]> git.lizzy.rs Git - rust.git/blob - src/librustc_trait_selection/traits/wf.rs
Rollup merge of #74750 - oli-obk:logging_and_test_cleanups, r=JohnTitor
[rust.git] / src / librustc_trait_selection / traits / wf.rs
1 use crate::infer::InferCtxt;
2 use crate::opaque_types::required_region_bounds;
3 use crate::traits;
4 use rustc_hir as hir;
5 use rustc_hir::def_id::DefId;
6 use rustc_hir::lang_items;
7 use rustc_middle::ty::subst::{GenericArg, GenericArgKind, SubstsRef};
8 use rustc_middle::ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable, WithConstness};
9 use rustc_span::Span;
10 use std::rc::Rc;
11
12 /// Returns the set of obligations needed to make `arg` well-formed.
13 /// If `arg` contains unresolved inference variables, this may include
14 /// further WF obligations. However, if `arg` IS an unresolved
15 /// inference variable, returns `None`, because we are not able to
16 /// make any progress at all. This is to prevent "livelock" where we
17 /// say "$0 is WF if $0 is WF".
18 pub fn obligations<'a, 'tcx>(
19     infcx: &InferCtxt<'a, 'tcx>,
20     param_env: ty::ParamEnv<'tcx>,
21     body_id: hir::HirId,
22     arg: GenericArg<'tcx>,
23     span: Span,
24 ) -> Option<Vec<traits::PredicateObligation<'tcx>>> {
25     // Handle the "livelock" case (see comment above) by bailing out if necessary.
26     let arg = match arg.unpack() {
27         GenericArgKind::Type(ty) => {
28             match ty.kind {
29                 ty::Infer(ty::TyVar(_)) => {
30                     let resolved_ty = infcx.shallow_resolve(ty);
31                     if resolved_ty == ty {
32                         // No progress, bail out to prevent "livelock".
33                         return None;
34                     }
35
36                     resolved_ty
37                 }
38                 _ => ty,
39             }
40             .into()
41         }
42         GenericArgKind::Const(ct) => {
43             match ct.val {
44                 ty::ConstKind::Infer(infer) => {
45                     let resolved = infcx.shallow_resolve(infer);
46                     if resolved == infer {
47                         // No progress.
48                         return None;
49                     }
50
51                     infcx.tcx.mk_const(ty::Const { val: ty::ConstKind::Infer(resolved), ty: ct.ty })
52                 }
53                 _ => ct,
54             }
55             .into()
56         }
57         // There is nothing we have to do for lifetimes.
58         GenericArgKind::Lifetime(..) => return Some(Vec::new()),
59     };
60
61     let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item: None };
62     wf.compute(arg);
63     debug!("wf::obligations({:?}, body_id={:?}) = {:?}", arg, body_id, wf.out);
64
65     let result = wf.normalize();
66     debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", arg, body_id, result);
67     Some(result)
68 }
69
70 /// Returns the obligations that make this trait reference
71 /// well-formed.  For example, if there is a trait `Set` defined like
72 /// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
73 /// if `Bar: Eq`.
