]> git.lizzy.rs Git - rust.git/blob - src/librustc_traits/dropck_outlives.rs
Rollup merge of #64856 - jonhoo:format-temporaries, r=sfackler
[rust.git] / src / librustc_traits / dropck_outlives.rs
1 use rustc::hir::def_id::DefId;
2 use rustc::infer::canonical::{Canonical, QueryResponse};
3 use rustc::traits::query::dropck_outlives::{DropckOutlivesResult, DtorckConstraint};
4 use rustc::traits::query::dropck_outlives::trivial_dropck_outlives;
5 use rustc::traits::query::{CanonicalTyGoal, NoSolution};
6 use rustc::traits::{TraitEngine, Normalized, ObligationCause, TraitEngineExt};
7 use rustc::ty::query::Providers;
8 use rustc::ty::subst::{Subst, InternalSubsts};
9 use rustc::ty::{self, ParamEnvAnd, Ty, TyCtxt};
10 use rustc::util::nodemap::FxHashSet;
11 use syntax::source_map::{Span, DUMMY_SP};
12
13 crate fn provide(p: &mut Providers<'_>) {
14     *p = Providers {
15         dropck_outlives,
16         adt_dtorck_constraint,
17         ..*p
18     };
19 }
20
21 fn dropck_outlives<'tcx>(
22     tcx: TyCtxt<'tcx>,
23     canonical_goal: CanonicalTyGoal<'tcx>,
24 ) -> Result<&'tcx Canonical<'tcx, QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>, NoSolution> {
25     debug!("dropck_outlives(goal={:#?})", canonical_goal);
26
27     tcx.infer_ctxt().enter_with_canonical(
28         DUMMY_SP,
29         &canonical_goal,
30         |ref infcx, goal, canonical_inference_vars| {
31             let tcx = infcx.tcx;
32             let ParamEnvAnd {
33                 param_env,
34                 value: for_ty,
35             } = goal;
36
37             let mut result = DropckOutlivesResult {
38                 kinds: vec![],
39                 overflows: vec![],
40             };
41
42             // A stack of types left to process. Each round, we pop
43             // something from the stack and invoke
44             // `dtorck_constraint_for_ty`. This may produce new types that
45             // have to be pushed on the stack. This continues until we have explored
46             // all the reachable types from the type `for_ty`.
47             //
48             // Example: Imagine that we have the following code:
49             //
50             // ```rust
51             // struct A {
52             //     value: B,
53             //     children: Vec<A>,
54             // }
55             //
56             // struct B {
57             //     value: u32
58             // }
59             //
60             // fn f() {
61             //   let a: A = ...;
62             //   ..
63             // } // here, `a` is dropped
64             // ```
65             //
66             // at the point where `a` is dropped, we need to figure out
67             // which types inside of `a` contain region data that may be
68             // accessed by any destructors in `a`. We begin by pushing `A`
69             // onto the stack, as that is the type of `a`. We will then
70             // invoke `dtorck_constraint_for_ty` which will expand `A`
71             // into the types of its fields `(B, Vec<A>)`. These will get
72             // pushed onto the stack. Eventually, expanding `Vec<A>` will
73             // lead to us trying to push `A` a second time -- to prevent
74             // infinite recursion, we notice that `A` was already pushed
75             // once and stop.
76             let mut ty_stack = vec![(for_ty, 0)];
77
78             // Set used to detect infinite recursion.
79             let mut ty_set = FxHashSet::default();
80
81             let mut fulfill_cx = TraitEngine::new(infcx.tcx);
82
83             let cause = ObligationCause::dummy();
84             let mut constraints = DtorckConstraint::empty();
85             while let Some((ty, depth)) = ty_stack.pop() {
86                 info!("{} kinds, {} overflows, {} ty_stack",
87                     result.kinds.len(), result.overflows.len(), ty_stack.len());
88                 dtorck_constraint_for_ty(tcx, DUMMY_SP, for_ty, depth, ty, &mut constraints)?;
89
90                 // "outlives" represent types/regions that may be touched
91                 // by a destructor.
