollectionMode)
297                            -> Vec<TransItem<'tcx>> {
298     debug!("Collecting roots");
299     let mut roots = Vec::new();
300
301     {
302         let mut visitor = RootCollector {
303             scx: scx,
304             mode: mode,
305             output: &mut roots,
306         };
307
308         scx.tcx().hir.krate().visit_all_item_likes(&mut visitor);
309     }
310
311     roots
312 }
313
314 // Collect all monomorphized translation items reachable from `starting_point`
315 fn collect_items_rec<'a, 'tcx: 'a>(scx: &SharedCrateContext<'a, 'tcx>,
316                                    starting_point: TransItem<'tcx>,
317                                    visited: &mut FxHashSet<TransItem<'tcx>>,
318                                    recursion_depths: &mut DefIdMap<usize>,
319                                    inlining_map: &mut InliningMap<'tcx>) {
320     if !visited.insert(starting_point.clone()) {
321         // We've been here already, no need to search again.
322         return;
323     }
324     debug!("BEGIN collect_items_rec({})", starting_point.to_string(scx.tcx()));
325
326     let mut neighbors = Vec::new();
327     let recursion_depth_reset;
328
329     match starting_point {
330         TransItem::DropGlue(t) => {
331             find_drop_glue_neighbors(scx, t, &mut neighbors);
332             recursion_depth_reset = None;
333         }
334         TransItem::Static(node_id) => {
335             let def_id = scx.tcx().hir.local_def_id(node_id);
336             let instance = Instance::mono(scx.tcx(), def_id);
337
338             // Sanity check whether this ended up being collected accidentally
339             debug_assert!(should_trans_locally(scx.tcx(), &instance));
340
341             let ty = instance_ty(scx, &instance);
342             let ty = glue::get_drop_glue_type(scx, ty);
343             neighbors.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
344
345             recursion_depth_reset = None;
346
347             collect_neighbours(scx, instance, &mut neighbors);
348         }
349         TransItem::Fn(instance) => {
350             // Sanity check whether this ended up being collected accidentally
351             debug_assert!(should_trans_locally(scx.tcx(), &instance));
352
353             // Keep track of the monomorphization recursion depth
354             recursion_depth_reset = Some(check_recursion_limit(scx.tcx(),
355                                                                instance,
356                                                                recursion_depths));
357             check_type_length_limit(scx.tcx(), instance);
358
359             collect_neighbours(scx, instance, &mut neighbors);
360         }
361     }
362
363     record_inlining_canditates(scx.tcx(), starting_point, &neighbors[..], inlining_map);
364
365     for neighbour in neighbors {
366         collect_items_rec(scx, neighbour, visited, recursion_depths, inlining_map);
367     }
368
369     if let Some((def_id, depth)) = recursion_depth_reset {
370         recursion_depths.insert(def_id, depth);
371     }
372
373     debug!("END collect_items_rec({})", starting_point.to_string(scx.tcx()));
374 }
375
376 fn record_inlining_canditates<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
377                                         caller: TransItem<'tcx>,
378                                         callees: &[TransItem<'tcx>],
379                                         inlining_map: &mut InliningMap<'tcx>) {
380     let is_inlining_candidate = |trans_item: &TransItem<'tcx>| {
381         trans_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy
382     };
383
384     let inlining_candidates = callees.into_iter()
385                                      .map(|x| *x)
386                                      .filter(is_inlining_candidate);
387
388     inlining_map.record_inlining_canditates(caller, inlining_candidates);
389 }
390
391 fn check_recursion_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
392                                    instance: Instance<'tcx>,
393                                    recursion_depths: &mut DefIdMap<usize>)
394                                    -> (DefId, usize) {
395     let def_id = instance.def_id();
396     let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
397     debug!(" => recursion depth={}", recursion_depth);
398
399     // Code that needs to instantiate the same function recursively
400     // more than the recursion limit is assumed to be causing an
401     // infinite expansion.