74 pub fn trait_obligations<'a, 'tcx>(
75     infcx: &InferCtxt<'a, 'tcx>,
76     param_env: ty::ParamEnv<'tcx>,
77     body_id: hir::HirId,
78     trait_ref: &ty::TraitRef<'tcx>,
79     span: Span,
80     item: Option<&'tcx hir::Item<'tcx>>,
81 ) -> Vec<traits::PredicateObligation<'tcx>> {
82     let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item };
83     wf.compute_trait_ref(trait_ref, Elaborate::All);
84     wf.normalize()
85 }
86
87 pub fn predicate_obligations<'a, 'tcx>(
88     infcx: &InferCtxt<'a, 'tcx>,
89     param_env: ty::ParamEnv<'tcx>,
90     body_id: hir::HirId,
91     predicate: ty::Predicate<'tcx>,
92     span: Span,
93 ) -> Vec<traits::PredicateObligation<'tcx>> {
94     let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item: None };
95
96     // (*) ok to skip binders, because wf code is prepared for it
97     match predicate.kind() {
98         ty::PredicateKind::Trait(t, _) => {
99             wf.compute_trait_ref(&t.skip_binder().trait_ref, Elaborate::None); // (*)
100         }
101         ty::PredicateKind::RegionOutlives(..) => {}
102         ty::PredicateKind::TypeOutlives(t) => {
103             wf.compute(t.skip_binder().0.into());
104         }
105         ty::PredicateKind::Projection(t) => {
106             let t = t.skip_binder(); // (*)
107             wf.compute_projection(t.projection_ty);
108             wf.compute(t.ty.into());
109         }
110         &ty::PredicateKind::WellFormed(arg) => {
111             wf.compute(arg);
112         }
113         ty::PredicateKind::ObjectSafe(_) => {}
114         ty::PredicateKind::ClosureKind(..) => {}
115         ty::PredicateKind::Subtype(data) => {
116             wf.compute(data.skip_binder().a.into()); // (*)
117             wf.compute(data.skip_binder().b.into()); // (*)
118         }
119         &ty::PredicateKind::ConstEvaluatable(def, substs) => {
120             let obligations = wf.nominal_obligations(def.did, substs);
121             wf.out.extend(obligations);
122
123             for arg in substs.iter() {
124                 wf.compute(arg);
125             }
126         }
127         &ty::PredicateKind::ConstEquate(c1, c2) => {
128             wf.compute(c1.into());
129             wf.compute(c2.into());
130         }
131     }
132
133     wf.normalize()
134 }
135
136 struct WfPredicates<'a, 'tcx> {
137     infcx: &'a InferCtxt<'a, 'tcx>,
138     param_env: ty::ParamEnv<'tcx>,
139     body_id: hir::HirId,
140     span: Span,
141     out: Vec<traits::PredicateObligation<'tcx>>,
142     item: Option<&'tcx hir::Item<'tcx>>,
143 }
144
145 /// Controls whether we "elaborate" supertraits and so forth on the WF
146 /// predicates. This is a kind of hack to address #43784. The
147 /// underlying problem in that issue was a trait structure like:
148 ///
149 /// ```
150 /// trait Foo: Copy { }
151 /// trait Bar: Foo { }
152 /// impl<T: Bar> Foo for T { }
153 /// impl<T> Bar for T { }
154 /// ```
155 ///
156 /// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
157 /// we decide that this is true because `T: Bar` is in the
158 /// where-clauses (and we can elaborate that to include `T:
159 /// Copy`). This wouldn't be a problem, except that when we check the
160 /// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
161 /// impl. And so nowhere did we check that `T: Copy` holds!
162 ///
163 /// To resolve this, we elaborate the WF requirements that must be
164 /// proven when checking impls. This means that (e.g.) the `impl Bar
165 /// for T` will be forced to prove not only that `T: Foo` but also `T:
166 /// Copy` (which it won't be able to do, because there is no `Copy`
167 /// impl for `T`).
168 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
169 enum Elaborate {
170     All,
171     None,
172 }
173
174 fn extend_cause_with_original_assoc_item_obligation<'tcx>(
175     tcx: TyCtxt<'tcx>,
176     trait_ref: &ty::TraitRef<'tcx>,
177     item: Option<&hir::Item<'tcx>>,
178     cause: &mut traits::ObligationCause<'tcx>,
179     pred: &ty::Predicate<'_>,
180     mut trait_assoc_items: impl Iterator<Item = &'tcx ty::AssocItem>,
181 ) {
182     debug!(
183         "extended_cause_with_original_assoc_item_obligation {:?} {:?} {:?} {:?}",
184         trait_ref, item, cause, pred
185     );
186     let items = match item {
187         Some(hir::Item { kind: hir::ItemKind::Impl { items, .. }, .. }) => items,
188         _ => return,
189     };
190     let fix_span =
191         |impl_item_ref: &hir::ImplItemRef<'_>| match tcx.hir().impl_item(impl_item_ref.id).kind {
192             hir::ImplItemKind::Const(ty, _) | hir::ImplItemKind::TyAlias(ty) => ty.span,
193             _ => impl_item_ref.span,
194         };
195     match pred.kind() {
196         ty::PredicateKind::Projection(proj) => {
197             // The obligation comes not from the current `impl` nor the `trait` being implemented,
198             // but rather from a "second order" obligation, where an associated type has a
199             // projection coming from another associated type. See
200             // `src/test/ui/associated-types/point-at-type-on-obligation-failure.rs` and
201             // `traits-assoc-type-in-supertrait-bad.rs`.
