]> git.lizzy.rs Git - rust.git/blob - src/librustc_trans/collector.rs
resolve instances to ty::Instance directly
[rust.git] / src / librustc_trans / collector.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Translation Item Collection
12 //! ===========================
13 //!
14 //! This module is responsible for discovering all items that will contribute to
15 //! to code generation of the crate. The important part here is that it not only
16 //! needs to find syntax-level items (functions, structs, etc) but also all
17 //! their monomorphized instantiations. Every non-generic, non-const function
18 //! maps to one LLVM artifact. Every generic function can produce
19 //! from zero to N artifacts, depending on the sets of type arguments it
20 //! is instantiated with.
21 //! This also applies to generic items from other crates: A generic definition
22 //! in crate X might produce monomorphizations that are compiled into crate Y.
23 //! We also have to collect these here.
24 //!
25 //! The following kinds of "translation items" are handled here:
26 //!
27 //! - Functions
28 //! - Methods
29 //! - Closures
30 //! - Statics
31 //! - Drop glue
32 //!
33 //! The following things also result in LLVM artifacts, but are not collected
34 //! here, since we instantiate them locally on demand when needed in a given
35 //! codegen unit:
36 //!
37 //! - Constants
38 //! - Vtables
39 //! - Object Shims
40 //!
41 //!
42 //! General Algorithm
43 //! -----------------
44 //! Let's define some terms first:
45 //!
46 //! - A "translation item" is something that results in a function or global in
47 //!   the LLVM IR of a codegen unit. Translation items do not stand on their
48 //!   own, they can reference other translation items. For example, if function
49 //!   `foo()` calls function `bar()` then the translation item for `foo()`
50 //!   references the translation item for function `bar()`. In general, the
51 //!   definition for translation item A referencing a translation item B is that
52 //!   the LLVM artifact produced for A references the LLVM artifact produced
53 //!   for B.
54 //!
55 //! - Translation items and the references between them form a directed graph,
56 //!   where the translation items are the nodes and references form the edges.
57 //!   Let's call this graph the "translation item graph".
58 //!
59 //! - The translation item graph for a program contains all translation items
60 //!   that are needed in order to produce the complete LLVM IR of the program.
61 //!
62 //! The purpose of the algorithm implemented in this module is to build the
63 //! translation item graph for the current crate. It runs in two phases:
64 //!
65 //! 1. Discover the roots of the graph by traversing the HIR of the crate.
66 //! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
67 //!    representation of the item corresponding to a given node, until no more
68 //!    new nodes are found.
69 //!
70 //! ### Discovering roots
71 //!
72 //! The roots of the translation item graph correspond to the non-generic
73 //! syntactic items in the source code. We find them by walking the HIR of the
74 //! crate, and whenever we hit upon a function, method, or static item, we
75 //! create a translation item consisting of the items DefId and, since we only
76 //! consider non-generic items, an empty type-substitution set.
77 //!
78 //! ### Finding neighbor nodes
79 //! Given a translation item node, we can discover neighbors by inspecting its
80 //! MIR. We walk the MIR and any time we hit upon something that signifies a
81 //! reference to another translation item, we have found a neighbor. Since the
82 //! translation item we are currently at is always monomorphic, we also know the
83 //! concrete type arguments of its neighbors, and so all neighbors again will be
84 //! monomorphic. The specific forms a reference to a neighboring node can take
85 //! in MIR are quite diverse. Here is an overview:
86 //!
87 //! #### Calling Functions/Methods
88 //! The most obvious form of one translation item referencing another is a
89 //! function or method call (represented by a CALL terminator in MIR). But
90 //! calls are not the only thing that might introduce a reference between two
91 //! function translation items, and as we will see below, they are just a
92 //! specialized of the form described next, and consequently will don't get any
93 //! special treatment in the algorithm.
94 //!
95 //! #### Taking a reference to a function or method
96 //! A function does not need to actually be called in order to be a neighbor of
97 //! another function. It suffices to just take a reference in order to introduce
98 //! an edge. Consider the following example:
99 //!
100 //! ```rust
101 //! fn print_val<T: Display>(x: T) {
102 //!     println!("{}", x);
103 //! }
104 //!
105 //! fn call_fn(f: &Fn(i32), x: i32) {
106 //!     f(x);
107 //! }
108 //!
109 //! fn main() {
110 //!     let print_i32 = print_val::<i32>;
111 //!     call_fn(&print_i32, 0);
112 //! }
113 //! ```
114 //! The MIR of none of these functions will contain an explicit call to
115 //! `print_val::<i32>`. Nonetheless, in order to translate this program, we need
116 //! an instance of this function. Thus, whenever we encounter a function or
117 //! method in operand position, we treat it as a neighbor of the current
118 //! translation item. Calls are just a special case of that.
119 //!
120 //! #### Closures
121 //! In a way, closures are a simple case. Since every closure object needs to be
122 //! constructed somewhere, we can reliably discover them by observing
123 //! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
124 //! true for closures inlined from other crates.
125 //!
126 //! #### Drop glue
127 //! Drop glue translation items are introduced by MIR drop-statements. The
128 //! generated translation item will again have drop-glue item neighbors if the
129 //! type to be dropped contains nested values that also need to be dropped. It
130 //! might also have a function item neighbor for the explicit `Drop::drop`
131 //! implementation of its type.
132 //!
133 //! #### Unsizing Casts
134 //! A subtle way of introducing neighbor edges is by casting to a trait object.
