]> git.lizzy.rs Git - rust.git/blob - src/librustc_save_analysis/dump_visitor.rs
Auto merge of #53133 - Zoxc:gen-int, r=eddyb
[rust.git] / src / librustc_save_analysis / dump_visitor.rs
1 // Copyright 2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Write the output of rustc's analysis to an implementor of Dump.
12 //!
13 //! Dumping the analysis is implemented by walking the AST and getting a bunch of
14 //! info out from all over the place. We use Def IDs to identify objects. The
15 //! tricky part is getting syntactic (span, source text) and semantic (reference
16 //! Def IDs) information for parts of expressions which the compiler has discarded.
17 //! E.g., in a path `foo::bar::baz`, the compiler only keeps a span for the whole
18 //! path and a reference to `baz`, but we want spans and references for all three
19 //! idents.
20 //!
21 //! SpanUtils is used to manipulate spans. In particular, to extract sub-spans
22 //! from spans (e.g., the span for `bar` from the above example path).
23 //! DumpVisitor walks the AST and processes it, and JsonDumper is used for
24 //! recording the output.
25
26 use rustc::hir::def::Def as HirDef;
27 use rustc::hir::def_id::DefId;
28 use rustc::ty::{self, TyCtxt};
29 use rustc_data_structures::fx::FxHashSet;
30
31 use std::path::Path;
32
33 use syntax::ast::{self, Attribute, NodeId, PatKind, CRATE_NODE_ID};
34 use syntax::parse::token;
35 use syntax::symbol::keywords;
36 use syntax::visit::{self, Visitor};
37 use syntax::print::pprust::{
38     bounds_to_string,
39     generic_params_to_string,
40     path_to_string,
41     ty_to_string
42 };
43 use syntax::ptr::P;
44 use syntax::codemap::{Spanned, DUMMY_SP, respan};
45 use syntax_pos::*;
46
47 use {escape, generated_code, lower_attributes, PathCollector, SaveContext};
48 use json_dumper::{Access, DumpOutput, JsonDumper};
49 use span_utils::SpanUtils;
50 use sig;
51
52 use rls_data::{CratePreludeData, Def, DefKind, GlobalCrateId, Import, ImportKind, Ref, RefKind,
53                Relation, RelationKind, SpanData};
54
55 macro_rules! down_cast_data {
56     ($id:ident, $kind:ident, $sp:expr) => {
57         let $id = if let super::Data::$kind(data) = $id {
58             data
59         } else {
60             span_bug!($sp, "unexpected data kind: {:?}", $id);
61         };
62     };
63 }
64
65 macro_rules! access_from {
66     ($save_ctxt:expr, $vis:expr, $id:expr) => {
67         Access {
68             public: $vis.node.is_pub(),
69             reachable: $save_ctxt.analysis.access_levels.is_reachable($id),
70         }
71     };
72
73     ($save_ctxt:expr, $item:expr) => {
74         Access {
75             public: $item.vis.node.is_pub(),
76             reachable: $save_ctxt.analysis.access_levels.is_reachable($item.id),
77         }
78     };
79 }
80
81 pub struct DumpVisitor<'l, 'tcx: 'l, 'll, O: DumpOutput + 'll> {
82     save_ctxt: SaveContext<'l, 'tcx>,
83     tcx: TyCtxt<'l, 'tcx, 'tcx>,
84     dumper: &'ll mut JsonDumper<O>,
85
86     span: SpanUtils<'l>,
87
88     cur_scope: NodeId,
89
90     // Set of macro definition (callee) spans, and the set
91     // of macro use (callsite) spans. We store these to ensure
92     // we only write one macro def per unique macro definition, and
93     // one macro use per unique callsite span.
94     // mac_defs: HashSet<Span>,
95     macro_calls: FxHashSet<Span>,
96 }
97
98 impl<'l, 'tcx: 'l, 'll, O: DumpOutput + 'll> DumpVisitor<'l, 'tcx, 'll, O> {
99     pub fn new(
100         save_ctxt: SaveContext<'l, 'tcx>,
101         dumper: &'ll mut JsonDumper<O>,
102     ) -> DumpVisitor<'l, 'tcx, 'll, O> {
103         let span_utils = SpanUtils::new(&save_ctxt.tcx.sess);
104         DumpVisitor {
105             tcx: save_ctxt.tcx,
106             save_ctxt,
107             dumper,
108             span: span_utils.clone(),
109             cur_scope: CRATE_NODE_ID,
110             // mac_defs: HashSet::new(),
111             macro_calls: FxHashSet(),
112         }
113     }
114
115     fn nest_scope<F>(&mut self, scope_id: NodeId, f: F)
116     where
117         F: FnOnce(&mut DumpVisitor<'l, 'tcx, 'll, O>),
118     {
119         let parent_scope = self.cur_scope;
120         self.cur_scope = scope_id;
121         f(self);
122         self.cur_scope = parent_scope;
123     }
124
125     fn nest_tables<F>(&mut self, item_id: NodeId, f: F)
126     where
127         F: FnOnce(&mut DumpVisitor<'l, 'tcx, 'll, O>),
128     {
129         let item_def_id = self.tcx.hir.local_def_id(item_id);
130         if self.tcx.has_typeck_tables(item_def_id) {
131             let tables = self.tcx.typeck_tables_of(item_def_id);
132             let old_tables = self.save_ctxt.tables;
133             self.save_ctxt.tables = tables;
134             f(self);
135             self.save_ctxt.tables = old_tables;
136         } else {
137             f(self);
138         }
139     }
140
141     fn span_from_span(&self, span: Span) -> SpanData {
142         self.save_ctxt.span_from_span(span)
143     }
144
145     pub fn dump_crate_info(&mut self, name: &str, krate: &ast::Crate) {
146         let source_file = self.tcx.sess.local_crate_source_file.as_ref();
147         let crate_root = source_file.map(|source_file| {
148             let source_file = Path::new(source_file);
149             match source_file.file_name() {
150                 Some(_) => source_file.parent().unwrap().display().to_string(),
151                 None => source_file.display().to_string(),
152             }
153         });
154
155         let data = CratePreludeData {
156             crate_id: GlobalCrateId {
157                 name: name.into(),
158                 disambiguator: self.tcx
159                     .sess
160                     .local_crate_disambiguator()
161                     .to_fingerprint()
162                     .as_value(),
163             },
164             crate_root: crate_root.unwrap_or("<no source>".to_owned()),
165             external_crates: self.save_ctxt.get_external_crates(),
166             span: self.span_from_span(krate.span),
167         };
168
169         self.dumper.crate_prelude(data);
170     }
171
172     // Return all non-empty prefixes of a path.
173     // For each prefix, we return the span for the last segment in the prefix and
174     // a str representation of the entire prefix.
175     fn process_path_prefixes(&self, path: &ast::Path) -> Vec<(Span, String)> {
176         let segments = &path.segments[if path.is_global() { 1 } else { 0 }..];
177
178         let mut result = Vec::with_capacity(segments.len());
179
180         let mut segs = vec![];
181         for (i, seg) in segments.iter().enumerate() {
182             segs.push(seg.clone());
183             let sub_path = ast::Path {
184                 span: seg.ident.span, // span for the last segment
185                 segments: segs,
186             };
187             let qualname = if i == 0 && path.is_global() {
188                 format!("::{}", path_to_string(&sub_path))
189             } else {
190                 path_to_string(&sub_path)
191             };
192             result.push((seg.ident.span, qualname));
193             segs = sub_path.segments;
194         }
195
196         result
197     }
198
199     fn write_sub_paths(&mut self, path: &ast::Path) {
200         let sub_paths = self.process_path_prefixes(path);
201         for (span, _) in sub_paths {
202             let span = self.span_from_span(span);
203             self.dumper.dump_ref(Ref {
204                 kind: RefKind::Mod,
205                 span,
206                 ref_id: ::null_id(),
207             });
208         }
209     }
210
211     // As write_sub_paths, but does not process the last ident in the path (assuming it
212     // will be processed elsewhere). See note on write_sub_paths about global.