202             let kind = &proj.ty().skip_binder().kind;
203             if let ty::Projection(projection_ty) = kind {
204                 let trait_assoc_item = tcx.associated_item(projection_ty.item_def_id);
205                 if let Some(impl_item_span) =
206                     items.iter().find(|item| item.ident == trait_assoc_item.ident).map(fix_span)
207                 {
208                     cause.make_mut().span = impl_item_span;
209                 }
210             }
211         }
212         ty::PredicateKind::Trait(pred, _) => {
213             // An associated item obligation born out of the `trait` failed to be met. An example
214             // can be seen in `ui/associated-types/point-at-type-on-obligation-failure-2.rs`.
215             debug!("extended_cause_with_original_assoc_item_obligation trait proj {:?}", pred);
216             if let ty::Projection(ty::ProjectionTy { item_def_id, .. }) =
217                 &pred.skip_binder().self_ty().kind
218             {
219                 if let Some(impl_item_span) = trait_assoc_items
220                     .find(|i| i.def_id == *item_def_id)
221                     .and_then(|trait_assoc_item| {
222                         items.iter().find(|i| i.ident == trait_assoc_item.ident).map(fix_span)
223                     })
224                 {
225                     cause.make_mut().span = impl_item_span;
226                 }
227             }
228         }
229         _ => {}
230     }
231 }
232
233 impl<'a, 'tcx> WfPredicates<'a, 'tcx> {
234     fn tcx(&self) -> TyCtxt<'tcx> {
235         self.infcx.tcx
236     }
237
238     fn cause(&self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
239         traits::ObligationCause::new(self.span, self.body_id, code)
240     }
241
242     fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
243         let cause = self.cause(traits::MiscObligation);
244         let infcx = &mut self.infcx;
245         let param_env = self.param_env;
246         let mut obligations = Vec::with_capacity(self.out.len());
247         for pred in &self.out {
248             assert!(!pred.has_escaping_bound_vars());
249             let mut selcx = traits::SelectionContext::new(infcx);
250             let i = obligations.len();
251             let value =
252                 traits::normalize_to(&mut selcx, param_env, cause.clone(), pred, &mut obligations);
253             obligations.insert(i, value);
254         }
255         obligations
256     }
257
258     /// Pushes the obligations required for `trait_ref` to be WF into `self.out`.
259     fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>, elaborate: Elaborate) {
260         let tcx = self.infcx.tcx;
261         let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
262
263         debug!("compute_trait_ref obligations {:?}", obligations);
264         let cause = self.cause(traits::MiscObligation);
265         let param_env = self.param_env;
266
267         let item = self.item;
268
269         let extend = |obligation: traits::PredicateObligation<'tcx>| {
270             let mut cause = cause.clone();
271             if let Some(parent_trait_ref) = obligation.predicate.to_opt_poly_trait_ref() {
272                 let derived_cause = traits::DerivedObligationCause {
273                     parent_trait_ref,
274                     parent_code: Rc::new(obligation.cause.code.clone()),
275                 };
276                 cause.make_mut().code =
277                     traits::ObligationCauseCode::DerivedObligation(derived_cause);
278             }
279             extend_cause_with_original_assoc_item_obligation(
280                 tcx,
281                 trait_ref,
282                 item,
283                 &mut cause,
284                 &obligation.predicate,
285                 tcx.associated_items(trait_ref.def_id).in_definition_order(),
286             );
287             traits::Obligation::new(cause, param_env, obligation.predicate)
288         };
289
290         if let Elaborate::All = elaborate {
291             let implied_obligations = traits::util::elaborate_obligations(tcx, obligations);
292             let implied_obligations = implied_obligations.map(extend);
293             self.out.extend(implied_obligations);
294         } else {
295             self.out.extend(obligations);
296         }
297
298         let tcx = self.tcx();
299         self.out.extend(
300             trait_ref
301                 .substs
302                 .iter()
303                 .enumerate()
304                 .filter(|(_, arg)| {
305                     matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..))
