]> git.lizzy.rs Git - rust.git/blob - src/librustc_trans/collector.rs
move Instance to rustc and use it in the collector
[rust.git] / src / librustc_trans / collector.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Translation Item Collection
12 //! ===========================
13 //!
14 //! This module is responsible for discovering all items that will contribute to
15 //! to code generation of the crate. The important part here is that it not only
16 //! needs to find syntax-level items (functions, structs, etc) but also all
17 //! their monomorphized instantiations. Every non-generic, non-const function
18 //! maps to one LLVM artifact. Every generic function can produce
19 //! from zero to N artifacts, depending on the sets of type arguments it
20 //! is instantiated with.
21 //! This also applies to generic items from other crates: A generic definition
22 //! in crate X might produce monomorphizations that are compiled into crate Y.
23 //! We also have to collect these here.
24 //!
25 //! The following kinds of "translation items" are handled here:
26 //!
27 //! - Functions
28 //! - Methods
29 //! - Closures
30 //! - Statics
31 //! - Drop glue
32 //!
33 //! The following things also result in LLVM artifacts, but are not collected
34 //! here, since we instantiate them locally on demand when needed in a given
35 //! codegen unit:
36 //!
37 //! - Constants
38 //! - Vtables
39 //! - Object Shims
40 //!
41 //!
42 //! General Algorithm
43 //! -----------------
44 //! Let's define some terms first:
45 //!
46 //! - A "translation item" is something that results in a function or global in
47 //!   the LLVM IR of a codegen unit. Translation items do not stand on their
48 //!   own, they can reference other translation items. For example, if function
49 //!   `foo()` calls function `bar()` then the translation item for `foo()`
50 //!   references the translation item for function `bar()`. In general, the
51 //!   definition for translation item A referencing a translation item B is that
52 //!   the LLVM artifact produced for A references the LLVM artifact produced
53 //!   for B.
54 //!
55 //! - Translation items and the references between them form a directed graph,
56 //!   where the translation items are the nodes and references form the edges.
57 //!   Let's call this graph the "translation item graph".
58 //!
59 //! - The translation item graph for a program contains all translation items
60 //!   that are needed in order to produce the complete LLVM IR of the program.
61 //!
62 //! The purpose of the algorithm implemented in this module is to build the
63 //! translation item graph for the current crate. It runs in two phases:
64 //!
65 //! 1. Discover the roots of the graph by traversing the HIR of the crate.
66 //! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
67 //!    representation of the item corresponding to a given node, until no more
68 //!    new nodes are found.
69 //!
70 //! ### Discovering roots
71 //!
72 //! The roots of the translation item graph correspond to the non-generic
73 //! syntactic items in the source code. We find them by walking the HIR of the
74 //! crate, and whenever we hit upon a function, method, or static item, we
75 //! create a translation item consisting of the items DefId and, since we only
76 //! consider non-generic items, an empty type-substitution set.
77 //!
78 //! ### Finding neighbor nodes
79 //! Given a translation item node, we can discover neighbors by inspecting its
80 //! MIR. We walk the MIR and any time we hit upon something that signifies a
81 //! reference to another translation item, we have found a neighbor. Since the
82 //! translation item we are currently at is always monomorphic, we also know the
83 //! concrete type arguments of its neighbors, and so all neighbors again will be
84 //! monomorphic. The specific forms a reference to a neighboring node can take
85 //! in MIR are quite diverse. Here is an overview:
86 //!
87 //! #### Calling Functions/Methods
88 //! The most obvious form of one translation item referencing another is a
89 //! function or method call (represented by a CALL terminator in MIR). But
90 //! calls are not the only thing that might introduce a reference between two
91 //! function translation items, and as we will see below, they are just a
92 //! specialized of the form described next, and consequently will don't get any
93 //! special treatment in the algorithm.
94 //!
95 //! #### Taking a reference to a function or method
96 //! A function does not need to actually be called in order to be a neighbor of
97 //! another function. It suffices to just take a reference in order to introduce
98 //! an edge. Consider the following example:
99 //!
100 //! ```rust
101 //! fn print_val<T: Display>(x: T) {
102 //!     println!("{}", x);
103 //! }
104 //!
105 //! fn call_fn(f: &Fn(i32), x: i32) {
106 //!     f(x);
107 //! }
108 //!
109 //! fn main() {
110 //!     let print_i32 = print_val::<i32>;
111 //!     call_fn(&print_i32, 0);
112 //! }
113 //! ```
114 //! The MIR of none of these functions will contain an explicit call to
115 //! `print_val::<i32>`. Nonetheless, in order to translate this program, we need
116 //! an instance of this function. Thus, whenever we encounter a function or
117 //! method in operand position, we treat it as a neighbor of the current
118 //! translation item. Calls are just a special case of that.
119 //!
120 //! #### Closures
121 //! In a way, closures are a simple case. Since every closure object needs to be
122 //! constructed somewhere, we can reliably discover them by observing
123 //! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
124 //! true for closures inlined from other crates.
125 //!
126 //! #### Drop glue
127 //! Drop glue translation items are introduced by MIR drop-statements. The
128 //! generated translation item will again have drop-glue item neighbors if the
129 //! type to be dropped contains nested values that also need to be dropped. It
130 //! might also have a function item neighbor for the explicit `Drop::drop`
131 //! implementation of its type.
132 //!
133 //! #### Unsizing Casts
134 //! A subtle way of introducing neighbor edges is by casting to a trait object.
135 //! Since the resulting fat-pointer contains a reference to a vtable, we need to
136 //! instantiate all object-save methods of the trait, as we need to store
137 //! pointers to these functions even if they never get called anywhere. This can
138 //! be seen as a special case of taking a function reference.
139 //!
140 //! #### Boxes
141 //! Since `Box` expression have special compiler support, no explicit calls to
142 //! `exchange_malloc()` and `exchange_free()` may show up in MIR, even if the
143 //! compiler will generate them. We have to observe `Rvalue::Box` expressions
144 //! and Box-typed drop-statements for that purpose.
145 //!
146 //!
147 //! Interaction with Cross-Crate Inlining
148 //! -------------------------------------
149 //! The binary of a crate will not only contain machine code for the items
150 //! defined in the source code of that crate. It will also contain monomorphic
151 //! instantiations of any extern generic functions and of functions marked with
152 //! #[inline].
