]> git.lizzy.rs Git - rust.git/blob - src/librustc_trait_selection/traits/project.rs
c12f9eb112f9d39f26054bf114015c3cd5a7a709
[rust.git] / src / librustc_trait_selection / traits / project.rs
1 //! Code for projecting associated types out of trait references.
2
3 use super::elaborate_predicates;
4 use super::specialization_graph;
5 use super::translate_substs;
6 use super::util;
7 use super::MismatchedProjectionTypes;
8 use super::Obligation;
9 use super::ObligationCause;
10 use super::PredicateObligation;
11 use super::Selection;
12 use super::SelectionContext;
13 use super::SelectionError;
14 use super::{
15     ImplSourceClosureData, ImplSourceDiscriminantKindData, ImplSourceFnPointerData,
16     ImplSourceGeneratorData, ImplSourceUserDefinedData,
17 };
18 use super::{Normalized, NormalizedTy, ProjectionCacheEntry, ProjectionCacheKey};
19
20 use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
21 use crate::infer::{InferCtxt, InferOk, LateBoundRegionConversionTime};
22 use crate::traits::error_reporting::InferCtxtExt;
23 use rustc_data_structures::stack::ensure_sufficient_stack;
24 use rustc_errors::ErrorReported;
25 use rustc_hir::def_id::DefId;
26 use rustc_hir::lang_items::{
27     DiscriminantTypeLangItem, FnOnceOutputLangItem, FnOnceTraitLangItem, GeneratorTraitLangItem,
28 };
29 use rustc_infer::infer::resolve::OpportunisticRegionResolver;
30 use rustc_middle::ty::fold::{TypeFoldable, TypeFolder};
31 use rustc_middle::ty::subst::Subst;
32 use rustc_middle::ty::{self, ToPolyTraitRef, ToPredicate, Ty, TyCtxt, WithConstness};
33 use rustc_span::symbol::sym;
34 use rustc_span::DUMMY_SP;
35
36 pub use rustc_middle::traits::Reveal;
37
38 pub type PolyProjectionObligation<'tcx> = Obligation<'tcx, ty::PolyProjectionPredicate<'tcx>>;
39
40 pub type ProjectionObligation<'tcx> = Obligation<'tcx, ty::ProjectionPredicate<'tcx>>;
41
42 pub type ProjectionTyObligation<'tcx> = Obligation<'tcx, ty::ProjectionTy<'tcx>>;
43
44 /// When attempting to resolve `<T as TraitRef>::Name` ...
45 #[derive(Debug)]
46 pub enum ProjectionTyError<'tcx> {
47     /// ...we found multiple sources of information and couldn't resolve the ambiguity.
48     TooManyCandidates,
49
50     /// ...an error occurred matching `T : TraitRef`
51     TraitSelectionError(SelectionError<'tcx>),
52 }
53
54 #[derive(PartialEq, Eq, Debug)]
55 enum ProjectionTyCandidate<'tcx> {
56     // from a where-clause in the env or object type
57     ParamEnv(ty::PolyProjectionPredicate<'tcx>),
58
59     // from the definition of `Trait` when you have something like <<A as Trait>::B as Trait2>::C
60     TraitDef(ty::PolyProjectionPredicate<'tcx>),
61
62     // from a "impl" (or a "pseudo-impl" returned by select)
63     Select(Selection<'tcx>),
64 }
65
66 enum ProjectionTyCandidateSet<'tcx> {
67     None,
68     Single(ProjectionTyCandidate<'tcx>),
69     Ambiguous,
70     Error(SelectionError<'tcx>),
71 }
72
73 impl<'tcx> ProjectionTyCandidateSet<'tcx> {
74     fn mark_ambiguous(&mut self) {
75         *self = ProjectionTyCandidateSet::Ambiguous;
76     }
77
78     fn mark_error(&mut self, err: SelectionError<'tcx>) {
79         *self = ProjectionTyCandidateSet::Error(err);
80     }
81
82     // Returns true if the push was successful, or false if the candidate
83     // was discarded -- this could be because of ambiguity, or because
84     // a higher-priority candidate is already there.
85     fn push_candidate(&mut self, candidate: ProjectionTyCandidate<'tcx>) -> bool {
86         use self::ProjectionTyCandidate::*;
87         use self::ProjectionTyCandidateSet::*;
88
89         // This wacky variable is just used to try and
90         // make code readable and avoid confusing paths.
91         // It is assigned a "value" of `()` only on those
92         // paths in which we wish to convert `*self` to
93         // ambiguous (and return false, because the candidate
94         // was not used). On other paths, it is not assigned,
95         // and hence if those paths *could* reach the code that
96         // comes after the match, this fn would not compile.
97         let convert_to_ambiguous;
98
99         match self {
100             None => {
101                 *self = Single(candidate);
102                 return true;
103             }
104
105             Single(current) => {
106                 // Duplicates can happen inside ParamEnv. In the case, we
107                 // perform a lazy deduplication.
108                 if current == &candidate {
109                     return false;
110                 }
111
112                 // Prefer where-clauses. As in select, if there are multiple
113                 // candidates, we prefer where-clause candidates over impls.  This
114                 // may seem a bit surprising, since impls are the source of
115                 // "truth" in some sense, but in fact some of the impls that SEEM
116                 // applicable are not, because of nested obligations. Where
117                 // clauses are the safer choice. See the comment on
118                 // `select::SelectionCandidate` and #21974 for more details.
119                 match (current, candidate) {
120                     (ParamEnv(..), ParamEnv(..)) => convert_to_ambiguous = (),
121                     (ParamEnv(..), _) => return false,
122                     (_, ParamEnv(..)) => unreachable!(),
123                     (_, _) => convert_to_ambiguous = (),
124                 }
125             }
126
127             Ambiguous | Error(..) => {
128                 return false;
129             }
130         }
131
132         // We only ever get here when we moved from a single candidate
133         // to ambiguous.
134         let () = convert_to_ambiguous;
135         *self = Ambiguous;
136         false
137     }
138 }
139
140 /// Evaluates constraints of the form:
141 ///
142 ///     for<...> <T as Trait>::U == V
143 ///
144 /// If successful, this may result in additional obligations. Also returns
145 /// the projection cache key used to track these additional obligations.
146 pub fn poly_project_and_unify_type<'cx, 'tcx>(
147     selcx: &mut SelectionContext<'cx, 'tcx>,
148     obligation: &PolyProjectionObligation<'tcx>,
149 ) -> Result<Option<Vec<PredicateObligation<'tcx>>>, MismatchedProjectionTypes<'tcx>> {
150     debug!("poly_project_and_unify_type(obligation={:?})", obligation);
151
152     let infcx = selcx.infcx();
153     infcx.commit_if_ok(|_snapshot| {
154         let (placeholder_predicate, _) =
155             infcx.replace_bound_vars_with_placeholders(&obligation.predicate);
156
157         let placeholder_obligation = obligation.with(placeholder_predicate);
158         let result = project_and_unify_type(selcx, &placeholder_obligation)?;
159         Ok(result)
160     })
161 }
162
163 /// Evaluates constraints of the form:
164 ///
165 ///     <T as Trait>::U == V
166 ///
167 /// If successful, this may result in additional obligations.
168 fn project_and_unify_type<'cx, 'tcx>(
169     selcx: &mut SelectionContext<'cx, 'tcx>,
170     obligation: &ProjectionObligation<'tcx>,
171 ) -> Result<Option<Vec<PredicateObligation<'tcx>>>, MismatchedProjectionTypes<'tcx>> {
172     debug!("project_and_unify_type(obligation={:?})", obligation);
173
174     let mut obligations = vec![];
175     let normalized_ty = match opt_normalize_projection_type(
176         selcx,
177         obligation.param_env,
178         obligation.predicate.projection_ty,
179         obligation.cause.clone(),
180         obligation.recursion_depth,
181         &mut obligations,
182     ) {
183         Some(n) => n,
184         None => return Ok(None),
185     };
186
187     debug!(
188         "project_and_unify_type: normalized_ty={:?} obligations={:?}",
189         normalized_ty, obligations
190     );
191
192     let infcx = selcx.infcx();
193     match infcx
194         .at(&obligation.cause, obligation.param_env)
195         .eq(normalized_ty, obligation.predicate.ty)
196     {
197         Ok(InferOk { obligations: inferred_obligations, value: () }) => {
198             obligations.extend(inferred_obligations);
199             Ok(Some(obligations))
200         }
201         Err(err) => {
202             debug!("project_and_unify_type: equating types encountered error {:?}", err);
203             Err(MismatchedProjectionTypes { err })
204         }
205     }
206 }
207
208 /// Normalizes any associated type projections in `value`, replacing
209 /// them with a fully resolved type where possible. The return value
210 /// combines the normalized result and any additional obligations that
211 /// were incurred as result.