135 //! Since the resulting fat-pointer contains a reference to a vtable, we need to
136 //! instantiate all object-save methods of the trait, as we need to store
137 //! pointers to these functions even if they never get called anywhere. This can
138 //! be seen as a special case of taking a function reference.
139 //!
140 //! #### Boxes
141 //! Since `Box` expression have special compiler support, no explicit calls to
142 //! `exchange_malloc()` and `exchange_free()` may show up in MIR, even if the
143 //! compiler will generate them. We have to observe `Rvalue::Box` expressions
144 //! and Box-typed drop-statements for that purpose.
145 //!
146 //!
147 //! Interaction with Cross-Crate Inlining
148 //! -------------------------------------
149 //! The binary of a crate will not only contain machine code for the items
150 //! defined in the source code of that crate. It will also contain monomorphic
151 //! instantiations of any extern generic functions and of functions marked with
152 //! #[inline].
153 //! The collection algorithm handles this more or less transparently. If it is
154 //! about to create a translation item for something with an external `DefId`,
155 //! it will take a look if the MIR for that item is available, and if so just
156 //! proceed normally. If the MIR is not available, it assumes that the item is
157 //! just linked to and no node is created; which is exactly what we want, since
158 //! no machine code should be generated in the current crate for such an item.
159 //!
160 //! Eager and Lazy Collection Mode
161 //! ------------------------------
162 //! Translation item collection can be performed in one of two modes:
163 //!
164 //! - Lazy mode means that items will only be instantiated when actually
165 //!   referenced. The goal is to produce the least amount of machine code
166 //!   possible.
167 //!
168 //! - Eager mode is meant to be used in conjunction with incremental compilation
169 //!   where a stable set of translation items is more important than a minimal
170 //!   one. Thus, eager mode will instantiate drop-glue for every drop-able type
171 //!   in the crate, even of no drop call for that type exists (yet). It will
172 //!   also instantiate default implementations of trait methods, something that
173 //!   otherwise is only done on demand.
174 //!
175 //!
176 //! Open Issues
177 //! -----------
178 //! Some things are not yet fully implemented in the current version of this
179 //! module.
180 //!
181 //! ### Initializers of Constants and Statics
182 //! Since no MIR is constructed yet for initializer expressions of constants and
183 //! statics we cannot inspect these properly.
184 //!
185 //! ### Const Fns
186 //! Ideally, no translation item should be generated for const fns unless there
187 //! is a call to them that cannot be evaluated at compile time. At the moment
188 //! this is not implemented however: a translation item will be produced
189 //! regardless of whether it is actually needed or not.
190
191 use rustc::hir;
192 use rustc::hir::itemlikevisit::ItemLikeVisitor;
193
194 use rustc::hir::map as hir_map;
195 use rustc::hir::def_id::DefId;
196 use rustc::middle::lang_items::{BoxFreeFnLangItem, ExchangeMallocFnLangItem};
197 use rustc::traits;
198 use rustc::ty::subst::{Kind, Substs, Subst};
199 use rustc::ty::{self, TypeFoldable, TyCtxt};
200 use rustc::ty::adjustment::CustomCoerceUnsized;
201 use rustc::mir::{self, Location};
202 use rustc::mir::visit as mir_visit;
203 use rustc::mir::visit::Visitor as MirVisitor;
204
205 use syntax::abi::Abi;
206 use context::SharedCrateContext;
207 use common::{def_ty, instance_ty};
208 use glue::{self, DropGlueKind};
209 use monomorphize::{self, Instance};
210 use util::nodemap::{FxHashSet, FxHashMap, DefIdMap};
211
212 use trans_item::{TransItem, DefPathBasedNames, InstantiationMode};
213
214 use std::iter;
215
216 #[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)]
217 pub enum TransItemCollectionMode {
218     Eager,
219     Lazy
220 }
221
222 /// Maps every translation item to all translation items it references in its
223 /// body.
224 pub struct InliningMap<'tcx> {
225     // Maps a source translation item to a range of target translation items
226     // that are potentially inlined by LLVM into the source.
227     // The two numbers in the tuple are the start (inclusive) and
228     // end index (exclusive) within the `targets` vecs.
229     index: FxHashMap<TransItem<'tcx>, (usize, usize)>,
230     targets: Vec<TransItem<'tcx>>,
231 }
232
233 impl<'tcx> InliningMap<'tcx> {
234
235     fn new() -> InliningMap<'tcx> {
236         InliningMap {
237             index: FxHashMap(),
238             targets: Vec::new(),
239         }
240     }
241
242     fn record_inlining_canditates<I>(&mut self,
243                                      source: TransItem<'tcx>,
244                                      targets: I)
245         where I: Iterator<Item=TransItem<'tcx>>
246     {
247         assert!(!self.index.contains_key(&source));
248
249         let start_index = self.targets.len();
250         self.targets.extend(targets);
251         let end_index = self.targets.len();
252         self.index.insert(source, (start_index, end_index));
253     }
254
255     // Internally iterate over all items referenced by `source` which will be
256     // made available for inlining.
257     pub fn with_inlining_candidates<F>(&self, source: TransItem<'tcx>, mut f: F)
258         where F: FnMut(TransItem<'tcx>) {
259         if let Some(&(start_index, end_index)) = self.index.get(&source)
260         {
261             for candidate in &self.targets[start_index .. end_index] {
262                 f(*candidate)
263             }
264         }
265     }
266 }
267
268 pub fn collect_crate_translation_items<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
269                                                  mode: TransItemCollectionMode)
270                                                  -> (FxHashSet<TransItem<'tcx>>,
271                                                      InliningMap<'tcx>) {
272     // We are not tracking dependencies of this pass as it has to be re-executed
273     // every time no matter what.