92                 result.kinds.extend(constraints.outlives.drain(..));
93                 result.overflows.extend(constraints.overflows.drain(..));
94
95                 // If we have even one overflow, we should stop trying to evaluate further --
96                 // chances are, the subsequent overflows for this evaluation won't provide useful
97                 // information and will just decrease the speed at which we can emit these errors
98                 // (since we'll be printing for just that much longer for the often enormous types
99                 // that result here).
100                 if result.overflows.len() >= 1 {
101                     break;
102                 }
103
104                 // dtorck types are "types that will get dropped but which
105                 // do not themselves define a destructor", more or less. We have
106                 // to push them onto the stack to be expanded.
107                 for ty in constraints.dtorck_types.drain(..) {
108                     match infcx.at(&cause, param_env).normalize(&ty) {
109                         Ok(Normalized {
110                             value: ty,
111                             obligations,
112                         }) => {
113                             fulfill_cx.register_predicate_obligations(infcx, obligations);
114
115                             debug!("dropck_outlives: ty from dtorck_types = {:?}", ty);
116
117                             match ty.kind {
118                                 // All parameters live for the duration of the
119                                 // function.
120                                 ty::Param(..) => {}
121
122                                 // A projection that we couldn't resolve - it
123                                 // might have a destructor.
124                                 ty::Projection(..) | ty::Opaque(..) => {
125                                     result.kinds.push(ty.into());
126                                 }
127
128                                 _ => {
129                                     if ty_set.insert(ty) {
130                                         ty_stack.push((ty, depth + 1));
131                                     }
132                                 }
133                             }
134                         }
135
136                         // We don't actually expect to fail to normalize.
137                         // That implies a WF error somewhere else.
138                         Err(NoSolution) => {
139                             return Err(NoSolution);
140                         }
141                     }
142                 }
143             }
144
145             debug!("dropck_outlives: result = {:#?}", result);
146
147             infcx.make_canonicalized_query_response(
148                 canonical_inference_vars,
149                 result,
150                 &mut *fulfill_cx
151             )
152         },
153     )
154 }
155
156 /// Returns a set of constraints that needs to be satisfied in
157 /// order for `ty` to be valid for destruction.
158 fn dtorck_constraint_for_ty<'tcx>(
159     tcx: TyCtxt<'tcx>,
160     span: Span,
161     for_ty: Ty<'tcx>,
162     depth: usize,
163     ty: Ty<'tcx>,
164     constraints: &mut DtorckConstraint<'tcx>,
165 ) -> Result<(), NoSolution> {
166     debug!(
167         "dtorck_constraint_for_ty({:?}, {:?}, {:?}, {:?})",
168         span, for_ty, depth, ty
169     );
170
171     if depth >= *tcx.sess.recursion_limit.get() {
172         constraints.overflows.push(ty);
173         return Ok(());
174     }
175
176     if trivial_dropck_outlives(tcx, ty) {
177         return Ok(());
178     }
179
180     match ty.kind {
181         ty::Bool
182         | ty::Char
183         | ty::Int(_)
184         | ty::Uint(_)
185         | ty::Float(_)
186         | ty::Str
187         | ty::Never
188         | ty::Foreign(..)
189         | ty::RawPtr(..)
190         | ty::Ref(..)
191         | ty::FnDef(..)
192         | ty::FnPtr(_)
193         | ty::GeneratorWitness(..) => {
194             // these types never have a destructor
195         }
196
197         ty::Array(ety, _) | ty::Slice(ety) => {
198             // single-element containers, behave like their element
199             dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ety, constraints)?;
200         }
201
202         ty::Tuple(tys) => for ty in tys.iter() {
203             dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty.expect_ty(), constraints)?;
204         },
205
206         ty::Closure(def_id, substs) => for ty in substs.as_closure().upvar_tys(def_id, tcx) {
207             dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty, constraints)?;
208         }
209
210         ty::Generator(def_id, substs, _movability) => {
211             // rust-lang/rust#49918: types can be constructed, stored
212             // in the interior, and sit idle when generator yields
213             // (and is subsequently dropped).
