]> git.lizzy.rs Git - rust.git/blob - src/librustc_trait_selection/traits/wf.rs
Rollup merge of #70847 - pietroalbini:ci-move-docker-lib, r=Mark-Simulacrum
[rust.git] / src / librustc_trait_selection / traits / wf.rs
1 use crate::infer::InferCtxt;
2 use crate::opaque_types::required_region_bounds;
3 use crate::traits::{self, AssocTypeBoundData};
4 use rustc_hir as hir;
5 use rustc_hir::def_id::DefId;
6 use rustc_hir::lang_items;
7 use rustc_middle::ty::subst::{GenericArgKind, SubstsRef};
8 use rustc_middle::ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable, WithConstness};
9 use rustc_span::symbol::{kw, Ident};
10 use rustc_span::Span;
11
12 /// Returns the set of obligations needed to make `ty` well-formed.
13 /// If `ty` contains unresolved inference variables, this may include
14 /// further WF obligations. However, if `ty` IS an unresolved
15 /// inference variable, returns `None`, because we are not able to
16 /// make any progress at all. This is to prevent "livelock" where we
17 /// say "$0 is WF if $0 is WF".
18 pub fn obligations<'a, 'tcx>(
19     infcx: &InferCtxt<'a, 'tcx>,
20     param_env: ty::ParamEnv<'tcx>,
21     body_id: hir::HirId,
22     ty: Ty<'tcx>,
23     span: Span,
24 ) -> Option<Vec<traits::PredicateObligation<'tcx>>> {
25     let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item: None };
26     if wf.compute(ty) {
27         debug!("wf::obligations({:?}, body_id={:?}) = {:?}", ty, body_id, wf.out);
28
29         let result = wf.normalize();
30         debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", ty, body_id, result);
31         Some(result)
32     } else {
33         None // no progress made, return None
34     }
35 }
36
37 /// Returns the obligations that make this trait reference
38 /// well-formed.  For example, if there is a trait `Set` defined like
39 /// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
40 /// if `Bar: Eq`.
41 pub fn trait_obligations<'a, 'tcx>(
42     infcx: &InferCtxt<'a, 'tcx>,
43     param_env: ty::ParamEnv<'tcx>,
44     body_id: hir::HirId,
45     trait_ref: &ty::TraitRef<'tcx>,
46     span: Span,
47     item: Option<&'tcx hir::Item<'tcx>>,
48 ) -> Vec<traits::PredicateObligation<'tcx>> {
49     let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item };
50     wf.compute_trait_ref(trait_ref, Elaborate::All);
51     wf.normalize()
52 }
53
54 pub fn predicate_obligations<'a, 'tcx>(
55     infcx: &InferCtxt<'a, 'tcx>,
56     param_env: ty::ParamEnv<'tcx>,
57     body_id: hir::HirId,
58     predicate: &ty::Predicate<'tcx>,
59     span: Span,
60 ) -> Vec<traits::PredicateObligation<'tcx>> {
61     let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item: None };
62
63     // (*) ok to skip binders, because wf code is prepared for it
64     match *predicate {
65         ty::Predicate::Trait(ref t, _) => {
66             wf.compute_trait_ref(&t.skip_binder().trait_ref, Elaborate::None); // (*)
67         }
68         ty::Predicate::RegionOutlives(..) => {}
69         ty::Predicate::TypeOutlives(ref t) => {
70             wf.compute(t.skip_binder().0);
71         }
72         ty::Predicate::Projection(ref t) => {
73             let t = t.skip_binder(); // (*)
74             wf.compute_projection(t.projection_ty);
75             wf.compute(t.ty);
76         }
77         ty::Predicate::WellFormed(t) => {
78             wf.compute(t);
79         }
80         ty::Predicate::ObjectSafe(_) => {}
81         ty::Predicate::ClosureKind(..) => {}
82         ty::Predicate::Subtype(ref data) => {
83             wf.compute(data.skip_binder().a); // (*)
84             wf.compute(data.skip_binder().b); // (*)
85         }
86         ty::Predicate::ConstEvaluatable(def_id, substs) => {
87             let obligations = wf.nominal_obligations(def_id, substs);
88             wf.out.extend(obligations);
89
90             for ty in substs.types() {
91                 wf.compute(ty);
92             }
93         }
94     }
95
96     wf.normalize()
97 }
98
99 struct WfPredicates<'a, 'tcx> {
100     infcx: &'a InferCtxt<'a, 'tcx>,
101     param_env: ty::ParamEnv<'tcx>,
102     body_id: hir::HirId,
103     span: Span,
104     out: Vec<traits::PredicateObligation<'tcx>>,
105     item: Option<&'tcx hir::Item<'tcx>>,
106 }
107
108 /// Controls whether we "elaborate" supertraits and so forth on the WF
109 /// predicates. This is a kind of hack to address #43784. The
110 /// underlying problem in that issue was a trait structure like:
111 ///
112 /// ```
113 /// trait Foo: Copy { }
114 /// trait Bar: Foo { }
115 /// impl<T: Bar> Foo for T { }
116 /// impl<T> Bar for T { }
117 /// ```
118 ///
119 /// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
120 /// we decide that this is true because `T: Bar` is in the
121 /// where-clauses (and we can elaborate that to include `T:
122 /// Copy`). This wouldn't be a problem, except that when we check the
123 /// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
124 /// impl. And so nowhere did we check that `T: Copy` holds!
