]> git.lizzy.rs Git - rust.git/blob - src/librustc_traits/dropck_outlives.rs
Auto merge of #67076 - mbrubeck:condvar, r=dtolnay
[rust.git] / src / librustc_traits / dropck_outlives.rs
1 use rustc::infer::canonical::{Canonical, QueryResponse};
2 use rustc::traits::query::dropck_outlives::trivial_dropck_outlives;
3 use rustc::traits::query::dropck_outlives::{DropckOutlivesResult, DtorckConstraint};
4 use rustc::traits::query::{CanonicalTyGoal, NoSolution};
5 use rustc::traits::{Normalized, ObligationCause, TraitEngine, TraitEngineExt};
6 use rustc::ty::query::Providers;
7 use rustc::ty::subst::{InternalSubsts, Subst};
8 use rustc::ty::{self, ParamEnvAnd, Ty, TyCtxt};
9 use rustc_data_structures::fx::FxHashSet;
10 use rustc_hir::def_id::DefId;
11 use rustc_span::source_map::{Span, DUMMY_SP};
12
13 crate fn provide(p: &mut Providers<'_>) {
14     *p = Providers { dropck_outlives, adt_dtorck_constraint, ..*p };
15 }
16
17 fn dropck_outlives<'tcx>(
18     tcx: TyCtxt<'tcx>,
19     canonical_goal: CanonicalTyGoal<'tcx>,
20 ) -> Result<&'tcx Canonical<'tcx, QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>, NoSolution> {
21     debug!("dropck_outlives(goal={:#?})", canonical_goal);
22
23     tcx.infer_ctxt().enter_with_canonical(
24         DUMMY_SP,
25         &canonical_goal,
26         |ref infcx, goal, canonical_inference_vars| {
27             let tcx = infcx.tcx;
28             let ParamEnvAnd { param_env, value: for_ty } = goal;
29
30             let mut result = DropckOutlivesResult { kinds: vec![], overflows: vec![] };
31
32             // A stack of types left to process. Each round, we pop
33             // something from the stack and invoke
34             // `dtorck_constraint_for_ty`. This may produce new types that
35             // have to be pushed on the stack. This continues until we have explored
36             // all the reachable types from the type `for_ty`.
37             //
38             // Example: Imagine that we have the following code:
39             //
40             // ```rust
41             // struct A {
42             //     value: B,
43             //     children: Vec<A>,
44             // }
45             //
46             // struct B {
47             //     value: u32
48             // }
49             //
50             // fn f() {
51             //   let a: A = ...;
52             //   ..
53             // } // here, `a` is dropped
54             // ```
55             //
56             // at the point where `a` is dropped, we need to figure out
57             // which types inside of `a` contain region data that may be
58             // accessed by any destructors in `a`. We begin by pushing `A`
59             // onto the stack, as that is the type of `a`. We will then
60             // invoke `dtorck_constraint_for_ty` which will expand `A`
61             // into the types of its fields `(B, Vec<A>)`. These will get
62             // pushed onto the stack. Eventually, expanding `Vec<A>` will
63             // lead to us trying to push `A` a second time -- to prevent
64             // infinite recursion, we notice that `A` was already pushed
65             // once and stop.
66             let mut ty_stack = vec![(for_ty, 0)];
67
68             // Set used to detect infinite recursion.
69             let mut ty_set = FxHashSet::default();
70
71             let mut fulfill_cx = TraitEngine::new(infcx.tcx);
72
73             let cause = ObligationCause::dummy();
74             let mut constraints = DtorckConstraint::empty();
75             while let Some((ty, depth)) = ty_stack.pop() {
76                 info!(
77                     "{} kinds, {} overflows, {} ty_stack",
78                     result.kinds.len(),
79                     result.overflows.len(),
80                     ty_stack.len()
81                 );
82                 dtorck_constraint_for_ty(tcx, DUMMY_SP, for_ty, depth, ty, &mut constraints)?;
83
84                 // "outlives" represent types/regions that may be touched
85                 // by a destructor.