402     if recursion_depth > tcx.sess.recursion_limit.get() {
403         let error = format!("reached the recursion limit while instantiating `{}`",
404                             instance);
405         if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
406             tcx.sess.span_fatal(tcx.hir.span(node_id), &error);
407         } else {
408             tcx.sess.fatal(&error);
409         }
410     }
411
412     recursion_depths.insert(def_id, recursion_depth + 1);
413
414     (def_id, recursion_depth)
415 }
416
417 fn check_type_length_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
418                                      instance: Instance<'tcx>)
419 {
420     let type_length = instance.substs.types().flat_map(|ty| ty.walk()).count();
421     debug!(" => type length={}", type_length);
422
423     // Rust code can easily create exponentially-long types using only a
424     // polynomial recursion depth. Even with the default recursion
425     // depth, you can easily get cases that take >2^60 steps to run,
426     // which means that rustc basically hangs.
427     //
428     // Bail out in these cases to avoid that bad user experience.
429     let type_length_limit = tcx.sess.type_length_limit.get();
430     if type_length > type_length_limit {
431         // The instance name is already known to be too long for rustc. Use
432         // `{:.64}` to avoid blasting the user's terminal with thousands of
433         // lines of type-name.
434         let instance_name = instance.to_string();
435         let msg = format!("reached the type-length limit while instantiating `{:.64}...`",
436                           instance_name);
437         let mut diag = if let Some(node_id) = tcx.hir.as_local_node_id(instance.def_id()) {
438             tcx.sess.struct_span_fatal(tcx.hir.span(node_id), &msg)
439         } else {
440             tcx.sess.struct_fatal(&msg)
441         };
442
443         diag.note(&format!(
444             "consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
445             type_length_limit*2));
446         diag.emit();
447         tcx.sess.abort_if_errors();
448     }
449 }
450
451 struct MirNeighborCollector<'a, 'tcx: 'a> {
452     scx: &'a SharedCrateContext<'a, 'tcx>,
453     mir: &'a mir::Mir<'tcx>,
454     output: &'a mut Vec<TransItem<'tcx>>,
455     param_substs: &'tcx Substs<'tcx>
456 }
457
458 impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
459
460     fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
461         debug!("visiting rvalue {:?}", *rvalue);
462
463         match *rvalue {
464             // When doing an cast from a regular pointer to a fat pointer, we
465             // have to instantiate all methods of the trait being cast to, so we
466             // can build the appropriate vtable.
467             mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, target_ty) => {
468                 let target_ty = monomorphize::apply_param_substs(self.scx,
469                                                                  self.param_substs,
470                                                                  &target_ty);
471                 let source_ty = operand.ty(self.mir, self.scx.tcx());
472                 let source_ty = monomorphize::apply_param_substs(self.scx,
473                                                                  self.param_substs,
474                                                                  &source_ty);
475                 let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.scx,
476                                                                             source_ty,
477                                                                             target_ty);
478                 // This could also be a different Unsize instruction, like
479                 // from a fixed sized array to a slice. But we are only
480                 // interested in things that produce a vtable.
