]> git.lizzy.rs Git - rust.git/blob - src/librustc_trait_selection/traits/wf.rs
wf
[rust.git] / src / librustc_trait_selection / traits / wf.rs
1 use crate::infer::InferCtxt;
2 use crate::opaque_types::required_region_bounds;
3 use crate::traits;
4 use rustc_hir as hir;
5 use rustc_hir::def_id::DefId;
6 use rustc_hir::lang_items;
7 use rustc_middle::ty::subst::{GenericArg, GenericArgKind, SubstsRef};
8 use rustc_middle::ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable, WithConstness};
9 use rustc_span::Span;
10 use std::rc::Rc;
11
12 /// Returns the set of obligations needed to make `arg` well-formed.
13 /// If `arg` contains unresolved inference variables, this may include
14 /// further WF obligations. However, if `arg` IS an unresolved
15 /// inference variable, returns `None`, because we are not able to
16 /// make any progress at all. This is to prevent "livelock" where we
17 /// say "$0 is WF if $0 is WF".
18 pub fn obligations<'a, 'tcx>(
19     infcx: &InferCtxt<'a, 'tcx>,
20     param_env: ty::ParamEnv<'tcx>,
21     body_id: hir::HirId,
22     arg: GenericArg<'tcx>,
23     span: Span,
24 ) -> Option<Vec<traits::PredicateObligation<'tcx>>> {
25     // Handle the "livelock" case (see comment above) by bailing out if necessary.
26     let arg = match arg.unpack() {
27         GenericArgKind::Type(ty) => {
28             match ty.kind {
29                 ty::Infer(ty::TyVar(_)) => {
30                     let resolved_ty = infcx.shallow_resolve(ty);
31                     if resolved_ty == ty {
32                         // No progress, bail out to prevent "livelock".
33                         return None;
34                     }
35
36                     resolved_ty
37                 }
38                 _ => ty,
39             }
40             .into()
41         }
42         GenericArgKind::Const(ct) => {
43             match ct.val {
44                 ty::ConstKind::Infer(infer) => {
45                     let resolved = infcx.shallow_resolve(infer);
46                     if resolved == infer {
47                         // No progress.
48                         return None;
49                     }
50
51                     infcx.tcx.mk_const(ty::Const { val: ty::ConstKind::Infer(resolved), ty: ct.ty })
52                 }
53                 _ => ct,
54             }
55             .into()
56         }
57         // There is nothing we have to do for lifetimes.
58         GenericArgKind::Lifetime(..) => return Some(Vec::new()),
59     };
60
61     let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item: None };
62     wf.compute(arg);
63     debug!("wf::obligations({:?}, body_id={:?}) = {:?}", arg, body_id, wf.out);
64
65     let result = wf.normalize();
66     debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", arg, body_id, result);
67     Some(result)
68 }
69
70 /// Returns the obligations that make this trait reference
71 /// well-formed.  For example, if there is a trait `Set` defined like
72 /// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
73 /// if `Bar: Eq`.
