]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/lib.rs
Rollup merge of #57950 - QuietMisdreavus:lifetime-err-desc, r=estebank
[rust.git] / src / librustc_resolve / lib.rs
1 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
2        html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
3        html_root_url = "https://doc.rust-lang.org/nightly/")]
4
5 #![feature(crate_visibility_modifier)]
6 #![feature(label_break_value)]
7 #![feature(nll)]
8 #![feature(rustc_diagnostic_macros)]
9 #![feature(slice_sort_by_cached_key)]
10
11 #![recursion_limit="256"]
12
13 #[macro_use]
14 extern crate bitflags;
15 #[macro_use]
16 extern crate log;
17 #[macro_use]
18 extern crate syntax;
19 extern crate syntax_pos;
20 extern crate rustc_errors as errors;
21 extern crate arena;
22 #[macro_use]
23 extern crate rustc;
24 extern crate rustc_data_structures;
25 extern crate rustc_metadata;
26
27 pub use rustc::hir::def::{Namespace, PerNS};
28
29 use self::TypeParameters::*;
30 use self::RibKind::*;
31
32 use rustc::hir::map::{Definitions, DefCollector};
33 use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
34 use rustc::middle::cstore::CrateStore;
35 use rustc::session::Session;
36 use rustc::lint;
37 use rustc::hir::def::*;
38 use rustc::hir::def::Namespace::*;
39 use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
40 use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
41 use rustc::session::config::nightly_options;
42 use rustc::ty;
43 use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
44
45 use rustc_metadata::creader::CrateLoader;
46 use rustc_metadata::cstore::CStore;
47
48 use syntax::source_map::SourceMap;
49 use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
50 use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
51 use syntax::ext::base::SyntaxExtension;
52 use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
53 use syntax::ext::base::MacroKind;
54 use syntax::symbol::{Symbol, keywords};
55 use syntax::util::lev_distance::find_best_match_for_name;
56
57 use syntax::visit::{self, FnKind, Visitor};
58 use syntax::attr;
59 use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
60 use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
61 use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
62 use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
63 use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
64 use syntax::ptr::P;
65
66 use syntax_pos::{Span, DUMMY_SP, MultiSpan};
67 use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
68
69 use std::cell::{Cell, RefCell};
70 use std::{cmp, fmt, iter, mem, ptr};
71 use std::collections::BTreeSet;
72 use std::mem::replace;
73 use rustc_data_structures::ptr_key::PtrKey;
74 use rustc_data_structures::sync::Lrc;
75
76 use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
77 use macros::{InvocationData, LegacyBinding, ParentScope};
78
79 // N.B., this module needs to be declared first so diagnostics are
80 // registered before they are used.
81 mod diagnostics;
82 mod error_reporting;
83 mod macros;
84 mod check_unused;
85 mod build_reduced_graph;
86 mod resolve_imports;
87
88 fn is_known_tool(name: Name) -> bool {
89     ["clippy", "rustfmt"].contains(&&*name.as_str())
90 }
91
92 enum Weak {
93     Yes,
94     No,
95 }
96
97 enum ScopeSet {
98     Import(Namespace),
99     AbsolutePath(Namespace),
100     Macro(MacroKind),
101     Module,
102 }
103
104 /// A free importable items suggested in case of resolution failure.
105 struct ImportSuggestion {
106     path: Path,
107 }
108
109 /// A field or associated item from self type suggested in case of resolution failure.
110 enum AssocSuggestion {
111     Field,
112     MethodWithSelf,
113     AssocItem,
114 }
115
116 #[derive(Eq)]
117 struct BindingError {
118     name: Name,
119     origin: BTreeSet<Span>,
120     target: BTreeSet<Span>,
121 }
122
123 struct TypoSuggestion {
124     candidate: Symbol,
125
126     /// The kind of the binding ("crate", "module", etc.)
127     kind: &'static str,
128
129     /// An appropriate article to refer to the binding ("a", "an", etc.)
130     article: &'static str,
131 }
132
133 impl PartialOrd for BindingError {
134     fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
135         Some(self.cmp(other))
136     }
137 }
138
139 impl PartialEq for BindingError {
140     fn eq(&self, other: &BindingError) -> bool {
141         self.name == other.name
142     }
143 }
144
145 impl Ord for BindingError {
146     fn cmp(&self, other: &BindingError) -> cmp::Ordering {
147         self.name.cmp(&other.name)
148     }
149 }
150
151 enum ResolutionError<'a> {
152     /// error E0401: can't use type parameters from outer function
153     TypeParametersFromOuterFunction(Def),
154     /// error E0403: the name is already used for a type parameter in this type parameter list
155     NameAlreadyUsedInTypeParameterList(Name, &'a Span),
156     /// error E0407: method is not a member of trait
157     MethodNotMemberOfTrait(Name, &'a str),
158     /// error E0437: type is not a member of trait
159     TypeNotMemberOfTrait(Name, &'a str),
160     /// error E0438: const is not a member of trait
161     ConstNotMemberOfTrait(Name, &'a str),
162     /// error E0408: variable `{}` is not bound in all patterns
163     VariableNotBoundInPattern(&'a BindingError),
164     /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
165     VariableBoundWithDifferentMode(Name, Span),
166     /// error E0415: identifier is bound more than once in this parameter list
167     IdentifierBoundMoreThanOnceInParameterList(&'a str),
168     /// error E0416: identifier is bound more than once in the same pattern
169     IdentifierBoundMoreThanOnceInSamePattern(&'a str),
170     /// error E0426: use of undeclared label
171     UndeclaredLabel(&'a str, Option<Name>),
172     /// error E0429: `self` imports are only allowed within a { } list
173     SelfImportsOnlyAllowedWithin,
174     /// error E0430: `self` import can only appear once in the list
175     SelfImportCanOnlyAppearOnceInTheList,
176     /// error E0431: `self` import can only appear in an import list with a non-empty prefix
177     SelfImportOnlyInImportListWithNonEmptyPrefix,
178     /// error E0433: failed to resolve
179     FailedToResolve(&'a str),
180     /// error E0434: can't capture dynamic environment in a fn item
181     CannotCaptureDynamicEnvironmentInFnItem,
182     /// error E0435: attempt to use a non-constant value in a constant
183     AttemptToUseNonConstantValueInConstant,
184     /// error E0530: X bindings cannot shadow Ys
185     BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
186     /// error E0128: type parameters with a default cannot use forward declared identifiers
187     ForwardDeclaredTyParam,
188 }
189
190 /// Combines an error with provided span and emits it
191 ///
192 /// This takes the error provided, combines it with the span and any additional spans inside the
193 /// error and emits it.
194 fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
195                             span: Span,
196                             resolution_error: ResolutionError<'a>) {
197     resolve_struct_error(resolver, span, resolution_error).emit();
198 }
199
200 fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
201                                    span: Span,
202                                    resolution_error: ResolutionError<'a>)
203                                    -> DiagnosticBuilder<'sess> {
204     match resolution_error {
205         ResolutionError::TypeParametersFromOuterFunction(outer_def) => {
206             let mut err = struct_span_err!(resolver.session,
207                                            span,
208                                            E0401,
209                                            "can't use type parameters from outer function");
210             err.span_label(span, "use of type variable from outer function");
211
212             let cm = resolver.session.source_map();
213             match outer_def {
214                 Def::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
215                     if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
216                         resolver.definitions.opt_span(def_id)
217                     }) {
218                         err.span_label(
219                             reduce_impl_span_to_impl_keyword(cm, impl_span),
220                             "`Self` type implicitly declared here, by this `impl`",
221                         );
222                     }
223                     match (maybe_trait_defid, maybe_impl_defid) {
224                         (Some(_), None) => {
225                             err.span_label(span, "can't use `Self` here");
226                         }
227                         (_, Some(_)) => {
228                             err.span_label(span, "use a type here instead");
229                         }
230                         (None, None) => bug!("`impl` without trait nor type?"),
231                     }
232                     return err;
233                 },
234                 Def::TyParam(typaram_defid) => {
235                     if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) {
236                         err.span_label(typaram_span, "type variable from outer function");
237                     }
238                 },
239                 _ => {
240                     bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \
241                          Def::TyParam")
242                 }
243             }
244
245             // Try to retrieve the span of the function signature and generate a new message with
246             // a local type parameter
247             let sugg_msg = "try using a local type parameter instead";
248             if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
249                 // Suggest the modification to the user
250                 err.span_suggestion(
251                     sugg_span,
252                     sugg_msg,
253                     new_snippet,
254                     Applicability::MachineApplicable,
255                 );
256             } else if let Some(sp) = cm.generate_fn_name_span(span) {
257                 err.span_label(sp, "try adding a local type parameter in this method instead");
258             } else {
259                 err.help("try using a local type parameter instead");
260             }
261
262             err
263         }
264         ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
265              let mut err = struct_span_err!(resolver.session,
266                                             span,
267                                             E0403,
268                                             "the name `{}` is already used for a type parameter \
269                                             in this type parameter list",
270                                             name);
271              err.span_label(span, "already used");
272              err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
273              err
274         }
275         ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
276             let mut err = struct_span_err!(resolver.session,
277                                            span,
278                                            E0407,
279                                            "method `{}` is not a member of trait `{}`",
280                                            method,
281                                            trait_);
282             err.span_label(span, format!("not a member of trait `{}`", trait_));
283             err
284         }
285         ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
286             let mut err = struct_span_err!(resolver.session,
287                              span,
288                              E0437,
289                              "type `{}` is not a member of trait `{}`",
290                              type_,
291                              trait_);
292             err.span_label(span, format!("not a member of trait `{}`", trait_));
293             err
294         }
295         ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
296             let mut err = struct_span_err!(resolver.session,
297                              span,
298                              E0438,
299                              "const `{}` is not a member of trait `{}`",
300                              const_,
301                              trait_);
302             err.span_label(span, format!("not a member of trait `{}`", trait_));
303             err
304         }
305         ResolutionError::VariableNotBoundInPattern(binding_error) => {
306             let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
307             let msp = MultiSpan::from_spans(target_sp.clone());
308             let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
309             let mut err = resolver.session.struct_span_err_with_code(
310                 msp,
311                 &msg,
312                 DiagnosticId::Error("E0408".into()),
313             );
314             for sp in target_sp {
315                 err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
316             }
317             let origin_sp = binding_error.origin.iter().cloned();
318             for sp in origin_sp {
319                 err.span_label(sp, "variable not in all patterns");
320             }
321             err
322         }
323         ResolutionError::VariableBoundWithDifferentMode(variable_name,
324                                                         first_binding_span) => {
325             let mut err = struct_span_err!(resolver.session,
326                              span,
327                              E0409,
328                              "variable `{}` is bound in inconsistent \
329                              ways within the same match arm",
330                              variable_name);
331             err.span_label(span, "bound in different ways");
332             err.span_label(first_binding_span, "first binding");
333             err
334         }
335         ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
336             let mut err = struct_span_err!(resolver.session,
337                              span,
338                              E0415,
339                              "identifier `{}` is bound more than once in this parameter list",
340                              identifier);
341             err.span_label(span, "used as parameter more than once");
342             err
343         }
344         ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
345             let mut err = struct_span_err!(resolver.session,
346                              span,
347                              E0416,
348                              "identifier `{}` is bound more than once in the same pattern",
349                              identifier);
350             err.span_label(span, "used in a pattern more than once");
351             err
352         }
353         ResolutionError::UndeclaredLabel(name, lev_candidate) => {
354             let mut err = struct_span_err!(resolver.session,
355                                            span,
356                                            E0426,
357                                            "use of undeclared label `{}`",
358                                            name);
359             if let Some(lev_candidate) = lev_candidate {
360                 err.span_label(span, format!("did you mean `{}`?", lev_candidate));
361             } else {
362                 err.span_label(span, format!("undeclared label `{}`", name));
363             }
364             err
365         }
366         ResolutionError::SelfImportsOnlyAllowedWithin => {
367             struct_span_err!(resolver.session,
368                              span,
369                              E0429,
370                              "{}",
371                              "`self` imports are only allowed within a { } list")
372         }
373         ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
374             let mut err = struct_span_err!(resolver.session, span, E0430,
375                                            "`self` import can only appear once in an import list");
376             err.span_label(span, "can only appear once in an import list");
377             err
378         }
379         ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
380             let mut err = struct_span_err!(resolver.session, span, E0431,
381                                            "`self` import can only appear in an import list with \
382                                             a non-empty prefix");
383             err.span_label(span, "can only appear in an import list with a non-empty prefix");
384             err
385         }
386         ResolutionError::FailedToResolve(msg) => {
387             let mut err = struct_span_err!(resolver.session, span, E0433,
388                                            "failed to resolve: {}", msg);
389             err.span_label(span, msg);
390             err
391         }
392         ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
393             let mut err = struct_span_err!(resolver.session,
394                                            span,
395                                            E0434,
396                                            "{}",
397                                            "can't capture dynamic environment in a fn item");
398             err.help("use the `|| { ... }` closure form instead");
399             err
400         }
401         ResolutionError::AttemptToUseNonConstantValueInConstant => {
402             let mut err = struct_span_err!(resolver.session, span, E0435,
403                                            "attempt to use a non-constant value in a constant");
404             err.span_label(span, "non-constant value");
405             err
406         }
407         ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
408             let shadows_what = binding.descr();
409             let mut err = struct_span_err!(resolver.session, span, E0530, "{}s cannot shadow {}s",
410                                            what_binding, shadows_what);
411             err.span_label(span, format!("cannot be named the same as {} {}",
412                                          binding.article(), shadows_what));
413             let participle = if binding.is_import() { "imported" } else { "defined" };
414             let msg = format!("the {} `{}` is {} here", shadows_what, name, participle);
415             err.span_label(binding.span, msg);
416             err
417         }
418         ResolutionError::ForwardDeclaredTyParam => {
419             let mut err = struct_span_err!(resolver.session, span, E0128,
420                                            "type parameters with a default cannot use \
421                                             forward declared identifiers");
422             err.span_label(
423                 span, "defaulted type parameters cannot be forward declared".to_string());
424             err
425         }
426     }
427 }
428
429 /// Adjust the impl span so that just the `impl` keyword is taken by removing
430 /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
431 /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`)
432 ///
433 /// Attention: The method used is very fragile since it essentially duplicates the work of the
434 /// parser. If you need to use this function or something similar, please consider updating the
435 /// source_map functions and this function to something more robust.
436 fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
437     let impl_span = cm.span_until_char(impl_span, '<');
438     let impl_span = cm.span_until_whitespace(impl_span);
439     impl_span
440 }
441
442 #[derive(Copy, Clone, Debug)]
443 struct BindingInfo {
444     span: Span,
445     binding_mode: BindingMode,
446 }
447
448 /// Map from the name in a pattern to its binding mode.
449 type BindingMap = FxHashMap<Ident, BindingInfo>;
450
451 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
452 enum PatternSource {
453     Match,
454     IfLet,
455     WhileLet,
456     Let,
457     For,
458     FnParam,
459 }
460
461 impl PatternSource {
462     fn descr(self) -> &'static str {
463         match self {
464             PatternSource::Match => "match binding",
465             PatternSource::IfLet => "if let binding",
466             PatternSource::WhileLet => "while let binding",
467             PatternSource::Let => "let binding",
468             PatternSource::For => "for binding",
469             PatternSource::FnParam => "function parameter",
470         }
471     }
472 }
473
474 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
475 enum AliasPossibility {
476     No,
477     Maybe,
478 }
479
480 #[derive(Copy, Clone, Debug)]
481 enum PathSource<'a> {
482     // Type paths `Path`.
483     Type,
484     // Trait paths in bounds or impls.
485     Trait(AliasPossibility),
486     // Expression paths `path`, with optional parent context.
487     Expr(Option<&'a Expr>),
488     // Paths in path patterns `Path`.
489     Pat,
490     // Paths in struct expressions and patterns `Path { .. }`.
491     Struct,
492     // Paths in tuple struct patterns `Path(..)`.
493     TupleStruct,
494     // `m::A::B` in `<T as m::A>::B::C`.
495     TraitItem(Namespace),
496     // Path in `pub(path)`
497     Visibility,
498 }
499
500 impl<'a> PathSource<'a> {
501     fn namespace(self) -> Namespace {
502         match self {
503             PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
504             PathSource::Visibility => TypeNS,
505             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
506             PathSource::TraitItem(ns) => ns,
507         }
508     }
509
510     fn global_by_default(self) -> bool {
511         match self {
512             PathSource::Visibility => true,
513             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
514             PathSource::Struct | PathSource::TupleStruct |
515             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
516         }
517     }
518
519     fn defer_to_typeck(self) -> bool {
520         match self {
521             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
522             PathSource::Struct | PathSource::TupleStruct => true,
523             PathSource::Trait(_) | PathSource::TraitItem(..) |
524             PathSource::Visibility => false,
525         }
526     }
527
528     fn descr_expected(self) -> &'static str {
529         match self {
530             PathSource::Type => "type",
531             PathSource::Trait(_) => "trait",
532             PathSource::Pat => "unit struct/variant or constant",
533             PathSource::Struct => "struct, variant or union type",
534             PathSource::TupleStruct => "tuple struct/variant",
535             PathSource::Visibility => "module",
536             PathSource::TraitItem(ns) => match ns {
537                 TypeNS => "associated type",
538                 ValueNS => "method or associated constant",
539                 MacroNS => bug!("associated macro"),
540             },
541             PathSource::Expr(parent) => match parent.map(|p| &p.node) {
542                 // "function" here means "anything callable" rather than `Def::Fn`,
543                 // this is not precise but usually more helpful than just "value".
544                 Some(&ExprKind::Call(..)) => "function",
545                 _ => "value",
546             },
547         }
548     }
549
550     fn is_expected(self, def: Def) -> bool {
551         match self {
552             PathSource::Type => match def {
553                 Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
554                 Def::Trait(..) | Def::TraitAlias(..) | Def::TyAlias(..) |
555                 Def::AssociatedTy(..) | Def::PrimTy(..) | Def::TyParam(..) |
556                 Def::SelfTy(..) | Def::Existential(..) |
557                 Def::ForeignTy(..) => true,
558                 _ => false,
559             },
560             PathSource::Trait(AliasPossibility::No) => match def {
561                 Def::Trait(..) => true,
562                 _ => false,
563             },
564             PathSource::Trait(AliasPossibility::Maybe) => match def {
565                 Def::Trait(..) => true,
566                 Def::TraitAlias(..) => true,
567                 _ => false,
568             },
569             PathSource::Expr(..) => match def {
570                 Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
571                 Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
572                 Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
573                 Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) |
574                 Def::SelfCtor(..) => true,
575                 _ => false,
576             },
577             PathSource::Pat => match def {
578                 Def::StructCtor(_, CtorKind::Const) |
579                 Def::VariantCtor(_, CtorKind::Const) |
580                 Def::Const(..) | Def::AssociatedConst(..) |
581                 Def::SelfCtor(..) => true,
582                 _ => false,
583             },
584             PathSource::TupleStruct => match def {
585                 Def::StructCtor(_, CtorKind::Fn) |
586                 Def::VariantCtor(_, CtorKind::Fn) |
587                 Def::SelfCtor(..) => true,
588                 _ => false,
589             },
590             PathSource::Struct => match def {
591                 Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
592                 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
593                 _ => false,
594             },
595             PathSource::TraitItem(ns) => match def {
596                 Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
597                 Def::AssociatedTy(..) if ns == TypeNS => true,
598                 _ => false,
599             },
600             PathSource::Visibility => match def {
601                 Def::Mod(..) => true,
602                 _ => false,
603             },
604         }
605     }
606
607     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
608         __diagnostic_used!(E0404);
609         __diagnostic_used!(E0405);
610         __diagnostic_used!(E0412);
611         __diagnostic_used!(E0422);
612         __diagnostic_used!(E0423);
613         __diagnostic_used!(E0425);
614         __diagnostic_used!(E0531);
615         __diagnostic_used!(E0532);
616         __diagnostic_used!(E0573);
617         __diagnostic_used!(E0574);
618         __diagnostic_used!(E0575);
619         __diagnostic_used!(E0576);
620         __diagnostic_used!(E0577);
621         __diagnostic_used!(E0578);
622         match (self, has_unexpected_resolution) {
623             (PathSource::Trait(_), true) => "E0404",
624             (PathSource::Trait(_), false) => "E0405",
625             (PathSource::Type, true) => "E0573",
626             (PathSource::Type, false) => "E0412",
627             (PathSource::Struct, true) => "E0574",
628             (PathSource::Struct, false) => "E0422",
629             (PathSource::Expr(..), true) => "E0423",
630             (PathSource::Expr(..), false) => "E0425",
631             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
632             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
633             (PathSource::TraitItem(..), true) => "E0575",
634             (PathSource::TraitItem(..), false) => "E0576",
635             (PathSource::Visibility, true) => "E0577",
636             (PathSource::Visibility, false) => "E0578",
637         }
638     }
639 }
640
641 // A minimal representation of a path segment. We use this in resolve because
642 // we synthesize 'path segments' which don't have the rest of an AST or HIR
643 // `PathSegment`.
644 #[derive(Clone, Copy, Debug)]
645 pub struct Segment {
646     ident: Ident,
647     id: Option<NodeId>,
648 }
649
650 impl Segment {
651     fn from_path(path: &Path) -> Vec<Segment> {
652         path.segments.iter().map(|s| s.into()).collect()
653     }
654
655     fn from_ident(ident: Ident) -> Segment {
656         Segment {
657             ident,
658             id: None,
659         }
660     }
661
662     fn names_to_string(segments: &[Segment]) -> String {
663         names_to_string(&segments.iter()
664                             .map(|seg| seg.ident)
665                             .collect::<Vec<_>>())
666     }
667 }
668
669 impl<'a> From<&'a ast::PathSegment> for Segment {
670     fn from(seg: &'a ast::PathSegment) -> Segment {
671         Segment {
672             ident: seg.ident,
673             id: Some(seg.id),
674         }
675     }
676 }
677
678 struct UsePlacementFinder {
679     target_module: NodeId,
680     span: Option<Span>,
681     found_use: bool,
682 }
683
684 impl UsePlacementFinder {
685     fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
686         let mut finder = UsePlacementFinder {
687             target_module,
688             span: None,
689             found_use: false,
690         };
691         visit::walk_crate(&mut finder, krate);
692         (finder.span, finder.found_use)
693     }
694 }
695
696 impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
697     fn visit_mod(
698         &mut self,
699         module: &'tcx ast::Mod,
700         _: Span,
701         _: &[ast::Attribute],
702         node_id: NodeId,
703     ) {
704         if self.span.is_some() {
705             return;
706         }
707         if node_id != self.target_module {
708             visit::walk_mod(self, module);
709             return;
710         }
711         // find a use statement
712         for item in &module.items {
713             match item.node {
714                 ItemKind::Use(..) => {
715                     // don't suggest placing a use before the prelude
716                     // import or other generated ones
717                     if item.span.ctxt().outer().expn_info().is_none() {
718                         self.span = Some(item.span.shrink_to_lo());
719                         self.found_use = true;
720                         return;
721                     }
722                 },
723                 // don't place use before extern crate
724                 ItemKind::ExternCrate(_) => {}
725                 // but place them before the first other item
726                 _ => if self.span.map_or(true, |span| item.span < span ) {
727                     if item.span.ctxt().outer().expn_info().is_none() {
728                         // don't insert between attributes and an item
729                         if item.attrs.is_empty() {
730                             self.span = Some(item.span.shrink_to_lo());
731                         } else {
732                             // find the first attribute on the item
733                             for attr in &item.attrs {
734                                 if self.span.map_or(true, |span| attr.span < span) {
735                                     self.span = Some(attr.span.shrink_to_lo());
736                                 }
737                             }
738                         }
739                     }
740                 },
741             }
742         }
743     }
744 }
745
746 /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes.