274     scx.tcx().dep_graph.with_ignore(|| {
275         let roots = collect_roots(scx, mode);
276
277         debug!("Building translation item graph, beginning at roots");
278         let mut visited = FxHashSet();
279         let mut recursion_depths = DefIdMap();
280         let mut inlining_map = InliningMap::new();
281
282         for root in roots {
283             collect_items_rec(scx,
284                               root,
285                               &mut visited,
286                               &mut recursion_depths,
287                               &mut inlining_map);
288         }
289
290         (visited, inlining_map)
291     })
292 }
293
294 // Find all non-generic items by walking the HIR. These items serve as roots to
295 // start monomorphizing from.
296 fn collect_roots<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
297                            mode: TransItemCollectionMode)
298                            -> Vec<TransItem<'tcx>> {
299     debug!("Collecting roots");
300     let mut roots = Vec::new();
301
302     {
303         let mut visitor = RootCollector {
304             scx: scx,
305             mode: mode,
306             output: &mut roots,
307         };
308
309         scx.tcx().hir.krate().visit_all_item_likes(&mut visitor);
310     }
311
312     roots
313 }
314
315 // Collect all monomorphized translation items reachable from `starting_point`
316 fn collect_items_rec<'a, 'tcx: 'a>(scx: &SharedCrateContext<'a, 'tcx>,
317                                    starting_point: TransItem<'tcx>,
318                                    visited: &mut FxHashSet<TransItem<'tcx>>,
319                                    recursion_depths: &mut DefIdMap<usize>,
320                                    inlining_map: &mut InliningMap<'tcx>) {
321     if !visited.insert(starting_point.clone()) {
322         // We've been here already, no need to search again.
323         return;
324     }
325     debug!("BEGIN collect_items_rec({})", starting_point.to_string(scx.tcx()));
326
327     let mut neighbors = Vec::new();
328     let recursion_depth_reset;
329
330     match starting_point {
331         TransItem::DropGlue(t) => {
332             find_drop_glue_neighbors(scx, t, &mut neighbors);
333             recursion_depth_reset = None;
334         }
335         TransItem::Static(node_id) => {
336             let def_id = scx.tcx().hir.local_def_id(node_id);
337             let instance = Instance::mono(scx.tcx(), def_id);
338
339             // Sanity check whether this ended up being collected accidentally
340             debug_assert!(should_trans_locally(scx.tcx(), &instance));
341
342             let ty = instance_ty(scx, &instance);
343             let ty = glue::get_drop_glue_type(scx, ty);
344             neighbors.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
345
346             recursion_depth_reset = None;
347
348             collect_neighbours(scx, instance, &mut neighbors);
349         }
350         TransItem::Fn(instance) => {
351             // Sanity check whether this ended up being collected accidentally
352             debug_assert!(should_trans_locally(scx.tcx(), &instance));
353
354             // Keep track of the monomorphization recursion depth
355             recursion_depth_reset = Some(check_recursion_limit(scx.tcx(),
356                                                                instance,
357                                                                recursion_depths));
358             check_type_length_limit(scx.tcx(), instance);
359
360             collect_neighbours(scx, instance, &mut neighbors);
361         }
362     }
363
364     record_inlining_canditates(scx.tcx(), starting_point, &neighbors[..], inlining_map);
365
366     for neighbour in neighbors {
367         collect_items_rec(scx, neighbour, visited, recursion_depths, inlining_map);
368     }
369
370     if let Some((def_id, depth)) = recursion_depth_reset {
371         recursion_depths.insert(def_id, depth);
372     }
373
374     debug!("END collect_items_rec({})", starting_point.to_string(scx.tcx()));
375 }
376
377 fn record_inlining_canditates<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
378                                         caller: TransItem<'tcx>,
379                                         callees: &[TransItem<'tcx>],
380                                         inlining_map: &mut InliningMap<'tcx>) {
381     let is_inlining_candidate = |trans_item: &TransItem<'tcx>| {
382         trans_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy
383     };
384
385     let inlining_candidates = callees.into_iter()
386                                      .map(|x| *x)
387                                      .filter(is_inlining_candidate);
388
389     inlining_map.record_inlining_canditates(caller, inlining_candidates);
390 }
391
392 fn check_recursion_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
393                                    instance: Instance<'tcx>,
394                                    recursion_depths: &mut DefIdMap<usize>)
395                                    -> (DefId, usize) {
396     let def_id = instance.def_id();
397     let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
398     debug!(" => recursion depth={}", recursion_depth);
399
400     // Code that needs to instantiate the same function recursively
401     // more than the recursion limit is assumed to be causing an
402     // infinite expansion.
403     if recursion_depth > tcx.sess.recursion_limit.get() {
404         let error = format!("reached the recursion limit while instantiating `{}`",
405                             instance);
406         if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
407             tcx.sess.span_fatal(tcx.hir.span(node_id), &error);
408         } else {
409             tcx.sess.fatal(&error);
410         }
411     }
412
413     recursion_depths.insert(def_id, recursion_depth + 1);
414
415     (def_id, recursion_depth)
416 }
417
418 fn check_type_length_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
419                                      instance: Instance<'tcx>)
420 {
421     let type_length = instance.substs.types().flat_map(|ty| ty.walk()).count();
422     debug!(" => type length={}", type_length);
423
424     // Rust code can easily create exponentially-long types using only a
425     // polynomial recursion depth. Even with the default recursion
426     // depth, you can easily get cases that take >2^60 steps to run,
427     // which means that rustc basically hangs.
