]> git.lizzy.rs Git - rust.git/blob - src/librustc_trait_selection/traits/error_reporting/mod.rs
Rollup merge of #72666 - ivanloz:profile_emit_flag, r=matthewjasper
[rust.git] / src / librustc_trait_selection / traits / error_reporting / mod.rs
1 pub mod on_unimplemented;
2 pub mod suggestions;
3
4 use super::{
5     ConstEvalFailure, EvaluationResult, FulfillmentError, FulfillmentErrorCode,
6     MismatchedProjectionTypes, Obligation, ObligationCause, ObligationCauseCode,
7     OnUnimplementedDirective, OnUnimplementedNote, OutputTypeParameterMismatch, Overflow,
8     PredicateObligation, SelectionContext, SelectionError, TraitNotObjectSafe,
9 };
10
11 use crate::infer::error_reporting::{TyCategory, TypeAnnotationNeeded as ErrorCode};
12 use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
13 use crate::infer::{self, InferCtxt, TyCtxtInferExt};
14 use rustc_data_structures::fx::FxHashMap;
15 use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticBuilder, ErrorReported};
16 use rustc_hir as hir;
17 use rustc_hir::def_id::{DefId, LOCAL_CRATE};
18 use rustc_hir::Node;
19 use rustc_middle::mir::interpret::ErrorHandled;
20 use rustc_middle::ty::error::ExpectedFound;
21 use rustc_middle::ty::fold::TypeFolder;
22 use rustc_middle::ty::{
23     self, fast_reject, AdtKind, SubtypePredicate, ToPolyTraitRef, ToPredicate, Ty, TyCtxt,
24     TypeFoldable, WithConstness,
25 };
26 use rustc_session::DiagnosticMessageId;
27 use rustc_span::{ExpnKind, Span, DUMMY_SP};
28 use std::fmt;
29
30 use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
31 use crate::traits::query::normalize::AtExt as _;
32 use on_unimplemented::InferCtxtExt as _;
33 use suggestions::InferCtxtExt as _;
34
35 pub use rustc_infer::traits::error_reporting::*;
36
37 pub trait InferCtxtExt<'tcx> {
38     fn report_fulfillment_errors(
39         &self,
40         errors: &[FulfillmentError<'tcx>],
41         body_id: Option<hir::BodyId>,
42         fallback_has_occurred: bool,
43     );
44
45     fn report_overflow_error<T>(
46         &self,
47         obligation: &Obligation<'tcx, T>,
48         suggest_increasing_limit: bool,
49     ) -> !
50     where
51         T: fmt::Display + TypeFoldable<'tcx>;
52
53     fn report_overflow_error_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> !;
54
55     fn report_selection_error(
56         &self,
57         obligation: &PredicateObligation<'tcx>,
58         error: &SelectionError<'tcx>,
59         fallback_has_occurred: bool,
60         points_at_arg: bool,
61     );
62
63     /// Given some node representing a fn-like thing in the HIR map,
64     /// returns a span and `ArgKind` information that describes the
65     /// arguments it expects. This can be supplied to
66     /// `report_arg_count_mismatch`.
67     fn get_fn_like_arguments(&self, node: Node<'_>) -> Option<(Span, Vec<ArgKind>)>;
68
69     /// Reports an error when the number of arguments needed by a
70     /// trait match doesn't match the number that the expression
71     /// provides.
72     fn report_arg_count_mismatch(
73         &self,
74         span: Span,
75         found_span: Option<Span>,
76         expected_args: Vec<ArgKind>,
77         found_args: Vec<ArgKind>,
78         is_closure: bool,
79     ) -> DiagnosticBuilder<'tcx>;
80 }
81
82 impl<'a, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'a, 'tcx> {
83     fn report_fulfillment_errors(
84         &self,
85         errors: &[FulfillmentError<'tcx>],
86         body_id: Option<hir::BodyId>,
87         fallback_has_occurred: bool,
88     ) {
89         #[derive(Debug)]
90         struct ErrorDescriptor<'tcx> {
91             predicate: ty::Predicate<'tcx>,
92             index: Option<usize>, // None if this is an old error
93         }
94
95         let mut error_map: FxHashMap<_, Vec<_>> = self
96             .reported_trait_errors
97             .borrow()
98             .iter()
99             .map(|(&span, predicates)| {
100                 (
101                     span,
102                     predicates
103                         .iter()
104                         .map(|&predicate| ErrorDescriptor { predicate, index: None })
105                         .collect(),
106                 )
107             })
108             .collect();
109
110         for (index, error) in errors.iter().enumerate() {
111             // We want to ignore desugarings here: spans are equivalent even
112             // if one is the result of a desugaring and the other is not.
113             let mut span = error.obligation.cause.span;
114             let expn_data = span.ctxt().outer_expn_data();
115             if let ExpnKind::Desugaring(_) = expn_data.kind {
116                 span = expn_data.call_site;
117             }
118
119             error_map.entry(span).or_default().push(ErrorDescriptor {
120                 predicate: error.obligation.predicate,
121                 index: Some(index),
122             });
123
124             self.reported_trait_errors
125                 .borrow_mut()
126                 .entry(span)
127                 .or_default()
128                 .push(error.obligation.predicate);
129         }
130
131         // We do this in 2 passes because we want to display errors in order, though
132         // maybe it *is* better to sort errors by span or something.
133         let mut is_suppressed = vec![false; errors.len()];
134         for (_, error_set) in error_map.iter() {
135             // We want to suppress "duplicate" errors with the same span.
136             for error in error_set {
137                 if let Some(index) = error.index {
138                     // Suppress errors that are either:
139                     // 1) strictly implied by another error.
140                     // 2) implied by an error with a smaller index.
141                     for error2 in error_set {
142                         if error2.index.map_or(false, |index2| is_suppressed[index2]) {
143                             // Avoid errors being suppressed by already-suppressed
144                             // errors, to prevent all errors from being suppressed
145                             // at once.
146                             continue;
147                         }
148
149                         if self.error_implies(error2.predicate, error.predicate)
150                             && !(error2.index >= error.index
151                                 && self.error_implies(error.predicate, error2.predicate))
152                         {
153                             info!("skipping {:?} (implied by {:?})", error, error2);
154                             is_suppressed[index] = true;
155                             break;
156                         }
157                     }
158                 }
159             }
160         }
161
162         for (error, suppressed) in errors.iter().zip(is_suppressed) {
163             if !suppressed {
164                 self.report_fulfillment_error(error, body_id, fallback_has_occurred);
165             }
166         }
167     }
168
169     /// Reports that an overflow has occurred and halts compilation. We
170     /// halt compilation unconditionally because it is important that
171     /// overflows never be masked -- they basically represent computations
172     /// whose result could not be truly determined and thus we can't say
173     /// if the program type checks or not -- and they are unusual
174     /// occurrences in any case.
175     fn report_overflow_error<T>(
176         &self,
177         obligation: &Obligation<'tcx, T>,
178         suggest_increasing_limit: bool,
179     ) -> !
180     where
181         T: fmt::Display + TypeFoldable<'tcx>,
182     {
183         let predicate = self.resolve_vars_if_possible(&obligation.predicate);
184         let mut err = struct_span_err!(
185             self.tcx.sess,
186             obligation.cause.span,
187             E0275,
188             "overflow evaluating the requirement `{}`",
189             predicate
190         );
191
192         if suggest_increasing_limit {
193             self.suggest_new_overflow_limit(&mut err);
194         }
195
196         self.note_obligation_cause_code(
197             &mut err,
198             &obligation.predicate,
199             &obligation.cause.code,
200             &mut vec![],
201         );
202
203         err.emit();
204         self.tcx.sess.abort_if_errors();
205         bug!();
206     }
207
208     /// Reports that a cycle was detected which led to overflow and halts
209     /// compilation. This is equivalent to `report_overflow_error` except
210     /// that we can give a more helpful error message (and, in particular,
211     /// we do not suggest increasing the overflow limit, which is not
212     /// going to help).