747 impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
748     fn visit_item(&mut self, item: &'tcx Item) {
749         self.resolve_item(item);
750     }
751     fn visit_arm(&mut self, arm: &'tcx Arm) {
752         self.resolve_arm(arm);
753     }
754     fn visit_block(&mut self, block: &'tcx Block) {
755         self.resolve_block(block);
756     }
757     fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
758         self.with_constant_rib(|this| {
759             visit::walk_anon_const(this, constant);
760         });
761     }
762     fn visit_expr(&mut self, expr: &'tcx Expr) {
763         self.resolve_expr(expr, None);
764     }
765     fn visit_local(&mut self, local: &'tcx Local) {
766         self.resolve_local(local);
767     }
768     fn visit_ty(&mut self, ty: &'tcx Ty) {
769         match ty.node {
770             TyKind::Path(ref qself, ref path) => {
771                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
772             }
773             TyKind::ImplicitSelf => {
774                 let self_ty = keywords::SelfUpper.ident();
775                 let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
776                               .map_or(Def::Err, |d| d.def());
777                 self.record_def(ty.id, PathResolution::new(def));
778             }
779             _ => (),
780         }
781         visit::walk_ty(self, ty);
782     }
783     fn visit_poly_trait_ref(&mut self,
784                             tref: &'tcx ast::PolyTraitRef,
785                             m: &'tcx ast::TraitBoundModifier) {
786         self.smart_resolve_path(tref.trait_ref.ref_id, None,
787                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
788         visit::walk_poly_trait_ref(self, tref, m);
789     }
790     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
791         let type_parameters = match foreign_item.node {
792             ForeignItemKind::Fn(_, ref generics) => {
793                 HasTypeParameters(generics, ItemRibKind)
794             }
795             ForeignItemKind::Static(..) => NoTypeParameters,
796             ForeignItemKind::Ty => NoTypeParameters,
797             ForeignItemKind::Macro(..) => NoTypeParameters,
798         };
799         self.with_type_parameter_rib(type_parameters, |this| {
800             visit::walk_foreign_item(this, foreign_item);
801         });
802     }
803     fn visit_fn(&mut self,
804                 function_kind: FnKind<'tcx>,
805                 declaration: &'tcx FnDecl,
806                 _: Span,
807                 node_id: NodeId)
808     {
809         let (rib_kind, asyncness) = match function_kind {
810             FnKind::ItemFn(_, ref header, ..) =>
811                 (ItemRibKind, header.asyncness),
812             FnKind::Method(_, ref sig, _, _) =>
813                 (TraitOrImplItemRibKind, sig.header.asyncness),
814             FnKind::Closure(_) =>
815                 // Async closures aren't resolved through `visit_fn`-- they're
816                 // processed separately
817                 (ClosureRibKind(node_id), IsAsync::NotAsync),
818         };
819
820         // Create a value rib for the function.
821         self.ribs[ValueNS].push(Rib::new(rib_kind));
822
823         // Create a label rib for the function.
824         self.label_ribs.push(Rib::new(rib_kind));
825
826         // Add each argument to the rib.
827         let mut bindings_list = FxHashMap::default();
828         for argument in &declaration.inputs {
829             self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
830
831             self.visit_ty(&argument.ty);
832
833             debug!("(resolving function) recorded argument");
834         }
835         visit::walk_fn_ret_ty(self, &declaration.output);
836
837         // Resolve the function body, potentially inside the body of an async closure
838         if let IsAsync::Async { closure_id, .. } = asyncness {
839             let rib_kind = ClosureRibKind(closure_id);
840             self.ribs[ValueNS].push(Rib::new(rib_kind));
841             self.label_ribs.push(Rib::new(rib_kind));
842         }
843
844         match function_kind {
845             FnKind::ItemFn(.., body) |
846             FnKind::Method(.., body) => {
847                 self.visit_block(body);
848             }
849             FnKind::Closure(body) => {
850                 self.visit_expr(body);
851             }
852         };
853
854         // Leave the body of the async closure
855         if asyncness.is_async() {
856             self.label_ribs.pop();
857             self.ribs[ValueNS].pop();
858         }
859
860         debug!("(resolving function) leaving function");
861
862         self.label_ribs.pop();
863         self.ribs[ValueNS].pop();
864     }
865     fn visit_generics(&mut self, generics: &'tcx Generics) {
866         // For type parameter defaults, we have to ban access
867         // to following type parameters, as the Substs can only
868         // provide previous type parameters as they're built. We
869         // put all the parameters on the ban list and then remove
870         // them one by one as they are processed and become available.
871         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
872         let mut found_default = false;
873         default_ban_rib.bindings.extend(generics.params.iter()
874             .filter_map(|param| match param.kind {
875                 GenericParamKind::Lifetime { .. } => None,
876                 GenericParamKind::Type { ref default, .. } => {
877                     found_default |= default.is_some();
878                     if found_default {
879                         Some((Ident::with_empty_ctxt(param.ident.name), Def::Err))
880                     } else {
881                         None
882                     }
883                 }
884             }));
885
886         for param in &generics.params {
887             match param.kind {
888                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
889                 GenericParamKind::Type { ref default, .. } => {
890                     for bound in &param.bounds {
891                         self.visit_param_bound(bound);
892                     }
893
894                     if let Some(ref ty) = default {
895                         self.ribs[TypeNS].push(default_ban_rib);
896                         self.visit_ty(ty);
897                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
898                     }
899
900                     // Allow all following defaults to refer to this type parameter.
901                     default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
902                 }
903             }
904         }
905         for p in &generics.where_clause.predicates {
906             self.visit_where_predicate(p);
907         }
908     }
909 }
910
911 #[derive(Copy, Clone)]
912 enum TypeParameters<'a, 'b> {
913     NoTypeParameters,
914     HasTypeParameters(// Type parameters.
915                       &'b Generics,
916
917                       // The kind of the rib used for type parameters.
918                       RibKind<'a>),
919 }
920
921 /// The rib kind controls the translation of local
922 /// definitions (`Def::Local`) to upvars (`Def::Upvar`).
923 #[derive(Copy, Clone, Debug)]
924 enum RibKind<'a> {
925     /// No translation needs to be applied.
926     NormalRibKind,
927
928     /// We passed through a closure scope at the given node ID.
929     /// Translate upvars as appropriate.
930     ClosureRibKind(NodeId /* func id */),
931
932     /// We passed through an impl or trait and are now in one of its
933     /// methods or associated types. Allow references to ty params that impl or trait
934     /// binds. Disallow any other upvars (including other ty params that are
935     /// upvars).
936     TraitOrImplItemRibKind,
937
938     /// We passed through an item scope. Disallow upvars.
939     ItemRibKind,
940
941     /// We're in a constant item. Can't refer to dynamic stuff.
942     ConstantItemRibKind,
943
944     /// We passed through a module.
945     ModuleRibKind(Module<'a>),
946
947     /// We passed through a `macro_rules!` statement
948     MacroDefinition(DefId),
949
950     /// All bindings in this rib are type parameters that can't be used
951     /// from the default of a type parameter because they're not declared
952     /// before said type parameter. Also see the `visit_generics` override.
953     ForwardTyParamBanRibKind,
954 }
955
956 /// One local scope.
957 ///
958 /// A rib represents a scope names can live in. Note that these appear in many places, not just
959 /// around braces. At any place where the list of accessible names (of the given namespace)
960 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
961 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
962 /// etc.
963 ///
964 /// Different [rib kinds](enum.RibKind) are transparent for different names.
965 ///
966 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
967 /// resolving, the name is looked up from inside out.
968 #[derive(Debug)]
969 struct Rib<'a> {
970     bindings: FxHashMap<Ident, Def>,
971     kind: RibKind<'a>,
972 }
973
974 impl<'a> Rib<'a> {
975     fn new(kind: RibKind<'a>) -> Rib<'a> {
976         Rib {
977             bindings: Default::default(),
978             kind,
979         }
980     }
981 }
982
983 /// An intermediate resolution result.
984 ///
985 /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that
986 /// items are visible in their whole block, while defs only from the place they are defined
987 /// forward.
988 enum LexicalScopeBinding<'a> {
989     Item(&'a NameBinding<'a>),
990     Def(Def),
991 }
992
993 impl<'a> LexicalScopeBinding<'a> {
994     fn item(self) -> Option<&'a NameBinding<'a>> {
995         match self {
996             LexicalScopeBinding::Item(binding) => Some(binding),
997             _ => None,
998         }
999     }
1000
1001     fn def(self) -> Def {
1002         match self {
1003             LexicalScopeBinding::Item(binding) => binding.def(),
1004             LexicalScopeBinding::Def(def) => def,
1005         }
1006     }
1007 }
1008
1009 #[derive(Copy, Clone, Debug)]
1010 enum ModuleOrUniformRoot<'a> {
1011     /// Regular module.
1012     Module(Module<'a>),
1013
1014     /// Virtual module that denotes resolution in crate root with fallback to extern prelude.
1015     CrateRootAndExternPrelude,
1016
1017     /// Virtual module that denotes resolution in extern prelude.
1018     /// Used for paths starting with `::` on 2018 edition.
1019     ExternPrelude,
1020
1021     /// Virtual module that denotes resolution in current scope.
1022     /// Used only for resolving single-segment imports. The reason it exists is that import paths
1023     /// are always split into two parts, the first of which should be some kind of module.
1024     CurrentScope,
1025 }
1026
1027 impl ModuleOrUniformRoot<'_> {
1028     fn same_def(lhs: Self, rhs: Self) -> bool {
1029         match (lhs, rhs) {
1030             (ModuleOrUniformRoot::Module(lhs),
1031              ModuleOrUniformRoot::Module(rhs)) => lhs.def() == rhs.def(),
1032             (ModuleOrUniformRoot::CrateRootAndExternPrelude,
1033              ModuleOrUniformRoot::CrateRootAndExternPrelude) |
1034             (ModuleOrUniformRoot::ExternPrelude, ModuleOrUniformRoot::ExternPrelude) |
1035             (ModuleOrUniformRoot::CurrentScope, ModuleOrUniformRoot::CurrentScope) => true,
1036             _ => false,
1037         }
1038     }
1039 }
1040
1041 #[derive(Clone, Debug)]
1042 enum PathResult<'a> {
1043     Module(ModuleOrUniformRoot<'a>),
1044     NonModule(PathResolution),
1045     Indeterminate,
1046     Failed(Span, String, bool /* is the error from the last segment? */),
1047 }
1048
1049 enum ModuleKind {
1050     /// An anonymous module, eg. just a block.
1051     ///
1052     /// ```
1053     /// fn main() {
1054     ///     fn f() {} // (1)
1055     ///     { // This is an anonymous module
1056     ///         f(); // This resolves to (2) as we are inside the block.
1057     ///         fn f() {} // (2)
1058     ///     }
1059     ///     f(); // Resolves to (1)
1060     /// }
1061     /// ```
1062     Block(NodeId),
1063     /// Any module with a name.
1064     ///
1065     /// This could be:
1066     ///
1067     /// * A normal module â€’ either `mod from_file;` or `mod from_block { }`.
1068     /// * A trait or an enum (it implicitly contains associated types, methods and variant
1069     ///   constructors).
1070     Def(Def, Name),
1071 }
1072
1073 /// One node in the tree of modules.
1074 pub struct ModuleData<'a> {
1075     parent: Option<Module<'a>>,
1076     kind: ModuleKind,
1077
1078     // The def id of the closest normal module (`mod`) ancestor (including this module).
1079     normal_ancestor_id: DefId,
1080
1081     resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
1082     single_segment_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>,
1083                                                    Option<&'a NameBinding<'a>>)>>,
1084     multi_segment_macro_resolutions: RefCell<Vec<(Vec<Segment>, Span, MacroKind, ParentScope<'a>,
1085                                                   Option<Def>)>>,
1086     builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
1087
1088     // Macro invocations that can expand into items in this module.
1089     unresolved_invocations: RefCell<FxHashSet<Mark>>,
1090
1091     no_implicit_prelude: bool,
1092
1093     glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
1094     globs: RefCell<Vec<&'a ImportDirective<'a>>>,
1095
1096     // Used to memoize the traits in this module for faster searches through all traits in scope.
1097     traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
1098
1099     // Whether this module is populated. If not populated, any attempt to
1100     // access the children must be preceded with a
1101     // `populate_module_if_necessary` call.
1102     populated: Cell<bool>,
1103
1104     /// Span of the module itself. Used for error reporting.
1105     span: Span,
1106
1107     expansion: Mark,
1108 }
1109
1110 type Module<'a> = &'a ModuleData<'a>;
1111
1112 impl<'a> ModuleData<'a> {
1113     fn new(parent: Option<Module<'a>>,
1114            kind: ModuleKind,
1115            normal_ancestor_id: DefId,
1116            expansion: Mark,
1117            span: Span) -> Self {
1118         ModuleData {
1119             parent,
1120             kind,
1121             normal_ancestor_id,
1122             resolutions: Default::default(),
1123             single_segment_macro_resolutions: RefCell::new(Vec::new()),
1124             multi_segment_macro_resolutions: RefCell::new(Vec::new()),
1125             builtin_attrs: RefCell::new(Vec::new()),
1126             unresolved_invocations: Default::default(),
1127             no_implicit_prelude: false,
1128             glob_importers: RefCell::new(Vec::new()),
1129             globs: RefCell::new(Vec::new()),
1130             traits: RefCell::new(None),
1131             populated: Cell::new(normal_ancestor_id.is_local()),
1132             span,
1133             expansion,
1134         }
1135     }
1136
1137     fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1138         for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
1139             name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1140         }
1141     }
1142
1143     fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
1144         let resolutions = self.resolutions.borrow();
1145         let mut resolutions = resolutions.iter().collect::<Vec<_>>();
1146         resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
1147         for &(&(ident, ns), &resolution) in resolutions.iter() {
1148             resolution.borrow().binding.map(|binding| f(ident, ns, binding));
1149         }
1150     }
1151
1152     fn def(&self) -> Option<Def> {
1153         match self.kind {
1154             ModuleKind::Def(def, _) => Some(def),
1155             _ => None,
1156         }
1157     }
1158
1159     fn def_id(&self) -> Option<DefId> {
1160         self.def().as_ref().map(Def::def_id)
1161     }
1162
1163     // `self` resolves to the first module ancestor that `is_normal`.
1164     fn is_normal(&self) -> bool {
1165         match self.kind {
1166             ModuleKind::Def(Def::Mod(_), _) => true,
1167             _ => false,
1168         }
1169     }
1170
1171     fn is_trait(&self) -> bool {
1172         match self.kind {
1173             ModuleKind::Def(Def::Trait(_), _) => true,
1174             _ => false,
1175         }
1176     }
1177
1178     fn nearest_item_scope(&'a self) -> Module<'a> {
1179         if self.is_trait() { self.parent.unwrap() } else { self }
1180     }
1181
1182     fn is_ancestor_of(&self, mut other: &Self) -> bool {
1183         while !ptr::eq(self, other) {
1184             if let Some(parent) = other.parent {
1185                 other = parent;
1186             } else {
1187                 return false;
1188             }
1189         }
1190         true
1191     }
1192 }
1193
1194 impl<'a> fmt::Debug for ModuleData<'a> {
1195     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1196         write!(f, "{:?}", self.def())
1197     }
1198 }
1199
1200 /// Records a possibly-private value, type, or module definition.
1201 #[derive(Clone, Debug)]
1202 pub struct NameBinding<'a> {
1203     kind: NameBindingKind<'a>,
1204     ambiguity: Option<(&'a NameBinding<'a>, AmbiguityKind)>,
1205     expansion: Mark,
1206     span: Span,
1207     vis: ty::Visibility,
1208 }
1209
1210 pub trait ToNameBinding<'a> {
1211     fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
1212 }
1213
1214 impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
1215     fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
1216         self
1217     }
1218 }
1219
1220 #[derive(Clone, Debug)]
1221 enum NameBindingKind<'a> {
1222     Def(Def, /* is_macro_export */ bool),
1223     Module(Module<'a>),
1224     Import {
1225         binding: &'a NameBinding<'a>,
1226         directive: &'a ImportDirective<'a>,
1227         used: Cell<bool>,
1228     },
1229 }
1230
1231 struct PrivacyError<'a>(Span, Ident, &'a NameBinding<'a>);
1232
1233 struct UseError<'a> {
1234     err: DiagnosticBuilder<'a>,
1235     /// Attach `use` statements for these candidates
1236     candidates: Vec<ImportSuggestion>,
1237     /// The node id of the module to place the use statements in
1238     node_id: NodeId,
1239     /// Whether the diagnostic should state that it's "better"
1240     better: bool,
1241 }
1242
1243 #[derive(Clone, Copy, PartialEq, Debug)]
1244 enum AmbiguityKind {
1245     Import,
1246     AbsolutePath,
1247     BuiltinAttr,
1248     DeriveHelper,
1249     LegacyHelperVsPrelude,
1250     LegacyVsModern,
1251     GlobVsOuter,
1252     GlobVsGlob,
1253     GlobVsExpanded,
1254     MoreExpandedVsOuter,
1255 }
1256
1257 impl AmbiguityKind {
1258     fn descr(self) -> &'static str {
1259         match self {
1260             AmbiguityKind::Import =>
1261                 "name vs any other name during import resolution",
1262             AmbiguityKind::AbsolutePath =>
1263                 "name in the crate root vs extern crate during absolute path resolution",
1264             AmbiguityKind::BuiltinAttr =>
1265                 "built-in attribute vs any other name",
1266             AmbiguityKind::DeriveHelper =>
1267                 "derive helper attribute vs any other name",
1268             AmbiguityKind::LegacyHelperVsPrelude =>
1269                 "legacy plugin helper attribute vs name from prelude",
1270             AmbiguityKind::LegacyVsModern =>
1271                 "`macro_rules` vs non-`macro_rules` from other module",
1272             AmbiguityKind::GlobVsOuter =>
1273                 "glob import vs any other name from outer scope during import/macro resolution",
1274             AmbiguityKind::GlobVsGlob =>
1275                 "glob import vs glob import in the same module",
1276             AmbiguityKind::GlobVsExpanded =>
1277                 "glob import vs macro-expanded name in the same \
1278                  module during import/macro resolution",
1279             AmbiguityKind::MoreExpandedVsOuter =>
1280                 "macro-expanded name vs less macro-expanded name \
1281                  from outer scope during import/macro resolution",
1282         }
1283     }
1284 }
1285
1286 /// Miscellaneous bits of metadata for better ambiguity error reporting.
1287 #[derive(Clone, Copy, PartialEq)]
1288 enum AmbiguityErrorMisc {
1289     SuggestCrate,
1290     SuggestSelf,
1291     FromPrelude,
1292     None,
1293 }
1294
1295 struct AmbiguityError<'a> {
1296     kind: AmbiguityKind,
1297     ident: Ident,
1298     b1: &'a NameBinding<'a>,
1299     b2: &'a NameBinding<'a>,
1300     misc1: AmbiguityErrorMisc,
1301     misc2: AmbiguityErrorMisc,
1302 }
1303
1304 impl<'a> NameBinding<'a> {
1305     fn module(&self) -> Option<Module<'a>> {
1306         match self.kind {
1307             NameBindingKind::Module(module) => Some(module),
1308             NameBindingKind::Import { binding, .. } => binding.module(),
1309             _ => None,
1310         }
1311     }
1312
1313     fn def(&self) -> Def {
1314         match self.kind {
1315             NameBindingKind::Def(def, _) => def,
1316             NameBindingKind::Module(module) => module.def().unwrap(),
1317             NameBindingKind::Import { binding, .. } => binding.def(),
1318         }
1319     }
1320
1321     fn is_ambiguity(&self) -> bool {
1322         self.ambiguity.is_some() || match self.kind {
1323             NameBindingKind::Import { binding, .. } => binding.is_ambiguity(),
1324             _ => false,
1325         }
1326     }
1327
1328     // We sometimes need to treat variants as `pub` for backwards compatibility
1329     fn pseudo_vis(&self) -> ty::Visibility {
1330         if self.is_variant() && self.def().def_id().is_local() {
1331             ty::Visibility::Public
1332         } else {
1333             self.vis
1334         }
1335     }
1336
1337     fn is_variant(&self) -> bool {
1338         match self.kind {
1339             NameBindingKind::Def(Def::Variant(..), _) |
1340             NameBindingKind::Def(Def::VariantCtor(..), _) => true,
1341             _ => false,
1342         }
1343     }
1344
1345     fn is_extern_crate(&self) -> bool {
1346         match self.kind {
1347             NameBindingKind::Import {
1348                 directive: &ImportDirective {
1349                     subclass: ImportDirectiveSubclass::ExternCrate { .. }, ..
1350                 }, ..
1351             } => true,
1352             NameBindingKind::Module(
1353                 &ModuleData { kind: ModuleKind::Def(Def::Mod(def_id), _), .. }
1354             ) => def_id.index == CRATE_DEF_INDEX,
1355             _ => false,
1356         }
1357     }
1358
1359     fn is_import(&self) -> bool {
1360         match self.kind {
1361             NameBindingKind::Import { .. } => true,
1362             _ => false,
1363         }
1364     }
1365
1366     fn is_glob_import(&self) -> bool {
1367         match self.kind {
1368             NameBindingKind::Import { directive, .. } => directive.is_glob(),
1369             _ => false,
1370         }
1371     }
1372
1373     fn is_importable(&self) -> bool {
1374         match self.def() {
1375             Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
1376             _ => true,
1377         }
1378     }
1379
1380     fn is_macro_def(&self) -> bool {
1381         match self.kind {
1382             NameBindingKind::Def(Def::Macro(..), _) => true,
1383             _ => false,
1384         }
1385     }
1386
1387     fn macro_kind(&self) -> Option<MacroKind> {
1388         match self.def() {
1389             Def::Macro(_, kind) => Some(kind),
1390             Def::NonMacroAttr(..) => Some(MacroKind::Attr),
1391             _ => None,
1392         }
1393     }
1394
1395     fn descr(&self) -> &'static str {
1396         if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() }
1397     }
1398
1399     fn article(&self) -> &'static str {
1400         if self.is_extern_crate() { "an" } else { self.def().article() }
1401     }
1402
1403     // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
1404     // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1405     // Then this function returns `true` if `self` may emerge from a macro *after* that
1406     // in some later round and screw up our previously found resolution.
1407     // See more detailed explanation in
1408     // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1409     fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding) -> bool {
1410         // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1411         // Expansions are partially ordered, so "may appear after" is an inversion of
1412         // "certainly appears before or simultaneously" and includes unordered cases.
1413         let self_parent_expansion = self.expansion;
1414         let other_parent_expansion = binding.expansion;
1415         let certainly_before_other_or_simultaneously =
1416             other_parent_expansion.is_descendant_of(self_parent_expansion);
1417         let certainly_before_invoc_or_simultaneously =
1418             invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1419         !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1420     }
1421 }
1422
1423 /// Interns the names of the primitive types.
1424 ///
1425 /// All other types are defined somewhere and possibly imported, but the primitive ones need
1426 /// special handling, since they have no place of origin.