481                 if target_ty.is_trait() && !source_ty.is_trait() {
482                     create_trans_items_for_vtable_methods(self.scx,
483                                                           target_ty,
484                                                           source_ty,
485                                                           self.output);
486                 }
487             }
488             mir::Rvalue::Cast(mir::CastKind::ReifyFnPointer, ref operand, _) => {
489                 let fn_ty = operand.ty(self.mir, self.scx.tcx());
490                 let fn_ty = monomorphize::apply_param_substs(
491                     self.scx,
492                     self.param_substs,
493                     &fn_ty);
494                 visit_fn_use(self.scx, fn_ty, false, &mut self.output);
495             }
496             mir::Rvalue::Cast(mir::CastKind::ClosureFnPointer, ref operand, _) => {
497                 let source_ty = operand.ty(self.mir, self.scx.tcx());
498                 match source_ty.sty {
499                     ty::TyClosure(def_id, substs) => {
500                         let instance = monomorphize::resolve_closure(
501                             self.scx, def_id, substs, ty::ClosureKind::FnOnce);
502                         self.output.push(create_fn_trans_item(instance));
503                     }
504                     _ => bug!(),
505                 }
506             }
507             mir::Rvalue::Box(..) => {
508                 let tcx = self.scx.tcx();
509                 let exchange_malloc_fn_def_id = tcx
510                     .lang_items
511                     .require(ExchangeMallocFnLangItem)
512                     .unwrap_or_else(|e| self.scx.sess().fatal(&e));
513                 let instance = Instance::mono(tcx, exchange_malloc_fn_def_id);
514                 if should_trans_locally(tcx, &instance) {
515                     self.output.push(create_fn_trans_item(instance));
516                 }
517             }
518             _ => { /* not interesting */ }
519         }
520
521         self.super_rvalue(rvalue, location);
522     }
523
524     fn visit_lvalue(&mut self,
525                     lvalue: &mir::Lvalue<'tcx>,
526                     context: mir_visit::LvalueContext<'tcx>,
527                     location: Location) {
528         debug!("visiting lvalue {:?}", *lvalue);
529
530         if let mir_visit::LvalueContext::Drop = context {
531             let ty = lvalue.ty(self.mir, self.scx.tcx())
532                            .to_ty(self.scx.tcx());
533
534             let ty = monomorphize::apply_param_substs(self.scx,
535                                                       self.param_substs,
536                                                       &ty);
537             assert!(ty.is_normalized_for_trans());
538             let ty = glue::get_drop_glue_type(self.scx, ty);
539             self.output.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
540         }
541
542         self.super_lvalue(lvalue, context, location);
543     }
544
545     fn visit_constant(&mut self, constant: &mir::Constant<'tcx>, location: Location) {
546         debug!("visiting constant {:?} @ {:?}", *constant, location);
547
548         if let ty::TyFnDef(..) = constant.ty.sty {
549             // function definitions are zero-sized, and only generate
550             // IR when they are called/reified.
551             self.super_constant(constant, location);
552             return
553         }
554
555         if let mir::Literal::Item { def_id, substs } = constant.literal {
556             let substs = monomorphize::apply_param_substs(self.scx,
557                                                           self.param_substs,
558                                                           &substs);
559             let instance = monomorphize::resolve(self.scx, def_id, substs);
560             collect_neighbours(self.scx, instance, self.output);
561         }
562
563         self.super_constant(constant, location);
564     }
565
566     fn visit_terminator_kind(&mut self,
567                              block: mir::BasicBlock,
568                              kind: &mir::TerminatorKind<'tcx>,
569                              location: Location) {
570         let tcx = self.scx.tcx();
571         if let mir::TerminatorKind::Call {
572             ref func,
573             ..
574         } = *kind {
575             let callee_ty = func.ty(self.mir, tcx);
576             let callee_ty = monomorphize::apply_param_substs(
577                 self.scx, self.param_substs, &callee_ty);
578             visit_fn_use(self.scx, callee_ty, true, &mut self.output);
579         }
580
581         self.super_terminator_kind(block, kind, location);
582     }
583 }
584
585 fn visit_fn_use<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
586                           ty: ty::Ty<'tcx>,
587                           is_direct_call: bool,
588                           output: &mut Vec<TransItem<'tcx>>)
589 {
590     debug!("visit_fn_use({:?}, is_direct_call={:?})", ty, is_direct_call);
591     let (def_id, substs) = match ty.sty {
592         ty::TyFnDef(def_id, substs, _) => (def_id, substs),
593         _ => return
594     };
595
596     let instance = monomorphize::resolve(scx, def_id, substs);
597     if !should_trans_locally(scx.tcx(), &instance) {
598         return
599     }
600
601     match instance.def {
602         ty::InstanceDef::Intrinsic(..) => {
603             if !is_direct_call {
604                 bug!("intrinsic {:?} being reified", ty);
605             }
606             if scx.tcx().item_name(def_id) == "drop_in_place" {
607                 // drop_in_place is a call to drop glue, need to instantiate
608                 // that.