213     fn report_overflow_error_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> ! {
214         let cycle = self.resolve_vars_if_possible(&cycle.to_owned());
215         assert!(!cycle.is_empty());
216
217         debug!("report_overflow_error_cycle: cycle={:?}", cycle);
218
219         self.report_overflow_error(&cycle[0], false);
220     }
221
222     fn report_selection_error(
223         &self,
224         obligation: &PredicateObligation<'tcx>,
225         error: &SelectionError<'tcx>,
226         fallback_has_occurred: bool,
227         points_at_arg: bool,
228     ) {
229         let tcx = self.tcx;
230         let span = obligation.cause.span;
231
232         let mut err = match *error {
233             SelectionError::Unimplemented => {
234                 if let ObligationCauseCode::CompareImplMethodObligation {
235                     item_name,
236                     impl_item_def_id,
237                     trait_item_def_id,
238                 }
239                 | ObligationCauseCode::CompareImplTypeObligation {
240                     item_name,
241                     impl_item_def_id,
242                     trait_item_def_id,
243                 } = obligation.cause.code
244                 {
245                     self.report_extra_impl_obligation(
246                         span,
247                         item_name,
248                         impl_item_def_id,
249                         trait_item_def_id,
250                         &format!("`{}`", obligation.predicate),
251                     )
252                     .emit();
253                     return;
254                 }
255                 match obligation.predicate.kind() {
256                     ty::PredicateKind::Trait(ref trait_predicate, _) => {
257                         let trait_predicate = self.resolve_vars_if_possible(trait_predicate);
258
259                         if self.tcx.sess.has_errors() && trait_predicate.references_error() {
260                             return;
261                         }
262                         let trait_ref = trait_predicate.to_poly_trait_ref();
263                         let (post_message, pre_message, type_def) = self
264                             .get_parent_trait_ref(&obligation.cause.code)
265                             .map(|(t, s)| {
266                                 (
267                                     format!(" in `{}`", t),
268                                     format!("within `{}`, ", t),
269                                     s.map(|s| (format!("within this `{}`", t), s)),
270                                 )
271                             })
272                             .unwrap_or_default();
273
274                         let OnUnimplementedNote { message, label, note, enclosing_scope } =
275                             self.on_unimplemented_note(trait_ref, obligation);
276                         let have_alt_message = message.is_some() || label.is_some();
277                         let is_try = self
278                             .tcx
279                             .sess
280                             .source_map()
281                             .span_to_snippet(span)
282                             .map(|s| &s == "?")
283                             .unwrap_or(false);
284                         let is_from = format!("{}", trait_ref.print_only_trait_path())
285                             .starts_with("std::convert::From<");
286                         let is_unsize =
287                             { Some(trait_ref.def_id()) == self.tcx.lang_items().unsize_trait() };
288                         let (message, note) = if is_try && is_from {
289                             (
290                                 Some(format!(
291                                     "`?` couldn't convert the error to `{}`",
292                                     trait_ref.self_ty(),
293                                 )),
294                                 Some(
295                                     "the question mark operation (`?`) implicitly performs a \
296                                         conversion on the error value using the `From` trait"
297                                         .to_owned(),
298                                 ),
299                             )
300                         } else {
301                             (message, note)
302                         };
303
304                         let mut err = struct_span_err!(
305                             self.tcx.sess,
306                             span,
307                             E0277,
308                             "{}",
309                             message.unwrap_or_else(|| format!(
310                                 "the trait bound `{}` is not satisfied{}",
311                                 trait_ref.without_const().to_predicate(tcx),
312                                 post_message,
313                             ))
314                         );
315
316                         let should_convert_option_to_result =
317                             format!("{}", trait_ref.print_only_trait_path())
318                                 .starts_with("std::convert::From<std::option::NoneError");
319                         let should_convert_result_to_option = format!("{}", trait_ref)
320                             .starts_with("<std::option::NoneError as std::convert::From<");
321                         if is_try && is_from {
322                             if should_convert_option_to_result {
323                                 err.span_suggestion_verbose(
324                                     span.shrink_to_lo(),
325                                     "consider converting the `Option<T>` into a `Result<T, _>` \
326                                      using `Option::ok_or` or `Option::ok_or_else`",
327                                     ".ok_or_else(|| /* error value */)".to_string(),
328                                     Applicability::HasPlaceholders,
329                                 );
330                             } else if should_convert_result_to_option {
331                                 err.span_suggestion_verbose(
332                                     span.shrink_to_lo(),
333                                     "consider converting the `Result<T, _>` into an `Option<T>` \
334                                      using `Result::ok`",
335                                     ".ok()".to_string(),
336                                     Applicability::MachineApplicable,
337                                 );
338                             }
339                             if let Some(ret_span) = self.return_type_span(obligation) {
340                                 err.span_label(
341                                     ret_span,
342                                     &format!("expected `{}` because of this", trait_ref.self_ty()),
343                                 );
344                             }
345                         }
346
347                         let explanation =
348                             if obligation.cause.code == ObligationCauseCode::MainFunctionType {
349                                 "consider using `()`, or a `Result`".to_owned()
350                             } else {
351                                 format!(
352                                     "{}the trait `{}` is not implemented for `{}`",
353                                     pre_message,
354                                     trait_ref.print_only_trait_path(),
355                                     trait_ref.self_ty(),
356                                 )
357                             };
358
359                         if self.suggest_add_reference_to_arg(
360                             &obligation,
361                             &mut err,
362                             &trait_ref,
363                             points_at_arg,
364                             have_alt_message,
365                         ) {
366                             self.note_obligation_cause(&mut err, obligation);
367                             err.emit();
368                             return;
369                         }
370                         if let Some(ref s) = label {
371                             // If it has a custom `#[rustc_on_unimplemented]`
372                             // error message, let's display it as the label!
373                             err.span_label(span, s.as_str());
374                             err.help(&explanation);
375                         } else {
376                             err.span_label(span, explanation);
377                         }
378                         if let Some((msg, span)) = type_def {
379                             err.span_label(span, &msg);
380                         }
381                         if let Some(ref s) = note {
382                             // If it has a custom `#[rustc_on_unimplemented]` note, let's display it
383                             err.note(s.as_str());
384                         }
385                         if let Some(ref s) = enclosing_scope {
386                             let enclosing_scope_span = tcx.def_span(
387                                 tcx.hir()
388                                     .opt_local_def_id(obligation.cause.body_id)
389                                     .unwrap_or_else(|| {
390                                         tcx.hir().body_owner_def_id(hir::BodyId {
391                                             hir_id: obligation.cause.body_id,
392                                         })
393                                     })
394                                     .to_def_id(),
395                             );
396
397                             err.span_label(enclosing_scope_span, s.as_str());
398                         }
399
400                         self.suggest_borrow_on_unsized_slice(&obligation.cause.code, &mut err);
401                         self.suggest_fn_call(&obligation, &mut err, &trait_ref, points_at_arg);
402                         self.suggest_remove_reference(&obligation, &mut err, &trait_ref);
403                         self.suggest_semicolon_removal(&obligation, &mut err, span, &trait_ref);
404                         self.note_version_mismatch(&mut err, &trait_ref);
405
406                         if Some(trait_ref.def_id()) == tcx.lang_items().try_trait() {
407                             self.suggest_await_before_try(&mut err, &obligation, &trait_ref, span);
408                         }
409
410                         if self.suggest_impl_trait(&mut err, span, &obligation, &trait_ref) {
411                             err.emit();
412                             return;
413                         }
414
415                         if is_unsize {
416                             // If the obligation failed due to a missing implementation of the
417                             // `Unsize` trait, give a pointer to why that might be the case
418                             err.note(
419                                 "all implementations of `Unsize` are provided \
420                                 automatically by the compiler, see \
421                                 <https://doc.rust-lang.org/stable/std/marker/trait.Unsize.html> \
422                                 for more information",
423                             );
424                         }
425
426                         // Try to report a help message
427                         if !trait_ref.has_infer_types_or_consts()
428                             && self.predicate_can_apply(obligation.param_env, trait_ref)
429                         {
430                             // If a where-clause may be useful, remind the
431                             // user that they can add it.
432                             //
433                             // don't display an on-unimplemented note, as
434                             // these notes will often be of the form
435                             //     "the type `T` can't be frobnicated"
436                             // which is somewhat confusing.
437                             self.suggest_restricting_param_bound(
438                                 &mut err,
439                                 trait_ref,
440                                 obligation.cause.body_id,
441                             );
442                         } else {
443                             if !have_alt_message {
444                                 // Can't show anything else useful, try to find similar impls.
445                                 let impl_candidates = self.find_similar_impl_candidates(trait_ref);
446                                 self.report_similar_impl_candidates(impl_candidates, &mut err);
447                             }
448                             // Changing mutability doesn't make a difference to whether we have
449                             // an `Unsize` impl (Fixes ICE in #71036)
450                             if !is_unsize {
451                                 self.suggest_change_mut(
452                                     &obligation,
453                                     &mut err,
454                                     &trait_ref,
455                                     points_at_arg,
456                                 );
457                             }
458                         }
459
460                         // If this error is due to `!: Trait` not implemented but `(): Trait` is
461                         // implemented, and fallback has occurred, then it could be due to a
462                         // variable that used to fallback to `()` now falling back to `!`. Issue a
463                         // note informing about the change in behaviour.
464                         if trait_predicate.skip_binder().self_ty().is_never()
465                             && fallback_has_occurred
466                         {
467                             let predicate = trait_predicate.map_bound(|mut trait_pred| {
468                                 trait_pred.trait_ref.substs = self.tcx.mk_substs_trait(
469                                     self.tcx.mk_unit(),
470                                     &trait_pred.trait_ref.substs[1..],
471                                 );
472                                 trait_pred
473                             });
474                             let unit_obligation = Obligation {
475                                 predicate: ty::PredicateKind::Trait(
476                                     predicate,
477                                     hir::Constness::NotConst,
478                                 )
479                                 .to_predicate(self.tcx),
480                                 ..obligation.clone()
481                             };
482                             if self.predicate_may_hold(&unit_obligation) {
483                                 err.note(
484                                     "the trait is implemented for `()`. \
485                                      Possibly this error has been caused by changes to \
486                                      Rust's type-inference algorithm (see issue #48950 \
487                                      <https://github.com/rust-lang/rust/issues/48950> \
488                                      for more information). Consider whether you meant to use \
489                                      the type `()` here instead.",
490                                 );
491                             }
492                         }
493
494                         err
495                     }
496
497                     ty::PredicateKind::Subtype(ref predicate) => {
498                         // Errors for Subtype predicates show up as
499                         // `FulfillmentErrorCode::CodeSubtypeError`,
500                         // not selection error.
501                         span_bug!(span, "subtype requirement gave wrong error: `{:?}`", predicate)
502                     }
503
504                     ty::PredicateKind::RegionOutlives(ref predicate) => {
505                         let predicate = self.resolve_vars_if_possible(predicate);
506                         let err = self
507                             .region_outlives_predicate(&obligation.cause, predicate)
508                             .err()
509                             .unwrap();
510                         struct_span_err!(
511                             self.tcx.sess,
512                             span,
513                             E0279,
514                             "the requirement `{}` is not satisfied (`{}`)",
515                             predicate,
516                             err,
517                         )
518                     }
519
520                     ty::PredicateKind::Projection(..) | ty::PredicateKind::TypeOutlives(..) => {
521                         let predicate = self.resolve_vars_if_possible(&obligation.predicate);
522                         struct_span_err!(
523                             self.tcx.sess,
524                             span,
525                             E0280,
526                             "the requirement `{}` is not satisfied",
527                             predicate
528                         )
529                     }
530
531                     &ty::PredicateKind::ObjectSafe(trait_def_id) => {
532                         let violations = self.tcx.object_safety_violations(trait_def_id);
533                         report_object_safety_error(self.tcx, span, trait_def_id, violations)
534                     }
535
536                     &ty::PredicateKind::ClosureKind(closure_def_id, closure_substs, kind) => {
537                         let found_kind = self.closure_kind(closure_substs).unwrap();
538                         let closure_span =
539                             self.tcx.sess.source_map().guess_head_span(
540                                 self.tcx.hir().span_if_local(closure_def_id).unwrap(),
541                             );
542                         let hir_id = self.tcx.hir().as_local_hir_id(closure_def_id.expect_local());
543                         let mut err = struct_span_err!(
544                             self.tcx.sess,
545                             closure_span,
546                             E0525,
547                             "expected a closure that implements the `{}` trait, \
548                              but this closure only implements `{}`",
549                             kind,
550                             found_kind
551                         );
552
553                         err.span_label(
554                             closure_span,
555                             format!("this closure implements `{}`, not `{}`", found_kind, kind),
556                         );
557                         err.span_label(
558                             obligation.cause.span,
559                             format!("the requirement to implement `{}` derives from here", kind),
560                         );
561
562                         // Additional context information explaining why the closure only implements
563                         // a particular trait.
564                         if let Some(tables) = self.in_progress_tables {
565                             let tables = tables.borrow();
566                             match (found_kind, tables.closure_kind_origins().get(hir_id)) {
567                                 (ty::ClosureKind::FnOnce, Some((span, name))) => {
568                                     err.span_label(
569                                         *span,
570                                         format!(
571                                             "closure is `FnOnce` because it moves the \
572                                          variable `{}` out of its environment",
573                                             name
574                                         ),
575                                     );
576                                 }
577                                 (ty::ClosureKind::FnMut, Some((span, name))) => {
578                                     err.span_label(
579                                         *span,
580                                         format!(
581                                             "closure is `FnMut` because it mutates the \
582                                          variable `{}` here",
583                                             name
584                                         ),
585                                     );
586                                 }
587                                 _ => {}
588                             }
589                         }
590
591                         err.emit();
592                         return;
593                     }
594
595                     ty::PredicateKind::WellFormed(ty) => {
596                         if !self.tcx.sess.opts.debugging_opts.chalk {
597                             // WF predicates cannot themselves make
598                             // errors. They can only block due to
599                             // ambiguity; otherwise, they always
600                             // degenerate into other obligations
601                             // (which may fail).
602                             span_bug!(span, "WF predicate not satisfied for {:?}", ty);
603                         } else {
604                             // FIXME: we'll need a better message which takes into account
605                             // which bounds actually failed to hold.
606                             self.tcx.sess.struct_span_err(
607                                 span,
608                                 &format!("the type `{}` is not well-formed (chalk)", ty),
609                             )
610                         }
611                     }
612
613                     ty::PredicateKind::ConstEvaluatable(..) => {
614                         // Errors for `ConstEvaluatable` predicates show up as
615                         // `SelectionError::ConstEvalFailure`,
616                         // not `Unimplemented`.
617                         span_bug!(
618                             span,
619                             "const-evaluatable requirement gave wrong error: `{:?}`",
620                             obligation
621                         )
622                     }
623
624                     ty::PredicateKind::ConstEquate(..) => {
625                         // Errors for `ConstEquate` predicates show up as
626                         // `SelectionError::ConstEvalFailure`,
627                         // not `Unimplemented`.
628                         span_bug!(
629                             span,
630                             "const-equate requirement gave wrong error: `{:?}`",
631                             obligation
632                         )
633                     }
634                 }
635             }
636
637             OutputTypeParameterMismatch(ref found_trait_ref, ref expected_trait_ref, _) => {
638                 let found_trait_ref = self.resolve_vars_if_possible(&*found_trait_ref);
639                 let expected_trait_ref = self.resolve_vars_if_possible(&*expected_trait_ref);
640
641                 if expected_trait_ref.self_ty().references_error() {
642                     return;
643                 }
644
645                 let found_trait_ty = found_trait_ref.self_ty();
646
647                 let found_did = match found_trait_ty.kind {
648                     ty::Closure(did, _) | ty::Foreign(did) | ty::FnDef(did, _) => Some(did),
649                     ty::Adt(def, _) => Some(def.did),
650                     _ => None,
651                 };
652
653                 let found_span = found_did
654                     .and_then(|did| self.tcx.hir().span_if_local(did))
655                     .map(|sp| self.tcx.sess.source_map().guess_head_span(sp)); // the sp could be an fn def
656
657                 if self.reported_closure_mismatch.borrow().contains(&(span, found_span)) {
658                     // We check closures twice, with obligations flowing in different directions,
659                     // but we want to complain about them only once.
660                     return;
661                 }
662
663                 self.reported_closure_mismatch.borrow_mut().insert((span, found_span));
664
665                 let found = match found_trait_ref.skip_binder().substs.type_at(1).kind {
666                     ty::Tuple(ref tys) => vec![ArgKind::empty(); tys.len()],
667                     _ => vec![ArgKind::empty()],
668                 };
669
670                 let expected_ty = expected_trait_ref.skip_binder().substs.type_at(1);
671                 let expected = match expected_ty.kind {
672                     ty::Tuple(ref tys) => tys
673                         .iter()
674                         .map(|t| ArgKind::from_expected_ty(t.expect_ty(), Some(span)))
675                         .collect(),
676                     _ => vec![ArgKind::Arg("_".to_owned(), expected_ty.to_string())],
677                 };
678
679                 if found.len() == expected.len() {
680                     self.report_closure_arg_mismatch(
681                         span,
682                         found_span,
683                         found_trait_ref,
684                         expected_trait_ref,
685                     )
686                 } else {
687                     let (closure_span, found) = found_did
688                         .and_then(|did| {
689                             let node = self.tcx.hir().get_if_local(did)?;
690                             let (found_span, found) = self.get_fn_like_arguments(node)?;
691                             Some((Some(found_span), found))
692                         })
693                         .unwrap_or((found_span, found));
694
695                     self.report_arg_count_mismatch(
696                         span,
697                         closure_span,
698                         expected,
699                         found,
700                         found_trait_ty.is_closure(),
701                     )
702                 }
703             }
704
705             TraitNotObjectSafe(did) => {
706                 let violations = self.tcx.object_safety_violations(did);
707                 report_object_safety_error(self.tcx, span, did, violations)
708             }
709
710             ConstEvalFailure(ErrorHandled::TooGeneric) => {
711                 // In this instance, we have a const expression containing an unevaluated
712                 // generic parameter. We have no idea whether this expression is valid or
713                 // not (e.g. it might result in an error), but we don't want to just assume
714                 // that it's okay, because that might result in post-monomorphisation time
715                 // errors. The onus is really on the caller to provide values that it can
716                 // prove are well-formed.
717                 let mut err = self
718                     .tcx
719                     .sess
720                     .struct_span_err(span, "constant expression depends on a generic parameter");
721                 // FIXME(const_generics): we should suggest to the user how they can resolve this
722                 // issue. However, this is currently not actually possible
723                 // (see https://github.com/rust-lang/rust/issues/66962#issuecomment-575907083).
724                 err.note("this may fail depending on what value the parameter takes");
725                 err
726             }
727
728             // Already reported in the query.
729             ConstEvalFailure(ErrorHandled::Reported(ErrorReported)) => {
730                 // FIXME(eddyb) remove this once `ErrorReported` becomes a proof token.
731                 self.tcx.sess.delay_span_bug(span, "`ErrorReported` without an error");
732                 return;
733             }
734
735             // Already reported in the query, but only as a lint.
736             // This shouldn't actually happen for constants used in types, modulo
737             // bugs. The `delay_span_bug` here ensures it won't be ignored.
738             ConstEvalFailure(ErrorHandled::Linted) => {
739                 self.tcx.sess.delay_span_bug(span, "constant in type had error reported as lint");
740                 return;
741             }
742
743             Overflow => {
744                 bug!("overflow should be handled before the `report_selection_error` path");
745             }
746         };
747
748         self.note_obligation_cause(&mut err, obligation);
749         self.point_at_returns_when_relevant(&mut err, &obligation);
750
751         err.emit();
752     }
753
754     /// Given some node representing a fn-like thing in the HIR map,
755     /// returns a span and `ArgKind` information that describes the
756     /// arguments it expects. This can be supplied to
757     /// `report_arg_count_mismatch`.
758     fn get_fn_like_arguments(&self, node: Node<'_>) -> Option<(Span, Vec<ArgKind>)> {
759         let sm = self.tcx.sess.source_map();
760         let hir = self.tcx.hir();
761         Some(match node {
762             Node::Expr(&hir::Expr {
763                 kind: hir::ExprKind::Closure(_, ref _decl, id, span, _),
764                 ..
765             }) => (
766                 sm.guess_head_span(span),
767                 hir.body(id)
768                     .params
769                     .iter()
770                     .map(|arg| {
771                         if let hir::Pat { kind: hir::PatKind::Tuple(ref args, _), span, .. } =
772                             *arg.pat
773                         {
774                             Some(ArgKind::Tuple(
775                                 Some(span),
776                                 args.iter()
777                                     .map(|pat| {
778                                         sm.span_to_snippet(pat.span)
779                                             .ok()
780                                             .map(|snippet| (snippet, "_".to_owned()))
781                                     })
782                                     .collect::<Option<Vec<_>>>()?,
783                             ))
784                         } else {
785                             let name = sm.span_to_snippet(arg.pat.span).ok()?;
786                             Some(ArgKind::Arg(name, "_".to_owned()))
787                         }
788                     })
789                     .collect::<Option<Vec<ArgKind>>>()?,
790             ),
791             Node::Item(&hir::Item { span, kind: hir::ItemKind::Fn(ref sig, ..), .. })
792             | Node::ImplItem(&hir::ImplItem {
793                 span,
794                 kind: hir::ImplItemKind::Fn(ref sig, _),
795                 ..
796             })
797             | Node::TraitItem(&hir::TraitItem {
798                 span,
799                 kind: hir::TraitItemKind::Fn(ref sig, _),
800                 ..
801             }) => (
802                 sm.guess_head_span(span),
803                 sig.decl
804                     .inputs
805                     .iter()
806                     .map(|arg| match arg.clone().kind {
807                         hir::TyKind::Tup(ref tys) => ArgKind::Tuple(
808                             Some(arg.span),
809                             vec![("_".to_owned(), "_".to_owned()); tys.len()],
810                         ),
811                         _ => ArgKind::empty(),
812                     })
813                     .collect::<Vec<ArgKind>>(),
814             ),
815             Node::Ctor(ref variant_data) => {
816                 let span = variant_data.ctor_hir_id().map(|id| hir.span(id)).unwrap_or(DUMMY_SP);
817                 let span = sm.guess_head_span(span);
818                 (span, vec![ArgKind::empty(); variant_data.fields().len()])
819             }
820             _ => panic!("non-FnLike node found: {:?}", node),
821         })
822     }
823
824     /// Reports an error when the number of arguments needed by a
825     /// trait match doesn't match the number that the expression
826     /// provides.
827     fn report_arg_count_mismatch(
828         &self,
829         span: Span,
830         found_span: Option<Span>,
831         expected_args: Vec<ArgKind>,
832         found_args: Vec<ArgKind>,
833         is_closure: bool,
834     ) -> DiagnosticBuilder<'tcx> {
835         let kind = if is_closure { "closure" } else { "function" };
836
837         let args_str = |arguments: &[ArgKind], other: &[ArgKind]| {
838             let arg_length = arguments.len();
839             let distinct = match &other[..] {
840                 &[ArgKind::Tuple(..)] => true,
841                 _ => false,
842             };
843             match (arg_length, arguments.get(0)) {
844                 (1, Some(&ArgKind::Tuple(_, ref fields))) => {
845                     format!("a single {}-tuple as argument", fields.len())
846                 }
847                 _ => format!(
848                     "{} {}argument{}",
849                     arg_length,
850                     if distinct && arg_length > 1 { "distinct " } else { "" },
851                     pluralize!(arg_length)
852                 ),
853             }
854         };
855
856         let expected_str = args_str(&expected_args, &found_args);
857         let found_str = args_str(&found_args, &expected_args);
858
859         let mut err = struct_span_err!(
860             self.tcx.sess,
861             span,
862             E0593,
863             "{} is expected to take {}, but it takes {}",
864             kind,
865             expected_str,
866             found_str,
867         );
868
869         err.span_label(span, format!("expected {} that takes {}", kind, expected_str));
870
871         if let Some(found_span) = found_span {
872             err.span_label(found_span, format!("takes {}", found_str));
873
874             // move |_| { ... }
875             // ^^^^^^^^-- def_span
876             //
877             // move |_| { ... }
878             // ^^^^^-- prefix
879             let prefix_span = self.tcx.sess.source_map().span_until_non_whitespace(found_span);
880             // move |_| { ... }
881             //      ^^^-- pipe_span
882             let pipe_span =
883                 if let Some(span) = found_span.trim_start(prefix_span) { span } else { found_span };
884
885             // Suggest to take and ignore the arguments with expected_args_length `_`s if
886             // found arguments is empty (assume the user just wants to ignore args in this case).
887             // For example, if `expected_args_length` is 2, suggest `|_, _|`.
888             if found_args.is_empty() && is_closure {
889                 let underscores = vec!["_"; expected_args.len()].join(", ");
890                 err.span_suggestion_verbose(
891                     pipe_span,
892                     &format!(
893                         "consider changing the closure to take and ignore the expected argument{}",
894                         pluralize!(expected_args.len())
895                     ),
896                     format!("|{}|", underscores),
897                     Applicability::MachineApplicable,
898                 );
899             }
900
901             if let &[ArgKind::Tuple(_, ref fields)] = &found_args[..] {
902                 if fields.len() == expected_args.len() {
903                     let sugg = fields
904                         .iter()
905                         .map(|(name, _)| name.to_owned())
906                         .collect::<Vec<String>>()
907                         .join(", ");
908                     err.span_suggestion_verbose(
909                         found_span,
910                         "change the closure to take multiple arguments instead of a single tuple",
911                         format!("|{}|", sugg),
912                         Applicability::MachineApplicable,
913                     );
914                 }
915             }
916             if let &[ArgKind::Tuple(_, ref fields)] = &expected_args[..] {
917                 if fields.len() == found_args.len() && is_closure {
918                     let sugg = format!(
919                         "|({}){}|",
920                         found_args
921                             .iter()
922                             .map(|arg| match arg {
923                                 ArgKind::Arg(name, _) => name.to_owned(),
924                                 _ => "_".to_owned(),
925                             })
926                             .collect::<Vec<String>>()
927                             .join(", "),
928                         // add type annotations if available
929                         if found_args.iter().any(|arg| match arg {
930                             ArgKind::Arg(_, ty) => ty != "_",
931                             _ => false,
932                         }) {
933                             format!(
934                                 ": ({})",
935                                 fields
936                                     .iter()
937                                     .map(|(_, ty)| ty.to_owned())
938                                     .collect::<Vec<String>>()
939                                     .join(", ")
940                             )
941                         } else {
942                             String::new()
943                         },
944                     );
945                     err.span_suggestion_verbose(
946                         found_span,
947                         "change the closure to accept a tuple instead of individual arguments",
948                         sugg,
949                         Applicability::MachineApplicable,
950                     );
951                 }
952             }
953         }
954
955         err
956     }
957 }
958
959 trait InferCtxtPrivExt<'tcx> {
960     // returns if `cond` not occurring implies that `error` does not occur - i.e., that
961     // `error` occurring implies that `cond` occurs.
962     fn error_implies(&self, cond: ty::Predicate<'tcx>, error: ty::Predicate<'tcx>) -> bool;
963
964     fn report_fulfillment_error(
965         &self,
966         error: &FulfillmentError<'tcx>,
967         body_id: Option<hir::BodyId>,
968         fallback_has_occurred: bool,
969     );
970
971     fn report_projection_error(
972         &self,
973         obligation: &PredicateObligation<'tcx>,
974         error: &MismatchedProjectionTypes<'tcx>,
975     );
976
977     fn fuzzy_match_tys(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool;
978
979     fn describe_generator(&self, body_id: hir::BodyId) -> Option<&'static str>;
980
981     fn find_similar_impl_candidates(
982         &self,
983         trait_ref: ty::PolyTraitRef<'tcx>,
984     ) -> Vec<ty::TraitRef<'tcx>>;
985
986     fn report_similar_impl_candidates(
987         &self,
988         impl_candidates: Vec<ty::TraitRef<'tcx>>,
989         err: &mut DiagnosticBuilder<'_>,
990     );
991
992     /// Gets the parent trait chain start
993     fn get_parent_trait_ref(
994         &self,
995         code: &ObligationCauseCode<'tcx>,
996     ) -> Option<(String, Option<Span>)>;
997
998     /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
999     /// with the same path as `trait_ref`, a help message about
1000     /// a probable version mismatch is added to `err`
1001     fn note_version_mismatch(
1002         &self,
1003         err: &mut DiagnosticBuilder<'_>,
1004         trait_ref: &ty::PolyTraitRef<'tcx>,
1005     );
1006
1007     /// Creates a `PredicateObligation` with `new_self_ty` replacing the existing type in the
1008     /// `trait_ref`.
1009     ///
1010     /// For this to work, `new_self_ty` must have no escaping bound variables.
1011     fn mk_trait_obligation_with_new_self_ty(
1012         &self,
1013         param_env: ty::ParamEnv<'tcx>,
1014         trait_ref: &ty::PolyTraitRef<'tcx>,
1015         new_self_ty: Ty<'tcx>,
1016     ) -> PredicateObligation<'tcx>;
1017
1018     fn maybe_report_ambiguity(
1019         &self,
1020         obligation: &PredicateObligation<'tcx>,
1021         body_id: Option<hir::BodyId>,
1022     );
1023
1024     fn predicate_can_apply(
1025         &self,
1026         param_env: ty::ParamEnv<'tcx>,
1027         pred: ty::PolyTraitRef<'tcx>,
1028     ) -> bool;
1029
1030     fn note_obligation_cause(
1031         &self,
1032         err: &mut DiagnosticBuilder<'tcx>,
1033         obligation: &PredicateObligation<'tcx>,
1034     );
1035
1036     fn suggest_unsized_bound_if_applicable(
1037         &self,
1038         err: &mut DiagnosticBuilder<'tcx>,
1039         obligation: &PredicateObligation<'tcx>,
1040     );
1041
1042     fn is_recursive_obligation(
1043         &self,
1044         obligated_types: &mut Vec<&ty::TyS<'tcx>>,
1045         cause_code: &ObligationCauseCode<'tcx>,
1046     ) -> bool;
1047 }
1048
1049 impl<'a, 'tcx> InferCtxtPrivExt<'tcx> for InferCtxt<'a, 'tcx> {
1050     // returns if `cond` not occurring implies that `error` does not occur - i.e., that
1051     // `error` occurring implies that `cond` occurs.
1052     fn error_implies(&self, cond: ty::Predicate<'tcx>, error: ty::Predicate<'tcx>) -> bool {
1053         if cond == error {
1054             return true;
1055         }
1056
1057         let (cond, error) = match (cond.kind(), error.kind()) {
1058             (ty::PredicateKind::Trait(..), ty::PredicateKind::Trait(error, _)) => (cond, error),
1059             _ => {
1060                 // FIXME: make this work in other cases too.
1061                 return false;
1062             }
1063         };
1064
1065         for obligation in super::elaborate_predicates(self.tcx, std::iter::once(cond)) {
1066             if let ty::PredicateKind::Trait(implication, _) = obligation.predicate.kind() {
1067                 let error = error.to_poly_trait_ref();
1068                 let implication = implication.to_poly_trait_ref();
1069                 // FIXME: I'm just not taking associated types at all here.
1070                 // Eventually I'll need to implement param-env-aware
1071                 // `Γ₁ ⊦ φ₁ => Γ₂ ⊦ φ₂` logic.
1072                 let param_env = ty::ParamEnv::empty();
1073                 if self.can_sub(param_env, error, implication).is_ok() {
1074                     debug!("error_implies: {:?} -> {:?} -> {:?}", cond, error, implication);
1075                     return true;
1076                 }
1077             }
1078         }
1079
1080         false
1081     }
1082
1083     fn report_fulfillment_error(
1084         &self,
1085         error: &FulfillmentError<'tcx>,
1086         body_id: Option<hir::BodyId>,
1087         fallback_has_occurred: bool,
1088     ) {
1089         debug!("report_fulfillment_error({:?})", error);
1090         match error.code {
1091             FulfillmentErrorCode::CodeSelectionError(ref selection_error) => {
1092                 self.report_selection_error(
1093                     &error.obligation,
1094                     selection_error,
1095                     fallback_has_occurred,
1096                     error.points_at_arg_span,
1097                 );
1098             }
1099             FulfillmentErrorCode::CodeProjectionError(ref e) => {
1100                 self.report_projection_error(&error.obligation, e);
1101             }
1102             FulfillmentErrorCode::CodeAmbiguity => {
1103                 self.maybe_report_ambiguity(&error.obligation, body_id);
1104             }
1105             FulfillmentErrorCode::CodeSubtypeError(ref expected_found, ref err) => {
1106                 self.report_mismatched_types(
1107                     &error.obligation.cause,
1108                     expected_found.expected,
1109                     expected_found.found,
1110                     err.clone(),
1111                 )
1112                 .emit();
1113             }
1114             FulfillmentErrorCode::CodeConstEquateError(ref expected_found, ref err) => {
1115                 self.report_mismatched_consts(
1116                     &error.obligation.cause,
1117                     expected_found.expected,
1118                     expected_found.found,
1119                     err.clone(),
1120                 )
1121                 .emit();
1122             }
1123         }
1124     }
1125
1126     fn report_projection_error(
1127         &self,
1128         obligation: &PredicateObligation<'tcx>,
1129         error: &MismatchedProjectionTypes<'tcx>,
1130     ) {
1131         let predicate = self.resolve_vars_if_possible(&obligation.predicate);
1132
1133         if predicate.references_error() {
1134             return;
1135         }
1136
1137         self.probe(|_| {
1138             let err_buf;
1139             let mut err = &error.err;
1140             let mut values = None;
1141
1142             // try to find the mismatched types to report the error with.
1143             //
1144             // this can fail if the problem was higher-ranked, in which
1145             // cause I have no idea for a good error message.
1146             if let ty::PredicateKind::Projection(ref data) = predicate.kind() {
1147                 let mut selcx = SelectionContext::new(self);
1148                 let (data, _) = self.replace_bound_vars_with_fresh_vars(
1149                     obligation.cause.span,
1150                     infer::LateBoundRegionConversionTime::HigherRankedType,
1151                     data,
1152                 );
1153                 let mut obligations = vec![];
1154                 let normalized_ty = super::normalize_projection_type(
1155                     &mut selcx,
1156                     obligation.param_env,
1157                     data.projection_ty,
1158                     obligation.cause.clone(),
1159                     0,
1160                     &mut obligations,
1161                 );
1162
1163                 debug!(
1164                     "report_projection_error obligation.cause={:?} obligation.param_env={:?}",
1165                     obligation.cause, obligation.param_env
1166                 );
1167
1168                 debug!(
1169                     "report_projection_error normalized_ty={:?} data.ty={:?}",
1170                     normalized_ty, data.ty
1171                 );
1172
1173                 let is_normalized_ty_expected = match &obligation.cause.code {
1174                     ObligationCauseCode::ItemObligation(_)
1175                     | ObligationCauseCode::BindingObligation(_, _)
1176                     | ObligationCauseCode::ObjectCastObligation(_) => false,
1177                     _ => true,
1178                 };
1179
1180                 if let Err(error) = self.at(&obligation.cause, obligation.param_env).eq_exp(
1181                     is_normalized_ty_expected,
1182                     normalized_ty,
1183                     data.ty,
1184                 ) {
1185                     values = Some(infer::ValuePairs::Types(ExpectedFound::new(
1186                         is_normalized_ty_expected,
1187                         normalized_ty,
1188                         data.ty,
1189                     )));
1190
1191                     err_buf = error;
1192                     err = &err_buf;
1193                 }
1194             }
1195
1196             let msg = format!("type mismatch resolving `{}`", predicate);
1197             let error_id = (DiagnosticMessageId::ErrorId(271), Some(obligation.cause.span), msg);
1198             let fresh = self.tcx.sess.one_time_diagnostics.borrow_mut().insert(error_id);
1199             if fresh {
1200                 let mut diag = struct_span_err!(
1201                     self.tcx.sess,
1202                     obligation.cause.span,
1203                     E0271,
1204                     "type mismatch resolving `{}`",
1205                     predicate
1206                 );
1207                 self.note_type_err(&mut diag, &obligation.cause, None, values, err);
1208                 self.note_obligation_cause(&mut diag, obligation);
1209                 diag.emit();
1210             }
1211         });
1212     }
1213
1214     fn fuzzy_match_tys(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
1215         /// returns the fuzzy category of a given type, or None
1216         /// if the type can be equated to any type.
1217         fn type_category(t: Ty<'_>) -> Option<u32> {
1218             match t.kind {
1219                 ty::Bool => Some(0),
1220                 ty::Char => Some(1),
1221                 ty::Str => Some(2),
1222                 ty::Int(..) | ty::Uint(..) | ty::Infer(ty::IntVar(..)) => Some(3),
1223                 ty::Float(..) | ty::Infer(ty::FloatVar(..)) => Some(4),
1224                 ty::Ref(..) | ty::RawPtr(..) => Some(5),
1225                 ty::Array(..) | ty::Slice(..) => Some(6),
1226                 ty::FnDef(..) | ty::FnPtr(..) => Some(7),
1227                 ty::Dynamic(..) => Some(8),
1228                 ty::Closure(..) => Some(9),
1229                 ty::Tuple(..) => Some(10),
1230                 ty::Projection(..) => Some(11),
1231                 ty::Param(..) => Some(12),
1232                 ty::Opaque(..) => Some(13),
1233                 ty::Never => Some(14),
1234                 ty::Adt(adt, ..) => match adt.adt_kind() {
1235                     AdtKind::Struct => Some(15),
1236                     AdtKind::Union => Some(16),
1237                     AdtKind::Enum => Some(17),
1238                 },
1239                 ty::Generator(..) => Some(18),
1240                 ty::Foreign(..) => Some(19),
1241                 ty::GeneratorWitness(..) => Some(20),
1242                 ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error => None,
1243             }
1244         }
1245
1246         match (type_category(a), type_category(b)) {
1247             (Some(cat_a), Some(cat_b)) => match (&a.kind, &b.kind) {
1248                 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => def_a == def_b,
1249                 _ => cat_a == cat_b,
1250             },
1251             // infer and error can be equated to all types
1252             _ => true,
1253         }
1254     }
1255
1256     fn describe_generator(&self, body_id: hir::BodyId) -> Option<&'static str> {
1257         self.tcx.hir().body(body_id).generator_kind.map(|gen_kind| match gen_kind {
1258             hir::GeneratorKind::Gen => "a generator",
1259             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Block) => "an async block",
1260             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Fn) => "an async function",
1261             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Closure) => "an async closure",
1262         })
1263     }
1264
1265     fn find_similar_impl_candidates(
1266         &self,
1267         trait_ref: ty::PolyTraitRef<'tcx>,
1268     ) -> Vec<ty::TraitRef<'tcx>> {
1269         let simp = fast_reject::simplify_type(self.tcx, trait_ref.skip_binder().self_ty(), true);
1270         let all_impls = self.tcx.all_impls(trait_ref.def_id());
1271
1272         match simp {
1273             Some(simp) => all_impls
1274                 .filter_map(|def_id| {
1275                     let imp = self.tcx.impl_trait_ref(def_id).unwrap();
1276                     let imp_simp = fast_reject::simplify_type(self.tcx, imp.self_ty(), true);
1277                     if let Some(imp_simp) = imp_simp {
1278                         if simp != imp_simp {
1279                             return None;
1280                         }
1281                     }
1282                     Some(imp)
1283                 })
1284                 .collect(),
1285             None => all_impls.map(|def_id| self.tcx.impl_trait_ref(def_id).unwrap()).collect(),
1286         }
1287     }
1288
1289     fn report_similar_impl_candidates(
1290         &self,
1291         impl_candidates: Vec<ty::TraitRef<'tcx>>,
1292         err: &mut DiagnosticBuilder<'_>,
1293     ) {
1294         if impl_candidates.is_empty() {
1295             return;
1296         }
1297
1298         let len = impl_candidates.len();
1299         let end = if impl_candidates.len() <= 5 { impl_candidates.len() } else { 4 };
1300
1301         let normalize = |candidate| {
1302             self.tcx.infer_ctxt().enter(|ref infcx| {
1303                 let normalized = infcx
1304                     .at(&ObligationCause::dummy(), ty::ParamEnv::empty())
1305                     .normalize(candidate)
1306                     .ok();
1307                 match normalized {
1308                     Some(normalized) => format!("\n  {:?}", normalized.value),
1309                     None => format!("\n  {:?}", candidate),
1310                 }
1311             })
1312         };
1313
1314         // Sort impl candidates so that ordering is consistent for UI tests.
1315         let mut normalized_impl_candidates =
1316             impl_candidates.iter().map(normalize).collect::<Vec<String>>();
1317
1318         // Sort before taking the `..end` range,
1319         // because the ordering of `impl_candidates` may not be deterministic:
1320         // https://github.com/rust-lang/rust/pull/57475#issuecomment-455519507
1321         normalized_impl_candidates.sort();
1322
1323         err.help(&format!(
1324             "the following implementations were found:{}{}",
1325             normalized_impl_candidates[..end].join(""),
1326             if len > 5 { format!("\nand {} others", len - 4) } else { String::new() }
1327         ));
1328     }
1329
1330     /// Gets the parent trait chain start
1331     fn get_parent_trait_ref(
1332         &self,
1333         code: &ObligationCauseCode<'tcx>,
1334     ) -> Option<(String, Option<Span>)> {
1335         match code {
1336             &ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
1337                 let parent_trait_ref = self.resolve_vars_if_possible(&data.parent_trait_ref);
1338                 match self.get_parent_trait_ref(&data.parent_code) {
1339                     Some(t) => Some(t),
1340                     None => {
1341                         let ty = parent_trait_ref.skip_binder().self_ty();
1342                         let span =
1343                             TyCategory::from_ty(ty).map(|(_, def_id)| self.tcx.def_span(def_id));
1344                         Some((ty.to_string(), span))
1345                     }
1346                 }
1347             }
1348             _ => None,
1349         }
1350     }
1351
1352     /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
1353     /// with the same path as `trait_ref`, a help message about
1354     /// a probable version mismatch is added to `err`
1355     fn note_version_mismatch(
1356         &self,
1357         err: &mut DiagnosticBuilder<'_>,
1358         trait_ref: &ty::PolyTraitRef<'tcx>,
1359     ) {
1360         let get_trait_impl = |trait_def_id| {
1361             let mut trait_impl = None;
1362             self.tcx.for_each_relevant_impl(trait_def_id, trait_ref.self_ty(), |impl_def_id| {
1363                 if trait_impl.is_none() {
1364                     trait_impl = Some(impl_def_id);
1365                 }
1366             });
1367             trait_impl
1368         };
1369         let required_trait_path = self.tcx.def_path_str(trait_ref.def_id());
1370         let all_traits = self.tcx.all_traits(LOCAL_CRATE);
1371         let traits_with_same_path: std::collections::BTreeSet<_> = all_traits
1372             .iter()
1373             .filter(|trait_def_id| **trait_def_id != trait_ref.def_id())
1374             .filter(|trait_def_id| self.tcx.def_path_str(**trait_def_id) == required_trait_path)
1375             .collect();
1376         for trait_with_same_path in traits_with_same_path {
1377             if let Some(impl_def_id) = get_trait_impl(*trait_with_same_path) {
1378                 let impl_span = self.tcx.def_span(impl_def_id);
1379                 err.span_help(impl_span, "trait impl with same name found");
1380                 let trait_crate = self.tcx.crate_name(trait_with_same_path.krate);
1381                 let crate_msg = format!(
1382                     "perhaps two different versions of crate `{}` are being used?",
1383                     trait_crate
1384                 );
1385                 err.note(&crate_msg);
1386             }
1387         }
1388     }
1389
1390     fn mk_trait_obligation_with_new_self_ty(
1391         &self,
1392         param_env: ty::ParamEnv<'tcx>,
1393         trait_ref: &ty::PolyTraitRef<'tcx>,
1394         new_self_ty: Ty<'tcx>,
1395     ) -> PredicateObligation<'tcx> {
1396         assert!(!new_self_ty.has_escaping_bound_vars());
1397
1398         let trait_ref = trait_ref.map_bound_ref(|tr| ty::TraitRef {
1399             substs: self.tcx.mk_substs_trait(new_self_ty, &tr.substs[1..]),
1400             ..*tr
1401         });
1402
1403         Obligation::new(
1404             ObligationCause::dummy(),
1405             param_env,
1406             trait_ref.without_const().to_predicate(self.tcx),
1407         )
1408     }
1409
1410     fn maybe_report_ambiguity(
1411         &self,
1412         obligation: &PredicateObligation<'tcx>,
1413         body_id: Option<hir::BodyId>,
1414     ) {
1415         // Unable to successfully determine, probably means
1416         // insufficient type information, but could mean
1417         // ambiguous impls. The latter *ought* to be a
1418         // coherence violation, so we don't report it here.
1419
1420         let predicate = self.resolve_vars_if_possible(&obligation.predicate);
1421         let span = obligation.cause.span;
1422
1423         debug!(
1424             "maybe_report_ambiguity(predicate={:?}, obligation={:?} body_id={:?}, code={:?})",
1425             predicate, obligation, body_id, obligation.cause.code,
1426         );
1427
1428         // Ambiguity errors are often caused as fallout from earlier
1429         // errors. So just ignore them if this infcx is tainted.
1430         if self.is_tainted_by_errors() {
1431             return;
1432         }
1433
1434         let mut err = match predicate.kind() {
1435             ty::PredicateKind::Trait(ref data, _) => {
1436                 let trait_ref = data.to_poly_trait_ref();
1437                 let self_ty = trait_ref.self_ty();
1438                 debug!("self_ty {:?} {:?} trait_ref {:?}", self_ty, self_ty.kind, trait_ref);
1439
1440                 if predicate.references_error() {
1441                     return;
1442                 }
1443                 // Typically, this ambiguity should only happen if
1444                 // there are unresolved type inference variables
1445                 // (otherwise it would suggest a coherence
1446                 // failure). But given #21974 that is not necessarily
1447                 // the case -- we can have multiple where clauses that
1448                 // are only distinguished by a region, which results
1449                 // in an ambiguity even when all types are fully
1450                 // known, since we don't dispatch based on region
1451                 // relationships.
1452
1453                 // This is kind of a hack: it frequently happens that some earlier
1454                 // error prevents types from being fully inferred, and then we get
1455                 // a bunch of uninteresting errors saying something like "<generic
1456                 // #0> doesn't implement Sized".  It may even be true that we
1457                 // could just skip over all checks where the self-ty is an
1458                 // inference variable, but I was afraid that there might be an
1459                 // inference variable created, registered as an obligation, and
1460                 // then never forced by writeback, and hence by skipping here we'd
1461                 // be ignoring the fact that we don't KNOW the type works
1462                 // out. Though even that would probably be harmless, given that
1463                 // we're only talking about builtin traits, which are known to be
1464                 // inhabited. We used to check for `self.tcx.sess.has_errors()` to
1465                 // avoid inundating the user with unnecessary errors, but we now
1466                 // check upstream for type errors and don't add the obligations to
1467                 // begin with in those cases.
1468                 if self
1469                     .tcx
1470                     .lang_items()
1471                     .sized_trait()
1472                     .map_or(false, |sized_id| sized_id == trait_ref.def_id())
1473                 {
1474                     self.need_type_info_err(body_id, span, self_ty, ErrorCode::E0282).emit();
1475                     return;
1476                 }
1477                 let mut err = self.need_type_info_err(body_id, span, self_ty, ErrorCode::E0283);
1478                 err.note(&format!("cannot satisfy `{}`", predicate));
1479                 if let ObligationCauseCode::ItemObligation(def_id) = obligation.cause.code {
1480                     self.suggest_fully_qualified_path(&mut err, def_id, span, trait_ref.def_id());
1481                 } else if let (
1482                     Ok(ref snippet),
1483                     ObligationCauseCode::BindingObligation(ref def_id, _),
1484                 ) =
1485                     (self.tcx.sess.source_map().span_to_snippet(span), &obligation.cause.code)
1486                 {
1487                     let generics = self.tcx.generics_of(*def_id);
1488                     if generics.params.iter().any(|p| p.name.as_str() != "Self")
1489                         && !snippet.ends_with('>')
1490                     {
1491                         // FIXME: To avoid spurious suggestions in functions where type arguments
1492                         // where already supplied, we check the snippet to make sure it doesn't
1493                         // end with a turbofish. Ideally we would have access to a `PathSegment`
1494                         // instead. Otherwise we would produce the following output:
1495                         //
1496                         // error[E0283]: type annotations needed
1497                         //   --> $DIR/issue-54954.rs:3:24
1498                         //    |
1499                         // LL | const ARR_LEN: usize = Tt::const_val::<[i8; 123]>();
1500                         //    |                        ^^^^^^^^^^^^^^^^^^^^^^^^^^
1501                         //    |                        |
1502                         //    |                        cannot infer type
1503                         //    |                        help: consider specifying the type argument
1504                         //    |                        in the function call:
1505                         //    |                        `Tt::const_val::<[i8; 123]>::<T>`
1506                         // ...
1507                         // LL |     const fn const_val<T: Sized>() -> usize {
1508                         //    |                        - required by this bound in `Tt::const_val`
1509                         //    |
1510                         //    = note: cannot satisfy `_: Tt`
1511
1512                         err.span_suggestion_verbose(
1513                             span.shrink_to_hi(),
1514                             &format!(
1515                                 "consider specifying the type argument{} in the function call",
1516                                 pluralize!(generics.params.len()),
1517                             ),
1518                             format!(
1519                                 "::<{}>",
1520                                 generics
1521                                     .params
1522                                     .iter()
1523                                     .map(|p| p.name.to_string())
1524                                     .collect::<Vec<String>>()
1525                                     .join(", ")
1526                             ),
1527                             Applicability::HasPlaceholders,
1528                         );
1529                     }
1530                 }
1531                 err
1532             }
1533
1534             ty::PredicateKind::WellFormed(ty) => {
1535                 // Same hacky approach as above to avoid deluging user
1536                 // with error messages.
1537                 if ty.references_error() || self.tcx.sess.has_errors() {
1538                     return;
1539                 }
1540                 self.need_type_info_err(body_id, span, ty, ErrorCode::E0282)
1541             }
1542
1543             ty::PredicateKind::Subtype(ref data) => {
1544                 if data.references_error() || self.tcx.sess.has_errors() {
1545                     // no need to overload user in such cases
1546                     return;
1547                 }
1548                 let &SubtypePredicate { a_is_expected: _, a, b } = data.skip_binder();
1549                 // both must be type variables, or the other would've been instantiated
1550                 assert!(a.is_ty_var() && b.is_ty_var());
1551                 self.need_type_info_err(body_id, span, a, ErrorCode::E0282)
1552             }
1553             ty::PredicateKind::Projection(ref data) => {
1554                 let trait_ref = data.to_poly_trait_ref(self.tcx);
1555                 let self_ty = trait_ref.self_ty();
1556                 let ty = data.skip_binder().ty;
1557                 if predicate.references_error() {
1558                     return;
1559                 }
1560                 if self_ty.needs_infer() && ty.needs_infer() {
1561                     // We do this for the `foo.collect()?` case to produce a suggestion.
1562                     let mut err = self.need_type_info_err(body_id, span, self_ty, ErrorCode::E0284);
1563                     err.note(&format!("cannot satisfy `{}`", predicate));
1564                     err
1565                 } else {
1566                     let mut err = struct_span_err!(
1567                         self.tcx.sess,
1568                         span,
1569                         E0284,
1570                         "type annotations needed: cannot satisfy `{}`",
1571                         predicate,
1572                     );
1573                     err.span_label(span, &format!("cannot satisfy `{}`", predicate));
1574                     err
1575                 }
1576             }
1577
1578             _ => {
1579                 if self.tcx.sess.has_errors() {
1580                     return;
1581                 }
1582                 let mut err = struct_span_err!(
1583                     self.tcx.sess,
1584                     span,
1585                     E0284,
1586                     "type annotations needed: cannot satisfy `{}`",
1587                     predicate,
1588                 );
1589                 err.span_label(span, &format!("cannot satisfy `{}`", predicate));
1590                 err
1591             }
1592         };
1593         self.note_obligation_cause(&mut err, obligation);
1594         err.emit();
1595     }
1596
1597     /// Returns `true` if the trait predicate may apply for *some* assignment
1598     /// to the type parameters.
1599     fn predicate_can_apply(
1600         &self,
1601         param_env: ty::ParamEnv<'tcx>,
1602         pred: ty::PolyTraitRef<'tcx>,
1603     ) -> bool {
1604         struct ParamToVarFolder<'a, 'tcx> {
1605             infcx: &'a InferCtxt<'a, 'tcx>,
1606             var_map: FxHashMap<Ty<'tcx>, Ty<'tcx>>,
1607         }
1608
1609         impl<'a, 'tcx> TypeFolder<'tcx> for ParamToVarFolder<'a, 'tcx> {
1610             fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
1611                 self.infcx.tcx
1612             }
1613
1614             fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
1615                 if let ty::Param(ty::ParamTy { name, .. }) = ty.kind {
1616                     let infcx = self.infcx;
1617                     self.var_map.entry(ty).or_insert_with(|| {
1618                         infcx.next_ty_var(TypeVariableOrigin {
1619                             kind: TypeVariableOriginKind::TypeParameterDefinition(name, None),
1620                             span: DUMMY_SP,
1621                         })
1622                     })
1623                 } else {
1624                     ty.super_fold_with(self)
1625                 }
1626             }
1627         }
1628
1629         self.probe(|_| {
1630             let mut selcx = SelectionContext::new(self);
1631
1632             let cleaned_pred =
1633                 pred.fold_with(&mut ParamToVarFolder { infcx: self, var_map: Default::default() });
1634
1635             let cleaned_pred = super::project::normalize(
1636                 &mut selcx,
1637                 param_env,
1638                 ObligationCause::dummy(),
1639                 &cleaned_pred,
1640             )
1641             .value;
1642
1643             let obligation = Obligation::new(
1644                 ObligationCause::dummy(),
1645                 param_env,
1646                 cleaned_pred.without_const().to_predicate(selcx.tcx()),
1647             );
1648
1649             self.predicate_may_hold(&obligation)
1650         })
1651     }
1652
1653     fn note_obligation_cause(
1654         &self,
1655         err: &mut DiagnosticBuilder<'tcx>,
1656         obligation: &PredicateObligation<'tcx>,
1657     ) {
1658         // First, attempt to add note to this error with an async-await-specific
1659         // message, and fall back to regular note otherwise.
1660         if !self.maybe_note_obligation_cause_for_async_await(err, obligation) {
1661             self.note_obligation_cause_code(
1662                 err,
1663                 &obligation.predicate,
1664                 &obligation.cause.code,
1665                 &mut vec![],
1666             );
1667             self.suggest_unsized_bound_if_applicable(err, obligation);
1668         }
1669     }
1670
1671     fn suggest_unsized_bound_if_applicable(
1672         &self,
1673         err: &mut DiagnosticBuilder<'tcx>,
1674         obligation: &PredicateObligation<'tcx>,
1675     ) {
1676         if let (
1677             ty::PredicateKind::Trait(pred, _),
1678             ObligationCauseCode::BindingObligation(item_def_id, span),
1679         ) = (obligation.predicate.kind(), &obligation.cause.code)
1680         {
1681             if let (Some(generics), true) = (
1682                 self.tcx.hir().get_if_local(*item_def_id).as_ref().and_then(|n| n.generics()),
1683                 Some(pred.def_id()) == self.tcx.lang_items().sized_trait(),
1684             ) {
1685                 for param in generics.params {
1686                     if param.span == *span
1687                         && !param.bounds.iter().any(|bound| {
1688                             bound.trait_ref().and_then(|trait_ref| trait_ref.trait_def_id())
1689                                 == self.tcx.lang_items().sized_trait()
1690                         })
1691                     {
1692                         let (span, separator) = match param.bounds {
1693                             [] => (span.shrink_to_hi(), ":"),
1694                             [.., bound] => (bound.span().shrink_to_hi(), " +"),
1695                         };
1696                         err.span_suggestion_verbose(
1697                             span,
1698                             "consider relaxing the implicit `Sized` restriction",
1699                             format!("{} ?Sized", separator),
1700                             Applicability::MachineApplicable,
1701                         );
1702                         return;
1703                     }
1704                 }
1705             }
1706         }
1707     }
1708
1709     fn is_recursive_obligation(
1710         &self,
1711         obligated_types: &mut Vec<&ty::TyS<'tcx>>,
1712         cause_code: &ObligationCauseCode<'tcx>,
1713     ) -> bool {
1714         if let ObligationCauseCode::BuiltinDerivedObligation(ref data) = cause_code {
1715             let parent_trait_ref = self.resolve_vars_if_possible(&data.parent_trait_ref);
1716
1717             if obligated_types.iter().any(|ot| ot == &parent_trait_ref.skip_binder().self_ty()) {
1718                 return true;
1719             }
1720         }
1721         false
1722     }
1723 }
1724
1725 pub fn recursive_type_with_infinite_size_error(
1726     tcx: TyCtxt<'tcx>,
1727     type_def_id: DefId,
1728 ) -> DiagnosticBuilder<'tcx> {
1729     assert!(type_def_id.is_local());
1730     let span = tcx.hir().span_if_local(type_def_id).unwrap();
1731     let span = tcx.sess.source_map().guess_head_span(span);
1732     let mut err = struct_span_err!(
1733         tcx.sess,
1734         span,
1735         E0072,
1736         "recursive type `{}` has infinite size",
1737         tcx.def_path_str(type_def_id)
1738     );
1739     err.span_label(span, "recursive type has infinite size");
1740     err.help(&format!(
1741         "insert indirection (e.g., a `Box`, `Rc`, or `&`) \
1742                            at some point to make `{}` representable",
1743         tcx.def_path_str(type_def_id)
1744     ));
1745     err
1746 }
1747
1748 /// Summarizes information
1749 #[derive(Clone)]
1750 pub enum ArgKind {
1751     /// An argument of non-tuple type. Parameters are (name, ty)
1752     Arg(String, String),
1753
1754     /// An argument of tuple type. For a "found" argument, the span is
1755     /// the locationo in the source of the pattern. For a "expected"
1756     /// argument, it will be None. The vector is a list of (name, ty)
1757     /// strings for the components of the tuple.
1758     Tuple(Option<Span>, Vec<(String, String)>),
1759 }
1760
1761 impl ArgKind {
1762     fn empty() -> ArgKind {
1763         ArgKind::Arg("_".to_owned(), "_".to_owned())
1764     }
1765
1766     /// Creates an `ArgKind` from the expected type of an
1767     /// argument. It has no name (`_`) and an optional source span.
1768     pub fn from_expected_ty(t: Ty<'_>, span: Option<Span>) -> ArgKind {
1769         match t.kind {
1770             ty::Tuple(ref tys) => ArgKind::Tuple(
1771                 span,
1772                 tys.iter().map(|ty| ("_".to_owned(), ty.to_string())).collect::<Vec<_>>(),
1773             ),
1774             _ => ArgKind::Arg("_".to_owned(), t.to_string()),
1775         }
1776     }
1777 }