1427 #[derive(Default)]
1428 struct PrimitiveTypeTable {
1429     primitive_types: FxHashMap<Name, PrimTy>,
1430 }
1431
1432 impl PrimitiveTypeTable {
1433     fn new() -> PrimitiveTypeTable {
1434         let mut table = PrimitiveTypeTable::default();
1435
1436         table.intern("bool", Bool);
1437         table.intern("char", Char);
1438         table.intern("f32", Float(FloatTy::F32));
1439         table.intern("f64", Float(FloatTy::F64));
1440         table.intern("isize", Int(IntTy::Isize));
1441         table.intern("i8", Int(IntTy::I8));
1442         table.intern("i16", Int(IntTy::I16));
1443         table.intern("i32", Int(IntTy::I32));
1444         table.intern("i64", Int(IntTy::I64));
1445         table.intern("i128", Int(IntTy::I128));
1446         table.intern("str", Str);
1447         table.intern("usize", Uint(UintTy::Usize));
1448         table.intern("u8", Uint(UintTy::U8));
1449         table.intern("u16", Uint(UintTy::U16));
1450         table.intern("u32", Uint(UintTy::U32));
1451         table.intern("u64", Uint(UintTy::U64));
1452         table.intern("u128", Uint(UintTy::U128));
1453         table
1454     }
1455
1456     fn intern(&mut self, string: &str, primitive_type: PrimTy) {
1457         self.primitive_types.insert(Symbol::intern(string), primitive_type);
1458     }
1459 }
1460
1461 #[derive(Debug, Default, Clone)]
1462 pub struct ExternPreludeEntry<'a> {
1463     extern_crate_item: Option<&'a NameBinding<'a>>,
1464     pub introduced_by_item: bool,
1465 }
1466
1467 /// The main resolver class.
1468 ///
1469 /// This is the visitor that walks the whole crate.
1470 pub struct Resolver<'a> {
1471     session: &'a Session,
1472     cstore: &'a CStore,
1473
1474     pub definitions: Definitions,
1475
1476     graph_root: Module<'a>,
1477
1478     prelude: Option<Module<'a>>,
1479     pub extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'a>>,
1480
1481     /// n.b. This is used only for better diagnostics, not name resolution itself.
1482     has_self: FxHashSet<DefId>,
1483
1484     /// Names of fields of an item `DefId` accessible with dot syntax.
1485     /// Used for hints during error reporting.
1486     field_names: FxHashMap<DefId, Vec<Name>>,
1487
1488     /// All imports known to succeed or fail.
1489     determined_imports: Vec<&'a ImportDirective<'a>>,
1490
1491     /// All non-determined imports.
1492     indeterminate_imports: Vec<&'a ImportDirective<'a>>,
1493
1494     /// The module that represents the current item scope.
1495     current_module: Module<'a>,
1496
1497     /// The current set of local scopes for types and values.
1498     /// FIXME #4948: Reuse ribs to avoid allocation.
1499     ribs: PerNS<Vec<Rib<'a>>>,
1500
1501     /// The current set of local scopes, for labels.
1502     label_ribs: Vec<Rib<'a>>,
1503
1504     /// The trait that the current context can refer to.
1505     current_trait_ref: Option<(Module<'a>, TraitRef)>,
1506
1507     /// The current self type if inside an impl (used for better errors).
1508     current_self_type: Option<Ty>,
1509
1510     /// The current self item if inside an ADT (used for better errors).
1511     current_self_item: Option<NodeId>,
1512
1513     /// FIXME: Refactor things so that these fields are passed through arguments and not resolver.
1514     /// We are resolving a last import segment during import validation.
1515     last_import_segment: bool,
1516     /// This binding should be ignored during in-module resolution, so that we don't get
1517     /// "self-confirming" import resolutions during import validation.
1518     blacklisted_binding: Option<&'a NameBinding<'a>>,
1519
1520     /// The idents for the primitive types.
1521     primitive_type_table: PrimitiveTypeTable,
1522
1523     def_map: DefMap,
1524     import_map: ImportMap,
1525     pub freevars: FreevarMap,
1526     freevars_seen: NodeMap<NodeMap<usize>>,
1527     pub export_map: ExportMap,
1528     pub trait_map: TraitMap,
1529
1530     /// A map from nodes to anonymous modules.
1531     /// Anonymous modules are pseudo-modules that are implicitly created around items
1532     /// contained within blocks.
1533     ///
1534     /// For example, if we have this:
1535     ///
1536     ///  fn f() {
1537     ///      fn g() {
1538     ///          ...
1539     ///      }
1540     ///  }
1541     ///
1542     /// There will be an anonymous module created around `g` with the ID of the
1543     /// entry block for `f`.
1544     block_map: NodeMap<Module<'a>>,
1545     module_map: FxHashMap<DefId, Module<'a>>,
1546     extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
1547     binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
1548
1549     /// Maps glob imports to the names of items actually imported.
1550     pub glob_map: GlobMap,
1551
1552     used_imports: FxHashSet<(NodeId, Namespace)>,
1553     pub maybe_unused_trait_imports: NodeSet,
1554     pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
1555
1556     /// A list of labels as of yet unused. Labels will be removed from this map when
1557     /// they are used (in a `break` or `continue` statement)
1558     pub unused_labels: FxHashMap<NodeId, Span>,
1559
1560     /// privacy errors are delayed until the end in order to deduplicate them
1561     privacy_errors: Vec<PrivacyError<'a>>,
1562     /// ambiguity errors are delayed for deduplication
1563     ambiguity_errors: Vec<AmbiguityError<'a>>,
1564     /// `use` injections are delayed for better placement and deduplication
1565     use_injections: Vec<UseError<'a>>,
1566     /// crate-local macro expanded `macro_export` referred to by a module-relative path
1567     macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1568
1569     arenas: &'a ResolverArenas<'a>,
1570     dummy_binding: &'a NameBinding<'a>,
1571
1572     crate_loader: &'a mut CrateLoader<'a>,
1573     macro_names: FxHashSet<Ident>,
1574     builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
1575     macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
1576     pub all_macros: FxHashMap<Name, Def>,
1577     macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
1578     macro_defs: FxHashMap<Mark, DefId>,
1579     local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
1580
1581     /// List of crate local macros that we need to warn about as being unused.
1582     /// Right now this only includes macro_rules! macros, and macros 2.0.
1583     unused_macros: FxHashSet<DefId>,
1584
1585     /// Maps the `Mark` of an expansion to its containing module or block.
1586     invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
1587
1588     /// Avoid duplicated errors for "name already defined".
1589     name_already_seen: FxHashMap<Name, Span>,
1590
1591     potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
1592
1593     /// This table maps struct IDs into struct constructor IDs,
1594     /// it's not used during normal resolution, only for better error reporting.
1595     struct_constructors: DefIdMap<(Def, ty::Visibility)>,
1596
1597     /// Only used for better errors on `fn(): fn()`
1598     current_type_ascription: Vec<Span>,
1599
1600     injected_crate: Option<Module<'a>>,
1601 }
1602
1603 /// Nothing really interesting here, it just provides memory for the rest of the crate.
1604 #[derive(Default)]
1605 pub struct ResolverArenas<'a> {
1606     modules: arena::TypedArena<ModuleData<'a>>,
1607     local_modules: RefCell<Vec<Module<'a>>>,
1608     name_bindings: arena::TypedArena<NameBinding<'a>>,
1609     import_directives: arena::TypedArena<ImportDirective<'a>>,
1610     name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
1611     invocation_data: arena::TypedArena<InvocationData<'a>>,
1612     legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
1613 }
1614
1615 impl<'a> ResolverArenas<'a> {
1616     fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
1617         let module = self.modules.alloc(module);
1618         if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
1619             self.local_modules.borrow_mut().push(module);
1620         }
1621         module
1622     }
1623     fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
1624         self.local_modules.borrow()
1625     }
1626     fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
1627         self.name_bindings.alloc(name_binding)
1628     }
1629     fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
1630                               -> &'a ImportDirective {
1631         self.import_directives.alloc(import_directive)
1632     }
1633     fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
1634         self.name_resolutions.alloc(Default::default())
1635     }
1636     fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
1637                              -> &'a InvocationData<'a> {
1638         self.invocation_data.alloc(expansion_data)
1639     }
1640     fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
1641         self.legacy_bindings.alloc(binding)
1642     }
1643 }
1644
1645 impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
1646     fn parent(self, id: DefId) -> Option<DefId> {
1647         match id.krate {
1648             LOCAL_CRATE => self.definitions.def_key(id.index).parent,
1649             _ => self.cstore.def_key(id).parent,
1650         }.map(|index| DefId { index, ..id })
1651     }
1652 }
1653
1654 /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
1655 /// the resolver is no longer needed as all the relevant information is inline.
1656 impl<'a> hir::lowering::Resolver for Resolver<'a> {
1657     fn resolve_hir_path(
1658         &mut self,
1659         path: &ast::Path,
1660         is_value: bool,
1661     ) -> hir::Path {
1662         self.resolve_hir_path_cb(path, is_value,
1663                                  |resolver, span, error| resolve_error(resolver, span, error))
1664     }
1665
1666     fn resolve_str_path(
1667         &mut self,
1668         span: Span,
1669         crate_root: Option<&str>,
1670         components: &[&str],
1671         is_value: bool
1672     ) -> hir::Path {
1673         let segments = iter::once(keywords::PathRoot.ident())
1674             .chain(
1675                 crate_root.into_iter()
1676                     .chain(components.iter().cloned())
1677                     .map(Ident::from_str)
1678             ).map(|i| self.new_ast_path_segment(i)).collect::<Vec<_>>();
1679
1680
1681         let path = ast::Path {
1682             span,
1683             segments,
1684         };
1685
1686         self.resolve_hir_path(&path, is_value)
1687     }
1688
1689     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
1690         self.def_map.get(&id).cloned()
1691     }
1692
1693     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> {
1694         self.import_map.get(&id).cloned().unwrap_or_default()
1695     }
1696
1697     fn definitions(&mut self) -> &mut Definitions {
1698         &mut self.definitions
1699     }
1700 }
1701
1702 impl<'a> Resolver<'a> {
1703     /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a>
1704     /// isn't something that can be returned because it can't be made to live that long,
1705     /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
1706     /// just that an error occurred.
1707     pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
1708         -> Result<hir::Path, ()> {
1709         use std::iter;
1710         let mut errored = false;
1711
1712         let path = if path_str.starts_with("::") {
1713             ast::Path {
1714                 span,
1715                 segments: iter::once(keywords::PathRoot.ident())
1716                     .chain({
1717                         path_str.split("::").skip(1).map(Ident::from_str)
1718                     })
1719                     .map(|i| self.new_ast_path_segment(i))
1720                     .collect(),
1721             }
1722         } else {
1723             ast::Path {
1724                 span,
1725                 segments: path_str
1726                     .split("::")
1727                     .map(Ident::from_str)
1728                     .map(|i| self.new_ast_path_segment(i))
1729                     .collect(),
1730             }
1731         };
1732         let path = self.resolve_hir_path_cb(&path, is_value, |_, _, _| errored = true);
1733         if errored || path.def == Def::Err {
1734             Err(())
1735         } else {
1736             Ok(path)
1737         }
1738     }
1739
1740     /// resolve_hir_path, but takes a callback in case there was an error
1741     fn resolve_hir_path_cb<F>(
1742         &mut self,
1743         path: &ast::Path,
1744         is_value: bool,
1745         error_callback: F,
1746     ) -> hir::Path
1747         where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>)
1748     {
1749         let namespace = if is_value { ValueNS } else { TypeNS };
1750         let span = path.span;
1751         let segments = &path.segments;
1752         let path = Segment::from_path(&path);
1753         // FIXME (Manishearth): Intra doc links won't get warned of epoch changes
1754         let def = match self.resolve_path_without_parent_scope(&path, Some(namespace), true,
1755                                                                span, CrateLint::No) {
1756             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1757                 module.def().unwrap(),
1758             PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
1759                 path_res.base_def(),
1760             PathResult::NonModule(..) => {
1761                 let msg = "type-relative paths are not supported in this context";
1762                 error_callback(self, span, ResolutionError::FailedToResolve(msg));
1763                 Def::Err
1764             }
1765             PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
1766             PathResult::Failed(span, msg, _) => {
1767                 error_callback(self, span, ResolutionError::FailedToResolve(&msg));
1768                 Def::Err
1769             }
1770         };
1771
1772         let segments: Vec<_> = segments.iter().map(|seg| {
1773             let mut hir_seg = hir::PathSegment::from_ident(seg.ident);
1774             hir_seg.def = Some(self.def_map.get(&seg.id).map_or(Def::Err, |p| p.base_def()));
1775             hir_seg
1776         }).collect();
1777         hir::Path {
1778             span,
1779             def,
1780             segments: segments.into(),
1781         }
1782     }
1783
1784     fn new_ast_path_segment(&self, ident: Ident) -> ast::PathSegment {
1785         let mut seg = ast::PathSegment::from_ident(ident);
1786         seg.id = self.session.next_node_id();
1787         seg
1788     }
1789 }
1790
1791 impl<'a> Resolver<'a> {
1792     pub fn new(session: &'a Session,
1793                cstore: &'a CStore,
1794                krate: &Crate,
1795                crate_name: &str,
1796                crate_loader: &'a mut CrateLoader<'a>,
1797                arenas: &'a ResolverArenas<'a>)
1798                -> Resolver<'a> {
1799         let root_def_id = DefId::local(CRATE_DEF_INDEX);
1800         let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
1801         let graph_root = arenas.alloc_module(ModuleData {
1802             no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
1803             ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
1804         });
1805         let mut module_map = FxHashMap::default();
1806         module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
1807
1808         let mut definitions = Definitions::new();
1809         DefCollector::new(&mut definitions, Mark::root())
1810             .collect_root(crate_name, session.local_crate_disambiguator());
1811
1812         let mut extern_prelude: FxHashMap<Ident, ExternPreludeEntry> =
1813             session.opts.externs.iter().map(|kv| (Ident::from_str(kv.0), Default::default()))
1814                                        .collect();
1815
1816         if !attr::contains_name(&krate.attrs, "no_core") {
1817             extern_prelude.insert(Ident::from_str("core"), Default::default());
1818             if !attr::contains_name(&krate.attrs, "no_std") {
1819                 extern_prelude.insert(Ident::from_str("std"), Default::default());
1820                 if session.rust_2018() {
1821                     extern_prelude.insert(Ident::from_str("meta"), Default::default());
1822                 }
1823             }
1824         }
1825
1826         let mut invocations = FxHashMap::default();
1827         invocations.insert(Mark::root(),
1828                            arenas.alloc_invocation_data(InvocationData::root(graph_root)));
1829
1830         let mut macro_defs = FxHashMap::default();
1831         macro_defs.insert(Mark::root(), root_def_id);
1832
1833         Resolver {
1834             session,
1835
1836             cstore,
1837
1838             definitions,
1839
1840             // The outermost module has def ID 0; this is not reflected in the
1841             // AST.
1842             graph_root,
1843             prelude: None,
1844             extern_prelude,
1845
1846             has_self: FxHashSet::default(),
1847             field_names: FxHashMap::default(),
1848
1849             determined_imports: Vec::new(),
1850             indeterminate_imports: Vec::new(),
1851
1852             current_module: graph_root,
1853             ribs: PerNS {
1854                 value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1855                 type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1856                 macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
1857             },
1858             label_ribs: Vec::new(),
1859
1860             current_trait_ref: None,
1861             current_self_type: None,
1862             current_self_item: None,
1863             last_import_segment: false,
1864             blacklisted_binding: None,
1865
1866             primitive_type_table: PrimitiveTypeTable::new(),
1867
1868             def_map: Default::default(),
1869             import_map: Default::default(),
1870             freevars: Default::default(),
1871             freevars_seen: Default::default(),
1872             export_map: FxHashMap::default(),
1873             trait_map: Default::default(),
1874             module_map,
1875             block_map: Default::default(),
1876             extern_module_map: FxHashMap::default(),
1877             binding_parent_modules: FxHashMap::default(),
1878
1879             glob_map: Default::default(),
1880
1881             used_imports: FxHashSet::default(),
1882             maybe_unused_trait_imports: Default::default(),
1883             maybe_unused_extern_crates: Vec::new(),
1884
1885             unused_labels: FxHashMap::default(),
1886
1887             privacy_errors: Vec::new(),
1888             ambiguity_errors: Vec::new(),
1889             use_injections: Vec::new(),
1890             macro_expanded_macro_export_errors: BTreeSet::new(),
1891
1892             arenas,
1893             dummy_binding: arenas.alloc_name_binding(NameBinding {
1894                 kind: NameBindingKind::Def(Def::Err, false),
1895                 ambiguity: None,
1896                 expansion: Mark::root(),
1897                 span: DUMMY_SP,
1898                 vis: ty::Visibility::Public,
1899             }),
1900
1901             crate_loader,
1902             macro_names: FxHashSet::default(),
1903             builtin_macros: FxHashMap::default(),
1904             macro_use_prelude: FxHashMap::default(),
1905             all_macros: FxHashMap::default(),
1906             macro_map: FxHashMap::default(),
1907             invocations,
1908             macro_defs,
1909             local_macro_def_scopes: FxHashMap::default(),
1910             name_already_seen: FxHashMap::default(),
1911             potentially_unused_imports: Vec::new(),
1912             struct_constructors: Default::default(),
1913             unused_macros: FxHashSet::default(),
1914             current_type_ascription: Vec::new(),
1915             injected_crate: None,
1916         }
1917     }
1918
1919     pub fn arenas() -> ResolverArenas<'a> {
1920         Default::default()
1921     }
1922
1923     /// Runs the function on each namespace.
1924     fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1925         f(self, TypeNS);
1926         f(self, ValueNS);
1927         f(self, MacroNS);
1928     }
1929
1930     fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1931         loop {
1932             match self.macro_defs.get(&ctxt.outer()) {
1933                 Some(&def_id) => return def_id,
1934                 None => ctxt.remove_mark(),
1935             };
1936         }
1937     }
1938
1939     /// Entry point to crate resolution.
1940     pub fn resolve_crate(&mut self, krate: &Crate) {
1941         ImportResolver { resolver: self }.finalize_imports();
1942         self.current_module = self.graph_root;
1943         self.finalize_current_module_macro_resolutions();
1944
1945         visit::walk_crate(self, krate);
1946
1947         check_unused::check_crate(self, krate);
1948         self.report_errors(krate);
1949         self.crate_loader.postprocess(krate);
1950     }
1951
1952     fn new_module(
1953         &self,
1954         parent: Module<'a>,
1955         kind: ModuleKind,
1956         normal_ancestor_id: DefId,
1957         expansion: Mark,
1958         span: Span,
1959     ) -> Module<'a> {
1960         let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
1961         self.arenas.alloc_module(module)
1962     }
1963
1964     fn record_use(&mut self, ident: Ident, ns: Namespace,
1965                   used_binding: &'a NameBinding<'a>, is_lexical_scope: bool) {
1966         if let Some((b2, kind)) = used_binding.ambiguity {
1967             self.ambiguity_errors.push(AmbiguityError {
1968                 kind, ident, b1: used_binding, b2,
1969                 misc1: AmbiguityErrorMisc::None,
1970                 misc2: AmbiguityErrorMisc::None,
1971             });
1972         }
1973         if let NameBindingKind::Import { directive, binding, ref used } = used_binding.kind {
1974             // Avoid marking `extern crate` items that refer to a name from extern prelude,
1975             // but not introduce it, as used if they are accessed from lexical scope.
1976             if is_lexical_scope {
1977                 if let Some(entry) = self.extern_prelude.get(&ident.modern()) {
1978                     if let Some(crate_item) = entry.extern_crate_item {
1979                         if ptr::eq(used_binding, crate_item) && !entry.introduced_by_item {
1980                             return;
1981                         }
1982                     }
1983                 }
1984             }
1985             used.set(true);
1986             directive.used.set(true);
1987             self.used_imports.insert((directive.id, ns));
1988             self.add_to_glob_map(&directive, ident);
1989             self.record_use(ident, ns, binding, false);
1990         }
1991     }
1992
1993     #[inline]
1994     fn add_to_glob_map(&mut self, directive: &ImportDirective<'_>, ident: Ident) {
1995         if directive.is_glob() {
1996             self.glob_map.entry(directive.id).or_default().insert(ident.name);
1997         }
1998     }
1999
2000     /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
2001     /// More specifically, we proceed up the hierarchy of scopes and return the binding for
2002     /// `ident` in the first scope that defines it (or None if no scopes define it).
2003     ///
2004     /// A block's items are above its local variables in the scope hierarchy, regardless of where
2005     /// the items are defined in the block. For example,
2006     /// ```rust
2007     /// fn f() {
2008     ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
2009     ///    let g = || {};
2010     ///    fn g() {}
2011     ///    g(); // This resolves to the local variable `g` since it shadows the item.
2012     /// }
2013     /// ```
2014     ///
2015     /// Invariant: This must only be called during main resolution, not during
2016     /// import resolution.
2017     fn resolve_ident_in_lexical_scope(&mut self,
2018                                       mut ident: Ident,
2019                                       ns: Namespace,
2020                                       record_used_id: Option<NodeId>,
2021                                       path_span: Span)
2022                                       -> Option<LexicalScopeBinding<'a>> {
2023         assert!(ns == TypeNS  || ns == ValueNS);
2024         if ident.name == keywords::Invalid.name() {
2025             return Some(LexicalScopeBinding::Def(Def::Err));
2026         }
2027         ident.span = if ident.name == keywords::SelfUpper.name() {
2028             // FIXME(jseyfried) improve `Self` hygiene
2029             ident.span.with_ctxt(SyntaxContext::empty())
2030         } else if ns == TypeNS {
2031             ident.span.modern()
2032         } else {
2033             ident.span.modern_and_legacy()
2034         };
2035
2036         // Walk backwards up the ribs in scope.
2037         let record_used = record_used_id.is_some();
2038         let mut module = self.graph_root;
2039         for i in (0 .. self.ribs[ns].len()).rev() {
2040             if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
2041                 // The ident resolves to a type parameter or local variable.
2042                 return Some(LexicalScopeBinding::Def(
2043                     self.adjust_local_def(ns, i, def, record_used, path_span)
2044                 ));
2045             }
2046
2047             module = match self.ribs[ns][i].kind {
2048                 ModuleRibKind(module) => module,
2049                 MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
2050                     // If an invocation of this macro created `ident`, give up on `ident`
2051                     // and switch to `ident`'s source from the macro definition.
2052                     ident.span.remove_mark();
2053                     continue
2054                 }
2055                 _ => continue,
2056             };
2057
2058             let item = self.resolve_ident_in_module_unadjusted(
2059                 ModuleOrUniformRoot::Module(module),
2060                 ident,
2061                 ns,
2062                 record_used,
2063                 path_span,
2064             );
2065             if let Ok(binding) = item {
2066                 // The ident resolves to an item.
2067                 return Some(LexicalScopeBinding::Item(binding));
2068             }
2069
2070             match module.kind {
2071                 ModuleKind::Block(..) => {}, // We can see through blocks
2072                 _ => break,
2073             }
2074         }
2075
2076         ident.span = ident.span.modern();
2077         let mut poisoned = None;
2078         loop {
2079             let opt_module = if let Some(node_id) = record_used_id {
2080                 self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
2081                                                                          node_id, &mut poisoned)
2082             } else {
2083                 self.hygienic_lexical_parent(module, &mut ident.span)
2084             };
2085             module = unwrap_or!(opt_module, break);
2086             let orig_current_module = self.current_module;
2087             self.current_module = module; // Lexical resolutions can never be a privacy error.