609                 let ty = glue::get_drop_glue_type(scx, substs.type_at(0));
610                 output.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
611             }
612         }
613         ty::InstanceDef::Virtual(..) => {
614             // don't need to emit shim if we are calling directly.
615             if !is_direct_call {
616                 output.push(create_fn_trans_item(instance));
617             }
618         }
619         ty::InstanceDef::ClosureOnceShim { .. } |
620         ty::InstanceDef::Item(..) |
621         ty::InstanceDef::FnPtrShim(..) => {
622             output.push(create_fn_trans_item(instance));
623         }
624     }
625 }
626
627 // Returns true if we should translate an instance in the local crate.
628 // Returns false if we can just link to the upstream crate and therefore don't
629 // need a translation item.
630 fn should_trans_locally<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: &Instance<'tcx>)
631                                   -> bool {
632     let def_id = match instance.def {
633         ty::InstanceDef::Item(def_id) => def_id,
634         ty::InstanceDef::ClosureOnceShim { .. } |
635         ty::InstanceDef::Virtual(..) |
636         ty::InstanceDef::FnPtrShim(..) |
637         ty::InstanceDef::Intrinsic(_) => return true
638     };
639     match tcx.hir.get_if_local(def_id) {
640         Some(hir_map::NodeForeignItem(..)) => {
641             false // foreign items are linked against, not translated.
642         }
643         Some(_) => true,
644         None => {
645             if tcx.sess.cstore.is_exported_symbol(def_id) ||
646                 tcx.sess.cstore.is_foreign_item(def_id)
647             {
648                 // We can link to the item in question, no instance needed
649                 // in this crate
650                 false
651             } else {
652                 if !tcx.sess.cstore.is_item_mir_available(def_id) {
653                     bug!("Cannot create local trans-item for {:?}", def_id)
654                 }
655                 true
656             }
657         }
658     }
659 }
660
661 fn find_drop_glue_neighbors<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
662                                       dg: DropGlueKind<'tcx>,
663                                       output: &mut Vec<TransItem<'tcx>>) {
664     let ty = match dg {
665         DropGlueKind::Ty(ty) => ty,
666         DropGlueKind::TyContents(_) => {
667             // We already collected the neighbors of this item via the
668             // DropGlueKind::Ty variant.
669             return
670         }
671     };
672
673     debug!("find_drop_glue_neighbors: {}", type_to_string(scx.tcx(), ty));
674
675     // Make sure the BoxFreeFn lang-item gets translated if there is a boxed value.
676     if ty.is_box() {
677         let tcx = scx.tcx();
678         let def_id = tcx.require_lang_item(BoxFreeFnLangItem);
679         let box_free_instance = Instance::new(
680             def_id,
681             tcx.mk_substs(iter::once(Kind::from(ty.boxed_ty())))
682         );
683         if should_trans_locally(tcx, &box_free_instance) {
684             output.push(create_fn_trans_item(box_free_instance));
685         }
686     }
687
688     // If the type implements Drop, also add a translation item for the
689     // monomorphized Drop::drop() implementation.
690     let has_dtor = match ty.sty {
691         ty::TyAdt(def, _) => def.has_dtor(scx.tcx()),
692         _ => false
693     };
694
695     if has_dtor && !ty.is_box() {
696         let drop_trait_def_id = scx.tcx()
697                                    .lang_items
698                                    .drop_trait()
699                                    .unwrap();
700         let drop_method = scx.tcx().associated_items(drop_trait_def_id)
701             .find(|it| it.kind == ty::AssociatedKind::Method)
702             .unwrap().def_id;
703         let substs = scx.tcx().mk_substs_trait(ty, &[]);
704         let instance = monomorphize::resolve(scx, drop_method, substs);
705         if should_trans_locally(scx.tcx(), &instance) {
706             output.push(create_fn_trans_item(instance));
707         }
708
709         // This type has a Drop implementation, we'll need the contents-only
710         // version of the glue too.