214             //
215             // It would be nice to descend into interior of a
216             // generator to determine what effects dropping it might
217             // have (by looking at any drop effects associated with
218             // its interior).
219             //
220             // However, the interior's representation uses things like
221             // GeneratorWitness that explicitly assume they are not
222             // traversed in such a manner. So instead, we will
223             // simplify things for now by treating all generators as
224             // if they were like trait objects, where its upvars must
225             // all be alive for the generator's (potential)
226             // destructor.
227             //
228             // In particular, skipping over `_interior` is safe
229             // because any side-effects from dropping `_interior` can
230             // only take place through references with lifetimes
231             // derived from lifetimes attached to the upvars, and we
232             // *do* incorporate the upvars here.
233
234             constraints.outlives.extend(substs.as_generator().upvar_tys(def_id, tcx)
235                 .map(|t| -> ty::subst::GenericArg<'tcx> { t.into() }));
236         }
237
238         ty::Adt(def, substs) => {
239             let DtorckConstraint {
240                 dtorck_types,
241                 outlives,
242                 overflows,
243             } = tcx.at(span).adt_dtorck_constraint(def.did)?;
244             // FIXME: we can try to recursively `dtorck_constraint_on_ty`
245             // there, but that needs some way to handle cycles.
246             constraints.dtorck_types.extend(dtorck_types.subst(tcx, substs));
247             constraints.outlives.extend(outlives.subst(tcx, substs));
248             constraints.overflows.extend(overflows.subst(tcx, substs));
249         }
250
251         // Objects must be alive in order for their destructor
252         // to be called.
253         ty::Dynamic(..) => {
254             constraints.outlives.push(ty.into());
255         },
256
257         // Types that can't be resolved. Pass them forward.
258         ty::Projection(..) | ty::Opaque(..) | ty::Param(..) => {
259             constraints.dtorck_types.push(ty);
260         },
261
262         ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
263
264         ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error => {
265             // By the time this code runs, all type variables ought to
266             // be fully resolved.
267             return Err(NoSolution)
268         }
269     }
270
271     Ok(())
272 }
273
274 /// Calculates the dtorck constraint for a type.
275 crate fn adt_dtorck_constraint(
276     tcx: TyCtxt<'_>,
277     def_id: DefId,
278 ) -> Result<DtorckConstraint<'_>, NoSolution> {
279     let def = tcx.adt_def(def_id);
280     let span = tcx.def_span(def_id);
281     debug!("dtorck_constraint: {:?}", def);
282
283     if def.is_phantom_data() {
284         // The first generic parameter here is guaranteed to be a type because it's
285         // `PhantomData`.
286         let substs = InternalSubsts::identity_for_item(tcx, def_id);
287         assert_eq!(substs.len(), 1);
288         let result = DtorckConstraint {
289             outlives: vec![],
290             dtorck_types: vec![substs.type_at(0)],
291             overflows: vec![],
292         };
293         debug!("dtorck_constraint: {:?} => {:?}", def, result);
294         return Ok(result);
295     }
296
297     let mut result = DtorckConstraint::empty();
298     for field in def.all_fields() {
299         let fty = tcx.type_of(field.did);
300         dtorck_constraint_for_ty(tcx, span, fty, 0, fty, &mut result)?;
301     }
302     result.outlives.extend(tcx.destructor_constraints(def));
303     dedup_dtorck_constraint(&mut result);
304
305     debug!("dtorck_constraint: {:?} => {:?}", def, result);
306
307     Ok(result)
308 }
309
310 fn dedup_dtorck_constraint(c: &mut DtorckConstraint<'_>) {
311     let mut outlives = FxHashSet::default();
312     let mut dtorck_types = FxHashSet::default();
313
314     c.outlives.retain(|&val| outlives.replace(val).is_none());
315     c.dtorck_types
316         .retain(|&val| dtorck_types.replace(val).is_none());
317 }