428     //
429     // Bail out in these cases to avoid that bad user experience.
430     let type_length_limit = tcx.sess.type_length_limit.get();
431     if type_length > type_length_limit {
432         // The instance name is already known to be too long for rustc. Use
433         // `{:.64}` to avoid blasting the user's terminal with thousands of
434         // lines of type-name.
435         let instance_name = instance.to_string();
436         let msg = format!("reached the type-length limit while instantiating `{:.64}...`",
437                           instance_name);
438         let mut diag = if let Some(node_id) = tcx.hir.as_local_node_id(instance.def_id()) {
439             tcx.sess.struct_span_fatal(tcx.hir.span(node_id), &msg)
440         } else {
441             tcx.sess.struct_fatal(&msg)
442         };
443
444         diag.note(&format!(
445             "consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
446             type_length_limit*2));
447         diag.emit();
448         tcx.sess.abort_if_errors();
449     }
450 }
451
452 struct MirNeighborCollector<'a, 'tcx: 'a> {
453     scx: &'a SharedCrateContext<'a, 'tcx>,
454     mir: &'a mir::Mir<'tcx>,
455     output: &'a mut Vec<TransItem<'tcx>>,
456     param_substs: &'tcx Substs<'tcx>
457 }
458
459 impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
460
461     fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
462         debug!("visiting rvalue {:?}", *rvalue);
463
464         match *rvalue {
465             // When doing an cast from a regular pointer to a fat pointer, we
466             // have to instantiate all methods of the trait being cast to, so we
467             // can build the appropriate vtable.
468             mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, target_ty) => {
469                 let target_ty = monomorphize::apply_param_substs(self.scx,
470                                                                  self.param_substs,
471                                                                  &target_ty);
472                 let source_ty = operand.ty(self.mir, self.scx.tcx());
473                 let source_ty = monomorphize::apply_param_substs(self.scx,
474                                                                  self.param_substs,
475                                                                  &source_ty);
476                 let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.scx,
477                                                                             source_ty,
478                                                                             target_ty);
479                 // This could also be a different Unsize instruction, like
480                 // from a fixed sized array to a slice. But we are only
481                 // interested in things that produce a vtable.
482                 if target_ty.is_trait() && !source_ty.is_trait() {
483                     create_trans_items_for_vtable_methods(self.scx,
484                                                           target_ty,
485                                                           source_ty,
486                                                           self.output);
487                 }
488             }
489             mir::Rvalue::Cast(mir::CastKind::ClosureFnPointer, ref operand, _) => {
490                 let source_ty = operand.ty(self.mir, self.scx.tcx());
491                 match source_ty.sty {
492                     ty::TyClosure(def_id, substs) => {
493                         let substs = monomorphize::apply_param_substs(
494                             self.scx, self.param_substs, &substs.substs);
495                         self.output.push(create_fn_trans_item(
496                             Instance::new(def_id, substs)
497                         ));
498                     }
499                     _ => bug!(),
500                 }
501             }
502             mir::Rvalue::Box(..) => {
503                 let tcx = self.scx.tcx();
504                 let exchange_malloc_fn_def_id = tcx
505                     .lang_items
506                     .require(ExchangeMallocFnLangItem)
507                     .unwrap_or_else(|e| self.scx.sess().fatal(&e));
508                 let instance = Instance::mono(tcx, exchange_malloc_fn_def_id);
509                 if should_trans_locally(tcx, &instance) {
510                     self.output.push(create_fn_trans_item(instance));
511                 }
512             }
513             _ => { /* not interesting */ }
514         }
515
516         self.super_rvalue(rvalue, location);
517     }
518
519     fn visit_lvalue(&mut self,
520                     lvalue: &mir::Lvalue<'tcx>,
521                     context: mir_visit::LvalueContext<'tcx>,
522                     location: Location) {
523         debug!("visiting lvalue {:?}", *lvalue);
524
525         if let mir_visit::LvalueContext::Drop = context {
526             let ty = lvalue.ty(self.mir, self.scx.tcx())
527                            .to_ty(self.scx.tcx());
528
529             let ty = monomorphize::apply_param_substs(self.scx,
530                                                       self.param_substs,
531                                                       &ty);
532             assert!(ty.is_normalized_for_trans());
533             let ty = glue::get_drop_glue_type(self.scx, ty);
534             self.output.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
535         }
536
537         self.super_lvalue(lvalue, context, location);
538     }
539
540     fn visit_operand(&mut self, operand: &mir::Operand<'tcx>, location: Location) {
541         debug!("visiting operand {:?}", *operand);
542
543         let callee = match *operand {
544             mir::Operand::Constant(ref constant) => {
545                 if let ty::TyFnDef(def_id, substs, _) = constant.ty.sty {
546                     // This is something that can act as a callee, proceed
547                     Some((def_id, substs))
548                 } else {
549                     // This is not a callee, but we still have to look for
550                     // references to `const` items
551                     if let mir::Literal::Item { def_id, substs } = constant.literal {
552                         let substs = monomorphize::apply_param_substs(self.scx,
553                                                                       self.param_substs,
554                                                                       &substs);
555                         let instance = monomorphize::resolve(self.scx, def_id, substs);
556                         collect_neighbours(self.scx, instance, self.output);
557                     }
558
559                     None
560                 }
561             }
562             _ => None
563         };
564
565         if let Some((callee_def_id, callee_substs)) = callee {
566             debug!(" => operand is callable");
567
568             // `callee_def_id` might refer to a trait method instead of a
569             // concrete implementation, so we have to find the actual
570             // implementation. For example, the call might look like
571             //
572             // std::cmp::partial_cmp(0i32, 1i32)
573             //
574             // Calling do_static_dispatch() here will map the def_id of
575             // `std::cmp::partial_cmp` to the def_id of `i32::partial_cmp<i32>`
576
577             let callee_substs = monomorphize::apply_param_substs(self.scx,
578                                                                  self.param_substs,
579                                                                  &callee_substs);
580             let instance =
581                 monomorphize::resolve(self.scx, callee_def_id, callee_substs);
582             if should_trans_locally(self.scx.tcx(), &instance) {
583                 if let ty::InstanceDef::ClosureOnceShim { .. } = instance.def {
584                     // This call will instantiate an FnOnce adapter, which
585                     // drops the closure environment. Therefore we need to
586                     // make sure that we collect the drop-glue for the
587                     // environment type.