711         output.push(TransItem::DropGlue(DropGlueKind::TyContents(ty)));
712     }
713
714     // Finally add the types of nested values
715     match ty.sty {
716         ty::TyBool      |
717         ty::TyChar      |
718         ty::TyInt(_)    |
719         ty::TyUint(_)   |
720         ty::TyStr       |
721         ty::TyFloat(_)  |
722         ty::TyRawPtr(_) |
723         ty::TyRef(..)   |
724         ty::TyFnDef(..) |
725         ty::TyFnPtr(_)  |
726         ty::TyNever     |
727         ty::TyDynamic(..)  => {
728             /* nothing to do */
729         }
730         ty::TyAdt(def, _) if def.is_box() => {
731             let inner_type = glue::get_drop_glue_type(scx, ty.boxed_ty());
732             if scx.type_needs_drop(inner_type) {
733                 output.push(TransItem::DropGlue(DropGlueKind::Ty(inner_type)));
734             }
735         }
736         ty::TyAdt(def, substs) => {
737             for field in def.all_fields() {
738                 let field_type = def_ty(scx, field.did, substs);
739                 let field_type = glue::get_drop_glue_type(scx, field_type);
740
741                 if scx.type_needs_drop(field_type) {
742                     output.push(TransItem::DropGlue(DropGlueKind::Ty(field_type)));
743                 }
744             }
745         }
746         ty::TyClosure(def_id, substs) => {
747             for upvar_ty in substs.upvar_tys(def_id, scx.tcx()) {
748                 let upvar_ty = glue::get_drop_glue_type(scx, upvar_ty);
749                 if scx.type_needs_drop(upvar_ty) {
750                     output.push(TransItem::DropGlue(DropGlueKind::Ty(upvar_ty)));
751                 }
752             }
753         }
754         ty::TySlice(inner_type)    |
755         ty::TyArray(inner_type, _) => {
756             let inner_type = glue::get_drop_glue_type(scx, inner_type);
757             if scx.type_needs_drop(inner_type) {
758                 output.push(TransItem::DropGlue(DropGlueKind::Ty(inner_type)));
759             }
760         }
761         ty::TyTuple(args, _) => {
762             for arg in args {
763                 let arg = glue::get_drop_glue_type(scx, arg);
764                 if scx.type_needs_drop(arg) {
765                     output.push(TransItem::DropGlue(DropGlueKind::Ty(arg)));
766                 }
767             }
768         }
769         ty::TyProjection(_) |
770         ty::TyParam(_)      |
771         ty::TyInfer(_)      |
772         ty::TyAnon(..)      |
773         ty::TyError         => {
774             bug!("encountered unexpected type");
775         }
776     }
777 }
778
779 /// For given pair of source and target type that occur in an unsizing coercion,
780 /// this function finds the pair of types that determines the vtable linking
781 /// them.
782 ///
783 /// For example, the source type might be `&SomeStruct` and the target type\
784 /// might be `&SomeTrait` in a cast like:
785 ///
786 /// let src: &SomeStruct = ...;
787 /// let target = src as &SomeTrait;
788 ///
789 /// Then the output of this function would be (SomeStruct, SomeTrait) since for
790 /// constructing the `target` fat-pointer we need the vtable for that pair.