2088             let result = self.resolve_ident_in_module_unadjusted(
2089                 ModuleOrUniformRoot::Module(module),
2090                 ident,
2091                 ns,
2092                 record_used,
2093                 path_span,
2094             );
2095             self.current_module = orig_current_module;
2096
2097             match result {
2098                 Ok(binding) => {
2099                     if let Some(node_id) = poisoned {
2100                         self.session.buffer_lint_with_diagnostic(
2101                             lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
2102                             node_id, ident.span,
2103                             &format!("cannot find {} `{}` in this scope", ns.descr(), ident),
2104                             lint::builtin::BuiltinLintDiagnostics::
2105                                 ProcMacroDeriveResolutionFallback(ident.span),
2106                         );
2107                     }
2108                     return Some(LexicalScopeBinding::Item(binding))
2109                 }
2110                 Err(Determined) => continue,
2111                 Err(Undetermined) =>
2112                     span_bug!(ident.span, "undetermined resolution during main resolution pass"),
2113             }
2114         }
2115
2116         if !module.no_implicit_prelude {
2117             if ns == TypeNS {
2118                 if let Some(binding) = self.extern_prelude_get(ident, !record_used) {
2119                     return Some(LexicalScopeBinding::Item(binding));
2120                 }
2121             }
2122             if ns == TypeNS && is_known_tool(ident.name) {
2123                 let binding = (Def::ToolMod, ty::Visibility::Public,
2124                                DUMMY_SP, Mark::root()).to_name_binding(self.arenas);
2125                 return Some(LexicalScopeBinding::Item(binding));
2126             }
2127             if let Some(prelude) = self.prelude {
2128                 if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
2129                     ModuleOrUniformRoot::Module(prelude),
2130                     ident,
2131                     ns,
2132                     false,
2133                     path_span,
2134                 ) {
2135                     return Some(LexicalScopeBinding::Item(binding));
2136                 }
2137             }
2138         }
2139
2140         None
2141     }
2142
2143     fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
2144                                -> Option<Module<'a>> {
2145         if !module.expansion.is_descendant_of(span.ctxt().outer()) {
2146             return Some(self.macro_def_scope(span.remove_mark()));
2147         }
2148
2149         if let ModuleKind::Block(..) = module.kind {
2150             return Some(module.parent.unwrap());
2151         }
2152
2153         None
2154     }
2155
2156     fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
2157                                                            span: &mut Span, node_id: NodeId,
2158                                                            poisoned: &mut Option<NodeId>)
2159                                                            -> Option<Module<'a>> {
2160         if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
2161             return module;
2162         }
2163
2164         // We need to support the next case under a deprecation warning
2165         // ```
2166         // struct MyStruct;
2167         // ---- begin: this comes from a proc macro derive
2168         // mod implementation_details {
2169         //     // Note that `MyStruct` is not in scope here.
2170         //     impl SomeTrait for MyStruct { ... }
2171         // }
2172         // ---- end
2173         // ```
2174         // So we have to fall back to the module's parent during lexical resolution in this case.
2175         if let Some(parent) = module.parent {
2176             // Inner module is inside the macro, parent module is outside of the macro.
2177             if module.expansion != parent.expansion &&
2178             module.expansion.is_descendant_of(parent.expansion) {
2179                 // The macro is a proc macro derive
2180                 if module.expansion.looks_like_proc_macro_derive() {
2181                     if parent.expansion.is_descendant_of(span.ctxt().outer()) {
2182                         *poisoned = Some(node_id);
2183                         return module.parent;
2184                     }
2185                 }
2186             }
2187         }
2188
2189         None
2190     }
2191
2192     fn resolve_ident_in_module(
2193         &mut self,
2194         module: ModuleOrUniformRoot<'a>,
2195         ident: Ident,
2196         ns: Namespace,
2197         parent_scope: Option<&ParentScope<'a>>,
2198         record_used: bool,
2199         path_span: Span
2200     ) -> Result<&'a NameBinding<'a>, Determinacy> {
2201         self.resolve_ident_in_module_ext(
2202             module, ident, ns, parent_scope, record_used, path_span
2203         ).map_err(|(determinacy, _)| determinacy)
2204     }
2205
2206     fn resolve_ident_in_module_ext(
2207         &mut self,
2208         module: ModuleOrUniformRoot<'a>,
2209         mut ident: Ident,
2210         ns: Namespace,
2211         parent_scope: Option<&ParentScope<'a>>,
2212         record_used: bool,
2213         path_span: Span
2214     ) -> Result<&'a NameBinding<'a>, (Determinacy, Weak)> {
2215         let orig_current_module = self.current_module;
2216         match module {
2217             ModuleOrUniformRoot::Module(module) => {
2218                 ident.span = ident.span.modern();
2219                 if let Some(def) = ident.span.adjust(module.expansion) {
2220                     self.current_module = self.macro_def_scope(def);
2221                 }
2222             }
2223             ModuleOrUniformRoot::ExternPrelude => {
2224                 ident.span = ident.span.modern();
2225                 ident.span.adjust(Mark::root());
2226             }
2227             ModuleOrUniformRoot::CrateRootAndExternPrelude |
2228             ModuleOrUniformRoot::CurrentScope => {
2229                 // No adjustments
2230             }
2231         }
2232         let result = self.resolve_ident_in_module_unadjusted_ext(
2233             module, ident, ns, parent_scope, false, record_used, path_span,
2234         );
2235         self.current_module = orig_current_module;
2236         result
2237     }
2238
2239     fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
2240         let mut ctxt = ident.span.ctxt();
2241         let mark = if ident.name == keywords::DollarCrate.name() {
2242             // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2243             // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2244             // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
2245             // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2246             // definitions actually produced by `macro` and `macro` definitions produced by
2247             // `macro_rules!`, but at least such configurations are not stable yet.
2248             ctxt = ctxt.modern_and_legacy();
2249             let mut iter = ctxt.marks().into_iter().rev().peekable();
2250             let mut result = None;
2251             // Find the last modern mark from the end if it exists.
2252             while let Some(&(mark, transparency)) = iter.peek() {
2253                 if transparency == Transparency::Opaque {
2254                     result = Some(mark);
2255                     iter.next();
2256                 } else {
2257                     break;
2258                 }
2259             }
2260             // Then find the last legacy mark from the end if it exists.
2261             for (mark, transparency) in iter {
2262                 if transparency == Transparency::SemiTransparent {
2263                     result = Some(mark);
2264                 } else {
2265                     break;
2266                 }
2267             }
2268             result
2269         } else {
2270             ctxt = ctxt.modern();
2271             ctxt.adjust(Mark::root())
2272         };
2273         let module = match mark {
2274             Some(def) => self.macro_def_scope(def),
2275             None => return self.graph_root,
2276         };
2277         self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
2278     }
2279
2280     fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
2281         let mut module = self.get_module(module.normal_ancestor_id);
2282         while module.span.ctxt().modern() != *ctxt {
2283             let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
2284             module = self.get_module(parent.normal_ancestor_id);
2285         }
2286         module
2287     }
2288
2289     // AST resolution
2290     //
2291     // We maintain a list of value ribs and type ribs.
2292     //
2293     // Simultaneously, we keep track of the current position in the module
2294     // graph in the `current_module` pointer. When we go to resolve a name in
2295     // the value or type namespaces, we first look through all the ribs and
2296     // then query the module graph. When we resolve a name in the module
2297     // namespace, we can skip all the ribs (since nested modules are not
2298     // allowed within blocks in Rust) and jump straight to the current module
2299     // graph node.
2300     //
2301     // Named implementations are handled separately. When we find a method
2302     // call, we consult the module node to find all of the implementations in
2303     // scope. This information is lazily cached in the module node. We then
2304     // generate a fake "implementation scope" containing all the
2305     // implementations thus found, for compatibility with old resolve pass.
2306
2307     pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
2308         where F: FnOnce(&mut Resolver) -> T
2309     {
2310         let id = self.definitions.local_def_id(id);
2311         let module = self.module_map.get(&id).cloned(); // clones a reference
2312         if let Some(module) = module {
2313             // Move down in the graph.
2314             let orig_module = replace(&mut self.current_module, module);
2315             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
2316             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
2317
2318             self.finalize_current_module_macro_resolutions();
2319             let ret = f(self);
2320
2321             self.current_module = orig_module;
2322             self.ribs[ValueNS].pop();
2323             self.ribs[TypeNS].pop();
2324             ret
2325         } else {
2326             f(self)
2327         }
2328     }
2329
2330     /// Searches the current set of local scopes for labels. Returns the first non-None label that
2331     /// is returned by the given predicate function
2332     ///
2333     /// Stops after meeting a closure.
2334     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
2335         where P: Fn(&Rib, Ident) -> Option<R>
2336     {
2337         for rib in self.label_ribs.iter().rev() {
2338             match rib.kind {
2339                 NormalRibKind => {}
2340                 // If an invocation of this macro created `ident`, give up on `ident`
2341                 // and switch to `ident`'s source from the macro definition.
2342                 MacroDefinition(def) => {
2343                     if def == self.macro_def(ident.span.ctxt()) {
2344                         ident.span.remove_mark();
2345                     }
2346                 }
2347                 _ => {
2348                     // Do not resolve labels across function boundary
2349                     return None;
2350                 }
2351             }
2352             let r = pred(rib, ident);
2353             if r.is_some() {
2354                 return r;
2355             }
2356         }
2357         None
2358     }
2359
2360     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
2361         self.with_current_self_item(item, |this| {
2362             this.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2363                 let item_def_id = this.definitions.local_def_id(item.id);
2364                 this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| {
2365                     visit::walk_item(this, item);
2366                 });
2367             });
2368         });
2369     }
2370
2371     fn future_proof_import(&mut self, use_tree: &ast::UseTree) {
2372         let segments = &use_tree.prefix.segments;
2373         if !segments.is_empty() {
2374             let ident = segments[0].ident;
2375             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
2376                 return;
2377             }
2378
2379             let nss = match use_tree.kind {
2380                 ast::UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
2381                 _ => &[TypeNS],
2382             };
2383             let report_error = |this: &Self, ns| {
2384                 let what = if ns == TypeNS { "type parameters" } else { "local variables" };
2385                 this.session.span_err(ident.span, &format!("imports cannot refer to {}", what));
2386             };
2387
2388             for &ns in nss {
2389                 match self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
2390                     Some(LexicalScopeBinding::Def(..)) => {
2391                         report_error(self, ns);
2392                     }
2393                     Some(LexicalScopeBinding::Item(binding)) => {
2394                         let orig_blacklisted_binding =
2395                             mem::replace(&mut self.blacklisted_binding, Some(binding));
2396                         if let Some(LexicalScopeBinding::Def(..)) =
2397                                 self.resolve_ident_in_lexical_scope(ident, ns, None,
2398                                                                     use_tree.prefix.span) {
2399                             report_error(self, ns);
2400                         }
2401                         self.blacklisted_binding = orig_blacklisted_binding;
2402                     }
2403                     None => {}
2404                 }
2405             }
2406         } else if let ast::UseTreeKind::Nested(use_trees) = &use_tree.kind {
2407             for (use_tree, _) in use_trees {
2408                 self.future_proof_import(use_tree);
2409             }
2410         }
2411     }
2412
2413     fn resolve_item(&mut self, item: &Item) {
2414         let name = item.ident.name;
2415         debug!("(resolving item) resolving {}", name);
2416
2417         match item.node {
2418             ItemKind::Ty(_, ref generics) |
2419             ItemKind::Fn(_, _, ref generics, _) |
2420             ItemKind::Existential(_, ref generics) => {
2421                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
2422                                              |this| visit::walk_item(this, item));
2423             }
2424
2425             ItemKind::Enum(_, ref generics) |
2426             ItemKind::Struct(_, ref generics) |
2427             ItemKind::Union(_, ref generics) => {
2428                 self.resolve_adt(item, generics);
2429             }
2430
2431             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
2432                 self.resolve_implementation(generics,
2433                                             opt_trait_ref,
2434                                             &self_type,
2435                                             item.id,
2436                                             impl_items),
2437
2438             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
2439                 // Create a new rib for the trait-wide type parameters.
2440                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2441                     let local_def_id = this.definitions.local_def_id(item.id);
2442                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2443                         this.visit_generics(generics);
2444                         walk_list!(this, visit_param_bound, bounds);
2445
2446                         for trait_item in trait_items {
2447                             let type_parameters = HasTypeParameters(&trait_item.generics,
2448                                                                     TraitOrImplItemRibKind);
2449                             this.with_type_parameter_rib(type_parameters, |this| {
2450                                 match trait_item.node {
2451                                     TraitItemKind::Const(ref ty, ref default) => {
2452                                         this.visit_ty(ty);
2453
2454                                         // Only impose the restrictions of
2455                                         // ConstRibKind for an actual constant
2456                                         // expression in a provided default.
2457                                         if let Some(ref expr) = *default{
2458                                             this.with_constant_rib(|this| {
2459                                                 this.visit_expr(expr);
2460                                             });
2461                                         }
2462                                     }
2463                                     TraitItemKind::Method(_, _) => {
2464                                         visit::walk_trait_item(this, trait_item)
2465                                     }
2466                                     TraitItemKind::Type(..) => {
2467                                         visit::walk_trait_item(this, trait_item)
2468                                     }
2469                                     TraitItemKind::Macro(_) => {
2470                                         panic!("unexpanded macro in resolve!")
2471                                     }
2472                                 };
2473                             });
2474                         }
2475                     });
2476                 });
2477             }
2478
2479             ItemKind::TraitAlias(ref generics, ref bounds) => {
2480                 // Create a new rib for the trait-wide type parameters.
2481                 self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2482                     let local_def_id = this.definitions.local_def_id(item.id);
2483                     this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
2484                         this.visit_generics(generics);
2485                         walk_list!(this, visit_param_bound, bounds);
2486                     });
2487                 });
2488             }
2489
2490             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
2491                 self.with_scope(item.id, |this| {
2492                     visit::walk_item(this, item);
2493                 });
2494             }
2495
2496             ItemKind::Static(ref ty, _, ref expr) |
2497             ItemKind::Const(ref ty, ref expr) => {
2498                 self.with_item_rib(|this| {
2499                     this.visit_ty(ty);
2500                     this.with_constant_rib(|this| {
2501                         this.visit_expr(expr);
2502                     });
2503                 });
2504             }
2505
2506             ItemKind::Use(ref use_tree) => {
2507                 self.future_proof_import(use_tree);
2508             }
2509
2510             ItemKind::ExternCrate(..) |
2511             ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
2512                 // do nothing, these are just around to be encoded
2513             }
2514
2515             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
2516         }
2517     }
2518
2519     fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
2520         where F: FnOnce(&mut Resolver)
2521     {
2522         match type_parameters {
2523             HasTypeParameters(generics, rib_kind) => {
2524                 let mut function_type_rib = Rib::new(rib_kind);
2525                 let mut seen_bindings = FxHashMap::default();
2526                 for param in &generics.params {
2527                     match param.kind {
2528                         GenericParamKind::Lifetime { .. } => {}
2529                         GenericParamKind::Type { .. } => {
2530                             let ident = param.ident.modern();
2531                             debug!("with_type_parameter_rib: {}", param.id);
2532
2533                             if seen_bindings.contains_key(&ident) {
2534                                 let span = seen_bindings.get(&ident).unwrap();
2535                                 let err = ResolutionError::NameAlreadyUsedInTypeParameterList(
2536                                     ident.name,
2537                                     span,
2538                                 );
2539                                 resolve_error(self, param.ident.span, err);
2540                             }
2541                             seen_bindings.entry(ident).or_insert(param.ident.span);
2542
2543                         // Plain insert (no renaming).
2544                         let def = Def::TyParam(self.definitions.local_def_id(param.id));
2545                             function_type_rib.bindings.insert(ident, def);
2546                             self.record_def(param.id, PathResolution::new(def));
2547                         }
2548                     }
2549                 }
2550                 self.ribs[TypeNS].push(function_type_rib);
2551             }
2552
2553             NoTypeParameters => {
2554                 // Nothing to do.
2555             }
2556         }
2557
2558         f(self);
2559
2560         if let HasTypeParameters(..) = type_parameters {
2561             self.ribs[TypeNS].pop();
2562         }
2563     }
2564
2565     fn with_label_rib<F>(&mut self, f: F)
2566         where F: FnOnce(&mut Resolver)
2567     {
2568         self.label_ribs.push(Rib::new(NormalRibKind));
2569         f(self);
2570         self.label_ribs.pop();
2571     }
2572
2573     fn with_item_rib<F>(&mut self, f: F)
2574         where F: FnOnce(&mut Resolver)
2575     {
2576         self.ribs[ValueNS].push(Rib::new(ItemRibKind));
2577         self.ribs[TypeNS].push(Rib::new(ItemRibKind));
2578         f(self);
2579         self.ribs[TypeNS].pop();
2580         self.ribs[ValueNS].pop();
2581     }
2582
2583     fn with_constant_rib<F>(&mut self, f: F)
2584         where F: FnOnce(&mut Resolver)
2585     {
2586         self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
2587         self.label_ribs.push(Rib::new(ConstantItemRibKind));
2588         f(self);
2589         self.label_ribs.pop();
2590         self.ribs[ValueNS].pop();
2591     }
2592
2593     fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
2594         where F: FnOnce(&mut Resolver) -> T
2595     {
2596         // Handle nested impls (inside fn bodies)
2597         let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
2598         let result = f(self);
2599         self.current_self_type = previous_value;
2600         result
2601     }
2602
2603     fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
2604         where F: FnOnce(&mut Resolver) -> T
2605     {
2606         let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
2607         let result = f(self);
2608         self.current_self_item = previous_value;
2609         result
2610     }
2611
2612     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`)
2613     fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
2614         where F: FnOnce(&mut Resolver, Option<DefId>) -> T
2615     {
2616         let mut new_val = None;
2617         let mut new_id = None;
2618         if let Some(trait_ref) = opt_trait_ref {
2619             let path: Vec<_> = Segment::from_path(&trait_ref.path);
2620             let def = self.smart_resolve_path_fragment(
2621                 trait_ref.ref_id,
2622                 None,
2623                 &path,
2624                 trait_ref.path.span,
2625                 PathSource::Trait(AliasPossibility::No),
2626                 CrateLint::SimplePath(trait_ref.ref_id),
2627             ).base_def();
2628             if def != Def::Err {
2629                 new_id = Some(def.def_id());
2630                 let span = trait_ref.path.span;
2631                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
2632                     self.resolve_path_without_parent_scope(
2633                         &path,
2634                         Some(TypeNS),
2635                         false,
2636                         span,
2637                         CrateLint::SimplePath(trait_ref.ref_id),
2638                     )
2639                 {
2640                     new_val = Some((module, trait_ref.clone()));
2641                 }
2642             }
2643         }
2644         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2645         let result = f(self, new_id);
2646         self.current_trait_ref = original_trait_ref;
2647         result
2648     }
2649
2650     fn with_self_rib<F>(&mut self, self_def: Def, f: F)
2651         where F: FnOnce(&mut Resolver)
2652     {
2653         let mut self_type_rib = Rib::new(NormalRibKind);
2654
2655         // plain insert (no renaming, types are not currently hygienic....)
2656         self_type_rib.bindings.insert(keywords::SelfUpper.ident(), self_def);
2657         self.ribs[TypeNS].push(self_type_rib);
2658         f(self);
2659         self.ribs[TypeNS].pop();
2660     }
2661
2662     fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
2663         where F: FnOnce(&mut Resolver)
2664     {
2665         let self_def = Def::SelfCtor(impl_id);
2666         let mut self_type_rib = Rib::new(NormalRibKind);
2667         self_type_rib.bindings.insert(keywords::SelfUpper.ident(), self_def);
2668         self.ribs[ValueNS].push(self_type_rib);
2669         f(self);
2670         self.ribs[ValueNS].pop();
2671     }
2672
2673     fn resolve_implementation(&mut self,
2674                               generics: &Generics,
2675                               opt_trait_reference: &Option<TraitRef>,
2676                               self_type: &Ty,
2677                               item_id: NodeId,
2678                               impl_items: &[ImplItem]) {
2679         // If applicable, create a rib for the type parameters.
2680         self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
2681             // Dummy self type for better errors if `Self` is used in the trait path.
2682             this.with_self_rib(Def::SelfTy(None, None), |this| {
2683                 // Resolve the trait reference, if necessary.
2684                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2685                     let item_def_id = this.definitions.local_def_id(item_id);
2686                     this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
2687                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2688                             // Resolve type arguments in the trait path.
2689                             visit::walk_trait_ref(this, trait_ref);
2690                         }
2691                         // Resolve the self type.
2692                         this.visit_ty(self_type);
2693                         // Resolve the type parameters.
2694                         this.visit_generics(generics);
2695                         // Resolve the items within the impl.
2696                         this.with_current_self_type(self_type, |this| {
2697                             this.with_self_struct_ctor_rib(item_def_id, |this| {
2698                                 for impl_item in impl_items {
2699                                     this.resolve_visibility(&impl_item.vis);
2700
2701                                     // We also need a new scope for the impl item type parameters.
2702                                     let type_parameters = HasTypeParameters(&impl_item.generics,
2703                                                                             TraitOrImplItemRibKind);
2704                                     this.with_type_parameter_rib(type_parameters, |this| {
2705                                         use self::ResolutionError::*;
2706                                         match impl_item.node {
2707                                             ImplItemKind::Const(..) => {
2708                                                 // If this is a trait impl, ensure the const
2709                                                 // exists in trait
2710                                                 this.check_trait_item(impl_item.ident,
2711                                                                       ValueNS,
2712                                                                       impl_item.span,
2713                                                     |n, s| ConstNotMemberOfTrait(n, s));
2714                                                 this.with_constant_rib(|this|
2715                                                     visit::walk_impl_item(this, impl_item)
2716                                                 );
2717                                             }
2718                                             ImplItemKind::Method(..) => {
2719                                                 // If this is a trait impl, ensure the method
2720                                                 // exists in trait
2721                                                 this.check_trait_item(impl_item.ident,
2722                                                                       ValueNS,
2723                                                                       impl_item.span,
2724                                                     |n, s| MethodNotMemberOfTrait(n, s));
2725
2726                                                 visit::walk_impl_item(this, impl_item);
2727                                             }
2728                                             ImplItemKind::Type(ref ty) => {
2729                                                 // If this is a trait impl, ensure the type
2730                                                 // exists in trait
2731                                                 this.check_trait_item(impl_item.ident,
2732                                                                       TypeNS,
2733                                                                       impl_item.span,
2734                                                     |n, s| TypeNotMemberOfTrait(n, s));
2735
2736                                                 this.visit_ty(ty);
2737                                             }
2738                                             ImplItemKind::Existential(ref bounds) => {
2739                                                 // If this is a trait impl, ensure the type
2740                                                 // exists in trait
2741                                                 this.check_trait_item(impl_item.ident,
2742                                                                       TypeNS,
2743                                                                       impl_item.span,
2744                                                     |n, s| TypeNotMemberOfTrait(n, s));
2745
2746                                                 for bound in bounds {
2747                                                     this.visit_param_bound(bound);
2748                                                 }
2749                                             }
2750                                             ImplItemKind::Macro(_) =>
2751                                                 panic!("unexpanded macro in resolve!"),
2752                                         }
2753                                     });
2754                                 }
2755                             });
2756                         });
2757                     });
2758                 });
2759             });
2760         });
2761     }
2762
2763     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
2764         where F: FnOnce(Name, &str) -> ResolutionError
2765     {
2766         // If there is a TraitRef in scope for an impl, then the method must be in the
2767         // trait.
