]> git.lizzy.rs Git - rust.git/blob - src/librustc_traits/dropck_outlives.rs
Rollup merge of #58778 - xfix:exact_size_case_mapping_iter, r=SimonSapin
[rust.git] / src / librustc_traits / dropck_outlives.rs
1 use rustc::hir::def_id::DefId;
2 use rustc::infer::canonical::{Canonical, QueryResponse};
3 use rustc::traits::query::dropck_outlives::{DropckOutlivesResult, DtorckConstraint};
4 use rustc::traits::query::{CanonicalTyGoal, NoSolution};
5 use rustc::traits::{TraitEngine, Normalized, ObligationCause, TraitEngineExt};
6 use rustc::ty::query::Providers;
7 use rustc::ty::subst::{Subst, InternalSubsts};
8 use rustc::ty::{self, ParamEnvAnd, Ty, TyCtxt};
9 use rustc::util::nodemap::FxHashSet;
10 use rustc_data_structures::sync::Lrc;
11 use syntax::source_map::{Span, DUMMY_SP};
12
13 crate fn provide(p: &mut Providers<'_>) {
14     *p = Providers {
15         dropck_outlives,
16         adt_dtorck_constraint,
17         ..*p
18     };
19 }
20
21 fn dropck_outlives<'tcx>(
22     tcx: TyCtxt<'_, 'tcx, 'tcx>,
23     canonical_goal: CanonicalTyGoal<'tcx>,
24 ) -> Result<Lrc<Canonical<'tcx, QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>>, NoSolution> {
25     debug!("dropck_outlives(goal={:#?})", canonical_goal);
26
27     tcx.infer_ctxt().enter_with_canonical(
28         DUMMY_SP,
29         &canonical_goal,
30         |ref infcx, goal, canonical_inference_vars| {
31             let tcx = infcx.tcx;
32             let ParamEnvAnd {
33                 param_env,
34                 value: for_ty,
35             } = goal;
36
37             let mut result = DropckOutlivesResult {
38                 kinds: vec![],
39                 overflows: vec![],
40             };
41
42             // A stack of types left to process. Each round, we pop
43             // something from the stack and invoke
44             // `dtorck_constraint_for_ty`. This may produce new types that
45             // have to be pushed on the stack. This continues until we have explored
46             // all the reachable types from the type `for_ty`.
47             //
48             // Example: Imagine that we have the following code:
49             //
50             // ```rust
51             // struct A {
52             //     value: B,
53             //     children: Vec<A>,
54             // }
55             //
56             // struct B {
57             //     value: u32
58             // }
59             //
60             // fn f() {
61             //   let a: A = ...;
62             //   ..
63             // } // here, `a` is dropped
64             // ```
65             //
66             // at the point where `a` is dropped, we need to figure out
67             // which types inside of `a` contain region data that may be
68             // accessed by any destructors in `a`. We begin by pushing `A`
69             // onto the stack, as that is the type of `a`. We will then
70             // invoke `dtorck_constraint_for_ty` which will expand `A`
71             // into the types of its fields `(B, Vec<A>)`. These will get
72             // pushed onto the stack. Eventually, expanding `Vec<A>` will
73             // lead to us trying to push `A` a second time -- to prevent
74             // infinite recursion, we notice that `A` was already pushed
75             // once and stop.
76             let mut ty_stack = vec![(for_ty, 0)];
77
78             // Set used to detect infinite recursion.
79             let mut ty_set = FxHashSet::default();
80
81             let mut fulfill_cx = TraitEngine::new(infcx.tcx);
82
83             let cause = ObligationCause::dummy();
84             while let Some((ty, depth)) = ty_stack.pop() {
85                 let DtorckConstraint {
86                     dtorck_types,
87                     outlives,
88                     overflows,
89                 } = dtorck_constraint_for_ty(tcx, DUMMY_SP, for_ty, depth, ty)?;
90
91                 // "outlives" represent types/regions that may be touched
92                 // by a destructor.