791 ///
792 /// Things can get more complicated though because there's also the case where
793 /// the unsized type occurs as a field:
794 ///
795 /// ```rust
796 /// struct ComplexStruct<T: ?Sized> {
797 ///    a: u32,
798 ///    b: f64,
799 ///    c: T
800 /// }
801 /// ```
802 ///
803 /// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
804 /// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
805 /// for the pair of `T` (which is a trait) and the concrete type that `T` was
806 /// originally coerced from:
807 ///
808 /// let src: &ComplexStruct<SomeStruct> = ...;
809 /// let target = src as &ComplexStruct<SomeTrait>;
810 ///
811 /// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
812 /// `(SomeStruct, SomeTrait)`.
813 ///
814 /// Finally, there is also the case of custom unsizing coercions, e.g. for
815 /// smart pointers such as `Rc` and `Arc`.
816 fn find_vtable_types_for_unsizing<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
817                                             source_ty: ty::Ty<'tcx>,
818                                             target_ty: ty::Ty<'tcx>)
819                                             -> (ty::Ty<'tcx>, ty::Ty<'tcx>) {
820     let ptr_vtable = |inner_source: ty::Ty<'tcx>, inner_target: ty::Ty<'tcx>| {
821         if !scx.type_is_sized(inner_source) {
822             (inner_source, inner_target)
823         } else {
824             scx.tcx().struct_lockstep_tails(inner_source, inner_target)
825         }
826     };
827     match (&source_ty.sty, &target_ty.sty) {
828         (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
829          &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
830         (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
831          &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
832         (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
833          &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
834             ptr_vtable(a, b)
835         }
836         (&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
837             ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
838         }
839
840         (&ty::TyAdt(source_adt_def, source_substs),
841          &ty::TyAdt(target_adt_def, target_substs)) => {
842             assert_eq!(source_adt_def, target_adt_def);
843
844             let kind =
845                 monomorphize::custom_coerce_unsize_info(scx, source_ty, target_ty);
846
847             let coerce_index = match kind {
848                 CustomCoerceUnsized::Struct(i) => i
849             };
850
851             let source_fields = &source_adt_def.struct_variant().fields;
852             let target_fields = &target_adt_def.struct_variant().fields;
853
854             assert!(coerce_index < source_fields.len() &&
855                     source_fields.len() == target_fields.len());
856
857             find_vtable_types_for_unsizing(scx,
858                                            source_fields[coerce_index].ty(scx.tcx(),
859                                                                           source_substs),
860                                            target_fields[coerce_index].ty(scx.tcx(),
861                                                                           target_substs))
862         }
863         _ => bug!("find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
864                   source_ty,
865                   target_ty)
866     }
867 }
868
869 fn create_fn_trans_item<'a, 'tcx>(instance: Instance<'tcx>) -> TransItem<'tcx> {
870     debug!("create_fn_trans_item(instance={})", instance);
871     TransItem::Fn(instance)
872 }
873
874 /// Creates a `TransItem` for each method that is referenced by the vtable for
875 /// the given trait/impl pair.