74 pub fn trait_obligations<'a, 'tcx>(
75     infcx: &InferCtxt<'a, 'tcx>,
76     param_env: ty::ParamEnv<'tcx>,
77     body_id: hir::HirId,
78     trait_ref: &ty::TraitRef<'tcx>,
79     span: Span,
80     item: Option<&'tcx hir::Item<'tcx>>,
81 ) -> Vec<traits::PredicateObligation<'tcx>> {
82     let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item };
83     wf.compute_trait_ref(trait_ref, Elaborate::All);
84     wf.normalize()
85 }
86
87 pub fn predicate_obligations<'a, 'tcx>(
88     infcx: &InferCtxt<'a, 'tcx>,
89     param_env: ty::ParamEnv<'tcx>,
90     body_id: hir::HirId,
91     predicate: &'tcx ty::PredicateKint<'tcx>,
92     span: Span,
93 ) -> Vec<traits::PredicateObligation<'tcx>> {
94     let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item: None };
95
96     match predicate {
97         ty::PredicateKint::ForAll(binder) => {
98             // It's ok to skip the binder here because wf code is prepared for it
99             return predicate_obligations(infcx, param_env, body_id, *binder.skip_binder(), span);
100         }
101         ty::PredicateKint::Trait(t, _) => {
102             wf.compute_trait_ref(&t.trait_ref, Elaborate::None);
103         }
104         ty::PredicateKint::RegionOutlives(..) => {}
105         &ty::PredicateKint::TypeOutlives(ty::OutlivesPredicate(ty, _reg)) => {
106             wf.compute(ty.into());
107         }
108         ty::PredicateKint::Projection(t) => {
109             wf.compute_projection(t.projection_ty);
110             wf.compute(t.ty.into());
111         }
112         &ty::PredicateKint::WellFormed(arg) => {
113             wf.compute(arg);
114         }
115         ty::PredicateKint::ObjectSafe(_) => {}
116         ty::PredicateKint::ClosureKind(..) => {}
117         &ty::PredicateKint::Subtype(ty::SubtypePredicate { a, b, a_is_expected: _ }) => {
118             wf.compute(a.into());
119             wf.compute(b.into());
120         }
121         &ty::PredicateKind::ConstEvaluatable(def, substs) => {
122             let obligations = wf.nominal_obligations(def.did, substs);
123             wf.out.extend(obligations);
124
125             for arg in substs.iter() {
126                 wf.compute(arg);
127             }
128         }
129         &ty::PredicateKint::ConstEquate(c1, c2) => {
130             wf.compute(c1.into());
131             wf.compute(c2.into());
132         }
133     }
134
135     wf.normalize()
136 }
137
138 struct WfPredicates<'a, 'tcx> {
139     infcx: &'a InferCtxt<'a, 'tcx>,
140     param_env: ty::ParamEnv<'tcx>,
141     body_id: hir::HirId,
142     span: Span,
143     out: Vec<traits::PredicateObligation<'tcx>>,
144     item: Option<&'tcx hir::Item<'tcx>>,
145 }
146
147 /// Controls whether we "elaborate" supertraits and so forth on the WF
148 /// predicates. This is a kind of hack to address #43784. The
149 /// underlying problem in that issue was a trait structure like:
150 ///
151 /// ```
152 /// trait Foo: Copy { }
153 /// trait Bar: Foo { }
154 /// impl<T: Bar> Foo for T { }
155 /// impl<T> Bar for T { }
156 /// ```
157 ///
158 /// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
159 /// we decide that this is true because `T: Bar` is in the
160 /// where-clauses (and we can elaborate that to include `T:
161 /// Copy`). This wouldn't be a problem, except that when we check the
162 /// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
163 /// impl. And so nowhere did we check that `T: Copy` holds!
164 ///
165 /// To resolve this, we elaborate the WF requirements that must be
166 /// proven when checking impls. This means that (e.g.) the `impl Bar
167 /// for T` will be forced to prove not only that `T: Foo` but also `T:
168 /// Copy` (which it won't be able to do, because there is no `Copy`
169 /// impl for `T`).
170 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
171 enum Elaborate {
172     All,
173     None,
174 }
175
176 fn extend_cause_with_original_assoc_item_obligation<'tcx>(
177     tcx: TyCtxt<'tcx>,
178     trait_ref: &ty::TraitRef<'tcx>,
179     item: Option<&hir::Item<'tcx>>,
180     cause: &mut traits::ObligationCause<'tcx>,
181     pred: &ty::Predicate<'_>,
182     mut trait_assoc_items: impl Iterator<Item = &'tcx ty::AssocItem>,
183 ) {
184     debug!(
185         "extended_cause_with_original_assoc_item_obligation {:?} {:?} {:?} {:?}",
186         trait_ref, item, cause, pred
187     );
188     let items = match item {
189         Some(hir::Item { kind: hir::ItemKind::Impl { items, .. }, .. }) => items,
190         _ => return,
191     };
192     let fix_span =
193         |impl_item_ref: &hir::ImplItemRef<'_>| match tcx.hir().impl_item(impl_item_ref.id).kind {
194             hir::ImplItemKind::Const(ty, _) | hir::ImplItemKind::TyAlias(ty) => ty.span,
195             _ => impl_item_ref.span,
196         };
197     match pred.kind() {
198         ty::PredicateKind::Projection(proj) => {
199             // The obligation comes not from the current `impl` nor the `trait` being implemented,
200             // but rather from a "second order" obligation, where an associated type has a
201             // projection coming from another associated type. See
202             // `src/test/ui/associated-types/point-at-type-on-obligation-failure.rs` and
203             // `traits-assoc-type-in-supertrait-bad.rs`.
204             let kind = &proj.ty().skip_binder().kind;
205             if let ty::Projection(projection_ty) = kind {
206                 let trait_assoc_item = tcx.associated_item(projection_ty.item_def_id);
207                 if let Some(impl_item_span) =
208                     items.iter().find(|item| item.ident == trait_assoc_item.ident).map(fix_span)
209                 {
210                     cause.make_mut().span = impl_item_span;
211                 }
212             }
213         }
214         ty::PredicateKind::Trait(pred, _) => {
215             // An associated item obligation born out of the `trait` failed to be met. An example
216             // can be seen in `ui/associated-types/point-at-type-on-obligation-failure-2.rs`.
217             debug!("extended_cause_with_original_assoc_item_obligation trait proj {:?}", pred);
218             if let ty::Projection(ty::ProjectionTy { item_def_id, .. }) =
219                 &pred.skip_binder().self_ty().kind
220             {
221                 if let Some(impl_item_span) = trait_assoc_items
222                     .find(|i| i.def_id == *item_def_id)
223                     .and_then(|trait_assoc_item| {
224                         items.iter().find(|i| i.ident == trait_assoc_item.ident).map(fix_span)
225                     })
226                 {
227                     cause.make_mut().span = impl_item_span;
228                 }
229             }
230         }
231         _ => {}
232     }
233 }
234
235 impl<'a, 'tcx> WfPredicates<'a, 'tcx> {
236     fn tcx(&self) -> TyCtxt<'tcx> {
237         self.infcx.tcx
238     }
239
240     fn cause(&self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
241         traits::ObligationCause::new(self.span, self.body_id, code)
242     }
243
244     fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
245         let cause = self.cause(traits::MiscObligation);
246         let infcx = &mut self.infcx;
247         let param_env = self.param_env;
248         let mut obligations = Vec::with_capacity(self.out.len());
249         for pred in &self.out {
250             assert!(!pred.has_escaping_bound_vars());
251             let mut selcx = traits::SelectionContext::new(infcx);
252             let i = obligations.len();
253             let value =
254                 traits::normalize_to(&mut selcx, param_env, cause.clone(), pred, &mut obligations);
255             obligations.insert(i, value);
256         }
257         obligations
258     }
259
260     /// Pushes the obligations required for `trait_ref` to be WF into `self.out`.
261     fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>, elaborate: Elaborate) {
262         let tcx = self.infcx.tcx;
263         let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
264
265         debug!("compute_trait_ref obligations {:?}", obligations);
266         let cause = self.cause(traits::MiscObligation);
267         let param_env = self.param_env;
268
269         let item = self.item;
270
271         let extend = |obligation: traits::PredicateObligation<'tcx>| {
272             let mut cause = cause.clone();
273             if let Some(parent_trait_ref) = obligation.predicate.to_opt_poly_trait_ref() {
274                 let derived_cause = traits::DerivedObligationCause {
275                     parent_trait_ref,
276                     parent_code: Rc::new(obligation.cause.code.clone()),
277                 };
278                 cause.make_mut().code =
279                     traits::ObligationCauseCode::DerivedObligation(derived_cause);
280             }
281             extend_cause_with_original_assoc_item_obligation(
282                 tcx,
283                 trait_ref,
284                 item,
285                 &mut cause,
286                 &obligation.predicate,
287                 tcx.associated_items(trait_ref.def_id).in_definition_order(),
288             );
289             traits::Obligation::new(cause, param_env, obligation.predicate)
290         };
291
292         if let Elaborate::All = elaborate {
293             let implied_obligations = traits::util::elaborate_obligations(tcx, obligations);
294             let implied_obligations = implied_obligations.map(extend);
295             self.out.extend(implied_obligations);
296         } else {
297             self.out.extend(obligations);
298         }
299
300         let tcx = self.tcx();
301         self.out.extend(
302             trait_ref
303                 .substs
304                 .iter()
305                 .enumerate()
306                 .filter(|(_, arg)| {
307                     matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..))
308                 })
309                 .filter(|(_, arg)| !arg.has_escaping_bound_vars())
310                 .map(|(i, arg)| {
311                     let mut new_cause = cause.clone();
312                     // The first subst is the self ty - use the correct span for it.
313                     if i == 0 {
314                         if let Some(hir::ItemKind::Impl { self_ty, .. }) = item.map(|i| &i.kind) {
315                             new_cause.make_mut().span = self_ty.span;
316                         }
317                     }
318                     traits::Obligation::new(
319                         new_cause,
320                         param_env,
321                         ty::PredicateKint::WellFormed(arg).to_predicate(tcx),
322                     )
323                 }),
324         );
325     }
326
327     /// Pushes the obligations required for `trait_ref::Item` to be WF
328     /// into `self.out`.
329     fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
330         // A projection is well-formed if (a) the trait ref itself is
331         // WF and (b) the trait-ref holds.  (It may also be
332         // normalizable and be WF that way.)
333         let trait_ref = data.trait_ref(self.infcx.tcx);
334         self.compute_trait_ref(&trait_ref, Elaborate::None);
335
336         if !data.has_escaping_bound_vars() {
337             let predicate = trait_ref.without_const().to_predicate(self.infcx.tcx);
338             let cause = self.cause(traits::ProjectionWf(data));
339             self.out.push(traits::Obligation::new(cause, self.param_env, predicate));
340         }
341     }
342
343     fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
344         if !subty.has_escaping_bound_vars() {
345             let cause = self.cause(cause);
346             let trait_ref = ty::TraitRef {
347                 def_id: self.infcx.tcx.require_lang_item(lang_items::SizedTraitLangItem, None),
348                 substs: self.infcx.tcx.mk_substs_trait(subty, &[]),
349             };
350             self.out.push(traits::Obligation::new(
351                 cause,
352                 self.param_env,
353                 trait_ref.without_const().to_predicate(self.infcx.tcx),
354             ));
355         }
356     }
357
358     /// Pushes all the predicates needed to validate that `ty` is WF into `out`.
359     fn compute(&mut self, arg: GenericArg<'tcx>) {
360         let mut walker = arg.walk();
361         let param_env = self.param_env;
362         while let Some(arg) = walker.next() {
363             let ty = match arg.unpack() {
364                 GenericArgKind::Type(ty) => ty,
365
366                 // No WF constraints for lifetimes being present, any outlives
367                 // obligations are handled by the parent (e.g. `ty::Ref`).
368                 GenericArgKind::Lifetime(_) => continue,
369
370                 GenericArgKind::Const(constant) => {
371                     match constant.val {
372                         ty::ConstKind::Unevaluated(def, substs, promoted) => {
373                             assert!(promoted.is_none());
374
375                             let obligations = self.nominal_obligations(def.did, substs);
376                             self.out.extend(obligations);
377
378                             let predicate = ty::PredicateKind::ConstEvaluatable(def, substs)
379                                 .to_predicate(self.tcx());
380                             let cause = self.cause(traits::MiscObligation);
381                             self.out.push(traits::Obligation::new(
382                                 cause,
383                                 self.param_env,
384                                 predicate,
385                             ));
386                         }
387                         ty::ConstKind::Infer(infer) => {
388                             let resolved = self.infcx.shallow_resolve(infer);
389                             // the `InferConst` changed, meaning that we made progress.
390                             if resolved != infer {
391                                 let cause = self.cause(traits::MiscObligation);
392
393                                 let resolved_constant = self.infcx.tcx.mk_const(ty::Const {
394                                     val: ty::ConstKind::Infer(resolved),
395                                     ..*constant
396                                 });
397                                 self.out.push(traits::Obligation::new(
398                                     cause,
399                                     self.param_env,
400                                     ty::PredicateKind::WellFormed(resolved_constant.into())
401                                         .to_predicate(self.tcx()),
402                                 ));
403                             }
404                         }
405                         ty::ConstKind::Error(_)
406                         | ty::ConstKind::Param(_)
407                         | ty::ConstKind::Bound(..)
408                         | ty::ConstKind::Placeholder(..) => {
409                             // These variants are trivially WF, so nothing to do here.
410                         }
411                         ty::ConstKind::Value(..) => {
412                             // FIXME: Enforce that values are structurally-matchable.
413                         }
414                     }
415                     continue;
416                 }
417             };
418
419             match ty.kind {
420                 ty::Bool
421                 | ty::Char
422                 | ty::Int(..)
423                 | ty::Uint(..)
424                 | ty::Float(..)
425                 | ty::Error(_)
426                 | ty::Str
427                 | ty::GeneratorWitness(..)
428                 | ty::Never
429                 | ty::Param(_)
430                 | ty::Bound(..)
431                 | ty::Placeholder(..)
432                 | ty::Foreign(..) => {
433                     // WfScalar, WfParameter, etc
434                 }
435
436                 // Can only infer to `ty::Int(_) | ty::Uint(_)`.
437                 ty::Infer(ty::IntVar(_)) => {}
438
439                 // Can only infer to `ty::Float(_)`.
440                 ty::Infer(ty::FloatVar(_)) => {}
441
442                 ty::Slice(subty) => {
443                     self.require_sized(subty, traits::SliceOrArrayElem);
444                 }
445
446                 ty::Array(subty, _) => {
447                     self.require_sized(subty, traits::SliceOrArrayElem);
448                     // Note that we handle the len is implicitly checked while walking `arg`.
449                 }
450
451                 ty::Tuple(ref tys) => {
452                     if let Some((_last, rest)) = tys.split_last() {
453                         for elem in rest {
454                             self.require_sized(elem.expect_ty(), traits::TupleElem);
455                         }
456                     }
457                 }
458
459                 ty::RawPtr(_) => {
460                     // Simple cases that are WF if their type args are WF.
461                 }
462
463                 ty::Projection(data) => {
464                     walker.skip_current_subtree(); // Subtree handled by compute_projection.
465                     self.compute_projection(data);
466                 }
467
468                 ty::Adt(def, substs) => {
469                     // WfNominalType
470                     let obligations = self.nominal_obligations(def.did, substs);
471                     self.out.extend(obligations);
472                 }
473
474                 ty::FnDef(did, substs) => {
475                     let obligations = self.nominal_obligations(did, substs);
476                     self.out.extend(obligations);
477                 }
478
479                 ty::Ref(r, rty, _) => {
480                     // WfReference
481                     if !r.has_escaping_bound_vars() && !rty.has_escaping_bound_vars() {
482                         let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
483                         self.out.push(traits::Obligation::new(
484                             cause,
485                             param_env,
486                             ty::PredicateKind::TypeOutlives(ty::Binder::dummy(
487                                 ty::OutlivesPredicate(rty, r),
488                             ))
489                             .to_predicate(self.tcx()),
490                         ));
491                     }
492                 }
493
494                 ty::Generator(..) => {
495                     // Walk ALL the types in the generator: this will
496                     // include the upvar types as well as the yield
497                     // type. Note that this is mildly distinct from
498                     // the closure case, where we have to be careful
499                     // about the signature of the closure. We don't
500                     // have the problem of implied bounds here since
501                     // generators don't take arguments.
502                 }
503
504                 ty::Closure(_, substs) => {
505                     // Only check the upvar types for WF, not the rest
506                     // of the types within. This is needed because we
507                     // capture the signature and it may not be WF
508                     // without the implied bounds. Consider a closure
509                     // like `|x: &'a T|` -- it may be that `T: 'a` is
510                     // not known to hold in the creator's context (and
511                     // indeed the closure may not be invoked by its
512                     // creator, but rather turned to someone who *can*
513                     // verify that).
514                     //
515                     // The special treatment of closures here really
516                     // ought not to be necessary either; the problem
517                     // is related to #25860 -- there is no way for us
518                     // to express a fn type complete with the implied
519                     // bounds that it is assuming. I think in reality
520                     // the WF rules around fn are a bit messed up, and
521                     // that is the rot problem: `fn(&'a T)` should
522                     // probably always be WF, because it should be
523                     // shorthand for something like `where(T: 'a) {
524                     // fn(&'a T) }`, as discussed in #25860.
525                     //
526                     // Note that we are also skipping the generic
527                     // types. This is consistent with the `outlives`
528                     // code, but anyway doesn't matter: within the fn
529                     // body where they are created, the generics will
530                     // always be WF, and outside of that fn body we
531                     // are not directly inspecting closure types
532                     // anyway, except via auto trait matching (which
533                     // only inspects the upvar types).
534                     walker.skip_current_subtree(); // subtree handled below
535                     for upvar_ty in substs.as_closure().upvar_tys() {
536                         // FIXME(eddyb) add the type to `walker` instead of recursing.
537                         self.compute(upvar_ty.into());
538                     }
539                 }
540
541                 ty::FnPtr(_) => {
542                     // let the loop iterate into the argument/return
543                     // types appearing in the fn signature
544                 }
545
546                 ty::Opaque(did, substs) => {
547                     // all of the requirements on type parameters
548                     // should've been checked by the instantiation
549                     // of whatever returned this exact `impl Trait`.
550
551                     // for named opaque `impl Trait` types we still need to check them
552                     if ty::is_impl_trait_defn(self.infcx.tcx, did).is_none() {
553                         let obligations = self.nominal_obligations(did, substs);
554                         self.out.extend(obligations);
555                     }
556                 }
557
558                 ty::Dynamic(data, r) => {
559                     // WfObject
560                     //
561                     // Here, we defer WF checking due to higher-ranked
562                     // regions. This is perhaps not ideal.
563                     self.from_object_ty(ty, data, r);
564
565                     // FIXME(#27579) RFC also considers adding trait
566                     // obligations that don't refer to Self and
567                     // checking those
568
569                     let defer_to_coercion = self.tcx().features().object_safe_for_dispatch;
570
571                     if !defer_to_coercion {
572                         let cause = self.cause(traits::MiscObligation);
573                         let component_traits = data.auto_traits().chain(data.principal_def_id());
574                         let tcx = self.tcx();
575                         self.out.extend(component_traits.map(|did| {
576                             traits::Obligation::new(
577                                 cause.clone(),
578                                 param_env,
579                                 ty::PredicateKind::ObjectSafe(did).to_predicate(tcx),
580                             )
581                         }));
582                     }
583                 }
584
585                 // Inference variables are the complicated case, since we don't
586                 // know what type they are. We do two things:
587                 //
588                 // 1. Check if they have been resolved, and if so proceed with
589                 //    THAT type.
590                 // 2. If not, we've at least simplified things (e.g., we went
591                 //    from `Vec<$0>: WF` to `$0: WF`), so we can
592                 //    register a pending obligation and keep
593                 //    moving. (Goal is that an "inductive hypothesis"
594                 //    is satisfied to ensure termination.)
595                 // See also the comment on `fn obligations`, describing "livelock"
596                 // prevention, which happens before this can be reached.
597                 ty::Infer(_) => {
598                     let ty = self.infcx.shallow_resolve(ty);
599                     if let ty::Infer(ty::TyVar(_)) = ty.kind {
600                         // Not yet resolved, but we've made progress.
601                         let cause = self.cause(traits::MiscObligation);
602                         self.out.push(traits::Obligation::new(
603                             cause,
604                             param_env,
605                             ty::PredicateKind::WellFormed(ty.into()).to_predicate(self.tcx()),
606                         ));
607                     } else {
608                         // Yes, resolved, proceed with the result.
609                         // FIXME(eddyb) add the type to `walker` instead of recursing.
610                         self.compute(ty.into());
611                     }
612                 }
613             }
614         }
615     }
616
617     fn nominal_obligations(
618         &mut self,
619         def_id: DefId,
620         substs: SubstsRef<'tcx>,
621     ) -> Vec<traits::PredicateObligation<'tcx>> {
622         let predicates = self.infcx.tcx.predicates_of(def_id).instantiate(self.infcx.tcx, substs);
623         predicates
624             .predicates
625             .into_iter()
626             .zip(predicates.spans.into_iter())
627             .map(|(pred, span)| {
628                 let cause = self.cause(traits::BindingObligation(def_id, span));
629                 traits::Obligation::new(cause, self.param_env, pred)
630             })
631             .filter(|pred| !pred.has_escaping_bound_vars())
632             .collect()
633     }
634
635     fn from_object_ty(
636         &mut self,
637         ty: Ty<'tcx>,
638         data: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
639         region: ty::Region<'tcx>,
640     ) {
641         // Imagine a type like this:
642         //
643         //     trait Foo { }
644         //     trait Bar<'c> : 'c { }
645         //
646         //     &'b (Foo+'c+Bar<'d>)
647         //         ^
648         //
649         // In this case, the following relationships must hold:
650         //
651         //     'b <= 'c
652         //     'd <= 'c
653         //
654         // The first conditions is due to the normal region pointer
655         // rules, which say that a reference cannot outlive its
656         // referent.
657         //
658         // The final condition may be a bit surprising. In particular,
659         // you may expect that it would have been `'c <= 'd`, since
660         // usually lifetimes of outer things are conservative
661         // approximations for inner things. However, it works somewhat
662         // differently with trait objects: here the idea is that if the
663         // user specifies a region bound (`'c`, in this case) it is the
664         // "master bound" that *implies* that bounds from other traits are
665         // all met. (Remember that *all bounds* in a type like
666         // `Foo+Bar+Zed` must be met, not just one, hence if we write
667         // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
668         // 'y.)
669         //
670         // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
671         // am looking forward to the future here.
672         if !data.has_escaping_bound_vars() && !region.has_escaping_bound_vars() {
673             let implicit_bounds = object_region_bounds(self.infcx.tcx, data);
674
675             let explicit_bound = region;
676
677             self.out.reserve(implicit_bounds.len());
678             for implicit_bound in implicit_bounds {
679                 let cause = self.cause(traits::ObjectTypeBound(ty, explicit_bound));
680                 let outlives =
681                     ty::Binder::dummy(ty::OutlivesPredicate(explicit_bound, implicit_bound));
682                 self.out.push(traits::Obligation::new(
683                     cause,
684                     self.param_env,
685                     outlives.to_predicate(self.infcx.tcx),
686                 ));
687             }
688         }
689     }
690 }
691
692 /// Given an object type like `SomeTrait + Send`, computes the lifetime
693 /// bounds that must hold on the elided self type. These are derived
694 /// from the declarations of `SomeTrait`, `Send`, and friends -- if
695 /// they declare `trait SomeTrait : 'static`, for example, then
696 /// `'static` would appear in the list. The hard work is done by
697 /// `infer::required_region_bounds`, see that for more information.
698 pub fn object_region_bounds<'tcx>(
699     tcx: TyCtxt<'tcx>,
700     existential_predicates: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
701 ) -> Vec<ty::Region<'tcx>> {
702     // Since we don't actually *know* the self type for an object,
703     // this "open(err)" serves as a kind of dummy standin -- basically
704     // a placeholder type.
705     let open_ty = tcx.mk_ty_infer(ty::FreshTy(0));
706
707     let predicates = existential_predicates.iter().filter_map(|predicate| {
708         if let ty::ExistentialPredicate::Projection(_) = predicate.skip_binder() {
709             None
710         } else {
711             Some(predicate.with_self_ty(tcx, open_ty))
712         }
713     });
714
715     required_region_bounds(tcx, open_ty, predicates)
716 }