125 ///
126 /// To resolve this, we elaborate the WF requirements that must be
127 /// proven when checking impls. This means that (e.g.) the `impl Bar
128 /// for T` will be forced to prove not only that `T: Foo` but also `T:
129 /// Copy` (which it won't be able to do, because there is no `Copy`
130 /// impl for `T`).
131 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
132 enum Elaborate {
133     All,
134     None,
135 }
136
137 impl<'a, 'tcx> WfPredicates<'a, 'tcx> {
138     fn cause(&mut self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
139         traits::ObligationCause::new(self.span, self.body_id, code)
140     }
141
142     fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
143         let cause = self.cause(traits::MiscObligation);
144         let infcx = &mut self.infcx;
145         let param_env = self.param_env;
146         let mut obligations = Vec::with_capacity(self.out.len());
147         for pred in &self.out {
148             assert!(!pred.has_escaping_bound_vars());
149             let mut selcx = traits::SelectionContext::new(infcx);
150             let i = obligations.len();
151             let value =
152                 traits::normalize_to(&mut selcx, param_env, cause.clone(), pred, &mut obligations);
153             obligations.insert(i, value);
154         }
155         obligations
156     }
157
158     /// Pushes the obligations required for `trait_ref` to be WF into `self.out`.
159     fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>, elaborate: Elaborate) {
160         let tcx = self.infcx.tcx;
161         let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
162
163         let cause = self.cause(traits::MiscObligation);
164         let param_env = self.param_env;
165
166         let item = &self.item;
167         let extend_cause_with_original_assoc_item_obligation =
168             |cause: &mut traits::ObligationCause<'_>,
169              pred: &ty::Predicate<'_>,
170              trait_assoc_items: &[ty::AssocItem]| {
171                 let trait_item = tcx
172                     .hir()
173                     .as_local_hir_id(trait_ref.def_id)
174                     .and_then(|trait_id| tcx.hir().find(trait_id));
175                 let (trait_name, trait_generics) = match trait_item {
176                     Some(hir::Node::Item(hir::Item {
177                         ident,
178                         kind: hir::ItemKind::Trait(.., generics, _, _),
179                         ..
180                     }))
181                     | Some(hir::Node::Item(hir::Item {
182                         ident,
183                         kind: hir::ItemKind::TraitAlias(generics, _),
184                         ..
185                     })) => (Some(ident), Some(generics)),
186                     _ => (None, None),
187                 };
188
189                 let item_span = item.map(|i| tcx.sess.source_map().guess_head_span(i.span));
190                 match pred {
191                     ty::Predicate::Projection(proj) => {
192                         // The obligation comes not from the current `impl` nor the `trait` being
193                         // implemented, but rather from a "second order" obligation, like in
194                         // `src/test/ui/associated-types/point-at-type-on-obligation-failure.rs`:
195                         //
196                         //   error[E0271]: type mismatch resolving `<Foo2 as Bar2>::Ok == ()`
197                         //     --> $DIR/point-at-type-on-obligation-failure.rs:13:5
198                         //      |
199                         //   LL |     type Ok;
200                         //      |          -- associated type defined here
201                         //   ...