93                 result.kinds.extend(outlives);
94                 result.overflows.extend(overflows);
95
96                 // dtorck types are "types that will get dropped but which
97                 // do not themselves define a destructor", more or less. We have
98                 // to push them onto the stack to be expanded.
99                 for ty in dtorck_types {
100                     match infcx.at(&cause, param_env).normalize(&ty) {
101                         Ok(Normalized {
102                             value: ty,
103                             obligations,
104                         }) => {
105                             fulfill_cx.register_predicate_obligations(infcx, obligations);
106
107                             debug!("dropck_outlives: ty from dtorck_types = {:?}", ty);
108
109                             match ty.sty {
110                                 // All parameters live for the duration of the
111                                 // function.
112                                 ty::Param(..) => {}
113
114                                 // A projection that we couldn't resolve - it
115                                 // might have a destructor.
116                                 ty::Projection(..) | ty::Opaque(..) => {
117                                     result.kinds.push(ty.into());
118                                 }
119
120                                 _ => {
121                                     if ty_set.insert(ty) {
122                                         ty_stack.push((ty, depth + 1));
123                                     }
124                                 }
125                             }
126                         }
127
128                         // We don't actually expect to fail to normalize.
129                         // That implies a WF error somewhere else.
130                         Err(NoSolution) => {
131                             return Err(NoSolution);
132                         }
133                     }
134                 }
135             }
136
137             debug!("dropck_outlives: result = {:#?}", result);
138
139             infcx.make_canonicalized_query_response(
140                 canonical_inference_vars,
141                 result,
142                 &mut *fulfill_cx
143             )
144         },
145     )
146 }
147
148 /// Returns a set of constraints that needs to be satisfied in
149 /// order for `ty` to be valid for destruction.
150 fn dtorck_constraint_for_ty<'a, 'gcx, 'tcx>(
151     tcx: TyCtxt<'a, 'gcx, 'tcx>,
152     span: Span,
153     for_ty: Ty<'tcx>,
154     depth: usize,
155     ty: Ty<'tcx>,
156 ) -> Result<DtorckConstraint<'tcx>, NoSolution> {
157     debug!(
158         "dtorck_constraint_for_ty({:?}, {:?}, {:?}, {:?})",
159         span, for_ty, depth, ty
160     );
161
162     if depth >= *tcx.sess.recursion_limit.get() {
163         return Ok(DtorckConstraint {
164             outlives: vec![],
165             dtorck_types: vec![],
166             overflows: vec![ty],
167         });
168     }
169
170     let result = match ty.sty {
171         ty::Bool
172         | ty::Char
173         | ty::Int(_)
174         | ty::Uint(_)
175         | ty::Float(_)
176         | ty::Str
177         | ty::Never
178         | ty::Foreign(..)
179         | ty::RawPtr(..)
180         | ty::Ref(..)
181         | ty::FnDef(..)
182         | ty::FnPtr(_)
183         | ty::GeneratorWitness(..) => {
184             // these types never have a destructor
185             Ok(DtorckConstraint::empty())
186         }
187
188         ty::Array(ety, _) | ty::Slice(ety) => {
189             // single-element containers, behave like their element
190             dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ety)
191         }
192
193         ty::Tuple(tys) => tys.iter()
194             .map(|ty| dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty))
195             .collect(),
196
197         ty::Closure(def_id, substs) => substs
198             .upvar_tys(def_id, tcx)
199             .map(|ty| dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty))
200             .collect(),
201
202         ty::Generator(def_id, substs, _movability) => {
203             // rust-lang/rust#49918: types can be constructed, stored
204             // in the interior, and sit idle when generator yields
205             // (and is subsequently dropped).
206             //
207             // It would be nice to descend into interior of a
208             // generator to determine what effects dropping it might
209             // have (by looking at any drop effects associated with
210             // its interior).
211             //
212             // However, the interior's representation uses things like
213             // GeneratorWitness that explicitly assume they are not
214             // traversed in such a manner. So instead, we will
215             // simplify things for now by treating all generators as
216             // if they were like trait objects, where its upvars must
217             // all be alive for the generator's (potential)
218             // destructor.