2768         if let Some((module, _)) = self.current_trait_ref {
2769             if self.resolve_ident_in_module(
2770                 ModuleOrUniformRoot::Module(module),
2771                 ident,
2772                 ns,
2773                 None,
2774                 false,
2775                 span,
2776             ).is_err() {
2777                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2778                 resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
2779             }
2780         }
2781     }
2782
2783     fn resolve_local(&mut self, local: &Local) {
2784         // Resolve the type.
2785         walk_list!(self, visit_ty, &local.ty);
2786
2787         // Resolve the initializer.
2788         walk_list!(self, visit_expr, &local.init);
2789
2790         // Resolve the pattern.
2791         self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap::default());
2792     }
2793
2794     // build a map from pattern identifiers to binding-info's.
2795     // this is done hygienically. This could arise for a macro
2796     // that expands into an or-pattern where one 'x' was from the
2797     // user and one 'x' came from the macro.
2798     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2799         let mut binding_map = FxHashMap::default();
2800
2801         pat.walk(&mut |pat| {
2802             if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
2803                 if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
2804                     Some(Def::Local(..)) => true,
2805                     _ => false,
2806                 } {
2807                     let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
2808                     binding_map.insert(ident, binding_info);
2809                 }
2810             }
2811             true
2812         });
2813
2814         binding_map
2815     }
2816
2817     // check that all of the arms in an or-pattern have exactly the
2818     // same set of bindings, with the same binding modes for each.
2819     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
2820         if pats.is_empty() {
2821             return;
2822         }
2823
2824         let mut missing_vars = FxHashMap::default();
2825         let mut inconsistent_vars = FxHashMap::default();
2826         for (i, p) in pats.iter().enumerate() {
2827             let map_i = self.binding_mode_map(&p);
2828
2829             for (j, q) in pats.iter().enumerate() {
2830                 if i == j {
2831                     continue;
2832                 }
2833
2834                 let map_j = self.binding_mode_map(&q);
2835                 for (&key, &binding_i) in &map_i {
2836                     if map_j.is_empty() {                   // Account for missing bindings when
2837                         let binding_error = missing_vars    // map_j has none.
2838                             .entry(key.name)
2839                             .or_insert(BindingError {
2840                                 name: key.name,
2841                                 origin: BTreeSet::new(),
2842                                 target: BTreeSet::new(),
2843                             });
2844                         binding_error.origin.insert(binding_i.span);
2845                         binding_error.target.insert(q.span);
2846                     }
2847                     for (&key_j, &binding_j) in &map_j {
2848                         match map_i.get(&key_j) {
2849                             None => {  // missing binding
2850                                 let binding_error = missing_vars
2851                                     .entry(key_j.name)
2852                                     .or_insert(BindingError {
2853                                         name: key_j.name,
2854                                         origin: BTreeSet::new(),
2855                                         target: BTreeSet::new(),
2856                                     });
2857                                 binding_error.origin.insert(binding_j.span);
2858                                 binding_error.target.insert(p.span);
2859                             }
2860                             Some(binding_i) => {  // check consistent binding
2861                                 if binding_i.binding_mode != binding_j.binding_mode {
2862                                     inconsistent_vars
2863                                         .entry(key.name)
2864                                         .or_insert((binding_j.span, binding_i.span));
2865                                 }
2866                             }
2867                         }
2868                     }
2869                 }
2870             }
2871         }
2872         let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
2873         missing_vars.sort();
2874         for (_, v) in missing_vars {
2875             resolve_error(self,
2876                           *v.origin.iter().next().unwrap(),
2877                           ResolutionError::VariableNotBoundInPattern(v));
2878         }
2879         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2880         inconsistent_vars.sort();
2881         for (name, v) in inconsistent_vars {
2882             resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2883         }
2884     }
2885
2886     fn resolve_arm(&mut self, arm: &Arm) {
2887         self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2888
2889         let mut bindings_list = FxHashMap::default();
2890         for pattern in &arm.pats {
2891             self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
2892         }
2893
2894         // This has to happen *after* we determine which pat_idents are variants.
2895         self.check_consistent_bindings(&arm.pats);
2896
2897         if let Some(ast::Guard::If(ref expr)) = arm.guard {
2898             self.visit_expr(expr)
2899         }
2900         self.visit_expr(&arm.body);
2901
2902         self.ribs[ValueNS].pop();
2903     }
2904
2905     fn resolve_block(&mut self, block: &Block) {
2906         debug!("(resolving block) entering block");
2907         // Move down in the graph, if there's an anonymous module rooted here.
2908         let orig_module = self.current_module;
2909         let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
2910
2911         let mut num_macro_definition_ribs = 0;
2912         if let Some(anonymous_module) = anonymous_module {
2913             debug!("(resolving block) found anonymous module, moving down");
2914             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2915             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2916             self.current_module = anonymous_module;
2917             self.finalize_current_module_macro_resolutions();
2918         } else {
2919             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2920         }
2921
2922         // Descend into the block.
2923         for stmt in &block.stmts {
2924             if let ast::StmtKind::Item(ref item) = stmt.node {
2925                 if let ast::ItemKind::MacroDef(..) = item.node {
2926                     num_macro_definition_ribs += 1;
2927                     let def = self.definitions.local_def_id(item.id);
2928                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
2929                     self.label_ribs.push(Rib::new(MacroDefinition(def)));
2930                 }
2931             }
2932
2933             self.visit_stmt(stmt);
2934         }
2935
2936         // Move back up.
2937         self.current_module = orig_module;
2938         for _ in 0 .. num_macro_definition_ribs {
2939             self.ribs[ValueNS].pop();
2940             self.label_ribs.pop();
2941         }
2942         self.ribs[ValueNS].pop();
2943         if anonymous_module.is_some() {
2944             self.ribs[TypeNS].pop();
2945         }
2946         debug!("(resolving block) leaving block");
2947     }
2948
2949     fn fresh_binding(&mut self,
2950                      ident: Ident,
2951                      pat_id: NodeId,
2952                      outer_pat_id: NodeId,
2953                      pat_src: PatternSource,
2954                      bindings: &mut FxHashMap<Ident, NodeId>)
2955                      -> PathResolution {
2956         // Add the binding to the local ribs, if it
2957         // doesn't already exist in the bindings map. (We
2958         // must not add it if it's in the bindings map
2959         // because that breaks the assumptions later
2960         // passes make about or-patterns.)
2961         let ident = ident.modern_and_legacy();
2962         let mut def = Def::Local(pat_id);
2963         match bindings.get(&ident).cloned() {
2964             Some(id) if id == outer_pat_id => {
2965                 // `Variant(a, a)`, error
2966                 resolve_error(
2967                     self,
2968                     ident.span,
2969                     ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
2970                         &ident.as_str())
2971                 );
2972             }
2973             Some(..) if pat_src == PatternSource::FnParam => {
2974                 // `fn f(a: u8, a: u8)`, error
2975                 resolve_error(
2976                     self,
2977                     ident.span,
2978                     ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
2979                         &ident.as_str())
2980                 );
2981             }
2982             Some(..) if pat_src == PatternSource::Match ||
2983                         pat_src == PatternSource::IfLet ||
2984                         pat_src == PatternSource::WhileLet => {
2985                 // `Variant1(a) | Variant2(a)`, ok
2986                 // Reuse definition from the first `a`.
2987                 def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
2988             }
2989             Some(..) => {
2990                 span_bug!(ident.span, "two bindings with the same name from \
2991                                        unexpected pattern source {:?}", pat_src);
2992             }
2993             None => {
2994                 // A completely fresh binding, add to the lists if it's valid.
2995                 if ident.name != keywords::Invalid.name() {
2996                     bindings.insert(ident, outer_pat_id);
2997                     self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def);
2998                 }
2999             }
3000         }
3001
3002         PathResolution::new(def)
3003     }
3004
3005     fn resolve_pattern(&mut self,
3006                        pat: &Pat,
3007                        pat_src: PatternSource,
3008                        // Maps idents to the node ID for the
3009                        // outermost pattern that binds them.
3010                        bindings: &mut FxHashMap<Ident, NodeId>) {
3011         // Visit all direct subpatterns of this pattern.
3012         let outer_pat_id = pat.id;
3013         pat.walk(&mut |pat| {
3014             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.node);
3015             match pat.node {
3016                 PatKind::Ident(bmode, ident, ref opt_pat) => {
3017                     // First try to resolve the identifier as some existing
3018                     // entity, then fall back to a fresh binding.
3019                     let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
3020                                                                       None, pat.span)
3021                                       .and_then(LexicalScopeBinding::item);
3022                     let resolution = binding.map(NameBinding::def).and_then(|def| {
3023                         let is_syntactic_ambiguity = opt_pat.is_none() &&
3024                             bmode == BindingMode::ByValue(Mutability::Immutable);
3025                         match def {
3026                             Def::StructCtor(_, CtorKind::Const) |
3027                             Def::VariantCtor(_, CtorKind::Const) |
3028                             Def::Const(..) if is_syntactic_ambiguity => {
3029                                 // Disambiguate in favor of a unit struct/variant
3030                                 // or constant pattern.
3031                                 self.record_use(ident, ValueNS, binding.unwrap(), false);
3032                                 Some(PathResolution::new(def))
3033                             }
3034                             Def::StructCtor(..) | Def::VariantCtor(..) |
3035                             Def::Const(..) | Def::Static(..) => {
3036                                 // This is unambiguously a fresh binding, either syntactically
3037                                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
3038                                 // to something unusable as a pattern (e.g., constructor function),
3039                                 // but we still conservatively report an error, see
3040                                 // issues/33118#issuecomment-233962221 for one reason why.
3041                                 resolve_error(
3042                                     self,
3043                                     ident.span,
3044                                     ResolutionError::BindingShadowsSomethingUnacceptable(
3045                                         pat_src.descr(), ident.name, binding.unwrap())
3046                                 );
3047                                 None
3048                             }
3049                             Def::Fn(..) | Def::Err => {
3050                                 // These entities are explicitly allowed
3051                                 // to be shadowed by fresh bindings.
3052                                 None
3053                             }
3054                             def => {
3055                                 span_bug!(ident.span, "unexpected definition for an \
3056                                                        identifier in pattern: {:?}", def);
3057                             }
3058                         }
3059                     }).unwrap_or_else(|| {
3060                         self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
3061                     });
3062
3063                     self.record_def(pat.id, resolution);
3064                 }
3065
3066                 PatKind::TupleStruct(ref path, ..) => {
3067                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
3068                 }
3069
3070                 PatKind::Path(ref qself, ref path) => {
3071                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
3072                 }
3073
3074                 PatKind::Struct(ref path, ..) => {
3075                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
3076                 }
3077
3078                 _ => {}
3079             }
3080             true
3081         });
3082
3083         visit::walk_pat(self, pat);
3084     }
3085
3086     // High-level and context dependent path resolution routine.
3087     // Resolves the path and records the resolution into definition map.
3088     // If resolution fails tries several techniques to find likely
3089     // resolution candidates, suggest imports or other help, and report
3090     // errors in user friendly way.
3091     fn smart_resolve_path(&mut self,
3092                           id: NodeId,
3093                           qself: Option<&QSelf>,
3094                           path: &Path,
3095                           source: PathSource)
3096                           -> PathResolution {
3097         self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id))
3098     }
3099
3100     /// A variant of `smart_resolve_path` where you also specify extra
3101     /// information about where the path came from; this extra info is
3102     /// sometimes needed for the lint that recommends rewriting
3103     /// absolute paths to `crate`, so that it knows how to frame the
3104     /// suggestion. If you are just resolving a path like `foo::bar`
3105     /// that appears...somewhere, though, then you just want
3106     /// `CrateLint::SimplePath`, which is what `smart_resolve_path`
3107     /// already provides.
3108     fn smart_resolve_path_with_crate_lint(
3109         &mut self,
3110         id: NodeId,
3111         qself: Option<&QSelf>,
3112         path: &Path,
3113         source: PathSource,
3114         crate_lint: CrateLint
3115     ) -> PathResolution {
3116         self.smart_resolve_path_fragment(
3117             id,
3118             qself,
3119             &Segment::from_path(path),
3120             path.span,
3121             source,
3122             crate_lint,
3123         )
3124     }
3125
3126     fn smart_resolve_path_fragment(&mut self,
3127                                    id: NodeId,
3128                                    qself: Option<&QSelf>,
3129                                    path: &[Segment],
3130                                    span: Span,
3131                                    source: PathSource,
3132                                    crate_lint: CrateLint)
3133                                    -> PathResolution {
3134         let ident_span = path.last().map_or(span, |ident| ident.ident.span);
3135         let ns = source.namespace();
3136         let is_expected = &|def| source.is_expected(def);
3137         let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false };
3138
3139         // Base error is amended with one short label and possibly some longer helps/notes.
3140         let report_errors = |this: &mut Self, def: Option<Def>| {
3141             // Make the base error.
3142             let expected = source.descr_expected();
3143             let path_str = Segment::names_to_string(path);
3144             let item_str = path.last().unwrap().ident;
3145             let code = source.error_code(def.is_some());
3146             let (base_msg, fallback_label, base_span) = if let Some(def) = def {
3147                 (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
3148                  format!("not a {}", expected),
3149                  span)
3150             } else {
3151                 let item_span = path.last().unwrap().ident.span;
3152                 let (mod_prefix, mod_str) = if path.len() == 1 {
3153                     (String::new(), "this scope".to_string())
3154                 } else if path.len() == 2 && path[0].ident.name == keywords::PathRoot.name() {
3155                     (String::new(), "the crate root".to_string())
3156                 } else {
3157                     let mod_path = &path[..path.len() - 1];
3158                     let mod_prefix = match this.resolve_path_without_parent_scope(
3159                         mod_path, Some(TypeNS), false, span, CrateLint::No
3160                     ) {
3161                         PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3162                             module.def(),
3163                         _ => None,
3164                     }.map_or(String::new(), |def| format!("{} ", def.kind_name()));
3165                     (mod_prefix, format!("`{}`", Segment::names_to_string(mod_path)))
3166                 };
3167                 (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
3168                  format!("not found in {}", mod_str),
3169                  item_span)
3170             };
3171
3172             let code = DiagnosticId::Error(code.into());
3173             let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);
3174
3175             // Emit help message for fake-self from other languages like `this`(javascript)
3176             if ["this", "my"].contains(&&*item_str.as_str())
3177                 && this.self_value_is_available(path[0].ident.span, span) {
3178                 err.span_suggestion(
3179                     span,
3180                     "did you mean",
3181                     "self".to_string(),
3182                     Applicability::MaybeIncorrect,
3183                 );
3184             }
3185
3186             // Emit special messages for unresolved `Self` and `self`.
3187             if is_self_type(path, ns) {
3188                 __diagnostic_used!(E0411);
3189                 err.code(DiagnosticId::Error("E0411".into()));
3190                 err.span_label(span, format!("`Self` is only available in impls, traits, \
3191                                               and type definitions"));
3192                 return (err, Vec::new());
3193             }
3194             if is_self_value(path, ns) {
3195                 debug!("smart_resolve_path_fragment E0424 source:{:?}", source);
3196
3197                 __diagnostic_used!(E0424);
3198                 err.code(DiagnosticId::Error("E0424".into()));
3199                 err.span_label(span, match source {
3200                     PathSource::Pat => {
3201                         format!("`self` value is a keyword \
3202                                 and may not be bound to \
3203                                 variables or shadowed")
3204                     }
3205                     _ => {
3206                         format!("`self` value is a keyword \
3207                                 only available in methods \
3208                                 with `self` parameter")
3209                     }
3210                 });
3211                 return (err, Vec::new());
3212             }
3213
3214             // Try to lookup the name in more relaxed fashion for better error reporting.
3215             let ident = path.last().unwrap().ident;
3216             let candidates = this.lookup_import_candidates(ident, ns, is_expected);
3217             if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) {
3218                 let enum_candidates =
3219                     this.lookup_import_candidates(ident, ns, is_enum_variant);
3220                 let mut enum_candidates = enum_candidates.iter()
3221                     .map(|suggestion| {
3222                         import_candidate_to_enum_paths(&suggestion)
3223                     }).collect::<Vec<_>>();
3224                 enum_candidates.sort();
3225
3226                 if !enum_candidates.is_empty() {
3227                     // contextualize for E0412 "cannot find type", but don't belabor the point
3228                     // (that it's a variant) for E0573 "expected type, found variant"
3229                     let preamble = if def.is_none() {
3230                         let others = match enum_candidates.len() {
3231                             1 => String::new(),
3232                             2 => " and 1 other".to_owned(),
3233                             n => format!(" and {} others", n)
3234                         };
3235                         format!("there is an enum variant `{}`{}; ",
3236                                 enum_candidates[0].0, others)
3237                     } else {
3238                         String::new()
3239                     };
3240                     let msg = format!("{}try using the variant's enum", preamble);
3241
3242                     err.span_suggestions(
3243                         span,
3244                         &msg,
3245                         enum_candidates.into_iter()
3246                             .map(|(_variant_path, enum_ty_path)| enum_ty_path)
3247                             // variants reëxported in prelude doesn't mean `prelude::v1` is the
3248                             // type name! FIXME: is there a more principled way to do this that
3249                             // would work for other reëxports?
3250                             .filter(|enum_ty_path| enum_ty_path != "std::prelude::v1")
3251                             // also say `Option` rather than `std::prelude::v1::Option`
3252                             .map(|enum_ty_path| {
3253                                 // FIXME #56861: DRYer prelude filtering
3254                                 enum_ty_path.trim_start_matches("std::prelude::v1::").to_owned()
3255                             }),
3256                         Applicability::MachineApplicable,
3257                     );
3258                 }
3259             }
3260             if path.len() == 1 && this.self_type_is_available(span) {
3261                 if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) {
3262                     let self_is_available = this.self_value_is_available(path[0].ident.span, span);
3263                     match candidate {
3264                         AssocSuggestion::Field => {
3265                             err.span_suggestion(
3266                                 span,
3267                                 "try",
3268                                 format!("self.{}", path_str),
3269                                 Applicability::MachineApplicable,
3270                             );
3271                             if !self_is_available {
3272                                 err.span_label(span, format!("`self` value is a keyword \
3273                                                                only available in \
3274                                                                methods with `self` parameter"));
3275                             }
3276                         }
3277                         AssocSuggestion::MethodWithSelf if self_is_available => {
3278                             err.span_suggestion(
3279                                 span,
3280                                 "try",
3281                                 format!("self.{}", path_str),
3282                                 Applicability::MachineApplicable,
3283                             );
3284                         }
3285                         AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
3286                             err.span_suggestion(
3287                                 span,
3288                                 "try",
3289                                 format!("Self::{}", path_str),
3290                                 Applicability::MachineApplicable,
3291                             );
3292                         }
3293                     }
3294                     return (err, candidates);
3295                 }
3296             }
3297
3298             let mut levenshtein_worked = false;
3299
3300             // Try Levenshtein algorithm.
3301             let suggestion = this.lookup_typo_candidate(path, ns, is_expected, span);
3302             if let Some(suggestion) = suggestion {
3303                 let msg = format!(
3304                     "{} {} with a similar name exists",
3305                     suggestion.article, suggestion.kind
3306                 );
3307                 err.span_suggestion(
3308                     ident_span,
3309                     &msg,
3310                     suggestion.candidate.to_string(),
3311                     Applicability::MaybeIncorrect,
3312                 );
3313
3314                 levenshtein_worked = true;
3315             }
3316
3317             // Try context dependent help if relaxed lookup didn't work.
3318             if let Some(def) = def {
3319                 match (def, source) {
3320                     (Def::Macro(..), _) => {
3321                         err.span_suggestion(
3322                             span,
3323                             "use `!` to invoke the macro",
3324                             format!("{}!", path_str),
3325                             Applicability::MaybeIncorrect,
3326                         );
3327                         return (err, candidates);
3328                     }
3329                     (Def::TyAlias(..), PathSource::Trait(_)) => {
3330                         err.span_label(span, "type aliases cannot be used as traits");
3331                         if nightly_options::is_nightly_build() {
3332                             err.note("did you mean to use a trait alias?");
3333                         }
3334                         return (err, candidates);
3335                     }
3336                     (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
3337                         ExprKind::Field(_, ident) => {
3338                             err.span_suggestion(
3339                                 parent.span,
3340                                 "use the path separator to refer to an item",
3341                                 format!("{}::{}", path_str, ident),
3342                                 Applicability::MaybeIncorrect,
3343                             );
3344                             return (err, candidates);
3345                         }
3346                         ExprKind::MethodCall(ref segment, ..) => {
3347                             let span = parent.span.with_hi(segment.ident.span.hi());
3348                             err.span_suggestion(
3349                                 span,
3350                                 "use the path separator to refer to an item",
3351                                 format!("{}::{}", path_str, segment.ident),
3352                                 Applicability::MaybeIncorrect,
3353                             );
3354                             return (err, candidates);
3355                         }
3356                         _ => {}
3357                     },
3358                     (Def::Enum(..), PathSource::TupleStruct)
3359                         | (Def::Enum(..), PathSource::Expr(..))  => {
3360                         if let Some(variants) = this.collect_enum_variants(def) {
3361                             err.note(&format!("did you mean to use one \
3362                                                of the following variants?\n{}",
3363                                 variants.iter()
3364                                     .map(|suggestion| path_names_to_string(suggestion))
3365                                     .map(|suggestion| format!("- `{}`", suggestion))
3366                                     .collect::<Vec<_>>()
3367                                     .join("\n")));
3368
3369                         } else {
3370                             err.note("did you mean to use one of the enum's variants?");
3371                         }
3372                         return (err, candidates);
3373                     },
3374                     (Def::Struct(def_id), _) if ns == ValueNS => {
3375                         if let Some((ctor_def, ctor_vis))
3376                                 = this.struct_constructors.get(&def_id).cloned() {
3377                             let accessible_ctor = this.is_accessible(ctor_vis);
3378                             if is_expected(ctor_def) && !accessible_ctor {
3379                                 err.span_label(span, format!("constructor is not visible \
3380                                                               here due to private fields"));
3381                             }
3382                         } else {
3383                             // HACK(estebank): find a better way to figure out that this was a
3384                             // parser issue where a struct literal is being used on an expression
3385                             // where a brace being opened means a block is being started. Look
3386                             // ahead for the next text to see if `span` is followed by a `{`.
3387                             let sm = this.session.source_map();
3388                             let mut sp = span;
3389                             loop {
3390                                 sp = sm.next_point(sp);
3391                                 match sm.span_to_snippet(sp) {
3392                                     Ok(ref snippet) => {
3393                                         if snippet.chars().any(|c| { !c.is_whitespace() }) {
3394                                             break;
3395                                         }
3396                                     }
3397                                     _ => break,
3398                                 }
3399                             }
3400                             let followed_by_brace = match sm.span_to_snippet(sp) {
3401                                 Ok(ref snippet) if snippet == "{" => true,
3402                                 _ => false,
3403                             };
3404                             // In case this could be a struct literal that needs to be surrounded
3405                             // by parenthesis, find the appropriate span.