213     fn write_sub_paths_truncated(&mut self, path: &ast::Path) {
214         let sub_paths = self.process_path_prefixes(path);
215         let len = sub_paths.len();
216         if len <= 1 {
217             return;
218         }
219
220         for (span, _) in sub_paths.into_iter().take(len - 1) {
221             let span = self.span_from_span(span);
222             self.dumper.dump_ref(Ref {
223                 kind: RefKind::Mod,
224                 span,
225                 ref_id: ::null_id(),
226             });
227         }
228     }
229
230     // As write_sub_paths, but expects a path of the form module_path::trait::method
231     // Where trait could actually be a struct too.
232     fn write_sub_path_trait_truncated(&mut self, path: &ast::Path) {
233         let sub_paths = self.process_path_prefixes(path);
234         let len = sub_paths.len();
235         if len <= 1 {
236             return;
237         }
238         let sub_paths = &sub_paths[..(len - 1)];
239
240         // write the trait part of the sub-path
241         let (ref span, _) = sub_paths[len - 2];
242         let span = self.span_from_span(*span);
243         self.dumper.dump_ref(Ref {
244             kind: RefKind::Type,
245             ref_id: ::null_id(),
246             span,
247         });
248
249         // write the other sub-paths
250         if len <= 2 {
251             return;
252         }
253         let sub_paths = &sub_paths[..len - 2];
254         for &(ref span, _) in sub_paths {
255             let span = self.span_from_span(*span);
256             self.dumper.dump_ref(Ref {
257                 kind: RefKind::Mod,
258                 span,
259                 ref_id: ::null_id(),
260             });
261         }
262     }
263
264     fn lookup_def_id(&self, ref_id: NodeId) -> Option<DefId> {
265         match self.save_ctxt.get_path_def(ref_id) {
266             HirDef::PrimTy(..) | HirDef::SelfTy(..) | HirDef::Err => None,
267             def => Some(def.def_id()),
268         }
269     }
270
271     fn process_formals(&mut self, formals: &'l [ast::Arg], qualname: &str) {
272         for arg in formals {
273             self.visit_pat(&arg.pat);
274             let mut collector = PathCollector::new();
275             collector.visit_pat(&arg.pat);
276             let span_utils = self.span.clone();
277
278             for (id, ident, ..) in collector.collected_idents {
279                 let hir_id = self.tcx.hir.node_to_hir_id(id);
280                 let typ = match self.save_ctxt.tables.node_id_to_type_opt(hir_id) {
281                     Some(s) => s.to_string(),
282                     None => continue,
283                 };
284                 let sub_span = span_utils.span_for_last_ident(ident.span);
285                 if !self.span.filter_generated(sub_span, ident.span) {
286                     let id = ::id_from_node_id(id, &self.save_ctxt);
287                     let span = self.span_from_span(sub_span.expect("No span found for variable"));
288
289                     self.dumper.dump_def(
290                         &Access {
291                             public: false,
292                             reachable: false,
293                         },
294                         Def {
295                             kind: DefKind::Local,
296                             id,
297                             span,
298                             name: ident.to_string(),
299                             qualname: format!("{}::{}", qualname, ident.to_string()),
300                             value: typ,
301                             parent: None,
302                             children: vec![],
303                             decl_id: None,
304                             docs: String::new(),
305                             sig: None,
306                             attributes: vec![],
307                         },
308                     );
309                 }
310             }
311         }
312     }
313
314     fn process_method(
315         &mut self,
316         sig: &'l ast::MethodSig,
317         body: Option<&'l ast::Block>,
318         id: ast::NodeId,
319         ident: ast::Ident,
320         generics: &'l ast::Generics,
321         vis: ast::Visibility,
322         span: Span,
323     ) {
324         debug!("process_method: {}:{}", id, ident);
325
326         if let Some(mut method_data) = self.save_ctxt.get_method_data(id, ident.name, span) {
327             let sig_str = ::make_signature(&sig.decl, &generics);
328             if body.is_some() {
329                 self.nest_tables(
330                     id,
331                     |v| v.process_formals(&sig.decl.inputs, &method_data.qualname),
332                 );
333             }
334
335             self.process_generic_params(&generics, span, &method_data.qualname, id);
336
337             method_data.value = sig_str;
338             method_data.sig = sig::method_signature(id, ident, generics, sig, &self.save_ctxt);
339             self.dumper.dump_def(&access_from!(self.save_ctxt, vis, id), method_data);
340         }
341
342         // walk arg and return types
343         for arg in &sig.decl.inputs {
344             self.visit_ty(&arg.ty);
345         }
346
347         if let ast::FunctionRetTy::Ty(ref ret_ty) = sig.decl.output {
348             self.visit_ty(ret_ty);
349         }
350
351         // walk the fn body
352         if let Some(body) = body {
353             self.nest_tables(id, |v| v.nest_scope(id, |v| v.visit_block(body)));
354         }
355     }
356
357     fn process_struct_field_def(&mut self, field: &ast::StructField, parent_id: NodeId) {
358         let field_data = self.save_ctxt.get_field_data(field, parent_id);
359         if let Some(field_data) = field_data {
360             self.dumper.dump_def(&access_from!(self.save_ctxt, field), field_data);
361         }
362     }
363
364     // Dump generic params bindings, then visit_generics
365     fn process_generic_params(
366         &mut self,
367         generics: &'l ast::Generics,
368         full_span: Span,
369         prefix: &str,
370         id: NodeId,
371     ) {
372         for param in &generics.params {
373             match param.kind {
374                 ast::GenericParamKind::Lifetime { .. } => {}
375                 ast::GenericParamKind::Type { .. } => {
376                     let param_ss = param.ident.span;
377                     let name = escape(self.span.snippet(param_ss));
378                     // Append $id to name to make sure each one is unique.
379                     let qualname = format!("{}::{}${}", prefix, name, id);
380                     if !self.span.filter_generated(Some(param_ss), full_span) {
381                         let id = ::id_from_node_id(param.id, &self.save_ctxt);
382                         let span = self.span_from_span(param_ss);
383
384                         self.dumper.dump_def(
385                             &Access {
386                                 public: false,
387                                 reachable: false,
388                             },
389                             Def {
390                                 kind: DefKind::Type,
391                                 id,
392                                 span,
393                                 name,
394                                 qualname,
395                                 value: String::new(),
396                                 parent: None,
397                                 children: vec![],
398                                 decl_id: None,
399                                 docs: String::new(),
400                                 sig: None,
401                                 attributes: vec![],
402                             },
403                         );
404                     }
405                 }
406             }
407         }
408         self.visit_generics(generics);
409     }
410
411     fn process_fn(
412         &mut self,
413         item: &'l ast::Item,
414         decl: &'l ast::FnDecl,
415         ty_params: &'l ast::Generics,
416         body: &'l ast::Block,
417     ) {
418         if let Some(fn_data) = self.save_ctxt.get_item_data(item) {
419             down_cast_data!(fn_data, DefData, item.span);
420             self.nest_tables(
421                 item.id,
422                 |v| v.process_formals(&decl.inputs, &fn_data.qualname),
423             );
424             self.process_generic_params(ty_params, item.span, &fn_data.qualname, item.id);
425             self.dumper.dump_def(&access_from!(self.save_ctxt, item), fn_data);
426         }
427
428         for arg in &decl.inputs {
429             self.visit_ty(&arg.ty);
430         }
431
432         if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output {
433             self.visit_ty(&ret_ty);
434         }
435
436         self.nest_tables(item.id, |v| v.nest_scope(item.id, |v| v.visit_block(&body)));
437     }
438
439     fn process_static_or_const_item(
440         &mut self,
441         item: &'l ast::Item,
442         typ: &'l ast::Ty,
443         expr: &'l ast::Expr,
444     ) {
445         self.nest_tables(item.id, |v| {
446             if let Some(var_data) = v.save_ctxt.get_item_data(item) {
447                 down_cast_data!(var_data, DefData, item.span);
448                 v.dumper.dump_def(&access_from!(v.save_ctxt, item), var_data);
449             }
450             v.visit_ty(&typ);
451             v.visit_expr(expr);
452         });
453     }
454
455     fn process_assoc_const(
456         &mut self,
457         id: ast::NodeId,
458         name: ast::Name,
459         span: Span,
460         typ: &'l ast::Ty,
461         expr: Option<&'l ast::Expr>,
462         parent_id: DefId,
463         vis: ast::Visibility,
464         attrs: &'l [Attribute],
465     ) {
466         let qualname = format!("::{}", self.tcx.node_path_str(id));
467
468         let sub_span = self.span.sub_span_after_keyword(span, keywords::Const);
469
470         if !self.span.filter_generated(sub_span, span) {
471             let sig = sig::assoc_const_signature(id, name, typ, expr, &self.save_ctxt);
472             let span = self.span_from_span(sub_span.expect("No span found for variable"));
473
474             self.dumper.dump_def(
475                 &access_from!(self.save_ctxt, vis, id),
476                 Def {
477                     kind: DefKind::Const,
478                     id: ::id_from_node_id(id, &self.save_ctxt),
479                     span,
480                     name: name.to_string(),
481                     qualname,
482                     value: ty_to_string(&typ),
483                     parent: Some(::id_from_def_id(parent_id)),
484                     children: vec![],
485                     decl_id: None,
486                     docs: self.save_ctxt.docs_for_attrs(attrs),
487                     sig,
488                     attributes: lower_attributes(attrs.to_owned(), &self.save_ctxt),
489                 },
490             );
491         }
492
493         // walk type and init value
494         self.visit_ty(typ);
495         if let Some(expr) = expr {
496             self.visit_expr(expr);
497         }
498     }
499
500     // FIXME tuple structs should generate tuple-specific data.