876 fn create_trans_items_for_vtable_methods<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
877                                                    trait_ty: ty::Ty<'tcx>,
878                                                    impl_ty: ty::Ty<'tcx>,
879                                                    output: &mut Vec<TransItem<'tcx>>) {
880     assert!(!trait_ty.needs_subst() && !trait_ty.has_escaping_regions() &&
881             !impl_ty.needs_subst() && !impl_ty.has_escaping_regions());
882
883     if let ty::TyDynamic(ref trait_ty, ..) = trait_ty.sty {
884         if let Some(principal) = trait_ty.principal() {
885             let poly_trait_ref = principal.with_self_ty(scx.tcx(), impl_ty);
886             assert!(!poly_trait_ref.has_escaping_regions());
887
888             // Walk all methods of the trait, including those of its supertraits
889             let methods = traits::get_vtable_methods(scx.tcx(), poly_trait_ref);
890             let methods = methods.filter_map(|method| method)
891                 .map(|(def_id, substs)| monomorphize::resolve(scx, def_id, substs))
892                 .filter(|&instance| should_trans_locally(scx.tcx(), &instance))
893                 .map(|instance| create_fn_trans_item(instance));
894             output.extend(methods);
895         }
896         // Also add the destructor
897         let dg_type = glue::get_drop_glue_type(scx, impl_ty);
898         output.push(TransItem::DropGlue(DropGlueKind::Ty(dg_type)));
899     }
900 }
901
902 //=-----------------------------------------------------------------------------
903 // Root Collection
904 //=-----------------------------------------------------------------------------
905
906 struct RootCollector<'b, 'a: 'b, 'tcx: 'a + 'b> {
907     scx: &'b SharedCrateContext<'a, 'tcx>,
908     mode: TransItemCollectionMode,
909     output: &'b mut Vec<TransItem<'tcx>>,
910 }
911
912 impl<'b, 'a, 'v> ItemLikeVisitor<'v> for RootCollector<'b, 'a, 'v> {
913     fn visit_item(&mut self, item: &'v hir::Item) {
914         match item.node {
915             hir::ItemExternCrate(..) |
916             hir::ItemUse(..)         |
917             hir::ItemForeignMod(..)  |
918             hir::ItemTy(..)          |
919             hir::ItemDefaultImpl(..) |
920             hir::ItemTrait(..)       |
921             hir::ItemMod(..)         => {
922                 // Nothing to do, just keep recursing...
923             }
924
925             hir::ItemImpl(..) => {
926                 if self.mode == TransItemCollectionMode::Eager {
927                     create_trans_items_for_default_impls(self.scx,
928                                                          item,
929                                                          self.output);
930                 }
931             }
932
933             hir::ItemEnum(_, ref generics) |
934             hir::ItemStruct(_, ref generics) |
935             hir::ItemUnion(_, ref generics) => {
936                 if !generics.is_parameterized() {
937                     if self.mode == TransItemCollectionMode::Eager {
938                         let def_id = self.scx.tcx().hir.local_def_id(item.id);
939                         debug!("RootCollector: ADT drop-glue for {}",
940                                def_id_to_string(self.scx.tcx(), def_id));
941
942                         let ty = def_ty(self.scx, def_id, Substs::empty());
943                         let ty = glue::get_drop_glue_type(self.scx, ty);
944                         self.output.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
945                     }
946                 }
947             }
948             hir::ItemStatic(..) => {
949                 debug!("RootCollector: ItemStatic({})",
950                        def_id_to_string(self.scx.tcx(),
951                                         self.scx.tcx().hir.local_def_id(item.id)));
952                 self.output.push(TransItem::Static(item.id));
953             }
954             hir::ItemConst(..) => {
955                 // const items only generate translation items if they are
956                 // actually used somewhere. Just declaring them is insufficient.
957             }
958             hir::ItemFn(.., ref generics, _) => {
959                 if !generics.is_type_parameterized() {
960                     let def_id = self.scx.tcx().hir.local_def_id(item.id);
961
962                     debug!("RootCollector: ItemFn({})",
963                            def_id_to_string(self.scx.tcx(), def_id));
964
965                     let instance = Instance::mono(self.scx.tcx(), def_id);
966                     self.output.push(TransItem::Fn(instance));
967                 }
968             }
969         }
970     }
971
972     fn visit_trait_item(&mut self, _: &'v hir::TraitItem) {
973         // Even if there's a default body with no explicit generics,
974         // it's still generic over some `Self: Trait`, so not a root.
975     }
976
977     fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) {
978         match ii.node {
979             hir::ImplItemKind::Method(hir::MethodSig {
980                 ref generics,
981                 ..
982             }, _) => {
983                 let hir_map = &self.scx.tcx().hir;
984                 let parent_node_id = hir_map.get_parent_node(ii.id);
985                 let is_impl_generic = match hir_map.expect_item(parent_node_id) {
986                     &hir::Item {
987                         node: hir::ItemImpl(_, _, ref generics, ..),
988                         ..