3406                             let mut i = 0;
3407                             let mut closing_brace = None;
3408                             loop {
3409                                 sp = sm.next_point(sp);
3410                                 match sm.span_to_snippet(sp) {
3411                                     Ok(ref snippet) => {
3412                                         if snippet == "}" {
3413                                             let sp = span.to(sp);
3414                                             if let Ok(snippet) = sm.span_to_snippet(sp) {
3415                                                 closing_brace = Some((sp, snippet));
3416                                             }
3417                                             break;
3418                                         }
3419                                     }
3420                                     _ => break,
3421                                 }
3422                                 i += 1;
3423                                 if i > 100 { // The bigger the span the more likely we're
3424                                     break;   // incorrect. Bound it to 100 chars long.
3425                                 }
3426                             }
3427                             match source {
3428                                 PathSource::Expr(Some(parent)) => {
3429                                     match parent.node {
3430                                         ExprKind::MethodCall(ref path_assignment, _)  => {
3431                                             err.span_suggestion(
3432                                                 sm.start_point(parent.span)
3433                                                   .to(path_assignment.ident.span),
3434                                                 "use `::` to access an associated function",
3435                                                 format!("{}::{}",
3436                                                         path_str,
3437                                                         path_assignment.ident),
3438                                                 Applicability::MaybeIncorrect
3439                                             );
3440                                             return (err, candidates);
3441                                         },
3442                                         _ => {
3443                                             err.span_label(
3444                                                 span,
3445                                                 format!("did you mean `{} {{ /* fields */ }}`?",
3446                                                         path_str),
3447                                             );
3448                                             return (err, candidates);
3449                                         },
3450                                     }
3451                                 },
3452                                 PathSource::Expr(None) if followed_by_brace == true => {
3453                                     if let Some((sp, snippet)) = closing_brace {
3454                                         err.span_suggestion(
3455                                             sp,
3456                                             "surround the struct literal with parenthesis",
3457                                             format!("({})", snippet),
3458                                             Applicability::MaybeIncorrect,
3459                                         );
3460                                     } else {
3461                                         err.span_label(
3462                                             span,
3463                                             format!("did you mean `({} {{ /* fields */ }})`?",
3464                                                     path_str),
3465                                         );
3466                                     }
3467                                     return (err, candidates);
3468                                 },
3469                                 _ => {
3470                                     err.span_label(
3471                                         span,
3472                                         format!("did you mean `{} {{ /* fields */ }}`?",
3473                                                 path_str),
3474                                     );
3475                                     return (err, candidates);
3476                                 },
3477                             }
3478                         }
3479                         return (err, candidates);
3480                     }
3481                     (Def::Union(..), _) |
3482                     (Def::Variant(..), _) |
3483                     (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => {
3484                         err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?",
3485                                                      path_str));
3486                         return (err, candidates);
3487                     }
3488                     (Def::SelfTy(..), _) if ns == ValueNS => {
3489                         err.span_label(span, fallback_label);
3490                         err.note("can't use `Self` as a constructor, you must use the \
3491                                   implemented struct");
3492                         return (err, candidates);
3493                     }
3494                     (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => {
3495                         err.note("can't use a type alias as a constructor");
3496                         return (err, candidates);
3497                     }
3498                     _ => {}
3499                 }
3500             }
3501
3502             // Fallback label.
3503             if !levenshtein_worked {
3504                 err.span_label(base_span, fallback_label);
3505                 this.type_ascription_suggestion(&mut err, base_span);
3506             }
3507             (err, candidates)
3508         };
3509         let report_errors = |this: &mut Self, def: Option<Def>| {
3510             let (err, candidates) = report_errors(this, def);
3511             let def_id = this.current_module.normal_ancestor_id;
3512             let node_id = this.definitions.as_local_node_id(def_id).unwrap();
3513             let better = def.is_some();
3514             this.use_injections.push(UseError { err, candidates, node_id, better });
3515             err_path_resolution()
3516         };
3517
3518         let resolution = match self.resolve_qpath_anywhere(
3519             id,
3520             qself,
3521             path,
3522             ns,
3523             span,
3524             source.defer_to_typeck(),
3525             source.global_by_default(),
3526             crate_lint,
3527         ) {
3528             Some(resolution) if resolution.unresolved_segments() == 0 => {
3529                 if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
3530                     resolution
3531                 } else {
3532                     // Add a temporary hack to smooth the transition to new struct ctor
3533                     // visibility rules. See #38932 for more details.
3534                     let mut res = None;
3535                     if let Def::Struct(def_id) = resolution.base_def() {
3536                         if let Some((ctor_def, ctor_vis))
3537                                 = self.struct_constructors.get(&def_id).cloned() {
3538                             if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
3539                                 let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
3540                                 self.session.buffer_lint(lint, id, span,
3541                                     "private struct constructors are not usable through \
3542                                      re-exports in outer modules",
3543                                 );
3544                                 res = Some(PathResolution::new(ctor_def));
3545                             }
3546                         }
3547                     }
3548
3549                     res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
3550                 }
3551             }
3552             Some(resolution) if source.defer_to_typeck() => {
3553                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3554                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3555                 // it needs to be added to the trait map.
3556                 if ns == ValueNS {
3557                     let item_name = path.last().unwrap().ident;
3558                     let traits = self.get_traits_containing_item(item_name, ns);
3559                     self.trait_map.insert(id, traits);
3560                 }
3561                 resolution
3562             }
3563             _ => report_errors(self, None)
3564         };
3565
3566         if let PathSource::TraitItem(..) = source {} else {
3567             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3568             self.record_def(id, resolution);
3569         }
3570         resolution
3571     }
3572
3573     fn type_ascription_suggestion(&self,
3574                                   err: &mut DiagnosticBuilder,
3575                                   base_span: Span) {
3576         debug!("type_ascription_suggetion {:?}", base_span);
3577         let cm = self.session.source_map();
3578         debug!("self.current_type_ascription {:?}", self.current_type_ascription);
3579         if let Some(sp) = self.current_type_ascription.last() {
3580             let mut sp = *sp;
3581             loop {  // try to find the `:`, bail on first non-':'/non-whitespace
3582                 sp = cm.next_point(sp);
3583                 if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
3584                     debug!("snippet {:?}", snippet);
3585                     let line_sp = cm.lookup_char_pos(sp.hi()).line;
3586                     let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
3587                     debug!("{:?} {:?}", line_sp, line_base_sp);
3588                     if snippet == ":" {
3589                         err.span_label(base_span,
3590                                        "expecting a type here because of type ascription");
3591                         if line_sp != line_base_sp {
3592                             err.span_suggestion_short(
3593                                 sp,
3594                                 "did you mean to use `;` here instead?",
3595                                 ";".to_string(),
3596                                 Applicability::MaybeIncorrect,
3597                             );
3598                         }
3599                         break;
3600                     } else if !snippet.trim().is_empty() {
3601                         debug!("tried to find type ascription `:` token, couldn't find it");
3602                         break;
3603                     }
3604                 } else {
3605                     break;
3606                 }
3607             }
3608         }
3609     }
3610
3611     fn self_type_is_available(&mut self, span: Span) -> bool {
3612         let binding = self.resolve_ident_in_lexical_scope(keywords::SelfUpper.ident(),
3613                                                           TypeNS, None, span);
3614         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3615     }
3616
3617     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
3618         let ident = Ident::new(keywords::SelfLower.name(), self_span);
3619         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
3620         if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
3621     }
3622
3623     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3624     fn resolve_qpath_anywhere(&mut self,
3625                               id: NodeId,
3626                               qself: Option<&QSelf>,
3627                               path: &[Segment],
3628                               primary_ns: Namespace,
3629                               span: Span,
3630                               defer_to_typeck: bool,
3631                               global_by_default: bool,
3632                               crate_lint: CrateLint)
3633                               -> Option<PathResolution> {
3634         let mut fin_res = None;
3635         // FIXME: can't resolve paths in macro namespace yet, macros are
3636         // processed by the little special hack below.
3637         for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
3638             if i == 0 || ns != primary_ns {
3639                 match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
3640                     // If defer_to_typeck, then resolution > no resolution,
3641                     // otherwise full resolution > partial resolution > no resolution.
3642                     Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
3643                         return Some(res),
3644                     res => if fin_res.is_none() { fin_res = res },
3645                 };
3646             }
3647         }
3648         if primary_ns != MacroNS &&
3649            (self.macro_names.contains(&path[0].ident.modern()) ||
3650             self.builtin_macros.get(&path[0].ident.name).cloned()
3651                                .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
3652             self.macro_use_prelude.get(&path[0].ident.name).cloned()
3653                                   .and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
3654             // Return some dummy definition, it's enough for error reporting.
3655             return Some(
3656                 PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
3657             );
3658         }
3659         fin_res
3660     }
3661
3662     /// Handles paths that may refer to associated items.
3663     fn resolve_qpath(&mut self,
3664                      id: NodeId,
3665                      qself: Option<&QSelf>,
3666                      path: &[Segment],
3667                      ns: Namespace,
3668                      span: Span,
3669                      global_by_default: bool,
3670                      crate_lint: CrateLint)
3671                      -> Option<PathResolution> {
3672         debug!(
3673             "resolve_qpath(id={:?}, qself={:?}, path={:?}, \
3674              ns={:?}, span={:?}, global_by_default={:?})",
3675             id,
3676             qself,
3677             path,
3678             ns,
3679             span,
3680             global_by_default,
3681         );
3682
3683         if let Some(qself) = qself {
3684             if qself.position == 0 {
3685                 // This is a case like `<T>::B`, where there is no
3686                 // trait to resolve.  In that case, we leave the `B`
3687                 // segment to be resolved by type-check.
3688                 return Some(PathResolution::with_unresolved_segments(
3689                     Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
3690                 ));
3691             }
3692
3693             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3694             //
3695             // Currently, `path` names the full item (`A::B::C`, in
3696             // our example).  so we extract the prefix of that that is
3697             // the trait (the slice upto and including
3698             // `qself.position`). And then we recursively resolve that,
3699             // but with `qself` set to `None`.
3700             //
3701             // However, setting `qself` to none (but not changing the
3702             // span) loses the information about where this path
3703             // *actually* appears, so for the purposes of the crate
3704             // lint we pass along information that this is the trait
3705             // name from a fully qualified path, and this also
3706             // contains the full span (the `CrateLint::QPathTrait`).
3707             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3708             let res = self.smart_resolve_path_fragment(
3709                 id,
3710                 None,
3711                 &path[..=qself.position],
3712                 span,
3713                 PathSource::TraitItem(ns),
3714                 CrateLint::QPathTrait {
3715                     qpath_id: id,
3716                     qpath_span: qself.path_span,
3717                 },
3718             );
3719
3720             // The remaining segments (the `C` in our example) will
3721             // have to be resolved by type-check, since that requires doing
3722             // trait resolution.
3723             return Some(PathResolution::with_unresolved_segments(
3724                 res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
3725             ));
3726         }
3727
3728         let result = match self.resolve_path_without_parent_scope(
3729             &path,
3730             Some(ns),
3731             true,
3732             span,
3733             crate_lint,
3734         ) {
3735             PathResult::NonModule(path_res) => path_res,
3736             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3737                 PathResolution::new(module.def().unwrap())
3738             }
3739             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3740             // don't report an error right away, but try to fallback to a primitive type.
3741             // So, we are still able to successfully resolve something like
3742             //
3743             // use std::u8; // bring module u8 in scope
3744             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3745             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3746             //                     // not to non-existent std::u8::max_value
3747             // }
3748             //
3749             // Such behavior is required for backward compatibility.
3750             // The same fallback is used when `a` resolves to nothing.
3751             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
3752             PathResult::Failed(..)
3753                     if (ns == TypeNS || path.len() > 1) &&
3754                        self.primitive_type_table.primitive_types
3755                            .contains_key(&path[0].ident.name) => {
3756                 let prim = self.primitive_type_table.primitive_types[&path[0].ident.name];
3757                 PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
3758             }
3759             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3760                 PathResolution::new(module.def().unwrap()),
3761             PathResult::Failed(span, msg, false) => {
3762                 resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
3763                 err_path_resolution()
3764             }
3765             PathResult::Module(..) | PathResult::Failed(..) => return None,
3766             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
3767         };
3768
3769         if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
3770            path[0].ident.name != keywords::PathRoot.name() &&
3771            path[0].ident.name != keywords::DollarCrate.name() {
3772             let unqualified_result = {
3773                 match self.resolve_path_without_parent_scope(
3774                     &[*path.last().unwrap()],
3775                     Some(ns),
3776                     false,
3777                     span,
3778                     CrateLint::No,
3779                 ) {
3780                     PathResult::NonModule(path_res) => path_res.base_def(),
3781                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
3782                         module.def().unwrap(),
3783                     _ => return Some(result),
3784                 }
3785             };
3786             if result.base_def() == unqualified_result {
3787                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3788                 self.session.buffer_lint(lint, id, span, "unnecessary qualification")
3789             }
3790         }
3791
3792         Some(result)
3793     }
3794
3795     fn resolve_path_without_parent_scope(
3796         &mut self,
3797         path: &[Segment],
3798         opt_ns: Option<Namespace>, // `None` indicates a module path in import
3799         record_used: bool,
3800         path_span: Span,
3801         crate_lint: CrateLint,
3802     ) -> PathResult<'a> {
3803         // Macro and import paths must have full parent scope available during resolution,
3804         // other paths will do okay with parent module alone.
3805         assert!(opt_ns != None && opt_ns != Some(MacroNS));
3806         let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
3807         self.resolve_path(path, opt_ns, &parent_scope, record_used, path_span, crate_lint)
3808     }
3809
3810     fn resolve_path(
3811         &mut self,
3812         path: &[Segment],
3813         opt_ns: Option<Namespace>, // `None` indicates a module path in import
3814         parent_scope: &ParentScope<'a>,
3815         record_used: bool,
3816         path_span: Span,
3817         crate_lint: CrateLint,
3818     ) -> PathResult<'a> {
3819         let mut module = None;
3820         let mut allow_super = true;
3821         let mut second_binding = None;
3822         self.current_module = parent_scope.module;
3823
3824         debug!(
3825             "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
3826              path_span={:?}, crate_lint={:?})",
3827             path,
3828             opt_ns,
3829             record_used,
3830             path_span,
3831             crate_lint,
3832         );
3833
3834         for (i, &Segment { ident, id }) in path.iter().enumerate() {
3835             debug!("resolve_path ident {} {:?} {:?}", i, ident, id);
3836             let record_segment_def = |this: &mut Self, def| {
3837                 if record_used {
3838                     if let Some(id) = id {
3839                         if !this.def_map.contains_key(&id) {
3840                             assert!(id != ast::DUMMY_NODE_ID, "Trying to resolve dummy id");
3841                             this.record_def(id, PathResolution::new(def));
3842                         }
3843                     }
3844                 }
3845             };
3846
3847             let is_last = i == path.len() - 1;
3848             let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
3849             let name = ident.name;
3850
3851             allow_super &= ns == TypeNS &&
3852                 (name == keywords::SelfLower.name() ||
3853                  name == keywords::Super.name());
3854
3855             if ns == TypeNS {
3856                 if allow_super && name == keywords::Super.name() {
3857                     let mut ctxt = ident.span.ctxt().modern();
3858                     let self_module = match i {
3859                         0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
3860                         _ => match module {
3861                             Some(ModuleOrUniformRoot::Module(module)) => Some(module),
3862                             _ => None,
3863                         },
3864                     };
3865                     if let Some(self_module) = self_module {
3866                         if let Some(parent) = self_module.parent {
3867                             module = Some(ModuleOrUniformRoot::Module(
3868                                 self.resolve_self(&mut ctxt, parent)));
3869                             continue;
3870                         }
3871                     }
3872                     let msg = "there are too many initial `super`s.".to_string();
3873                     return PathResult::Failed(ident.span, msg, false);
3874                 }
3875                 if i == 0 {
3876                     if name == keywords::SelfLower.name() {
3877                         let mut ctxt = ident.span.ctxt().modern();
3878                         module = Some(ModuleOrUniformRoot::Module(
3879                             self.resolve_self(&mut ctxt, self.current_module)));
3880                         continue;
3881                     }
3882                     if name == keywords::PathRoot.name() && ident.span.rust_2018() {
3883                         module = Some(ModuleOrUniformRoot::ExternPrelude);
3884                         continue;
3885                     }
3886                     if name == keywords::PathRoot.name() &&
3887                        ident.span.rust_2015() && self.session.rust_2018() {
3888                         // `::a::b` from 2015 macro on 2018 global edition
3889                         module = Some(ModuleOrUniformRoot::CrateRootAndExternPrelude);
3890                         continue;
3891                     }
3892                     if name == keywords::PathRoot.name() ||
3893                        name == keywords::Crate.name() ||
3894                        name == keywords::DollarCrate.name() {
3895                         // `::a::b`, `crate::a::b` or `$crate::a::b`
3896                         module = Some(ModuleOrUniformRoot::Module(
3897                             self.resolve_crate_root(ident)));
3898                         continue;
3899                     }
3900                 }
3901             }
3902
3903             // Report special messages for path segment keywords in wrong positions.
3904             if ident.is_path_segment_keyword() && i != 0 {
3905                 let name_str = if name == keywords::PathRoot.name() {
3906                     "crate root".to_string()
3907                 } else {
3908                     format!("`{}`", name)
3909                 };
3910                 let msg = if i == 1 && path[0].ident.name == keywords::PathRoot.name() {
3911                     format!("global paths cannot start with {}", name_str)
3912                 } else {
3913                     format!("{} in paths can only be used in start position", name_str)
3914                 };
3915                 return PathResult::Failed(ident.span, msg, false);
3916             }
3917
3918             let binding = if let Some(module) = module {
3919                 self.resolve_ident_in_module(module, ident, ns, None, record_used, path_span)
3920             } else if opt_ns.is_none() || opt_ns == Some(MacroNS) {
3921                 assert!(ns == TypeNS);
3922                 let scopes = if opt_ns.is_none() { ScopeSet::Import(ns) } else { ScopeSet::Module };
3923                 self.early_resolve_ident_in_lexical_scope(ident, scopes, parent_scope, record_used,
3924                                                           record_used, path_span)
3925             } else {
3926                 let record_used_id =
3927                     if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
3928                 match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
3929                     // we found a locally-imported or available item/module
3930                     Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
3931                     // we found a local variable or type param
3932                     Some(LexicalScopeBinding::Def(def))
3933                             if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
3934                         record_segment_def(self, def);
3935                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3936                             def, path.len() - 1
3937                         ));
3938                     }
3939                     _ => Err(Determinacy::determined(record_used)),
3940                 }
3941             };
3942
3943             match binding {
3944                 Ok(binding) => {
3945                     if i == 1 {
3946                         second_binding = Some(binding);
3947                     }
3948                     let def = binding.def();
3949                     let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
3950                     if let Some(next_module) = binding.module() {
3951                         module = Some(ModuleOrUniformRoot::Module(next_module));
3952                         record_segment_def(self, def);
3953                     } else if def == Def::ToolMod && i + 1 != path.len() {
3954                         if binding.is_import() {
3955                             self.session.struct_span_err(
3956                                 ident.span, "cannot use a tool module through an import"
3957                             ).span_note(
3958                                 binding.span, "the tool module imported here"
3959                             ).emit();
3960                         }
3961                         let def = Def::NonMacroAttr(NonMacroAttrKind::Tool);
3962                         return PathResult::NonModule(PathResolution::new(def));
3963                     } else if def == Def::Err {
3964                         return PathResult::NonModule(err_path_resolution());
3965                     } else if opt_ns.is_some() && (is_last || maybe_assoc) {
3966                         self.lint_if_path_starts_with_module(
3967                             crate_lint,
3968                             path,
3969                             path_span,
3970                             second_binding,
3971                         );
3972                         return PathResult::NonModule(PathResolution::with_unresolved_segments(
3973                             def, path.len() - i - 1
3974                         ));
3975                     } else {
3976                         return PathResult::Failed(ident.span,
3977                                                   format!("not a module `{}`", ident),
3978                                                   is_last);
3979                     }
3980                 }
3981                 Err(Undetermined) => return PathResult::Indeterminate,
3982                 Err(Determined) => {
3983                     if let Some(ModuleOrUniformRoot::Module(module)) = module {
3984                         if opt_ns.is_some() && !module.is_normal() {
3985                             return PathResult::NonModule(PathResolution::with_unresolved_segments(
3986                                 module.def().unwrap(), path.len() - i
3987                             ));
3988                         }
3989                     }
3990                     let module_def = match module {
3991                         Some(ModuleOrUniformRoot::Module(module)) => module.def(),
3992                         _ => None,
3993                     };
3994                     let msg = if module_def == self.graph_root.def() {
3995                         let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
3996                         let mut candidates =
3997                             self.lookup_import_candidates(ident, TypeNS, is_mod);
3998                         candidates.sort_by_cached_key(|c| {
3999                             (c.path.segments.len(), c.path.to_string())
4000                         });
4001                         if let Some(candidate) = candidates.get(0) {
4002                             format!("did you mean `{}`?", candidate.path)
4003                         } else if !ident.is_reserved() {
4004                             format!("maybe a missing `extern crate {};`?", ident)
4005                         } else {
4006                             // the parser will already have complained about the keyword being used
4007                             return PathResult::NonModule(err_path_resolution());
4008                         }
4009                     } else if i == 0 {
4010                         format!("use of undeclared type or module `{}`", ident)
4011                     } else {
4012                         format!("could not find `{}` in `{}`", ident, path[i - 1].ident)
4013                     };
4014                     return PathResult::Failed(ident.span, msg, is_last);
4015                 }
4016             }
4017         }
4018
4019         self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
4020
4021         PathResult::Module(match module {
4022             Some(module) => module,
4023             None if path.is_empty() => ModuleOrUniformRoot::CurrentScope,
4024             _ => span_bug!(path_span, "resolve_path: non-empty path `{:?}` has no module", path),
4025         })
4026     }
4027
4028     fn lint_if_path_starts_with_module(
4029         &self,
4030         crate_lint: CrateLint,
4031         path: &[Segment],
4032         path_span: Span,
4033         second_binding: Option<&NameBinding>,
4034     ) {
4035         let (diag_id, diag_span) = match crate_lint {
4036             CrateLint::No => return,
4037             CrateLint::SimplePath(id) => (id, path_span),
4038             CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
4039             CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
4040         };
4041
4042         let first_name = match path.get(0) {
4043             // In the 2018 edition this lint is a hard error, so nothing to do
4044             Some(seg) if seg.ident.span.rust_2015() && self.session.rust_2015() => seg.ident.name,
4045             _ => return,
4046         };
4047
4048         // We're only interested in `use` paths which should start with
4049         // `{{root}}` currently.
4050         if first_name != keywords::PathRoot.name() {
4051             return
4052         }
4053
4054         match path.get(1) {
4055             // If this import looks like `crate::...` it's already good
4056             Some(Segment { ident, .. }) if ident.name == keywords::Crate.name() => return,
4057             // Otherwise go below to see if it's an extern crate
4058             Some(_) => {}
4059             // If the path has length one (and it's `PathRoot` most likely)
4060             // then we don't know whether we're gonna be importing a crate or an
4061             // item in our crate. Defer this lint to elsewhere
4062             None => return,
4063         }
4064
4065         // If the first element of our path was actually resolved to an
4066         // `ExternCrate` (also used for `crate::...`) then no need to issue a
4067         // warning, this looks all good!