212 pub fn normalize<'a, 'b, 'tcx, T>(
213     selcx: &'a mut SelectionContext<'b, 'tcx>,
214     param_env: ty::ParamEnv<'tcx>,
215     cause: ObligationCause<'tcx>,
216     value: &T,
217 ) -> Normalized<'tcx, T>
218 where
219     T: TypeFoldable<'tcx>,
220 {
221     let mut obligations = Vec::new();
222     let value = normalize_to(selcx, param_env, cause, value, &mut obligations);
223     Normalized { value, obligations }
224 }
225
226 pub fn normalize_to<'a, 'b, 'tcx, T>(
227     selcx: &'a mut SelectionContext<'b, 'tcx>,
228     param_env: ty::ParamEnv<'tcx>,
229     cause: ObligationCause<'tcx>,
230     value: &T,
231     obligations: &mut Vec<PredicateObligation<'tcx>>,
232 ) -> T
233 where
234     T: TypeFoldable<'tcx>,
235 {
236     normalize_with_depth_to(selcx, param_env, cause, 0, value, obligations)
237 }
238
239 /// As `normalize`, but with a custom depth.
240 pub fn normalize_with_depth<'a, 'b, 'tcx, T>(
241     selcx: &'a mut SelectionContext<'b, 'tcx>,
242     param_env: ty::ParamEnv<'tcx>,
243     cause: ObligationCause<'tcx>,
244     depth: usize,
245     value: &T,
246 ) -> Normalized<'tcx, T>
247 where
248     T: TypeFoldable<'tcx>,
249 {
250     let mut obligations = Vec::new();
251     let value = normalize_with_depth_to(selcx, param_env, cause, depth, value, &mut obligations);
252     Normalized { value, obligations }
253 }
254
255 pub fn normalize_with_depth_to<'a, 'b, 'tcx, T>(
256     selcx: &'a mut SelectionContext<'b, 'tcx>,
257     param_env: ty::ParamEnv<'tcx>,
258     cause: ObligationCause<'tcx>,
259     depth: usize,
260     value: &T,
261     obligations: &mut Vec<PredicateObligation<'tcx>>,
262 ) -> T
263 where
264     T: TypeFoldable<'tcx>,
265 {
266     debug!("normalize_with_depth(depth={}, value={:?})", depth, value);
267     let mut normalizer = AssocTypeNormalizer::new(selcx, param_env, cause, depth, obligations);
268     let result = ensure_sufficient_stack(|| normalizer.fold(value));
269     debug!(
270         "normalize_with_depth: depth={} result={:?} with {} obligations",
271         depth,
272         result,
273         normalizer.obligations.len()
274     );
275     debug!("normalize_with_depth: depth={} obligations={:?}", depth, normalizer.obligations);
276     result
277 }
278
279 struct AssocTypeNormalizer<'a, 'b, 'tcx> {
280     selcx: &'a mut SelectionContext<'b, 'tcx>,
281     param_env: ty::ParamEnv<'tcx>,
282     cause: ObligationCause<'tcx>,
283     obligations: &'a mut Vec<PredicateObligation<'tcx>>,
284     depth: usize,
285 }
286
287 impl<'a, 'b, 'tcx> AssocTypeNormalizer<'a, 'b, 'tcx> {
288     fn new(
289         selcx: &'a mut SelectionContext<'b, 'tcx>,
290         param_env: ty::ParamEnv<'tcx>,
291         cause: ObligationCause<'tcx>,
292         depth: usize,
293         obligations: &'a mut Vec<PredicateObligation<'tcx>>,
294     ) -> AssocTypeNormalizer<'a, 'b, 'tcx> {
295         AssocTypeNormalizer { selcx, param_env, cause, obligations, depth }
296     }
297
298     fn fold<T: TypeFoldable<'tcx>>(&mut self, value: &T) -> T {
299         let value = self.selcx.infcx().resolve_vars_if_possible(value);
300
301         if !value.has_projections() { value } else { value.fold_with(self) }
302     }
303 }
304
305 impl<'a, 'b, 'tcx> TypeFolder<'tcx> for AssocTypeNormalizer<'a, 'b, 'tcx> {
306     fn tcx<'c>(&'c self) -> TyCtxt<'tcx> {
307         self.selcx.tcx()
308     }
309
310     fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
311         if !ty.has_projections() {
312             return ty;
313         }
314         // We don't want to normalize associated types that occur inside of region
315         // binders, because they may contain bound regions, and we can't cope with that.
316         //
317         // Example:
318         //
319         //     for<'a> fn(<T as Foo<&'a>>::A)
320         //
321         // Instead of normalizing `<T as Foo<&'a>>::A` here, we'll
322         // normalize it when we instantiate those bound regions (which
323         // should occur eventually).
324
325         let ty = ty.super_fold_with(self);
326         match ty.kind {
327             ty::Opaque(def_id, substs) if !substs.has_escaping_bound_vars() => {
328                 // (*)
329                 // Only normalize `impl Trait` after type-checking, usually in codegen.
330                 match self.param_env.reveal() {
331                     Reveal::UserFacing => ty,
332
333                     Reveal::All => {
334                         let recursion_limit = self.tcx().sess.recursion_limit();
335                         if !recursion_limit.value_within_limit(self.depth) {
336                             let obligation = Obligation::with_depth(
337                                 self.cause.clone(),
338                                 recursion_limit.0,
339                                 self.param_env,
340                                 ty,
341                             );
342                             self.selcx.infcx().report_overflow_error(&obligation, true);
343                         }
344
345                         let generic_ty = self.tcx().type_of(def_id);
346                         let concrete_ty = generic_ty.subst(self.tcx(), substs);
347                         self.depth += 1;
348                         let folded_ty = self.fold_ty(concrete_ty);
349                         self.depth -= 1;
350                         folded_ty
351                     }
352                 }
353             }
354
355             ty::Projection(ref data) if !data.has_escaping_bound_vars() => {
356                 // (*)
357
358                 // (*) This is kind of hacky -- we need to be able to
359                 // handle normalization within binders because
360                 // otherwise we wind up a need to normalize when doing
361                 // trait matching (since you can have a trait
362                 // obligation like `for<'a> T::B: Fn(&'a i32)`), but
363                 // we can't normalize with bound regions in scope. So
364                 // far now we just ignore binders but only normalize
365                 // if all bound regions are gone (and then we still
366                 // have to renormalize whenever we instantiate a
367                 // binder). It would be better to normalize in a
368                 // binding-aware fashion.
369
370                 let normalized_ty = normalize_projection_type(
371                     self.selcx,
372                     self.param_env,
373                     *data,
374                     self.cause.clone(),
375                     self.depth,
376                     &mut self.obligations,
377                 );
378                 debug!(
379                     "AssocTypeNormalizer: depth={} normalized {:?} to {:?}, \
380                      now with {} obligations",
381                     self.depth,
382                     ty,
383                     normalized_ty,
384                     self.obligations.len()
385                 );
386                 normalized_ty
387             }
388
389             _ => ty,
390         }
391     }
392
393     fn fold_const(&mut self, constant: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
394         if self.selcx.tcx().lazy_normalization() {
395             constant
396         } else {
397             let constant = constant.super_fold_with(self);
398             constant.eval(self.selcx.tcx(), self.param_env)
399         }
400     }
401 }
402
403 /// The guts of `normalize`: normalize a specific projection like `<T
404 /// as Trait>::Item`. The result is always a type (and possibly
405 /// additional obligations). If ambiguity arises, which implies that
406 /// there are unresolved type variables in the projection, we will
407 /// substitute a fresh type variable `$X` and generate a new
408 /// obligation `<T as Trait>::Item == $X` for later.