588
589                     let env_ty = instance.substs.type_at(0);
590                     let env_ty = glue::get_drop_glue_type(self.scx, env_ty);
591                     if self.scx.type_needs_drop(env_ty) {
592                         let dg = DropGlueKind::Ty(env_ty);
593                         self.output.push(TransItem::DropGlue(dg));
594                     }
595                 }
596                 self.output.push(create_fn_trans_item(instance));
597             }
598         }
599
600         self.super_operand(operand, location);
601     }
602
603     // This takes care of the "drop_in_place" intrinsic for which we otherwise
604     // we would not register drop-glues.
605     fn visit_terminator_kind(&mut self,
606                              block: mir::BasicBlock,
607                              kind: &mir::TerminatorKind<'tcx>,
608                              location: Location) {
609         let tcx = self.scx.tcx();
610         match *kind {
611             mir::TerminatorKind::Call {
612                 func: mir::Operand::Constant(ref constant),
613                 ref args,
614                 ..
615             } => {
616                 match constant.ty.sty {
617                     ty::TyFnDef(def_id, _, bare_fn_ty)
618                         if is_drop_in_place_intrinsic(tcx, def_id, bare_fn_ty) => {
619                         let operand_ty = args[0].ty(self.mir, tcx);
620                         if let ty::TyRawPtr(mt) = operand_ty.sty {
621                             let operand_ty = monomorphize::apply_param_substs(self.scx,
622                                                                               self.param_substs,
623                                                                               &mt.ty);
624                             let ty = glue::get_drop_glue_type(self.scx, operand_ty);
625                             self.output.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
626                         } else {
627                             bug!("Has the drop_in_place() intrinsic's signature changed?")
628                         }
629                     }
630                     _ => { /* Nothing to do. */ }
631                 }
632             }
633             _ => { /* Nothing to do. */ }
634         }
635
636         self.super_terminator_kind(block, kind, location);
637
638         fn is_drop_in_place_intrinsic<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
639                                                 def_id: DefId,
640                                                 bare_fn_ty: ty::PolyFnSig<'tcx>)
641                                                 -> bool {
642             (bare_fn_ty.abi() == Abi::RustIntrinsic ||
643              bare_fn_ty.abi() == Abi::PlatformIntrinsic) &&
644             tcx.item_name(def_id) == "drop_in_place"
645         }
646     }
647 }
648
649 // Returns true if we should translate an instance in the local crate.
650 // Returns false if we can just link to the upstream crate and therefore don't
651 // need a translation item.
652 fn should_trans_locally<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: &Instance<'tcx>)
653                                   -> bool {
654     let def_id = match instance.def {
655         ty::InstanceDef::Item(def_id) |
656         ty::InstanceDef::ClosureOnceShim {
657             call_once: _, closure_did: def_id
658         } => def_id,
659         ty::InstanceDef::FnPtrShim(..) => return true,
660         ty::InstanceDef::Virtual(..) |
661         ty::InstanceDef::Intrinsic(_) => return false
662     };
663     match tcx.hir.get_if_local(def_id) {
664         Some(hir_map::NodeForeignItem(..)) => {
665             false // foreign items are linked against, not translated.
666         }
667         Some(_) => true,
668         None => {
669             if tcx.sess.cstore.is_exported_symbol(def_id) ||
670                 tcx.sess.cstore.is_foreign_item(def_id)
671             {
672                 // We can link to the item in question, no instance needed
673                 // in this crate
674                 false
675             } else {
676                 if !tcx.sess.cstore.is_item_mir_available(def_id) {
677                     bug!("Cannot create local trans-item for {:?}", def_id)
678                 }
679                 true
680             }
681         }
682     }
683 }
684
685 fn find_drop_glue_neighbors<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
686                                       dg: DropGlueKind<'tcx>,
687                                       output: &mut Vec<TransItem<'tcx>>) {
688     let ty = match dg {
689         DropGlueKind::Ty(ty) => ty,
690         DropGlueKind::TyContents(_) => {
691             // We already collected the neighbors of this item via the
692             // DropGlueKind::Ty variant.
693             return
694         }
695     };
696
697     debug!("find_drop_glue_neighbors: {}", type_to_string(scx.tcx(), ty));
698
699     // Make sure the BoxFreeFn lang-item gets translated if there is a boxed value.
700     if ty.is_box() {
701         let tcx = scx.tcx();
702         let def_id = tcx.require_lang_item(BoxFreeFnLangItem);
703         let box_free_instance = Instance::new(
704             def_id,
705             tcx.mk_substs(iter::once(Kind::from(ty.boxed_ty())))
706         );
707         if should_trans_locally(tcx, &box_free_instance) {
708             output.push(create_fn_trans_item(box_free_instance));
709         }
710     }
711
712     // If the type implements Drop, also add a translation item for the
713     // monomorphized Drop::drop() implementation.
714     let has_dtor = match ty.sty {
715         ty::TyAdt(def, _) => def.has_dtor(scx.tcx()),
716         _ => false
717     };
718
719     if has_dtor && !ty.is_box() {
720         let drop_trait_def_id = scx.tcx()
721                                    .lang_items
722                                    .drop_trait()
723                                    .unwrap();
724         let drop_method = scx.tcx().associated_items(drop_trait_def_id)
725             .find(|it| it.kind == ty::AssociatedKind::Method)
726             .unwrap().def_id;
727         let substs = scx.tcx().mk_substs_trait(ty, &[]);
728         let instance = monomorphize::resolve(scx, drop_method, substs);
729         if should_trans_locally(scx.tcx(), &instance) {
730             output.push(create_fn_trans_item(instance));
731         }
732
733         // This type has a Drop implementation, we'll need the contents-only
734         // version of the glue too.
735         output.push(TransItem::DropGlue(DropGlueKind::TyContents(ty)));
736     }
737
738     // Finally add the types of nested values
739     match ty.sty {
740         ty::TyBool      |
741         ty::TyChar      |
742         ty::TyInt(_)    |
743         ty::TyUint(_)   |
744         ty::TyStr       |
745         ty::TyFloat(_)  |
746         ty::TyRawPtr(_) |
747         ty::TyRef(..)   |
748         ty::TyFnDef(..) |
749         ty::TyFnPtr(_)  |
750         ty::TyNever     |
751         ty::TyDynamic(..)  => {
752             /* nothing to do */
753         }
754         ty::TyAdt(def, _) if def.is_box() => {
755             let inner_type = glue::get_drop_glue_type(scx, ty.boxed_ty());
756             if scx.type_needs_drop(inner_type) {
757                 output.push(TransItem::DropGlue(DropGlueKind::Ty(inner_type)));
758             }
759         }
760         ty::TyAdt(def, substs) => {
761             for field in def.all_fields() {
762                 let field_type = def_ty(scx, field.did, substs);
763                 let field_type = glue::get_drop_glue_type(scx, field_type);
764
765                 if scx.type_needs_drop(field_type) {
766                     output.push(TransItem::DropGlue(DropGlueKind::Ty(field_type)));
767                 }
768             }
769         }
770         ty::TyClosure(def_id, substs) => {
771             for upvar_ty in substs.upvar_tys(def_id, scx.tcx()) {
772                 let upvar_ty = glue::get_drop_glue_type(scx, upvar_ty);
773                 if scx.type_needs_drop(upvar_ty) {
774                     output.push(TransItem::DropGlue(DropGlueKind::Ty(upvar_ty)));
775                 }
776             }
777         }
778         ty::TySlice(inner_type)    |
779         ty::TyArray(inner_type, _) => {
780             let inner_type = glue::get_drop_glue_type(scx, inner_type);
781             if scx.type_needs_drop(inner_type) {
782                 output.push(TransItem::DropGlue(DropGlueKind::Ty(inner_type)));
783             }
784         }
785         ty::TyTuple(args, _) => {
786             for arg in args {
787                 let arg = glue::get_drop_glue_type(scx, arg);
788                 if scx.type_needs_drop(arg) {
789                     output.push(TransItem::DropGlue(DropGlueKind::Ty(arg)));
790                 }
791             }
792         }
793         ty::TyProjection(_) |
794         ty::TyParam(_)      |
795         ty::TyInfer(_)      |
796         ty::TyAnon(..)      |
797         ty::TyError         => {
798             bug!("encountered unexpected type");
799         }
800     }
801 }
802
803 /// For given pair of source and target type that occur in an unsizing coercion,
804 /// this function finds the pair of types that determines the vtable linking
805 /// them.
806 ///
807 /// For example, the source type might be `&SomeStruct` and the target type\
808 /// might be `&SomeTrait` in a cast like:
809 ///
810 /// let src: &SomeStruct = ...;
811 /// let target = src as &SomeTrait;
812 ///
813 /// Then the output of this function would be (SomeStruct, SomeTrait) since for
814 /// constructing the `target` fat-pointer we need the vtable for that pair.
815 ///
816 /// Things can get more complicated though because there's also the case where
817 /// the unsized type occurs as a field:
818 ///
819 /// ```rust
820 /// struct ComplexStruct<T: ?Sized> {
821 ///    a: u32,
822 ///    b: f64,
823 ///    c: T
824 /// }
825 /// ```
826 ///
827 /// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
828 /// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
829 /// for the pair of `T` (which is a trait) and the concrete type that `T` was
830 /// originally coerced from:
831 ///
832 /// let src: &ComplexStruct<SomeStruct> = ...;
833 /// let target = src as &ComplexStruct<SomeTrait>;
834 ///
835 /// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
836 /// `(SomeStruct, SomeTrait)`.
837 ///
838 /// Finally, there is also the case of custom unsizing coercions, e.g. for
839 /// smart pointers such as `Rc` and `Arc`.