501     fn process_struct(
502         &mut self,
503         item: &'l ast::Item,
504         def: &'l ast::VariantData,
505         ty_params: &'l ast::Generics,
506     ) {
507         debug!("process_struct {:?} {:?}", item, item.span);
508         let name = item.ident.to_string();
509         let qualname = format!("::{}", self.tcx.node_path_str(item.id));
510
511         let (kind, keyword) = match item.node {
512             ast::ItemKind::Struct(_, _) => (DefKind::Struct, keywords::Struct),
513             ast::ItemKind::Union(_, _) => (DefKind::Union, keywords::Union),
514             _ => unreachable!(),
515         };
516
517         let sub_span = self.span.sub_span_after_keyword(item.span, keyword);
518         let (value, fields) = match item.node {
519             ast::ItemKind::Struct(ast::VariantData::Struct(ref fields, _), _) |
520             ast::ItemKind::Union(ast::VariantData::Struct(ref fields, _), _) => {
521                 let include_priv_fields = !self.save_ctxt.config.pub_only;
522                 let fields_str = fields
523                     .iter()
524                     .enumerate()
525                     .filter_map(|(i, f)| {
526                         if include_priv_fields || f.vis.node.is_pub() {
527                             f.ident
528                                 .map(|i| i.to_string())
529                                 .or_else(|| Some(i.to_string()))
530                         } else {
531                             None
532                         }
533                     })
534                     .collect::<Vec<_>>()
535                     .join(", ");
536                 let value = format!("{} {{ {} }}", name, fields_str);
537                 (
538                     value,
539                     fields
540                         .iter()
541                         .map(|f| ::id_from_node_id(f.id, &self.save_ctxt))
542                         .collect(),
543                 )
544             }
545             _ => (String::new(), vec![]),
546         };
547
548         if !self.span.filter_generated(sub_span, item.span) {
549             let span = self.span_from_span(sub_span.expect("No span found for struct"));
550             self.dumper.dump_def(
551                 &access_from!(self.save_ctxt, item),
552                 Def {
553                     kind,
554                     id: ::id_from_node_id(item.id, &self.save_ctxt),
555                     span,
556                     name,
557                     qualname: qualname.clone(),
558                     value,
559                     parent: None,
560                     children: fields,
561                     decl_id: None,
562                     docs: self.save_ctxt.docs_for_attrs(&item.attrs),
563                     sig: sig::item_signature(item, &self.save_ctxt),
564                     attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt),
565                 },
566             );
567         }
568
569         for field in def.fields() {
570             self.process_struct_field_def(field, item.id);
571             self.visit_ty(&field.ty);
572         }
573
574         self.process_generic_params(ty_params, item.span, &qualname, item.id);
575     }
576
577     fn process_enum(
578         &mut self,
579         item: &'l ast::Item,
580         enum_definition: &'l ast::EnumDef,
581         ty_params: &'l ast::Generics,
582     ) {
583         let enum_data = self.save_ctxt.get_item_data(item);
584         let enum_data = match enum_data {
585             None => return,
586             Some(data) => data,
587         };
588         down_cast_data!(enum_data, DefData, item.span);
589
590         let access = access_from!(self.save_ctxt, item);
591
592         for variant in &enum_definition.variants {
593             let name = variant.node.ident.name.to_string();
594             let mut qualname = enum_data.qualname.clone();
595             qualname.push_str("::");
596             qualname.push_str(&name);
597
598             match variant.node.data {
599                 ast::VariantData::Struct(ref fields, _) => {
600                     let sub_span = self.span.span_for_first_ident(variant.span);
601                     let fields_str = fields
602                         .iter()
603                         .enumerate()
604                         .map(|(i, f)| {
605                             f.ident.map(|i| i.to_string()).unwrap_or(i.to_string())
606                         })
607                         .collect::<Vec<_>>()
608                         .join(", ");
609                     let value = format!("{}::{} {{ {} }}", enum_data.name, name, fields_str);
610                     if !self.span.filter_generated(sub_span, variant.span) {
611                         let span = self
612                             .span_from_span(sub_span.expect("No span found for struct variant"));
613                         let id = ::id_from_node_id(variant.node.data.id(), &self.save_ctxt);
614                         let parent = Some(::id_from_node_id(item.id, &self.save_ctxt));
615
616                         self.dumper.dump_def(
617                             &access,
618                             Def {
619                                 kind: DefKind::StructVariant,
620                                 id,
621                                 span,
622                                 name,
623                                 qualname,
624                                 value,
625                                 parent,
626                                 children: vec![],
627                                 decl_id: None,
628                                 docs: self.save_ctxt.docs_for_attrs(&variant.node.attrs),
629                                 sig: sig::variant_signature(variant, &self.save_ctxt),
630                                 attributes: lower_attributes(
631                                     variant.node.attrs.clone(),
632                                     &self.save_ctxt,
633                                 ),
634                             },
635                         );
636                     }
637                 }
638                 ref v => {
639                     let sub_span = self.span.span_for_first_ident(variant.span);
640                     let mut value = format!("{}::{}", enum_data.name, name);
641                     if let &ast::VariantData::Tuple(ref fields, _) = v {
642                         value.push('(');
643                         value.push_str(&fields
644                             .iter()
645                             .map(|f| ty_to_string(&f.ty))
646                             .collect::<Vec<_>>()
647                             .join(", "));
648                         value.push(')');
649                     }
650                     if !self.span.filter_generated(sub_span, variant.span) {
651                         let span =
652                             self.span_from_span(sub_span.expect("No span found for tuple variant"));
653                         let id = ::id_from_node_id(variant.node.data.id(), &self.save_ctxt);
654                         let parent = Some(::id_from_node_id(item.id, &self.save_ctxt));
655
656                         self.dumper.dump_def(
657                             &access,
658                             Def {
659                                 kind: DefKind::TupleVariant,
660                                 id,
661                                 span,
662                                 name,
663                                 qualname,
664                                 value,
665                                 parent,
666                                 children: vec![],
667                                 decl_id: None,
668                                 docs: self.save_ctxt.docs_for_attrs(&variant.node.attrs),
669                                 sig: sig::variant_signature(variant, &self.save_ctxt),
670                                 attributes: lower_attributes(
671                                     variant.node.attrs.clone(),
672                                     &self.save_ctxt,
673                                 ),
674                             },
675                         );
676                     }
677                 }
678             }
679
680
681             for field in variant.node.data.fields() {
682                 self.process_struct_field_def(field, variant.node.data.id());
683                 self.visit_ty(&field.ty);
684             }
685         }
686         self.process_generic_params(ty_params, item.span, &enum_data.qualname, item.id);
687         self.dumper.dump_def(&access, enum_data);
688     }
689
690     fn process_impl(
691         &mut self,
692         item: &'l ast::Item,
693         type_parameters: &'l ast::Generics,
694         trait_ref: &'l Option<ast::TraitRef>,