153 //! The collection algorithm handles this more or less transparently. If it is
154 //! about to create a translation item for something with an external `DefId`,
155 //! it will take a look if the MIR for that item is available, and if so just
156 //! proceed normally. If the MIR is not available, it assumes that the item is
157 //! just linked to and no node is created; which is exactly what we want, since
158 //! no machine code should be generated in the current crate for such an item.
159 //!
160 //! Eager and Lazy Collection Mode
161 //! ------------------------------
162 //! Translation item collection can be performed in one of two modes:
163 //!
164 //! - Lazy mode means that items will only be instantiated when actually
165 //!   referenced. The goal is to produce the least amount of machine code
166 //!   possible.
167 //!
168 //! - Eager mode is meant to be used in conjunction with incremental compilation
169 //!   where a stable set of translation items is more important than a minimal
170 //!   one. Thus, eager mode will instantiate drop-glue for every drop-able type
171 //!   in the crate, even of no drop call for that type exists (yet). It will
172 //!   also instantiate default implementations of trait methods, something that
173 //!   otherwise is only done on demand.
174 //!
175 //!
176 //! Open Issues
177 //! -----------
178 //! Some things are not yet fully implemented in the current version of this
179 //! module.
180 //!
181 //! ### Initializers of Constants and Statics
182 //! Since no MIR is constructed yet for initializer expressions of constants and
183 //! statics we cannot inspect these properly.
184 //!
185 //! ### Const Fns
186 //! Ideally, no translation item should be generated for const fns unless there
187 //! is a call to them that cannot be evaluated at compile time. At the moment
188 //! this is not implemented however: a translation item will be produced
189 //! regardless of whether it is actually needed or not.
190
191 use rustc::hir;
192 use rustc::hir::itemlikevisit::ItemLikeVisitor;
193
194 use rustc::hir::map as hir_map;
195 use rustc::hir::def_id::DefId;
196 use rustc::middle::lang_items::{BoxFreeFnLangItem, ExchangeMallocFnLangItem};
197 use rustc::traits;
198 use rustc::ty::subst::{Kind, Substs, Subst};
199 use rustc::ty::{self, TypeFoldable, TyCtxt};
200 use rustc::ty::adjustment::CustomCoerceUnsized;
201 use rustc::mir::{self, Location};
202 use rustc::mir::visit as mir_visit;
203 use rustc::mir::visit::Visitor as MirVisitor;
204
205 use syntax::abi::Abi;
206 use syntax_pos::DUMMY_SP;
207 use base::custom_coerce_unsize_info;
208 use callee::needs_fn_once_adapter_shim;
209 use context::SharedCrateContext;
210 use common::{def_ty, find_method, instance_ty, fulfill_obligation};
211 use glue::{self, DropGlueKind};
212 use monomorphize::{self, Instance};
213 use util::nodemap::{FxHashSet, FxHashMap, DefIdMap};
214
215 use trans_item::{TransItem, DefPathBasedNames, InstantiationMode};
216
217 use std::iter;
218
219 #[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)]
220 pub enum TransItemCollectionMode {
221     Eager,
222     Lazy
223 }
224
225 /// Maps every translation item to all translation items it references in its
226 /// body.
227 pub struct InliningMap<'tcx> {
228     // Maps a source translation item to a range of target translation items
229     // that are potentially inlined by LLVM into the source.
230     // The two numbers in the tuple are the start (inclusive) and
231     // end index (exclusive) within the `targets` vecs.
232     index: FxHashMap<TransItem<'tcx>, (usize, usize)>,
233     targets: Vec<TransItem<'tcx>>,
234 }
235
236 impl<'tcx> InliningMap<'tcx> {
237
238     fn new() -> InliningMap<'tcx> {
239         InliningMap {
240             index: FxHashMap(),
241             targets: Vec::new(),
242         }
243     }
244
245     fn record_inlining_canditates<I>(&mut self,
246                                      source: TransItem<'tcx>,
247                                      targets: I)
248         where I: Iterator<Item=TransItem<'tcx>>
249     {
250         assert!(!self.index.contains_key(&source));
251
252         let start_index = self.targets.len();
253         self.targets.extend(targets);
254         let end_index = self.targets.len();
255         self.index.insert(source, (start_index, end_index));
256     }
257
258     // Internally iterate over all items referenced by `source` which will be
259     // made available for inlining.
260     pub fn with_inlining_candidates<F>(&self, source: TransItem<'tcx>, mut f: F)
261         where F: FnMut(TransItem<'tcx>) {
262         if let Some(&(start_index, end_index)) = self.index.get(&source)
263         {
264             for candidate in &self.targets[start_index .. end_index] {
265                 f(*candidate)
266             }
267         }
268     }
269 }
270
271 pub fn collect_crate_translation_items<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
272                                                  mode: TransItemCollectionMode)
273                                                  -> (FxHashSet<TransItem<'tcx>>,
274                                                      InliningMap<'tcx>) {
275     // We are not tracking dependencies of this pass as it has to be re-executed
276     // every time no matter what.
277     scx.tcx().dep_graph.with_ignore(|| {
278         let roots = collect_roots(scx, mode);
279
280         debug!("Building translation item graph, beginning at roots");
281         let mut visited = FxHashSet();
282         let mut recursion_depths = DefIdMap();
283         let mut inlining_map = InliningMap::new();
284
285         for root in roots {
286             collect_items_rec(scx,
287                               root,
288                               &mut visited,
289                               &mut recursion_depths,
290                               &mut inlining_map);
291         }
292
293         (visited, inlining_map)
294     })
295 }
296
297 // Find all non-generic items by walking the HIR. These items serve as roots to
298 // start monomorphizing from.