409 pub fn normalize_projection_type<'a, 'b, 'tcx>(
410     selcx: &'a mut SelectionContext<'b, 'tcx>,
411     param_env: ty::ParamEnv<'tcx>,
412     projection_ty: ty::ProjectionTy<'tcx>,
413     cause: ObligationCause<'tcx>,
414     depth: usize,
415     obligations: &mut Vec<PredicateObligation<'tcx>>,
416 ) -> Ty<'tcx> {
417     opt_normalize_projection_type(
418         selcx,
419         param_env,
420         projection_ty,
421         cause.clone(),
422         depth,
423         obligations,
424     )
425     .unwrap_or_else(move || {
426         // if we bottom out in ambiguity, create a type variable
427         // and a deferred predicate to resolve this when more type
428         // information is available.
429
430         let tcx = selcx.infcx().tcx;
431         let def_id = projection_ty.item_def_id;
432         let ty_var = selcx.infcx().next_ty_var(TypeVariableOrigin {
433             kind: TypeVariableOriginKind::NormalizeProjectionType,
434             span: tcx.def_span(def_id),
435         });
436         let projection = ty::Binder::dummy(ty::ProjectionPredicate { projection_ty, ty: ty_var });
437         let obligation =
438             Obligation::with_depth(cause, depth + 1, param_env, projection.to_predicate(tcx));
439         obligations.push(obligation);
440         ty_var
441     })
442 }
443
444 /// The guts of `normalize`: normalize a specific projection like `<T
445 /// as Trait>::Item`. The result is always a type (and possibly
446 /// additional obligations). Returns `None` in the case of ambiguity,
447 /// which indicates that there are unbound type variables.
448 ///
449 /// This function used to return `Option<NormalizedTy<'tcx>>`, which contains a
450 /// `Ty<'tcx>` and an obligations vector. But that obligation vector was very
451 /// often immediately appended to another obligations vector. So now this
452 /// function takes an obligations vector and appends to it directly, which is
453 /// slightly uglier but avoids the need for an extra short-lived allocation.
454 fn opt_normalize_projection_type<'a, 'b, 'tcx>(
455     selcx: &'a mut SelectionContext<'b, 'tcx>,
456     param_env: ty::ParamEnv<'tcx>,
457     projection_ty: ty::ProjectionTy<'tcx>,
458     cause: ObligationCause<'tcx>,
459     depth: usize,
460     obligations: &mut Vec<PredicateObligation<'tcx>>,
461 ) -> Option<Ty<'tcx>> {
462     let infcx = selcx.infcx();
463
464     let projection_ty = infcx.resolve_vars_if_possible(&projection_ty);
465     let cache_key = ProjectionCacheKey::new(projection_ty);
466
467     debug!(
468         "opt_normalize_projection_type(\
469          projection_ty={:?}, \
470          depth={})",
471         projection_ty, depth
472     );
473
474     // FIXME(#20304) For now, I am caching here, which is good, but it
475     // means we don't capture the type variables that are created in
476     // the case of ambiguity. Which means we may create a large stream
477     // of such variables. OTOH, if we move the caching up a level, we
478     // would not benefit from caching when proving `T: Trait<U=Foo>`
479     // bounds. It might be the case that we want two distinct caches,
480     // or else another kind of cache entry.
481
482     let cache_result = infcx.inner.borrow_mut().projection_cache().try_start(cache_key);
483     match cache_result {
484         Ok(()) => {}
485         Err(ProjectionCacheEntry::Ambiguous) => {
486             // If we found ambiguity the last time, that means we will continue
487             // to do so until some type in the key changes (and we know it
488             // hasn't, because we just fully resolved it).
489             debug!(
490                 "opt_normalize_projection_type: \
491                  found cache entry: ambiguous"
492             );
493             return None;
494         }
495         Err(ProjectionCacheEntry::InProgress) => {
496             // If while normalized A::B, we are asked to normalize
497             // A::B, just return A::B itself. This is a conservative
498             // answer, in the sense that A::B *is* clearly equivalent
499             // to A::B, though there may be a better value we can
500             // find.
501
502             // Under lazy normalization, this can arise when
503             // bootstrapping.  That is, imagine an environment with a
504             // where-clause like `A::B == u32`. Now, if we are asked
505             // to normalize `A::B`, we will want to check the
506             // where-clauses in scope. So we will try to unify `A::B`
507             // with `A::B`, which can trigger a recursive
508             // normalization. In that case, I think we will want this code:
509             //
510             // ```
511             // let ty = selcx.tcx().mk_projection(projection_ty.item_def_id,
512             //                                    projection_ty.substs;
513             // return Some(NormalizedTy { value: v, obligations: vec![] });
514             // ```
515
516             debug!(
517                 "opt_normalize_projection_type: \
518                  found cache entry: in-progress"
519             );
520
521             // But for now, let's classify this as an overflow:
522             let recursion_limit = selcx.tcx().sess.recursion_limit();
523             let obligation =
524                 Obligation::with_depth(cause, recursion_limit.0, param_env, projection_ty);
525             selcx.infcx().report_overflow_error(&obligation, false);
526         }
527         Err(ProjectionCacheEntry::NormalizedTy(ty)) => {
528             // This is the hottest path in this function.
529             //
530             // If we find the value in the cache, then return it along
531             // with the obligations that went along with it. Note
532             // that, when using a fulfillment context, these
533             // obligations could in principle be ignored: they have
534             // already been registered when the cache entry was
535             // created (and hence the new ones will quickly be
536             // discarded as duplicated). But when doing trait
537             // evaluation this is not the case, and dropping the trait
538             // evaluations can causes ICEs (e.g., #43132).
539             debug!(
540                 "opt_normalize_projection_type: \
541                  found normalized ty `{:?}`",
542                 ty
543             );
544
545             // Once we have inferred everything we need to know, we
546             // can ignore the `obligations` from that point on.
547             if infcx.unresolved_type_vars(&ty.value).is_none() {
548                 infcx.inner.borrow_mut().projection_cache().complete_normalized(cache_key, &ty);
549             // No need to extend `obligations`.
550             } else {
551                 obligations.extend(ty.obligations);
552             }
553
554             obligations.push(get_paranoid_cache_value_obligation(
555                 infcx,
556                 param_env,
557                 projection_ty,
558                 cause,
559                 depth,
560             ));
561             return Some(ty.value);
562         }
563         Err(ProjectionCacheEntry::Error) => {
564             debug!(
565                 "opt_normalize_projection_type: \
566                  found error"
567             );
568             let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
569             obligations.extend(result.obligations);
570             return Some(result.value);
571         }
572     }
573
574     let obligation = Obligation::with_depth(cause.clone(), depth, param_env, projection_ty);
575     match project_type(selcx, &obligation) {
576         Ok(ProjectedTy::Progress(Progress {
577             ty: projected_ty,
578             obligations: mut projected_obligations,
579         })) => {
580             // if projection succeeded, then what we get out of this
581             // is also non-normalized (consider: it was derived from
582             // an impl, where-clause etc) and hence we must
583             // re-normalize it
584
585             debug!(
586                 "opt_normalize_projection_type: \
587                  projected_ty={:?} \
588                  depth={} \
589                  projected_obligations={:?}",
590                 projected_ty, depth, projected_obligations
591             );
592
593             let result = if projected_ty.has_projections() {
594                 let mut normalizer = AssocTypeNormalizer::new(
595                     selcx,
596                     param_env,
597                     cause,
598                     depth + 1,
599                     &mut projected_obligations,
600                 );
601                 let normalized_ty = normalizer.fold(&projected_ty);
602
603                 debug!(
604                     "opt_normalize_projection_type: \
605                      normalized_ty={:?} depth={}",
606                     normalized_ty, depth
607                 );
608
609                 Normalized { value: normalized_ty, obligations: projected_obligations }
610             } else {
611                 Normalized { value: projected_ty, obligations: projected_obligations }
612             };
613
614             let cache_value = prune_cache_value_obligations(infcx, &result);
615             infcx.inner.borrow_mut().projection_cache().insert_ty(cache_key, cache_value);
616             obligations.extend(result.obligations);
617             Some(result.value)
618         }
619         Ok(ProjectedTy::NoProgress(projected_ty)) => {
620             debug!(
621                 "opt_normalize_projection_type: \
622                  projected_ty={:?} no progress",
623                 projected_ty
624             );
625             let result = Normalized { value: projected_ty, obligations: vec![] };
626             infcx.inner.borrow_mut().projection_cache().insert_ty(cache_key, result.clone());
627             // No need to extend `obligations`.