202                         //   LL | impl Bar for Foo {
203                         //      | ---------------- in this `impl` item
204                         //   LL |     type Ok = ();
205                         //      |     ^^^^^^^^^^^^^ expected `u32`, found `()`
206                         //      |
207                         //      = note: expected type `u32`
208                         //                 found type `()`
209                         //
210                         // FIXME: we would want to point a span to all places that contributed to this
211                         // obligation. In the case above, it should be closer to:
212                         //
213                         //   error[E0271]: type mismatch resolving `<Foo2 as Bar2>::Ok == ()`
214                         //     --> $DIR/point-at-type-on-obligation-failure.rs:13:5
215                         //      |
216                         //   LL |     type Ok;
217                         //      |          -- associated type defined here
218                         //   LL |     type Sibling: Bar2<Ok=Self::Ok>;
219                         //      |     -------------------------------- obligation set here
220                         //   ...
221                         //   LL | impl Bar for Foo {
222                         //      | ---------------- in this `impl` item
223                         //   LL |     type Ok = ();
224                         //      |     ^^^^^^^^^^^^^ expected `u32`, found `()`
225                         //   ...
226                         //   LL | impl Bar2 for Foo2 {
227                         //      | ---------------- in this `impl` item
228                         //   LL |     type Ok = u32;
229                         //      |     -------------- obligation set here
230                         //      |
231                         //      = note: expected type `u32`
232                         //                 found type `()`
233                         if let Some(hir::ItemKind::Impl { items, .. }) = item.map(|i| &i.kind) {
234                             let trait_assoc_item = tcx.associated_item(proj.projection_def_id());
235                             if let Some(impl_item) =
236                                 items.iter().find(|item| item.ident == trait_assoc_item.ident)
237                             {
238                                 cause.span = impl_item.span;
239                                 cause.code = traits::AssocTypeBound(Box::new(AssocTypeBoundData {
240                                     impl_span: item_span,
241                                     original: trait_assoc_item.ident.span,
242                                     bounds: vec![],
243                                 }));
244                             }
245                         }
246                     }
247                     ty::Predicate::Trait(proj, _) => {
248                         // An associated item obligation born out of the `trait` failed to be met.
249                         // Point at the `impl` that failed the obligation, the associated item that
250                         // needed to meet the obligation, and the definition of that associated item,
251                         // which should hold the obligation in most cases. An example can be seen in
252                         // `src/test/ui/associated-types/point-at-type-on-obligation-failure-2.rs`:
253                         //
254                         //   error[E0277]: the trait bound `bool: Bar` is not satisfied
255                         //     --> $DIR/point-at-type-on-obligation-failure-2.rs:8:5
256                         //      |
257                         //   LL |     type Assoc: Bar;
258                         //      |          ----- associated type defined here
259                         //   ...
260                         //   LL | impl Foo for () {
261                         //      | --------------- in this `impl` item
262                         //   LL |     type Assoc = bool;
263                         //      |     ^^^^^^^^^^^^^^^^^^ the trait `Bar` is not implemented for `bool`
264                         //
265                         // If the obligation comes from the where clause in the `trait`, we point at it:
266                         //
267                         //   error[E0277]: the trait bound `bool: Bar` is not satisfied
268                         //     --> $DIR/point-at-type-on-obligation-failure-2.rs:8:5
269                         //      |
270                         //      | trait Foo where <Self as Foo>>::Assoc: Bar {
271                         //      |                 -------------------------- restricted in this bound
272                         //   LL |     type Assoc;
273                         //      |          ----- associated type defined here
274                         //   ...
275                         //   LL | impl Foo for () {
276                         //      | --------------- in this `impl` item
277                         //   LL |     type Assoc = bool;
278                         //      |     ^^^^^^^^^^^^^^^^^^ the trait `Bar` is not implemented for `bool`
279                         if let (
280                             ty::Projection(ty::ProjectionTy { item_def_id, .. }),
281                             Some(hir::ItemKind::Impl { items, .. }),
282                         ) = (&proj.skip_binder().self_ty().kind, item.map(|i| &i.kind))
283                         {
284                             if let Some((impl_item, trait_assoc_item)) = trait_assoc_items
285                                 .iter()
286                                 .find(|i| i.def_id == *item_def_id)
287                                 .and_then(|trait_assoc_item| {
288                                     items
289                                         .iter()
290                                         .find(|i| i.ident == trait_assoc_item.ident)
291                                         .map(|impl_item| (impl_item, trait_assoc_item))
292                                 })
293                             {
294                                 let bounds = trait_generics
295                                     .map(|generics| {
296                                         get_generic_bound_spans(
297                                             &generics,
298                                             trait_name,
299                                             trait_assoc_item.ident,
300                                         )
301                                     })
302                                     .unwrap_or_else(Vec::new);
303                                 cause.span = impl_item.span;
304                                 cause.code = traits::AssocTypeBound(Box::new(AssocTypeBoundData {
305                                     impl_span: item_span,
306                                     original: trait_assoc_item.ident.span,
307                                     bounds,
308                                 }));
309                             }
310                         }
311                     }
312                     _ => {}
313                 }
314             };
315
316         if let Elaborate::All = elaborate {
317             // FIXME: Make `extend_cause_with_original_assoc_item_obligation` take an iterator
318             // instead of a slice.