4068         if let Some(binding) = second_binding {
4069             if let NameBindingKind::Import { directive: d, .. } = binding.kind {
4070                 // Careful: we still want to rewrite paths from
4071                 // renamed extern crates.
4072                 if let ImportDirectiveSubclass::ExternCrate { source: None, .. } = d.subclass {
4073                     return
4074                 }
4075             }
4076         }
4077
4078         let diag = lint::builtin::BuiltinLintDiagnostics
4079             ::AbsPathWithModule(diag_span);
4080         self.session.buffer_lint_with_diagnostic(
4081             lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
4082             diag_id, diag_span,
4083             "absolute paths must start with `self`, `super`, \
4084             `crate`, or an external crate name in the 2018 edition",
4085             diag);
4086     }
4087
4088     // Resolve a local definition, potentially adjusting for closures.
4089     fn adjust_local_def(&mut self,
4090                         ns: Namespace,
4091                         rib_index: usize,
4092                         mut def: Def,
4093                         record_used: bool,
4094                         span: Span) -> Def {
4095         let ribs = &self.ribs[ns][rib_index + 1..];
4096
4097         // An invalid forward use of a type parameter from a previous default.
4098         if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
4099             if record_used {
4100                 resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
4101             }
4102             assert_eq!(def, Def::Err);
4103             return Def::Err;
4104         }
4105
4106         match def {
4107             Def::Upvar(..) => {
4108                 span_bug!(span, "unexpected {:?} in bindings", def)
4109             }
4110             Def::Local(node_id) => {
4111                 for rib in ribs {
4112                     match rib.kind {
4113                         NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
4114                         ForwardTyParamBanRibKind => {
4115                             // Nothing to do. Continue.
4116                         }
4117                         ClosureRibKind(function_id) => {
4118                             let prev_def = def;
4119
4120                             let seen = self.freevars_seen
4121                                            .entry(function_id)
4122                                            .or_default();
4123                             if let Some(&index) = seen.get(&node_id) {
4124                                 def = Def::Upvar(node_id, index, function_id);
4125                                 continue;
4126                             }
4127                             let vec = self.freevars
4128                                           .entry(function_id)
4129                                           .or_default();
4130                             let depth = vec.len();
4131                             def = Def::Upvar(node_id, depth, function_id);
4132
4133                             if record_used {
4134                                 vec.push(Freevar {
4135                                     def: prev_def,
4136                                     span,
4137                                 });
4138                                 seen.insert(node_id, depth);
4139                             }
4140                         }
4141                         ItemRibKind | TraitOrImplItemRibKind => {
4142                             // This was an attempt to access an upvar inside a
4143                             // named function item. This is not allowed, so we
4144                             // report an error.
4145                             if record_used {
4146                                 resolve_error(self, span,
4147                                     ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
4148                             }
4149                             return Def::Err;
4150                         }
4151                         ConstantItemRibKind => {
4152                             // Still doesn't deal with upvars
4153                             if record_used {
4154                                 resolve_error(self, span,
4155                                     ResolutionError::AttemptToUseNonConstantValueInConstant);
4156                             }
4157                             return Def::Err;
4158                         }
4159                     }
4160                 }
4161             }
4162             Def::TyParam(..) | Def::SelfTy(..) => {
4163                 for rib in ribs {
4164                     match rib.kind {
4165                         NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) |
4166                         ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
4167                         ConstantItemRibKind => {
4168                             // Nothing to do. Continue.
4169                         }
4170                         ItemRibKind => {
4171                             // This was an attempt to use a type parameter outside
4172                             // its scope.
4173                             if record_used {
4174                                 resolve_error(self, span,
4175                                     ResolutionError::TypeParametersFromOuterFunction(def));
4176                             }
4177                             return Def::Err;
4178                         }
4179                     }
4180                 }
4181             }
4182             _ => {}
4183         }
4184         def
4185     }
4186
4187     fn lookup_assoc_candidate<FilterFn>(&mut self,
4188                                         ident: Ident,
4189                                         ns: Namespace,
4190                                         filter_fn: FilterFn)
4191                                         -> Option<AssocSuggestion>
4192         where FilterFn: Fn(Def) -> bool
4193     {
4194         fn extract_node_id(t: &Ty) -> Option<NodeId> {
4195             match t.node {
4196                 TyKind::Path(None, _) => Some(t.id),
4197                 TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
4198                 // This doesn't handle the remaining `Ty` variants as they are not
4199                 // that commonly the self_type, it might be interesting to provide
4200                 // support for those in future.
4201                 _ => None,
4202             }
4203         }
4204
4205         // Fields are generally expected in the same contexts as locals.
4206         if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) {
4207             if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
4208                 // Look for a field with the same name in the current self_type.
4209                 if let Some(resolution) = self.def_map.get(&node_id) {
4210                     match resolution.base_def() {
4211                         Def::Struct(did) | Def::Union(did)
4212                                 if resolution.unresolved_segments() == 0 => {
4213                             if let Some(field_names) = self.field_names.get(&did) {
4214                                 if field_names.iter().any(|&field_name| ident.name == field_name) {
4215                                     return Some(AssocSuggestion::Field);
4216                                 }
4217                             }
4218                         }
4219                         _ => {}
4220                     }
4221                 }
4222             }
4223         }
4224
4225         // Look for associated items in the current trait.
4226         if let Some((module, _)) = self.current_trait_ref {
4227             if let Ok(binding) = self.resolve_ident_in_module(
4228                     ModuleOrUniformRoot::Module(module),
4229                     ident,
4230                     ns,
4231                     None,
4232                     false,
4233                     module.span,
4234                 ) {
4235                 let def = binding.def();
4236                 if filter_fn(def) {
4237                     return Some(if self.has_self.contains(&def.def_id()) {
4238                         AssocSuggestion::MethodWithSelf
4239                     } else {
4240                         AssocSuggestion::AssocItem
4241                     });
4242                 }
4243             }
4244         }
4245
4246         None
4247     }
4248
4249     fn lookup_typo_candidate<FilterFn>(
4250         &mut self,
4251         path: &[Segment],
4252         ns: Namespace,
4253         filter_fn: FilterFn,
4254         span: Span,
4255     ) -> Option<TypoSuggestion>
4256     where
4257         FilterFn: Fn(Def) -> bool,
4258     {
4259         let add_module_candidates = |module: Module, names: &mut Vec<TypoSuggestion>| {
4260             for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
4261                 if let Some(binding) = resolution.borrow().binding {
4262                     if filter_fn(binding.def()) {
4263                         names.push(TypoSuggestion {
4264                             candidate: ident.name,
4265                             article: binding.def().article(),
4266                             kind: binding.def().kind_name(),
4267                         });
4268                     }
4269                 }
4270             }
4271         };
4272
4273         let mut names = Vec::new();
4274         if path.len() == 1 {
4275             // Search in lexical scope.
4276             // Walk backwards up the ribs in scope and collect candidates.
4277             for rib in self.ribs[ns].iter().rev() {
4278                 // Locals and type parameters
4279                 for (ident, def) in &rib.bindings {
4280                     if filter_fn(*def) {
4281                         names.push(TypoSuggestion {
4282                             candidate: ident.name,
4283                             article: def.article(),
4284                             kind: def.kind_name(),
4285                         });
4286                     }
4287                 }
4288                 // Items in scope
4289                 if let ModuleRibKind(module) = rib.kind {
4290                     // Items from this module
4291                     add_module_candidates(module, &mut names);
4292
4293                     if let ModuleKind::Block(..) = module.kind {
4294                         // We can see through blocks
4295                     } else {
4296                         // Items from the prelude
4297                         if !module.no_implicit_prelude {
4298                             names.extend(self.extern_prelude.iter().map(|(ident, _)| {
4299                                 TypoSuggestion {
4300                                     candidate: ident.name,
4301                                     article: "a",
4302                                     kind: "crate",
4303                                 }
4304                             }));
4305                             if let Some(prelude) = self.prelude {
4306                                 add_module_candidates(prelude, &mut names);
4307                             }
4308                         }
4309                         break;
4310                     }
4311                 }
4312             }
4313             // Add primitive types to the mix
4314             if filter_fn(Def::PrimTy(Bool)) {
4315                 names.extend(
4316                     self.primitive_type_table.primitive_types.iter().map(|(name, _)| {
4317                         TypoSuggestion {
4318                             candidate: *name,
4319                             article: "a",
4320                             kind: "primitive type",
4321                         }
4322                     })
4323                 )
4324             }
4325         } else {
4326             // Search in module.
4327             let mod_path = &path[..path.len() - 1];
4328             if let PathResult::Module(module) = self.resolve_path_without_parent_scope(
4329                 mod_path, Some(TypeNS), false, span, CrateLint::No
4330             ) {
4331                 if let ModuleOrUniformRoot::Module(module) = module {
4332                     add_module_candidates(module, &mut names);
4333                 }
4334             }
4335         }
4336
4337         let name = path[path.len() - 1].ident.name;
4338         // Make sure error reporting is deterministic.
4339         names.sort_by_cached_key(|suggestion| suggestion.candidate.as_str());
4340
4341         match find_best_match_for_name(
4342             names.iter().map(|suggestion| &suggestion.candidate),
4343             &name.as_str(),
4344             None,
4345         ) {
4346             Some(found) if found != name => names
4347                 .into_iter()
4348                 .find(|suggestion| suggestion.candidate == found),
4349             _ => None,
4350         }
4351     }
4352
4353     fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
4354         where F: FnOnce(&mut Resolver)
4355     {
4356         if let Some(label) = label {
4357             self.unused_labels.insert(id, label.ident.span);
4358             let def = Def::Label(id);
4359             self.with_label_rib(|this| {
4360                 let ident = label.ident.modern_and_legacy();
4361                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, def);
4362                 f(this);
4363             });
4364         } else {
4365             f(self);
4366         }
4367     }
4368
4369     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
4370         self.with_resolved_label(label, id, |this| this.visit_block(block));
4371     }
4372
4373     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
4374         // First, record candidate traits for this expression if it could
4375         // result in the invocation of a method call.
4376
4377         self.record_candidate_traits_for_expr_if_necessary(expr);
4378
4379         // Next, resolve the node.
4380         match expr.node {
4381             ExprKind::Path(ref qself, ref path) => {
4382                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
4383                 visit::walk_expr(self, expr);
4384             }
4385
4386             ExprKind::Struct(ref path, ..) => {
4387                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
4388                 visit::walk_expr(self, expr);
4389             }
4390
4391             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4392                 let def = self.search_label(label.ident, |rib, ident| {
4393                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
4394                 });
4395                 match def {
4396                     None => {
4397                         // Search again for close matches...
4398                         // Picks the first label that is "close enough", which is not necessarily
4399                         // the closest match
4400                         let close_match = self.search_label(label.ident, |rib, ident| {
4401                             let names = rib.bindings.iter().map(|(id, _)| &id.name);
4402                             find_best_match_for_name(names, &*ident.as_str(), None)
4403                         });
4404                         self.record_def(expr.id, err_path_resolution());
4405                         resolve_error(self,
4406                                       label.ident.span,
4407                                       ResolutionError::UndeclaredLabel(&label.ident.as_str(),
4408                                                                        close_match));
4409                     }
4410                     Some(Def::Label(id)) => {
4411                         // Since this def is a label, it is never read.
4412                         self.record_def(expr.id, PathResolution::new(Def::Label(id)));
4413                         self.unused_labels.remove(&id);
4414                     }
4415                     Some(_) => {
4416                         span_bug!(expr.span, "label wasn't mapped to a label def!");
4417                     }
4418                 }
4419
4420                 // visit `break` argument if any
4421                 visit::walk_expr(self, expr);
4422             }
4423
4424             ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
4425                 self.visit_expr(subexpression);
4426
4427                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4428                 let mut bindings_list = FxHashMap::default();
4429                 for pat in pats {
4430                     self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
4431                 }
4432                 // This has to happen *after* we determine which pat_idents are variants
4433                 self.check_consistent_bindings(pats);
4434                 self.visit_block(if_block);
4435                 self.ribs[ValueNS].pop();
4436
4437                 optional_else.as_ref().map(|expr| self.visit_expr(expr));
4438             }
4439
4440             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
4441
4442             ExprKind::While(ref subexpression, ref block, label) => {
4443                 self.with_resolved_label(label, expr.id, |this| {
4444                     this.visit_expr(subexpression);
4445                     this.visit_block(block);
4446                 });
4447             }
4448
4449             ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
4450                 self.with_resolved_label(label, expr.id, |this| {
4451                     this.visit_expr(subexpression);
4452                     this.ribs[ValueNS].push(Rib::new(NormalRibKind));
4453                     let mut bindings_list = FxHashMap::default();
4454                     for pat in pats {
4455                         this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
4456                     }
4457                     // This has to happen *after* we determine which pat_idents are variants.
4458                     this.check_consistent_bindings(pats);
4459                     this.visit_block(block);
4460                     this.ribs[ValueNS].pop();
4461                 });
4462             }
4463
4464             ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
4465                 self.visit_expr(subexpression);
4466                 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
4467                 self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap::default());
4468
4469                 self.resolve_labeled_block(label, expr.id, block);
4470
4471                 self.ribs[ValueNS].pop();
4472             }
4473
4474             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4475
4476             // Equivalent to `visit::walk_expr` + passing some context to children.
4477             ExprKind::Field(ref subexpression, _) => {
4478                 self.resolve_expr(subexpression, Some(expr));
4479             }
4480             ExprKind::MethodCall(ref segment, ref arguments) => {
4481                 let mut arguments = arguments.iter();
4482                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
4483                 for argument in arguments {
4484                     self.resolve_expr(argument, None);
4485                 }
4486                 self.visit_path_segment(expr.span, segment);
4487             }
4488
4489             ExprKind::Call(ref callee, ref arguments) => {
4490                 self.resolve_expr(callee, Some(expr));
4491                 for argument in arguments {
4492                     self.resolve_expr(argument, None);
4493                 }
4494             }
4495             ExprKind::Type(ref type_expr, _) => {
4496                 self.current_type_ascription.push(type_expr.span);
4497                 visit::walk_expr(self, expr);
4498                 self.current_type_ascription.pop();
4499             }
4500             // Resolve the body of async exprs inside the async closure to which they desugar
4501             ExprKind::Async(_, async_closure_id, ref block) => {
4502                 let rib_kind = ClosureRibKind(async_closure_id);
4503                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4504                 self.label_ribs.push(Rib::new(rib_kind));
4505                 self.visit_block(&block);
4506                 self.label_ribs.pop();
4507                 self.ribs[ValueNS].pop();
4508             }
4509             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
4510             // resolve the arguments within the proper scopes so that usages of them inside the
4511             // closure are detected as upvars rather than normal closure arg usages.
4512             ExprKind::Closure(
4513                 _, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
4514                 ref fn_decl, ref body, _span,
4515             ) => {
4516                 let rib_kind = ClosureRibKind(expr.id);
4517                 self.ribs[ValueNS].push(Rib::new(rib_kind));
4518                 self.label_ribs.push(Rib::new(rib_kind));
4519                 // Resolve arguments:
4520                 let mut bindings_list = FxHashMap::default();
4521                 for argument in &fn_decl.inputs {
4522                     self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
4523                     self.visit_ty(&argument.ty);
4524                 }
4525                 // No need to resolve return type-- the outer closure return type is
4526                 // FunctionRetTy::Default
4527
4528                 // Now resolve the inner closure
4529                 {
4530                     let rib_kind = ClosureRibKind(inner_closure_id);
4531                     self.ribs[ValueNS].push(Rib::new(rib_kind));
4532                     self.label_ribs.push(Rib::new(rib_kind));
4533                     // No need to resolve arguments: the inner closure has none.
4534                     // Resolve the return type:
4535                     visit::walk_fn_ret_ty(self, &fn_decl.output);
4536                     // Resolve the body
4537                     self.visit_expr(body);
4538                     self.label_ribs.pop();
4539                     self.ribs[ValueNS].pop();
4540                 }
4541                 self.label_ribs.pop();
4542                 self.ribs[ValueNS].pop();
4543             }
4544             _ => {
4545                 visit::walk_expr(self, expr);
4546             }
4547         }
4548     }
4549
4550     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
4551         match expr.node {
4552             ExprKind::Field(_, ident) => {
4553                 // FIXME(#6890): Even though you can't treat a method like a
4554                 // field, we need to add any trait methods we find that match
4555                 // the field name so that we can do some nice error reporting
4556                 // later on in typeck.
4557                 let traits = self.get_traits_containing_item(ident, ValueNS);
4558                 self.trait_map.insert(expr.id, traits);
4559             }
4560             ExprKind::MethodCall(ref segment, ..) => {
4561                 debug!("(recording candidate traits for expr) recording traits for {}",
4562                        expr.id);
4563                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
4564                 self.trait_map.insert(expr.id, traits);
4565             }
4566             _ => {
4567                 // Nothing to do.
4568             }
4569         }
4570     }
4571
4572     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
4573                                   -> Vec<TraitCandidate> {
4574         debug!("(getting traits containing item) looking for '{}'", ident.name);
4575
4576         let mut found_traits = Vec::new();
4577         // Look for the current trait.
4578         if let Some((module, _)) = self.current_trait_ref {
4579             if self.resolve_ident_in_module(
4580                 ModuleOrUniformRoot::Module(module),
4581                 ident,
4582                 ns,
4583                 None,
4584                 false,
4585                 module.span,
4586             ).is_ok() {
4587                 let def_id = module.def_id().unwrap();
4588                 found_traits.push(TraitCandidate { def_id: def_id, import_id: None });
4589             }
4590         }
4591
4592         ident.span = ident.span.modern();
4593         let mut search_module = self.current_module;
4594         loop {
4595             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
4596             search_module = unwrap_or!(
4597                 self.hygienic_lexical_parent(search_module, &mut ident.span), break
4598             );
4599         }
4600
4601         if let Some(prelude) = self.prelude {
4602             if !search_module.no_implicit_prelude {
4603                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
4604             }
4605         }
4606
4607         found_traits
4608     }
4609
4610     fn get_traits_in_module_containing_item(&mut self,
4611                                             ident: Ident,
4612                                             ns: Namespace,
4613                                             module: Module<'a>,
4614                                             found_traits: &mut Vec<TraitCandidate>) {
4615         assert!(ns == TypeNS || ns == ValueNS);
4616         let mut traits = module.traits.borrow_mut();
4617         if traits.is_none() {
4618             let mut collected_traits = Vec::new();
4619             module.for_each_child(|name, ns, binding| {
4620                 if ns != TypeNS { return }
4621                 if let Def::Trait(_) = binding.def() {
4622                     collected_traits.push((name, binding));
4623                 }
4624             });
4625             *traits = Some(collected_traits.into_boxed_slice());
4626         }
4627
4628         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
4629             let module = binding.module().unwrap();
4630             let mut ident = ident;
4631             if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() {
4632                 continue
4633             }
4634             if self.resolve_ident_in_module_unadjusted(
4635                 ModuleOrUniformRoot::Module(module),
4636                 ident,
4637                 ns,
4638                 false,
4639                 module.span,
4640             ).is_ok() {
4641                 let import_id = match binding.kind {
4642                     NameBindingKind::Import { directive, .. } => {
4643                         self.maybe_unused_trait_imports.insert(directive.id);
4644                         self.add_to_glob_map(&directive, trait_name);
4645                         Some(directive.id)
4646                     }
4647                     _ => None,
4648                 };
4649                 let trait_def_id = module.def_id().unwrap();
4650                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
4651             }
4652         }
4653     }
4654
4655     fn lookup_import_candidates_from_module<FilterFn>(&mut self,
4656                                           lookup_ident: Ident,
4657                                           namespace: Namespace,
4658                                           start_module: &'a ModuleData<'a>,
4659                                           crate_name: Ident,
4660                                           filter_fn: FilterFn)
4661                                           -> Vec<ImportSuggestion>
4662         where FilterFn: Fn(Def) -> bool
4663     {
4664         let mut candidates = Vec::new();
4665         let mut seen_modules = FxHashSet::default();
4666         let not_local_module = crate_name != keywords::Crate.ident();
4667         let mut worklist = vec![(start_module, Vec::<ast::PathSegment>::new(), not_local_module)];
4668
4669         while let Some((in_module,
4670                         path_segments,
4671                         in_module_is_extern)) = worklist.pop() {
4672             self.populate_module_if_necessary(in_module);
4673
4674             // We have to visit module children in deterministic order to avoid
4675             // instabilities in reported imports (#43552).
4676             in_module.for_each_child_stable(|ident, ns, name_binding| {
4677                 // avoid imports entirely
4678                 if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
4679                 // avoid non-importable candidates as well
4680                 if !name_binding.is_importable() { return; }
4681
4682                 // collect results based on the filter function
4683                 if ident.name == lookup_ident.name && ns == namespace {
4684                     if filter_fn(name_binding.def()) {
4685                         // create the path
4686                         let mut segms = path_segments.clone();
4687                         if lookup_ident.span.rust_2018() {
4688                             // crate-local absolute paths start with `crate::` in edition 2018
4689                             // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
4690                             segms.insert(
4691                                 0, ast::PathSegment::from_ident(crate_name)
4692                             );
4693                         }
4694
4695                         segms.push(ast::PathSegment::from_ident(ident));
4696                         let path = Path {
4697                             span: name_binding.span,
4698                             segments: segms,
4699                         };
4700                         // the entity is accessible in the following cases:
4701                         // 1. if it's defined in the same crate, it's always
4702                         // accessible (since private entities can be made public)
4703                         // 2. if it's defined in another crate, it's accessible
4704                         // only if both the module is public and the entity is
4705                         // declared as public (due to pruning, we don't explore
4706                         // outside crate private modules => no need to check this)
4707                         if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
4708                             candidates.push(ImportSuggestion { path });
4709                         }
4710                     }
4711                 }
4712
4713                 // collect submodules to explore
4714                 if let Some(module) = name_binding.module() {
4715                     // form the path
4716                     let mut path_segments = path_segments.clone();
4717                     path_segments.push(ast::PathSegment::from_ident(ident));
4718
4719                     let is_extern_crate_that_also_appears_in_prelude =
4720                         name_binding.is_extern_crate() &&
4721                         lookup_ident.span.rust_2018();
4722
4723                     let is_visible_to_user =
4724                         !in_module_is_extern || name_binding.vis == ty::Visibility::Public;
4725
4726                     if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
4727                         // add the module to the lookup
4728                         let is_extern = in_module_is_extern || name_binding.is_extern_crate();
4729                         if seen_modules.insert(module.def_id().unwrap()) {
4730                             worklist.push((module, path_segments, is_extern));
4731                         }
4732                     }
4733                 }
4734             })
4735         }
4736
4737         candidates
4738     }
4739
4740     /// When name resolution fails, this method can be used to look up candidate
4741     /// entities with the expected name. It allows filtering them using the
4742     /// supplied predicate (which should be used to only accept the types of
4743     /// definitions expected e.g., traits). The lookup spans across all crates.
4744     ///
4745     /// NOTE: The method does not look into imports, but this is not a problem,
4746     /// since we report the definitions (thus, the de-aliased imports).