299 fn collect_roots<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
300                            mode: TransItemCollectionMode)
301                            -> Vec<TransItem<'tcx>> {
302     debug!("Collecting roots");
303     let mut roots = Vec::new();
304
305     {
306         let mut visitor = RootCollector {
307             scx: scx,
308             mode: mode,
309             output: &mut roots,
310         };
311
312         scx.tcx().hir.krate().visit_all_item_likes(&mut visitor);
313     }
314
315     roots
316 }
317
318 // Collect all monomorphized translation items reachable from `starting_point`
319 fn collect_items_rec<'a, 'tcx: 'a>(scx: &SharedCrateContext<'a, 'tcx>,
320                                    starting_point: TransItem<'tcx>,
321                                    visited: &mut FxHashSet<TransItem<'tcx>>,
322                                    recursion_depths: &mut DefIdMap<usize>,
323                                    inlining_map: &mut InliningMap<'tcx>) {
324     if !visited.insert(starting_point.clone()) {
325         // We've been here already, no need to search again.
326         return;
327     }
328     debug!("BEGIN collect_items_rec({})", starting_point.to_string(scx.tcx()));
329
330     let mut neighbors = Vec::new();
331     let recursion_depth_reset;
332
333     match starting_point {
334         TransItem::DropGlue(t) => {
335             find_drop_glue_neighbors(scx, t, &mut neighbors);
336             recursion_depth_reset = None;
337         }
338         TransItem::Static(node_id) => {
339             let def_id = scx.tcx().hir.local_def_id(node_id);
340             let instance = Instance::mono(scx.tcx(), def_id);
341
342             // Sanity check whether this ended up being collected accidentally
343             debug_assert!(should_trans_locally(scx.tcx(), &instance));
344
345             let ty = instance_ty(scx, &instance);
346             let ty = glue::get_drop_glue_type(scx, ty);
347             neighbors.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
348
349             recursion_depth_reset = None;
350
351             collect_neighbours(scx, instance, &mut neighbors);
352         }
353         TransItem::Fn(instance) => {
354             // Sanity check whether this ended up being collected accidentally
355             debug_assert!(should_trans_locally(scx.tcx(), &instance));
356
357             // Keep track of the monomorphization recursion depth
358             recursion_depth_reset = Some(check_recursion_limit(scx.tcx(),
359                                                                instance,
360                                                                recursion_depths));
361             check_type_length_limit(scx.tcx(), instance);
362
363             collect_neighbours(scx, instance, &mut neighbors);
364         }
365     }
366
367     record_inlining_canditates(scx.tcx(), starting_point, &neighbors[..], inlining_map);
368
369     for neighbour in neighbors {
370         collect_items_rec(scx, neighbour, visited, recursion_depths, inlining_map);
371     }
372
373     if let Some((def_id, depth)) = recursion_depth_reset {
374         recursion_depths.insert(def_id, depth);
375     }
376
377     debug!("END collect_items_rec({})", starting_point.to_string(scx.tcx()));
378 }
379
380 fn record_inlining_canditates<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
381                                         caller: TransItem<'tcx>,
382                                         callees: &[TransItem<'tcx>],
383                                         inlining_map: &mut InliningMap<'tcx>) {
384     let is_inlining_candidate = |trans_item: &TransItem<'tcx>| {
385         trans_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy
386     };
387
388     let inlining_candidates = callees.into_iter()
389                                      .map(|x| *x)
390                                      .filter(is_inlining_candidate);
391
392     inlining_map.record_inlining_canditates(caller, inlining_candidates);
393 }
394
395 fn check_recursion_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
396                                    instance: Instance<'tcx>,
397                                    recursion_depths: &mut DefIdMap<usize>)
398                                    -> (DefId, usize) {
399     let def_id = instance.def_id();
400     let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
401     debug!(" => recursion depth={}", recursion_depth);
402
403     // Code that needs to instantiate the same function recursively
404     // more than the recursion limit is assumed to be causing an
405     // infinite expansion.
406     if recursion_depth > tcx.sess.recursion_limit.get() {
407         let error = format!("reached the recursion limit while instantiating `{}`",
408                             instance);
409         if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
410             tcx.sess.span_fatal(tcx.hir.span(node_id), &error);
411         } else {
412             tcx.sess.fatal(&error);
413         }
414     }
415
416     recursion_depths.insert(def_id, recursion_depth + 1);
417
418     (def_id, recursion_depth)
419 }
420
421 fn check_type_length_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
422                                      instance: Instance<'tcx>)
423 {
424     let type_length = instance.substs.types().flat_map(|ty| ty.walk()).count();
425     debug!(" => type length={}", type_length);
426
427     // Rust code can easily create exponentially-long types using only a
428     // polynomial recursion depth. Even with the default recursion
429     // depth, you can easily get cases that take >2^60 steps to run,
430     // which means that rustc basically hangs.
431     //
432     // Bail out in these cases to avoid that bad user experience.
433     let type_length_limit = tcx.sess.type_length_limit.get();
434     if type_length > type_length_limit {
435         // The instance name is already known to be too long for rustc. Use
436         // `{:.64}` to avoid blasting the user's terminal with thousands of
437         // lines of type-name.
438         let instance_name = instance.to_string();
439         let msg = format!("reached the type-length limit while instantiating `{:.64}...`",
440                           instance_name);
441         let mut diag = if let Some(node_id) = tcx.hir.as_local_node_id(instance.def_id()) {
442             tcx.sess.struct_span_fatal(tcx.hir.span(node_id), &msg)
443         } else {
444             tcx.sess.struct_fatal(&msg)
445         };
446
447         diag.note(&format!(
448             "consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
449             type_length_limit*2));
450         diag.emit();
451         tcx.sess.abort_if_errors();
452     }
453 }
454
455 struct MirNeighborCollector<'a, 'tcx: 'a> {
456     scx: &'a SharedCrateContext<'a, 'tcx>,
457     mir: &'a mir::Mir<'tcx>,
458     output: &'a mut Vec<TransItem<'tcx>>,
459     param_substs: &'tcx Substs<'tcx>
460 }
461
462 impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
463
464     fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
465         debug!("visiting rvalue {:?}", *rvalue);
466
467         match *rvalue {
468             // When doing an cast from a regular pointer to a fat pointer, we
469             // have to instantiate all methods of the trait being cast to, so we
470             // can build the appropriate vtable.
471             mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, target_ty) => {
472                 let target_ty = monomorphize::apply_param_substs(self.scx,
473                                                                  self.param_substs,
474                                                                  &target_ty);
475                 let source_ty = operand.ty(self.mir, self.scx.tcx());
476                 let source_ty = monomorphize::apply_param_substs(self.scx,
477                                                                  self.param_substs,
478                                                                  &source_ty);
479                 let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.scx,
480                                                                             source_ty,
481                                                                             target_ty);
482                 // This could also be a different Unsize instruction, like
483                 // from a fixed sized array to a slice. But we are only
484                 // interested in things that produce a vtable.
485                 if target_ty.is_trait() && !source_ty.is_trait() {
486                     create_trans_items_for_vtable_methods(self.scx,
487                                                           target_ty,
488                                                           source_ty,
489                                                           self.output);
490                 }
491             }
492             mir::Rvalue::Cast(mir::CastKind::ClosureFnPointer, ref operand, _) => {
493                 let source_ty = operand.ty(self.mir, self.scx.tcx());
494                 match source_ty.sty {
495                     ty::TyClosure(def_id, substs) => {
496                         let substs = monomorphize::apply_param_substs(
497                             self.scx, self.param_substs, &substs.substs);
498                         self.output.push(create_fn_trans_item(
499                             Instance::new(def_id, substs)
500                         ));
501                     }
502                     _ => bug!(),
503                 }
504             }
505             mir::Rvalue::Box(..) => {
506                 let tcx = self.scx.tcx();
507                 let exchange_malloc_fn_def_id = tcx
508                     .lang_items
509                     .require(ExchangeMallocFnLangItem)
510                     .unwrap_or_else(|e| self.scx.sess().fatal(&e));
511                 let instance = Instance::mono(tcx, exchange_malloc_fn_def_id);
512                 if should_trans_locally(tcx, &instance) {
513                     self.output.push(create_fn_trans_item(instance));
514                 }
515             }
516             _ => { /* not interesting */ }
517         }
518
519         self.super_rvalue(rvalue, location);
520     }
521
522     fn visit_lvalue(&mut self,
523                     lvalue: &mir::Lvalue<'tcx>,
524                     context: mir_visit::LvalueContext<'tcx>,
525                     location: Location) {
526         debug!("visiting lvalue {:?}", *lvalue);
527
528         if let mir_visit::LvalueContext::Drop = context {
529             let ty = lvalue.ty(self.mir, self.scx.tcx())
530                            .to_ty(self.scx.tcx());
531
532             let ty = monomorphize::apply_param_substs(self.scx,
533                                                       self.param_substs,
534                                                       &ty);
535             assert!(ty.is_normalized_for_trans());
536             let ty = glue::get_drop_glue_type(self.scx, ty);
537             self.output.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
538         }
539
540         self.super_lvalue(lvalue, context, location);
541     }
542
543     fn visit_operand(&mut self, operand: &mir::Operand<'tcx>, location: Location) {
544         debug!("visiting operand {:?}", *operand);
545
546         let callee = match *operand {
547             mir::Operand::Constant(ref constant) => {
548                 if let ty::TyFnDef(def_id, substs, _) = constant.ty.sty {
549                     // This is something that can act as a callee, proceed
550                     Some((def_id, substs))
551                 } else {
552                     // This is not a callee, but we still have to look for
553                     // references to `const` items
554                     if let mir::Literal::Item { def_id, substs } = constant.literal {
555                         let substs = monomorphize::apply_param_substs(self.scx,
556                                                                       self.param_substs,
557                                                                       &substs);
558                         let instance = monomorphize::resolve_const(self.scx, def_id, substs);
559                         collect_neighbours(self.scx, instance, self.output);
560                     }
561
562                     None
563                 }
564             }
565             _ => None
566         };
567
568         if let Some((callee_def_id, callee_substs)) = callee {
569             debug!(" => operand is callable");
570
571             // `callee_def_id` might refer to a trait method instead of a
572             // concrete implementation, so we have to find the actual
573             // implementation. For example, the call might look like
574             //
575             // std::cmp::partial_cmp(0i32, 1i32)
576             //
577             // Calling do_static_dispatch() here will map the def_id of
578             // `std::cmp::partial_cmp` to the def_id of `i32::partial_cmp<i32>`
579
580             let callee_substs = monomorphize::apply_param_substs(self.scx,
581                                                                  self.param_substs,
582                                                                  &callee_substs);
583             let dispatched = do_static_dispatch(self.scx,
584                                                 callee_def_id,
585                                                 callee_substs);
586
587             if let StaticDispatchResult::Dispatched {
588                 instance, fn_once_adjustment
589             } = dispatched {
590                 // if we have a concrete impl (which we might not have
591                 // in the case of something compiler generated like an
592                 // object shim or a closure that is handled differently),
593                 // we check if the callee is something that will actually
594                 // result in a translation item ...
595                 if should_trans_locally(self.scx.tcx(), &instance) {
596                     self.output.push(create_fn_trans_item(instance));
597
598                     // This call will instantiate an FnOnce adapter, which drops
599                     // the closure environment. Therefore we need to make sure
600                     // that we collect the drop-glue for the environment type.
601                     if let Some(env_ty) = fn_once_adjustment {
602                         let env_ty = glue::get_drop_glue_type(self.scx, env_ty);
603                         if self.scx.type_needs_drop(env_ty) {
604                             let dg = DropGlueKind::Ty(env_ty);
605                             self.output.push(TransItem::DropGlue(dg));
606                         }
607                     }
608                 }
609             }
610         }
611
612         self.super_operand(operand, location);
613     }
614
615     // This takes care of the "drop_in_place" intrinsic for which we otherwise
616     // we would not register drop-glues.
617     fn visit_terminator_kind(&mut self,
618                              block: mir::BasicBlock,
619                              kind: &mir::TerminatorKind<'tcx>,
620                              location: Location) {
621         let tcx = self.scx.tcx();
622         match *kind {
623             mir::TerminatorKind::Call {
624                 func: mir::Operand::Constant(ref constant),
625                 ref args,
626                 ..
627             } => {
628                 match constant.ty.sty {
629                     ty::TyFnDef(def_id, _, bare_fn_ty)
630                         if is_drop_in_place_intrinsic(tcx, def_id, bare_fn_ty) => {
631                         let operand_ty = args[0].ty(self.mir, tcx);
632                         if let ty::TyRawPtr(mt) = operand_ty.sty {
633                             let operand_ty = monomorphize::apply_param_substs(self.scx,
634                                                                               self.param_substs,
635                                                                               &mt.ty);
636                             let ty = glue::get_drop_glue_type(self.scx, operand_ty);
637                             self.output.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
638                         } else {
639                             bug!("Has the drop_in_place() intrinsic's signature changed?")
640                         }
641                     }
642                     _ => { /* Nothing to do. */ }
643                 }
644             }
645             _ => { /* Nothing to do. */ }
646         }
647
648         self.super_terminator_kind(block, kind, location);
649
650         fn is_drop_in_place_intrinsic<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
651                                                 def_id: DefId,
652                                                 bare_fn_ty: ty::PolyFnSig<'tcx>)
653                                                 -> bool {
654             (bare_fn_ty.abi() == Abi::RustIntrinsic ||
655              bare_fn_ty.abi() == Abi::PlatformIntrinsic) &&
656             tcx.item_name(def_id) == "drop_in_place"
657         }
658     }
659 }
660
661 // Returns true if we should translate an instance in the local crate.
662 // Returns false if we can just link to the upstream crate and therefore don't
663 // need a translation item.
664 fn should_trans_locally<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: &Instance<'tcx>)
665                                   -> bool {
666     let def_id = match instance.def {
667         ty::InstanceDef::Item(def_id) => def_id,
668         ty::InstanceDef::FnPtrShim(..) => return true
669     };
670     match tcx.hir.get_if_local(def_id) {
671         Some(hir_map::NodeForeignItem(..)) => {
672             false // foreign items are linked against, not translated.
673         }
674         Some(_) => true,
675         None => {
676             if tcx.sess.cstore.is_exported_symbol(def_id) ||
677                 tcx.sess.cstore.is_foreign_item(def_id)
678             {
679                 // We can link to the item in question, no instance needed
680                 // in this crate
681                 false
682             } else {
683                 if !tcx.sess.cstore.is_item_mir_available(def_id) {
684                     bug!("Cannot create local trans-item for {:?}", def_id)
685                 }
686                 true
687             }
688         }
689     }
690 }
691
692 fn find_drop_glue_neighbors<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
693                                       dg: DropGlueKind<'tcx>,
694                                       output: &mut Vec<TransItem<'tcx>>) {
695     let ty = match dg {
696         DropGlueKind::Ty(ty) => ty,
697         DropGlueKind::TyContents(_) => {
698             // We already collected the neighbors of this item via the
699             // DropGlueKind::Ty variant.
700             return
701         }
702     };
703
704     debug!("find_drop_glue_neighbors: {}", type_to_string(scx.tcx(), ty));
705
706     // Make sure the BoxFreeFn lang-item gets translated if there is a boxed value.
707     if ty.is_box() {
708         let tcx = scx.tcx();
709         let def_id = tcx.require_lang_item(BoxFreeFnLangItem);
710         let box_free_instance = Instance::new(
711             def_id,
712             tcx.mk_substs(iter::once(Kind::from(ty.boxed_ty())))
713         );
714         if should_trans_locally(tcx, &box_free_instance) {
715             output.push(create_fn_trans_item(box_free_instance));
716         }
717     }
718
719     // If the type implements Drop, also add a translation item for the
720     // monomorphized Drop::drop() implementation.
721     let destructor = match ty.sty {
722         ty::TyAdt(def, _) => def.destructor(scx.tcx()),
723         _ => None
724     };
725
726     if let (Some(destructor), false) = (destructor, ty.is_box()) {
727         use rustc::ty::ToPolyTraitRef;
728
729         let drop_trait_def_id = scx.tcx()
730                                    .lang_items
731                                    .drop_trait()
732                                    .unwrap();
733
734         let self_type_substs = scx.tcx().mk_substs_trait(ty, &[]);
735
736         let trait_ref = ty::TraitRef {
737             def_id: drop_trait_def_id,
738             substs: self_type_substs,
739         }.to_poly_trait_ref();
740
741         let substs = match fulfill_obligation(scx, DUMMY_SP, trait_ref) {
742             traits::VtableImpl(data) => data.substs,
743             _ => bug!()
744         };
745         let instance = Instance::new(destructor.did, substs);
746         if should_trans_locally(scx.tcx(), &instance) {
747             output.push(create_fn_trans_item(instance));
748         }
749
750         // This type has a Drop implementation, we'll need the contents-only
751         // version of the glue too.
752         output.push(TransItem::DropGlue(DropGlueKind::TyContents(ty)));
753     }
754
755     // Finally add the types of nested values
756     match ty.sty {
757         ty::TyBool      |
758         ty::TyChar      |
759         ty::TyInt(_)    |
760         ty::TyUint(_)   |
761         ty::TyStr       |
762         ty::TyFloat(_)  |
763         ty::TyRawPtr(_) |
764         ty::TyRef(..)   |
765         ty::TyFnDef(..) |
766         ty::TyFnPtr(_)  |
767         ty::TyNever     |
768         ty::TyDynamic(..)  => {
769             /* nothing to do */
770         }
771         ty::TyAdt(def, _) if def.is_box() => {
772             let inner_type = glue::get_drop_glue_type(scx, ty.boxed_ty());
773             if scx.type_needs_drop(inner_type) {
774                 output.push(TransItem::DropGlue(DropGlueKind::Ty(inner_type)));
775             }
776         }
777         ty::TyAdt(def, substs) => {
778             for field in def.all_fields() {
779                 let field_type = def_ty(scx, field.did, substs);
780                 let field_type = glue::get_drop_glue_type(scx, field_type);
781
782                 if scx.type_needs_drop(field_type) {
783                     output.push(TransItem::DropGlue(DropGlueKind::Ty(field_type)));
784                 }
785             }
786         }
787         ty::TyClosure(def_id, substs) => {
788             for upvar_ty in substs.upvar_tys(def_id, scx.tcx()) {
789                 let upvar_ty = glue::get_drop_glue_type(scx, upvar_ty);
790                 if scx.type_needs_drop(upvar_ty) {
791                     output.push(TransItem::DropGlue(DropGlueKind::Ty(upvar_ty)));
792                 }
793             }
794         }
795         ty::TySlice(inner_type)    |
796         ty::TyArray(inner_type, _) => {
797             let inner_type = glue::get_drop_glue_type(scx, inner_type);
798             if scx.type_needs_drop(inner_type) {
799                 output.push(TransItem::DropGlue(DropGlueKind::Ty(inner_type)));
800             }
801         }
802         ty::TyTuple(args, _) => {
803             for arg in args {
804                 let arg = glue::get_drop_glue_type(scx, arg);
805                 if scx.type_needs_drop(arg) {
806                     output.push(TransItem::DropGlue(DropGlueKind::Ty(arg)));
807                 }
808             }
809         }
810         ty::TyProjection(_) |
811         ty::TyParam(_)      |
812         ty::TyInfer(_)      |
813         ty::TyAnon(..)      |
814         ty::TyError         => {
815             bug!("encountered unexpected type");
816         }
817     }
818 }
819
820 enum StaticDispatchResult<'tcx> {
821     // The call could be resolved statically as going to the method with
822     // `instance`.
823     Dispatched {
824         instance: Instance<'tcx>,
825         // If this is a call to a closure that needs an FnOnce adjustment,
826         // this contains the new self type of the call (= type of the closure
827         // environment)
828         fn_once_adjustment: Option<ty::Ty<'tcx>>,
829     },
830     // This goes to somewhere that we don't know at compile-time
831     Unknown
832 }
833
834 fn do_static_dispatch<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
835                                 fn_def_id: DefId,
836                                 fn_substs: &'tcx Substs<'tcx>)
837                                 -> StaticDispatchResult<'tcx> {
838     debug!("do_static_dispatch(fn_def_id={}, fn_substs={:?})",
839            def_id_to_string(scx.tcx(), fn_def_id),
840            fn_substs);
841     if let Some(trait_def_id) = scx.tcx().trait_of_item(fn_def_id) {
842         debug!(" => trait method, attempting to find impl");
843         do_static_trait_method_dispatch(scx,
844                                         &scx.tcx().associated_item(fn_def_id),
845                                         trait_def_id,
846                                         fn_substs)
847     } else {
848         debug!(" => regular function");
849         // The function is not part of an impl or trait, no dispatching
850         // to be done
851         StaticDispatchResult::Dispatched {
852             instance: Instance::new(fn_def_id, fn_substs),
853             fn_once_adjustment: None,
854         }
855     }
856 }
857
858 // Given a trait-method and substitution information, find out the actual
859 // implementation of the trait method.
860 fn do_static_trait_method_dispatch<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
861                                              trait_method: &ty::AssociatedItem,
862                                              trait_id: DefId,
863                                              rcvr_substs: &'tcx Substs<'tcx>)
864                                              -> StaticDispatchResult<'tcx> {
865     let tcx = scx.tcx();
866     debug!("do_static_trait_method_dispatch(trait_method={}, \
867                                             trait_id={}, \
868                                             rcvr_substs={:?})",
869            def_id_to_string(scx.tcx(), trait_method.def_id),
870            def_id_to_string(scx.tcx(), trait_id),
871            rcvr_substs);
872
873     let trait_ref = ty::TraitRef::from_method(tcx, trait_id, rcvr_substs);
874     let vtbl = fulfill_obligation(scx, DUMMY_SP, ty::Binder(trait_ref));
875
876     // Now that we know which impl is being used, we can dispatch to
877     // the actual function:
878     match vtbl {
879         traits::VtableImpl(impl_data) => {
880             StaticDispatchResult::Dispatched {
881                 instance: find_method(tcx, trait_method.name, rcvr_substs, &impl_data),
882                 fn_once_adjustment: None,
883             }
884         }
885         traits::VtableClosure(closure_data) => {
886             let closure_def_id = closure_data.closure_def_id;
887             let trait_closure_kind = tcx.lang_items.fn_trait_kind(trait_id).unwrap();
888             let actual_closure_kind = tcx.closure_kind(closure_def_id);
889
890             let needs_fn_once_adapter_shim =
891                 match needs_fn_once_adapter_shim(actual_closure_kind,
892                                                  trait_closure_kind) {
893                 Ok(true) => true,
894                 _ => false,
895             };
896
897             let fn_once_adjustment = if needs_fn_once_adapter_shim {
898                 Some(tcx.mk_closure_from_closure_substs(closure_def_id,
899                                                         closure_data.substs))
900             } else {
901                 None
902             };
903
904             StaticDispatchResult::Dispatched {
905                 instance: Instance::new(closure_def_id, closure_data.substs.substs),
906                 fn_once_adjustment: fn_once_adjustment,
907             }
908         }
909         traits::VtableFnPointer(ref data) => {
910             // If we know the destination of this fn-pointer, we'll have to make
911             // sure that this destination actually gets instantiated.
912             if let ty::TyFnDef(def_id, substs, _) = data.fn_ty.sty {
913                 // The destination of the pointer might be something that needs
914                 // further dispatching, such as a trait method, so we do that.
915                 do_static_dispatch(scx, def_id, substs)
916             } else {
917                 StaticDispatchResult::Unknown
918             }
919         }
920         // Trait object shims are always instantiated in-place, and as they are
921         // just an ABI-adjusting indirect call they do not have any dependencies.
922         traits::VtableObject(..) => {
923             StaticDispatchResult::Unknown
924         }
925         _ => {
926             bug!("static call to invalid vtable: {:?}", vtbl)
927         }
928     }
929 }
930
931 /// For given pair of source and target type that occur in an unsizing coercion,
932 /// this function finds the pair of types that determines the vtable linking
933 /// them.
934 ///
935 /// For example, the source type might be `&SomeStruct` and the target type\
936 /// might be `&SomeTrait` in a cast like:
937 ///
938 /// let src: &SomeStruct = ...;
939 /// let target = src as &SomeTrait;
940 ///
941 /// Then the output of this function would be (SomeStruct, SomeTrait) since for
942 /// constructing the `target` fat-pointer we need the vtable for that pair.
943 ///
944 /// Things can get more complicated though because there's also the case where
945 /// the unsized type occurs as a field:
946 ///
947 /// ```rust
948 /// struct ComplexStruct<T: ?Sized> {
949 ///    a: u32,
950 ///    b: f64,
951 ///    c: T
952 /// }
953 /// ```
954 ///
955 /// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
956 /// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
957 /// for the pair of `T` (which is a trait) and the concrete type that `T` was
958 /// originally coerced from:
959 ///
960 /// let src: &ComplexStruct<SomeStruct> = ...;
961 /// let target = src as &ComplexStruct<SomeTrait>;
962 ///
963 /// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
964 /// `(SomeStruct, SomeTrait)`.
965 ///
966 /// Finally, there is also the case of custom unsizing coercions, e.g. for
967 /// smart pointers such as `Rc` and `Arc`.
968 fn find_vtable_types_for_unsizing<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
969                                             source_ty: ty::Ty<'tcx>,
970                                             target_ty: ty::Ty<'tcx>)
971                                             -> (ty::Ty<'tcx>, ty::Ty<'tcx>) {
972     let ptr_vtable = |inner_source: ty::Ty<'tcx>, inner_target: ty::Ty<'tcx>| {
973         if !scx.type_is_sized(inner_source) {
974             (inner_source, inner_target)
975         } else {
976             scx.tcx().struct_lockstep_tails(inner_source, inner_target)
977         }
978     };
979     match (&source_ty.sty, &target_ty.sty) {
980         (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
981          &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
982         (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
983          &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
984         (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
985          &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
986             ptr_vtable(a, b)
987         }
988         (&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
989             ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
990         }
991
992         (&ty::TyAdt(source_adt_def, source_substs),
993          &ty::TyAdt(target_adt_def, target_substs)) => {
994             assert_eq!(source_adt_def, target_adt_def);
995
996             let kind = custom_coerce_unsize_info(scx, source_ty, target_ty);
997
998             let coerce_index = match kind {
999                 CustomCoerceUnsized::Struct(i) => i
1000             };
1001
1002             let source_fields = &source_adt_def.struct_variant().fields;
1003             let target_fields = &target_adt_def.struct_variant().fields;
1004
1005             assert!(coerce_index < source_fields.len() &&
1006                     source_fields.len() == target_fields.len());
1007
1008             find_vtable_types_for_unsizing(scx,
1009                                            source_fields[coerce_index].ty(scx.tcx(),
1010                                                                           source_substs),
1011                                            target_fields[coerce_index].ty(scx.tcx(),
1012                                                                           target_substs))
1013         }
1014         _ => bug!("find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
1015                   source_ty,
1016                   target_ty)
1017     }
1018 }
1019
1020 fn create_fn_trans_item<'a, 'tcx>(instance: Instance<'tcx>) -> TransItem<'tcx> {
1021     debug!("create_fn_trans_item(instance={})", instance);
1022     TransItem::Fn(instance)
1023 }
1024
1025 /// Creates a `TransItem` for each method that is referenced by the vtable for
1026 /// the given trait/impl pair.
1027 fn create_trans_items_for_vtable_methods<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
1028                                                    trait_ty: ty::Ty<'tcx>,
1029                                                    impl_ty: ty::Ty<'tcx>,
1030                                                    output: &mut Vec<TransItem<'tcx>>) {
1031     assert!(!trait_ty.needs_subst() && !trait_ty.has_escaping_regions() &&
1032             !impl_ty.needs_subst() && !impl_ty.has_escaping_regions());
1033
1034     if let ty::TyDynamic(ref trait_ty, ..) = trait_ty.sty {
1035         if let Some(principal) = trait_ty.principal() {
1036             let poly_trait_ref = principal.with_self_ty(scx.tcx(), impl_ty);
1037             assert!(!poly_trait_ref.has_escaping_regions());
1038
1039             // Walk all methods of the trait, including those of its supertraits
1040             let methods = traits::get_vtable_methods(scx.tcx(), poly_trait_ref);
1041             let methods = methods.filter_map(|method| method)
1042                 .filter_map(|(def_id, substs)| {
1043                     if let StaticDispatchResult::Dispatched {
1044                         instance,
1045                         // We already add the drop-glue for the closure env
1046                         // unconditionally below.
1047                         fn_once_adjustment: _ ,
1048                     } = do_static_dispatch(scx, def_id, substs) {
1049                         Some(instance)
1050                     } else {
1051                         None
1052                     }
1053                 })
1054                 .filter(|&instance| should_trans_locally(scx.tcx(), &instance))
1055                 .map(|instance| create_fn_trans_item(instance));
1056             output.extend(methods);
1057         }
1058         // Also add the destructor
1059         let dg_type = glue::get_drop_glue_type(scx, impl_ty);
1060         output.push(TransItem::DropGlue(DropGlueKind::Ty(dg_type)));
1061     }
1062 }
1063
1064 //=-----------------------------------------------------------------------------
1065 // Root Collection
1066 //=-----------------------------------------------------------------------------
1067
1068 struct RootCollector<'b, 'a: 'b, 'tcx: 'a + 'b> {
1069     scx: &'b SharedCrateContext<'a, 'tcx>,
1070     mode: TransItemCollectionMode,
1071     output: &'b mut Vec<TransItem<'tcx>>,
1072 }
1073
1074 impl<'b, 'a, 'v> ItemLikeVisitor<'v> for RootCollector<'b, 'a, 'v> {
1075     fn visit_item(&mut self, item: &'v hir::Item) {
1076         match item.node {
1077             hir::ItemExternCrate(..) |
1078             hir::ItemUse(..)         |
1079             hir::ItemForeignMod(..)  |
1080             hir::ItemTy(..)          |
1081             hir::ItemDefaultImpl(..) |
1082             hir::ItemTrait(..)       |
1083             hir::ItemMod(..)         => {
1084                 // Nothing to do, just keep recursing...
1085             }
1086
1087             hir::ItemImpl(..) => {
1088                 if self.mode == TransItemCollectionMode::Eager {
1089                     create_trans_items_for_default_impls(self.scx,
1090                                                          item,
1091                                                          self.output);
1092                 }
1093             }
1094
1095             hir::ItemEnum(_, ref generics) |
1096             hir::ItemStruct(_, ref generics) |
1097             hir::ItemUnion(_, ref generics) => {
1098                 if !generics.is_parameterized() {
1099                     if self.mode == TransItemCollectionMode::Eager {
1100                         let def_id = self.scx.tcx().hir.local_def_id(item.id);
1101                         debug!("RootCollector: ADT drop-glue for {}",
1102                                def_id_to_string(self.scx.tcx(), def_id));
1103
1104                         let ty = def_ty(self.scx, def_id, Substs::empty());
1105                         let ty = glue::get_drop_glue_type(self.scx, ty);
1106                         self.output.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
1107                     }
1108                 }
1109             }
1110             hir::ItemStatic(..) => {
1111                 debug!("RootCollector: ItemStatic({})",
1112                        def_id_to_string(self.scx.tcx(),
1113                                         self.scx.tcx().hir.local_def_id(item.id)));
1114                 self.output.push(TransItem::Static(item.id));
1115             }
1116             hir::ItemConst(..) => {
1117                 // const items only generate translation items if they are
1118                 // actually used somewhere. Just declaring them is insufficient.
1119             }
1120             hir::ItemFn(.., ref generics, _) => {
1121                 if !generics.is_type_parameterized() {
1122                     let def_id = self.scx.tcx().hir.local_def_id(item.id);
1123
1124                     debug!("RootCollector: ItemFn({})",
1125                            def_id_to_string(self.scx.tcx(), def_id));
1126
1127                     let instance = Instance::mono(self.scx.tcx(), def_id);
1128                     self.output.push(TransItem::Fn(instance));
1129                 }
1130             }
1131         }
1132     }
1133
1134     fn visit_trait_item(&mut self, _: &'v hir::TraitItem) {
1135         // Even if there's a default body with no explicit generics,
1136         // it's still generic over some `Self: Trait`, so not a root.
1137     }
1138
1139     fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) {
1140         match ii.node {
1141             hir::ImplItemKind::Method(hir::MethodSig {
1142                 ref generics,
1143                 ..
1144             }, _) => {
1145                 let hir_map = &self.scx.tcx().hir;
1146                 let parent_node_id = hir_map.get_parent_node(ii.id);
1147                 let is_impl_generic = match hir_map.expect_item(parent_node_id) {
1148                     &hir::Item {
1149                         node: hir::ItemImpl(_, _, ref generics, ..),
1150                         ..
1151                     } => {
1152                         generics.is_type_parameterized()
1153                     }
1154                     _ => {
1155                         bug!()
1156                     }
1157                 };
1158
1159                 if !generics.is_type_parameterized() && !is_impl_generic {
1160                     let def_id = self.scx.tcx().hir.local_def_id(ii.id);
1161
1162                     debug!("RootCollector: MethodImplItem({})",
1163                            def_id_to_string(self.scx.tcx(), def_id));
1164
1165                     let instance = Instance::mono(self.scx.tcx(), def_id);
1166                     self.output.push(TransItem::Fn(instance));
1167                 }
1168             }
1169             _ => { /* Nothing to do here */ }
1170         }
1171     }
1172 }
1173
1174 fn create_trans_items_for_default_impls<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
1175                                                   item: &'tcx hir::Item,
1176                                                   output: &mut Vec<TransItem<'tcx>>) {
1177     let tcx = scx.tcx();
1178     match item.node {
1179         hir::ItemImpl(_,
1180                       _,
1181                       ref generics,
1182                       ..,
1183                       ref impl_item_refs) => {
1184             if generics.is_type_parameterized() {
1185                 return
1186             }
1187
1188             let impl_def_id = tcx.hir.local_def_id(item.id);
1189
1190             debug!("create_trans_items_for_default_impls(item={})",
1191                    def_id_to_string(tcx, impl_def_id));
1192
1193             if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) {
1194                 let callee_substs = tcx.erase_regions(&trait_ref.substs);
1195                 let overridden_methods: FxHashSet<_> =
1196                     impl_item_refs.iter()
1197                                   .map(|iiref| iiref.name)
1198                                   .collect();
1199                 for method in tcx.provided_trait_methods(trait_ref.def_id) {
1200                     if overridden_methods.contains(&method.name) {
1201                         continue;
1202                     }
1203
1204                     if !tcx.item_generics(method.def_id).types.is_empty() {
1205                         continue;
1206                     }
1207
1208                     // The substitutions we have are on the impl, so we grab
1209                     // the method type from the impl to substitute into.
1210                     let impl_substs = tcx.empty_substs_for_def_id(impl_def_id);
1211                     let impl_data = traits::VtableImplData {
1212                         impl_def_id: impl_def_id,
1213                         substs: impl_substs,
1214                         nested: vec![]
1215                     };
1216                     let instance = find_method(tcx, method.name, callee_substs, &impl_data);
1217
1218                     let predicates = tcx.item_predicates(instance.def_id()).predicates
1219                         .subst(tcx, impl_substs);
1220                     if !traits::normalize_and_test_predicates(tcx, predicates) {
1221                         continue;
1222                     }
1223
1224                     if should_trans_locally(tcx, &instance) {
1225                         output.push(create_fn_trans_item(instance));
1226                     }
1227                 }
1228             }
1229         }
1230         _ => {
1231             bug!()
1232         }
1233     }
1234 }
1235
1236 /// Scan the MIR in order to find function calls, closures, and drop-glue
1237 fn collect_neighbours<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
1238                                 instance: Instance<'tcx>,
1239                                 output: &mut Vec<TransItem<'tcx>>)
1240 {
1241     let mir = scx.tcx().instance_mir(instance.def);
1242
1243     let mut visitor = MirNeighborCollector {
1244         scx: scx,
1245         mir: &mir,
1246         output: output,
1247         param_substs: instance.substs
1248     };
1249
1250     visitor.visit_mir(&mir);
1251     for promoted in &mir.promoted {
1252         visitor.mir = promoted;
1253         visitor.visit_mir(promoted);
1254     }
1255 }
1256
1257 fn def_id_to_string<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1258                               def_id: DefId)
1259                               -> String {
1260     let mut output = String::new();
1261     let printer = DefPathBasedNames::new(tcx, false, false);
1262     printer.push_def_path(def_id, &mut output);
1263     output
1264 }
1265
1266 fn type_to_string<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1267                             ty: ty::Ty<'tcx>)
1268                             -> String {
1269     let mut output = String::new();
1270     let printer = DefPathBasedNames::new(tcx, false, false);
1271     printer.push_type_name(ty, &mut output);
1272     output
1273 }