319             let trait_assoc_items: Vec<_> =
320                 tcx.associated_items(trait_ref.def_id).in_definition_order().copied().collect();
321
322             let predicates = obligations.iter().map(|obligation| obligation.predicate).collect();
323             let implied_obligations = traits::elaborate_predicates(tcx, predicates);
324             let implied_obligations = implied_obligations.map(|pred| {
325                 let mut cause = cause.clone();
326                 extend_cause_with_original_assoc_item_obligation(
327                     &mut cause,
328                     &pred,
329                     &*trait_assoc_items,
330                 );
331                 traits::Obligation::new(cause, param_env, pred)
332             });
333             self.out.extend(implied_obligations);
334         }
335
336         self.out.extend(obligations);
337
338         self.out.extend(trait_ref.substs.types().filter(|ty| !ty.has_escaping_bound_vars()).map(
339             |ty| traits::Obligation::new(cause.clone(), param_env, ty::Predicate::WellFormed(ty)),
340         ));
341     }
342
343     /// Pushes the obligations required for `trait_ref::Item` to be WF
344     /// into `self.out`.
345     fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
346         // A projection is well-formed if (a) the trait ref itself is
347         // WF and (b) the trait-ref holds.  (It may also be
348         // normalizable and be WF that way.)
349         let trait_ref = data.trait_ref(self.infcx.tcx);
350         self.compute_trait_ref(&trait_ref, Elaborate::None);
351
352         if !data.has_escaping_bound_vars() {
353             let predicate = trait_ref.without_const().to_predicate();
354             let cause = self.cause(traits::ProjectionWf(data));
355             self.out.push(traits::Obligation::new(cause, self.param_env, predicate));
356         }
357     }
358
359     /// Pushes the obligations required for an array length to be WF
360     /// into `self.out`.
361     fn compute_array_len(&mut self, constant: ty::Const<'tcx>) {
362         if let ty::ConstKind::Unevaluated(def_id, substs, promoted) = constant.val {
363             assert!(promoted.is_none());
364
365             let obligations = self.nominal_obligations(def_id, substs);
366             self.out.extend(obligations);
367
368             let predicate = ty::Predicate::ConstEvaluatable(def_id, substs);
369             let cause = self.cause(traits::MiscObligation);
370             self.out.push(traits::Obligation::new(cause, self.param_env, predicate));
371         }
372     }
373
374     fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
375         if !subty.has_escaping_bound_vars() {
376             let cause = self.cause(cause);
377             let trait_ref = ty::TraitRef {
378                 def_id: self.infcx.tcx.require_lang_item(lang_items::SizedTraitLangItem, None),
379                 substs: self.infcx.tcx.mk_substs_trait(subty, &[]),
380             };
381             self.out.push(traits::Obligation::new(
382                 cause,
383                 self.param_env,
384                 trait_ref.without_const().to_predicate(),
385             ));
386         }
387     }
388
389     /// Pushes new obligations into `out`. Returns `true` if it was able
390     /// to generate all the predicates needed to validate that `ty0`
391     /// is WF. Returns false if `ty0` is an unresolved type variable,
392     /// in which case we are not able to simplify at all.
393     fn compute(&mut self, ty0: Ty<'tcx>) -> bool {
394         let mut walker = ty0.walk();
395         let param_env = self.param_env;
396         while let Some(arg) = walker.next() {
397             let ty = match arg.unpack() {
398                 GenericArgKind::Type(ty) => ty,
399
400                 // No WF constraints for lifetimes being present, any outlives
401                 // obligations are handled by the parent (e.g. `ty::Ref`).
402                 GenericArgKind::Lifetime(_) => continue,
403
404                 // FIXME(eddyb) this is wrong and needs to be replaced
405                 // (see https://github.com/rust-lang/rust/pull/70107).
406                 GenericArgKind::Const(_) => continue,
407             };
408
409             match ty.kind {
410                 ty::Bool
411                 | ty::Char
412                 | ty::Int(..)
413                 | ty::Uint(..)
414                 | ty::Float(..)
415                 | ty::Error
416                 | ty::Str
417                 | ty::GeneratorWitness(..)
418                 | ty::Never
419                 | ty::Param(_)
420                 | ty::Bound(..)
421                 | ty::Placeholder(..)
422                 | ty::Foreign(..) => {
423                     // WfScalar, WfParameter, etc
424                 }
425
426                 ty::Slice(subty) => {
427                     self.require_sized(subty, traits::SliceOrArrayElem);
428                 }
429
430                 ty::Array(subty, len) => {
431                     self.require_sized(subty, traits::SliceOrArrayElem);
432                     // FIXME(eddyb) handle `GenericArgKind::Const` above instead.
433                     self.compute_array_len(*len);
434                 }
435
436                 ty::Tuple(ref tys) => {
437                     if let Some((_last, rest)) = tys.split_last() {
438                         for elem in rest {
439                             self.require_sized(elem.expect_ty(), traits::TupleElem);
440                         }
441                     }
442                 }
443
444                 ty::RawPtr(_) => {
445                     // simple cases that are WF if their type args are WF
446                 }
447
448                 ty::Projection(data) => {
449                     walker.skip_current_subtree(); // subtree handled by compute_projection
450                     self.compute_projection(data);
451                 }
452
453                 ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
454
455                 ty::Adt(def, substs) => {
456                     // WfNominalType
457                     let obligations = self.nominal_obligations(def.did, substs);
458                     self.out.extend(obligations);
459                 }
460
461                 ty::FnDef(did, substs) => {
462                     let obligations = self.nominal_obligations(did, substs);
463                     self.out.extend(obligations);
464                 }
465
466                 ty::Ref(r, rty, _) => {
467                     // WfReference
468                     if !r.has_escaping_bound_vars() && !rty.has_escaping_bound_vars() {
469                         let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
470                         self.out.push(traits::Obligation::new(
471                             cause,
472                             param_env,
473                             ty::Predicate::TypeOutlives(ty::Binder::dummy(ty::OutlivesPredicate(
474                                 rty, r,
475                             ))),
476                         ));
477                     }
478                 }
479
480                 ty::Generator(..) => {
481                     // Walk ALL the types in the generator: this will
482                     // include the upvar types as well as the yield
483                     // type. Note that this is mildly distinct from
484                     // the closure case, where we have to be careful
485                     // about the signature of the closure. We don't
486                     // have the problem of implied bounds here since
487                     // generators don't take arguments.
488                 }
489
490                 ty::Closure(_, substs) => {
491                     // Only check the upvar types for WF, not the rest
492                     // of the types within. This is needed because we
493                     // capture the signature and it may not be WF
494                     // without the implied bounds. Consider a closure
495                     // like `|x: &'a T|` -- it may be that `T: 'a` is
496                     // not known to hold in the creator's context (and
497                     // indeed the closure may not be invoked by its
498                     // creator, but rather turned to someone who *can*
499                     // verify that).
500                     //
501                     // The special treatment of closures here really
502                     // ought not to be necessary either; the problem
503                     // is related to #25860 -- there is no way for us
504                     // to express a fn type complete with the implied
505                     // bounds that it is assuming. I think in reality
506                     // the WF rules around fn are a bit messed up, and
507                     // that is the rot problem: `fn(&'a T)` should
508                     // probably always be WF, because it should be
509                     // shorthand for something like `where(T: 'a) {
510                     // fn(&'a T) }`, as discussed in #25860.
511                     //
512                     // Note that we are also skipping the generic
513                     // types. This is consistent with the `outlives`
514                     // code, but anyway doesn't matter: within the fn
515                     // body where they are created, the generics will
516                     // always be WF, and outside of that fn body we
517                     // are not directly inspecting closure types
518                     // anyway, except via auto trait matching (which
519                     // only inspects the upvar types).
520                     walker.skip_current_subtree(); // subtree handled by compute_projection
521                     for upvar_ty in substs.as_closure().upvar_tys() {
522                         self.compute(upvar_ty);
523                     }
524                 }
525
526                 ty::FnPtr(_) => {
527                     // let the loop iterate into the argument/return
528                     // types appearing in the fn signature
529                 }
530
531                 ty::Opaque(did, substs) => {
532                     // all of the requirements on type parameters
533                     // should've been checked by the instantiation
534                     // of whatever returned this exact `impl Trait`.
535
536                     // for named opaque `impl Trait` types we still need to check them
537                     if ty::is_impl_trait_defn(self.infcx.tcx, did).is_none() {
538                         let obligations = self.nominal_obligations(did, substs);
539                         self.out.extend(obligations);
540                     }
541                 }
542
543                 ty::Dynamic(data, r) => {
544                     // WfObject
545                     //
546                     // Here, we defer WF checking due to higher-ranked
547                     // regions. This is perhaps not ideal.
548                     self.from_object_ty(ty, data, r);
549
550                     // FIXME(#27579) RFC also considers adding trait
551                     // obligations that don't refer to Self and
552                     // checking those
553
554                     let defer_to_coercion = self.infcx.tcx.features().object_safe_for_dispatch;
555
556                     if !defer_to_coercion {
557                         let cause = self.cause(traits::MiscObligation);
558                         let component_traits = data.auto_traits().chain(data.principal_def_id());
559                         self.out.extend(component_traits.map(|did| {
560                             traits::Obligation::new(
561                                 cause.clone(),
562                                 param_env,
563                                 ty::Predicate::ObjectSafe(did),
564                             )
565                         }));
566                     }
567                 }
568
569                 // Inference variables are the complicated case, since we don't
570                 // know what type they are. We do two things:
571                 //
572                 // 1. Check if they have been resolved, and if so proceed with
573                 //    THAT type.
574                 // 2. If not, check whether this is the type that we
575                 //    started with (ty0). In that case, we've made no
576                 //    progress at all, so return false. Otherwise,
577                 //    we've at least simplified things (i.e., we went
578                 //    from `Vec<$0>: WF` to `$0: WF`, so we can
579                 //    register a pending obligation and keep
580                 //    moving. (Goal is that an "inductive hypothesis"
581                 //    is satisfied to ensure termination.)
582                 ty::Infer(_) => {
583                     let ty = self.infcx.shallow_resolve(ty);
584                     if let ty::Infer(_) = ty.kind {
585                         // not yet resolved...
586                         if ty == ty0 {
587                             // ...this is the type we started from! no progress.
588                             return false;
589                         }
590
591                         let cause = self.cause(traits::MiscObligation);
592                         self.out.push(
593                             // ...not the type we started from, so we made progress.
594                             traits::Obligation::new(
595                                 cause,
596                                 self.param_env,
597                                 ty::Predicate::WellFormed(ty),
598                             ),
599                         );
600                     } else {
601                         // Yes, resolved, proceed with the
602                         // result. Should never return false because
603                         // `ty` is not a Infer.
604                         assert!(self.compute(ty));
605                     }
606                 }
607             }
608         }
609
610         // if we made it through that loop above, we made progress!
611         true
612     }
613
614     fn nominal_obligations(
615         &mut self,
616         def_id: DefId,
617         substs: SubstsRef<'tcx>,
618     ) -> Vec<traits::PredicateObligation<'tcx>> {
619         let predicates = self.infcx.tcx.predicates_of(def_id).instantiate(self.infcx.tcx, substs);
620         let cause = self.cause(traits::ItemObligation(def_id));
621         predicates
622             .predicates
623             .into_iter()
624             .map(|pred| traits::Obligation::new(cause.clone(), self.param_env, pred))
625             .filter(|pred| !pred.has_escaping_bound_vars())
626             .collect()
627     }
628
629     fn from_object_ty(
630         &mut self,
631         ty: Ty<'tcx>,
632         data: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
633         region: ty::Region<'tcx>,
634     ) {
635         // Imagine a type like this:
636         //
637         //     trait Foo { }
638         //     trait Bar<'c> : 'c { }
639         //
640         //     &'b (Foo+'c+Bar<'d>)
641         //         ^
642         //
643         // In this case, the following relationships must hold:
644         //
645         //     'b <= 'c
646         //     'd <= 'c
647         //
648         // The first conditions is due to the normal region pointer
649         // rules, which say that a reference cannot outlive its
650         // referent.