306                 })
307                 .filter(|(_, arg)| !arg.has_escaping_bound_vars())
308                 .map(|(i, arg)| {
309                     let mut new_cause = cause.clone();
310                     // The first subst is the self ty - use the correct span for it.
311                     if i == 0 {
312                         if let Some(hir::ItemKind::Impl { self_ty, .. }) = item.map(|i| &i.kind) {
313                             new_cause.make_mut().span = self_ty.span;
314                         }
315                     }
316                     traits::Obligation::new(
317                         new_cause,
318                         param_env,
319                         ty::PredicateKind::WellFormed(arg).to_predicate(tcx),
320                     )
321                 }),
322         );
323     }
324
325     /// Pushes the obligations required for `trait_ref::Item` to be WF
326     /// into `self.out`.
327     fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
328         // A projection is well-formed if (a) the trait ref itself is
329         // WF and (b) the trait-ref holds.  (It may also be
330         // normalizable and be WF that way.)
331         let trait_ref = data.trait_ref(self.infcx.tcx);
332         self.compute_trait_ref(&trait_ref, Elaborate::None);
333
334         if !data.has_escaping_bound_vars() {
335             let predicate = trait_ref.without_const().to_predicate(self.infcx.tcx);
336             let cause = self.cause(traits::ProjectionWf(data));
337             self.out.push(traits::Obligation::new(cause, self.param_env, predicate));
338         }
339     }
340
341     fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
342         if !subty.has_escaping_bound_vars() {
343             let cause = self.cause(cause);
344             let trait_ref = ty::TraitRef {
345                 def_id: self.infcx.tcx.require_lang_item(lang_items::SizedTraitLangItem, None),
346                 substs: self.infcx.tcx.mk_substs_trait(subty, &[]),
347             };
348             self.out.push(traits::Obligation::new(
349                 cause,
350                 self.param_env,
351                 trait_ref.without_const().to_predicate(self.infcx.tcx),
352             ));
353         }
354     }
355
356     /// Pushes all the predicates needed to validate that `ty` is WF into `out`.
357     fn compute(&mut self, arg: GenericArg<'tcx>) {
358         let mut walker = arg.walk();
359         let param_env = self.param_env;
360         while let Some(arg) = walker.next() {
361             let ty = match arg.unpack() {
362                 GenericArgKind::Type(ty) => ty,
363
364                 // No WF constraints for lifetimes being present, any outlives
365                 // obligations are handled by the parent (e.g. `ty::Ref`).
366                 GenericArgKind::Lifetime(_) => continue,
367
368                 GenericArgKind::Const(constant) => {
369                     match constant.val {
370                         ty::ConstKind::Unevaluated(def, substs, promoted) => {
371                             assert!(promoted.is_none());
372
373                             let obligations = self.nominal_obligations(def.did, substs);
374                             self.out.extend(obligations);
375
376                             let predicate = ty::PredicateKind::ConstEvaluatable(def, substs)
377                                 .to_predicate(self.tcx());
378                             let cause = self.cause(traits::MiscObligation);
379                             self.out.push(traits::Obligation::new(
380                                 cause,
381                                 self.param_env,
382                                 predicate,
383                             ));
384                         }
385                         ty::ConstKind::Infer(infer) => {
386                             let resolved = self.infcx.shallow_resolve(infer);
387                             // the `InferConst` changed, meaning that we made progress.
388                             if resolved != infer {
389                                 let cause = self.cause(traits::MiscObligation);
390
391                                 let resolved_constant = self.infcx.tcx.mk_const(ty::Const {
392                                     val: ty::ConstKind::Infer(resolved),
393                                     ..*constant
394                                 });
395                                 self.out.push(traits::Obligation::new(
396                                     cause,
397                                     self.param_env,
398                                     ty::PredicateKind::WellFormed(resolved_constant.into())
399                                         .to_predicate(self.tcx()),
400                                 ));
401                             }
402                         }
403                         ty::ConstKind::Error(_)
404                         | ty::ConstKind::Param(_)
405                         | ty::ConstKind::Bound(..)
406                         | ty::ConstKind::Placeholder(..) => {
407                             // These variants are trivially WF, so nothing to do here.
408                         }
409                         ty::ConstKind::Value(..) => {
410                             // FIXME: Enforce that values are structurally-matchable.
411                         }
412                     }
413                     continue;
414                 }
415             };
416
417             match ty.kind {
418                 ty::Bool
419                 | ty::Char
420                 | ty::Int(..)
421                 | ty::Uint(..)
422                 | ty::Float(..)
423                 | ty::Error(_)
424                 | ty::Str
425                 | ty::GeneratorWitness(..)
426                 | ty::Never
427                 | ty::Param(_)
428                 | ty::Bound(..)
429                 | ty::Placeholder(..)
430                 | ty::Foreign(..) => {
431                     // WfScalar, WfParameter, etc
432                 }
433
434                 // Can only infer to `ty::Int(_) | ty::Uint(_)`.
435                 ty::Infer(ty::IntVar(_)) => {}
436
437                 // Can only infer to `ty::Float(_)`.
438                 ty::Infer(ty::FloatVar(_)) => {}
439
440                 ty::Slice(subty) => {
441                     self.require_sized(subty, traits::SliceOrArrayElem);
442                 }
443
444                 ty::Array(subty, _) => {
445                     self.require_sized(subty, traits::SliceOrArrayElem);
446                     // Note that we handle the len is implicitly checked while walking `arg`.
447                 }
448
449                 ty::Tuple(ref tys) => {
450                     if let Some((_last, rest)) = tys.split_last() {
451                         for elem in rest {
452                             self.require_sized(elem.expect_ty(), traits::TupleElem);
453                         }
454                     }
455                 }
456
457                 ty::RawPtr(_) => {
458                     // Simple cases that are WF if their type args are WF.
459                 }
460
461                 ty::Projection(data) => {
462                     walker.skip_current_subtree(); // Subtree handled by compute_projection.
463                     self.compute_projection(data);
464                 }
465
466                 ty::Adt(def, substs) => {
467                     // WfNominalType
468                     let obligations = self.nominal_obligations(def.did, substs);
469                     self.out.extend(obligations);
470                 }
471
472                 ty::FnDef(did, substs) => {
473                     let obligations = self.nominal_obligations(did, substs);
474                     self.out.extend(obligations);
475                 }
476
477                 ty::Ref(r, rty, _) => {
478                     // WfReference
479                     if !r.has_escaping_bound_vars() && !rty.has_escaping_bound_vars() {
480                         let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
481                         self.out.push(traits::Obligation::new(
482                             cause,
483                             param_env,
484                             ty::PredicateKind::TypeOutlives(ty::Binder::dummy(
485                                 ty::OutlivesPredicate(rty, r),
486                             ))
487                             .to_predicate(self.tcx()),
488                         ));
489                     }
490                 }
491
492                 ty::Generator(..) => {
493                     // Walk ALL the types in the generator: this will
494                     // include the upvar types as well as the yield
495                     // type. Note that this is mildly distinct from
496                     // the closure case, where we have to be careful
497                     // about the signature of the closure. We don't
498                     // have the problem of implied bounds here since
499                     // generators don't take arguments.
500                 }
501
502                 ty::Closure(_, substs) => {
503                     // Only check the upvar types for WF, not the rest
504                     // of the types within. This is needed because we
505                     // capture the signature and it may not be WF
506                     // without the implied bounds. Consider a closure
507                     // like `|x: &'a T|` -- it may be that `T: 'a` is
508                     // not known to hold in the creator's context (and
509                     // indeed the closure may not be invoked by its
510                     // creator, but rather turned to someone who *can*
511                     // verify that).
512                     //
513                     // The special treatment of closures here really
514                     // ought not to be necessary either; the problem
515                     // is related to #25860 -- there is no way for us
516                     // to express a fn type complete with the implied
517                     // bounds that it is assuming. I think in reality
518                     // the WF rules around fn are a bit messed up, and
519                     // that is the rot problem: `fn(&'a T)` should
520                     // probably always be WF, because it should be
521                     // shorthand for something like `where(T: 'a) {
522                     // fn(&'a T) }`, as discussed in #25860.
523                     //
524                     // Note that we are also skipping the generic
525                     // types. This is consistent with the `outlives`
526                     // code, but anyway doesn't matter: within the fn
527                     // body where they are created, the generics will
528                     // always be WF, and outside of that fn body we
529                     // are not directly inspecting closure types
530                     // anyway, except via auto trait matching (which
531                     // only inspects the upvar types).
532                     walker.skip_current_subtree(); // subtree handled below
533                     for upvar_ty in substs.as_closure().upvar_tys() {
534                         // FIXME(eddyb) add the type to `walker` instead of recursing.
535                         self.compute(upvar_ty.into());
536                     }
537                 }
538
539                 ty::FnPtr(_) => {
540                     // let the loop iterate into the argument/return
541                     // types appearing in the fn signature
542                 }
543
544                 ty::Opaque(did, substs) => {
545                     // all of the requirements on type parameters
546                     // should've been checked by the instantiation
547                     // of whatever returned this exact `impl Trait`.
548
549                     // for named opaque `impl Trait` types we still need to check them
550                     if ty::is_impl_trait_defn(self.infcx.tcx, did).is_none() {
551                         let obligations = self.nominal_obligations(did, substs);
552                         self.out.extend(obligations);
553                     }
554                 }
555
556                 ty::Dynamic(data, r) => {
557                     // WfObject
558                     //
559                     // Here, we defer WF checking due to higher-ranked
560                     // regions. This is perhaps not ideal.
561                     self.from_object_ty(ty, data, r);
562
563                     // FIXME(#27579) RFC also considers adding trait
564                     // obligations that don't refer to Self and
565                     // checking those
566
567                     let defer_to_coercion = self.tcx().features().object_safe_for_dispatch;
568
569                     if !defer_to_coercion {
570                         let cause = self.cause(traits::MiscObligation);
571                         let component_traits = data.auto_traits().chain(data.principal_def_id());
572                         let tcx = self.tcx();
573                         self.out.extend(component_traits.map(|did| {
574                             traits::Obligation::new(
575                                 cause.clone(),
576                                 param_env,
577                                 ty::PredicateKind::ObjectSafe(did).to_predicate(tcx),
578                             )
579                         }));
580                     }
581                 }
582
583                 // Inference variables are the complicated case, since we don't
584                 // know what type they are. We do two things:
585                 //
586                 // 1. Check if they have been resolved, and if so proceed with
587                 //    THAT type.
588                 // 2. If not, we've at least simplified things (e.g., we went
589                 //    from `Vec<$0>: WF` to `$0: WF`), so we can
590                 //    register a pending obligation and keep
591                 //    moving. (Goal is that an "inductive hypothesis"
592                 //    is satisfied to ensure termination.)
593                 // See also the comment on `fn obligations`, describing "livelock"
594                 // prevention, which happens before this can be reached.
595                 ty::Infer(_) => {
596                     let ty = self.infcx.shallow_resolve(ty);
597                     if let ty::Infer(ty::TyVar(_)) = ty.kind {
598                         // Not yet resolved, but we've made progress.
599                         let cause = self.cause(traits::MiscObligation);
600                         self.out.push(traits::Obligation::new(
601                             cause,
602                             param_env,
603                             ty::PredicateKind::WellFormed(ty.into()).to_predicate(self.tcx()),
604                         ));
605                     } else {
606                         // Yes, resolved, proceed with the result.
607                         // FIXME(eddyb) add the type to `walker` instead of recursing.
608                         self.compute(ty.into());
609                     }
610                 }
611             }
612         }
613     }
614
615     fn nominal_obligations(
616         &mut self,
617         def_id: DefId,
618         substs: SubstsRef<'tcx>,
619     ) -> Vec<traits::PredicateObligation<'tcx>> {
620         let predicates = self.infcx.tcx.predicates_of(def_id).instantiate(self.infcx.tcx, substs);
621         predicates
622             .predicates
623             .into_iter()
624             .zip(predicates.spans.into_iter())
625             .map(|(pred, span)| {
626                 let cause = self.cause(traits::BindingObligation(def_id, span));
627                 traits::Obligation::new(cause, self.param_env, pred)
628             })
629             .filter(|pred| !pred.has_escaping_bound_vars())
630             .collect()
631     }
632
633     fn from_object_ty(
634         &mut self,
635         ty: Ty<'tcx>,
636         data: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
637         region: ty::Region<'tcx>,
638     ) {
639         // Imagine a type like this:
640         //
641         //     trait Foo { }
642         //     trait Bar<'c> : 'c { }
643         //
644         //     &'b (Foo+'c+Bar<'d>)
645         //         ^
646         //
647         // In this case, the following relationships must hold:
648         //
649         //     'b <= 'c
650         //     'd <= 'c
651         //
652         // The first conditions is due to the normal region pointer
653         // rules, which say that a reference cannot outlive its
654         // referent.
655         //
656         // The final condition may be a bit surprising. In particular,
657         // you may expect that it would have been `'c <= 'd`, since
658         // usually lifetimes of outer things are conservative
659         // approximations for inner things. However, it works somewhat
660         // differently with trait objects: here the idea is that if the
661         // user specifies a region bound (`'c`, in this case) it is the
662         // "master bound" that *implies* that bounds from other traits are
663         // all met. (Remember that *all bounds* in a type like
664         // `Foo+Bar+Zed` must be met, not just one, hence if we write
665         // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
666         // 'y.)
667         //
668         // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
669         // am looking forward to the future here.
670         if !data.has_escaping_bound_vars() && !region.has_escaping_bound_vars() {
671             let implicit_bounds = object_region_bounds(self.infcx.tcx, data);
672
673             let explicit_bound = region;
674
675             self.out.reserve(implicit_bounds.len());
676             for implicit_bound in implicit_bounds {
677                 let cause = self.cause(traits::ObjectTypeBound(ty, explicit_bound));
678                 let outlives =
679                     ty::Binder::dummy(ty::OutlivesPredicate(explicit_bound, implicit_bound));
680                 self.out.push(traits::Obligation::new(
681                     cause,
682                     self.param_env,
683                     outlives.to_predicate(self.infcx.tcx),
684                 ));
685             }
686         }
687     }
688 }
689
690 /// Given an object type like `SomeTrait + Send`, computes the lifetime
691 /// bounds that must hold on the elided self type. These are derived
692 /// from the declarations of `SomeTrait`, `Send`, and friends -- if
693 /// they declare `trait SomeTrait : 'static`, for example, then
694 /// `'static` would appear in the list. The hard work is done by
695 /// `infer::required_region_bounds`, see that for more information.
696 pub fn object_region_bounds<'tcx>(
697     tcx: TyCtxt<'tcx>,
698     existential_predicates: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
699 ) -> Vec<ty::Region<'tcx>> {
700     // Since we don't actually *know* the self type for an object,
701     // this "open(err)" serves as a kind of dummy standin -- basically
702     // a placeholder type.
703     let open_ty = tcx.mk_ty_infer(ty::FreshTy(0));
704
705     let predicates = existential_predicates.iter().filter_map(|predicate| {
706         if let ty::ExistentialPredicate::Projection(_) = predicate.skip_binder() {
707             None
708         } else {
709             Some(predicate.with_self_ty(tcx, open_ty))
710         }
711     });
712
713     required_region_bounds(tcx, open_ty, predicates)
714 }