219             //
220             // In particular, skipping over `_interior` is safe
221             // because any side-effects from dropping `_interior` can
222             // only take place through references with lifetimes
223             // derived from lifetimes attached to the upvars, and we
224             // *do* incorporate the upvars here.
225
226             let constraint = DtorckConstraint {
227                 outlives: substs.upvar_tys(def_id, tcx).map(|t| t.into()).collect(),
228                 dtorck_types: vec![],
229                 overflows: vec![],
230             };
231             debug!(
232                 "dtorck_constraint: generator {:?} => {:?}",
233                 def_id, constraint
234             );
235
236             Ok(constraint)
237         }
238
239         ty::Adt(def, substs) => {
240             let DtorckConstraint {
241                 dtorck_types,
242                 outlives,
243                 overflows,
244             } = tcx.at(span).adt_dtorck_constraint(def.did)?;
245             Ok(DtorckConstraint {
246                 // FIXME: we can try to recursively `dtorck_constraint_on_ty`
247                 // there, but that needs some way to handle cycles.
248                 dtorck_types: dtorck_types.subst(tcx, substs),
249                 outlives: outlives.subst(tcx, substs),
250                 overflows: overflows.subst(tcx, substs),
251             })
252         }
253
254         // Objects must be alive in order for their destructor
255         // to be called.
256         ty::Dynamic(..) => Ok(DtorckConstraint {
257             outlives: vec![ty.into()],
258             dtorck_types: vec![],
259             overflows: vec![],
260         }),
261
262         // Types that can't be resolved. Pass them forward.
263         ty::Projection(..) | ty::Opaque(..) | ty::Param(..) => Ok(DtorckConstraint {
264             outlives: vec![],
265             dtorck_types: vec![ty],
266             overflows: vec![],
267         }),
268
269         ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
270
271         ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error => {
272             // By the time this code runs, all type variables ought to
273             // be fully resolved.
274             Err(NoSolution)
275         }
276     };
277
278     debug!("dtorck_constraint_for_ty({:?}) = {:?}", ty, result);
279     result
280 }
281
282 /// Calculates the dtorck constraint for a type.
283 crate fn adt_dtorck_constraint<'a, 'tcx>(
284     tcx: TyCtxt<'a, 'tcx, 'tcx>,
285     def_id: DefId,
286 ) -> Result<DtorckConstraint<'tcx>, NoSolution> {
287     let def = tcx.adt_def(def_id);
288     let span = tcx.def_span(def_id);
289     debug!("dtorck_constraint: {:?}", def);
290
291     if def.is_phantom_data() {
292         // The first generic parameter here is guaranteed to be a type because it's
293         // `PhantomData`.
294         let substs = InternalSubsts::identity_for_item(tcx, def_id);
295         assert_eq!(substs.len(), 1);
296         let result = DtorckConstraint {
297             outlives: vec![],
298             dtorck_types: vec![substs.type_at(0)],
299             overflows: vec![],
300         };
301         debug!("dtorck_constraint: {:?} => {:?}", def, result);
302         return Ok(result);
303     }
304
305     let mut result = def.all_fields()
306         .map(|field| tcx.type_of(field.did))
307         .map(|fty| dtorck_constraint_for_ty(tcx, span, fty, 0, fty))
308         .collect::<Result<DtorckConstraint<'_>, NoSolution>>()?;
309     result.outlives.extend(tcx.destructor_constraints(def));
310     dedup_dtorck_constraint(&mut result);
311
312     debug!("dtorck_constraint: {:?} => {:?}", def, result);
313
314     Ok(result)
315 }
316
317 fn dedup_dtorck_constraint<'tcx>(c: &mut DtorckConstraint<'tcx>) {
318     let mut outlives = FxHashSet::default();
319     let mut dtorck_types = FxHashSet::default();
320
321     c.outlives.retain(|&val| outlives.replace(val).is_none());
322     c.dtorck_types
323         .retain(|&val| dtorck_types.replace(val).is_none());
324 }