651         //
652         // The final condition may be a bit surprising. In particular,
653         // you may expect that it would have been `'c <= 'd`, since
654         // usually lifetimes of outer things are conservative
655         // approximations for inner things. However, it works somewhat
656         // differently with trait objects: here the idea is that if the
657         // user specifies a region bound (`'c`, in this case) it is the
658         // "master bound" that *implies* that bounds from other traits are
659         // all met. (Remember that *all bounds* in a type like
660         // `Foo+Bar+Zed` must be met, not just one, hence if we write
661         // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
662         // 'y.)
663         //
664         // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
665         // am looking forward to the future here.
666         if !data.has_escaping_bound_vars() && !region.has_escaping_bound_vars() {
667             let implicit_bounds = object_region_bounds(self.infcx.tcx, data);
668
669             let explicit_bound = region;
670
671             self.out.reserve(implicit_bounds.len());
672             for implicit_bound in implicit_bounds {
673                 let cause = self.cause(traits::ObjectTypeBound(ty, explicit_bound));
674                 let outlives =
675                     ty::Binder::dummy(ty::OutlivesPredicate(explicit_bound, implicit_bound));
676                 self.out.push(traits::Obligation::new(
677                     cause,
678                     self.param_env,
679                     outlives.to_predicate(),
680                 ));
681             }
682         }
683     }
684 }
685
686 /// Given an object type like `SomeTrait + Send`, computes the lifetime
687 /// bounds that must hold on the elided self type. These are derived
688 /// from the declarations of `SomeTrait`, `Send`, and friends -- if
689 /// they declare `trait SomeTrait : 'static`, for example, then
690 /// `'static` would appear in the list. The hard work is done by
691 /// `infer::required_region_bounds`, see that for more information.
692 pub fn object_region_bounds<'tcx>(
693     tcx: TyCtxt<'tcx>,
694     existential_predicates: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
695 ) -> Vec<ty::Region<'tcx>> {
696     // Since we don't actually *know* the self type for an object,
697     // this "open(err)" serves as a kind of dummy standin -- basically
698     // a placeholder type.
699     let open_ty = tcx.mk_ty_infer(ty::FreshTy(0));
700
701     let predicates = existential_predicates
702         .iter()
703         .filter_map(|predicate| {
704             if let ty::ExistentialPredicate::Projection(_) = *predicate.skip_binder() {
705                 None
706             } else {
707                 Some(predicate.with_self_ty(tcx, open_ty))
708             }
709         })
710         .collect();
711
712     required_region_bounds(tcx, open_ty, predicates)
713 }
714
715 /// Find the span of a generic bound affecting an associated type.
716 fn get_generic_bound_spans(
717     generics: &hir::Generics<'_>,
718     trait_name: Option<&Ident>,
719     assoc_item_name: Ident,
720 ) -> Vec<Span> {
721     let mut bounds = vec![];
722     for clause in generics.where_clause.predicates.iter() {
723         if let hir::WherePredicate::BoundPredicate(pred) = clause {
724             match &pred.bounded_ty.kind {
725                 hir::TyKind::Path(hir::QPath::Resolved(Some(ty), path)) => {
726                     let mut s = path.segments.iter();
727                     if let (a, Some(b), None) = (s.next(), s.next(), s.next()) {
728                         if a.map(|s| &s.ident) == trait_name
729                             && b.ident == assoc_item_name
730                             && is_self_path(&ty.kind)
731                         {
732                             // `<Self as Foo>::Bar`
733                             bounds.push(pred.span);
734                         }
735                     }
736                 }
737                 hir::TyKind::Path(hir::QPath::TypeRelative(ty, segment)) => {
738                     if segment.ident == assoc_item_name {
739                         if is_self_path(&ty.kind) {
740                             // `Self::Bar`
741                             bounds.push(pred.span);
742                         }
743                     }
744                 }
745                 _ => {}
746             }
747         }
748     }
749     bounds
750 }
751
752 fn is_self_path(kind: &hir::TyKind<'_>) -> bool {
753     if let hir::TyKind::Path(hir::QPath::Resolved(None, path)) = kind {
754         let mut s = path.segments.iter();
755         if let (Some(segment), None) = (s.next(), s.next()) {
756             if segment.ident.name == kw::SelfUpper {
757                 // `type(Self)`
758                 return true;
759             }
760         }
761     }
762     false
763 }