695         typ: &'l ast::Ty,
696         impl_items: &'l [ast::ImplItem],
697     ) {
698         if let Some(impl_data) = self.save_ctxt.get_item_data(item) {
699             if let super::Data::RelationData(rel, imp) = impl_data {
700                 self.dumper.dump_relation(rel);
701                 self.dumper.dump_impl(imp);
702             } else {
703                 span_bug!(item.span, "unexpected data kind: {:?}", impl_data);
704             }
705         }
706         self.visit_ty(&typ);
707         if let &Some(ref trait_ref) = trait_ref {
708             self.process_path(trait_ref.ref_id, &trait_ref.path);
709         }
710         self.process_generic_params(type_parameters, item.span, "", item.id);
711         for impl_item in impl_items {
712             let map = &self.tcx.hir;
713             self.process_impl_item(impl_item, map.local_def_id(item.id));
714         }
715     }
716
717     fn process_trait(
718         &mut self,
719         item: &'l ast::Item,
720         generics: &'l ast::Generics,
721         trait_refs: &'l ast::GenericBounds,
722         methods: &'l [ast::TraitItem],
723     ) {
724         let name = item.ident.to_string();
725         let qualname = format!("::{}", self.tcx.node_path_str(item.id));
726         let mut val = name.clone();
727         if !generics.params.is_empty() {
728             val.push_str(&generic_params_to_string(&generics.params));
729         }
730         if !trait_refs.is_empty() {
731             val.push_str(": ");
732             val.push_str(&bounds_to_string(trait_refs));
733         }
734         let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Trait);
735         if !self.span.filter_generated(sub_span, item.span) {
736             let id = ::id_from_node_id(item.id, &self.save_ctxt);
737             let span = self.span_from_span(sub_span.expect("No span found for trait"));
738             let children = methods
739                 .iter()
740                 .map(|i| ::id_from_node_id(i.id, &self.save_ctxt))
741                 .collect();
742             self.dumper.dump_def(
743                 &access_from!(self.save_ctxt, item),
744                 Def {
745                     kind: DefKind::Trait,
746                     id,
747                     span,
748                     name,
749                     qualname: qualname.clone(),
750                     value: val,
751                     parent: None,
752                     children,
753                     decl_id: None,
754                     docs: self.save_ctxt.docs_for_attrs(&item.attrs),
755                     sig: sig::item_signature(item, &self.save_ctxt),
756                     attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt),
757                 },
758             );
759         }
760
761         // super-traits
762         for super_bound in trait_refs.iter() {
763             let trait_ref = match *super_bound {
764                 ast::GenericBound::Trait(ref trait_ref, _) => trait_ref,
765                 ast::GenericBound::Outlives(..) => continue,
766             };
767
768             let trait_ref = &trait_ref.trait_ref;
769             if let Some(id) = self.lookup_def_id(trait_ref.ref_id) {
770                 let sub_span = self.span.sub_span_for_type_name(trait_ref.path.span);
771                 if !self.span.filter_generated(sub_span, trait_ref.path.span) {
772                     let span = self.span_from_span(sub_span.expect("No span found for trait ref"));
773                     self.dumper.dump_ref(Ref {
774                         kind: RefKind::Type,
775                         span,
776                         ref_id: ::id_from_def_id(id),
777                     });
778                 }
779
780                 if !self.span.filter_generated(sub_span, trait_ref.path.span) {
781                     let sub_span = self.span_from_span(sub_span.expect("No span for inheritance"));
782                     self.dumper.dump_relation(Relation {
783                         kind: RelationKind::SuperTrait,
784                         span: sub_span,
785                         from: ::id_from_def_id(id),
786                         to: ::id_from_node_id(item.id, &self.save_ctxt),
787                     });
788                 }
789             }
790         }
791
792         // walk generics and methods
793         self.process_generic_params(generics, item.span, &qualname, item.id);
794         for method in methods {
795             let map = &self.tcx.hir;
796             self.process_trait_item(method, map.local_def_id(item.id))
797         }
798     }
799
800     // `item` is the module in question, represented as an item.
801     fn process_mod(&mut self, item: &ast::Item) {
802         if let Some(mod_data) = self.save_ctxt.get_item_data(item) {
803             down_cast_data!(mod_data, DefData, item.span);
804             self.dumper.dump_def(&access_from!(self.save_ctxt, item), mod_data);
805         }
806     }
807
808     fn dump_path_ref(&mut self, id: NodeId, path: &ast::Path) {
809         let path_data = self.save_ctxt.get_path_data(id, path);
810         if let Some(path_data) = path_data {
811             self.dumper.dump_ref(path_data);
812         }
813     }
814
815     fn process_path(&mut self, id: NodeId, path: &'l ast::Path) {
816         debug!("process_path {:?}", path);
817         if generated_code(path.span) {
818             return;
819         }
820         self.dump_path_ref(id, path);
821
822         // Type arguments
823         for seg in &path.segments {
824             if let Some(ref generic_args) = seg.args {
825                 match **generic_args {
826                     ast::GenericArgs::AngleBracketed(ref data) => {
827                         data.args.iter().for_each(|arg| match arg {
828                             ast::GenericArg::Type(ty) => self.visit_ty(ty),
829                             _ => {}
830                         });
831                     }
832                     ast::GenericArgs::Parenthesized(ref data) => {
833                         for t in &data.inputs {
834                             self.visit_ty(t);
835                         }
836                         if let Some(ref t) = data.output {
837                             self.visit_ty(t);
838                         }
839                     }
840                 }
841             }
842         }
843
844         // Modules or types in the path prefix.
845         match self.save_ctxt.get_path_def(id) {
846             HirDef::Method(did) => {
847                 let ti = self.tcx.associated_item(did);
848                 if ti.kind == ty::AssociatedKind::Method && ti.method_has_self_argument {
849                     self.write_sub_path_trait_truncated(path);
850                 }
851             }
852             HirDef::Fn(..) |
853             HirDef::Const(..) |
854             HirDef::Static(..) |
855             HirDef::StructCtor(..) |
856             HirDef::VariantCtor(..) |
857             HirDef::AssociatedConst(..) |
858             HirDef::Local(..) |
859             HirDef::Upvar(..) |
860             HirDef::Struct(..) |
861             HirDef::Union(..) |
862             HirDef::Variant(..) |
863             HirDef::TyAlias(..) |
864             HirDef::AssociatedTy(..) => self.write_sub_paths_truncated(path),
865             _ => {}
866         }
867     }
868
869     fn process_struct_lit(
870         &mut self,
871         ex: &'l ast::Expr,
872         path: &'l ast::Path,
873         fields: &'l [ast::Field],
874         variant: &'l ty::VariantDef,
875         base: &'l Option<P<ast::Expr>>,
876     ) {
877         self.write_sub_paths_truncated(path);
878
879         if let Some(struct_lit_data) = self.save_ctxt.get_expr_data(ex) {
880             down_cast_data!(struct_lit_data, RefData, ex.span);
881             if !generated_code(ex.span) {
882                 self.dumper.dump_ref(struct_lit_data);
883             }
884
885             for field in fields {
886                 if let Some(field_data) = self.save_ctxt.get_field_ref_data(field, variant) {
887                     self.dumper.dump_ref(field_data);
888                 }
889
890                 self.visit_expr(&field.expr)
891             }
892         }
893
894         walk_list!(self, visit_expr, base);
895     }
896
897     fn process_method_call(
898         &mut self,
899         ex: &'l ast::Expr,
900         seg: &'l ast::PathSegment,
901         args: &'l [P<ast::Expr>],
902     ) {
903         debug!("process_method_call {:?} {:?}", ex, ex.span);
904         if let Some(mcd) = self.save_ctxt.get_expr_data(ex) {
905             down_cast_data!(mcd, RefData, ex.span);
906             if !generated_code(ex.span) {
907                 self.dumper.dump_ref(mcd);
908             }
909         }
910
911         // Explicit types in the turbo-fish.
912         if let Some(ref generic_args) = seg.args {
913             if let ast::GenericArgs::AngleBracketed(ref data) = **generic_args {
914                 data.args.iter().for_each(|arg| match arg {
915                     ast::GenericArg::Type(ty) => self.visit_ty(ty),
916                     _ => {}
917                 });
918             }
919         }
920
921         // walk receiver and args
922         walk_list!(self, visit_expr, args);
923     }
924
925     fn process_pat(&mut self, p: &'l ast::Pat) {
926         match p.node {
927             PatKind::Struct(ref _path, ref fields, _) => {
928                 // FIXME do something with _path?
929                 let hir_id = self.tcx.hir.node_to_hir_id(p.id);
930                 let adt = match self.save_ctxt.tables.node_id_to_type_opt(hir_id) {
931                     Some(ty) => ty.ty_adt_def().unwrap(),
932                     None => {
933                         visit::walk_pat(self, p);
934                         return;
935                     }
936                 };
937                 let variant = adt.variant_of_def(self.save_ctxt.get_path_def(p.id));
938
939                 for &Spanned { node: ref field, span } in fields {
940                     let sub_span = self.span.span_for_first_ident(span);
941                     if let Some(index) = self.tcx.find_field_index(field.ident, variant) {
942                         if !self.span.filter_generated(sub_span, span) {
943                             let span =
944                                 self.span_from_span(sub_span.expect("No span fund for var ref"));
945                             self.dumper.dump_ref(Ref {
946                                 kind: RefKind::Variable,
947                                 span,
948                                 ref_id: ::id_from_def_id(variant.fields[index].did),
949                             });
950                         }
951                     }
952                     self.visit_pat(&field.pat);
953                 }
954             }
955             _ => visit::walk_pat(self, p),
956         }
957     }
958
959     fn process_var_decl_multi(&mut self, pats: &'l [P<ast::Pat>]) {
960         let mut collector = PathCollector::new();
961         for pattern in pats {
962             // collect paths from the arm's patterns
963             collector.visit_pat(&pattern);
964             self.visit_pat(&pattern);
965         }
966
967         // process collected paths
968         for (id, ident, immut) in collector.collected_idents {
969             match self.save_ctxt.get_path_def(id) {
970                 HirDef::Local(id) => {
971                     let mut value = if immut == ast::Mutability::Immutable {
972                         self.span.snippet(ident.span).to_string()
973                     } else {
974                         "<mutable>".to_string()
975                     };
976                     let hir_id = self.tcx.hir.node_to_hir_id(id);
977                     let typ = self.save_ctxt
978                         .tables
979                         .node_id_to_type_opt(hir_id)
980                         .map(|t| t.to_string())
981                         .unwrap_or(String::new());
982                     value.push_str(": ");
983                     value.push_str(&typ);
984
985                     if !self.span.filter_generated(Some(ident.span), ident.span) {
986                         let qualname = format!("{}${}", ident.to_string(), id);
987                         let id = ::id_from_node_id(id, &self.save_ctxt);
988                         let span = self.span_from_span(ident.span);
989
990                         self.dumper.dump_def(
991                             &Access {
992                                 public: false,
993                                 reachable: false,
994                             },
995                             Def {
996                                 kind: DefKind::Local,
997                                 id,
998                                 span,
999                                 name: ident.to_string(),
1000                                 qualname,
1001                                 value: typ,
1002                                 parent: None,
1003                                 children: vec![],
1004                                 decl_id: None,
1005                                 docs: String::new(),
1006                                 sig: None,
1007                                 attributes: vec![],
1008                             },
1009                         );
1010                     }
1011                 }
1012                 HirDef::StructCtor(..) |
1013                 HirDef::VariantCtor(..) |
1014                 HirDef::Const(..) |
1015                 HirDef::AssociatedConst(..) |
1016                 HirDef::Struct(..) |
1017                 HirDef::Variant(..) |
1018                 HirDef::TyAlias(..) |
1019                 HirDef::AssociatedTy(..) |
1020                 HirDef::SelfTy(..) => {
1021                     self.dump_path_ref(id, &ast::Path::from_ident(ident));
1022                 }
1023                 def => error!(
1024                     "unexpected definition kind when processing collected idents: {:?}",
1025                     def
1026                 ),
1027             }
1028         }
1029
1030         for (id, ref path) in collector.collected_paths {
1031             self.process_path(id, path);
1032         }
1033     }
1034
1035     fn process_var_decl(&mut self, p: &'l ast::Pat, value: String) {
1036         // The local could declare multiple new vars, we must walk the
1037         // pattern and collect them all.
1038         let mut collector = PathCollector::new();
1039         collector.visit_pat(&p);
1040         self.visit_pat(&p);
1041
1042         for (id, ident, immut) in collector.collected_idents {
1043             let mut value = match immut {
1044                 ast::Mutability::Immutable => value.to_string(),
1045                 _ => String::new(),
1046             };
1047             let hir_id = self.tcx.hir.node_to_hir_id(id);
1048             let typ = match self.save_ctxt.tables.node_id_to_type_opt(hir_id) {
1049                 Some(typ) => {
1050                     let typ = typ.to_string();
1051                     if !value.is_empty() {
1052                         value.push_str(": ");
1053                     }
1054                     value.push_str(&typ);
1055                     typ
1056                 }
1057                 None => String::new(),
1058             };
1059
1060             // Get the span only for the name of the variable (I hope the path
1061             // is only ever a variable name, but who knows?).
1062             let sub_span = self.span.span_for_last_ident(ident.span);
1063             // Rust uses the id of the pattern for var lookups, so we'll use it too.
1064             if !self.span.filter_generated(sub_span, ident.span) {
1065                 let qualname = format!("{}${}", ident.to_string(), id);
1066                 let id = ::id_from_node_id(id, &self.save_ctxt);
1067                 let span = self.span_from_span(sub_span.expect("No span found for variable"));
1068
1069                 self.dumper.dump_def(
1070                     &Access {
1071                         public: false,
1072                         reachable: false,
1073                     },
1074                     Def {
1075                         kind: DefKind::Local,
1076                         id,
1077                         span,
1078                         name: ident.to_string(),
1079                         qualname,
1080                         value: typ,
1081                         parent: None,
1082                         children: vec![],
1083                         decl_id: None,
1084                         docs: String::new(),
1085                         sig: None,
1086                         attributes: vec![],
1087                     },
1088                 );
1089             }
1090         }
1091     }
1092
1093     /// Extract macro use and definition information from the AST node defined
1094     /// by the given NodeId, using the expansion information from the node's
1095     /// span.
1096     ///
1097     /// If the span is not macro-generated, do nothing, else use callee and
1098     /// callsite spans to record macro definition and use data, using the
1099     /// mac_uses and mac_defs sets to prevent multiples.
1100     fn process_macro_use(&mut self, span: Span) {
1101         let source_span = span.source_callsite();
1102         if self.macro_calls.contains(&source_span) {
1103             return;
1104         }
1105         self.macro_calls.insert(source_span);
1106
1107         let data = match self.save_ctxt.get_macro_use_data(span) {
1108             None => return,
1109             Some(data) => data,
1110         };
1111
1112         self.dumper.macro_use(data);
1113
1114         // FIXME write the macro def
1115         // let mut hasher = DefaultHasher::new();
1116         // data.callee_span.hash(&mut hasher);
1117         // let hash = hasher.finish();
1118         // let qualname = format!("{}::{}", data.name, hash);
1119         // Don't write macro definition for imported macros
1120         // if !self.mac_defs.contains(&data.callee_span)
1121         //     && !data.imported {
1122         //     self.mac_defs.insert(data.callee_span);
1123         //     if let Some(sub_span) = self.span.span_for_macro_def_name(data.callee_span) {
1124         //         self.dumper.macro_data(MacroData {
1125         //             span: sub_span,
1126         //             name: data.name.clone(),
1127         //             qualname: qualname.clone(),
1128         //             // FIXME where do macro docs come from?
1129         //             docs: String::new(),
1130         //         }.lower(self.tcx));
1131         //     }
1132         // }
1133     }
1134
1135     fn process_trait_item(&mut self, trait_item: &'l ast::TraitItem, trait_id: DefId) {
1136         self.process_macro_use(trait_item.span);
1137         let vis_span = trait_item.span.shrink_to_lo();
1138         match trait_item.node {
1139             ast::TraitItemKind::Const(ref ty, ref expr) => {
1140                 self.process_assoc_const(
1141                     trait_item.id,
1142                     trait_item.ident.name,
1143                     trait_item.span,
1144                     &ty,
1145                     expr.as_ref().map(|e| &**e),
1146                     trait_id,
1147                     respan(vis_span, ast::VisibilityKind::Public),
1148                     &trait_item.attrs,
1149                 );
1150             }
1151             ast::TraitItemKind::Method(ref sig, ref body) => {
1152                 self.process_method(
1153                     sig,
1154                     body.as_ref().map(|x| &**x),
1155                     trait_item.id,
1156                     trait_item.ident,
1157                     &trait_item.generics,
1158                     respan(vis_span, ast::VisibilityKind::Public),
1159                     trait_item.span,
1160                 );
1161             }
1162             ast::TraitItemKind::Type(ref bounds, ref default_ty) => {
1163                 // FIXME do something with _bounds (for type refs)
1164                 let name = trait_item.ident.name.to_string();
1165                 let qualname = format!("::{}", self.tcx.node_path_str(trait_item.id));
1166                 let sub_span = self.span
1167                     .sub_span_after_keyword(trait_item.span, keywords::Type);
1168
1169                 if !self.span.filter_generated(sub_span, trait_item.span) {
1170                     let span = self.span_from_span(sub_span.expect("No span found for assoc type"));
1171                     let id = ::id_from_node_id(trait_item.id, &self.save_ctxt);
1172
1173                     self.dumper.dump_def(
1174                         &Access {
1175                             public: true,
1176                             reachable: true,
1177                         },
1178                         Def {
1179                             kind: DefKind::Type,
1180                             id,
1181                             span,
1182                             name,
1183                             qualname,
1184                             value: self.span.snippet(trait_item.span),
1185                             parent: Some(::id_from_def_id(trait_id)),
1186                             children: vec![],
1187                             decl_id: None,
1188                             docs: self.save_ctxt.docs_for_attrs(&trait_item.attrs),
1189                             sig: sig::assoc_type_signature(
1190                                 trait_item.id,
1191                                 trait_item.ident,
1192                                 Some(bounds),
1193                                 default_ty.as_ref().map(|ty| &**ty),
1194                                 &self.save_ctxt,
1195                             ),
1196                             attributes: lower_attributes(trait_item.attrs.clone(), &self.save_ctxt),
1197                         },
1198                     );
1199                 }
1200
1201                 if let &Some(ref default_ty) = default_ty {
1202                     self.visit_ty(default_ty)
1203                 }
1204             }
1205             ast::TraitItemKind::Macro(_) => {}
1206         }
1207     }
1208
1209     fn process_impl_item(&mut self, impl_item: &'l ast::ImplItem, impl_id: DefId) {
1210         self.process_macro_use(impl_item.span);
1211         match impl_item.node {
1212             ast::ImplItemKind::Const(ref ty, ref expr) => {
1213                 self.process_assoc_const(
1214                     impl_item.id,
1215                     impl_item.ident.name,
1216                     impl_item.span,
1217                     &ty,
1218                     Some(expr),
1219                     impl_id,
1220                     impl_item.vis.clone(),
1221                     &impl_item.attrs,
1222                 );
1223             }
1224             ast::ImplItemKind::Method(ref sig, ref body) => {
1225                 self.process_method(
1226                     sig,
1227                     Some(body),
1228                     impl_item.id,
1229                     impl_item.ident,
1230                     &impl_item.generics,
1231                     impl_item.vis.clone(),
1232                     impl_item.span,
1233                 );
1234             }
1235             ast::ImplItemKind::Type(ref ty) => {
1236                 // FIXME uses of the assoc type should ideally point to this
1237                 // 'def' and the name here should be a ref to the def in the
1238                 // trait.
1239                 self.visit_ty(ty)
1240             }
1241             ast::ImplItemKind::Existential(ref bounds) => {
1242                 // FIXME uses of the assoc type should ideally point to this
1243                 // 'def' and the name here should be a ref to the def in the
1244                 // trait.
1245                 for bound in bounds.iter() {
1246                     if let ast::GenericBound::Trait(trait_ref, _) = bound {
1247                         self.process_path(trait_ref.trait_ref.ref_id, &trait_ref.trait_ref.path)
1248                     }
1249                 }
1250             }
1251             ast::ImplItemKind::Macro(_) => {}
1252         }
1253     }
1254
1255     /// Dumps imports in a use tree recursively.
1256     ///
1257     /// A use tree is an import that may contain nested braces (RFC 2128). The `use_tree` parameter
1258     /// is the current use tree under scrutiny, while `id` and `prefix` are its corresponding node
1259     /// id and path. `root_item` is the topmost use tree in the hierarchy.
1260     ///
1261     /// If `use_tree` is a simple or glob import, it is dumped into the analysis data. Otherwise,
1262     /// each child use tree is dumped recursively.
1263     fn process_use_tree(&mut self,
1264                          use_tree: &'l ast::UseTree,
1265                          id: NodeId,
1266                          root_item: &'l ast::Item,
1267                          prefix: &ast::Path) {
1268         let path = &use_tree.prefix;
1269
1270         // The access is calculated using the current tree ID, but with the root tree's visibility
1271         // (since nested trees don't have their own visibility).
1272         let access = access_from!(self.save_ctxt, root_item.vis, id);
1273
1274         // The parent def id of a given use tree is always the enclosing item.
1275         let parent = self.save_ctxt.tcx.hir.opt_local_def_id(id)
1276             .and_then(|id| self.save_ctxt.tcx.parent_def_id(id))
1277             .map(::id_from_def_id);
1278
1279         match use_tree.kind {
1280             ast::UseTreeKind::Simple(..) => {
1281                 let ident = use_tree.ident();
1282                 let path = ast::Path {
1283                     segments: prefix.segments
1284                         .iter()
1285                         .chain(path.segments.iter())
1286                         .cloned()
1287                         .collect(),
1288                     span: path.span,
1289                 };
1290
1291                 let sub_span = self.span.span_for_last_ident(path.span);
1292                 let alias_span = self.span.sub_span_after_keyword(use_tree.span, keywords::As);
1293                 let ref_id = self.lookup_def_id(id);
1294
1295                 if !self.span.filter_generated(sub_span, path.span) {
1296                     let span = self.span_from_span(sub_span.expect("No span found for use"));
1297                     let alias_span = alias_span.map(|sp| self.span_from_span(sp));
1298                     self.dumper.import(&access, Import {
1299                         kind: ImportKind::Use,
1300                         ref_id: ref_id.map(|id| ::id_from_def_id(id)),
1301                         span,
1302                         alias_span,
1303                         name: ident.to_string(),
1304                         value: String::new(),
1305                         parent,
1306                     });
1307                 }
1308                 self.write_sub_paths_truncated(&path);
1309             }
1310             ast::UseTreeKind::Glob => {
1311                 let path = ast::Path {
1312                     segments: prefix.segments
1313                         .iter()
1314                         .chain(path.segments.iter())
1315                         .cloned()
1316                         .collect(),
1317                     span: path.span,
1318                 };
1319
1320                 // Make a comma-separated list of names of imported modules.
1321                 let glob_map = &self.save_ctxt.analysis.glob_map;
1322                 let glob_map = glob_map.as_ref().unwrap();
1323                 let names = if glob_map.contains_key(&id) {
1324                     glob_map.get(&id).unwrap().iter().map(|n| n.to_string()).collect()
1325                 } else {
1326                     Vec::new()
1327                 };
1328
1329                 let sub_span = self.span.sub_span_of_token(use_tree.span,
1330                                                            token::BinOp(token::Star));
1331                 if !self.span.filter_generated(sub_span, use_tree.span) {
1332                     let span =
1333                         self.span_from_span(sub_span.expect("No span found for use glob"));
1334                     self.dumper.import(&access, Import {
1335                         kind: ImportKind::GlobUse,
1336                         ref_id: None,
1337                         span,
1338                         alias_span: None,
1339                         name: "*".to_owned(),
1340                         value: names.join(", "),
1341                         parent,
1342                     });
1343                 }
1344                 self.write_sub_paths(&path);
1345             }
1346             ast::UseTreeKind::Nested(ref nested_items) => {
1347                 let prefix = ast::Path {
1348                     segments: prefix.segments
1349                         .iter()
1350                         .chain(path.segments.iter())
1351                         .cloned()
1352                         .collect(),
1353                     span: path.span,
1354                 };
1355                 for &(ref tree, id) in nested_items {
1356                     self.process_use_tree(tree, id, root_item, &prefix);
1357                 }
1358             }
1359         }
1360     }
1361 }
1362
1363 impl<'l, 'tcx: 'l, 'll, O: DumpOutput + 'll> Visitor<'l> for DumpVisitor<'l, 'tcx, 'll, O> {
1364     fn visit_mod(&mut self, m: &'l ast::Mod, span: Span, attrs: &[ast::Attribute], id: NodeId) {
1365         // Since we handle explicit modules ourselves in visit_item, this should
1366         // only get called for the root module of a crate.
1367         assert_eq!(id, ast::CRATE_NODE_ID);
1368
1369         let qualname = format!("::{}", self.tcx.node_path_str(id));
1370
1371         let cm = self.tcx.sess.codemap();
1372         let filename = cm.span_to_filename(span);
1373         let data_id = ::id_from_node_id(id, &self.save_ctxt);
1374         let children = m.items
1375             .iter()
1376             .map(|i| ::id_from_node_id(i.id, &self.save_ctxt))
1377             .collect();
1378         let span = self.span_from_span(span);
1379
1380         self.dumper.dump_def(
1381             &Access {
1382                 public: true,
1383                 reachable: true,
1384             },
1385             Def {
1386                 kind: DefKind::Mod,
1387                 id: data_id,
1388                 name: String::new(),
1389                 qualname,
1390                 span,
1391                 value: filename.to_string(),
1392                 children,
1393                 parent: None,
1394                 decl_id: None,
1395                 docs: self.save_ctxt.docs_for_attrs(attrs),
1396                 sig: None,
1397                 attributes: lower_attributes(attrs.to_owned(), &self.save_ctxt),
1398             },
1399         );
1400         self.nest_scope(id, |v| visit::walk_mod(v, m));
1401     }
1402
1403     fn visit_item(&mut self, item: &'l ast::Item) {
1404         use syntax::ast::ItemKind::*;
1405         self.process_macro_use(item.span);
1406         match item.node {
1407             Use(ref use_tree) => {
1408                 let prefix = ast::Path {
1409                     segments: vec![],
1410                     span: DUMMY_SP,
1411                 };
1412                 self.process_use_tree(use_tree, item.id, item, &prefix);
1413             }
1414             ExternCrate(_) => {
1415                 let alias_span = self.span.span_for_last_ident(item.span);
1416
1417                 if !self.span.filter_generated(alias_span, item.span) {
1418                     let span =
1419                         self.span_from_span(alias_span.expect("No span found for extern crate"));
1420                     let parent = self.save_ctxt.tcx.hir.opt_local_def_id(item.id)
1421                         .and_then(|id| self.save_ctxt.tcx.parent_def_id(id))
1422                         .map(::id_from_def_id);
1423                     self.dumper.import(
1424                         &Access {
1425                             public: false,
1426                             reachable: false,
1427                         },
1428                         Import {
1429                             kind: ImportKind::ExternCrate,
1430                             ref_id: None,
1431                             span,
1432                             alias_span: None,
1433                             name: item.ident.to_string(),
1434                             value: String::new(),
1435                             parent,
1436                         },
1437                     );
1438                 }
1439             }
1440             Fn(ref decl, .., ref ty_params, ref body) => {
1441                 self.process_fn(item, &decl, ty_params, &body)
1442             }
1443             Static(ref typ, _, ref expr) => self.process_static_or_const_item(item, typ, expr),
1444             Const(ref typ, ref expr) => self.process_static_or_const_item(item, &typ, &expr),
1445             Struct(ref def, ref ty_params) | Union(ref def, ref ty_params) => {
1446                 self.process_struct(item, def, ty_params)
1447             }
1448             Enum(ref def, ref ty_params) => self.process_enum(item, def, ty_params),
1449             Impl(.., ref ty_params, ref trait_ref, ref typ, ref impl_items) => {
1450                 self.process_impl(item, ty_params, trait_ref, &typ, impl_items)
1451             }
1452             Trait(_, _, ref generics, ref trait_refs, ref methods) => {
1453                 self.process_trait(item, generics, trait_refs, methods)
1454             }
1455             Mod(ref m) => {
1456                 self.process_mod(item);
1457                 self.nest_scope(item.id, |v| visit::walk_mod(v, m));
1458             }
1459             Ty(ref ty, ref ty_params) => {
1460                 let qualname = format!("::{}", self.tcx.node_path_str(item.id));
1461                 let value = ty_to_string(&ty);
1462                 let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Type);
1463                 if !self.span.filter_generated(sub_span, item.span) {
1464                     let span = self.span_from_span(sub_span.expect("No span found for typedef"));
1465                     let id = ::id_from_node_id(item.id, &self.save_ctxt);
1466
1467                     self.dumper.dump_def(
1468                         &access_from!(self.save_ctxt, item),
1469                         Def {
1470                             kind: DefKind::Type,
1471                             id,
1472                             span,
1473                             name: item.ident.to_string(),
1474                             qualname: qualname.clone(),
1475                             value,
1476                             parent: None,
1477                             children: vec![],
1478                             decl_id: None,
1479                             docs: self.save_ctxt.docs_for_attrs(&item.attrs),
1480                             sig: sig::item_signature(item, &self.save_ctxt),
1481                             attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt),
1482                         },
1483                     );
1484                 }
1485
1486                 self.visit_ty(&ty);
1487                 self.process_generic_params(ty_params, item.span, &qualname, item.id);
1488             }
1489             Existential(ref _bounds, ref ty_params) => {
1490                 let qualname = format!("::{}", self.tcx.node_path_str(item.id));
1491                 // FIXME do something with _bounds
1492                 let value = String::new();
1493                 let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Type);
1494                 if !self.span.filter_generated(sub_span, item.span) {
1495                     let span = self.span_from_span(sub_span.expect("No span found for typedef"));
1496                     let id = ::id_from_node_id(item.id, &self.save_ctxt);
1497
1498                     self.dumper.dump_def(
1499                         &access_from!(self.save_ctxt, item),
1500                         Def {
1501                             kind: DefKind::Type,
1502                             id,
1503                             span,
1504                             name: item.ident.to_string(),
1505                             qualname: qualname.clone(),
1506                             value,
1507                             parent: None,
1508                             children: vec![],
1509                             decl_id: None,
1510                             docs: self.save_ctxt.docs_for_attrs(&item.attrs),
1511                             sig: sig::item_signature(item, &self.save_ctxt),
1512                             attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt),
1513                         },
1514                     );
1515                 }
1516
1517                 self.process_generic_params(ty_params, item.span, &qualname, item.id);
1518             }
1519             Mac(_) => (),
1520             _ => visit::walk_item(self, item),
1521         }
1522     }
1523
1524     fn visit_generics(&mut self, generics: &'l ast::Generics) {
1525         generics.params.iter().for_each(|param| match param.kind {
1526             ast::GenericParamKind::Lifetime { .. } => {}
1527             ast::GenericParamKind::Type { ref default, .. } => {
1528                 for bound in &param.bounds {
1529                     if let ast::GenericBound::Trait(ref trait_ref, _) = *bound {
1530                         self.process_path(trait_ref.trait_ref.ref_id, &trait_ref.trait_ref.path)
1531                     }
1532                 }
1533                 if let Some(ref ty) = default {
1534                     self.visit_ty(&ty);
1535                 }
1536             }
1537         });
1538     }
1539
1540     fn visit_ty(&mut self, t: &'l ast::Ty) {
1541         self.process_macro_use(t.span);
1542         match t.node {
1543             ast::TyKind::Path(_, ref path) => {
1544                 if generated_code(t.span) {
1545                     return;
1546                 }
1547
1548                 if let Some(id) = self.lookup_def_id(t.id) {
1549                     if let Some(sub_span) = self.span.sub_span_for_type_name(t.span) {
1550                         let span = self.span_from_span(sub_span);
1551                         self.dumper.dump_ref(Ref {
1552                             kind: RefKind::Type,
1553                             span,
1554                             ref_id: ::id_from_def_id(id),
1555                         });
1556                     }
1557                 }
1558
1559                 self.write_sub_paths_truncated(path);
1560                 visit::walk_path(self, path);
1561             }
1562             ast::TyKind::Array(ref element, ref length) => {
1563                 self.visit_ty(element);
1564                 self.nest_tables(length.id, |v| v.visit_expr(&length.value));
1565             }
1566             _ => visit::walk_ty(self, t),
1567         }
1568     }
1569
1570     fn visit_expr(&mut self, ex: &'l ast::Expr) {
1571         debug!("visit_expr {:?}", ex.node);
1572         self.process_macro_use(ex.span);
1573         match ex.node {
1574             ast::ExprKind::Struct(ref path, ref fields, ref base) => {
1575                 let hir_expr = self.save_ctxt.tcx.hir.expect_expr(ex.id);
1576                 let adt = match self.save_ctxt.tables.expr_ty_opt(&hir_expr) {
1577                     Some(ty) if ty.ty_adt_def().is_some() => ty.ty_adt_def().unwrap(),
1578                     _ => {
1579                         visit::walk_expr(self, ex);
1580                         return;
1581                     }
1582                 };
1583                 let def = self.save_ctxt.get_path_def(hir_expr.id);
1584                 self.process_struct_lit(ex, path, fields, adt.variant_of_def(def), base)
1585             }
1586             ast::ExprKind::MethodCall(ref seg, ref args) => self.process_method_call(ex, seg, args),
1587             ast::ExprKind::Field(ref sub_ex, _) => {
1588                 self.visit_expr(&sub_ex);
1589
1590                 if let Some(field_data) = self.save_ctxt.get_expr_data(ex) {
1591                     down_cast_data!(field_data, RefData, ex.span);
1592                     if !generated_code(ex.span) {
1593                         self.dumper.dump_ref(field_data);
1594                     }
1595                 }
1596             }
1597             ast::ExprKind::Closure(_, _, _, ref decl, ref body, _fn_decl_span) => {
1598                 let mut id = String::from("$");
1599                 id.push_str(&ex.id.to_string());
1600
1601                 // walk arg and return types
1602                 for arg in &decl.inputs {
1603                     self.visit_ty(&arg.ty);
1604                 }
1605
1606                 if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output {
1607                     self.visit_ty(&ret_ty);
1608                 }
1609
1610                 // walk the body
1611                 self.nest_tables(ex.id, |v| {
1612                     v.process_formals(&decl.inputs, &id);
1613                     v.nest_scope(ex.id, |v| v.visit_expr(body))
1614                 });
1615             }
1616             ast::ExprKind::ForLoop(ref pattern, ref subexpression, ref block, _) => {
1617                 let value = self.span.snippet(subexpression.span);
1618                 self.process_var_decl(pattern, value);
1619                 debug!("for loop, walk sub-expr: {:?}", subexpression.node);
1620                 self.visit_expr(subexpression);
1621                 visit::walk_block(self, block);
1622             }
1623             ast::ExprKind::WhileLet(ref pats, ref subexpression, ref block, _) => {
1624                 self.process_var_decl_multi(pats);
1625                 debug!("for loop, walk sub-expr: {:?}", subexpression.node);
1626                 self.visit_expr(subexpression);
1627                 visit::walk_block(self, block);
1628             }
1629             ast::ExprKind::IfLet(ref pats, ref subexpression, ref block, ref opt_else) => {
1630                 self.process_var_decl_multi(pats);
1631                 self.visit_expr(subexpression);
1632                 visit::walk_block(self, block);
1633                 opt_else.as_ref().map(|el| self.visit_expr(el));
1634             }
1635             ast::ExprKind::Repeat(ref element, ref count) => {
1636                 self.visit_expr(element);
1637                 self.nest_tables(count.id, |v| v.visit_expr(&count.value));
1638             }
1639             // In particular, we take this branch for call and path expressions,
1640             // where we'll index the idents involved just by continuing to walk.
1641             _ => visit::walk_expr(self, ex),
1642         }
1643     }
1644
1645     fn visit_mac(&mut self, mac: &'l ast::Mac) {
1646         // These shouldn't exist in the AST at this point, log a span bug.
1647         span_bug!(
1648             mac.span,
1649             "macro invocation should have been expanded out of AST"
1650         );
1651     }
1652
1653     fn visit_pat(&mut self, p: &'l ast::Pat) {
1654         self.process_macro_use(p.span);
1655         self.process_pat(p);
1656     }
1657
1658     fn visit_arm(&mut self, arm: &'l ast::Arm) {
1659         self.process_var_decl_multi(&arm.pats);
1660         walk_list!(self, visit_expr, &arm.guard);
1661         self.visit_expr(&arm.body);
1662     }
1663
1664     fn visit_path(&mut self, p: &'l ast::Path, id: NodeId) {
1665         self.process_path(id, p);
1666     }
1667
1668     fn visit_stmt(&mut self, s: &'l ast::Stmt) {
1669         self.process_macro_use(s.span);
1670         visit::walk_stmt(self, s)
1671     }
1672
1673     fn visit_local(&mut self, l: &'l ast::Local) {
1674         self.process_macro_use(l.span);
1675         let value = l.init
1676             .as_ref()
1677             .map(|i| self.span.snippet(i.span))
1678             .unwrap_or(String::new());
1679         self.process_var_decl(&l.pat, value);
1680
1681         // Just walk the initialiser and type (don't want to walk the pattern again).
1682         walk_list!(self, visit_ty, &l.ty);
1683         walk_list!(self, visit_expr, &l.init);
1684     }
1685
1686     fn visit_foreign_item(&mut self, item: &'l ast::ForeignItem) {
1687         let access = access_from!(self.save_ctxt, item);
1688
1689         match item.node {
1690             ast::ForeignItemKind::Fn(ref decl, ref generics) => {
1691                 if let Some(fn_data) = self.save_ctxt.get_extern_item_data(item) {
1692                     down_cast_data!(fn_data, DefData, item.span);
1693
1694                     self.nest_tables(
1695                         item.id,
1696                         |v| v.process_formals(&decl.inputs, &fn_data.qualname),
1697                     );
1698                     self.process_generic_params(generics, item.span, &fn_data.qualname, item.id);
1699                     self.dumper.dump_def(&access, fn_data);
1700                 }
1701
1702                 for arg in &decl.inputs {
1703                     self.visit_ty(&arg.ty);
1704                 }
1705
1706                 if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output {
1707                     self.visit_ty(&ret_ty);
1708                 }
1709             }
1710             ast::ForeignItemKind::Static(ref ty, _) => {
1711                 if let Some(var_data) = self.save_ctxt.get_extern_item_data(item) {
1712                     down_cast_data!(var_data, DefData, item.span);
1713                     self.dumper.dump_def(&access, var_data);
1714                 }
1715
1716                 self.visit_ty(ty);
1717             }
1718             ast::ForeignItemKind::Ty => {
1719                 if let Some(var_data) = self.save_ctxt.get_extern_item_data(item) {
1720                     down_cast_data!(var_data, DefData, item.span);
1721                     self.dumper.dump_def(&access, var_data);
1722                 }
1723             }
1724             ast::ForeignItemKind::Macro(..) => {}
1725         }
1726     }
1727 }