628             Some(result.value)
629         }
630         Err(ProjectionTyError::TooManyCandidates) => {
631             debug!(
632                 "opt_normalize_projection_type: \
633                  too many candidates"
634             );
635             infcx.inner.borrow_mut().projection_cache().ambiguous(cache_key);
636             None
637         }
638         Err(ProjectionTyError::TraitSelectionError(_)) => {
639             debug!("opt_normalize_projection_type: ERROR");
640             // if we got an error processing the `T as Trait` part,
641             // just return `ty::err` but add the obligation `T :
642             // Trait`, which when processed will cause the error to be
643             // reported later
644
645             infcx.inner.borrow_mut().projection_cache().error(cache_key);
646             let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
647             obligations.extend(result.obligations);
648             Some(result.value)
649         }
650     }
651 }
652
653 /// If there are unresolved type variables, then we need to include
654 /// any subobligations that bind them, at least until those type
655 /// variables are fully resolved.
656 fn prune_cache_value_obligations<'a, 'tcx>(
657     infcx: &'a InferCtxt<'a, 'tcx>,
658     result: &NormalizedTy<'tcx>,
659 ) -> NormalizedTy<'tcx> {
660     if infcx.unresolved_type_vars(&result.value).is_none() {
661         return NormalizedTy { value: result.value, obligations: vec![] };
662     }
663
664     let mut obligations: Vec<_> = result
665         .obligations
666         .iter()
667         .filter(|obligation| {
668             match obligation.predicate.ignore_quantifiers().skip_binder().kind() {
669                 // We found a `T: Foo<X = U>` predicate, let's check
670                 // if `U` references any unresolved type
671                 // variables. In principle, we only care if this
672                 // projection can help resolve any of the type
673                 // variables found in `result.value` -- but we just
674                 // check for any type variables here, for fear of
675                 // indirect obligations (e.g., we project to `?0`,
676                 // but we have `T: Foo<X = ?1>` and `?1: Bar<X =
677                 // ?0>`).
678                 &ty::PredicateKind::Projection(data) => {
679                     infcx.unresolved_type_vars(&ty::Binder::bind(data.ty)).is_some()
680                 }
681
682                 // We are only interested in `T: Foo<X = U>` predicates, whre
683                 // `U` references one of `unresolved_type_vars`. =)
684                 _ => false,
685             }
686         })
687         .cloned()
688         .collect();
689
690     obligations.shrink_to_fit();
691
692     NormalizedTy { value: result.value, obligations }
693 }
694
695 /// Whenever we give back a cache result for a projection like `<T as
696 /// Trait>::Item ==> X`, we *always* include the obligation to prove
697 /// that `T: Trait` (we may also include some other obligations). This
698 /// may or may not be necessary -- in principle, all the obligations
699 /// that must be proven to show that `T: Trait` were also returned
700 /// when the cache was first populated. But there are some vague concerns,
701 /// and so we take the precautionary measure of including `T: Trait` in
702 /// the result:
703 ///
704 /// Concern #1. The current setup is fragile. Perhaps someone could
705 /// have failed to prove the concerns from when the cache was
706 /// populated, but also not have used a snapshot, in which case the
707 /// cache could remain populated even though `T: Trait` has not been
708 /// shown. In this case, the "other code" is at fault -- when you
709 /// project something, you are supposed to either have a snapshot or
710 /// else prove all the resulting obligations -- but it's still easy to
711 /// get wrong.
712 ///
713 /// Concern #2. Even within the snapshot, if those original
714 /// obligations are not yet proven, then we are able to do projections
715 /// that may yet turn out to be wrong. This *may* lead to some sort
716 /// of trouble, though we don't have a concrete example of how that
717 /// can occur yet. But it seems risky at best.
718 fn get_paranoid_cache_value_obligation<'a, 'tcx>(
719     infcx: &'a InferCtxt<'a, 'tcx>,
720     param_env: ty::ParamEnv<'tcx>,
721     projection_ty: ty::ProjectionTy<'tcx>,
722     cause: ObligationCause<'tcx>,
723     depth: usize,
724 ) -> PredicateObligation<'tcx> {
725     let trait_ref = projection_ty.trait_ref(infcx.tcx).to_poly_trait_ref();
726     Obligation {
727         cause,
728         recursion_depth: depth,
729         param_env,
730         predicate: trait_ref.without_const().to_predicate(infcx.tcx),
731     }
732 }
733
734 /// If we are projecting `<T as Trait>::Item`, but `T: Trait` does not
735 /// hold. In various error cases, we cannot generate a valid
736 /// normalized projection. Therefore, we create an inference variable
737 /// return an associated obligation that, when fulfilled, will lead to
738 /// an error.
739 ///
740 /// Note that we used to return `Error` here, but that was quite
741 /// dubious -- the premise was that an error would *eventually* be
742 /// reported, when the obligation was processed. But in general once
743 /// you see a `Error` you are supposed to be able to assume that an
744 /// error *has been* reported, so that you can take whatever heuristic
745 /// paths you want to take. To make things worse, it was possible for
746 /// cycles to arise, where you basically had a setup like `<MyType<$0>
747 /// as Trait>::Foo == $0`. Here, normalizing `<MyType<$0> as
748 /// Trait>::Foo> to `[type error]` would lead to an obligation of
749 /// `<MyType<[type error]> as Trait>::Foo`. We are supposed to report
750 /// an error for this obligation, but we legitimately should not,
751 /// because it contains `[type error]`. Yuck! (See issue #29857 for
752 /// one case where this arose.)
753 fn normalize_to_error<'a, 'tcx>(
754     selcx: &mut SelectionContext<'a, 'tcx>,
755     param_env: ty::ParamEnv<'tcx>,
756     projection_ty: ty::ProjectionTy<'tcx>,
757     cause: ObligationCause<'tcx>,
758     depth: usize,
759 ) -> NormalizedTy<'tcx> {
760     let trait_ref = projection_ty.trait_ref(selcx.tcx()).to_poly_trait_ref();
761     let trait_obligation = Obligation {
762         cause,
763         recursion_depth: depth,
764         param_env,
765         predicate: trait_ref.without_const().to_predicate(selcx.tcx()),
766     };
767     let tcx = selcx.infcx().tcx;
768     let def_id = projection_ty.item_def_id;
769     let new_value = selcx.infcx().next_ty_var(TypeVariableOrigin {
770         kind: TypeVariableOriginKind::NormalizeProjectionType,
771         span: tcx.def_span(def_id),
772     });
773     Normalized { value: new_value, obligations: vec![trait_obligation] }
774 }
775
776 enum ProjectedTy<'tcx> {
777     Progress(Progress<'tcx>),
778     NoProgress(Ty<'tcx>),
779 }
780
781 struct Progress<'tcx> {
782     ty: Ty<'tcx>,
783     obligations: Vec<PredicateObligation<'tcx>>,
784 }
785
786 impl<'tcx> Progress<'tcx> {
787     fn error(tcx: TyCtxt<'tcx>) -> Self {
788         Progress { ty: tcx.ty_error(), obligations: vec![] }
789     }
790
791     fn with_addl_obligations(mut self, mut obligations: Vec<PredicateObligation<'tcx>>) -> Self {
792         debug!(
793             "with_addl_obligations: self.obligations.len={} obligations.len={}",
794             self.obligations.len(),
795             obligations.len()
796         );
797
798         debug!(
799             "with_addl_obligations: self.obligations={:?} obligations={:?}",
800             self.obligations, obligations
801         );
802
803         self.obligations.append(&mut obligations);
804         self
805     }
806 }
807
808 /// Computes the result of a projection type (if we can).
809 ///
810 /// IMPORTANT:
811 /// - `obligation` must be fully normalized
812 fn project_type<'cx, 'tcx>(
813     selcx: &mut SelectionContext<'cx, 'tcx>,
814     obligation: &ProjectionTyObligation<'tcx>,
815 ) -> Result<ProjectedTy<'tcx>, ProjectionTyError<'tcx>> {
816     debug!("project(obligation={:?})", obligation);
817
818     if !selcx.tcx().sess.recursion_limit().value_within_limit(obligation.recursion_depth) {
819         debug!("project: overflow!");
820         return Err(ProjectionTyError::TraitSelectionError(SelectionError::Overflow));
821     }
822
823     let obligation_trait_ref = &obligation.predicate.trait_ref(selcx.tcx());
824
825     debug!("project: obligation_trait_ref={:?}", obligation_trait_ref);
826
827     if obligation_trait_ref.references_error() {
828         return Ok(ProjectedTy::Progress(Progress::error(selcx.tcx())));
829     }
830
831     let mut candidates = ProjectionTyCandidateSet::None;
832
833     // Make sure that the following procedures are kept in order. ParamEnv
834     // needs to be first because it has highest priority, and Select checks
835     // the return value of push_candidate which assumes it's ran at last.