989                     } => {
990                         generics.is_type_parameterized()
991                     }
992                     _ => {
993                         bug!()
994                     }
995                 };
996
997                 if !generics.is_type_parameterized() && !is_impl_generic {
998                     let def_id = self.scx.tcx().hir.local_def_id(ii.id);
999
1000                     debug!("RootCollector: MethodImplItem({})",
1001                            def_id_to_string(self.scx.tcx(), def_id));
1002
1003                     let instance = Instance::mono(self.scx.tcx(), def_id);
1004                     self.output.push(TransItem::Fn(instance));
1005                 }
1006             }
1007             _ => { /* Nothing to do here */ }
1008         }
1009     }
1010 }
1011
1012 fn create_trans_items_for_default_impls<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
1013                                                   item: &'tcx hir::Item,
1014                                                   output: &mut Vec<TransItem<'tcx>>) {
1015     let tcx = scx.tcx();
1016     match item.node {
1017         hir::ItemImpl(_,
1018                       _,
1019                       ref generics,
1020                       ..,
1021                       ref impl_item_refs) => {
1022             if generics.is_type_parameterized() {
1023                 return
1024             }
1025
1026             let impl_def_id = tcx.hir.local_def_id(item.id);
1027
1028             debug!("create_trans_items_for_default_impls(item={})",
1029                    def_id_to_string(tcx, impl_def_id));
1030
1031             if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) {
1032                 let callee_substs = tcx.erase_regions(&trait_ref.substs);
1033                 let overridden_methods: FxHashSet<_> =
1034                     impl_item_refs.iter()
1035                                   .map(|iiref| iiref.name)
1036                                   .collect();
1037                 for method in tcx.provided_trait_methods(trait_ref.def_id) {
1038                     if overridden_methods.contains(&method.name) {
1039                         continue;
1040                     }
1041
1042                     if !tcx.item_generics(method.def_id).types.is_empty() {
1043                         continue;
1044                     }
1045
1046                     let instance =
1047                         monomorphize::resolve(scx, method.def_id, callee_substs);
1048
1049                     let predicates = tcx.item_predicates(instance.def_id()).predicates
1050                         .subst(tcx, instance.substs);
1051                     if !traits::normalize_and_test_predicates(tcx, predicates) {
1052                         continue;
1053                     }
1054
1055                     if should_trans_locally(tcx, &instance) {
1056                         output.push(create_fn_trans_item(instance));
1057                     }
1058                 }
1059             }
1060         }
1061         _ => {
1062             bug!()
1063         }
1064     }
1065 }
1066
1067 /// Scan the MIR in order to find function calls, closures, and drop-glue
1068 fn collect_neighbours<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
1069                                 instance: Instance<'tcx>,
1070                                 output: &mut Vec<TransItem<'tcx>>)
1071 {
1072     let mir = scx.tcx().instance_mir(instance.def);
1073
1074     let mut visitor = MirNeighborCollector {
1075         scx: scx,
1076         mir: &mir,
1077         output: output,
1078         param_substs: instance.substs
1079     };
1080
1081     visitor.visit_mir(&mir);
1082     for promoted in &mir.promoted {
1083         visitor.mir = promoted;
1084         visitor.visit_mir(promoted);
1085     }
1086 }
1087
1088 fn def_id_to_string<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1089                               def_id: DefId)
1090                               -> String {
1091     let mut output = String::new();
1092     let printer = DefPathBasedNames::new(tcx, false, false);
1093     printer.push_def_path(def_id, &mut output);
1094     output
1095 }
1096
1097 fn type_to_string<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1098                             ty: ty::Ty<'tcx>)
1099                             -> String {
1100     let mut output = String::new();
1101     let printer = DefPathBasedNames::new(tcx, false, false);
1102     printer.push_type_name(ty, &mut output);
1103     output
1104 }