840 fn find_vtable_types_for_unsizing<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
841                                             source_ty: ty::Ty<'tcx>,
842                                             target_ty: ty::Ty<'tcx>)
843                                             -> (ty::Ty<'tcx>, ty::Ty<'tcx>) {
844     let ptr_vtable = |inner_source: ty::Ty<'tcx>, inner_target: ty::Ty<'tcx>| {
845         if !scx.type_is_sized(inner_source) {
846             (inner_source, inner_target)
847         } else {
848             scx.tcx().struct_lockstep_tails(inner_source, inner_target)
849         }
850     };
851     match (&source_ty.sty, &target_ty.sty) {
852         (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
853          &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
854         (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
855          &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
856         (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
857          &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
858             ptr_vtable(a, b)
859         }
860         (&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
861             ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
862         }
863
864         (&ty::TyAdt(source_adt_def, source_substs),
865          &ty::TyAdt(target_adt_def, target_substs)) => {
866             assert_eq!(source_adt_def, target_adt_def);
867
868             let kind =
869                 monomorphize::custom_coerce_unsize_info(scx, source_ty, target_ty);
870
871             let coerce_index = match kind {
872                 CustomCoerceUnsized::Struct(i) => i
873             };
874
875             let source_fields = &source_adt_def.struct_variant().fields;
876             let target_fields = &target_adt_def.struct_variant().fields;
877
878             assert!(coerce_index < source_fields.len() &&
879                     source_fields.len() == target_fields.len());
880
881             find_vtable_types_for_unsizing(scx,
882                                            source_fields[coerce_index].ty(scx.tcx(),
883                                                                           source_substs),
884                                            target_fields[coerce_index].ty(scx.tcx(),
885                                                                           target_substs))
886         }
887         _ => bug!("find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
888                   source_ty,
889                   target_ty)
890     }
891 }
892
893 fn create_fn_trans_item<'a, 'tcx>(instance: Instance<'tcx>) -> TransItem<'tcx> {
894     debug!("create_fn_trans_item(instance={})", instance);
895     let instance = match instance.def {
896         ty::InstanceDef::ClosureOnceShim { .. } => {
897             // HACK: don't create ClosureOnce trans items for now
898             // have someone else generate the drop glue
899             let closure_ty = instance.substs.type_at(0);
900             match closure_ty.sty {
901                 ty::TyClosure(def_id, substs) => {
902                     Instance::new(def_id, substs.substs)
903                 }
904                 _ => bug!("bad closure instance {:?}", instance)
905             }
906         }
907         _ => instance
908     };
909     TransItem::Fn(instance)
910 }
911
912 /// Creates a `TransItem` for each method that is referenced by the vtable for
913 /// the given trait/impl pair.
914 fn create_trans_items_for_vtable_methods<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
915                                                    trait_ty: ty::Ty<'tcx>,
916                                                    impl_ty: ty::Ty<'tcx>,
917                                                    output: &mut Vec<TransItem<'tcx>>) {
918     assert!(!trait_ty.needs_subst() && !trait_ty.has_escaping_regions() &&
919             !impl_ty.needs_subst() && !impl_ty.has_escaping_regions());
920
921     if let ty::TyDynamic(ref trait_ty, ..) = trait_ty.sty {
922         if let Some(principal) = trait_ty.principal() {
923             let poly_trait_ref = principal.with_self_ty(scx.tcx(), impl_ty);
924             assert!(!poly_trait_ref.has_escaping_regions());
925
926             // Walk all methods of the trait, including those of its supertraits
927             let methods = traits::get_vtable_methods(scx.tcx(), poly_trait_ref);
928             let methods = methods.filter_map(|method| method)
929                 .map(|(def_id, substs)| monomorphize::resolve(scx, def_id, substs))
930                 .filter(|&instance| should_trans_locally(scx.tcx(), &instance))
931                 .map(|instance| create_fn_trans_item(instance));
932             output.extend(methods);
933         }
934         // Also add the destructor
935         let dg_type = glue::get_drop_glue_type(scx, impl_ty);
936         output.push(TransItem::DropGlue(DropGlueKind::Ty(dg_type)));
937     }
938 }
939
940 //=-----------------------------------------------------------------------------
941 // Root Collection
942 //=-----------------------------------------------------------------------------
943
944 struct RootCollector<'b, 'a: 'b, 'tcx: 'a + 'b> {
945     scx: &'b SharedCrateContext<'a, 'tcx>,
946     mode: TransItemCollectionMode,
947     output: &'b mut Vec<TransItem<'tcx>>,
948 }
949
950 impl<'b, 'a, 'v> ItemLikeVisitor<'v> for RootCollector<'b, 'a, 'v> {
951     fn visit_item(&mut self, item: &'v hir::Item) {
952         match item.node {
953             hir::ItemExternCrate(..) |
954             hir::ItemUse(..)         |
955             hir::ItemForeignMod(..)  |
956             hir::ItemTy(..)          |
957             hir::ItemDefaultImpl(..) |
958             hir::ItemTrait(..)       |
959             hir::ItemMod(..)         => {
960                 // Nothing to do, just keep recursing...
961             }
962
963             hir::ItemImpl(..) => {
964                 if self.mode == TransItemCollectionMode::Eager {
965                     create_trans_items_for_default_impls(self.scx,
966                                                          item,
967                                                          self.output);
968                 }
969             }
970
971             hir::ItemEnum(_, ref generics) |
972             hir::ItemStruct(_, ref generics) |
973             hir::ItemUnion(_, ref generics) => {
974                 if !generics.is_parameterized() {
975                     if self.mode == TransItemCollectionMode::Eager {
976                         let def_id = self.scx.tcx().hir.local_def_id(item.id);
977                         debug!("RootCollector: ADT drop-glue for {}",
978                                def_id_to_string(self.scx.tcx(), def_id));
979
980                         let ty = def_ty(self.scx, def_id, Substs::empty());
981                         let ty = glue::get_drop_glue_type(self.scx, ty);
982                         self.output.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
983                     }
984                 }
985             }
986             hir::ItemStatic(..) => {
987                 debug!("RootCollector: ItemStatic({})",
988                        def_id_to_string(self.scx.tcx(),
989                                         self.scx.tcx().hir.local_def_id(item.id)));
990                 self.output.push(TransItem::Static(item.id));
991             }
992             hir::ItemConst(..) => {
993                 // const items only generate translation items if they are
994                 // actually used somewhere. Just declaring them is insufficient.
995             }
996             hir::ItemFn(.., ref generics, _) => {
997                 if !generics.is_type_parameterized() {
998                     let def_id = self.scx.tcx().hir.local_def_id(item.id);
999
1000                     debug!("RootCollector: ItemFn({})",
1001                            def_id_to_string(self.scx.tcx(), def_id));
1002
1003                     let instance = Instance::mono(self.scx.tcx(), def_id);
1004                     self.output.push(TransItem::Fn(instance));
1005                 }
1006             }
1007         }
1008     }
1009
1010     fn visit_trait_item(&mut self, _: &'v hir::TraitItem) {
1011         // Even if there's a default body with no explicit generics,
1012         // it's still generic over some `Self: Trait`, so not a root.
1013     }
1014
1015     fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) {
1016         match ii.node {
1017             hir::ImplItemKind::Method(hir::MethodSig {
1018                 ref generics,
1019                 ..
1020             }, _) => {
1021                 let hir_map = &self.scx.tcx().hir;
1022                 let parent_node_id = hir_map.get_parent_node(ii.id);
1023                 let is_impl_generic = match hir_map.expect_item(parent_node_id) {
1024                     &hir::Item {
1025                         node: hir::ItemImpl(_, _, ref generics, ..),
1026                         ..
1027                     } => {
1028                         generics.is_type_parameterized()
1029                     }
1030                     _ => {
1031                         bug!()
1032                     }
1033                 };
1034
1035                 if !generics.is_type_parameterized() && !is_impl_generic {
1036                     let def_id = self.scx.tcx().hir.local_def_id(ii.id);
1037
1038                     debug!("RootCollector: MethodImplItem({})",
1039                            def_id_to_string(self.scx.tcx(), def_id));
1040
1041                     let instance = Instance::mono(self.scx.tcx(), def_id);
1042                     self.output.push(TransItem::Fn(instance));
1043                 }
1044             }
1045             _ => { /* Nothing to do here */ }
1046         }
1047     }
1048 }
1049
1050 fn create_trans_items_for_default_impls<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
1051                                                   item: &'tcx hir::Item,
1052                                                   output: &mut Vec<TransItem<'tcx>>) {
1053     let tcx = scx.tcx();
1054     match item.node {
1055         hir::ItemImpl(_,
1056                       _,
1057                       ref generics,
1058                       ..,
1059                       ref impl_item_refs) => {
1060             if generics.is_type_parameterized() {
1061                 return
1062             }
1063
1064             let impl_def_id = tcx.hir.local_def_id(item.id);
1065
1066             debug!("create_trans_items_for_default_impls(item={})",
1067                    def_id_to_string(tcx, impl_def_id));
1068
1069             if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) {
1070                 let callee_substs = tcx.erase_regions(&trait_ref.substs);
1071                 let overridden_methods: FxHashSet<_> =
1072                     impl_item_refs.iter()
1073                                   .map(|iiref| iiref.name)
1074                                   .collect();
1075                 for method in tcx.provided_trait_methods(trait_ref.def_id) {
1076                     if overridden_methods.contains(&method.name) {
1077                         continue;
1078                     }
1079
1080                     if !tcx.item_generics(method.def_id).types.is_empty() {
1081                         continue;
1082                     }
1083
1084                     let instance =
1085                         monomorphize::resolve(scx, method.def_id, callee_substs);
1086
1087                     let predicates = tcx.item_predicates(instance.def_id()).predicates
1088                         .subst(tcx, instance.substs);
1089                     if !traits::normalize_and_test_predicates(tcx, predicates) {
1090                         continue;
1091                     }
1092
1093                     if should_trans_locally(tcx, &instance) {
1094                         output.push(create_fn_trans_item(instance));
1095                     }
1096                 }
1097             }
1098         }
1099         _ => {
1100             bug!()
1101         }
1102     }
1103 }
1104
1105 /// Scan the MIR in order to find function calls, closures, and drop-glue
1106 fn collect_neighbours<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
1107                                 instance: Instance<'tcx>,
1108                                 output: &mut Vec<TransItem<'tcx>>)
1109 {
1110     let mir = scx.tcx().instance_mir(instance.def);
1111
1112     let mut visitor = MirNeighborCollector {
1113         scx: scx,
1114         mir: &mir,
1115         output: output,
1116         param_substs: instance.substs
1117     };
1118
1119     visitor.visit_mir(&mir);
1120     for promoted in &mir.promoted {
1121         visitor.mir = promoted;
1122         visitor.visit_mir(promoted);
1123     }
1124 }
1125
1126 fn def_id_to_string<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1127                               def_id: DefId)
1128                               -> String {
1129     let mut output = String::new();
1130     let printer = DefPathBasedNames::new(tcx, false, false);
1131     printer.push_def_path(def_id, &mut output);
1132     output
1133 }
1134
1135 fn type_to_string<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1136                             ty: ty::Ty<'tcx>)
1137                             -> String {
1138     let mut output = String::new();
1139     let printer = DefPathBasedNames::new(tcx, false, false);
1140     printer.push_type_name(ty, &mut output);
1141     output
1142 }