836     assemble_candidates_from_param_env(selcx, obligation, &obligation_trait_ref, &mut candidates);
837
838     assemble_candidates_from_trait_def(selcx, obligation, &obligation_trait_ref, &mut candidates);
839
840     assemble_candidates_from_impls(selcx, obligation, &obligation_trait_ref, &mut candidates);
841
842     match candidates {
843         ProjectionTyCandidateSet::Single(candidate) => Ok(ProjectedTy::Progress(
844             confirm_candidate(selcx, obligation, &obligation_trait_ref, candidate),
845         )),
846         ProjectionTyCandidateSet::None => Ok(ProjectedTy::NoProgress(
847             selcx
848                 .tcx()
849                 .mk_projection(obligation.predicate.item_def_id, obligation.predicate.substs),
850         )),
851         // Error occurred while trying to processing impls.
852         ProjectionTyCandidateSet::Error(e) => Err(ProjectionTyError::TraitSelectionError(e)),
853         // Inherent ambiguity that prevents us from even enumerating the
854         // candidates.
855         ProjectionTyCandidateSet::Ambiguous => Err(ProjectionTyError::TooManyCandidates),
856     }
857 }
858
859 /// The first thing we have to do is scan through the parameter
860 /// environment to see whether there are any projection predicates
861 /// there that can answer this question.
862 fn assemble_candidates_from_param_env<'cx, 'tcx>(
863     selcx: &mut SelectionContext<'cx, 'tcx>,
864     obligation: &ProjectionTyObligation<'tcx>,
865     obligation_trait_ref: &ty::TraitRef<'tcx>,
866     candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
867 ) {
868     debug!("assemble_candidates_from_param_env(..)");
869     assemble_candidates_from_predicates(
870         selcx,
871         obligation,
872         obligation_trait_ref,
873         candidate_set,
874         ProjectionTyCandidate::ParamEnv,
875         obligation.param_env.caller_bounds().iter(),
876     );
877 }
878
879 /// In the case of a nested projection like <<A as Foo>::FooT as Bar>::BarT, we may find
880 /// that the definition of `Foo` has some clues:
881 ///
882 /// ```
883 /// trait Foo {
884 ///     type FooT : Bar<BarT=i32>
885 /// }
886 /// ```
887 ///
888 /// Here, for example, we could conclude that the result is `i32`.
889 fn assemble_candidates_from_trait_def<'cx, 'tcx>(
890     selcx: &mut SelectionContext<'cx, 'tcx>,
891     obligation: &ProjectionTyObligation<'tcx>,
892     obligation_trait_ref: &ty::TraitRef<'tcx>,
893     candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
894 ) {
895     debug!("assemble_candidates_from_trait_def(..)");
896
897     let tcx = selcx.tcx();
898     // Check whether the self-type is itself a projection.
899     // If so, extract what we know from the trait and try to come up with a good answer.
900     let bounds = match obligation_trait_ref.self_ty().kind {
901         ty::Projection(ref data) => {
902             tcx.projection_predicates(data.item_def_id).subst(tcx, data.substs)
903         }
904         ty::Opaque(def_id, substs) => tcx.projection_predicates(def_id).subst(tcx, substs),
905         ty::Infer(ty::TyVar(_)) => {
906             // If the self-type is an inference variable, then it MAY wind up
907             // being a projected type, so induce an ambiguity.
908             candidate_set.mark_ambiguous();
909             return;
910         }
911         _ => return,
912     };
913
914     assemble_candidates_from_predicates(
915         selcx,
916         obligation,
917         obligation_trait_ref,
918         candidate_set,
919         ProjectionTyCandidate::TraitDef,
920         bounds.iter(),
921     )
922 }
923
924 fn assemble_candidates_from_predicates<'cx, 'tcx>(
925     selcx: &mut SelectionContext<'cx, 'tcx>,
926     obligation: &ProjectionTyObligation<'tcx>,
927     obligation_trait_ref: &ty::TraitRef<'tcx>,
928     candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
929     ctor: fn(ty::PolyProjectionPredicate<'tcx>) -> ProjectionTyCandidate<'tcx>,
930     env_predicates: impl Iterator<Item = ty::Predicate<'tcx>>,
931 ) {
932     debug!("assemble_candidates_from_predicates(obligation={:?})", obligation);
933     let infcx = selcx.infcx();
934     for predicate in env_predicates {
935         debug!("assemble_candidates_from_predicates: predicate={:?}", predicate);
936         if let &ty::PredicateKind::Projection(data) =
937             predicate.ignore_quantifiers().skip_binder().kind()
938         {
939             let data = ty::Binder::bind(data);
940             let same_def_id = data.projection_def_id() == obligation.predicate.item_def_id;
941
942             let is_match = same_def_id
943                 && infcx.probe(|_| {
944                     let data_poly_trait_ref = data.to_poly_trait_ref(infcx.tcx);
945                     let obligation_poly_trait_ref = obligation_trait_ref.to_poly_trait_ref();
946                     infcx
947                         .at(&obligation.cause, obligation.param_env)
948                         .sup(obligation_poly_trait_ref, data_poly_trait_ref)
949                         .map(|InferOk { obligations: _, value: () }| {
950                             // FIXME(#32730) -- do we need to take obligations
951                             // into account in any way? At the moment, no.
952                         })
953                         .is_ok()
954                 });
955
956             debug!(
957                 "assemble_candidates_from_predicates: candidate={:?} \
958                  is_match={} same_def_id={}",
959                 data, is_match, same_def_id
960             );
961
962             if is_match {
963                 candidate_set.push_candidate(ctor(data));
964             }
965         }
966     }
967 }
968
969 fn assemble_candidates_from_impls<'cx, 'tcx>(
970     selcx: &mut SelectionContext<'cx, 'tcx>,
971     obligation: &ProjectionTyObligation<'tcx>,
972     obligation_trait_ref: &ty::TraitRef<'tcx>,
973     candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
974 ) {
975     // If we are resolving `<T as TraitRef<...>>::Item == Type`,
976     // start out by selecting the predicate `T as TraitRef<...>`:
977     let poly_trait_ref = obligation_trait_ref.to_poly_trait_ref();
978     let trait_obligation = obligation.with(poly_trait_ref.to_poly_trait_predicate());
979     let _ = selcx.infcx().commit_if_ok(|_| {
980         let impl_source = match selcx.select(&trait_obligation) {
981             Ok(Some(impl_source)) => impl_source,
982             Ok(None) => {
983                 candidate_set.mark_ambiguous();
984                 return Err(());
985             }
986             Err(e) => {
987                 debug!("assemble_candidates_from_impls: selection error {:?}", e);
988                 candidate_set.mark_error(e);
989                 return Err(());
990             }
991         };
992
993         let eligible = match &impl_source {
994             super::ImplSourceClosure(_)
995             | super::ImplSourceGenerator(_)
996             | super::ImplSourceFnPointer(_)
997             | super::ImplSourceObject(_)
998             | super::ImplSourceTraitAlias(_) => {
999                 debug!("assemble_candidates_from_impls: impl_source={:?}", impl_source);
1000                 true
1001             }
1002             super::ImplSourceUserDefined(impl_data) => {
1003                 // We have to be careful when projecting out of an
1004                 // impl because of specialization. If we are not in
1005                 // codegen (i.e., projection mode is not "any"), and the
1006                 // impl's type is declared as default, then we disable
1007                 // projection (even if the trait ref is fully
1008                 // monomorphic). In the case where trait ref is not
1009                 // fully monomorphic (i.e., includes type parameters),
1010                 // this is because those type parameters may
1011                 // ultimately be bound to types from other crates that
1012                 // may have specialized impls we can't see. In the
1013                 // case where the trait ref IS fully monomorphic, this
1014                 // is a policy decision that we made in the RFC in
1015                 // order to preserve flexibility for the crate that
1016                 // defined the specializable impl to specialize later
1017                 // for existing types.
1018                 //
1019                 // In either case, we handle this by not adding a
1020                 // candidate for an impl if it contains a `default`
1021                 // type.
1022                 //
1023                 // NOTE: This should be kept in sync with the similar code in
1024                 // `rustc_ty::instance::resolve_associated_item()`.
1025                 let node_item =
1026                     assoc_ty_def(selcx, impl_data.impl_def_id, obligation.predicate.item_def_id)
1027                         .map_err(|ErrorReported| ())?;
1028
1029                 if node_item.is_final() {
1030                     // Non-specializable items are always projectable.
1031                     true
1032                 } else {
1033                     // Only reveal a specializable default if we're past type-checking
1034                     // and the obligation is monomorphic, otherwise passes such as
1035                     // transmute checking and polymorphic MIR optimizations could
1036                     // get a result which isn't correct for all monomorphizations.
1037                     if obligation.param_env.reveal() == Reveal::All {
1038                         // NOTE(eddyb) inference variables can resolve to parameters, so
1039                         // assume `poly_trait_ref` isn't monomorphic, if it contains any.
1040                         let poly_trait_ref =
1041                             selcx.infcx().resolve_vars_if_possible(&poly_trait_ref);
1042                         !poly_trait_ref.still_further_specializable()
1043                     } else {
1044                         debug!(
1045                             "assemble_candidates_from_impls: not eligible due to default: \
1046                              assoc_ty={} predicate={}",
1047                             selcx.tcx().def_path_str(node_item.item.def_id),
1048                             obligation.predicate,
1049                         );
1050                         false
1051                     }
1052                 }
1053             }
1054             super::ImplSourceDiscriminantKind(..) => {
1055                 // While `DiscriminantKind` is automatically implemented for every type,
1056                 // the concrete discriminant may not be known yet.
1057                 //
1058                 // Any type with multiple potential discriminant types is therefore not eligible.
1059                 let self_ty = selcx.infcx().shallow_resolve(obligation.predicate.self_ty());
1060
1061                 match self_ty.kind {
1062                     ty::Bool
1063                     | ty::Char
1064                     | ty::Int(_)
1065                     | ty::Uint(_)
1066                     | ty::Float(_)
1067                     | ty::Adt(..)
1068                     | ty::Foreign(_)
1069                     | ty::Str
1070                     | ty::Array(..)
1071                     | ty::Slice(_)
1072                     | ty::RawPtr(..)
1073                     | ty::Ref(..)
1074                     | ty::FnDef(..)
1075                     | ty::FnPtr(..)
1076                     | ty::Dynamic(..)
1077                     | ty::Closure(..)
1078                     | ty::Generator(..)
1079                     | ty::GeneratorWitness(..)
1080                     | ty::Never
1081                     | ty::Tuple(..)
1082                     // Integers and floats always have `u8` as their discriminant.
1083                     | ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
1084
1085                     ty::Projection(..)
1086                     | ty::Opaque(..)
1087                     | ty::Param(..)
1088                     | ty::Bound(..)
1089                     | ty::Placeholder(..)
1090                     | ty::Infer(..)
1091                     | ty::Error(_) => false,
1092                 }
1093             }
1094             super::ImplSourceParam(..) => {
1095                 // This case tell us nothing about the value of an
1096                 // associated type. Consider:
1097                 //
1098                 // ```
1099                 // trait SomeTrait { type Foo; }
1100                 // fn foo<T:SomeTrait>(...) { }
1101                 // ```
1102                 //
1103                 // If the user writes `<T as SomeTrait>::Foo`, then the `T
1104                 // : SomeTrait` binding does not help us decide what the
1105                 // type `Foo` is (at least, not more specifically than
1106                 // what we already knew).
1107                 //
1108                 // But wait, you say! What about an example like this:
1109                 //
1110                 // ```
1111                 // fn bar<T:SomeTrait<Foo=usize>>(...) { ... }
1112                 // ```
1113                 //
1114                 // Doesn't the `T : Sometrait<Foo=usize>` predicate help
1115                 // resolve `T::Foo`? And of course it does, but in fact
1116                 // that single predicate is desugared into two predicates
1117                 // in the compiler: a trait predicate (`T : SomeTrait`) and a
1118                 // projection. And the projection where clause is handled
1119                 // in `assemble_candidates_from_param_env`.
1120                 false
1121             }
1122             super::ImplSourceAutoImpl(..) | super::ImplSourceBuiltin(..) => {
1123                 // These traits have no associated types.
1124                 span_bug!(
1125                     obligation.cause.span,
1126                     "Cannot project an associated type from `{:?}`",
1127                     impl_source
1128                 );
1129             }
1130         };
1131
1132         if eligible {
1133             if candidate_set.push_candidate(ProjectionTyCandidate::Select(impl_source)) {
1134                 Ok(())
1135             } else {
1136                 Err(())
1137             }
1138         } else {
1139             Err(())
1140         }
1141     });
1142 }
1143
1144 fn confirm_candidate<'cx, 'tcx>(
1145     selcx: &mut SelectionContext<'cx, 'tcx>,
1146     obligation: &ProjectionTyObligation<'tcx>,
1147     obligation_trait_ref: &ty::TraitRef<'tcx>,
1148     candidate: ProjectionTyCandidate<'tcx>,
1149 ) -> Progress<'tcx> {
1150     debug!("confirm_candidate(candidate={:?}, obligation={:?})", candidate, obligation);
1151
1152     let mut progress = match candidate {
1153         ProjectionTyCandidate::ParamEnv(poly_projection)
1154         | ProjectionTyCandidate::TraitDef(poly_projection) => {
1155             confirm_param_env_candidate(selcx, obligation, poly_projection)
1156         }
1157
1158         ProjectionTyCandidate::Select(impl_source) => {
1159             confirm_select_candidate(selcx, obligation, obligation_trait_ref, impl_source)
1160         }
1161     };
1162     // When checking for cycle during evaluation, we compare predicates with
1163     // "syntactic" equality. Since normalization generally introduces a type
1164     // with new region variables, we need to resolve them to existing variables
1165     // when possible for this to work. See `auto-trait-projection-recursion.rs`
1166     // for a case where this matters.
1167     if progress.ty.has_infer_regions() {
1168         progress.ty = OpportunisticRegionResolver::new(selcx.infcx()).fold_ty(progress.ty);
1169     }
1170     progress
1171 }
1172
1173 fn confirm_select_candidate<'cx, 'tcx>(
1174     selcx: &mut SelectionContext<'cx, 'tcx>,
1175     obligation: &ProjectionTyObligation<'tcx>,
1176     obligation_trait_ref: &ty::TraitRef<'tcx>,
1177     impl_source: Selection<'tcx>,
1178 ) -> Progress<'tcx> {
1179     match impl_source {
1180         super::ImplSourceUserDefined(data) => confirm_impl_candidate(selcx, obligation, data),
1181         super::ImplSourceGenerator(data) => confirm_generator_candidate(selcx, obligation, data),
1182         super::ImplSourceClosure(data) => confirm_closure_candidate(selcx, obligation, data),
1183         super::ImplSourceFnPointer(data) => confirm_fn_pointer_candidate(selcx, obligation, data),
1184         super::ImplSourceDiscriminantKind(data) => {
1185             confirm_discriminant_kind_candidate(selcx, obligation, data)
1186         }
1187         super::ImplSourceObject(_) => {
1188             confirm_object_candidate(selcx, obligation, obligation_trait_ref)
1189         }
1190         super::ImplSourceAutoImpl(..)
1191         | super::ImplSourceParam(..)
1192         | super::ImplSourceBuiltin(..)
1193         | super::ImplSourceTraitAlias(..) =>
1194         // we don't create Select candidates with this kind of resolution
1195         {
1196             span_bug!(
1197                 obligation.cause.span,
1198                 "Cannot project an associated type from `{:?}`",
1199                 impl_source
1200             )
1201         }
1202     }
1203 }
1204
1205 fn confirm_object_candidate<'cx, 'tcx>(
1206     selcx: &mut SelectionContext<'cx, 'tcx>,
1207     obligation: &ProjectionTyObligation<'tcx>,
1208     obligation_trait_ref: &ty::TraitRef<'tcx>,
1209 ) -> Progress<'tcx> {
1210     let self_ty = obligation_trait_ref.self_ty();
1211     let object_ty = selcx.infcx().shallow_resolve(self_ty);
1212     debug!("confirm_object_candidate(object_ty={:?})", object_ty);
1213     let data = match object_ty.kind {
1214         ty::Dynamic(ref data, ..) => data,
1215         _ => span_bug!(
1216             obligation.cause.span,
1217             "confirm_object_candidate called with non-object: {:?}",
1218             object_ty
1219         ),
1220     };
1221     let env_predicates = data
1222         .projection_bounds()
1223         .map(|p| p.with_self_ty(selcx.tcx(), object_ty).to_predicate(selcx.tcx()));
1224     let env_predicate = {
1225         let env_predicates = elaborate_predicates(selcx.tcx(), env_predicates);
1226
1227         // select only those projections that are actually projecting an
1228         // item with the correct name
1229
1230         let env_predicates = env_predicates.filter_map(|o| {
1231             match o.predicate.ignore_quantifiers().skip_binder().kind() {
1232                 &ty::PredicateKind::Projection(data)
1233                     if data.projection_ty.item_def_id == obligation.predicate.item_def_id =>
1234                 {
1235                     Some(ty::Binder::bind(data))
1236                 }
1237                 _ => None,
1238             }
1239         });
1240
1241         // select those with a relevant trait-ref
1242         let mut env_predicates = env_predicates.filter(|data| {
1243             let data_poly_trait_ref = data.to_poly_trait_ref(selcx.tcx());
1244             let obligation_poly_trait_ref = obligation_trait_ref.to_poly_trait_ref();
1245             selcx.infcx().probe(|_| {
1246                 selcx
1247                     .infcx()
1248                     .at(&obligation.cause, obligation.param_env)
1249                     .sup(obligation_poly_trait_ref, data_poly_trait_ref)
1250                     .is_ok()
1251             })
1252         });
1253
1254         // select the first matching one; there really ought to be one or
1255         // else the object type is not WF, since an object type should
1256         // include all of its projections explicitly
1257         match env_predicates.next() {
1258             Some(env_predicate) => env_predicate,
1259             None => {
1260                 debug!(
1261                     "confirm_object_candidate: no env-predicate \
1262                      found in object type `{:?}`; ill-formed",
1263                     object_ty
1264                 );
1265                 return Progress::error(selcx.tcx());
1266             }
1267         }
1268     };
1269
1270     confirm_param_env_candidate(selcx, obligation, env_predicate)
1271 }
1272
1273 fn confirm_generator_candidate<'cx, 'tcx>(
1274     selcx: &mut SelectionContext<'cx, 'tcx>,
1275     obligation: &ProjectionTyObligation<'tcx>,
1276     impl_source: ImplSourceGeneratorData<'tcx, PredicateObligation<'tcx>>,
1277 ) -> Progress<'tcx> {
1278     let gen_sig = impl_source.substs.as_generator().poly_sig();
1279     let Normalized { value: gen_sig, obligations } = normalize_with_depth(
1280         selcx,
1281         obligation.param_env,
1282         obligation.cause.clone(),
1283         obligation.recursion_depth + 1,
1284         &gen_sig,
1285     );
1286
1287     debug!(
1288         "confirm_generator_candidate: obligation={:?},gen_sig={:?},obligations={:?}",
1289         obligation, gen_sig, obligations
1290     );
1291
1292     let tcx = selcx.tcx();
1293
1294     let gen_def_id = tcx.require_lang_item(GeneratorTraitLangItem, None);
1295
1296     let predicate = super::util::generator_trait_ref_and_outputs(
1297         tcx,
1298         gen_def_id,
1299         obligation.predicate.self_ty(),
1300         gen_sig,
1301     )
1302     .map_bound(|(trait_ref, yield_ty, return_ty)| {
1303         let name = tcx.associated_item(obligation.predicate.item_def_id).ident.name;
1304         let ty = if name == sym::Return {
1305             return_ty
1306         } else if name == sym::Yield {
1307             yield_ty
1308         } else {
1309             bug!()
1310         };
1311
1312         ty::ProjectionPredicate {
1313             projection_ty: ty::ProjectionTy {
1314                 substs: trait_ref.substs,
1315                 item_def_id: obligation.predicate.item_def_id,
1316             },
1317             ty,
1318         }
1319     });
1320
1321     confirm_param_env_candidate(selcx, obligation, predicate)
1322         .with_addl_obligations(impl_source.nested)
1323         .with_addl_obligations(obligations)
1324 }
1325
1326 fn confirm_discriminant_kind_candidate<'cx, 'tcx>(
1327     selcx: &mut SelectionContext<'cx, 'tcx>,
1328     obligation: &ProjectionTyObligation<'tcx>,
1329     _: ImplSourceDiscriminantKindData,
1330 ) -> Progress<'tcx> {
1331     let tcx = selcx.tcx();
1332
1333     let self_ty = selcx.infcx().shallow_resolve(obligation.predicate.self_ty());
1334     let substs = tcx.mk_substs([self_ty.into()].iter());
1335
1336     let discriminant_def_id = tcx.require_lang_item(DiscriminantTypeLangItem, None);
1337
1338     let predicate = ty::ProjectionPredicate {
1339         projection_ty: ty::ProjectionTy { substs, item_def_id: discriminant_def_id },
1340         ty: self_ty.discriminant_ty(tcx),
1341     };
1342
1343     confirm_param_env_candidate(selcx, obligation, ty::Binder::bind(predicate))
1344 }
1345
1346 fn confirm_fn_pointer_candidate<'cx, 'tcx>(
1347     selcx: &mut SelectionContext<'cx, 'tcx>,
1348     obligation: &ProjectionTyObligation<'tcx>,
1349     fn_pointer_impl_source: ImplSourceFnPointerData<'tcx, PredicateObligation<'tcx>>,
1350 ) -> Progress<'tcx> {
1351     let fn_type = selcx.infcx().shallow_resolve(fn_pointer_impl_source.fn_ty);
1352     let sig = fn_type.fn_sig(selcx.tcx());
1353     let Normalized { value: sig, obligations } = normalize_with_depth(
1354         selcx,
1355         obligation.param_env,
1356         obligation.cause.clone(),
1357         obligation.recursion_depth + 1,
1358         &sig,
1359     );
1360
1361     confirm_callable_candidate(selcx, obligation, sig, util::TupleArgumentsFlag::Yes)
1362         .with_addl_obligations(fn_pointer_impl_source.nested)
1363         .with_addl_obligations(obligations)
1364 }
1365
1366 fn confirm_closure_candidate<'cx, 'tcx>(
1367     selcx: &mut SelectionContext<'cx, 'tcx>,
1368     obligation: &ProjectionTyObligation<'tcx>,
1369     impl_source: ImplSourceClosureData<'tcx, PredicateObligation<'tcx>>,
1370 ) -> Progress<'tcx> {
1371     let closure_sig = impl_source.substs.as_closure().sig();
1372     let Normalized { value: closure_sig, obligations } = normalize_with_depth(
1373         selcx,
1374         obligation.param_env,
1375         obligation.cause.clone(),
1376         obligation.recursion_depth + 1,
1377         &closure_sig,
1378     );
1379
1380     debug!(
1381         "confirm_closure_candidate: obligation={:?},closure_sig={:?},obligations={:?}",
1382         obligation, closure_sig, obligations
1383     );
1384
1385     confirm_callable_candidate(selcx, obligation, closure_sig, util::TupleArgumentsFlag::No)
1386         .with_addl_obligations(impl_source.nested)
1387         .with_addl_obligations(obligations)
1388 }
1389
1390 fn confirm_callable_candidate<'cx, 'tcx>(
1391     selcx: &mut SelectionContext<'cx, 'tcx>,
1392     obligation: &ProjectionTyObligation<'tcx>,
1393     fn_sig: ty::PolyFnSig<'tcx>,
1394     flag: util::TupleArgumentsFlag,
1395 ) -> Progress<'tcx> {
1396     let tcx = selcx.tcx();
1397
1398     debug!("confirm_callable_candidate({:?},{:?})", obligation, fn_sig);
1399
1400     let fn_once_def_id = tcx.require_lang_item(FnOnceTraitLangItem, None);
1401     let fn_once_output_def_id = tcx.require_lang_item(FnOnceOutputLangItem, None);
1402
1403     let predicate = super::util::closure_trait_ref_and_return_type(
1404         tcx,
1405         fn_once_def_id,
1406         obligation.predicate.self_ty(),
1407         fn_sig,
1408         flag,
1409     )
1410     .map_bound(|(trait_ref, ret_type)| ty::ProjectionPredicate {
1411         projection_ty: ty::ProjectionTy {
1412             substs: trait_ref.substs,
1413             item_def_id: fn_once_output_def_id,
1414         },
1415         ty: ret_type,
1416     });
1417
1418     confirm_param_env_candidate(selcx, obligation, predicate)
1419 }
1420
1421 fn confirm_param_env_candidate<'cx, 'tcx>(
1422     selcx: &mut SelectionContext<'cx, 'tcx>,
1423     obligation: &ProjectionTyObligation<'tcx>,
1424     poly_cache_entry: ty::PolyProjectionPredicate<'tcx>,
1425 ) -> Progress<'tcx> {
1426     let infcx = selcx.infcx();
1427     let cause = &obligation.cause;
1428     let param_env = obligation.param_env;
1429
1430     let (cache_entry, _) = infcx.replace_bound_vars_with_fresh_vars(
1431         cause.span,
1432         LateBoundRegionConversionTime::HigherRankedType,
1433         &poly_cache_entry,
1434     );
1435
1436     let cache_trait_ref = cache_entry.projection_ty.trait_ref(infcx.tcx);
1437     let obligation_trait_ref = obligation.predicate.trait_ref(infcx.tcx);
1438     match infcx.at(cause, param_env).eq(cache_trait_ref, obligation_trait_ref) {
1439         Ok(InferOk { value: _, obligations }) => Progress { ty: cache_entry.ty, obligations },
1440         Err(e) => {
1441             let msg = format!(
1442                 "Failed to unify obligation `{:?}` with poly_projection `{:?}`: {:?}",
1443                 obligation, poly_cache_entry, e,
1444             );
1445             debug!("confirm_param_env_candidate: {}", msg);
1446             let err = infcx.tcx.ty_error_with_message(obligation.cause.span, &msg);
1447             Progress { ty: err, obligations: vec![] }
1448         }
1449     }
1450 }
1451
1452 fn confirm_impl_candidate<'cx, 'tcx>(
1453     selcx: &mut SelectionContext<'cx, 'tcx>,
1454     obligation: &ProjectionTyObligation<'tcx>,
1455     impl_impl_source: ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>>,
1456 ) -> Progress<'tcx> {
1457     let tcx = selcx.tcx();
1458
1459     let ImplSourceUserDefinedData { impl_def_id, substs, nested } = impl_impl_source;
1460     let assoc_item_id = obligation.predicate.item_def_id;
1461     let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap();
1462
1463     let param_env = obligation.param_env;
1464     let assoc_ty = match assoc_ty_def(selcx, impl_def_id, assoc_item_id) {
1465         Ok(assoc_ty) => assoc_ty,
1466         Err(ErrorReported) => return Progress { ty: tcx.ty_error(), obligations: nested },
1467     };
1468
1469     if !assoc_ty.item.defaultness.has_value() {
1470         // This means that the impl is missing a definition for the
1471         // associated type. This error will be reported by the type
1472         // checker method `check_impl_items_against_trait`, so here we
1473         // just return Error.
1474         debug!(
1475             "confirm_impl_candidate: no associated type {:?} for {:?}",
1476             assoc_ty.item.ident, obligation.predicate
1477         );
1478         return Progress { ty: tcx.ty_error(), obligations: nested };
1479     }
1480     // If we're trying to normalize `<Vec<u32> as X>::A<S>` using
1481     //`impl<T> X for Vec<T> { type A<Y> = Box<Y>; }`, then:
1482     //
1483     // * `obligation.predicate.substs` is `[Vec<u32>, S]`
1484     // * `substs` is `[u32]`
1485     // * `substs` ends up as `[u32, S]`
1486     let substs = obligation.predicate.substs.rebase_onto(tcx, trait_def_id, substs);
1487     let substs =
1488         translate_substs(selcx.infcx(), param_env, impl_def_id, substs, assoc_ty.defining_node);
1489     let ty = tcx.type_of(assoc_ty.item.def_id);
1490     if substs.len() != tcx.generics_of(assoc_ty.item.def_id).count() {
1491         let err = tcx.ty_error_with_message(
1492             DUMMY_SP,
1493             "impl item and trait item have different parameter counts",
1494         );
1495         Progress { ty: err, obligations: nested }
1496     } else {
1497         Progress { ty: ty.subst(tcx, substs), obligations: nested }
1498     }
1499 }
1500
1501 /// Locate the definition of an associated type in the specialization hierarchy,
1502 /// starting from the given impl.
1503 ///
1504 /// Based on the "projection mode", this lookup may in fact only examine the
1505 /// topmost impl. See the comments for `Reveal` for more details.
1506 fn assoc_ty_def(
1507     selcx: &SelectionContext<'_, '_>,
1508     impl_def_id: DefId,
1509     assoc_ty_def_id: DefId,
1510 ) -> Result<specialization_graph::LeafDef, ErrorReported> {
1511     let tcx = selcx.tcx();
1512     let assoc_ty_name = tcx.associated_item(assoc_ty_def_id).ident;
1513     let trait_def_id = tcx.impl_trait_ref(impl_def_id).unwrap().def_id;
1514     let trait_def = tcx.trait_def(trait_def_id);
1515
1516     // This function may be called while we are still building the
1517     // specialization graph that is queried below (via TraitDef::ancestors()),
1518     // so, in order to avoid unnecessary infinite recursion, we manually look
1519     // for the associated item at the given impl.
1520     // If there is no such item in that impl, this function will fail with a
1521     // cycle error if the specialization graph is currently being built.
1522     let impl_node = specialization_graph::Node::Impl(impl_def_id);
1523     for item in impl_node.items(tcx) {
1524         if matches!(item.kind, ty::AssocKind::Type)
1525             && tcx.hygienic_eq(item.ident, assoc_ty_name, trait_def_id)
1526         {
1527             return Ok(specialization_graph::LeafDef {
1528                 item: *item,
1529                 defining_node: impl_node,
1530                 finalizing_node: if item.defaultness.is_default() { None } else { Some(impl_node) },
1531             });
1532         }
1533     }
1534
1535     let ancestors = trait_def.ancestors(tcx, impl_def_id)?;
1536     if let Some(assoc_item) = ancestors.leaf_def(tcx, assoc_ty_name, ty::AssocKind::Type) {
1537         Ok(assoc_item)
1538     } else {
1539         // This is saying that neither the trait nor
1540         // the impl contain a definition for this
1541         // associated type.  Normally this situation
1542         // could only arise through a compiler bug --
1543         // if the user wrote a bad item name, it
1544         // should have failed in astconv.
1545         bug!("No associated type `{}` for {}", assoc_ty_name, tcx.def_path_str(impl_def_id))
1546     }
1547 }
1548
1549 crate trait ProjectionCacheKeyExt<'tcx>: Sized {
1550     fn from_poly_projection_predicate(
1551         selcx: &mut SelectionContext<'cx, 'tcx>,
1552         predicate: ty::PolyProjectionPredicate<'tcx>,
1553     ) -> Option<Self>;
1554 }
1555
1556 impl<'tcx> ProjectionCacheKeyExt<'tcx> for ProjectionCacheKey<'tcx> {
1557     fn from_poly_projection_predicate(
1558         selcx: &mut SelectionContext<'cx, 'tcx>,
1559         predicate: ty::PolyProjectionPredicate<'tcx>,
1560     ) -> Option<Self> {
1561         let infcx = selcx.infcx();
1562         // We don't do cross-snapshot caching of obligations with escaping regions,
1563         // so there's no cache key to use
1564         predicate.no_bound_vars().map(|predicate| {
1565             ProjectionCacheKey::new(
1566                 // We don't attempt to match up with a specific type-variable state
1567                 // from a specific call to `opt_normalize_projection_type` - if
1568                 // there's no precise match, the original cache entry is "stranded"
1569                 // anyway.
1570                 infcx.resolve_vars_if_possible(&predicate.projection_ty),
1571             )
1572         })
1573     }
1574 }