4747     fn lookup_import_candidates<FilterFn>(&mut self,
4748                                           lookup_ident: Ident,
4749                                           namespace: Namespace,
4750                                           filter_fn: FilterFn)
4751                                           -> Vec<ImportSuggestion>
4752         where FilterFn: Fn(Def) -> bool
4753     {
4754         let mut suggestions = self.lookup_import_candidates_from_module(
4755             lookup_ident, namespace, self.graph_root, keywords::Crate.ident(), &filter_fn);
4756
4757         if lookup_ident.span.rust_2018() {
4758             let extern_prelude_names = self.extern_prelude.clone();
4759             for (ident, _) in extern_prelude_names.into_iter() {
4760                 if let Some(crate_id) = self.crate_loader.maybe_process_path_extern(ident.name,
4761                                                                                     ident.span) {
4762                     let crate_root = self.get_module(DefId {
4763                         krate: crate_id,
4764                         index: CRATE_DEF_INDEX,
4765                     });
4766                     self.populate_module_if_necessary(&crate_root);
4767
4768                     suggestions.extend(self.lookup_import_candidates_from_module(
4769                         lookup_ident, namespace, crate_root, ident, &filter_fn));
4770                 }
4771             }
4772         }
4773
4774         suggestions
4775     }
4776
4777     fn find_module(&mut self,
4778                    module_def: Def)
4779                    -> Option<(Module<'a>, ImportSuggestion)>
4780     {
4781         let mut result = None;
4782         let mut seen_modules = FxHashSet::default();
4783         let mut worklist = vec![(self.graph_root, Vec::new())];
4784
4785         while let Some((in_module, path_segments)) = worklist.pop() {
4786             // abort if the module is already found
4787             if result.is_some() { break; }
4788
4789             self.populate_module_if_necessary(in_module);
4790
4791             in_module.for_each_child_stable(|ident, _, name_binding| {
4792                 // abort if the module is already found or if name_binding is private external
4793                 if result.is_some() || !name_binding.vis.is_visible_locally() {
4794                     return
4795                 }
4796                 if let Some(module) = name_binding.module() {
4797                     // form the path
4798                     let mut path_segments = path_segments.clone();
4799                     path_segments.push(ast::PathSegment::from_ident(ident));
4800                     if module.def() == Some(module_def) {
4801                         let path = Path {
4802                             span: name_binding.span,
4803                             segments: path_segments,
4804                         };
4805                         result = Some((module, ImportSuggestion { path }));
4806                     } else {
4807                         // add the module to the lookup
4808                         if seen_modules.insert(module.def_id().unwrap()) {
4809                             worklist.push((module, path_segments));
4810                         }
4811                     }
4812                 }
4813             });
4814         }
4815
4816         result
4817     }
4818
4819     fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> {
4820         if let Def::Enum(..) = enum_def {} else {
4821             panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def)
4822         }
4823
4824         self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| {
4825             self.populate_module_if_necessary(enum_module);
4826
4827             let mut variants = Vec::new();
4828             enum_module.for_each_child_stable(|ident, _, name_binding| {
4829                 if let Def::Variant(..) = name_binding.def() {
4830                     let mut segms = enum_import_suggestion.path.segments.clone();
4831                     segms.push(ast::PathSegment::from_ident(ident));
4832                     variants.push(Path {
4833                         span: name_binding.span,
4834                         segments: segms,
4835                     });
4836                 }
4837             });
4838             variants
4839         })
4840     }
4841
4842     fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
4843         debug!("(recording def) recording {:?} for {}", resolution, node_id);
4844         if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
4845             panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
4846         }
4847     }
4848
4849     fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
4850         match vis.node {
4851             ast::VisibilityKind::Public => ty::Visibility::Public,
4852             ast::VisibilityKind::Crate(..) => {
4853                 ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
4854             }
4855             ast::VisibilityKind::Inherited => {
4856                 ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
4857             }
4858             ast::VisibilityKind::Restricted { ref path, id, .. } => {
4859                 // For visibilities we are not ready to provide correct implementation of "uniform
4860                 // paths" right now, so on 2018 edition we only allow module-relative paths for now.
4861                 // On 2015 edition visibilities are resolved as crate-relative by default,
4862                 // so we are prepending a root segment if necessary.
4863                 let ident = path.segments.get(0).expect("empty path in visibility").ident;
4864                 let crate_root = if ident.is_path_segment_keyword() {
4865                     None
4866                 } else if ident.span.rust_2018() {
4867                     let msg = "relative paths are not supported in visibilities on 2018 edition";
4868                     self.session.struct_span_err(ident.span, msg)
4869                         .span_suggestion(
4870                             path.span,
4871                             "try",
4872                             format!("crate::{}", path),
4873                             Applicability::MaybeIncorrect,
4874                         )
4875                         .emit();
4876                     return ty::Visibility::Public;
4877                 } else {
4878                     let ctxt = ident.span.ctxt();
4879                     Some(Segment::from_ident(Ident::new(
4880                         keywords::PathRoot.name(), path.span.shrink_to_lo().with_ctxt(ctxt)
4881                     )))
4882                 };
4883
4884                 let segments = crate_root.into_iter()
4885                     .chain(path.segments.iter().map(|seg| seg.into())).collect::<Vec<_>>();
4886                 let def = self.smart_resolve_path_fragment(
4887                     id,
4888                     None,
4889                     &segments,
4890                     path.span,
4891                     PathSource::Visibility,
4892                     CrateLint::SimplePath(id),
4893                 ).base_def();
4894                 if def == Def::Err {
4895                     ty::Visibility::Public
4896                 } else {
4897                     let vis = ty::Visibility::Restricted(def.def_id());
4898                     if self.is_accessible(vis) {
4899                         vis
4900                     } else {
4901                         self.session.span_err(path.span, "visibilities can only be restricted \
4902                                                           to ancestor modules");
4903                         ty::Visibility::Public
4904                     }
4905                 }
4906             }
4907         }
4908     }
4909
4910     fn is_accessible(&self, vis: ty::Visibility) -> bool {
4911         vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
4912     }
4913
4914     fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
4915         vis.is_accessible_from(module.normal_ancestor_id, self)
4916     }
4917
4918     fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
4919         if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
4920             if !ptr::eq(module, old_module) {
4921                 span_bug!(binding.span, "parent module is reset for binding");
4922             }
4923         }
4924     }
4925
4926     fn disambiguate_legacy_vs_modern(
4927         &self,
4928         legacy: &'a NameBinding<'a>,
4929         modern: &'a NameBinding<'a>,
4930     ) -> bool {
4931         // Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
4932         // is disambiguated to mitigate regressions from macro modularization.
4933         // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
4934         match (self.binding_parent_modules.get(&PtrKey(legacy)),
4935                self.binding_parent_modules.get(&PtrKey(modern))) {
4936             (Some(legacy), Some(modern)) =>
4937                 legacy.normal_ancestor_id == modern.normal_ancestor_id &&
4938                 modern.is_ancestor_of(legacy),
4939             _ => false,
4940         }
4941     }
4942
4943     fn binding_description(&self, b: &NameBinding, ident: Ident, from_prelude: bool) -> String {
4944         if b.span.is_dummy() {
4945             let add_built_in = match b.def() {
4946                 // These already contain the "built-in" prefix or look bad with it.
4947                 Def::NonMacroAttr(..) | Def::PrimTy(..) | Def::ToolMod => false,
4948                 _ => true,
4949             };
4950             let (built_in, from) = if from_prelude {
4951                 ("", " from prelude")
4952             } else if b.is_extern_crate() && !b.is_import() &&
4953                         self.session.opts.externs.get(&ident.as_str()).is_some() {
4954                 ("", " passed with `--extern`")
4955             } else if add_built_in {
4956                 (" built-in", "")
4957             } else {
4958                 ("", "")
4959             };
4960
4961             let article = if built_in.is_empty() { b.article() } else { "a" };
4962             format!("{a}{built_in} {thing}{from}",
4963                     a = article, thing = b.descr(), built_in = built_in, from = from)
4964         } else {
4965             let introduced = if b.is_import() { "imported" } else { "defined" };
4966             format!("the {thing} {introduced} here",
4967                     thing = b.descr(), introduced = introduced)
4968         }
4969     }
4970
4971     fn report_ambiguity_error(&self, ambiguity_error: &AmbiguityError) {
4972         let AmbiguityError { kind, ident, b1, b2, misc1, misc2 } = *ambiguity_error;
4973         let (b1, b2, misc1, misc2, swapped) = if b2.span.is_dummy() && !b1.span.is_dummy() {
4974             // We have to print the span-less alternative first, otherwise formatting looks bad.
4975             (b2, b1, misc2, misc1, true)
4976         } else {
4977             (b1, b2, misc1, misc2, false)
4978         };
4979
4980         let mut err = struct_span_err!(self.session, ident.span, E0659,
4981                                        "`{ident}` is ambiguous ({why})",
4982                                        ident = ident, why = kind.descr());
4983         err.span_label(ident.span, "ambiguous name");
4984
4985         let mut could_refer_to = |b: &NameBinding, misc: AmbiguityErrorMisc, also: &str| {
4986             let what = self.binding_description(b, ident, misc == AmbiguityErrorMisc::FromPrelude);
4987             let note_msg = format!("`{ident}` could{also} refer to {what}",
4988                                    ident = ident, also = also, what = what);
4989
4990             let mut help_msgs = Vec::new();
4991             if b.is_glob_import() && (kind == AmbiguityKind::GlobVsGlob ||
4992                                       kind == AmbiguityKind::GlobVsExpanded ||
4993                                       kind == AmbiguityKind::GlobVsOuter &&
4994                                       swapped != also.is_empty()) {
4995                 help_msgs.push(format!("consider adding an explicit import of \
4996                                         `{ident}` to disambiguate", ident = ident))
4997             }
4998             if b.is_extern_crate() && ident.span.rust_2018() {
4999                 help_msgs.push(format!(
5000                     "use `::{ident}` to refer to this {thing} unambiguously",
5001                     ident = ident, thing = b.descr(),
5002                 ))
5003             }
5004             if misc == AmbiguityErrorMisc::SuggestCrate {
5005                 help_msgs.push(format!(
5006                     "use `crate::{ident}` to refer to this {thing} unambiguously",
5007                     ident = ident, thing = b.descr(),
5008                 ))
5009             } else if misc == AmbiguityErrorMisc::SuggestSelf {
5010                 help_msgs.push(format!(
5011                     "use `self::{ident}` to refer to this {thing} unambiguously",
5012                     ident = ident, thing = b.descr(),
5013                 ))
5014             }
5015
5016             err.span_note(b.span, &note_msg);
5017             for (i, help_msg) in help_msgs.iter().enumerate() {
5018                 let or = if i == 0 { "" } else { "or " };
5019                 err.help(&format!("{}{}", or, help_msg));
5020             }
5021         };
5022
5023         could_refer_to(b1, misc1, "");
5024         could_refer_to(b2, misc2, " also");
5025         err.emit();
5026     }
5027
5028     fn report_errors(&mut self, krate: &Crate) {
5029         self.report_with_use_injections(krate);
5030
5031         for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
5032             let msg = "macro-expanded `macro_export` macros from the current crate \
5033                        cannot be referred to by absolute paths";
5034             self.session.buffer_lint_with_diagnostic(
5035                 lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
5036                 CRATE_NODE_ID, span_use, msg,
5037                 lint::builtin::BuiltinLintDiagnostics::
5038                     MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
5039             );
5040         }
5041
5042         for ambiguity_error in &self.ambiguity_errors {
5043             self.report_ambiguity_error(ambiguity_error);
5044         }
5045
5046         let mut reported_spans = FxHashSet::default();
5047         for &PrivacyError(dedup_span, ident, binding) in &self.privacy_errors {
5048             if reported_spans.insert(dedup_span) {
5049                 span_err!(self.session, ident.span, E0603, "{} `{}` is private",
5050                           binding.descr(), ident.name);
5051             }
5052         }
5053     }
5054
5055     fn report_with_use_injections(&mut self, krate: &Crate) {
5056         for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
5057             let (span, found_use) = UsePlacementFinder::check(krate, node_id);
5058             if !candidates.is_empty() {
5059                 show_candidates(&mut err, span, &candidates, better, found_use);
5060             }
5061             err.emit();
5062         }
5063     }
5064
5065     fn report_conflict<'b>(&mut self,
5066                        parent: Module,
5067                        ident: Ident,
5068                        ns: Namespace,
5069                        new_binding: &NameBinding<'b>,
5070                        old_binding: &NameBinding<'b>) {
5071         // Error on the second of two conflicting names
5072         if old_binding.span.lo() > new_binding.span.lo() {
5073             return self.report_conflict(parent, ident, ns, old_binding, new_binding);
5074         }
5075
5076         let container = match parent.kind {
5077             ModuleKind::Def(Def::Mod(_), _) => "module",
5078             ModuleKind::Def(Def::Trait(_), _) => "trait",
5079             ModuleKind::Block(..) => "block",
5080             _ => "enum",
5081         };
5082
5083         let old_noun = match old_binding.is_import() {
5084             true => "import",
5085             false => "definition",
5086         };
5087
5088         let new_participle = match new_binding.is_import() {
5089             true => "imported",
5090             false => "defined",
5091         };
5092
5093         let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
5094
5095         if let Some(s) = self.name_already_seen.get(&name) {
5096             if s == &span {
5097                 return;
5098             }
5099         }
5100
5101         let old_kind = match (ns, old_binding.module()) {
5102             (ValueNS, _) => "value",
5103             (MacroNS, _) => "macro",
5104             (TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
5105             (TypeNS, Some(module)) if module.is_normal() => "module",
5106             (TypeNS, Some(module)) if module.is_trait() => "trait",
5107             (TypeNS, _) => "type",
5108         };
5109
5110         let msg = format!("the name `{}` is defined multiple times", name);
5111
5112         let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
5113             (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
5114             (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
5115                 true => struct_span_err!(self.session, span, E0254, "{}", msg),
5116                 false => struct_span_err!(self.session, span, E0260, "{}", msg),
5117             },
5118             _ => match (old_binding.is_import(), new_binding.is_import()) {
5119                 (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
5120                 (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
5121                 _ => struct_span_err!(self.session, span, E0255, "{}", msg),
5122             },
5123         };
5124
5125         err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
5126                           name,
5127                           ns.descr(),
5128                           container));
5129
5130         err.span_label(span, format!("`{}` re{} here", name, new_participle));
5131         err.span_label(
5132             self.session.source_map().def_span(old_binding.span),
5133             format!("previous {} of the {} `{}` here", old_noun, old_kind, name),
5134         );
5135
5136         // See https://github.com/rust-lang/rust/issues/32354
5137         let directive = match (&new_binding.kind, &old_binding.kind) {
5138             (NameBindingKind::Import { directive, .. }, _) if !new_binding.span.is_dummy() =>
5139                 Some((directive, new_binding.span)),
5140             (_, NameBindingKind::Import { directive, .. }) if !old_binding.span.is_dummy() =>
5141                 Some((directive, old_binding.span)),
5142             _ => None,
5143         };
5144         if let Some((directive, binding_span)) = directive {
5145             let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
5146                 format!("Other{}", name)
5147             } else {
5148                 format!("other_{}", name)
5149             };
5150
5151             let mut suggestion = None;
5152             match directive.subclass {
5153                 ImportDirectiveSubclass::SingleImport { type_ns_only: true, .. } =>
5154                     suggestion = Some(format!("self as {}", suggested_name)),
5155                 ImportDirectiveSubclass::SingleImport { source, .. } => {
5156                     if let Some(pos) = source.span.hi().0.checked_sub(binding_span.lo().0)
5157                                                          .map(|pos| pos as usize) {
5158                         if let Ok(snippet) = self.session.source_map()
5159                                                          .span_to_snippet(binding_span) {
5160                             if pos <= snippet.len() {
5161                                 suggestion = Some(format!(
5162                                     "{} as {}{}",
5163                                     &snippet[..pos],
5164                                     suggested_name,
5165                                     if snippet.ends_with(";") { ";" } else { "" }
5166                                 ))
5167                             }
5168                         }
5169                     }
5170                 }
5171                 ImportDirectiveSubclass::ExternCrate { source, target, .. } =>
5172                     suggestion = Some(format!(
5173                         "extern crate {} as {};",
5174                         source.unwrap_or(target.name),
5175                         suggested_name,
5176                     )),
5177                 _ => unreachable!(),
5178             }
5179
5180             let rename_msg = "you can use `as` to change the binding name of the import";
5181             if let Some(suggestion) = suggestion {
5182                 err.span_suggestion(
5183                     binding_span,
5184                     rename_msg,
5185                     suggestion,
5186                     Applicability::MaybeIncorrect,
5187                 );
5188             } else {
5189                 err.span_label(binding_span, rename_msg);
5190             }
5191         }
5192
5193         err.emit();
5194         self.name_already_seen.insert(name, span);
5195     }
5196
5197     fn extern_prelude_get(&mut self, ident: Ident, speculative: bool)
5198                           -> Option<&'a NameBinding<'a>> {
5199         if ident.is_path_segment_keyword() {
5200             // Make sure `self`, `super` etc produce an error when passed to here.
5201             return None;
5202         }
5203         self.extern_prelude.get(&ident.modern()).cloned().and_then(|entry| {
5204             if let Some(binding) = entry.extern_crate_item {
5205                 if !speculative && entry.introduced_by_item {
5206                     self.record_use(ident, TypeNS, binding, false);
5207                 }
5208                 Some(binding)
5209             } else {
5210                 let crate_id = if !speculative {
5211                     self.crate_loader.process_path_extern(ident.name, ident.span)
5212                 } else if let Some(crate_id) =
5213                         self.crate_loader.maybe_process_path_extern(ident.name, ident.span) {
5214                     crate_id
5215                 } else {
5216                     return None;
5217                 };
5218                 let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
5219                 self.populate_module_if_necessary(&crate_root);
5220                 Some((crate_root, ty::Visibility::Public, DUMMY_SP, Mark::root())
5221                     .to_name_binding(self.arenas))
5222             }
5223         })
5224     }
5225 }
5226
5227 fn is_self_type(path: &[Segment], namespace: Namespace) -> bool {
5228     namespace == TypeNS && path.len() == 1 && path[0].ident.name == keywords::SelfUpper.name()
5229 }
5230
5231 fn is_self_value(path: &[Segment], namespace: Namespace) -> bool {
5232     namespace == ValueNS && path.len() == 1 && path[0].ident.name == keywords::SelfLower.name()
5233 }
5234
5235 fn names_to_string(idents: &[Ident]) -> String {
5236     let mut result = String::new();
5237     for (i, ident) in idents.iter()
5238                             .filter(|ident| ident.name != keywords::PathRoot.name())
5239                             .enumerate() {
5240         if i > 0 {
5241             result.push_str("::");
5242         }
5243         result.push_str(&ident.as_str());
5244     }
5245     result
5246 }
5247
5248 fn path_names_to_string(path: &Path) -> String {
5249     names_to_string(&path.segments.iter()
5250                         .map(|seg| seg.ident)
5251                         .collect::<Vec<_>>())
5252 }
5253
5254 /// Get the stringified path for an enum from an `ImportSuggestion` for an enum variant.
5255 fn import_candidate_to_enum_paths(suggestion: &ImportSuggestion) -> (String, String) {
5256     let variant_path = &suggestion.path;
5257     let variant_path_string = path_names_to_string(variant_path);
5258
5259     let path_len = suggestion.path.segments.len();
5260     let enum_path = ast::Path {
5261         span: suggestion.path.span,
5262         segments: suggestion.path.segments[0..path_len - 1].to_vec(),
5263     };
5264     let enum_path_string = path_names_to_string(&enum_path);
5265
5266     (variant_path_string, enum_path_string)
5267 }
5268
5269
5270 /// When an entity with a given name is not available in scope, we search for
5271 /// entities with that name in all crates. This method allows outputting the
5272 /// results of this search in a programmer-friendly way
5273 fn show_candidates(err: &mut DiagnosticBuilder,
5274                    // This is `None` if all placement locations are inside expansions
5275                    span: Option<Span>,
5276                    candidates: &[ImportSuggestion],
5277                    better: bool,
5278                    found_use: bool) {
5279
5280     // we want consistent results across executions, but candidates are produced
5281     // by iterating through a hash map, so make sure they are ordered:
5282     let mut path_strings: Vec<_> =
5283         candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
5284     path_strings.sort();
5285
5286     let better = if better { "better " } else { "" };
5287     let msg_diff = match path_strings.len() {
5288         1 => " is found in another module, you can import it",
5289         _ => "s are found in other modules, you can import them",
5290     };
5291     let msg = format!("possible {}candidate{} into scope", better, msg_diff);
5292
5293     if let Some(span) = span {
5294         for candidate in &mut path_strings {
5295             // produce an additional newline to separate the new use statement
5296             // from the directly following item.
5297             let additional_newline = if found_use {
5298                 ""
5299             } else {
5300                 "\n"
5301             };
5302             *candidate = format!("use {};\n{}", candidate, additional_newline);
5303         }
5304
5305         err.span_suggestions(
5306             span,
5307             &msg,
5308             path_strings.into_iter(),
5309             Applicability::Unspecified,
5310         );
5311     } else {
5312         let mut msg = msg;
5313         msg.push(':');
5314         for candidate in path_strings {
5315             msg.push('\n');
5316             msg.push_str(&candidate);
5317         }
5318     }
5319 }
5320
5321 /// A somewhat inefficient routine to obtain the name of a module.
5322 fn module_to_string(module: Module) -> Option<String> {
5323     let mut names = Vec::new();
5324
5325     fn collect_mod(names: &mut Vec<Ident>, module: Module) {
5326         if let ModuleKind::Def(_, name) = module.kind {
5327             if let Some(parent) = module.parent {
5328                 names.push(Ident::with_empty_ctxt(name));
5329                 collect_mod(names, parent);
5330             }
5331         } else {
5332             // danger, shouldn't be ident?
5333             names.push(Ident::from_str("<opaque>"));
5334             collect_mod(names, module.parent.unwrap());
5335         }
5336     }
5337     collect_mod(&mut names, module);
5338
5339     if names.is_empty() {
5340         return None;
5341     }
5342     Some(names_to_string(&names.into_iter()
5343                         .rev()
5344                         .collect::<Vec<_>>()))
5345 }
5346
5347 fn err_path_resolution() -> PathResolution {
5348     PathResolution::new(Def::Err)
5349 }
5350
5351 #[derive(Copy, Clone, Debug)]
5352 enum CrateLint {
5353     /// Do not issue the lint
5354     No,
5355
5356     /// This lint applies to some random path like `impl ::foo::Bar`
5357     /// or whatever. In this case, we can take the span of that path.
5358     SimplePath(NodeId),
5359
5360     /// This lint comes from a `use` statement. In this case, what we
5361     /// care about really is the *root* `use` statement; e.g., if we
5362     /// have nested things like `use a::{b, c}`, we care about the
5363     /// `use a` part.
5364     UsePath { root_id: NodeId, root_span: Span },
5365
5366     /// This is the "trait item" from a fully qualified path. For example,
5367     /// we might be resolving  `X::Y::Z` from a path like `<T as X::Y>::Z`.
5368     /// The `path_span` is the span of the to the trait itself (`X::Y`).
5369     QPathTrait { qpath_id: NodeId, qpath_span: Span },
5370 }
5371
5372 impl CrateLint {
5373     fn node_id(&self) -> Option<NodeId> {
5374         match *self {
5375             CrateLint::No => None,
5376             CrateLint::SimplePath(id) |
5377             CrateLint::UsePath { root_id: id, .. } |
5378             CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
5379         }
5380     }
5381 }
5382
5383 __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }