]> git.lizzy.rs Git - rust.git/blob - src/librustc_save_analysis/dump_visitor.rs
review changes
[rust.git] / src / librustc_save_analysis / dump_visitor.rs
1 // Copyright 2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Write the output of rustc's analysis to an implementor of Dump.
12 //!
13 //! Dumping the analysis is implemented by walking the AST and getting a bunch of
14 //! info out from all over the place. We use Def IDs to identify objects. The
15 //! tricky part is getting syntactic (span, source text) and semantic (reference
16 //! Def IDs) information for parts of expressions which the compiler has discarded.
17 //! E.g., in a path `foo::bar::baz`, the compiler only keeps a span for the whole
18 //! path and a reference to `baz`, but we want spans and references for all three
19 //! idents.
20 //!
21 //! SpanUtils is used to manipulate spans. In particular, to extract sub-spans
22 //! from spans (e.g., the span for `bar` from the above example path).
23 //! DumpVisitor walks the AST and processes it, and an implementor of Dump
24 //! is used for recording the output in a format-agnostic way (see CsvDumper
25 //! for an example).
26
27 use rustc::hir::def::Def as HirDef;
28 use rustc::hir::def_id::DefId;
29 use rustc::hir::map::Node;
30 use rustc::session::Session;
31 use rustc::ty::{self, TyCtxt};
32 use rustc_data_structures::fx::FxHashSet;
33
34 use std::path::Path;
35
36 use syntax::ast::{self, NodeId, PatKind, Attribute, CRATE_NODE_ID};
37 use syntax::parse::token;
38 use syntax::symbol::keywords;
39 use syntax::visit::{self, Visitor};
40 use syntax::print::pprust::{path_to_string, ty_to_string, bounds_to_string, generics_to_string};
41 use syntax::ptr::P;
42 use syntax::codemap::Spanned;
43 use syntax_pos::*;
44
45 use {escape, generated_code, SaveContext, PathCollector, lower_attributes};
46 use json_dumper::{JsonDumper, DumpOutput};
47 use span_utils::SpanUtils;
48 use sig;
49
50 use rls_data::{CratePreludeData, Import, ImportKind, SpanData, Ref, RefKind,
51                Def, DefKind, Relation, RelationKind};
52
53 macro_rules! down_cast_data {
54     ($id:ident, $kind:ident, $sp:expr) => {
55         let $id = if let super::Data::$kind(data) = $id {
56             data
57         } else {
58             span_bug!($sp, "unexpected data kind: {:?}", $id);
59         };
60     };
61 }
62
63 pub struct DumpVisitor<'l, 'tcx: 'l, 'll, O: DumpOutput + 'll> {
64     save_ctxt: SaveContext<'l, 'tcx>,
65     sess: &'l Session,
66     tcx: TyCtxt<'l, 'tcx, 'tcx>,
67     dumper: &'ll mut JsonDumper<O>,
68
69     span: SpanUtils<'l>,
70
71     cur_scope: NodeId,
72
73     // Set of macro definition (callee) spans, and the set
74     // of macro use (callsite) spans. We store these to ensure
75     // we only write one macro def per unique macro definition, and
76     // one macro use per unique callsite span.
77     // mac_defs: HashSet<Span>,
78     macro_calls: FxHashSet<Span>,
79 }
80
81 impl<'l, 'tcx: 'l, 'll, O: DumpOutput + 'll> DumpVisitor<'l, 'tcx, 'll, O> {
82     pub fn new(save_ctxt: SaveContext<'l, 'tcx>,
83                dumper: &'ll mut JsonDumper<O>)
84                -> DumpVisitor<'l, 'tcx, 'll, O> {
85         let span_utils = SpanUtils::new(&save_ctxt.tcx.sess);
86         DumpVisitor {
87             sess: &save_ctxt.tcx.sess,
88             tcx: save_ctxt.tcx,
89             save_ctxt: save_ctxt,
90             dumper: dumper,
91             span: span_utils.clone(),
92             cur_scope: CRATE_NODE_ID,
93             // mac_defs: HashSet::new(),
94             macro_calls: FxHashSet(),
95         }
96     }
97
98     fn nest_scope<F>(&mut self, scope_id: NodeId, f: F)
99         where F: FnOnce(&mut DumpVisitor<'l, 'tcx, 'll, O>)
100     {
101         let parent_scope = self.cur_scope;
102         self.cur_scope = scope_id;
103         f(self);
104         self.cur_scope = parent_scope;
105     }
106
107     fn nest_tables<F>(&mut self, item_id: NodeId, f: F)
108         where F: FnOnce(&mut DumpVisitor<'l, 'tcx, 'll, O>)
109     {
110         let item_def_id = self.tcx.hir.local_def_id(item_id);
111         if self.tcx.has_typeck_tables(item_def_id) {
112             let tables = self.tcx.typeck_tables_of(item_def_id);
113             let old_tables = self.save_ctxt.tables;
114             self.save_ctxt.tables = tables;
115             f(self);
116             self.save_ctxt.tables = old_tables;
117         } else {
118             f(self);
119         }
120     }
121
122     fn span_from_span(&self, span: Span) -> SpanData {
123         self.save_ctxt.span_from_span(span)
124     }
125
126     pub fn dump_crate_info(&mut self, name: &str, krate: &ast::Crate) {
127         let source_file = self.tcx.sess.local_crate_source_file.as_ref();
128         let crate_root = source_file.map(|source_file| {
129             let source_file = Path::new(source_file);
130             match source_file.file_name() {
131                 Some(_) => source_file.parent().unwrap().display().to_string(),
132                 None => source_file.display().to_string(),
133             }
134         });
135
136         let data = CratePreludeData {
137             crate_name: name.into(),
138             crate_root: crate_root.unwrap_or("<no source>".to_owned()),
139             external_crates: self.save_ctxt.get_external_crates(),
140             span: self.span_from_span(krate.span),
141         };
142
143         self.dumper.crate_prelude(data);
144     }
145
146     // Return all non-empty prefixes of a path.
147     // For each prefix, we return the span for the last segment in the prefix and
148     // a str representation of the entire prefix.
149     fn process_path_prefixes(&self, path: &ast::Path) -> Vec<(Span, String)> {
150         let spans = self.span.spans_for_path_segments(path);
151         let segments = &path.segments[if path.is_global() { 1 } else { 0 }..];
152
153         // Paths to enums seem to not match their spans - the span includes all the
154         // variants too. But they seem to always be at the end, so I hope we can cope with
155         // always using the first ones. So, only error out if we don't have enough spans.
156         // What could go wrong...?
157         if spans.len() < segments.len() {
158             if generated_code(path.span) {
159                 return vec![];
160             }
161             error!("Mis-calculated spans for path '{}'. Found {} spans, expected {}. Found spans:",
162                    path_to_string(path),
163                    spans.len(),
164                    segments.len());
165             for s in &spans {
166                 let loc = self.sess.codemap().lookup_char_pos(s.lo);
167                 error!("    '{}' in {}, line {}",
168                        self.span.snippet(*s),
169                        loc.file.name,
170                        loc.line);
171             }
172             error!("    master span: {:?}: `{}`", path.span, self.span.snippet(path.span));
173             return vec![];
174         }
175
176         let mut result: Vec<(Span, String)> = vec![];
177
178         let mut segs = vec![];
179         for (i, (seg, span)) in segments.iter().zip(&spans).enumerate() {
180             segs.push(seg.clone());
181             let sub_path = ast::Path {
182                 span: *span, // span for the last segment
183                 segments: segs,
184             };
185             let qualname = if i == 0 && path.is_global() {
186                 format!("::{}", path_to_string(&sub_path))
187             } else {
188                 path_to_string(&sub_path)
189             };
190             result.push((*span, qualname));
191             segs = sub_path.segments;
192         }
193
194         result
195     }
196
197     fn write_sub_paths(&mut self, path: &ast::Path) {
198         let sub_paths = self.process_path_prefixes(path);
199         for (span, _) in sub_paths {
200             let span = self.span_from_span(span);
201             self.dumper.dump_ref(Ref {
202                 kind: RefKind::Mod,
203                 span,
204                 ref_id: ::null_id(),
205             });
206         }
207     }
208
209     // As write_sub_paths, but does not process the last ident in the path (assuming it
210     // will be processed elsewhere). See note on write_sub_paths about global.
211     fn write_sub_paths_truncated(&mut self, path: &ast::Path) {
212         let sub_paths = self.process_path_prefixes(path);
213         let len = sub_paths.len();
214         if len <= 1 {
215             return;
216         }
217
218         for (span, _) in sub_paths.into_iter().take(len - 1) {
219             let span = self.span_from_span(span);
220             self.dumper.dump_ref(Ref {
221                 kind: RefKind::Mod,
222                 span,
223                 ref_id: ::null_id(),
224             });
225         }
226     }
227
228     // As write_sub_paths, but expects a path of the form module_path::trait::method
229     // Where trait could actually be a struct too.
230     fn write_sub_path_trait_truncated(&mut self, path: &ast::Path) {
231         let sub_paths = self.process_path_prefixes(path);
232         let len = sub_paths.len();
233         if len <= 1 {
234             return;
235         }
236         let sub_paths = &sub_paths[.. (len-1)];
237
238         // write the trait part of the sub-path
239         let (ref span, _) = sub_paths[len-2];
240         let span = self.span_from_span(*span);
241         self.dumper.dump_ref(Ref {
242             kind: RefKind::Type,
243             ref_id: ::null_id(),
244             span,
245         });
246
247         // write the other sub-paths
248         if len <= 2 {
249             return;
250         }
251         let sub_paths = &sub_paths[..len-2];
252         for &(ref span, _) in sub_paths {
253             let span = self.span_from_span(*span);
254             self.dumper.dump_ref(Ref {
255                 kind: RefKind::Mod,
256                 span,
257                 ref_id: ::null_id(),
258             });
259         }
260     }
261
262     fn lookup_def_id(&self, ref_id: NodeId) -> Option<DefId> {
263         match self.save_ctxt.get_path_def(ref_id) {
264             HirDef::PrimTy(..) | HirDef::SelfTy(..) | HirDef::Err => None,
265             def => Some(def.def_id()),
266         }
267     }
268
269     fn process_def_kind(&mut self,
270                         ref_id: NodeId,
271                         span: Span,
272                         sub_span: Option<Span>,
273                         def_id: DefId) {
274         if self.span.filter_generated(sub_span, span) {
275             return;
276         }
277
278         let def = self.save_ctxt.get_path_def(ref_id);
279         match def {
280             HirDef::Mod(_) => {
281                 let span = self.span_from_span(sub_span.expect("No span found for mod ref"));
282                 self.dumper.dump_ref(Ref {
283                     kind: RefKind::Mod,
284                     span,
285                     ref_id: ::id_from_def_id(def_id),
286                 });
287             }
288             HirDef::Struct(..) |
289             HirDef::Variant(..) |
290             HirDef::Union(..) |
291             HirDef::Enum(..) |
292             HirDef::TyAlias(..) |
293             HirDef::Trait(_) => {
294                 let span = self.span_from_span(sub_span.expect("No span found for type ref"));
295                 self.dumper.dump_ref(Ref {
296                     kind: RefKind::Type,
297                     span,
298                     ref_id: ::id_from_def_id(def_id),
299                 });
300             }
301             HirDef::Static(..) |
302             HirDef::Const(..) |
303             HirDef::StructCtor(..) |
304             HirDef::VariantCtor(..) => {
305                 let span = self.span_from_span(sub_span.expect("No span found for var ref"));
306                 self.dumper.dump_ref(Ref {
307                     kind: RefKind::Variable,
308                     span,
309                     ref_id: ::id_from_def_id(def_id),
310                 });
311             }
312             HirDef::Fn(..) => {
313                 let span = self.span_from_span(sub_span.expect("No span found for fn ref"));
314                 self.dumper.dump_ref(Ref {
315                     kind: RefKind::Function,
316                     span,
317                     ref_id: ::id_from_def_id(def_id),
318                 });
319             }
320             // With macros 2.0, we can legitimately get a ref to a macro, but
321             // we don't handle it properly for now (FIXME).
322             HirDef::Macro(..) => {}
323             HirDef::Local(..) |
324             HirDef::Upvar(..) |
325             HirDef::SelfTy(..) |
326             HirDef::Label(_) |
327             HirDef::TyParam(..) |
328             HirDef::Method(..) |
329             HirDef::AssociatedTy(..) |
330             HirDef::AssociatedConst(..) |
331             HirDef::PrimTy(_) |
332             HirDef::GlobalAsm(_) |
333             HirDef::Err => {
334                span_bug!(span,
335                          "process_def_kind for unexpected item: {:?}",
336                          def);
337             }
338         }
339     }
340
341     fn process_formals(&mut self, formals: &'l [ast::Arg], qualname: &str) {
342         for arg in formals {
343             self.visit_pat(&arg.pat);
344             let mut collector = PathCollector::new();
345             collector.visit_pat(&arg.pat);
346             let span_utils = self.span.clone();
347             for &(id, ref p, ..) in &collector.collected_paths {
348                 let typ = match self.save_ctxt.tables.node_types.get(&id) {
349                     Some(s) => s.to_string(),
350                     None => continue,
351                 };
352                 // get the span only for the name of the variable (I hope the path is only ever a
353                 // variable name, but who knows?)
354                 let sub_span = span_utils.span_for_last_ident(p.span);
355                 if !self.span.filter_generated(sub_span, p.span) {
356                     let id = ::id_from_node_id(id, &self.save_ctxt);
357                     let span = self.span_from_span(sub_span.expect("No span found for variable"));
358
359                     self.dumper.dump_def(false, Def {
360                         kind: DefKind::Local,
361                         id,
362                         span,
363                         name: path_to_string(p),
364                         qualname: format!("{}::{}", qualname, path_to_string(p)),
365                         value: typ,
366                         parent: None,
367                         children: vec![],
368                         decl_id: None,
369                         docs: String::new(),
370                         sig: None,
371                         attributes:vec![],
372                     });
373                 }
374             }
375         }
376     }
377
378     fn process_method(&mut self,
379                       sig: &'l ast::MethodSig,
380                       body: Option<&'l ast::Block>,
381                       id: ast::NodeId,
382                       name: ast::Ident,
383                       vis: ast::Visibility,
384                       span: Span) {
385         debug!("process_method: {}:{}", id, name);
386
387         if let Some(mut method_data) = self.save_ctxt.get_method_data(id, name.name, span) {
388
389             let sig_str = ::make_signature(&sig.decl, &sig.generics);
390             if body.is_some() {
391                 self.nest_tables(id, |v| {
392                     v.process_formals(&sig.decl.inputs, &method_data.qualname)
393                 });
394             }
395
396             self.process_generic_params(&sig.generics, span, &method_data.qualname, id);
397
398             method_data.value = sig_str;
399             method_data.sig = sig::method_signature(id, name, sig, &self.save_ctxt);
400             self.dumper.dump_def(vis == ast::Visibility::Public, method_data);
401         }
402
403         // walk arg and return types
404         for arg in &sig.decl.inputs {
405             self.visit_ty(&arg.ty);
406         }
407
408         if let ast::FunctionRetTy::Ty(ref ret_ty) = sig.decl.output {
409             self.visit_ty(ret_ty);
410         }
411
412         // walk the fn body
413         if let Some(body) = body {
414             self.nest_tables(id, |v| v.nest_scope(id, |v| v.visit_block(body)));
415         }
416     }
417
418     fn process_trait_ref(&mut self, trait_ref: &'l ast::TraitRef) {
419         let trait_ref_data = self.save_ctxt.get_trait_ref_data(trait_ref);
420         if let Some(trait_ref_data) = trait_ref_data {
421             self.dumper.dump_ref(trait_ref_data);
422         }
423         self.process_path(trait_ref.ref_id, &trait_ref.path);
424     }
425
426     fn process_struct_field_def(&mut self, field: &ast::StructField, parent_id: NodeId) {
427         let field_data = self.save_ctxt.get_field_data(field, parent_id);
428         if let Some(field_data) = field_data {
429             self.dumper.dump_def(field.vis == ast::Visibility::Public, field_data);
430         }
431     }
432
433     // Dump generic params bindings, then visit_generics
434     fn process_generic_params(&mut self,
435                               generics: &'l ast::Generics,
436                               full_span: Span,
437                               prefix: &str,
438                               id: NodeId) {
439         // We can't only use visit_generics since we don't have spans for param
440         // bindings, so we reparse the full_span to get those sub spans.
441         // However full span is the entire enum/fn/struct block, so we only want
442         // the first few to match the number of generics we're looking for.
443         let param_sub_spans = self.span.spans_for_ty_params(full_span,
444                                                             (generics.ty_params.len() as isize));
445         for (param, param_ss) in generics.ty_params.iter().zip(param_sub_spans) {
446             let name = escape(self.span.snippet(param_ss));
447             // Append $id to name to make sure each one is unique
448             let qualname = format!("{}::{}${}",
449                                    prefix,
450                                    name,
451                                    id);
452             if !self.span.filter_generated(Some(param_ss), full_span) {
453                 let id = ::id_from_node_id(param.id, &self.save_ctxt);
454                 let span = self.span_from_span(param_ss);
455
456                 self.dumper.dump_def(false, Def {
457                     kind: DefKind::Type,
458                     id,
459                     span,
460                     name,
461                     qualname,
462                     value: String::new(),
463                     parent: None,
464                     children: vec![],
465                     decl_id: None,
466                     docs: String::new(),
467                     sig: None,
468                     attributes: vec![],
469                 });
470             }
471         }
472         self.visit_generics(generics);
473     }
474
475     fn process_fn(&mut self,
476                   item: &'l ast::Item,
477                   decl: &'l ast::FnDecl,
478                   ty_params: &'l ast::Generics,
479                   body: &'l ast::Block) {
480         if let Some(fn_data) = self.save_ctxt.get_item_data(item) {
481             down_cast_data!(fn_data, DefData, item.span);
482             self.nest_tables(item.id, |v| v.process_formals(&decl.inputs, &fn_data.qualname));
483             self.process_generic_params(ty_params, item.span, &fn_data.qualname, item.id);
484             self.dumper.dump_def(item.vis == ast::Visibility::Public, fn_data);
485         }
486
487         for arg in &decl.inputs {
488             self.visit_ty(&arg.ty);
489         }
490
491         if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output {
492             self.visit_ty(&ret_ty);
493         }
494
495         self.nest_tables(item.id, |v| v.nest_scope(item.id, |v| v.visit_block(&body)));
496     }
497
498     fn process_static_or_const_item(&mut self,
499                                     item: &'l ast::Item,
500                                     typ: &'l ast::Ty,
501                                     expr: &'l ast::Expr) {
502         if let Some(var_data) = self.save_ctxt.get_item_data(item) {
503             down_cast_data!(var_data, DefData, item.span);
504             self.dumper.dump_def(item.vis == ast::Visibility::Public, var_data);
505         }
506         self.visit_ty(&typ);
507         self.visit_expr(expr);
508     }
509
510     fn process_assoc_const(&mut self,
511                            id: ast::NodeId,
512                            name: ast::Name,
513                            span: Span,
514                            typ: &'l ast::Ty,
515                            expr: Option<&'l ast::Expr>,
516                            parent_id: DefId,
517                            vis: ast::Visibility,
518                            attrs: &'l [Attribute]) {
519         let qualname = format!("::{}", self.tcx.node_path_str(id));
520
521         let sub_span = self.span.sub_span_after_keyword(span, keywords::Const);
522
523         if !self.span.filter_generated(sub_span, span) {
524             let sig = sig::assoc_const_signature(id, name, typ, expr, &self.save_ctxt);
525             let id = ::id_from_node_id(id, &self.save_ctxt);
526             let span = self.span_from_span(sub_span.expect("No span found for variable"));
527
528             self.dumper.dump_def(vis == ast::Visibility::Public, Def {
529                 kind: DefKind::Const,
530                 id,
531                 span,
532                 name: name.to_string(),
533                 qualname,
534                 value: ty_to_string(&typ),
535                 parent: Some(::id_from_def_id(parent_id)),
536                 children: vec![],
537                 decl_id: None,
538                 docs: self.save_ctxt.docs_for_attrs(attrs),
539                 sig,
540                 attributes: lower_attributes(attrs.to_owned(), &self.save_ctxt),
541             });
542         }
543
544         // walk type and init value
545         self.visit_ty(typ);
546         if let Some(expr) = expr {
547             self.visit_expr(expr);
548         }
549     }
550
551     // FIXME tuple structs should generate tuple-specific data.
552     fn process_struct(&mut self,
553                       item: &'l ast::Item,
554                       def: &'l ast::VariantData,
555                       ty_params: &'l ast::Generics) {
556         let name = item.ident.to_string();
557         let qualname = format!("::{}", self.tcx.node_path_str(item.id));
558
559         let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Struct);
560         let (value, fields) =
561             if let ast::ItemKind::Struct(ast::VariantData::Struct(ref fields, _), _) = item.node
562         {
563             let fields_str = fields.iter()
564                                    .enumerate()
565                                    .map(|(i, f)| f.ident.map(|i| i.to_string())
566                                                   .unwrap_or(i.to_string()))
567                                    .collect::<Vec<_>>()
568                                    .join(", ");
569             (format!("{} {{ {} }}", name, fields_str),
570              fields.iter().map(|f| ::id_from_node_id(f.id, &self.save_ctxt)).collect())
571         } else {
572             (String::new(), vec![])
573         };
574
575         if !self.span.filter_generated(sub_span, item.span) {
576             let span = self.span_from_span(sub_span.expect("No span found for struct"));
577             self.dumper.dump_def(item.vis == ast::Visibility::Public, Def {
578                 kind: DefKind::Struct,
579                 id: ::id_from_node_id(item.id, &self.save_ctxt),
580                 span,
581                 name,
582                 qualname: qualname.clone(),
583                 value,
584                 parent: None,
585                 children: fields,
586                 decl_id: None,
587                 docs: self.save_ctxt.docs_for_attrs(&item.attrs),
588                 sig: sig::item_signature(item, &self.save_ctxt),
589                 attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt),
590             });
591         }
592
593         for field in def.fields() {
594             self.process_struct_field_def(field, item.id);
595             self.visit_ty(&field.ty);
596         }
597
598         self.process_generic_params(ty_params, item.span, &qualname, item.id);
599     }
600
601     fn process_enum(&mut self,
602                     item: &'l ast::Item,
603                     enum_definition: &'l ast::EnumDef,
604                     ty_params: &'l ast::Generics) {
605         let enum_data = self.save_ctxt.get_item_data(item);
606         let enum_data = match enum_data {
607             None => return,
608             Some(data) => data,
609         };
610         down_cast_data!(enum_data, DefData, item.span);
611
612         for variant in &enum_definition.variants {
613             let name = variant.node.name.name.to_string();
614             let mut qualname = enum_data.qualname.clone();
615             qualname.push_str("::");
616             qualname.push_str(&name);
617
618             match variant.node.data {
619                 ast::VariantData::Struct(ref fields, _) => {
620                     let sub_span = self.span.span_for_first_ident(variant.span);
621                     let fields_str = fields.iter()
622                                            .enumerate()
623                                            .map(|(i, f)| f.ident.map(|i| i.to_string())
624                                                           .unwrap_or(i.to_string()))
625                                            .collect::<Vec<_>>()
626                                            .join(", ");
627                     let value = format!("{}::{} {{ {} }}", enum_data.name, name, fields_str);
628                     if !self.span.filter_generated(sub_span, variant.span) {
629                         let span = self.span_from_span(
630                             sub_span.expect("No span found for struct variant"));
631                         let id = ::id_from_node_id(variant.node.data.id(), &self.save_ctxt);
632                         let parent = Some(::id_from_node_id(item.id, &self.save_ctxt));
633
634                         self.dumper.dump_def(item.vis == ast::Visibility::Public, Def {
635                             kind: DefKind::Struct,
636                             id,
637                             span,
638                             name,
639                             qualname,
640                             value,
641                             parent,
642                             children: vec![],
643                             decl_id: None,
644                             docs: self.save_ctxt.docs_for_attrs(&variant.node.attrs),
645                             sig: sig::variant_signature(variant, &self.save_ctxt),
646                             attributes: lower_attributes(variant.node.attrs.clone(),
647                                                          &self.save_ctxt),
648                         });
649                     }
650                 }
651                 ref v => {
652                     let sub_span = self.span.span_for_first_ident(variant.span);
653                     let mut value = format!("{}::{}", enum_data.name, name);
654                     if let &ast::VariantData::Tuple(ref fields, _) = v {
655                         value.push('(');
656                         value.push_str(&fields.iter()
657                                               .map(|f| ty_to_string(&f.ty))
658                                               .collect::<Vec<_>>()
659                                               .join(", "));
660                         value.push(')');
661                     }
662                     if !self.span.filter_generated(sub_span, variant.span) {
663                         let span =
664                             self.span_from_span(sub_span.expect("No span found for tuple variant"));
665                         let id = ::id_from_node_id(variant.node.data.id(), &self.save_ctxt);
666                         let parent = Some(::id_from_node_id(item.id, &self.save_ctxt));
667
668                         self.dumper.dump_def(item.vis == ast::Visibility::Public, Def {
669                             kind: DefKind::Tuple,
670                             id,
671                             span,
672                             name,
673                             qualname,
674                             value,
675                             parent,
676                             children: vec![],
677                             decl_id: None,
678                             docs: self.save_ctxt.docs_for_attrs(&variant.node.attrs),
679                             sig: sig::variant_signature(variant, &self.save_ctxt),
680                             attributes: lower_attributes(variant.node.attrs.clone(),
681                                                          &self.save_ctxt),
682                         });
683                     }
684                 }
685             }
686
687
688             for field in variant.node.data.fields() {
689                 self.process_struct_field_def(field, variant.node.data.id());
690                 self.visit_ty(&field.ty);
691             }
692         }
693         self.process_generic_params(ty_params, item.span, &enum_data.qualname, item.id);
694         self.dumper.dump_def(item.vis == ast::Visibility::Public, enum_data);
695     }
696
697     fn process_impl(&mut self,
698                     item: &'l ast::Item,
699                     type_parameters: &'l ast::Generics,
700                     trait_ref: &'l Option<ast::TraitRef>,
701                     typ: &'l ast::Ty,
702                     impl_items: &'l [ast::ImplItem]) {
703         if let Some(impl_data) = self.save_ctxt.get_item_data(item) {
704             down_cast_data!(impl_data, RelationData, item.span);
705             self.dumper.dump_relation(impl_data);
706         }
707         self.visit_ty(&typ);
708         if let &Some(ref trait_ref) = trait_ref {
709             self.process_path(trait_ref.ref_id, &trait_ref.path);
710         }
711         self.process_generic_params(type_parameters, item.span, "", item.id);
712         for impl_item in impl_items {
713             let map = &self.tcx.hir;
714             self.process_impl_item(impl_item, map.local_def_id(item.id));
715         }
716     }
717
718     fn process_trait(&mut self,
719                      item: &'l ast::Item,
720                      generics: &'l ast::Generics,
721                      trait_refs: &'l ast::TyParamBounds,
722                      methods: &'l [ast::TraitItem]) {
723         let name = item.ident.to_string();
724         let qualname = format!("::{}", self.tcx.node_path_str(item.id));
725         let mut val = name.clone();
726         if !generics.lifetimes.is_empty() || !generics.ty_params.is_empty() {
727             val.push_str(&generics_to_string(generics));
728         }
729         if !trait_refs.is_empty() {
730             val.push_str(": ");
731             val.push_str(&bounds_to_string(trait_refs));
732         }
733         let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Trait);
734         if !self.span.filter_generated(sub_span, item.span) {
735             let id = ::id_from_node_id(item.id, &self.save_ctxt);
736             let span = self.span_from_span(sub_span.expect("No span found for trait"));
737             let children =
738                 methods.iter().map(|i| ::id_from_node_id(i.id, &self.save_ctxt)).collect();
739             self.dumper.dump_def(item.vis == ast::Visibility::Public, Def {
740                 kind: DefKind::Trait,
741                 id,
742                 span,
743                 name,
744                 qualname: qualname.clone(),
745                 value: val,
746                 parent: None,
747                 children,
748                 decl_id: None,
749                 docs: self.save_ctxt.docs_for_attrs(&item.attrs),
750                 sig: sig::item_signature(item, &self.save_ctxt),
751                 attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt),
752             });
753         }
754
755         // super-traits
756         for super_bound in trait_refs.iter() {
757             let trait_ref = match *super_bound {
758                 ast::TraitTyParamBound(ref trait_ref, _) => {
759                     trait_ref
760                 }
761                 ast::RegionTyParamBound(..) => {
762                     continue;
763                 }
764             };
765
766             let trait_ref = &trait_ref.trait_ref;
767             if let Some(id) = self.lookup_def_id(trait_ref.ref_id) {
768                 let sub_span = self.span.sub_span_for_type_name(trait_ref.path.span);
769                 if !self.span.filter_generated(sub_span, trait_ref.path.span) {
770                     let span = self.span_from_span(sub_span.expect("No span found for trait ref"));
771                     self.dumper.dump_ref(Ref {
772                         kind: RefKind::Type,
773                         span,
774                         ref_id: ::id_from_def_id(id),
775                     });
776                 }
777
778                 if !self.span.filter_generated(sub_span, trait_ref.path.span) {
779                     let sub_span = self.span_from_span(sub_span.expect("No span for inheritance"));
780                     self.dumper.dump_relation(Relation {
781                         kind: RelationKind::SuperTrait,
782                         span: sub_span,
783                         from: ::id_from_def_id(id),
784                         to: ::id_from_node_id(item.id, &self.save_ctxt),
785                     });
786                 }
787             }
788         }
789
790         // walk generics and methods
791         self.process_generic_params(generics, item.span, &qualname, item.id);
792         for method in methods {
793             let map = &self.tcx.hir;
794             self.process_trait_item(method, map.local_def_id(item.id))
795         }
796     }
797
798     // `item` is the module in question, represented as an item.
799     fn process_mod(&mut self, item: &ast::Item) {
800         if let Some(mod_data) = self.save_ctxt.get_item_data(item) {
801             down_cast_data!(mod_data, DefData, item.span);
802             self.dumper.dump_def(item.vis == ast::Visibility::Public, mod_data);
803         }
804     }
805
806     fn process_path(&mut self, id: NodeId, path: &ast::Path) {
807         let path_data = self.save_ctxt.get_path_data(id, path);
808         if generated_code(path.span) && path_data.is_none() {
809             return;
810         }
811
812         let path_data = match path_data {
813             Some(pd) => pd,
814             None => {
815                 return;
816             }
817         };
818
819         self.dumper.dump_ref(path_data);
820
821         // Modules or types in the path prefix.
822         match self.save_ctxt.get_path_def(id) {
823             HirDef::Method(did) => {
824                 let ti = self.tcx.associated_item(did);
825                 if ti.kind == ty::AssociatedKind::Method && ti.method_has_self_argument {
826                     self.write_sub_path_trait_truncated(path);
827                 }
828             }
829             HirDef::Fn(..) |
830             HirDef::Const(..) |
831             HirDef::Static(..) |
832             HirDef::StructCtor(..) |
833             HirDef::VariantCtor(..) |
834             HirDef::AssociatedConst(..) |
835             HirDef::Local(..) |
836             HirDef::Upvar(..) |
837             HirDef::Struct(..) |
838             HirDef::Union(..) |
839             HirDef::Variant(..) |
840             HirDef::TyAlias(..) |
841             HirDef::AssociatedTy(..) => self.write_sub_paths_truncated(path),
842             _ => {}
843         }
844     }
845
846     fn process_struct_lit(&mut self,
847                           ex: &'l ast::Expr,
848                           path: &'l ast::Path,
849                           fields: &'l [ast::Field],
850                           variant: &'l ty::VariantDef,
851                           base: &'l Option<P<ast::Expr>>) {
852         self.write_sub_paths_truncated(path);
853
854         if let Some(struct_lit_data) = self.save_ctxt.get_expr_data(ex) {
855             down_cast_data!(struct_lit_data, RefData, ex.span);
856             if !generated_code(ex.span) {
857                 self.dumper.dump_ref(struct_lit_data);
858             }
859
860             for field in fields {
861                 if let Some(field_data) = self.save_ctxt
862                                               .get_field_ref_data(field, variant) {
863                     self.dumper.dump_ref(field_data);
864                 }
865
866                 self.visit_expr(&field.expr)
867             }
868         }
869
870         walk_list!(self, visit_expr, base);
871     }
872
873     fn process_method_call(&mut self, ex: &'l ast::Expr, args: &'l [P<ast::Expr>]) {
874         if let Some(mcd) = self.save_ctxt.get_expr_data(ex) {
875             down_cast_data!(mcd, RefData, ex.span);
876             if !generated_code(ex.span) {
877                 self.dumper.dump_ref(mcd);
878             }
879         }
880
881         // walk receiver and args
882         walk_list!(self, visit_expr, args);
883     }
884
885     fn process_pat(&mut self, p: &'l ast::Pat) {
886         match p.node {
887             PatKind::Struct(ref _path, ref fields, _) => {
888                 // FIXME do something with _path?
889                 let adt = match self.save_ctxt.tables.node_id_to_type_opt(p.id) {
890                     Some(ty) => ty.ty_adt_def().unwrap(),
891                     None => {
892                         visit::walk_pat(self, p);
893                         return;
894                     }
895                 };
896                 let variant = adt.variant_of_def(self.save_ctxt.get_path_def(p.id));
897
898                 for &Spanned { node: ref field, span } in fields {
899                     let sub_span = self.span.span_for_first_ident(span);
900                     if let Some(f) = variant.find_field_named(field.ident.name) {
901                         if !self.span.filter_generated(sub_span, span) {
902                             let span =
903                                 self.span_from_span(sub_span.expect("No span fund for var ref"));
904                             self.dumper.dump_ref(Ref {
905                                 kind: RefKind::Variable,
906                                 span,
907                                 ref_id: ::id_from_def_id(f.did),
908                             });
909                         }
910                     }
911                     self.visit_pat(&field.pat);
912                 }
913             }
914             _ => visit::walk_pat(self, p),
915         }
916     }
917
918
919     fn process_var_decl(&mut self, p: &'l ast::Pat, value: String) {
920         // The local could declare multiple new vars, we must walk the
921         // pattern and collect them all.
922         let mut collector = PathCollector::new();
923         collector.visit_pat(&p);
924         self.visit_pat(&p);
925
926         for &(id, ref p, immut) in &collector.collected_paths {
927             let mut value = match immut {
928                 ast::Mutability::Immutable => value.to_string(),
929                 _ => String::new(),
930             };
931             let typ = match self.save_ctxt.tables.node_types.get(&id) {
932                 Some(typ) => {
933                     let typ = typ.to_string();
934                     if !value.is_empty() {
935                         value.push_str(": ");
936                     }
937                     value.push_str(&typ);
938                     typ
939                 }
940                 None => String::new(),
941             };
942
943             // Get the span only for the name of the variable (I hope the path
944             // is only ever a variable name, but who knows?).
945             let sub_span = self.span.span_for_last_ident(p.span);
946             // Rust uses the id of the pattern for var lookups, so we'll use it too.
947             if !self.span.filter_generated(sub_span, p.span) {
948                 let qualname = format!("{}${}", path_to_string(p), id);
949                 let id = ::id_from_node_id(id, &self.save_ctxt);
950                 let span = self.span_from_span(sub_span.expect("No span found for variable"));
951
952                 self.dumper.dump_def(false, Def {
953                     kind: DefKind::Local,
954                     id,
955                     span,
956                     name: path_to_string(p),
957                     qualname,
958                     value: typ,
959                     parent: None,
960                     children: vec![],
961                     decl_id: None,
962                     docs: String::new(),
963                     sig: None,
964                     attributes:vec![],
965                 });
966             }
967         }
968     }
969
970     /// Extract macro use and definition information from the AST node defined
971     /// by the given NodeId, using the expansion information from the node's
972     /// span.
973     ///
974     /// If the span is not macro-generated, do nothing, else use callee and
975     /// callsite spans to record macro definition and use data, using the
976     /// mac_uses and mac_defs sets to prevent multiples.
977     fn process_macro_use(&mut self, span: Span) {
978         let source_span = span.source_callsite();
979         if self.macro_calls.contains(&source_span) {
980             return;
981         }
982         self.macro_calls.insert(source_span);
983
984         let data = match self.save_ctxt.get_macro_use_data(span) {
985             None => return,
986             Some(data) => data,
987         };
988
989         self.dumper.macro_use(data);
990
991         // FIXME write the macro def
992         // let mut hasher = DefaultHasher::new();
993         // data.callee_span.hash(&mut hasher);
994         // let hash = hasher.finish();
995         // let qualname = format!("{}::{}", data.name, hash);
996         // Don't write macro definition for imported macros
997         // if !self.mac_defs.contains(&data.callee_span)
998         //     && !data.imported {
999         //     self.mac_defs.insert(data.callee_span);
1000         //     if let Some(sub_span) = self.span.span_for_macro_def_name(data.callee_span) {
1001         //         self.dumper.macro_data(MacroData {
1002         //             span: sub_span,
1003         //             name: data.name.clone(),
1004         //             qualname: qualname.clone(),
1005         //             // FIXME where do macro docs come from?
1006         //             docs: String::new(),
1007         //         }.lower(self.tcx));
1008         //     }
1009         // }
1010     }
1011
1012     fn process_trait_item(&mut self, trait_item: &'l ast::TraitItem, trait_id: DefId) {
1013         self.process_macro_use(trait_item.span);
1014         match trait_item.node {
1015             ast::TraitItemKind::Const(ref ty, ref expr) => {
1016                 self.process_assoc_const(trait_item.id,
1017                                          trait_item.ident.name,
1018                                          trait_item.span,
1019                                          &ty,
1020                                          expr.as_ref().map(|e| &**e),
1021                                          trait_id,
1022                                          ast::Visibility::Public,
1023                                          &trait_item.attrs);
1024             }
1025             ast::TraitItemKind::Method(ref sig, ref body) => {
1026                 self.process_method(sig,
1027                                     body.as_ref().map(|x| &**x),
1028                                     trait_item.id,
1029                                     trait_item.ident,
1030                                     ast::Visibility::Public,
1031                                     trait_item.span);
1032             }
1033             ast::TraitItemKind::Type(ref bounds, ref default_ty) => {
1034                 // FIXME do something with _bounds (for type refs)
1035                 let name = trait_item.ident.name.to_string();
1036                 let qualname = format!("::{}", self.tcx.node_path_str(trait_item.id));
1037                 let sub_span = self.span.sub_span_after_keyword(trait_item.span, keywords::Type);
1038
1039                 if !self.span.filter_generated(sub_span, trait_item.span) {
1040                     let span = self.span_from_span(sub_span.expect("No span found for assoc type"));
1041                     let id = ::id_from_node_id(trait_item.id, &self.save_ctxt);
1042
1043                     self.dumper.dump_def(true, Def {
1044                         kind: DefKind::Type,
1045                         id,
1046                         span,
1047                         name,
1048                         qualname,
1049                         value: self.span.snippet(trait_item.span),
1050                         parent: Some(::id_from_def_id(trait_id)),
1051                         children: vec![],
1052                         decl_id: None,
1053                         docs: self.save_ctxt.docs_for_attrs(&trait_item.attrs),
1054                         sig: sig::assoc_type_signature(trait_item.id,
1055                                                        trait_item.ident,
1056                                                        Some(bounds),
1057                                                        default_ty.as_ref().map(|ty| &**ty),
1058                                                        &self.save_ctxt),
1059                         attributes: lower_attributes(trait_item.attrs.clone(), &self.save_ctxt),
1060                     });
1061                 }
1062
1063                 if let &Some(ref default_ty) = default_ty {
1064                     self.visit_ty(default_ty)
1065                 }
1066             }
1067             ast::TraitItemKind::Macro(_) => {}
1068         }
1069     }
1070
1071     fn process_impl_item(&mut self, impl_item: &'l ast::ImplItem, impl_id: DefId) {
1072         self.process_macro_use(impl_item.span);
1073         match impl_item.node {
1074             ast::ImplItemKind::Const(ref ty, ref expr) => {
1075                 self.process_assoc_const(impl_item.id,
1076                                          impl_item.ident.name,
1077                                          impl_item.span,
1078                                          &ty,
1079                                          Some(expr),
1080                                          impl_id,
1081                                          impl_item.vis.clone(),
1082                                          &impl_item.attrs);
1083             }
1084             ast::ImplItemKind::Method(ref sig, ref body) => {
1085                 self.process_method(sig,
1086                                     Some(body),
1087                                     impl_item.id,
1088                                     impl_item.ident,
1089                                     impl_item.vis.clone(),
1090                                     impl_item.span);
1091             }
1092             ast::ImplItemKind::Type(ref ty) => {
1093                 // FIXME uses of the assoc type should ideally point to this
1094                 // 'def' and the name here should be a ref to the def in the
1095                 // trait.
1096                 self.visit_ty(ty)
1097             }
1098             ast::ImplItemKind::Macro(_) => {}
1099         }
1100     }
1101 }
1102
1103 impl<'l, 'tcx: 'l, 'll, O: DumpOutput + 'll> Visitor<'l> for DumpVisitor<'l, 'tcx, 'll, O> {
1104     fn visit_mod(&mut self, m: &'l ast::Mod, span: Span, attrs: &[ast::Attribute], id: NodeId) {
1105         // Since we handle explicit modules ourselves in visit_item, this should
1106         // only get called for the root module of a crate.
1107         assert_eq!(id, ast::CRATE_NODE_ID);
1108
1109         let qualname = format!("::{}", self.tcx.node_path_str(id));
1110
1111         let cm = self.tcx.sess.codemap();
1112         let filename = cm.span_to_filename(span);
1113         let data_id = ::id_from_node_id(id, &self.save_ctxt);
1114         let children = m.items.iter().map(|i| ::id_from_node_id(i.id, &self.save_ctxt)).collect();
1115         let span = self.span_from_span(span);
1116
1117         self.dumper.dump_def(true, Def {
1118             kind: DefKind::Mod,
1119             id: data_id,
1120             name: String::new(),
1121             qualname,
1122             span,
1123             value: filename,
1124             children,
1125             parent: None,
1126             decl_id: None,
1127             docs: self.save_ctxt.docs_for_attrs(attrs),
1128             sig: None,
1129             attributes: lower_attributes(attrs.to_owned(), &self.save_ctxt),
1130         });
1131         self.nest_scope(id, |v| visit::walk_mod(v, m));
1132     }
1133
1134     fn visit_item(&mut self, item: &'l ast::Item) {
1135         use syntax::ast::ItemKind::*;
1136         self.process_macro_use(item.span);
1137         match item.node {
1138             Use(ref use_item) => {
1139                 match use_item.node {
1140                     ast::ViewPathSimple(ident, ref path) => {
1141                         let sub_span = self.span.span_for_last_ident(path.span);
1142                         let mod_id = match self.lookup_def_id(item.id) {
1143                             Some(def_id) => {
1144                                 self.process_def_kind(item.id, path.span, sub_span, def_id);
1145                                 Some(def_id)
1146                             }
1147                             None => None,
1148                         };
1149
1150                         // 'use' always introduces an alias, if there is not an explicit
1151                         // one, there is an implicit one.
1152                         let sub_span = match self.span.sub_span_after_keyword(use_item.span,
1153                                                                               keywords::As) {
1154                             Some(sub_span) => Some(sub_span),
1155                             None => sub_span,
1156                         };
1157
1158                         if !self.span.filter_generated(sub_span, path.span) {
1159                             let span =
1160                                 self.span_from_span(sub_span.expect("No span found for use"));
1161                             self.dumper.import(item.vis == ast::Visibility::Public, Import {
1162                                 kind: ImportKind::Use,
1163                                 ref_id: mod_id.map(|id| ::id_from_def_id(id)),
1164                                 span,
1165                                 name: ident.to_string(),
1166                                 value: String::new(),
1167                             });
1168                         }
1169                         self.write_sub_paths_truncated(path);
1170                     }
1171                     ast::ViewPathGlob(ref path) => {
1172                         // Make a comma-separated list of names of imported modules.
1173                         let mut names = vec![];
1174                         let glob_map = &self.save_ctxt.analysis.glob_map;
1175                         let glob_map = glob_map.as_ref().unwrap();
1176                         if glob_map.contains_key(&item.id) {
1177                             for n in glob_map.get(&item.id).unwrap() {
1178                                 names.push(n.to_string());
1179                             }
1180                         }
1181
1182                         let sub_span = self.span
1183                                            .sub_span_of_token(item.span, token::BinOp(token::Star));
1184                         if !self.span.filter_generated(sub_span, item.span) {
1185                             let span =
1186                                 self.span_from_span(sub_span.expect("No span found for use glob"));
1187                             self.dumper.import(item.vis == ast::Visibility::Public, Import {
1188                                 kind: ImportKind::GlobUse,
1189                                 ref_id: None,
1190                                 span,
1191                                 name: "*".to_owned(),
1192                                 value: names.join(", "),
1193                             });
1194                         }
1195                         self.write_sub_paths(path);
1196                     }
1197                     ast::ViewPathList(ref path, ref list) => {
1198                         for plid in list {
1199                             let id = plid.node.id;
1200                             if let Some(def_id) = self.lookup_def_id(id) {
1201                                 let span = plid.span;
1202                                 self.process_def_kind(id, span, Some(span), def_id);
1203                             }
1204                         }
1205
1206                         self.write_sub_paths(path);
1207                     }
1208                 }
1209             }
1210             ExternCrate(_) => {
1211                 let alias_span = self.span.span_for_last_ident(item.span);
1212
1213                 if !self.span.filter_generated(alias_span, item.span) {
1214                     let span =
1215                         self.span_from_span(alias_span.expect("No span found for extern crate"));
1216                     self.dumper.import(false, Import {
1217                         kind: ImportKind::ExternCrate,
1218                         ref_id: None,
1219                         span,
1220                         name: item.ident.to_string(),
1221                         value: String::new(),
1222                     });
1223                 }
1224             }
1225             Fn(ref decl, .., ref ty_params, ref body) =>
1226                 self.process_fn(item, &decl, ty_params, &body),
1227             Static(ref typ, _, ref expr) =>
1228                 self.process_static_or_const_item(item, typ, expr),
1229             Const(ref typ, ref expr) =>
1230                 self.process_static_or_const_item(item, &typ, &expr),
1231             Struct(ref def, ref ty_params) => self.process_struct(item, def, ty_params),
1232             Enum(ref def, ref ty_params) => self.process_enum(item, def, ty_params),
1233             Impl(..,
1234                  ref ty_params,
1235                  ref trait_ref,
1236                  ref typ,
1237                  ref impl_items) => {
1238                 self.process_impl(item, ty_params, trait_ref, &typ, impl_items)
1239             }
1240             Trait(_, ref generics, ref trait_refs, ref methods) =>
1241                 self.process_trait(item, generics, trait_refs, methods),
1242             Mod(ref m) => {
1243                 self.process_mod(item);
1244                 self.nest_scope(item.id, |v| visit::walk_mod(v, m));
1245             }
1246             Ty(ref ty, ref ty_params) => {
1247                 let qualname = format!("::{}", self.tcx.node_path_str(item.id));
1248                 let value = ty_to_string(&ty);
1249                 let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Type);
1250                 if !self.span.filter_generated(sub_span, item.span) {
1251                     let span = self.span_from_span(sub_span.expect("No span found for typedef"));
1252                     let id = ::id_from_node_id(item.id, &self.save_ctxt);
1253
1254                     self.dumper.dump_def(item.vis == ast::Visibility::Public, Def {
1255                         kind: DefKind::Type,
1256                         id,
1257                         span,
1258                         name: item.ident.to_string(),
1259                         qualname: qualname.clone(),
1260                         value,
1261                         parent: None,
1262                         children: vec![],
1263                         decl_id: None,
1264                         docs: self.save_ctxt.docs_for_attrs(&item.attrs),
1265                         sig: sig::item_signature(item, &self.save_ctxt),
1266                         attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt),
1267                     });
1268                 }
1269
1270                 self.visit_ty(&ty);
1271                 self.process_generic_params(ty_params, item.span, &qualname, item.id);
1272             }
1273             Mac(_) => (),
1274             _ => visit::walk_item(self, item),
1275         }
1276     }
1277
1278     fn visit_generics(&mut self, generics: &'l ast::Generics) {
1279         for param in generics.ty_params.iter() {
1280             for bound in param.bounds.iter() {
1281                 if let ast::TraitTyParamBound(ref trait_ref, _) = *bound {
1282                     self.process_trait_ref(&trait_ref.trait_ref);
1283                 }
1284             }
1285             if let Some(ref ty) = param.default {
1286                 self.visit_ty(&ty);
1287             }
1288         }
1289     }
1290
1291     fn visit_ty(&mut self, t: &'l ast::Ty) {
1292         self.process_macro_use(t.span);
1293         match t.node {
1294             ast::TyKind::Path(_, ref path) => {
1295                 if generated_code(t.span) {
1296                     return;
1297                 }
1298
1299                 if let Some(id) = self.lookup_def_id(t.id) {
1300                     if let Some(sub_span) = self.span.sub_span_for_type_name(t.span) {
1301                         let span = self.span_from_span(sub_span);
1302                         self.dumper.dump_ref(Ref {
1303                             kind: RefKind::Type,
1304                             span,
1305                             ref_id: ::id_from_def_id(id),
1306                         });
1307                     }
1308                 }
1309
1310                 self.write_sub_paths_truncated(path);
1311                 visit::walk_path(self, path);
1312             }
1313             ast::TyKind::Array(ref element, ref length) => {
1314                 self.visit_ty(element);
1315                 self.nest_tables(length.id, |v| v.visit_expr(length));
1316             }
1317             _ => visit::walk_ty(self, t),
1318         }
1319     }
1320
1321     fn visit_expr(&mut self, ex: &'l ast::Expr) {
1322         debug!("visit_expr {:?}", ex.node);
1323         self.process_macro_use(ex.span);
1324         match ex.node {
1325             ast::ExprKind::Struct(ref path, ref fields, ref base) => {
1326                 let hir_expr = self.save_ctxt.tcx.hir.expect_expr(ex.id);
1327                 let adt = match self.save_ctxt.tables.expr_ty_opt(&hir_expr) {
1328                     Some(ty) if ty.ty_adt_def().is_some() => ty.ty_adt_def().unwrap(),
1329                     _ => {
1330                         visit::walk_expr(self, ex);
1331                         return;
1332                     }
1333                 };
1334                 let def = self.save_ctxt.get_path_def(hir_expr.id);
1335                 self.process_struct_lit(ex, path, fields, adt.variant_of_def(def), base)
1336             }
1337             ast::ExprKind::MethodCall(.., ref args) => self.process_method_call(ex, args),
1338             ast::ExprKind::Field(ref sub_ex, _) => {
1339                 self.visit_expr(&sub_ex);
1340
1341                 if let Some(field_data) = self.save_ctxt.get_expr_data(ex) {
1342                     down_cast_data!(field_data, RefData, ex.span);
1343                     if !generated_code(ex.span) {
1344                         self.dumper.dump_ref(field_data);
1345                     }
1346                 }
1347             }
1348             ast::ExprKind::TupField(ref sub_ex, idx) => {
1349                 self.visit_expr(&sub_ex);
1350
1351                 let hir_node = match self.save_ctxt.tcx.hir.find(sub_ex.id) {
1352                     Some(Node::NodeExpr(expr)) => expr,
1353                     _ => {
1354                         debug!("Missing or weird node for sub-expression {} in {:?}",
1355                                sub_ex.id, ex);
1356                         return;
1357                     }
1358                 };
1359                 let ty = match self.save_ctxt.tables.expr_ty_adjusted_opt(&hir_node) {
1360                     Some(ty) => &ty.sty,
1361                     None => {
1362                         visit::walk_expr(self, ex);
1363                         return;
1364                     }
1365                 };
1366                 match *ty {
1367                     ty::TyAdt(def, _) => {
1368                         let sub_span = self.span.sub_span_after_token(ex.span, token::Dot);
1369                         if !self.span.filter_generated(sub_span, ex.span) {
1370                             let span =
1371                                 self.span_from_span(sub_span.expect("No span found for var ref"));
1372                             self.dumper.dump_ref(Ref {
1373                                 kind: RefKind::Variable,
1374                                 span: span,
1375                                 ref_id: ::id_from_def_id(def.struct_variant().fields[idx.node].did),
1376                             });
1377                         }
1378                     }
1379                     ty::TyTuple(..) => {}
1380                     _ => span_bug!(ex.span,
1381                                    "Expected struct or tuple type, found {:?}",
1382                                    ty),
1383                 }
1384             }
1385             ast::ExprKind::Closure(_, ref decl, ref body, _fn_decl_span) => {
1386                 let mut id = String::from("$");
1387                 id.push_str(&ex.id.to_string());
1388
1389                 // walk arg and return types
1390                 for arg in &decl.inputs {
1391                     self.visit_ty(&arg.ty);
1392                 }
1393
1394                 if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output {
1395                     self.visit_ty(&ret_ty);
1396                 }
1397
1398                 // walk the body
1399                 self.nest_tables(ex.id, |v| {
1400                     v.process_formals(&decl.inputs, &id);
1401                     v.nest_scope(ex.id, |v| v.visit_expr(body))
1402                 });
1403             }
1404             ast::ExprKind::ForLoop(ref pattern, ref subexpression, ref block, _) |
1405             ast::ExprKind::WhileLet(ref pattern, ref subexpression, ref block, _) => {
1406                 let value = self.span.snippet(subexpression.span);
1407                 self.process_var_decl(pattern, value);
1408                 debug!("for loop, walk sub-expr: {:?}", subexpression.node);
1409                 visit::walk_expr(self, subexpression);
1410                 visit::walk_block(self, block);
1411             }
1412             ast::ExprKind::IfLet(ref pattern, ref subexpression, ref block, ref opt_else) => {
1413                 let value = self.span.snippet(subexpression.span);
1414                 self.process_var_decl(pattern, value);
1415                 visit::walk_expr(self, subexpression);
1416                 visit::walk_block(self, block);
1417                 opt_else.as_ref().map(|el| visit::walk_expr(self, el));
1418             }
1419             ast::ExprKind::Repeat(ref element, ref count) => {
1420                 self.visit_expr(element);
1421                 self.nest_tables(count.id, |v| v.visit_expr(count));
1422             }
1423             // In particular, we take this branch for call and path expressions,
1424             // where we'll index the idents involved just by continuing to walk.
1425             _ => {
1426                 visit::walk_expr(self, ex)
1427             }
1428         }
1429     }
1430
1431     fn visit_mac(&mut self, mac: &'l ast::Mac) {
1432         // These shouldn't exist in the AST at this point, log a span bug.
1433         span_bug!(mac.span, "macro invocation should have been expanded out of AST");
1434     }
1435
1436     fn visit_pat(&mut self, p: &'l ast::Pat) {
1437         self.process_macro_use(p.span);
1438         self.process_pat(p);
1439     }
1440
1441     fn visit_arm(&mut self, arm: &'l ast::Arm) {
1442         let mut collector = PathCollector::new();
1443         for pattern in &arm.pats {
1444             // collect paths from the arm's patterns
1445             collector.visit_pat(&pattern);
1446             self.visit_pat(&pattern);
1447         }
1448
1449         // This is to get around borrow checking, because we need mut self to call process_path.
1450         let mut paths_to_process = vec![];
1451
1452         // process collected paths
1453         for &(id, ref p, immut) in &collector.collected_paths {
1454             match self.save_ctxt.get_path_def(id) {
1455                 HirDef::Local(def_id) => {
1456                     let id = self.tcx.hir.as_local_node_id(def_id).unwrap();
1457                     let mut value = if immut == ast::Mutability::Immutable {
1458                         self.span.snippet(p.span).to_string()
1459                     } else {
1460                         "<mutable>".to_string()
1461                     };
1462                     let typ = self.save_ctxt.tables.node_types
1463                                   .get(&id).map(|t| t.to_string()).unwrap_or(String::new());
1464                     value.push_str(": ");
1465                     value.push_str(&typ);
1466
1467                     assert!(p.segments.len() == 1,
1468                             "qualified path for local variable def in arm");
1469                     if !self.span.filter_generated(Some(p.span), p.span) {
1470                         let qualname = format!("{}${}", path_to_string(p), id);
1471                         let id = ::id_from_node_id(id, &self.save_ctxt);
1472                         let span = self.span_from_span(p.span);
1473
1474                         self.dumper.dump_def(false, Def {
1475                             kind: DefKind::Local,
1476                             id,
1477                             span,
1478                             name: path_to_string(p),
1479                             qualname,
1480                             value: typ,
1481                             parent: None,
1482                             children: vec![],
1483                             decl_id: None,
1484                             docs: String::new(),
1485                             sig: None,
1486                             attributes:vec![],
1487                         });
1488                     }
1489                 }
1490                 HirDef::StructCtor(..) | HirDef::VariantCtor(..) |
1491                 HirDef::Const(..) | HirDef::AssociatedConst(..) |
1492                 HirDef::Struct(..) | HirDef::Variant(..) |
1493                 HirDef::TyAlias(..) | HirDef::AssociatedTy(..) |
1494                 HirDef::SelfTy(..) => {
1495                     paths_to_process.push((id, p.clone()))
1496                 }
1497                 def => error!("unexpected definition kind when processing collected paths: {:?}",
1498                               def),
1499             }
1500         }
1501
1502         for &(id, ref path) in &paths_to_process {
1503             self.process_path(id, path);
1504         }
1505         walk_list!(self, visit_expr, &arm.guard);
1506         self.visit_expr(&arm.body);
1507     }
1508
1509     fn visit_path(&mut self, p: &'l ast::Path, id: NodeId) {
1510         self.process_path(id, p);
1511     }
1512
1513     fn visit_stmt(&mut self, s: &'l ast::Stmt) {
1514         self.process_macro_use(s.span);
1515         visit::walk_stmt(self, s)
1516     }
1517
1518     fn visit_local(&mut self, l: &'l ast::Local) {
1519         self.process_macro_use(l.span);
1520         let value = l.init.as_ref().map(|i| self.span.snippet(i.span)).unwrap_or(String::new());
1521         self.process_var_decl(&l.pat, value);
1522
1523         // Just walk the initialiser and type (don't want to walk the pattern again).
1524         walk_list!(self, visit_ty, &l.ty);
1525         walk_list!(self, visit_expr, &l.init);
1526     }
1527
1528     fn visit_foreign_item(&mut self, item: &'l ast::ForeignItem) {
1529         match item.node {
1530             ast::ForeignItemKind::Fn(ref decl, ref generics) => {
1531                 if let Some(fn_data) = self.save_ctxt.get_extern_item_data(item) {
1532                     down_cast_data!(fn_data, DefData, item.span);
1533
1534                     self.nest_tables(item.id, |v| v.process_formals(&decl.inputs,
1535                                                                     &fn_data.qualname));
1536                     self.process_generic_params(generics, item.span, &fn_data.qualname, item.id);
1537                     self.dumper.dump_def(item.vis == ast::Visibility::Public, fn_data);
1538                 }
1539
1540                 for arg in &decl.inputs {
1541                     self.visit_ty(&arg.ty);
1542                 }
1543
1544                 if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output {
1545                     self.visit_ty(&ret_ty);
1546                 }
1547             }
1548             ast::ForeignItemKind::Static(ref ty, _) => {
1549                 if let Some(var_data) = self.save_ctxt.get_extern_item_data(item) {
1550                     down_cast_data!(var_data, DefData, item.span);
1551                     self.dumper.dump_def(item.vis == ast::Visibility::Public, var_data);
1552                 }
1553
1554                 self.visit_ty(ty);
1555             }
1556         }
1557     }
1558 }