86                 result.kinds.extend(constraints.outlives.drain(..));
87                 result.overflows.extend(constraints.overflows.drain(..));
88
89                 // If we have even one overflow, we should stop trying to evaluate further --
90                 // chances are, the subsequent overflows for this evaluation won't provide useful
91                 // information and will just decrease the speed at which we can emit these errors
92                 // (since we'll be printing for just that much longer for the often enormous types
93                 // that result here).
94                 if result.overflows.len() >= 1 {
95                     break;
96                 }
97
98                 // dtorck types are "types that will get dropped but which
99                 // do not themselves define a destructor", more or less. We have
100                 // to push them onto the stack to be expanded.
101                 for ty in constraints.dtorck_types.drain(..) {
102                     match infcx.at(&cause, param_env).normalize(&ty) {
103                         Ok(Normalized { value: ty, obligations }) => {
104                             fulfill_cx.register_predicate_obligations(infcx, obligations);
105
106                             debug!("dropck_outlives: ty from dtorck_types = {:?}", ty);
107
108                             match ty.kind {
109                                 // All parameters live for the duration of the
110                                 // function.
111                                 ty::Param(..) => {}
112
113                                 // A projection that we couldn't resolve - it
114                                 // might have a destructor.
115                                 ty::Projection(..) | ty::Opaque(..) => {
116                                     result.kinds.push(ty.into());
117                                 }
118
119                                 _ => {
120                                     if ty_set.insert(ty) {
121                                         ty_stack.push((ty, depth + 1));
122                                     }
123                                 }
124                             }
125                         }
126
127                         // We don't actually expect to fail to normalize.
128                         // That implies a WF error somewhere else.
129                         Err(NoSolution) => {
130                             return Err(NoSolution);
131                         }
132                     }
133                 }
134             }
135
136             debug!("dropck_outlives: result = {:#?}", result);
137
138             infcx.make_canonicalized_query_response(
139                 canonical_inference_vars,
140                 result,
141                 &mut *fulfill_cx,
142             )
143         },
144     )
145 }
146
147 /// Returns a set of constraints that needs to be satisfied in
148 /// order for `ty` to be valid for destruction.
149 fn dtorck_constraint_for_ty<'tcx>(
150     tcx: TyCtxt<'tcx>,
151     span: Span,
152     for_ty: Ty<'tcx>,
153     depth: usize,
154     ty: Ty<'tcx>,
155     constraints: &mut DtorckConstraint<'tcx>,
156 ) -> Result<(), NoSolution> {
157     debug!("dtorck_constraint_for_ty({:?}, {:?}, {:?}, {:?})", span, for_ty, depth, ty);
158
159     if depth >= *tcx.sess.recursion_limit.get() {
160         constraints.overflows.push(ty);
161         return Ok(());
162     }
163
164     if trivial_dropck_outlives(tcx, ty) {
165         return Ok(());
166     }
167
168     match ty.kind {
169         ty::Bool
170         | ty::Char
171         | ty::Int(_)
172         | ty::Uint(_)
173         | ty::Float(_)
174         | ty::Str
175         | ty::Never
176         | ty::Foreign(..)
177         | ty::RawPtr(..)
178         | ty::Ref(..)
179         | ty::FnDef(..)
180         | ty::FnPtr(_)
181         | ty::GeneratorWitness(..) => {
182             // these types never have a destructor
183         }
184
185         ty::Array(ety, _) | ty::Slice(ety) => {
186             // single-element containers, behave like their element
187             dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ety, constraints)?;
188         }
189
190         ty::Tuple(tys) => {
191             for ty in tys.iter() {
192                 dtorck_constraint_for_ty(
193                     tcx,
194                     span,
195                     for_ty,
196                     depth + 1,
197                     ty.expect_ty(),
198                     constraints,
199                 )?;
200             }
201         }
202
203         ty::Closure(def_id, substs) => {
204             for ty in substs.as_closure().upvar_tys(def_id, tcx) {
205                 dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty, constraints)?;
206             }
207         }
208
209         ty::Generator(def_id, substs, _movability) => {
210             // rust-lang/rust#49918: types can be constructed, stored
211             // in the interior, and sit idle when generator yields
212             // (and is subsequently dropped).
213             //
214             // It would be nice to descend into interior of a
215             // generator to determine what effects dropping it might
216             // have (by looking at any drop effects associated with
217             // its interior).
218             //
219             // However, the interior's representation uses things like
220             // GeneratorWitness that explicitly assume they are not
221             // traversed in such a manner. So instead, we will
222             // simplify things for now by treating all generators as
223             // if they were like trait objects, where its upvars must
224             // all be alive for the generator's (potential)
225             // destructor.
226             //
227             // In particular, skipping over `_interior` is safe
228             // because any side-effects from dropping `_interior` can
229             // only take place through references with lifetimes
230             // derived from lifetimes attached to the upvars, and we
231             // *do* incorporate the upvars here.
232
233             constraints.outlives.extend(
234                 substs
235                     .as_generator()
236                     .upvar_tys(def_id, tcx)
237                     .map(|t| -> ty::subst::GenericArg<'tcx> { t.into() }),
238             );
239         }
240
241         ty::Adt(def, substs) => {
242             let DtorckConstraint { dtorck_types, outlives, overflows } =
243                 tcx.at(span).adt_dtorck_constraint(def.did)?;
244             // FIXME: we can try to recursively `dtorck_constraint_on_ty`
245             // there, but that needs some way to handle cycles.
246             constraints.dtorck_types.extend(dtorck_types.subst(tcx, substs));
247             constraints.outlives.extend(outlives.subst(tcx, substs));
248             constraints.overflows.extend(overflows.subst(tcx, substs));
249         }
250
251         // Objects must be alive in order for their destructor
252         // to be called.
253         ty::Dynamic(..) => {
254             constraints.outlives.push(ty.into());
255         }
256
257         // Types that can't be resolved. Pass them forward.
258         ty::Projection(..) | ty::Opaque(..) | ty::Param(..) => {
259             constraints.dtorck_types.push(ty);
260         }
261
262         ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
263
264         ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error => {
265             // By the time this code runs, all type variables ought to
266             // be fully resolved.
267             return Err(NoSolution);
268         }
269     }
270
271     Ok(())
272 }
273
274 /// Calculates the dtorck constraint for a type.
275 crate fn adt_dtorck_constraint(
276     tcx: TyCtxt<'_>,
277     def_id: DefId,
278 ) -> Result<DtorckConstraint<'_>, NoSolution> {
279     let def = tcx.adt_def(def_id);
280     let span = tcx.def_span(def_id);
281     debug!("dtorck_constraint: {:?}", def);
282
283     if def.is_phantom_data() {
284         // The first generic parameter here is guaranteed to be a type because it's
285         // `PhantomData`.
286         let substs = InternalSubsts::identity_for_item(tcx, def_id);
287         assert_eq!(substs.len(), 1);
288         let result = DtorckConstraint {
289             outlives: vec![],
290             dtorck_types: vec![substs.type_at(0)],
291             overflows: vec![],
292         };
293         debug!("dtorck_constraint: {:?} => {:?}", def, result);
294         return Ok(result);
295     }
296
297     let mut result = DtorckConstraint::empty();
298     for field in def.all_fields() {
299         let fty = tcx.type_of(field.did);
300         dtorck_constraint_for_ty(tcx, span, fty, 0, fty, &mut result)?;
301     }
302     result.outlives.extend(tcx.destructor_constraints(def));
303     dedup_dtorck_constraint(&mut result);
304
305     debug!("dtorck_constraint: {:?} => {:?}", def, result);
306
307     Ok(result)
308 }
309
310 fn dedup_dtorck_constraint(c: &mut DtorckConstraint<'_>) {
311     let mut outlives = FxHashSet::default();
312     let mut dtorck_types = FxHashSet::default();
313
314     c.outlives.retain(|&val| outlives.replace(val).is_none());
315     c.dtorck_types.retain(|&val| dtorck_types.replace(val).is_none());
316 }